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Abstract: In this study, we propose to address the difficult task of bark recognition in the wild using computationally
efficient and compact feature vectors. We introduce two novel generic methods to significantly reduce the
dimensions of existing texture and color histograms with few losses in accuracy. Specifically, we propose
a straightforward yet efficient way to compute Late Statistics from texture histograms and an approach to
iteratively quantify the color space based on domain priors. We further combine the reduced histograms in a
late fusion manner to benefit from both texture and color cues. Results outperform state-of-the-art methods
by a large margin on four public datasets respectively composed of 6 bark classes (BarkTex, NewBarkTex), 11
bark classes (AFF) and 12 bark classes (Trunk12). In addition to these experiments, we propose a baseline
study on Bark-101, a new challenging dataset including manually segmented images of 101 bark classes that
we release publicly.

1 INTRODUCTION

Automatic bark recognition applied to tree species
classification is an important problematic that has
gained interest in the computer vision community. It
is an interesting challenge to evaluate texture classi-
fication algorithms on color images acquired in the
wild. Due to their low inter-class variability and high
intra-class variability, bark images are indeed consid-
ered as difficult to classify for a machine as for a hu-
man.

In the context of tree species classification, barks
have interesting properties compared to other com-
monly used attributes (e.g. leaves, fruits, flowers,
etc.). Firstly, they are non-seasonal: Whatever the
season, the texture of a bark will not change. This
property is particularly important to classify a tree
during winter, when no leaves or fruits are present.
Secondly, bark textures rarely change through short
time periods (i.e. a year basis), but they do change
over long periods (i.e. tenth year basis). This property
enables the use of age priors for bark classification,
but it makes the recognition even more challenging
when these priors are unavailable. Finally, barks are
easier to isolate and to photograph compared to fruits
and leaves that may be unreachable on tall trees. In
result, bark images have been used to recognize tree

species either alone [Bertrand et al., 2017], or in com-
bination with other tree’s attributes [Bertrand et al.,
2018]. In order to recognize trees, mobile applica-
tions like Folia1 [Cerutti et al., 2013] have been de-
veloped. These applications assume that users do not
necessarily have an Internet connection, which is a
very common situation in the wild. They should work
on embedded devices by seeking a trade-off between
accuracy, time complexity and space complexity to
ensure state-of-the-art recognition rates while avoid-
ing unnecessary energy consumption. Consequently,
most of these applications are based on efficient hand-
crafted filters.

In this context, we propose two novel approaches
to drastically reduce the dimensionality of both tex-
ture and color feature vectors, while preserving ac-
curacy. We focused our work on handcrafted meth-
ods and decided not to use end-to-end Deep Convo-
lutional Neural Networks (DCNNs) because existing
datasets are not well suited to both train and evaluate
deep learning algorithms: They contain relatively few
images, up to 1632 for 6 classes in [Porebski et al.,
2014]. Moreover, DCNNs have both high time and
space complexity that make them unsuitable for em-
bedded usage.

1http://liris.univ-lyon2.fr/reves/folia/public/



Figure 1: Examples of bark images from Bark-101 dataset.

To overcome the few numbers of segmented bark
classes in existing datasets; up to 12 in [Švab, 2014];
we also release a novel and even more challenging
dataset made of 101 segmented bark classes in high
resolution: Bark-1012 (see Section 2.1). This dataset
has been conceived with a clear focus on the number
of classes, involving high intra-class and low inter-
class variabilities (see Figure 1).

The remainder of this study is organized as fol-
low. Section 2 presents previous work related to bark
recognition in the wild. Section 3 introduces and de-
tails the proposed algorithms for efficient dimension-
ality reduction of texture and color histograms. Sec-
tion 4 presents the experiments we carried out and dis-
cusses the results.

2 RELATED WORK

This section presents existing bark datasets and
state-of-the-art methods for bark recognition.

2.1 Datasets

We propose to describe four state-of-the-art datasets
that are publicly available and commonly used in the
literature. In complement, we release an even more
challenging dataset: Bark-101. The characteristics of
these datasets are detailed below and summarized on
Table 1.

