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Stability Analysis of Linear Partial Differential Equations with

Generalized Energy Functions
Aditya Gahlawat and Giorgio Valmorbida

Abstract—We present a method for the stability analysis of a large class

of linear Partial Differential Equations (PDEs) in one spatial dimension.
We rely on Lyapunov analysis to establish the exponential stability of the

systems under consideration. The proposed test for the verification of the

underlying Lyapunov inequalities relies on the existence of solutions of a

system of coupled differential equations. We illustrate the application of
this method using a PDE actuated by a backstepping computed feedback

law. Furthermore, for the case of PDEs defined by polynomial data, we

formulate a numerical methodology in the form of a convex optimization
problem which can be solved algorithmically. We show the effectiveness

of the proposed numerical methodology using examples of different types

of PDEs.

I. INTRODUCTION

Various physical quantities pertaining to engineering processes

evolve over a spatio-temporal domain. Accurate models for the evo-

lution of these processes are given by Partial Differential Equations

(PDEs), a few examples of which may be found in thermonuclear

fusion [42], robotic aircraft [34], and fluid-solid interactions [7]. The

study of PDEs from a controls perspective can be broadly classified

under two sets of methods, which we refer to as direct and indirect

methods. Indirect methods apply standard finite dimensional control

theory to PDEs. In such methods, the PDE is approximated by a set

of Ordinary Differential Equations (ODEs) [15], [21]. These methods

are also called early lumping methods. Conversely, we say that a

method is direct if it does not approximate the system dynamics,

and instead takes into consideration the infinite dimensional nature

of the system for the purposes of analysis and control. There has

been a plethora of results in the application of direct methods to

the analysis and control of PDEs. Backstepping [26], [27], [36],

[37], [30] is one such method for PDE stabilization which relies

on the construction of an invertible state transformation that maps

the PDE to be controlled to an a priori chosen stable PDE. An

example of the direct method based on the Lyapunov approach

applied to semilinear parabolic and hyperbolic PDEs can be found

in [18]. A few more examples of Lyapunov based approaches can

be found in [8], where the authors construct boundary observers

for hyperbolic systems as applied to flow control, and [3], wherein

the authors develop distributed controllers for parabolic systems with

uncertainties with application to thermonuclear fusion.

A fundamental problem in the study of systems whose dynamics

are modeled by PDEs is the stability analysis and the determination

of convergence rates to equilibrium solutions. Such tasks can be per-

formed with the Lyapunov’s second method [12], [31]. In this context,

the choice of the class of Lyapunov Functional (LF) candidates is

critical and should not introduce conservatism in the analysis. On the

other hand, when the parameters of the LFs are unknown variables,

it should lead to Lyapunov inequalities that are solvable either
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numerically or analytically. Recently, a number of direct methods

for stability analysis were proposed with their respective numerical

formulations [39], [33]. While avoiding the truncation of the PDE

dynamics, these methods impose a set of basis functions to obtain a

numerical verification of the infinite dimensional inequalities, see for

instance [17], where an orthogonal set of polynomials were used,

and [40], where a standard polynomial basis is used. For time-

delay systems, a particular class of infinite-dimensional systems,

necessity and sufficiency of a class of LFs, called complete quadratic

functionals, has been shown in [22, Chapter 5].

A. Contribution

We propose a method to assess the exponential stability of the zero

solution of a large class of linear PDEs in one spatial domain. We

use a Lyapunov based approach to establish stability of systems under

consideration. The chosen LF candidates are composed of integrals

with quadratic kernels defined on one and two spatial dimensions. We

have previously used such LF candidates for the analysis and control

of parabolic PDEs with polynomial data in [19]. The presented

approach extends this previous work by not only considering a much

larger class of PDEs (not necessarily defined by polynomial data),

but by also formulating an analytical test in the form of a system of

coupled differential equations and inequalities for stability analysis.

The class of PDEs considered in this work contains parabolic PDEs,

hyperbolic PDEs, in-domain and boundary coupled PDEs, PDEs

with boundary feedback, and Partial (Integro)-Differential Equations

(P(I)DEs). Furthermore, the choice of LFs is an extension of the one

in the authors’ previous work in [40], wherein the LFs contained only

the integrals defined on one dimensional spatial domains.

The choice of LF candidates leads to the formulation of Lya-

punov inequalities in the form of integral inequalities containing

one and two dimensional integral terms. Such integral inequalities

must be verified on subspaces which are defined by their respective

boundary conditions. For this purpose we use Green’s theorem and

the Fundamental Theorem of Calculus (FTC), which allow us to

cast the problem of verification of the Lyapunov inequalities in the

form of a system of coupled differential equations. This system

contains a non-linear Partial Differential Matrix Equation (PDME),

an Ordinary Differential Matrix Inequality (ODMI) and two Linear

Matrix Inequalities (LMIs). Thus, the existence of a solution to this

system of coupled differential equations implies the stability of the

systems considered.

As an illustration of applicability, we show how the proposed

methodology can analytically construct an LF certificate for the

exponential stability of a backstepping controlled parabolic PDE,

further motivating the use of the studied class of LFs. Additional

potency of the proposed methodology lies in the ease with which it

lends itself to the derivation of a computationally efficient numerical

method for stability analysis. To be precise, for the case when the

class of PDEs under consideration is defined using polynomial data,

we parameterize LFs using sum-of-squares polynomials, which allow

us to cast the stability analysis problem as a Semi-Definite Pro-

gramming (SDP) feasibility problem, which is a convex optimization



problem that can be solved efficiently. We study five examples on

which we test the effectiveness of the proposed numerical method by

computing their parametric stability bounds. A preliminary version of

the presented method, addressing only polynomial data for a subclass

of systems contained in this paper, has been presented in [20].

We consider this work as an initial step towards a unified theory for

the analysis and control of linear PDEs akin to the LMI framework

for ODEs [14]. Indeed, the stability analysis problem examples

considered in this paper allow us to validate the choice of the class

of LFs, and thus, the proposed framework. Even though the studied

numerical examples are restricted to the class of PDEs parametrized

by polynomial coefficients, the fact that polynomials can approximate

any continuous function with an arbitrary accuracy [24, Thm. 4.11-5]

in bounded intervals leads us to surmise that the use of polynomials to

parameterize the class of LF candidates is valid whenever the actual

solutions to the set of conditions are bounded functions.

The presented formulation has interesting connections to results

in existing literature. If one were to disregard the double integral

terms in the chosen LF candidates, then one recovers the standard

LF candidates considered in, for e.g., [9], [10], and [18]. The cited

results use weighted norms on respective Hilbert spaces as LF

candidates to generalize the ‘energy’ of a system. However, as we

show (via numerical experiments) in our previous work in [19],

such LF candidates are inherently conservative. To the best of our

knowledge, with the exception of our previous work, the choice of LF

candidates, and hence the proposed framework, is entirely new. Even

though, to the best of our knowledge, no Lyapunov based framework

in the literature considers the class of LF candidates we study, there is

an implicit connection between our framework and the backstepping

method. For example, in [19], we show that that the backstepping

controlled advection-reaction parabolic PDE admits an LF candidate

of the form we consider in this work. This fact is also highlighted by

the analytical example considered in Section IV-A. Similarly, it can

be shown that various examples of PDEs stabilized by backstepping,

as in [6] and [25], admit LF candidates of the type we consider.

B. Outline

We begin with Section II in which we state the problem, define the

class of PDEs under consideration and derive the integral inequalities

which define the Lyapunov inequalities for the stability analysis.

Furthermore, we outline the strategy we use in the manuscript to

solve the stated problem. In Section III-A we present a method of

constructing non-negative and strictly positive integral inequalities

on Hilbert Spaces. In Section III-B we use Green’s theorem and

the FTC to construct slack integrals, that we define to be integral

expressions which are identically zero on the subspaces on which

the Lyapunov inequalities have to be verified. In Section IV we

combine the results from the previous sections to formulate the

main contribution of the manuscript. Furthermore, we apply the

proposed method to analytically prove the exponentially stability of

a parabolic PDE under backstepping control feedback. Finally, in

Section V we formulate a numerical methodology for PDEs defined

using polynomial data and test the method on various numerical

examples.

C. Notation

We denote by Ω = {(x, y) ∈ R
2 : 0 ≤ y ≤ x ≤ 1}, Ω =

{(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1} and Ω = [0, 1]× [0, 1] (Ω = Ω∪Ω).

For any γ, n ∈ N and domain Π ⊂ R
n, we denote by Cγ(Π) the

set of γ-times continuously differentiable functions on Π. We also

write C0(Π) = C(Π). In the following definitions α, β ∈ N. For

w : [0, 1] → R
β , w ∈ Cα([0, 1]), we denote by ∂i

xw(x) the i-th
derivative of w and

wα(x) =
[

w(x)⊤ ∂xw(x)
⊤ · · · ∂α

xw(x)
⊤
]⊤
,

wb
α =

[

wα−1(1)
⊤wα−1(0)

⊤
]⊤
, w̄α(x) = [wα(x)

⊤wb
α].

Thus, wα : [0, 1] → R
β(α+1), wb

α ∈ R
2βα and w̄α : [0, 1] →

R
β(3α+1). We denote by N∂ , N ∈ N

βα×β(α+1) and N0, N1 ∈
N

βα×2βα the matrices satisfying

∂xwα−1(x) = N∂wα(x), wα−1(x) = Nwα(x),

wα−1(0) = N0w
b
α, wα−1(1) = N1w

b
α.

We denote

Hα
(

[0, 1];Rβ
)

=
{

w : [0, 1] → R
β : w, ∂xw, . . . , ∂

α−1
x w are

absolutely continuous on [0, 1] and
ˆ 1

0

(∂α
xw(x))

⊤ (∂α
xw(x)) dx <∞

}

.

We also write L2

(

[0, 1];Rβ
)

= H0
(

[0, 1];Rβ
)

. The space

Hα
(

[0, 1];Rβ
)

is endowed with the inner product and norm

‖w‖Hα =
√

〈wα, wα〉Hα =

√

ˆ 1

0

wα(x)⊤wα(x)dx,

and the space L2

(

[0, 1];Rβ
)

has the norm and inner product

‖·‖L2
= ‖·‖H0 and 〈·, ·〉

L2
= 〈·, ·〉

H0 , respectively. We denote by

L∞(Φ1,Φ2) the set of Lebesgue measurable and essentially bounded

functions mapping Φ1 to Φ2, where Φ1 and Φ2 are any arbitrary sets.

