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ABSTRACT The results presented in this paper deal with the design of a current sensorless delay–
based controller for the closed–loop stabilization of a photovoltaic system under an MPPT scheme using
a boost dc/dc converter. Some applications of such topology are dc microgrids, solar vehicles, or stand-
alone systems, to mention a few. The basis of this control scheme relies on the feedback linearization
control technique coupled with a delay–based low-order controller. In order to study the stability, the
proposed approach uses a geometric point of view which allows the partitioning of the controller parameters
space into regions with similar stability characteristics (same number of unstable characteristic roots). The
most important contribution of the paper relies on providing practical guidelines to tune the gains of the
proposed delay–based controller, ensuring asymptotic stability of the closed–loop system and fulfilling the
requirements for photovoltaic applications. In addition, the proposed approach allows the design a non-
fragile controller with respect to the controller gains. Furthermore, in order to test the effectiveness of the
control scheme presented, experimental results evaluating the closed–loop system performance under set-
point changes and abrupt irradiance disturbances are addressed using a solar array simulator and a battery
bank as load.

INDEX TERMS DC/DC Converter, Delay-Based Controller, Feedback Linearization, MPPT Scheme, PV
Systems.

I. INTRODUCTION

RENEWABLE energies have been one of the main areas
of interest by governments and organizations of almost

all countries, since these type of energy sources are consid-
ered the cleanest for the environment. As it has been stated
in [25], among the alternatives of renewable energies, pho-
tovoltaic (PV) systems has experienced significant growth in
recent years, close to 60% in Europe. In fact, as discussed in
[8], [15], these systems are being integrated to the electrical
grid more commonly than in past years.

Based on the above observations, it becomes evident that
higher precision and safety requirements will be demanded
by the power grid companies as this tendency continues to
expand. In order to provide such features, Power Electronics

(PE) attends directly the high efficiency power conversion
problem. In PV systems, it is well known that one of the
main solutions to this problem is the application of Maximum
Power Point Tracking (MPPT) techniques [5]. In this sense,
the most important task relies on the proper control scheme
designed to be applied to a PE device.

The main idea behind MPPT techniques consists in find-
ing the Maximum Power Point (MPP) by adjusting the
impedance perceived by the Photovoltaic Module (PVM).
This process consists in two dependent tasks. First, a control
scheme is proposed to regulate the PV voltage at the MPP.
Second, an algorithm to compute the optimal reference must
be designed. In order to solve such control problems, this
work uses a topology based on a boost dc/dc converter. As
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TABLE 1. Comparative Table of Control Techniques for PV MPPT Systems Using a Boost dc/dc Converter

References Number of Sensors in the Control Scheme Control Strategy Settling Time Evaluation Under Transient Conditions
[6] 2–(vpv , ipv) Sliding Mode Control 0.2ms X
[30] 2–(vpv , iL) Adaptive Control 14.3ms ×
[21] 3–(vpv , ipv , iL) Double Integral Sliding Mode Control 150ms ×
[10] 2–(vpv , ipv) Sliding Mode Control 0.5ms X
[24] 3–(vpv , ipv , iL) Adaptive Passivity Based Control 300ms ×
[7] 4–(vpv , ipv , iL, vo) Backstepping Sliding Mode Control 50ms X
[1] 4–(vpv , ipv , iL, vo) Sliding Mode Control 1ms X

a first approach to the development of a MPPT strategy, our
main contribution is focused on the PV voltage regulation
problem. As discussed in [14], [27], a variety of benefits can
be achieved by using MPPT techniques in conjunction with
closed–loop control strategies, such as efficiency improve-
ment and low frequency disturbances rejection in the load
terminals.

It is worth mentioning that there exist several works that
have considered a similar topology but using different control
methods. Some of these works are summarized in Table 1.
From this table, one can note a variety of control techniques
with different needs for its implementation. One may notice
the following observations: (i) all solutions require at least
two sensors; (ii) moreover, at least a current sensor is needed;
(iii) not all solutions are evaluated under transient conditions.
By contrast, the delay-based control scheme proposed in this
work requires: (i’) only one voltage sensor and consequently,
(ii’) no current sensors are needed; (iii’) also, experimental
results considering abrupt irradiance disturbances are pre-
sented.