BarkTex and NewBarkTex. BarkTex was the
first dataset specialized on bark recognition. It was
introduced by R. Lakmann [Lakmann, 1998]. It is
composed of 6 classes, each corresponding to a dif-
ferent tree species. Each class contains 68 color im-
ages of trunks for a total of 408 images. The trunks
are spatially centered in the images, but some back-
ground can appear depending on the width of the
trunk. NewBarkTex is derived from BarkTex. It was
proposed in [Porebski et al., 2014] and it is also com-
posed of 6 classes. A region of interest (ROI) of size
128x128 pixels was cropped from the center of the
images of BarkTex. Then the ROI was separated in 4
sub-images of 64x64 pixels. Half of the sub-images

2http://eidolon.univ-lyon2.fr/~remi1/Bark-101/

were kept for training and the second half for testing.
Therefore, NewBarkTex is made of 272 images per
class for a total of 1632 images.

Trunk12. It is a bark dataset created in 2014 by
Matic Švab [Švab, 2014]. It consists of 360 color im-
ages of barks corresponding to 12 different species of
tree found in Slovenia. Each class consists of about 30
images. All images were taken with the same camera
in the same conditions (20 cm distance, multiple trees
per class, avoiding moss, same light conditions, taken
in upright position).

AFF. This bark dataset was presented in [Wendel
et al., 2011]. It has 11 classes of bark from the most
common Austrian trees. It is composed of 1082 color
images of bark. In AFF, tree species are separated
in sub-classes according to the age of the tree. The
texture of the trunk changes during the lifetime of a
tree, starting from a smooth to a more and more coarse
texture. In this study, we have chosen to not separate
the classes according to the age of the trees.

Bark-101. We built the Bark-101 dataset among
the PlantCLEF3 identification task, part of the Image-
CLEF challenge, designed to compare plant recogni-
tion algorithms. PlantCLEF contains photos of mul-
tiple yet not segmented plant organs (leaf, flower,
branch, steam, etc.) taken by people in various un-
supervised shooting conditions and gathered through
the mobile application Pl@ntNet4. More than 500
herb, tree and fern species centered on France are
present in PlantCLEF [Goëau et al., 2014]. To con-
struct Bark-101, we kept the tree stems available from
PlantCLEF (i.e. the barks), and have manually seg-
mented them to remove undesirable background in-
formation. We decided to follow the authors of [Wen-
del et al., 2011] by not constraining the size of the seg-
mented images in Bark-101. This choice was made
to simulate real world conditions assuming a perfect
stem segmentation. As a matter of fact, in a real
world setting not all trees would have the same di-
ameter and not all users would photograph them at a
pre-defined distance. The Bark-101 dataset is there-
fore composed of 101 classes of tree barks from var-
ious age and size for a total of 2592 images. Images

3https://www.imageclef.org/lifeclef/2017/plant
4https://identify.plantnet-project.org/



Table 1: Characteristics of bark datasets.
Dataset information BarkTex NewBarkTex Trunk12 AFF Bark-101

Classes 6 6 12 11 101
Total images 408 1632 393 1082 2592

Images per classes 68 272 30-45 16-213 2-138
Image size 256x384 64x64 1000x1334 1000x(478-1812) (69-800)x(112-804)

Illumination change 3 3 7 3 3
Scale change 3 3 7 3 3

Noise (shadows, lichen) 7 7 7 3 3
Train / Test splits 7 50/50 7 7 50/50

in Bark-101 contain noisy data like shadows, mosses
or illumination changes (see Figure 1). Due to the
unsupervised acquisition of the images and the varia-
tion of bark textures over the lifespan of the tree, there
is a high intra-class variability in Bark-101. Further-
more, a large number of classes naturally leads to a
small inter-class variability since the number of vi-
sually similar species increases with the number of
species. Consequently, Bark-101 can be considered
as a challenging dataset in the context of bark recog-
nition. We further demonstrate this statement in the
experiments presented in Section 4.