For any m,n ∈ N, we denote by 0m,n the matrix of zeros of

dimensions m-by-n and 0m when m = n. Similarly, we denote by In
the identity matrix of dimensions n-by-n. For any square matrix Q,

we denote He(Q) = 1
2

(

Q+Q⊤
)

. We define the set Sn = {M ∈
R

n×n : M = M⊤} and we say that a matrix valued function

S : [0, 1] → S
n, is Positive Semi-Definite (PSD) if S(x) � 0, for all

x ∈ [0, 1].

We denote by Sn[x] and Sn[(x, y)] the sets of symmetric polyno-

mial matrices of size n-by-n in variables x, and x and y, respectively.

Similarly, we denote by Rm×n[x] and Rm×n[(x, y)] the sets of

real polynomial matrices of size m-by-n in variables x and y. We

denote by Σn[x] : [0, 1] → S
n the set of Sum-of-Squares (SOS)

polynomials in the variable x. Note that, by definition, an SOS

polynomial is non-negative for all x ∈ R [5, Chapter 3]. Given

α, β, d ∈ N, and the vector of monomials in x and y up to degree

d, z ∈ R 1

2
(d+2)(d+1)[(x, y)], (for example, for d = 2, we have

z(x, y) =
[

1 x y x2 xy y2
]⊤

), we define

Zq(α,β,d)(x, y) = Iβ(α+1) ⊗ z(x, y) ∈ R
q(α,β,d)×β(α+1), (1)

where q(α, β, d) = 1
2
β(α + 1)(d + 2)(d + 1) and ⊗ denotes the

Kronecker product.

For any bivariate function K : Ω → R
n×n, we define the linear

map

Γ [K] =

{

K(x, y), x ≥ y

K(y, x)⊤, y > x
,

thus satisfying, for any u : [0, 1] → R
n,

ˆ

Ω

u(x)⊤Γ [K] u(y)dydx =

ˆ 1

0

ˆ x

0

u(x)⊤K(x, y)u(y)dydx

+

ˆ 1

0

ˆ 1

x

u(x)⊤K(y, x)⊤u(y)dydx.



D. Notational Sets and Maps

To provide a concise presentation, we define the following sets

and maps for any α, β, s ∈ N. We begin with the definition of the

following sets

1) We say that

Z ∈ Π1(s, α, β), (2)

if Z : Ω → R
s×β(α+1) and Z ∈ C(Ω).

2) We say that

S ∈ Π2(s, α, β), (3)

if S : [0, 1] → S
β(3α+1)+2s and is partitioned as

S(x) =









S11(x)
S12(x)
02βα,s

S13(x)
02βα,s

S12(x)
⊤ 0s,2βα S22 S23

S13(x)
⊤ 0s,2βα S⊤

23 S33









,

for some S11 : [0, 1] → S
β(3α+1), S11 ∈ C([0, 1]), S12, S13 :

[0, 1] → R
β(α+1)×s, S12, S13 ∈ C([0, 1]), S22, S33 ∈ S

s and

S23 ∈ R
s×s.

3) We say that

{K1,K2, H1,H2, B1, B2} ∈ Π3(α, β) (4)

if

K1 : [0, 1] → S
βα, K2 : [0, 1] → R

βα×2βα,

K1,K2 ∈ C1([0, 1]), H1,H2 : Ω → R
βα×βα,

H1,H2 ∈ C1(Ω), B1 : [0, 1] → R
β(α+1)×βα,

B1 ∈ C([0, 1]), B2 ∈ R
2βα×βα.

4) For each of the sets Πi, i ∈ {1, 2, 3}, we write ΠR
i when the

functions under consideration are polynomial in their respective

arguments.

With the set definitions provided, we now define the following maps:

1) Given any α, β ∈ N, positive scalar δ, and

Jb : [0, 1] → S
β, J̄ : Ω̄ → R

β×β,

L1 : [0, 1] → R
β×β(α+1), L2 : Ω̄ → R

β×β(α+1),

L3 : Ω → R
β×β(α+1),

we say that

{Mb, M̄} = Ξ1(L1, L2, L3, Jb, J̄ , α, β, δ) (5)

if

Mb(x) =−He

([

Jb(x)L1(x) 0β,2βα

03βα,β(α+1) 03βα,2βα

])

−He

([

δJb(x) 0β,3βα

03βα,β 03βα

])

,

M̄(x, y) =− 1

2

(

[

J̄(x, y)⊤L1(x)
0βα,β(α+1)

]⊤

+

[

J̄(x, y)L1(y)
0βα,β(α+1)

]

)

− 1

2

(

[

Jb(x)L2(x, y)
0βα,β(α+1)

]

+

[

Jb(y)L3(y, x)
0βα,β(α+1)

]⊤
)

− 1

2

(

M(x, y) +

[

2δJ̄(x, y) 0β,βα

0βα,β 0βα

])

,

with

M(x, y) =
ˆ y

0

(

[

J̄(x, z)
0βα,β

]

L3(z, y) +

([

J̄(y, z)
0βα,β

]

L3(z, x)

)⊤
)

dz

+

ˆ x

y

(

[

J̄(x, z)
0βα,β

]

L2(z, y) +

([

J̄(z, y)⊤

0βα,β

]

L3(z, x)

)⊤
)

dz

+

ˆ 1

x

(

[

J̄(z, x)⊤

0βα,β

]

L2(z, y) +

([

J̄(z, y)⊤

0βα,β

]

L2(z, x)

)⊤
)

dz.

2) Given any Z ∈ Π1(s, α, β) and S ∈ Π2(s, α, β) we denote by

{Sb, S̄} = Ξ2(Z, S) (6)

if

Sb(x) =S11(x),

S̄(x, y) =S12(x)Z(x, y) + Z(y, x)⊤S13(y)
⊤

+

ˆ y

0

Z(z, x)⊤S33Z(z, y)dz

+

ˆ x

y

Z(z, x)⊤S⊤

23Z(z, y)dz

+

ˆ 1

x

Z(z, x)⊤S22Z(z, y)dz.

3) Given any α, β ∈ N, {K1,K2, H1,H2, B1, B2} ∈ Π3(α, β)
and

O1 : [0, 1] → R
βα×β(α+1), O2 ∈ R

βα×2βα,

we say that

{Kb,Hb, H̄, Bb, B̄} = Ξ3(K1,K2, H1,H2, B1, B2, O1, O2),
(7)

if

Kb =

[

Kb1(x) Kb2(x)
02βα,β(α+1) Kb3

]

,

Hb(x) =

[

Hb1(x) Hb2(x)
Hb3(x) 02βα

]

,

H̄(x, y) =
1

2
N⊤ (∂yH1(x, y)− ∂xH2(x, y))N

+
1

2

(

N⊤H1(x, y)N∂ −N⊤

∂ H2(x, y)N
)

,

Bb(x) =

[

0β(α+1) B1(x)O2

B2O1(x) B2O2

]

,

B̄(x, y) =
1

2

(

B1(x)O1(y) +O1(x)
⊤B1(y)

⊤
)

,

where

Kb1(x) = N⊤∂xK1(x)N +N⊤K1(x)N∂ +N⊤

∂ K1(x)N,

Kb2(x) = N⊤

∂ K2(x) +N⊤∂xK2(x),

Kb3 = N⊤

0 K1(0)N0 −N⊤

1 K1(1)N1 +N0K2(0)−N1K2(1),

Hb1(x) = −N⊤ (H1(x, x) +H2(x, x))N,

Hb2(x) = N⊤H1(x, 0)N0, Hb3(x) = N⊤

1 H2(1, x)N,

and where the matrices N , N0, N1, and N∂ are defined in

Section I-C.

II. PROBLEM STATEMENT

We study the following class of linear Partial Differential Equations

(PDEs)

∂tw(x, t) = A1(x)wα(x, t) +

ˆ x

0

A2(x, y)wα(y, t)dy

+

ˆ 1

x

A3(x, y)wα(y, t)dy, (8a)

w(·, t) ∈ B, ∀t ≥ 0, (8b)



where A1 : [0, 1] → R
β×β(α+1), A2 : Ω → R

β×β(α+1), A3 : Ω →
R

β×β(α+1). The boundary conditions define the set

B =
{

u ∈ Hα
(

[0, 1];Rβ
)

:
ˆ 1

0

[

F1(x) F2

]

ūα(x)dx = 0βα,1

}

, (8c)

where F1 : [0, 1] → R
βα×β(α+1) and F2 ∈ R

βα×2βα. If the

terms A2 and A3 are identically zero, then one recovers the standard

class of PDEs with local dynamics as, for instance, the reaction-

advection-diffusion and beam equation [16]. However, the integral

terms allow us to consider PDEs with non-local behavior. In fact, such

PDEs model various processes in engineering and biology like micro-

electro-mechanical-systems, Ohmic heating phenomena, chemotaxis,

and cell dynamics [23].

The motivation to study PDEs of the form in (8) lies in the fact

that various types of PDEs belong to this class. Each of the following

PDEs can be cast in the form of (8) and is parameterized by a

positive scalar λ which can alter the respective stability property.

The parameter λ will later help us analyze the effectiveness of the

methodology we develop in the paper.

Example 1: Partial (Integro) Differential Equation (P(I)DE):

We begin with the following P(I)DE

∂tv(x, t) =∂xv(x, t) + λ

ˆ x

0

(x− y)v(y, t)dy

+ λ

ˆ 1

x

(x+ y)v(y, t)dy, (9a)

v(1, t) =0. (9b)

Using a strongly continuous semigroup approach as in [32, The-

orem 2.1] and the perturbation result in [11, Theorem 3.2.1], it can

be shown that (9) admits a unique classical solution for a sufficiently

regular initial condition. This example simplifies the system studied

in [6], where a strategy for boundary control is presented.

Example 2: Wave Equation: Consider the following hyperbolic

equation

∂2
t v(x, t) = ∂2

xv(x, t), (10a)

∂xv(0, t)− (1− λ)∂tv(0, t) = 0, (10b)

v(1, t) = 0. (10c)

Using separation of variables, it can be shown that the analytical

solution to the PDE is given by the following convergent series

v(x, t) =
∞
∑

n=1

eσntφn(x)an, (11)

where Re(σn) = − 1
2
ln
∣

∣

2−λ
λ

∣

∣ , φn(x) = eσnx − e−σn(2+x), and

an are scalars dependent on the initial conditions.