Let us emphasize briefly some of the advantages of not
requiring a current measurement. One of the main benefits is
that current sensors are often large and of expensive imple-
mentation in the control system. By contrast, it is worth men-
tioning that current measurements are commonly available
on MPPT systems since such measurements are regularly
required in MPPT algorithms such as P&O. However, it is
also worth to mention that these can also be avoided by using
the fractional method (see, for instance, [16]) and moreover,
it can be also estimated; such is the case in [17], in which
a model-based predictive control principle is used to predict
the states of the PV system.

The method proposed in the sequel is inspired by the
ideas developed by the authors in [9], [20] and [31]. On
one hand, the work made in [9] proposes the use of a buck
dc/dc converter using feedback linearization and a low or-
der controller of PID (Proportional-Integral-Derivative) type.
Among low-order controllers, those of PID-type have shown
a well-known suitable performance coping with parametrical
uncertainties and undesired disturbances, also, to achieve
elimination of steady-state errors and transient response ma-
nipulation (see, for instance, [3], [22]). However, as reported
in [2], [3], one of the main drawbacks of PID controllers
is related to the tuning of the derivative action which may
amplify additive high-frequency noise in measurements.

On the other hand, in order to circumvent the above

mentioned problem, one can notice that the Euler’s approach
to an approximation of the derivative:

y′ (t) ≈ y (t)− y (t− h)

h
,

for small h > 0, suggests to replace the derivative action
by using delays [28]. As seen in the sequel, the feedback
linearized system using a boost dc/dc converter has a relative
degree two, that roughly speaking, consists in a chain of
two integrators. Thus, one of the main contributions of this
paper is to propose a delay–based control scheme in con-
junction with explicit analytical tools that allows designing
non-fragile stabilizing controller for these types of systems.
In the remaining part of the paper, this scheme will be called
Pδ (Proportional-Delayed) controller.

In this vein, a more complex behavior is proposed through
the delay–based feedback loop. In contrast with the obtained
second order open–loop transfer function, a delayed system
has an infinite number of characteristic roots. On one hand,
due to the fact that these roots are deeply related to the
behavior of the output of the system, we are dealing with a
more diverse system in terms of dynamical behavior. On the
other hand, this mere fact complicates the overall stability
analysis, since the classical Routh-Hurwitz criterion of linear
systems is no longer applicable. Nevertheless, as stated in
[13], besides the fact that including a delay will induce a
more complex behavior, it is important to point out that the
delay phenomenon can also promote the system’s stability,
where classical PID controllers fail to stabilize the closed-
loop system.

Encouraged by the previous observations, in this work we
propose the use of PIδ controllers instead of standard of
PID type in order to achieve two technical objectives. First,
as seen in the experimental results section, to decrease the
number of sensors needed for the implementation to only one
voltage sensor. Second, as mentioned in [12] and references
therein, to reduce the processing effort in the application of
such controller in comparison to one of PID type. This is
due to the fact that delaying a signal is numerically simpler
than derivating it, in which some numerical procedure or
algorithm is required. Moreover, we propose the adding of an
integral action by designing a Proportional-Integral-Delayed
(PIδ) controller to achieve steady state error equal to zero
in its experimental application and to cope with parametric
uncertainties.

The main contributions of this work can be summarized as
follows:
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C1: We present a control scheme for the proper regulation
of the PV voltage of a PVM by using a boost dc/dc
converter and a delay–based controller guaranteeing
internal stability;

C2: A tunning methodology for a PIδ controller is pre-
sented. In fact, this methodology provides necessary
and sufficient conditions for the stabilization of the
closed-loop system;

C3: The fragility problem of the PIδ controller is studied in
terms of the integral and delayed actions;

C4: Experimental tests for this delay–based control scheme
are addressed using a 350 W boost dc/dc prototype
and a solar array simulator. Particularly, we test the
closed-loop scheme under set-point changes and solar
irradiation disturbances.