2.2 Existing methods

Bark recognition is often considered as a texture
classification problem. In [Wan et al., 2004] the
authors compared different statistical analysis tools
for tree bark recognition, like co-occurrence ma-
trices, grayscale histogram analysis and run-length
method (RLM). The use of co-occurrence matrices on
grayscale bark images is also present in [Huang et al.,
2006b]. The authors combined them with fractal di-
mensions to characterize the self-similarity of bark
textures at different scales. Spectral methods, such as
Gabor filters, are also used. In [Huang et al., 2006a],
the authors demonstrated that only four wave orienta-
tions and 6 scales are sufficient to identify tree species
by their bark. To avoid losing the information pro-
vided by color, Wan et al. [Wan et al., 2004] applied
their grayscale method individually to each channel
of the RGB space. In [Bakić et al., 2013], different
color spaces were used to characterize color informa-
tion, including RGB and HSV spaces. The authors
of [Bertrand et al., 2017] proposed to combine texture
and color hues in a late fusion manner. First, they ex-
tracted orientation features using Gabor filters. Sec-
ondly, they combined these features with a sparse rep-
resentation of bark contours by encoding the intersec-
tions of Canny edges with a regular grid. Lastly, they
described bark colors using the hue histogram from
the HSV color space. The resulting descriptor proved
to increase the classification rate of tree recognition
when combined with leaves [Bertrand et al., 2018].

Other commonly used descriptors for bark classi-
fication are Local Binary Pattern-like (LBP-like) de-
scriptors that were inspired by the original LBP fil-
ter proposed by [Ojala et al., 2001]. LBP-like fil-
ters are generic local texture descriptors parametrized
over a (P,R) neighborhood, with P the number of
pixel neighbors and R the radii. In the case of a
multiscale filter, the number Rs of radii R is strictly
greater than 1. LBP-like filters encode textural pat-
terns with binary codes, whose aggregation result in
a texture histogram of high dimension (e.g. Rs ×
2P for the original LBP). Recently, the authors of
[Boudra et al., 2018] proposed a texture descriptor
called Statistical Macro Binary Pattern (SMBP) in-
spired by LBP. SMBP encodes the information be-
tween macrostructural scales with a representation us-
ing statistical characteristics for each scale. The de-
scriptor increases the classification rate on two barks
datasets compared to the state of the art. In [Al-
ice Porebski, 2018], the authors demonstrated the ac-
curacy of color LBP-like descriptors with different
color spaces, achieving above state-of-the-art perfor-
mance, but with a very high dimensional feature vec-
tor. Recent works on texture classification in the wild
are also of interest for bark recognition. In particu-
lar, the Light Combination of Local Binary Patterns
(LCoLBP), proposed by [Ratajczak et al., 2019], and
the Completed Local Binary Pattern (CLBP), pro-
posed by [Guo, Z. et al., 2010], obtained equivalent
results to popular DCNNs on historical aerial images
classification for a small computational cost. Since
the CLBP filter is often used as a baseline for bark
recognition based on LBP-like filters [Junmin Wang,
2017] the LCoLBP may be a suitable candidate for
bark recognition in the wild.

3 PROPOSED METHODS

Bark images acquired in the wild represent objects
with discriminative texture patterns and colors. To
represent these characteristics considering a trade-off
between accuracy and feature space complexity, we
propose two novel complementary methods to effi-
ciently reduce the number of texture and color fea-
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Figure 2: Late Statistics (LS) from a Light Combination of Local Binary Patterns (LCoLBP) with a 3-radii neighborhood
(Rs = 3), 8 neighbors P, and 7 statistics Ns. Colored dots denote the statistics (outer colors) obtained from the Nh = 5
sub-histograms included in the LCoLBP histogram for each radius (inner colors). This configuration yields a 2.3 reduction
factor.

tures. We considered these cues individually before
combining them in a late fusion manner (concatena-
tion). For the texture cues, we followed the com-
mon use of LBP-like filters. Based on these filters,
we developed a generic yet efficient statistical repre-
sentation which preserves filters’ properties and does
not require re-sampling or mapping operations (see
Section 3.1). For the color cues, we were inspired
by [Bertrand et al., 2017] and built a task-guided low
dimensional histogram representation upon the HSV
color space using bark priors (see Section 3.2).

3.1 From Textures to Late Statistics

We define the Late Statistics as a combination of
statistical features calculated from LBP-like texture
histograms. Considering a texture histogram Ht , it-
self made of the concatenation of Nh known and or-
dered sub-histograms {h1,h2, ...,hNh}, we calculate
Ns Late Statistics independently for each hi with i ∈
{1, ...,Nh}. Late Statistics are then concatenated in
the same order as the hi sub-histograms. Assuming
a single Ht per LBP-like radius, this process results
in a vector made of Rs×Ns×Nh features, where Rs
is the number of radii (i.e. scales). It is represented
with Ns = 7 statistics and a grayscale 3-radii (Rs = 3)
LCoLBP filter on Figure 2. Note that each rotation of
the R-CRLBP [Ratajczak et al., 2018], a sub-filter of
the LCoLBP, is considered as an independent filter in
this study.