Example 3: Parabolic PDE with Scalar Coefficients: We now

consider the following parabolic PDE

∂tv(x, t) = ∂2
xv(x, t) + λv(x, t), v(0, t) = 0, ∂xv(1, t) = 0.

(12)

Using separation of variables we calculate the solution to this PDE

as

v(x, t) =
∞
∑

n=1

eσntφn(x)an, (13)

where σn = λ − (2n − 1)π2/4, φn =
√
2 sin ((2n− 1)πx/2) and

the scalar coefficients an depend on the initial condition.

Example 4: Complex Valued In-Domain and Boundary Coupled

Parabolic PDE: Consider the PDE

∂tv(x, t) = −j∂2
xv(x, t), (14a)

∂xv(0, t)− j(1− λ)v(0, t) = 0, v(1, t) = 0, (14b)

where v : [0, 1] × [0,∞) → C and j is the imaginary unit. The

well-posedness of this PDE is established using [25, Theorem 3.1].

Example 5: Parabolic PDE with Distributed Coefficients and

Boundary Feedback: Finally, let us consider the following PDE with

boundary feedback and polynomial coefficients

∂tv(x, t) = ∂x [φ(x)∂xv(x, t)] + θ(x)v(x, t), (15a)

∂xv(0, t) +

ˆ 1

0

ψ(x)v(x, t)dx = 0, (15b)

v(1, t) + ∂xv(1, t) +

ˆ 1

0

ξ(x)v(x, t)dx = 0, (15c)

where φ(x) = x2 + 5x + 1, θ(x) = λ − x, ψ(x) = x2 + 1 and

ξ(x) = x. The well-posedness of this equation can be established

using arguments as in [4, Section 6]. This example allows to illustrate

the applicability of the numerical methods developed in this paper

to systems with polynomial spatially-distributed coefficients and

boundary feedback.

We would like to remark that deriving general conditions on A1,

A2, A3, F1, and F2 which render (8) well-posed is beyond the

scope of the paper. Instead, as for each of the examples above, the

well-posedness needs to be established individually for each type

of equation considered. Thus, for the remainder of the exposition,

we assume that (8) is well posed, that is, the PDE admits a unique

classical solution which is continuously differentiable in time and

belongs to Hα
(

[0, 1];Rβ
)

for all t > 0.

In this work we wish to establish the stability of (8) by constructing

Lyapunov Functional (LF) certificates of exponential stability. In par-

ticular, we consider the following class of functions as LF candidates

V (u) :=
1

2

ˆ 1

0

u(x)⊤Tb(x)u(x)dx

+
1

2

ˆ

Ω

u(x)⊤Γ
[

T̄
]

u(y)dydx, u ∈ L2

(

[0, 1],Rβ
)

,

(16)

where Tb : [0, 1] → S
β and T̄ : Ω → R

β×β are Lebesgue measurable

and satisfy Tb ∈ L∞
(

[0, 1], Sβ
)

, T̄ ∈ L∞
(

Ω,Rβ×β
)

.

In order to formulate the conditions for the exponential stability

of (8), we define the following integral expression. For any scalar

δ > 0, we define

Vd(u) =

ˆ 1

0

ūα(x)
⊤Ub(x)ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

Ū
]

uα(y)dydx, ∀u ∈ Hα
(

[0, 1],Rβ
)

,

(17)

where

{Ub, Ū} = Ξ1(A1, A2, A3, Tb, T̄ , α, β, δ),

and where the map Ξ1 is defined in (5).

In the Appendix B we show that for solutions w of the PDE (8)

we have

Vd(w(·, t)) = −∂tV (w(·, t))− 2δV (w(·, t)).

We now state the conditions for the exponential stability of (8) in

the following lemma.

Lemma 1. Given the PDE (8), suppose there exist positive scalars

µ1, µ2, δ and Lebesgue measurable functions Tb : [0, 1] → S
β and



T̄ : Ω → R
β×β , Tb ∈ L∞

(

[0, 1], Sβ
)

, T̄ ∈ L∞
(

Ω,Rβ×β
)

such

that

µ1‖u‖2L2
≤ V (u) ≤ µ2‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

, (18a)

Vd(u) ≥ 0, ∀u ∈ B ⊂ Hα
(

[0, 1];Rβ
)

, (18b)

where V and Vd are defined in (16) and (17), respectively. Then,

there exists a positive scalar κ such that the solutions of (8) satisfy

‖w(·, t)‖L2
≤ κe−δt‖w(·, 0)‖L2

, ∀t ≥ 0. (19)

Note that the above result gives the exponential decay of the L2-

norm of the state. Without using the bounds in terms of the L2 norm

as in (18a), one can still obtain the decay of the form V(w(·, t)) ≤
e−2δtV(w(·, 0)), for all t ≥ 0.

We have reduced the problem of assessing the exponential stability

to the problem of verification of the integral inequalities in (18).

Verification of (18a) is straightforward. We generalize the results

in [19] and [40] to verify

µ1‖u‖2L2
≤ V (u) ≤ µ2‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

,

using a PSD matrix valued function, which ensures that the integral

inequalities hold.

Verification of (18b) is unfortunately not as straight forward. One

method is to follow a similar procedure as the one adopted for (18a).

That is, if we can construct an integral expression R (u) which

satisfies

R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

, (20)

to be a lower bound satisfying

Vd(u)− R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

,

then, the existence of such functional R (u) would therefore imply

Vd(u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

, (21)

thus ensuring that (18b) holds since B is a subset of Hα
(

[0, 1];Rβ
)

.

However, this approach would be conservative since (18b) requires

Vd(u) ≥ 0 to hold on the subset B ⊂ Hα
(

[0, 1];Rβ
)

, and not on

Hα
(

[0, 1];Rβ
)

as in (21). To solve this problem, we rely on Slack

Integrals, S(u), which are integral expressions that satisfy

S(u) = 0, ∀u ∈ B. (22)

Then, to verify (18b) we may construct the term R (u) as in (20) and

a slack integral S(u) such that

Vd(u) + S(u) − R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (23)

If this condition holds, then, owing to (20),

Vd(u) + S(u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

,

and since the slack integral S(u) satisfies (22), we obtain

Vd(u) ≥ 0, ∀u ∈ B,

thus verifying (18b). To summarize, it is the slack integrals S(u)
that allow us to additionally consider the effects of the boundary

conditions u(t) ∈ B, thus making it possible to verify that Vd(u) ≥ 0
for systems for which damping is introduced by the boundaries.

We use quadratic forms of the FTC and Green’s theorem to

construct slack integrals. Such a formulation allows us to reduce

the verification of (23) to a system of coupled differential equations

containing a Partial Differential Matrix Equation (PDME) on Ω,

an Ordinary Differential Matrix Inequality (ODMI) on the interval

[0, 1] and two algebraic Linear Matrix Inequalities (LMIs). Thus, the

existence of a solution to the system of coupled differential equations

would ensure that (18b) holds. The construction of positive/non-

negative integral inequalities is presented in Section III-A. The

formulation of slack integrals is presented in Section III-B. Finally,

in Section IV we formulate the conditions to verify (18).

III. PRELIMINARIES

In this section we construct integral inequalities on Hilbert spaces

and slack integrals which will help us in verifying (18).

A. Integral Inequalities on Hilbert Spaces

We begin by constructing non-negative integral terms on

Hα
(

[0, 1];Rβ
)

.

Lemma 2. Given any α, β, p ∈ N, Yp ∈ Π1(p,α, β), and R ∈
Π2(p, α, β), consider

R (u) =

ˆ 1

0

ūα(x)
⊤Rb(x)ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

R̄
]

uα(y)dydx, u ∈ Hα
(

[0, 1];Rβ
)

,

(24)

where {Rb, R̄} = Ξ2(Yp, R) and Π1, Π2, Ξ2 are defined

in (2), (3), (6), respectively. If

R(x) � 0, ∀x ∈ [0, 1], (25)

then

R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (26)

The proof of this lemma is provided in Appendix B.

We now present a similar result in which we construct integral

inequalities on L2

(

[0, 1];Rβ
)

.

Proposition 1. Given any β, r ∈ N, Vr ∈ Π1(r, 0, β), and T ∈
Π2(r, 0, β), consider

T (u) =

ˆ 1

0

u(x)⊤Tb(x)u(x)dx

+

ˆ

Ω

u(x)⊤Γ
[

T̄
]

u(y)dydx, u ∈ L2

(

[0, 1];Rβ
)

,

(27)

where {Tb, T̄} = Ξ2(Vr, T ). Suppose that T (x) satisfies one of the

following conditions:

1) there exists a positive scalar ǫ such that

T (x)−
[

ǫIβ 0β,2r

02r,β 02r

]

� 0, ∀x ∈ [0, 1]; (28a)

2) there exists a positive scalar ǫ, matrix valued function Q1 :
[0, 1] → S

β , Q1 ∈ C([0, 1]), and matrix Q2 ∈ R
β×r such that

T (x) =





Q1(x)

Q⊤
2

0r,β









Q1(x)

Q⊤
2

0r,β





⊤

, Q1(x) � ǫIβ, (28b)

for all x ∈ [0, 1];
3) there exists a positive scalar ǫ, matrix valued function Q1 :

[0, 1] → S
β , Q1 ∈ C([0, 1]), and matrix Q2 ∈ R

β×r such that

T (x) =





Q1(x)
0r,β
Q⊤

2









Q1(x)
0r,β
Q⊤

2





⊤

, Q1(x) � ǫIβ, (28c)

for all x ∈ [0, 1];

then, there exist positive scalars θ1, θ2 such that

θ1‖u‖2L2
≤ T (u) ≤ θ2‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

.

The proof of this proposition can be found in Appendix B.



B. Slack Integrals

In this section we construct slack integrals, which we define as

integral expressions S(u) satisfying

S(u) = 0, ∀u ∈ B,

with B ⊂ Hα
(

[0, 1];Rβ
)

given in (8c). We formulate the slack

integrals using the FTC, Green’s theorem, and the definition of the

boundary conditions in (8c).