The experimental test bench used for the validation of this
control scheme consists in a standalone PV system with a
battery bank as load. The main goal is to validate a scenario
with a fixed dc bus, in this case emulated by a battery bank.
This situation is typicaly founded in stand-alone applications,
where a battery bank is used as energy storage when solar
irradiation is not available. Moreover, this can be applied in
the same manner to an MPPT distributed system in which
such voltage output is not fixed. Finally, notice that even
without a constant output voltage only voltage sensors are
required, and still no current sensors are needed.

The remaining paper is organized as follows: Section
II discusses the modeling of the boost dc/dc converter on
an MPPT system. Section III describes the control scheme
proposed and some important remarks are addressed, such
as the stability of the zero dynamics. Section IV concerns to
the presentation of the necessary results to develop a stability
analysis of such delayed control scheme through a frequency-
based approach (see also the ideas proposed by Neimark
[19], related to D-partition curves). In addition, this section
discusses the fragility problem of the PIδ controller. Section
V shows an illustrative example on how such results can be
applied in order to tune the PIδ controller. Moreover, several
experimental tests using a solar array simulator in order to
verify the performance of the control strategy are proposed.
Finally, Section VI discusses some concluding remarks on
the main results of this work.

II. PV BOOST DC/DC CONVERTER SYSTEM
This section describes the open-loop system considered
along this work, as well as some assumptions that will
be taken into account in order to perform its closed–loop
stability analysis. The methodology presented in the sequel
follows similar steps to those proposed in [9], but applied to
the analysis of a boost dc/dc converter and using a delay-
based controller.

The topology consisting of the equivalent electrical circuit
of the boost dc/dc power converter, a PV module and a load
element is illustrated in Fig. 1.

From this figure, the average model is described by the

PVM Cpv

−

+

vpv

L D

C

−

+

voQ

iLipv io

Load

Boost dc/dc Converter

FIGURE 1. MPPT System considering a Boost dc/dc converter.

following equation:

ẋ = f(x) + g(x)u, y = h(x) = x1, (1)

with

f(x) :=

− 1
Cpv

x2 + 1
Cpv

ipv
1
Lx1 − 1

Lx3
1
Cx2 − 1

C io

, g(x) :=

 0
1
Lx3

− 1
Cx2

, (2)

where the state vector is defined by x = [x1, x2, x3]T :=
[vpv, iL, vo]

T , vpv represents the input voltage in the termi-
nals of the capacitor Cpv , iL denotes the current through
the inductor L and vo is the output voltage in terminals
of the capacitor C. In addition, ipv denotes the PV current
generated by the PV module, io is the load current and
u ∈ [0, 1] defines the limited control variable (duty cycle for
the switch Q1).
Remark 1: As mentioned in the introduction, our main goal
in the closed–loop scheme, is the proper regulation of the
PVM voltage vpv . This constant reference defined as v∗pv is
obtained by an external MPP tracking algorithm as shown
in Fig. 2. It is worthy of remark that the MPP tracking
is by itself a relevant research problem to be considered
(see, for instance, [4], [29]), where important phenomena are
associated, such as partial shading, mismatch conditions (due
to the interconnection of solar cells or modules with different
properties), just to mention a few. In this vein, this work will
focus on the regulation problem.

MPP
Searching (P&O)

BOOST
dc/dc Converter

PV Module

Battery
Bank

Cpv Vpv

+

−

VO

+

−

ipv

Global
Control
Strategie

V ∗
pv

u

FIGURE 2. MPPT System Schematic.

In the remaining part of the paper, we consider the follow-
ing assumptions:

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3024566, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Assumption 1: The voltage reference v∗pv is considered as a
piecewise constant signal.
Assumption 2: The current ipv is considered as a very low–
frequency signal.
Assumption 3: The inductance value of the boost converter is
as low as possible, i.e., 0 < L� 1.