Late statistics are defined as late in opposition to
the early statistics proposed by [Boudra et al., 2018].
In [Boudra et al., 2018], the authors calculated statis-
tics before calculating the texture histogram by re-
sampling the local textural patterns of a LBP-like fil-

ter. In consequence, the statistical approach proposed
by Boudra et al. would require new implementations
with error-prone re-sampling operations to be applied
to other LBP-like filters. The Late Statistics evade
this constraint by considering texture histograms that
have been already calculated. They do not need to
operate on the local textural patterns but rather on the
global histogram representations, so that they do not
require any modification of the descriptor implemen-
tations (i.e. no re-sampling).

Due to their nature, Late Statistics are expected
to preserve common descriptor properties, like rota-
tion and global illumination invariance. This point
should make the Late Statistics at least as robust to
condition changes as the descriptors themselves. Fur-
thermore, it should be observed that, similarly to the
early statistics used by [Boudra et al., 2018], the Late
Statistics naturally behave as a spatial normalization
algorithm: A histogram will be summarized with a
fixed number of statistics Ns whatever its number of
bins. This property is particularly useful to combine
different histograms in a balanced feature vector that
contains the same quantity of information for each
texture pattern.

Finally, one may observe that Late Statistics are
an efficient way to summarize textural information in
a very similar manner as Haralick features [Haralick
et al., 1973]. However, while Haralick features repre-
sent statistics calculated directly from an image, Late
Statistics benefit from the efficient LBP-like represen-
tation of textures.
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Figure 3: Schematic of the color histogram reduction applied with 3 iterations. The number of bins in the histogram is reduced
by 1 after each iteration. The reduction is performed using a local add and shift strategy on the bin b with the smallest intensity
I(b). A look-up table is used to map the modified bins.

3.2 Efficient Colors

We discussed in Section 2 that several bark descrip-
tors work on grayscale images and that a few of
them also include color data. Among these descrip-
tors, hue information is commonly used [Bakić et al.,
2013, Bertrand et al., 2017]. The size of a hue his-
togram H is usually of 360 bins. However, this value
(360) cannot be stored on a single byte. For sam-
pling reasons, it is preferable to transpose the hue
color range [0;359] into the range [0;179] than into
the range [0;255]. Therefore, the size of the hue his-
togram is 180 bins, which represents a feature vector
of a quite high dimensionality for task-specific appli-
cations with color priors, like bark recognition in the
wild. As visible on Figure 1, barks have dominant
variations of brown, green and yellow colors. Based
on this observation, we may expect that other colors
like blue or purple may not provide significant contri-
bution to the hue signature of a bark. However, com-
pletely removing these colors may result in less dis-
criminant histograms, making the bark classification
process even more difficult.

To reduce the size of the hue histogram, we pro-
pose to merge the least represented colors through a
non-destructive iterative process. For a given dataset
D made of k color images splitted into a train set Tr
and a test set Te, we first calculate and sum all the hue
histograms of the images in Tr. We obtain a summed
hue histogram Hs from the train set Tr ⊂ D. This
summed histogram Hs is supposed to represent the
color prior on the whole dataset D. Secondly, on the
summed histogram Hs, we iteratively add the popula-
tion of the bin b having the smallest intensity value
(i.e. the smallest population) to the population of its
neighbor of minimal population. After adding these
bins, we shift the histogram to the left in order to re-
duce its dimension. The iteration process is stopped

when the desired size, fixed by the user, is reached
(see Section 4). Attention should be brought to the
circularity of the hue channel in the HSV color space.
The order and position of the add and shift operations
are stored in a look-up table M. On the test set Te,
the look-up table M is then used to calculate the re-
duced histograms of the input images LTe by applying
the add and shift operations in the same order as in
Tr. Consequently, the reduced histogram for an image
lTe ∈ LTe is generated in regard to the summed his-
togram, thus taking into account the color prior of the
data. The add and shift process is illustrated on Fig-
ure 3.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