The following results use the set Π3 and the map Ξ3 defined in (4)

and (7), respectively.

Lemma 3 (FTC quadratic form). Given any α, β ∈ N and

{K1, K2, ·, ·, ·, ·} ∈ Π3(α, β), the following identity holds

ˆ 1

0

ūα(x)
⊤He (Kb(x)) ūα(x)dx = 0, ∀u ∈ Hα

(

[0, 1];Rβ
)

, (29)

where {Kb, ·, ·, ·, ·} = Ξ3(K1, K2, ·, ·, ·, ·, ·, ·).

Proof: The identity (29) is established by developing
ˆ 1

0

(

d

dx
l(x)

)

dx− (l(1)− l(0)) = 0,

with

l(x) =uα−1(x)
⊤K1(x)uα−1(x) + uα−1(x)

⊤K2(x)u
b
α.

Next, we present the quadratic form of the Green’s theorem. The

proof of the following lemma is provided in the Appendix B.

Lemma 4 (Green’s theorem quadratic form). Given any α, β ∈ N

and {·, ·, H1,H2, ·, ·} ∈ Π3(α, β), the following identity holds
ˆ 1

0

ūα(x)
⊤He (Hb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

H̄
]

uα(y)dydx = 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

,

where {·, Hb, H̄, ·, ·} = Ξ3(·, ·, H1,H2, ·, ·, ·, ·).
In the following lemma we formulate an integral equation that

holds on the set B defined in (8c), the proof of which is provided in

Appendix B.

Lemma 5. Consider the set B defined by F1 : [0, 1] → R
βα×β(α+1)

and F2 ∈ R
βα×2βα as in (8c). For any {·, ·, ·, ·, B1, B2} ∈ Π3(α, β)

the following identity holds true for all u ∈ B
ˆ 1

0

ūα(x)
⊤He (Bb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

B̄
]

uα(y)dydx = 0,

where {·, ·, ·, Bb, B̄} = Ξ3(·, ·, ·, ·, B1, B2, F1, F2).

We now present the main result of this section wherein we use the

results in Lemmas 3-5 to construct slack integrals.

Theorem 1. Consider the set B defined by F1 : [0, 1] →
R

βα×β(α+1) and F2 ∈ R
βα×2βα as in (8c). For any

{K1,K2,H1,H2, B1, B2} ∈ Π3(α, β), define

S(u) =

ˆ 1

0

ūα(x)
⊤He (Kb(x) +Hb(x) +Bb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

H̄ + B̄
]

uα(y)dydx, (30)

where {Kb,Hb, H̄, Bb, B̄} = Ξ3(K1,K2,H1,H2, B1, B2, F1, F2).
The following identity holds true

S(u) = 0, ∀u ∈ B. (31)

Proof: We begin by considering the following decomposition

S(u) =

ˆ 1

0

ūα(x)
⊤He (Kb(x) +Hb(x) +Bb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

H̄ + B̄
]

uα(y)dydx =
3
∑

i=1

Θi, (32)

where

Θ1 =

ˆ 1

0

ūα(x)
⊤He (Kb(x)) ūα(x)dx,

Θ2 =

ˆ 1

0

ūα(x)
⊤He (Hb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

H̄
]

uα(y)dydx,

Θ3 =

ˆ 1

0

ūα(x)
⊤He (Bb(x)) ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

B̄
]

uα(y)dydx.

From Lemmas 3 and 4 we have that

Θ1 = 0 and Θ2 = 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (33)

From Lemma 5 we have that

Θ3 = 0, ∀u ∈ B. (34)

Therefore, from (32)-(34) we conclude that the expression in (31)

holds for all u ∈ B.

IV. MAIN RESULT

In this section we use the results of the previous two sections to

formulate the conditions for exponential stability of (8). We present

the following theorem.

Theorem 2. Consider the PDE (8). Given any positive scalars ǫ, δ
and p, r ∈ N, suppose there exist functions and matrices

Vr ∈ Π1(r, 0, β), T ∈ Π2(r, 0, β), (35a)

Yp ∈ Π1(p,α, β), R ∈ Π2(p, α, β), (35b)

{K1,K2,H1,H2, B1, B2} ∈ Π3(α, β), (35c)

such that

T (x) satisfies either (28a), (28b), or (28c), (36a)

R(x) � 0, ∀x ∈ [0, 1], (36b)

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))

−Rb(x) � 0, ∀x ∈ [0, 1], (36c)

Ū(x, y) + H̄(x, y) + B̄(x, y)− R̄(x, y) = 0α+1,

∀(x, y) ∈ Ω, (36d)

where

{Ub, Ū} =Ξ1(A1, A2, A3, Tb, T̄ , δ),

{Tb, T̄} =Ξ2(Vr, T ),

{Rb, R̄} =Ξ2(Yp, R),

{Kb,Hb, H̄, Bb, B̄} =Ξ3(K1,K2,H1,H2, B1, B2),

and where Πi, Ξi, i ∈ {1, 2, 3}, are defined in (2)-(7).

Then, PDE (8) is exponentially stable.

Proof: Since (36a) holds, we conclude from Proposition 1 that

there exist positive scalars θ1, θ2 such that

θ1‖u‖2L2
≤ T (u) ≤ θ2‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

, (37)



where T (u) is defined by Tb and T̄ as in (27).

Now, let us define

P(u) =

ˆ 1

0

ūα(x)
⊤Pb(x)ūα(x)dx

+

ˆ

Ω

uα(x)
⊤Γ
[

P̄
]

uα(y)dydx,

with

Pb(x) =He (Ub(x) +Kb(x) +Hb(x) +Bb(x))−Rb(x),

P̄ (x, y) =Ū(x, y) + H̄(x, y) + B̄(x, y)− R̄(x, y).

Then, as a consequence of (36c)-(36d) we have

P(u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (38)

Additionally, by definition of P(u) we have

P(u) = Vd(u) + S(u) − R (u), (39)

with Vd(u) defined as in (17), S(u) defined as in (30), and R (u)
defined as in (24). Therefore, we may use (38) and (39) to conclude

Vd(u) + S(u) ≥ R (u), ∀u ∈ Hα
(

[0, 1];Rβ
)

. (40)

Since (36b) holds, from Lemma 2 we conclude

R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

.

Thus, (40) can be reduced to

Vd(u) + S(u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (41)

From Theorem 1 we have

S(u) = 0, ∀u ∈ B,

therefore (41) implies

Vd(u) ≥ 0, ∀u ∈ B. (42)

Since (37) and (42) hold, using Lemma 1 proves that PDE (8) is

exponentially stable.

The inequalities in (36a)-(36b) are Linear Matrix Inequalities

(LMIs) for matrix valued functions. The equation in (36d) is a non-

linear Partial Differential Matrix Equation (PDME) since it contains

the partial derivatives of the variables H1 and H2 owing to Lemma 4,

the non-linear terms in the variables appearing in R̄, namely products

between Yp and blocks of R(x), and the term T̄ , namely products

between Vr and blocks of T (x), affecting Ū . Moreover, (36c) is

an Ordinary Differential Matrix Inequality (ODMI) since it contains

derivatives of variables K1 and K2 due to Lemma 3 and also contains

the values of the variables H1 and H2 on the boundary of Ω ⊂ R
2.

Therefore, the conditions of Theorem 2 require the solution of a non-

linear PDME subjected to an ODMI and two LMIs. It is beyond the

scope of this paper to establish the well-posedness of the PDME.

However, we show in the following subsection that a solution exists

for a particular example of a PDE. Moreover, in Section V we show

that, for a particular subclass of (8), the verification of the conditions

of Theorem 2 can be reduced to a convex feasibility problem, and

thus, can be solved numerically.

A. Boundary Controlled Parabolic PDE-Backstepping feedback law

We now show that the conditions of Theorem 2 are verified for

a boundary controlled PDE. Consider the following parabolic PDE

with a backstepping control feedback law

∂tw(x, t) =∂
2
xw(x, t) + λw(x, t), (43a)

w(0, t) =0, w(1, t)−
ˆ 1

0

J(1, x)w(x, t)dx = 0, (43b)

where λ ∈ R, the function J(1, x) is obtained from the backstepping

control kernel,

J(x, y) = −(λ+ κ)y
I1
(

√

(λ+ κ) (x2 − y2)
)

√

(λ+ κ) (x2 − y2)
, (44)

where κ ∈ R is any scalar satisfying 0 < κ < ∞ and I1 is the first

order modified Bessel function of the first kind. The function J(x, y),
as explained in [28, Section 4.7], is the solution to the following

kernel PDE

∂2
xJ(x, y)− ∂2

yJ(x, y) = (λ+ κ) J(x, y), (45a)

J(x, 0) = 0, J(x, x) = −1

2
x (λ+ κ) . (45b)

The system (43) is in the form of system (8) with α = 2, β = 1 and

A1(x) =
[

λ 0 1
]

, A2(x, y) = A3(x, y) = 0β,β(α+1), (46a)

F1(x) =

[

−J(1, x) 0 0
0 0 0

]

, F2 =

[

1 0 0 0
0 0 1 0

]

. (46b)

Remark. The PDE (43) is exponentially stable. Indeed, as explained

in [28, Section 4.7], with the following invertible variable transfor-

mation

v(x, t) = (Gw(·, t)) (x) = w(x, t)−
ˆ x

0

J(x, y)w(y, t)dy, (47)

we obtain

∂tv(x, t) =∂
2
xv(x, t)− κv(x, t), (48a)

v(0, t) =0, v(1, t) = 0, (48b)

which, since κ > 0, is exponentially stable. Therefore, for the

particular example considered in this section, the exponential stability

in the L2-norm can be proven using a simple energy function applied

to the system in the target coordinates (48).

We would like to use Theorem 2 to prove the exponential stability

of (43) in the original coordinates (48). That is, by showing the

existence of functions (35) that satisfy (36).