The ideal voltage reference v∗pv is located at the maximum
power point vmpp. We consider Assumption 1 since the
MPP is a slow time–varying signal which mainly changes
by effects of the ambient temperature. In a similar manner,
we consider Assumption 2 since, ideally, ipv must be of
a direct current type and it changes with respect to solar
irradiation disturbances. Finally, as can be seen in the sequel,
Assumption 3 is nothing else than a design consideration
helpful for the control scheme design. Furthermore, as can
be seen from (1), the input capacitor voltage vpv is chosen as
the output of the system. It is worth mentioning that similar
assumptions have been considered in [9] and [31].

III. GLOBAL CONTROL STRATEGY
This section presents the proposed control scheme for the
regulation problem of the PV system. The procedure consists
in two basic steps. First, a feedback linearization control
scheme is designed to obtain an input-output linear mapping.
Second, we propose a delayed controller in order to stabilize
the resulting dynamics.

By computing the derivatives of the output y = x1, the
following set of equations are derived:

Cpv ẏ = −x2 + ipv, (3)

LCpv ÿ = −x1 + x3 − x3u+ L
d

dt
(ipv) . (4)

Since the control signal u appears up to the second derivative,
the system has a relative degree ρ = 2 in an open and not
connected set β =

{
x ∈ R3 |x3 6= 0

}
. Thus, by considering

Assumption 2 into (4) we obtain:

u =

(
1− x1

x3

)
− 1

x3
v, (5)

which reduces the input-output mapping to:

LCpv ÿ = v, (6)

where v is considered as an auxiliary control law.

A. PIδ CONTROL STRATEGY
As mentioned in the Introduction, the main focus of this work
concerns the design of a PIδ controller for the regulation of
the output of system (6). In this vein, considering the constant
voltage reference v∗pv , we propose the following auxiliary
control law as:

v (t) = kp
(
v∗pv − y(t)

)
+ kδ

(
v∗pv − y(t− τ)

)
+ ki

t∫
0

(
v∗pv − y(s)

)
ds.

(7)

Hence, we can rewrite the system (6) in terms of the output
error e(t) := y(t)− v∗pv , as follows:

LCpv ë(t) + ki

t∫
0

e(s)ds+ kpe(t) + kδe(t− τ) = 0, (8)

where τ is a fixed delay value. It is worth mentioning
that the form of the system (6) suggests the use of a
proportional-derivative controller to achieve asymptotic sta-
bilization. Nevertheless, as we will detail in Section IV,
the delay-based controller can asymptotically stabilize the
closed-loop system by a proper choice of the controller
parameters (kp, kδ, τ). This implies that as t → ∞, then,
e(t) → 0 and therefore y → v∗pv . In addition, in order
to improve the system’s performance, we have included the
integral term in (7) with the aim to cope with the paramet-
ric uncertainties. The analytical procedure to tuning such a
PIδ−controller (kp, ki, kδ, τ) will be explained in detail in
the Section IV.

B. ZERO DYNAMICS
As mentioned previously, the system (1) has a relative degree
ρ = 2. As it is well known in the literature (see, for instance
[26]), there exists a zero dynamics which has to be properly
analyzed in order to be able to consider the linear mapping
(6). This section covers in detail the characterization of such
dynamics.

First, as mentioned in [26], we need to find a diffeomor-
fism, also described as the change of coordinates:

z =

ε1ε2
η

 = T (x) =

 h(x)〈
∇h,f

〉
ϕ(x)

 , (9)

with inverse:
x = T−1(z). (10)

Next, in order to express the dynamics of the change of
coordinates (9) in the normal form, the function ϕ(x) must
satisfy the following condition:〈

∇ϕ, g
〉

= 0. (11)

Hence, following (11) we get:

Cx3
∂ϕ

∂x2
= Lx2

∂ϕ

∂x3
. (12)

It is clear to see, that a solution of the partial differential
equation (12) can be easily computed by assuming a solution
ϕ satisfying:

∂ϕ

∂x2
= 2Lx2,

∂ϕ

∂x3
= 2Cx3. (13)