For our experiments, we considered two state-of-
the-art LBP-like filters made of complementary sub-
descriptors to assess the efficiency of the Late Statis-
tics: The Light Combination of Local Binary Patterns
(LCoLBP) and the Completed Local Binary Pattern
(CLBP). As explained in Section 2, these descrip-
tors are efficient texture filters which obtained DC-
NNs like accuracy rates on texture in the wild datasets
[Ratajczak et al., 2019]. Since these filters may re-
sult in very high dimensional histograms, we consid-
ered a constant number of neighbors P on a 3-radii
(Rs = 3) neighborhood: (P = 8,R = {1,3,5}). To as-
sess the effectiveness of the Late Statistics on both
mapped and unmapped LBP-like representations, we
followed [Ratajczak et al., 2019] and applied the
LCoLBP without any mapping, resulting in a his-
togram of Rs×5×24 bins (Nh = 5) with a (P= 8,R=
{1,3,5}) neighborhood. On the other hand, we ap-
plied the rotational and uniform (riu2) mapping in-



Table 2: Ablation study for the Late Statistics of the LCoLBP and CLBP filters on the BarkTex dataset.

Late Statistics Accuracy (%)
mean variance entropy minimum maximum median kurtosis LS-LCOLBP LS-CLBP

3 – – – – – – 81.9 71.8
3 3 – – – – – 82.8 59.6
3 3 3 – – – – 78.4 64.7
3 3 3 3 – – – 82.8 63.2
3 3 3 3 3 – – 83.1 69.4
3 3 3 3 3 3 – 86.3 72.1
3 3 3 3 3 3 3 89.5 62.8
3 3 – 3 3 3 3 88.2 60.1
3 – 3 3 3 3 3 89.5 62.5
3 – – 3 3 3 3 88.2 59.6
3 – – 3 3 3 – 88.2 75.3

troduced by [Ojala et al., 2001] with the CLBP filter,
resulting in a histogram of 3× (2+ 2× 10) bins in-
stead of 3× (2+ 2× 256) bins without mapping for
the same neighborhood.

We considered commonly used statistics in our ex-
periments: Mean, variance, entropy, minimum, max-
imum, median and kurtosis. Among them, we car-
ried out an ablation study through gridsearch to de-
termine the best combination of Late Statistics for
each texture filter as presented on Table 2 for Bark-
Tex. Ablation results obtained on other datasets were
in concordance with Table 2 as well as with the fol-
lowing observations. On Table 2, we can observe
that naively adding more Late Statistics (first seven
lines) may decrease the accuracy of the texture repre-
sentations. We also demonstrate that the Late Statis-
tics should be carefully and individually selected for
each texture filter in order to maximize the accuracy
rate (up to a difference of 1̃5% on Table 2). This
phenomenon highlight a minor drawback of the Late
Statistics: While they are effective and easy to im-
plement, they increase the number of parameters to
tune. Therefore, the number of statistics Ns was set
to 6 for the LCoLBP and 4 to CLBP. We did not ap-
ply the Late Statistics on the first sub-histogram of the
CLBP filter because it is made of only two bins. Late
Statistics of the LCoLBP filter (LS−LCoLBP) result
in Rs× 5×Ns features. Late Statistics of the CLBP
filter (LS−CLBP) result in Rs×(2+2×Ns) features.

Concerning the bark colors, we verified that bark
images are actually made of dominant colors on the
extensive train set of the Bark-101 dataset because of
the large variability of bark images and classes avail-
able (see Section 2.1). The summed hue histogram
Hs for this dataset is visible on Figure 4. Based on
this figure, we can observe that the majority of barks
present brownish, yellowish and greenish hues. In
order to define a suitable dimension for the reduced
color histogram, we observed the evolution of the
classification rate according to the strategy defined in
Section 4.2 on Bark-101 dataset (Figure 5). Despite

small variations in the species classification rate when
quantifying the histogram, we can see that the accu-
racy remains approximately constant over 30 bins. As
the other bark datasets present smaller variance and
are thus less representative of real world conditions,
we decided to set the size of the reduced hue his-
togram to 30 bins regardless of the bark dataset. We
remind that a look-up table, to obtain the reduced his-
tograms, is calculated for each dataset independently:
Only the size of 30 bins has been fixed using Bark-
101.