Set

ǫ ∈ (0, 1), δ = κ, (49a)

T (x) =





1 −1 0
−1 1 0
0 0 0



 , Vr(x, y) = J(x, y), r = 1, (49b)

R(x) =









R11(x)
R12(x)
04,1

R13(x)
04,1

R12(x)
⊤ 01,4 R22 R23

R13(x)
⊤ 01,4 R⊤

23 R33









, (49c)

R11(x) =









J(x, x)2 −J(x, x) 0
−J(x, x) 1 0

0 0 0
03,4

04,3 04









, (49d)

R12(x) =





−J(x, x)
1
0



 , R13(x) = 03,1, (49e)

R22 = 1, R23 = R33 = 0, (49f)

Yp(x, y) =
[

−∂xJ(x, y) 0 0
]

, p = 1, (49g)

K1(x) =

[

−J(x, x) 1
2

1
2

0

]

, K2(x) = 02,4, (49h)

H1(x, y) =

[

∂yh1(x, y) −h1(x, y)
0 0

]

, (49i)



H2(x, y) =

[

∂xh2(x, y) 0
h1(x, y) 0

]

, (49j)

B1(x) = −





[

[∂xJ(x, y)]x=1

]

y=x
[∂yh1(x, y)]y=0

0 0
0 0



 , (49k)

B2 =









−J(1, 1) 0
1 0
0 0
0 −1









, (49l)

where

h1(x, y) =J(x, y)−
ˆ 1

x

J(z, x)J(z, y)dz, (50)

h2(x, y) =J(x, y) +

ˆ 1

x

J(z, x)J(z, y)dz. (51)

With the above values, we state the following proposition, which,

using Theorem 2 allows us to conclude the exponential stability

of (43).

Proposition 2. The set of equations and inequalities in (36) holds

with A1(x), A2(x, y), A3(x, y), F1(x) and F2 as in (46) and the

functions in (49).

Proof: If we define Q1(x) = 1 and Q2 = −1, then it is easily

established that T ∈ Π2(r, 0, β) and satisfies (28b) for any ǫ ∈ (0, 1).
Thus, (36a) is satisfied.

Similarly, R ∈ Π2(p,α, β) and satisfies (25) since

R(x) = r(x)⊤r(x), r(x) =
[

−J(x, x) 1 01,5 1 0
]

.

Thus, (36b) is satisfied.

Using (49b) and the definition {Tb, T̄} = Ξ1(Vr, T ), we calculate

T̄ (x, y) = −h1(x, y), (52)

where h1 is defined in (50). Using these functions and the definitions

in (46), we may apply (17) to compute

He (Ub(x)) =









−(λ+ δ) 0 − 1
2

0 0 0
− 1

2
0 0

03,4

04,3 04









, (53)

Ū(x, y) =





(λ+ δ)h1(x, y) 0 1
2
h1(x, y)

0 0 0
1
2
h1(x, y) 0 0



 . (54)

Using the definitions in (49h) and Lemma 3 we calculate

He (Kb(x)) =





Kb1(x) 03,2 03,2
02,3 Kb2 02
02,3 02 Kb3



 , (55)

where

Kb1(x) =





− d
dx
J(x, x) −J(x, x) 1

2

−J(x, x) 1 0
1
2

0 0



 ,

Kb2 =

[

J(1, 1) − 1
2

− 1
2

0

]

, Kb3 =

[

−J(0, 0) 1
2

1
2

0

]

.

Using the definitions in (49i)-(49j) and Lemma 4 we obtain

He (Hb(x)) =









J(x, x)2 − d
dx
J(x, x) 0 0 m(x)

0
0

m(x)⊤
06









,

(56)

H̄(x, y) =





1
2

(

∂2
yh1 − ∂2

xh2

)

0 − 1
2
h1(x, y)

−∂xJ(x, y) 0 0
− 1

2
h1(x, y) 0 0



 , (57)

where h1 and h2 are defined in (50) and (51), respectively, and

m(x)⊤ =











1
2

(

[

[∂xJ(x, y)]x=1

]

y=x
− J(1, 1)J(1, x)

)

1
2
J(1, x)

1
2
[∂yh1(x, y)]y=0

0











.

Similarly, we use Lemma 5 for the definitions in (49k)-(49l) to

obtain

He (Bb(x)) =

[

03 Bb1(x)

Bb1(x)
⊤ Bb2

]

, (58)

B̄(x, y) =





b(x, y) 0 0
0 0 0
0 0 0



 , (59)

where

Bb1(x) =

[

m(x)
02,4

]

, Bb2 =









−J(1, 1) 1
2

0 0
1
2

0 0 0
0 0 0 − 1

2

0 0 − 1
2

0









,

b(x, y)

=
1

2
J(1, x) [∂xJ(x, y)]x=1 +

1

2
J(1, y)

[

[∂xJ(x, y)]x=1

]

y=x
.

Now, using (53), (55), (56) and (58) we get

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))

=









J(x, x)2 + κ− δ −J(x, x) 0
−J(x, x) 1 0

0 0 0
03,4

04,3 04









, (60)

where we have used the property in (45b) that

d

dx
J(x, x) = −1

2
(λ+ κ).

Similarly, using (54), (57) and (59) we get

Ū(x, y) + H̄(x, y) + B̄(x, y) =




(λ+ δ)h1 +
1
2

(

∂2
yh1 − ∂2

xh2

)

+ b(x, y) 0 0
−∂xJ(x, y) 0 0

0 0 0



 . (61)

Now, let us define

g(x, y) =

ˆ 1

x

∂zJ(z, x)∂zJ(z, y)dz + J(x, x)∂xJ(x, y). (62)

Then, applying Lemma A.3 in Appendix A produces

Ū(x, y) + H̄(x, y) + B̄(x, y)

=





(δ − κ)h1(x, y) + g(x, y) 0 0
−∂xJ(x, y) 0 0

0 0 0



 . (63)

Using the definitions in (49a), (49c)-(49g) and (24) we calculate

R̄(x, y) =





g(x, y) 0 0
−∂xJ(x, y) 0 0

0 0 0



 . (64)

Now, from (49a), (49d) and (60) we get

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))−Rb(x) = 07.

Thus, (36c) is satisfied. Similarly, using (63) and (64) we get

Ū(x, y) + H̄(x, y) + B̄(x, y)− R̄(x, y) = 03.



Therefore, (36d) holds.

In conclusion, we have proved that for the PDE (43), represented in

the form (46) along with the functions/matrices defined in (49) satisfy

the constraints in (36). The example also highlights that all terms (49)

present in the condition are not zero. As a result of the satisfaction

of the conditions of Theorem 2, we conclude that the PDE (43) is

exponentially stable. We have thus shown the exponential stability

for a backstepping controlled system in its original coordinates,

highlighting the potential application of the proposed conditions to

other boundary controlled PDEs for which a simple stable system in

some target coordinates is not available.

V. CONVEX RELAXATION: PDES WITH POLYNOMIAL DATA

In the last section we formulated the stability conditions as the

search for variables satisfying a non-linear PDME, subject to an

ODMI and two LMIs. Even though we showed, via the backstepping

boundary controlled PDE in (43), that a choice for such variables

which satisfy the conditions of Theorem 2 exists, finding such

variables can be difficult in general. Therefore, it is of interest to

formulate a computationally tractable numerical test to verify the

conditions of Theorem 2. In this section we provide such a numerical

test for PDEs of the form (8), but defined by polynomial data. We

formulate a convex feasibility problem to verify the conditions of

Theorem 2, and hence, establish the exponential stability of the zero

solution of (8).

Consider (8) defined by the polynomial data

A1 ∈ Rβ×β(α+1)[x], A2, A3 ∈ Rβ×β(α+1)[(x, y)], (65a)

F1 ∈ Rβα×β(α+1)[x], F2 ∈ R
βα×2βα. (65b)

For such PDEs, we present the following corollary to Theorem 2.

Corollary 1. For any positive scalars ǫ, δ, polynomial degree d ∈ N,

polynomial matrix Zq(α,β,d) ∈ Rq(α,β,d)[(x, y)] defined in (1) and

with

p = q(α, β, d), r = q(0, β, d),

suppose there exist

T ∈ ΠR

2 (r, 0, β), R ∈ ΠR

2 (p, α, β), (66a)

{K1,K2,H1,H2, B1, B2} ∈ ΠR

3 (α, β), (66b)

ST ∈ Sβ+2r[x], SR ∈ Sβ(3α+1)+2p[x], (66c)

S ∈ Sβ(3α+1)[x], (66d)

such that

T (x)−
[

ǫIβ 0β,2r

02r,β 02r

]

− ST (x)ω(x) ∈ Σβ+2r[x], (67a)

ST ∈ Σβ+2r[x], (67b)

R(x)− SR(x)ω(x) ∈ Σβ(3α+1)+2p[x], (67c)

SR(x) ∈ Σβ(3α+1)+2p[x], (67d)

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))

−Rb(x)− S(x)ω(x) ∈ Σβ(3α+1)[x], (67e)

S(x) ∈ Σβ(3α+1)[x], (67f)

Ū(x, y) + H̄(x, y) + B̄(x, y)− R̄(x, y) = 0α+1, (67g)

where ω(x) = x(1− x) and

{Ub, Ū} =Ξ1(A1, A2, A3, Tb, T̄ , δ),

{Tb, T̄} =Ξ2(Zq(0,β,d), T ),

{Rb, R̄} =Ξ2(Zq(α,β,d), R),

{Kb, Hb, H̄, Bb, B̄} =Ξ3(K1,K2,H1,H2, B1, B2),

and where Πi, Ξi, i ∈ {1, 2, 3}, are defined in (2)-(7).

Then, the PDE (8) defined with polynomial data (65) is exponen-

tially stable.

Proof: We begin by recalling that, as defined in Section I-C, the

set of Sum-of-Squares (SOS) polynomial matrices Σn[x] contains

symmetric polynomial matrices Sn[x] which are positive semi-

definite for all x ∈ R. Furthermore, ω(x) = x(1 − x) satisfies

ω(x) ≥ 0, for all x ∈ [0, 1]. Therefore, if (67a)-(67b) are satisfied,

then

T (x)−
[

ǫIβ 0β,2q(0,β,d)

02q(0,β,d),β 02q(0,β,d)

]

� 0, ∀x ∈ [0, 1].