4.2 Evaluation and Metrics

We separated our evaluation into two classification
strategies, c1 and c2, depending on the dataset orga-
nizations, visible on Table 1, and previous state-of-
the-art experiments. Strategy c1 stands for the clas-
sical train/test strategy. In c1, a part of the dataset is
used for training and the rest of the dataset is used for
testing. We performed c1 on NewBarkTex and Bark-
101 following the train and test splits (50%/50%) pro-
vided by the authors. Strategy c2 is the leave-one-
out strategy (LOO). In c2, we considered an ensemble
S of N samples and we performed N iterations. At
each iteration i ∈ {1, ...,N}, we used a different sam-
ple s(i) of S for evaluation (i.e. testing) and all the
other samples of S−{s(i)} for training. If the eval-
uation sample s(i) was successfully classified, the re-

Figure 4: Summed histogram of the hue channels from the
train set of the Bark-101 dataset.



sult of the corresponding iteration was set to 1, and
to 0 otherwise. The final accuracy was obtained by
averaging the results of all iterations. In accordance
with [Boudra et al., 2018], we performed c2 on Bark-
Tex, Trunk12 and AFF. For both c1 and c2 we used
the top-1 accuracy and a K-Nearest Neighbor clas-
sifier (KNN) with K = 1 and the L1 distance. The
1-NN is the most commonly used classifier in the
context of bark and texture recognition. The L1 dis-
tance has been chosen arbitrarily. Additionally, for
c1, and in accordance with [Alice Porebski, 2018], we
used a multi-class non-linear Support Vector Machine
(SVM) with radial basis kernel. The parameters of the
SVM classifier have been optimized by grid search for
each dataset and for each feature vector.

4.3 Results and Discussion

Results are visible on Table 3 and Table 4. They have
been obtained considering the evaluation strategies
described in Section 4.2. Highest accuracy rates from
other studies have been reported and marked with a
right-top star symbol. Specifically, for AFF, Trunk12
and BarkTex, we reported the results obtained with
MSLBP* and SLBP* from [Boudra et al., 2018]. The
results for NewBarkTex were reported for Wang17*
[Junmin Wang, 2017], Sandid16* [Sandid and Douik,
2016], and Porebski18* [Alice Porebski, 2018]. We
also considered the results proposed by the methods
of [Bertrand et al., 2017] that we renamed GWs and
GWs/H180. All other results correspond to our own
implementations using OpenCV 3.4 in C++ for the
texture and color descriptors. Scikit-learn in Python
has been used for the Late Statistics and the classi-
fiers. The texture cues were calculated on grayscale
images. The color cues were calculated on bark im-
ages in HSV color space. The following sections dis-
cuss the results obtained.

Figure 5: Accuracy of the reduced hue histogram on the
Bark-101 dataset depending on the final number of bins.

Table 3: Results of Late Statistics and reduced color his-
tograms with KNN and leave-one-out strategy. Blue: High-
est results of the literature. Green: highest results overall.
Red: Highest late statistics results.

Top-1 Accuracy / Dataset (%)Descriptor size AFF Trunk12 BarkTex
MSLBP* 2 816 63.3 63.3 86.8
SMBP* 10 240 71.7 71.0 84.3

H30 30 50.5 64.4 55.4
H180 180 55.6 69.0 61.3

LCoLBP 240 75.3 77.1 92.1
LCoLBP / H30 270 80.7 84.2 92.4
LCoLBP / H180 420 80.7 84.2 91.7

CLBP 66 68.1 70.0 78.7
CLBP / H30 96 72.9 77.4 83.8
CLBP / H180 246 73.5 78.1 84.3

GWs 121 48.2 39.9 56.1
GWs / H30 151 64.7 74.3 66.2

GWs / H180 301 66.5 76.1 69.6
LS-LCoLBP 90 69.4 74.6 89.5

LS-LCoLBP / H30 120 76.9 80.7 90.2
LS-LCoLBP / H180 270 76.9 80.7 91.2

LS-CLBP 30 59.1 70.0 75.3
LS-CLBP / H30 60 65.4 77.4 78.2
LS-CLBP / H180 210 67.9 78.1 79.4

Table 4: Results achieved on NewBarkTex and Bark-101.
Top-1 Accuracy / Dataset(%)
NewBarkTex Bark-101

Descriptor size KNN SVM KNN SVM
Porebski18* 10 752 – 92.6 – –

Wang17* 267 84.3 – – –
Sandid16* 3 072 – 82.1 – –

H30 30 48.0 50.6 19.1 20.4
H180 180 48.5 53.6 22.2 20.9

LCoLBP 240 78.8 89.3 34.2 41.9
LS-LCoLBP 90 66.5 79.4 28.3 30.1

LS-LCoLBP / H30 120 71.9 82.0 27.6 32.1
LS-LCoLBP / H180 270 72.3 82.2 27.8 31.0

GWs / H30 151 60.4 74.1 28.2 31.7
GWs / H180 301 54.1 63.6 31.8 32.2

4.3.1 Color cues

On Tables 3 and 4, we can observe that all the tex-
ture filters obtained higher accuracy rates when com-
bined with color histograms of both 30 bins (H30) and
180 bins (H180). As a reminder, H30 is the reduced
hue histogram and H180 is the complete hue his-
togram. When used alone, H180 is, in average, only
3.3% more accurate than H30 on AFF, Trunk12 and
BarkTex. However, we found that when combined
with grayscale textures, the contribution of both color
representations is equivalent. These results demon-
strate the efficiency of the color histogram reduc-
tion algorithm presented in Section 3.2. Moreover,
these results confirm that color cues seem to be non-
negligible features for bark recognition, in opposition
to the assumption made by [Boudra et al., 2018] but
in accordance with [Junmin Wang, 2017].



4.3.2 Late statistics

The Late Statistics decreased the size of the evaluated
texture features with a multiplicative factor between
2.7 for the LCoLBP and 2.2 for the CLBP with an
averaged reduction in accuracy of only 5.5% overall.
The Late Statistics seem particularly efficient with a
leave-one-out strategy (Table 3) with an averaged dif-
ference of 3.7% between the LCoLBP and the LS-
LCoLBP, and an averaged difference of 4.1% between
the CLBP and the LS-CLBP. On the other hand, they
are slightly less effective on the Train/Test strategies.
These results may be explained by a lack of training
data resulting in an under accurate statistical descrip-
tion of the per-class texture histograms.

4.3.3 Overall performances

We can observe that the Late Statistics combined with
the reduced hue histograms H30 outperform prior
works on the AFF, Trunk12 and BarkTex datasets.
LS-LCoLBP/H30 is in averaged 6.3% more accurate
than the methods compared in [Boudra et al., 2018].
Moreover, it is about 100 times smaller than SMBP*.
On NewBarkTex, Late Statistics combined with hue
histograms and a SVM classifier achieve similar re-
sults to Sandid16* with an accuracy of 82.0%. We
observe that our method (LS− LCoLBP/H30) ob-
tained slightly lower results than the most accurate
algorithms from the literature on this dataset, but it
does have a significantly smaller feature vector which
is about 30 times smaller than Sandid16* and 100
times smaller than Porebski18*. On Bark-101, we can
observe the lowest accuracy rates for all compared
methods over all the datasets. These results are ex-
plained by the higher number of classes in Bark-101
compared to existing datasets. It also demonstrates
the challenge proposed by Bark-101. However, most
methods including GWs/H30 achieved a top-1 recog-
nition rate about 30%, which is far above the random
guess of 0.9%.

5 CONCLUSION

In this study, we compared recent state-of-the-art
descriptors in the context of tree bark recognition in
the wild. We proposed two novel algorithms to re-
duce the dimensionality of texture and color features
vectors. We showed that the proposed algorithms out-
perform state-of-the-art methods on four bark datasets
with a considerable gain in space complexity. We be-
lieve that these methods can be generalized on other
histogram-like feature vectors. Furthermore, we re-
leased a new dataset made of 101 bark classes of seg-

mented images with high intra-class variability. We
demonstrated that the proposed dataset is particularly
challenging for existing methods, enforcing the need
for future prospects on bark recognition. Future work
will investigate the proposed methods as a lightweight
representation with multiple color spaces. We will
also evaluate the proposed algorithms on mobile plat-
forms, such as smartphones, to assess their perfor-
mances on real-world settings.
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ucative sur Smartphone) supported by the French Na-
tional Agency for Research with the reference ANR-
15-CE38-004-01, and part of the French Environment
and Energy Management Agency, Grant TEZ17-42.

REFERENCES

Alice Porebski, Vinh Truong Hoang, N. V. D. H. (2018).
Multi-color space local binary pattern-based feature
selection for texture classification. Journal of Elec-
tronic Imaging, 27:27 – 27 – 15.
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