Therefore, for the integral expression T (w) in (27) defined us-

ing (66a) and Vr(x, y) = Zq(0,β,d)(x, y), using Proposition 1 we

conclude that there exist positive scalars θ1, θ2 such that

θ1‖u‖2L2
≤ T (u) ≤ θ2‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

. (68)

Similarly, if (67c)-(67d) hold, then the integral expression R (w)
defined in (24) using (66a) and Yp(x, y) = Zq(α,β,d)(x, y), using

Lemma 2 satisfies

R (u) ≥ 0, ∀u ∈ Hα
(

[0, 1];Rβ
)

. (69)

Additionally, (67e)-(67f) imply

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))

−Rb(x) � 0, ∀x ∈ [0, 1]. (70)

Then, using (67g) and (68)-(70) we may follow the same line of

reasoning as in the proof of Theorem 2 to conclude the assertion of

this corollary.

Unlike the conditions (36) in Theorem 2, the conditions in (67)

are linear in the unknown variables (66) since we have fixed

Yp(x, y) = Zq(α,β,d)(x, y) and Vr(x, y) = Zq(0,β,d)(x, y) to define

R̄ and T̄ (see (24) and (27), respectively). Moreover, the set of

polynomials is closed under the operations of differentiation and

integration. Therefore, since the variables in (66) are polynomial

matrices, the expressions in (67) are polynomials. Thus, in order

to analyze stability of (8) defined by polynomial data in (65),

Corollary 1 requires the search of polynomial matrices which, under

linear operations, need to belong to either the set of SOS polynomials

as in (67a)-(67f), or satisfy affine constraints as in (67g). The search

for SOS polynomials under affine constraints is a Semi-Definite

Programming (SDP) feasibility problem [5, Chapter 3], [41]. Since

an SDP is a convex optimization problem, in order to establish the

stability of (8) defined by (65), we can thus test the feasibility of the

following convex optimization problem:

Find (66) subject to (67). (71)

To solve this problem, one may use freely available packages SOS-

TOOLS [1] or YALMIP [29]. These packages simplify the extraction

of the underlying SDP to (71) by providing an interface for the

declaration of polynomial variables (66) and constraints (67). The

SDP problem associated with (71) can then be solved by SeDuMi [38]

or SDPA [43].

A. Numerical Examples

We now test the presented numerical methodology on examples of

PDEs of the form (8) and defined by the polynomial data (65). In

particular, we consider the examples provided in (9), (10), (12), (14),

and (15). The studied examples depend on a scalar parameter λ
and the stability of trajectories is guaranteed for λ ∈ [0, λstable).
As stated earlier, such a parameterization allows us to verify the



effectiveness of the proposed method by comparing the maximum

value of λ for which (71) is feasible to the value of λstable.

We perform the numerical experiments with ǫ = 10−3 and

δ = 10−4. Furthermore, polynomial degrees are kept to a maximum

of 4 as this is a limitation imposed by the available memory of the

computer on which these experiments are performed (a random access

memory of 8 gigabytes). In order to search for the maximum λ for

which (71) is feasible, we perform a bisection search with a resolution

of 10−3.

Example 1: Partial (Integro) Differential Equation (P(I)DE): We

begin by considering the P(I)DE provided in (9). We use finite-

differences with spatial discretization of 1500 uniformly spaced

points to approximate that (9) is stable for λ < 3.728. The P(I)DE (9)

may be cast as (8) with

α = 1, β = 1, w(x, t) = v(x, t), (72a)

A1(x) =
[

0 1
]

, A2(x, y) =
[

λ(x− y) 0
]

, (72b)

A3(x, y) =
[

λ(x+ y) 0
]

, F1(x) = 0βα,β(α+1), (72c)

F2 =
[

1 0
]

. (72d)

Example 2: Wave Equation: Now consider the PDE in (10). From

the solution (11), it is evident that we must have λ ∈ (0, 1) for the

exponential stability of (10). In fact, the system is finite-time stable

for λ = 0.

To perform the stability analysis using the proposed method, let

us cast (10) as (8) by defining

w(x, t) =
[

w1(x, t) w2(x, t)
]⊤

=
[

∂xv(x, t) ∂tv(x, t)
]⊤
,

yielding

∂tw(x, t) = ∂t

[

∂xv(x, t)
∂tv(x, t)

]

=

[

∂t∂xv(x, t)
∂2
xv(x, t)

]

= ∂x

[

w2(x, t)
w1(x, t)

]

,

(73a)

w1(0, t)− (1− λ)w2(0, t) = 0, w2(1, t) = 0. (73b)

The form (73) is also adopted in the analysis performed in [28,

Section 7.1] and [18, Section 3.1]. The main motivation for using (73)

lies in the fact that the L2-norm of w is representative of the kinetic

and potential energies of the trajectories of (10) by involving the

L2-norm of ∂tv and ∂xv, respectively.

In turn, this form can be cast as (8) by choosing

α = 1, β = 2, w(x, t) =
[

w1(x, t) w2(x, t)
]⊤
, (74a)

A1(x) =

[

0 0 0 1
0 0 1 0

]

, A2(x, y) = A3(x, y) = 0β,β(α+1),

(74b)

F1(x) = 0βα,β(α+1), F2 =

[

0 0 1 −(1− λ)
0 1 0 0

]

. (74c)

Example 3: Parabolic PDE with Scalar Coefficients: Now consider

the parabolic PDE in (12). Using the solution of this PDE in (13), it

is evident that this PDE is exponentially stable for λ < π2/4. The

PDE (12) may be written in the form of (8) by setting

α = 2, β = 1, w(x, t) = v(x, t), (75a)

A1(x) =
[

λ 0 1
]

, A2(x, y) = A3(x, y) = 0β,β(α+1), (75b)

F1(x) = 0βα,β(α+1), F2 =

[

0 0 1 0
0 1 0 0

]

. (75c)

Example 4: Complex Valued In-Domain and Boundary Coupled

Parabolic PDE: Now consider the PDE in (14). This PDE is

exponentially stable for λ < 1 [28, Exercise 6.2, Eqns. 6.74-6.76].

We may write

v(x, t) = ξ(x, t) + jν(x, t),

λstable λmax % Accuracy

Example 1 (9) 3.728 3.725 99.91
Example 2 (10) 1 0.999 99.90
Example 3 (12) π2/4 2.466 99.94
Example 4 (14) 1 0.999 99.90
Example 5 (15) 5.217 5.215 99.96

TABLE I: Maximum λ, λmax, for which the problem (71) is feasible

for the example PDEs. Here, λstable is the analytically/numerically

determined stability margin and percentage accuracy is calculated as

(λmax/λstable)× 100.

where ξ and ν are real valued functions. With this representation the

PDE (14) can be written as

∂tξ(x, t) = ∂2
xν(x, t), ∂tν(x, t) = −∂2

xξ(x, t),

∂xξ(0, t) + (1− λ)ν(0, t) = 0,

∂xν(0, t) + (λ− 1)ξ(0, t) = 0,

ξ(1, t) = 0, ν(1, t) = 0,

which is a system of PDEs linearly coupled both in the domain and on

the boundaries. With this representation, we obtain (8) by choosing

α = 2, β = 2, w(x, t) =
[

ξ(x, t) ν(x, t)
]⊤
, (76a)

A1(x) =

[

0 0 0 0 0 1
0 0 0 0 −1 0

]

, (76b)

A2(x, y) = A3(x, y) = 0β,β(α+1), F1(x) = 0βα,β(α+1), (76c)

F2 =









0 0 0 0 0 1− λ 1 0
0 0 0 0 λ− 1 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0









. (76d)

Example 5: Parabolic PDE with Distributed Coefficients and

Boundary Feedback: Finally, let us consider the PDE in (15). Using

a finite-difference scheme with 1500 uniformly spaced spatial points

we approximate that this PDE is exponentially stable for λ < 5.217.

We can cast (15) in the form of (8) by setting

α = 2, β = 1, w(x, t) = v(x, t), (77a)

A1(x) =
[

θ(x) ∂xφ(x) φ(x)
]

, (77b)

A2(x, y) = A3(x, y) = 0β,β(α+1), (77c)

F1(x) =

[

ψ(x) 0 0
ξ(x) 0 0

]

, F2 =

[

0 0 0 1
1 1 0 0

]

. (77d)

For each of the example PDEs in (9), (10), (12), (14), and (15)

represented in the form of (8) in (72), (74), (75), (76), and (77),

respectively, we perform a bisection search on the parameter λ
solving problem (71) for each fixed value of the parameter. The

optimal obtained values λmax are presented in Table I. In each

of the examples considered, the proposed methodology was able to

prove the stability within 99.9% of calculated/approximated stability

margin λ.

Other examples such as the coupled hyperbolic PDEs of the form

considered in [13] and the Euler-Bernoulli beam model may be found

in [20] wherein a preliminary result of the one in this work was

presented.

VI. CONCLUSION AND FUTURE WORK

We presented a method to assess exponential stability of a large

class of linear PDEs. The method is based on a Lyapunov Functional

(LF) approach that reduces the stability analysis to the verification

of integral inequalities on the subspaces defined by the boundary

conditions of the PDEs. The verification of these inequalities is

performed by solving a system of coupled differential equations and



inequalities which contains a non-linear Partial Differential Matrix

Equation (PDME), a linear Ordinary Differential Matrix Inequality

(ODMI) and two Linear Matrix Inequalities (LMIs). The key element

in relating the integral inequalities’ verification to the solution of

the system of coupled differential equations is the application of the

Fundamental Theorem of Calculus (FTC) and Green’s theorem.

We apply the proposed method to a backstepping controlled

parabolic PDE from the literature. Using the solution to the system

of coupled differential equations we obtain the LF certificates of

stability.

Importantly, the proposed method is amenable to numerical for-

mulations. Indeed, for the case of the class of PDEs defined by

polynomial data, we provide a formulation in terms of a Sum-

of-Squares (SOS) program. The solution to the underlying convex

optimization feasibility problem is obtained for examples of PDEs

spanning the considered class of systems. We would like to highlight

that the proposed methodology has been shown to work well on the

considered numerical examples. Since the proposed conditions are

only sufficient, a principled and exhaustive study should be performed

to claim the effectiveness to all systems in the considered class.

The manuscript provides a proof of concept of our choice of LFs

and the verification of the resulting integral inequalities. Therefore,

we are working on the extension of the proposed framework to the

problem of controller synthesis. In particular, for the large class of

PDEs considered, we are interested in formulating methodologies

for boundary and/or distributed controller synthesis. Further possible

directions of this work include observer design using boundary/in-

domain state measurements, optimal control design, and stabilization

of uncertain and non-linear systems.
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APPENDIX A

In this Appendix we provide a few results which are used in the

manuscript.

Lemma A.1. For any α, β ∈ N and Lebesgue integrable functions

K1 : Ω → R
β(α+1)×β(α+1) and K2 : Ω → R

β(α+1)×β(α+1), the

following identity holds
ˆ 1

0

ˆ x

0

uα(x)
⊤K1(x, y)uα(y)dydx

+

ˆ 1

0

ˆ 1

x

uα(x)
⊤K2(x, y)uα(y)dydx

=
1

2

ˆ

Ω

uα(x)
⊤Γ
[

K1(x, y) +K2(y, x)
⊤
]

uα(y)dydx,

for all u ∈ Hα
(

[0, 1];Rβ
)

.

The proof is established in a straightforward manner by applying

Fubini’s theorem (change of order of integration) followed by a

switch between variables x and y.

Lemma A.2. For any u ∈ L2

(

[0, 1];Rβ
)

, α, β ∈ N, and Lebesgue-

measurable and L∞ functions F1, G1 : Ω → R
β×β , F2, G2 : Ω →

R
β×β , the following identity holds

ˆ 1

0

(
ˆ x

0

F1(x, y)u(y)dy +

ˆ 1

x

F2(x, y)u(y)dy

)⊤

×
(
ˆ x

0

G1(x, y)u(y)dy +

ˆ 1

x

G2(x, y)u(y)dy

)

dx

=
1

2

ˆ

Ω

u(x)⊤Γ [K]u(y)dydx, (78)

where

K(x, y)

=

ˆ y

0

(

F2(z, x)
⊤G2(z, y) +G2(z, x)

⊤F2(z, y)
)

dz

+

ˆ x

y

(

F2(z, x)
⊤G1(z, y) +G2(z, x)

⊤F1(z, y)
)

dz

+

ˆ 1

x

(

F1(z, x)
⊤G1(z, y) +G1(z, x)

⊤F1(z, y)
)

dz.

Proof: We begin by observing that the

ˆ 1

0

(
ˆ x

0

F1(x, y)u(y)dy +

ˆ 1

x

F2(x, y)u(y)dy

)⊤

×
(
ˆ x

0

G1(x, y)u(y)dy +

ˆ 1

x

G2(x, y)u(y)dy

)

dx

= 〈Fu, Gu〉
L2

= 〈u,F⋆Gu〉
L2
, (79)

where the linear bounded operators on L2

(

[0, 1];Rβ
)

are defined as

(Fu) (x) =
ˆ x

0

F1(x, y)u(y)dy +

ˆ 1

x

F2(x, y)u(y)dy,

(Gu) (x) =
ˆ x

0

G1(x, y)u(y)dy +

ˆ 1

x

G2(x, y)u(y)dy,

and where the Hilbert adjoint of the operator F is given by

(F⋆u) (x) =

ˆ x

0

F2(y, x)
⊤u(y)dy +

ˆ 1

x

F1(y, x)
⊤u(y)dy.

Therefore, we get

(F⋆Gu) (x)

=

ˆ x

0

F2(y, x)
⊤

(
ˆ y

0

G1(y, z)u(z)dz +

ˆ 1

y

G2(y, z)u(z)dz

)

dy

+

ˆ 1

x

F1(y, x)
⊤

(
ˆ y

0

G1(y, z)u(z)dz +

ˆ 1

y

G2(y, z)u(z)dz

)

dy.

(80)

For each of the double integral terms defining (F⋆Gv) (x), we change

the order of integration and switch between the variables y and z
and substitute the result into (79). The proof is then completed by

applying Lemma A.1.

Remark. Lemma A.2 also holds for any u ∈ Hα
(

[0, 1];Rβ
)

,

F1, G1 : Ω → R
β(α+1)×β(α+1), F2, G2 : Ω → R

β(α+1)×β(α+1)

and with u(x) replaced by uα(x) in (78).

Lemma A.3. For the function J in (44), h1 in (50), h2 in (51), b
in (59), and g in (62), the following equation holds for any scalar δ

(λ+ δ)h1(x, y) +
1

2
(∂2

yh1(x, y)− ∂2
xh2(x, y)) + b(x, y)

= (δ − κ)h1(x, y) + g(x, y).

Proof: We have

∂2
yh1(x, y)− ∂2

xh2(x, y)

= ∂2
yJ(x, y)− ∂2

xJ(x, y) + J(x, y)
d

dx
J(x, x)

+ J(x, x)∂xJ(x, y) + [∂yJ(x, y)]y=x J(x, y)

−
ˆ 1

x

J(z, x)∂2
yJ(z, y)dz −

ˆ 1

x

∂2
xJ(z, x)J(z, y)dz, (81)

where we have used the fact that

[∂yJ(x, y)]y=x = [∂xJ(z, x)]z=x .



Now, we have that J satisfies (45a), i.e.,

∂2
yJ(x, y)− ∂2

xJ(x, y) =− (λ+ κ)J(x, y). (82a)

Therefore, we also have the following

−∂2
xJ(z, x) =(λ+ κ)J(z, x)− ∂2

zJ(z, x), (82b)

−∂2
yJ(z, y) =(λ+ κ)J(z, y)− ∂2

zJ(z, y). (82c)

We have from (45b) that

2
d

dx
J(x, x) + (λ+ κ) = 0,

and we also have that

d

dx
J(x, x) = [∂xJ(x, y)]y=x + [∂yJ(x, y)]y=x .

Combining the above expressions gives

[∂yJ(x, y)]y=x =− (λ+ κ) − d

dx
J(x, x)− [∂xJ(x, y)]y=x .

(82d)

Substituting (82) into (81) produces

∂2
yh1(x, y)− ∂2

xh2(x, y)

= −2(λ+ κ)J(x, y) + 2(λ+ κ)

ˆ 1

x

J(z, x)J(z, y)dz

+ J(x, x)∂xJ(x, y)− [∂xJ(x, y)]y=x J(x, y)

−
ˆ 1

x

(

J(z, x)∂2
zJ(z, y) + ∂2

zJ(z, x)J(z, y)
)

dz. (83)

Applying the FTC (integration by parts) to the last term gives

−
ˆ 1

x

(

J(z, x)∂2
zJ(z, y) + ∂2

zJ(z, x)J(z, y)
)

dz

= 2

ˆ 1

x

∂zJ(z, x)∂zJ(z, y)dz − 2b(x, y)

+ J(x, x)∂xJ(x, y) + [∂xJ(x, y)]y=x J(x, y),

where we have used the following identities

[∂zJ(z, y)]z=x = ∂xJ(x, y), [∂zJ(z, x)]z=x = [∂xJ(x, y)]y=x .

Substituting into (83) produces

∂2
yh1(x, y)− ∂2

xh2(x, y)

= −2(λ+ κ)h1(x, y) + 2g(x, y)− 2b(x, y).

Therefore,

(λ+ δ)h1(x, y) +
1

2
(∂2

yh1(x, y)− ∂2
xh2(x, y)) + b(x, y)

= (δ − κ)h1(x, y) + g(x, y).

APPENDIX B

In this Appendix we provide the proofs of previously stated results.

We begin by showing that for the solution w of the PDE (8)

Vd(w(·, t)) = −∂tV (w(·, t))− 2δV (w(·, t)),
where V (u) and Vd(u) are defined in (16) and (17), respectively. Let

us write the integral expression in (16) as1

V (w) =
1

2
〈Ξw,w〉

L2
, (84)

where the self-adjoint operator Ξ on L2

(

[0, 1];Rβ
)

is defined as

(Ξw) (x) =Tb(x)w(x) +

ˆ x

0

T̄ (x, y)w(y)dy

1For brevity we have dropped the temporal dependency of w.

+

ˆ 1

x

T̄ (y, x)⊤w(y)dy.

Since the operator Ξ is self-adjoint, we may use (8) to obtain

∂tV (w) =
1

2
〈Ξ∂tw,w〉L2

+
1

2
〈Ξw, ∂tw〉L2

=
1

2
〈Ξw, ∂tw〉L2

+
1

2
〈Ξw, ∂tw〉L2

= 〈Ξw, ∂tw〉L2

=

ˆ 1

0

(

Tb(x)w(x)dx+

ˆ x

0

T̄ (x, y)w(y)dy

+

ˆ 1

x

T̄ (y, x)⊤w(y)dy

)⊤

×
(

A1(x)wα(x)

+

ˆ x

0

A2(x, y)wα(y)dy +

ˆ 1

x

A3(x, y)wα(y)dy

)

dx.

Therefore,

Vd(w) = −
4
∑

i=1

Φi, (85)

where,

Φ1 =

ˆ 1

0

(

Tb(x)w(x) +

ˆ x

0

T̄ (x, y)w(y)dy

+

ˆ 1

x

T̄ (y, x)⊤w(y)dy

)⊤

A1(x)wα(x)dx,

Φ2 =

ˆ 1

0

(Tb(x)w(x))
⊤ ×

(
ˆ x

0

A2(x, y)wα(y)dy +

ˆ 1

x

A3(x, y)wα(y)dy

)

dx,

Φ3 =

ˆ 1

0

(
ˆ x

0

T̄ (x, y)w(y)dy +

ˆ 1

x

T̄ (y, x)⊤w(y)dy

)⊤

×
(
ˆ x

0

A2(x, y)wα(y)dy +

ˆ 1

x

A3(x, y)wα(y)dy

)

dx,

Φ4 =δ

ˆ 1

0

w(x)⊤Tb(x)w(x)dx

+ δ

ˆ

Ω

w(x)⊤Γ
[

T̄ (x, y)
]

w(y)dydx.

The term Φ1 may be written as

Φ1 =

ˆ 1

0

w̄α(x)
⊤

[

Tb(x)A1(x) 0β,2βα

03βα,β(α+1) 03βα,2βα

]

w̄α(x)dx

+

ˆ 1

0

ˆ x

0

wα(x)
⊤

[

T̄ (x, y)⊤A1(x)
0βα,β(α+1)

]⊤

wα(y)dydx

+

ˆ 1

0

ˆ 1

x

wα(x)
⊤

[

T̄ (y, x)⊤A1(x)
0βα,β(α+1)

]⊤

wα(y)dydx.

Then, applying Lemma A.1 to the double integrals and writing the

single integral kernel in a symmetric form produces

Φ1 =
ˆ 1

0

w̄α(x)
⊤He

([

Tb(x)A1(x) 0β,2βα

03βα,β(α+1) 03βα,2βα

])

w̄α(x)dx

+

ˆ

Ω

wα(x)
⊤Γ

[

1

2

[

T̄ (x, y)⊤A1(x)
0βα,β(α+1)

]⊤

+
1

2

[

T̄ (x, y)A1(y)
0βα,β(α+1)

]

]

wα(y)dydx. (86)

The term Φ2 may be written as

Φ2 =

ˆ 1

0

ˆ x

0

wα(x)
⊤

[

Tb(x)A2(x, y)
0βα,β(α+1)

]

wα(y)dydx



+

ˆ 1

0

ˆ 1

x

wα(x)
⊤

[

Tb(x)A3(x, y)
0βα,β(α+1)

]

wα(y)dydx.

Applying Lemma A.1 produces

Φ2 =

ˆ

Ω

wα(x)
⊤Γ

[

1

2

[

Tb(x)A2(x, y)
0βα,β(α+1)

]

+
1

2

[

Tb(y)A3(y, x)
0βα,β(α+1)

]⊤
]

wα(y)dydx. (87)

The term Φ3 may be written as

Φ3 =
ˆ 1

0

(

ˆ x

0

[

T̄ (x, y)⊤

0βα,β

]⊤

wα(y)dy+

ˆ 1

x

[

T̄ (y, x)
0βα,β

]⊤

wα(y)dy

)

×
(
ˆ x

0

A2(x, y)wα(y)dy +

ˆ 1

x

A3(x, y)wα(y)dy

)

dx. (88)

Then, applying Lemma A.2 to (88) with

F1(x, y) =

[

T̄ (x, y)⊤

0βα,β

]⊤

, F2(x, y) =

[

T̄ (y, x)
0βα,β

]⊤

,

G1(x, y) =A2(x, y), G2(x, y) = A3(x, y), v(y) = wα(y),

produces

Φ3 =
1

2

ˆ

Ω

wα(x)
⊤Γ [U ]wα(y)dydx, (89)

where U(x, y) is defined in (17).

Finally, the term Φ4 may be written as

Φ4 =

ˆ 1

0

w̄α(x)
⊤He

([

δTb(x) 0β,3βα

03βα,β 03βα

])

w̄α(x)dx

+
1

2

ˆ

Ω

wα(x)
⊤Γ

[[

2δT̄ (x, y) 0β,βα

0βα,β 0βα

]]

wα(y)dydx. (90)

Substituting (86), (87), (89) and (90) into (85) produces (17).

We now provide the proofs of the claims in the paper. We start by

providing a proof of Lemma 1.

Proof of Lemma 1: Let us choose the LF candidate as V (w).
Then, as shown in the beginning of this appendix, along the solutions

of the system

−∂tV (w(·, t))− 2δV (w(·, t)) = Vd(w(·, t)).
Since (18b) holds, we have that for all solutions w of (8)

Vd(w(·, t)) = −∂tV (w(·, t))− 2δV (w(·, t)) ≥ 0, ∀t ≥ 0.

Integrating this expression in time produces

V (w(·, t)) ≤ e−2δt
V (w(·, 0)),

and thus, using (18a) produces

µ1‖w(·, t)‖2L2
≤ e−2δtµ2‖w(·, 0)‖2L2

.

Then, we conclude that (19) holds with κ =
√

µ2/µ1.

Proof of Lemma 2: If we define

f(x) =





ūα(x)
´ x

0
Yp(x, y)uα(y)dy

´ 1

x
Yp(x, y)uα(y)dy



 ,

then, using Lemma A.1 and Lemma A.2, it can be shown that

R (u) =

ˆ 1

0

f(x)⊤R(x)f(x)dx.

Since R(x) � 0, for all x ∈ [0, 1], we conclude that

R (u) =

ˆ 1

0

f(x)⊤R(x)f(x)dx ≥ 0, ∀u ∈ Hα
(

[0, 1],Rβ
)

.

Proof of Proposition 1: It is easily established that the functions

Tb and T̄ are continuous on their respective bounded domains of

definitions. Therefore, there exists a scalar 0 < θ2 <∞ such that
ˆ 1

0

u(x)⊤Tb(x)u(x)dx

+

ˆ

Ω

u(x)⊤Γ
(

T̄ (x, y)
)

u(y)dydx ≤ θ2‖u‖L2
, (91)

for all u ∈ L2

(

[0, 1];Rβ
)

. Now, let us suppose that T (x) satis-

fies (28a), then using the proof of Lemma 2, it can be established

that
ˆ 1

0

u(x)⊤Tb(x)u(x)dx+

ˆ

Ω

u(x)⊤Γ
(

T̄ (x, y)
)

u(y)dydx

− ǫ‖u‖2L2

=

ˆ 1

0

f(x)⊤
(

T (x)−
[

ǫIβ 0β,2r

02r,β 02r

])

f(x)dx,

where

f(x) =





u(x)
´ x

0
Vr(x, y)u(y)dy

´ 1

x
Vr(x, y)u(y)dy



 .

Now, since

T (x)−
[

ǫIβ 0β,2r

02r,β 02r

]

� 0, ∀x ∈ [0, 1],

we get that
ˆ 1

0

u(x)⊤Tb(x)u(x)dx+

ˆ

Ω

u(x)⊤Γ
(

T̄ (x, y)
)

u(y)dydx

≥ ǫ‖u‖2L2
, ∀u ∈ L2

(

[0, 1];Rβ
)

. (92)

Setting ǫ = θ1 and using (91) and (92) completes the proof for the

case when the matrix T (x) satisfies (28a).

Let us now assume that T (x) satisfies (28b). Define the operators

M and K as

(Mu) (x) = Q1(x)u(x),

(Ku) (x) =
ˆ x

0

Q2Vr(x, y)u(y)dy.

Since Q1(x) is continuous on [0, 1] and satisfies (28b), there exists

a scalar µ > 0 yielding

ǫ2‖u‖2L2
≤ ‖Mu‖2L2

≤ µ‖u‖2L2
, ∀u ∈ L2

(

[0, 1];Rβ
)

. (93)

The inverse of operator M is well defined since Q1(x) is invertible

on [0, 1]. We thus have

(

M−1Ku
)

(x) =

ˆ 1

0

G(x, y)u(y)dy, (94)

where

G(x, y) =

{

Q1(x)
−1Q2Vr(x, y), x ≥ y

0, y > x
.

From (28b) we have
ˆ 1

0

u(x)⊤Tb(x)u(x)dx+

ˆ

Ω

u(x)⊤Γ
(

T̄ (x, y)
)

u(y)dydx

=

ˆ 1

0

f(x)⊤T (x)f(x)dx

=

ˆ 1

0

f(x)⊤





Q1(x)
⊤

Q⊤
2

0r,β









Q1(x)
⊤

Q⊤
2

0r,β





⊤

f(x)dx,



= 〈(M+K)u, (M+K)u〉
L2

=
〈

M
(

I +M−1K
)

u,M
(

I +M−1K
)

u
〉

L2

, (95)

where I is the identity operator. Owing to the continuity of Q1(x)
−1

and Vr(x, y), it is straightforward to verify that

ˆ 1

0

ˆ 1

0

|G(x, y)| dydx <∞.

Therefore, the operator M−1K in (94) is compact on

L2

(

[0, 1];Rβ
)

[35, Theorem 7.83]. Since M−1K is compact,

from [16, Theorem 5, Appendix D] we have that the range of the

operator I+M−1K is closed. Moreover, it can be established using

[24, Theorem 5.4-2] that the null space of the operator I +M−1K
is the set {0} ∈ L2

(

[0, 1];Rβ
)

. Since the operator I + M−1K is

linear and its nullspace is {0} ∈ L2

(

[0, 1];Rβ
)

, we have that it

is injective. Since I + M−1K has a closed range and is injective,

using [2, Theorem 2.5] we conclude that there exists a scalar γ > 0
such that

‖(I +M−1K)u‖2L2
≥ γ‖u‖2L2

, ∀u ∈ L2

(

[0, 1];Rβ
)

. (96)

Therefore, using (96) and (93) we get

〈

M
(

I +M−1K
)

u,M
(

I +M−1K
)

u
〉

L2

= ‖M
(

I +M−1K
)

u‖2L2

≥ ǫ2‖
(

I +M−1K
)

u‖2L2

≥ ǫ2γ‖u‖2L2
, ∀u ∈ L2

(

[0, 1];Rβ
)

.

Substituting this expression into (95) and setting θ1 = ǫ2γ completes

the proof.

The proof for the case when T (x) satisfies (28c) follows similarly.

Proof of Lemma 4: Consider the vector field
[

φ1(x, y)
φ2(x, y)

]

=

[

uα−1(x)
⊤H1(x, y)uα−1(y)

uα−1(x)
⊤H2(x, y)uα−1(y)

]

.

Then, by Green’s theorem
˛

∂Ω

(φ1(x, y)dx+ φ2(x, y)dy)

+

ˆ

Ω

(∂yφ1(x, y)− ∂xφ2(x, y)) dydx = 0,

where ∂Ω denotes the boundary of the domain Ω. Then, the proof is

completed by using the definition of the vector field, the definitions of

the projection matrices in Section I-C, and by applying Lemmas A.1

and A.2.

Proof of Lemma 5: Since for all u ∈ B,

ˆ 1

0

[

F1(x) F2

]

ūα(x)dx = 0βα,1,

we get that for all u ∈ B

0 =

ˆ 1

0

ūα(y)
⊤

[

B1(y)
B2

]

dy ·
ˆ 1

0

[

F1(x) F2

]

ūα(x)dx

=

ˆ 1

0

ˆ 1

0

ūα(y)
⊤

[

B1(y)
B2

]

[

F1(x) F2

]

ūα(x)dydx

=

ˆ 1

0

ˆ 1

0

ūα(y)
⊤

[

B1(y)F1(x) B1(y)F2

B2F1(x) B2F2

]

ūα(x)dydx.

Then, using the fact that ūα(x) =
[

uα(x) ub
α

]⊤
and applying

Lemma A.1 completes the proof.
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