The above consideration leads to the solution:

ϕ(x) = Lx2
2 + Cx2

3. (14)

Hence, this diffeomorfism and its inverse are given by:

z = T (x) =

 x1

− 1
Cpv

x2 + 1
Cpv

ipv
Lx2

2 + Cx2
3

 , (15)
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x = T−1(z) =


ε1

−Cpvε2 + ipv√
1
C

(
η − L (Cpvε2 − ipv)2

)
 . (16)

Now, in order to model a battery bank as load, let us
consider io = γ(x3), where γ has the property that sgn(γ) =
sgn(x3) for all x3 ∈ R. Let ε := [ε1, ε2]

T , by computing
the time derivative of z and considering (6) and (15), the
dynamics of z can be split into a linear system:

ε̇ =

[
0 1
0 0

]
ε+

[
0
1

]
1

LCpv
v (17)

in conjunction with a nonlinear one:

η̇ = −2γ(x3(η))x3(η) + 2ε1(Cpvε2 − ipv). (18)

Finally, in order to characterize the zero dynamics of the
system we assume that as t→∞, then ε→ [0, 0]

T and:

x3(η)→
√

1

C
η − L

C
i2pv. (19)

Considering the above results, the zero dynamics of the
system is given as:

η̇ = −2γ(x3(η))x3(η). (20)

In order to verify the stability of such dynamics, we propose
the classical Lyapunov function:

V (η) :=
1

2
η2. (21)

Computing its time derivative yields:

V̇ = −2γ(x3(η))x3(η)η. (22)

Now, according to (14) and (19) we observe that η ≥ 0 and
x3(η) ≥ 0, respectively. Hence, γ ≥ 0 implying that V̇ ≤ 0.
This last condition allows concluding the stability of the zero
dynamics.

IV. PIδ CONTROLLER DESIGN
As mentioned above, the proposed auxiliary control law
consists in the use of a PIδ controller. The most important
contribution of this paper lies in the development of the
necessary tools to implement an appropriate tunning of the
controller parameters (kp, ki, kδ) with a delay value τ .

The proposed approach relies in two steps. First, assuming
ki = 0 we aim to find at least one stability region in the
parameters space (kp, kδ) with a fixed delay value τ . Second,
in order to tune the integral gain ki, we take into account a
stabilizing controller pair (k∗p, k

∗
δ ), and we establish a similar

method to find a stability region on the parameters space
(kδ, ki). Such a procedure will be explained in detail in the
sequel.

Consider the system (6) together with the proposed control
law (7). Hence, the closed–loop transfer function of the
linearized system is given as:

Gcl(s) =
(kp + kδe

−τs)s+ ki
LCpvs3 + (kp + kδe−τs)s+ ki

. (23)

Thus, the closed–loop characteristic equation is given by the
following quasi-polynomial:

∆̃ (s; kp, kδ, ki, τ) = LCpvs
3 + (kp + kδe

−τs)s+ ki = 0.

(24)
Notice that by considering only a proportional-delay con-
troller (i.e., ki = 0) in (23) the characteristic equation
behaves as:

∆ (s; kp, kδτ) = LCpvs
2 + kp + kδe

−τs = 0. (25)

Remark 2: It is well known that the stability of a linear system
free of delay, is directly related to the location of the roots
of its characteristic equation. More precisely, the system is
asymptotically stable, if and only if, all roots of its character-
istic equation lie on the left-half plane of the complex plane.
This argument is also true for delayed linear systems (see, for
instance, [18]). However, unlike the free delay case, in time-
delay systems, it is well known that the quasi-polynomial
(25) (or (24)) has an infinite number of roots that depend
continuously on the parameter (kp, kδ, τ) (or (kp, kδ, ki, τ)).
Hence, the corresponding closed-loop system will be asymp-
totically stable if and only if the rightmost characteristic root
is located in C−.

A. STABILITY CROSSING CURVES
CHARACTERIZATION
Now, with the purpose of developing a stability analysis, we
first derive the stability crossing boundaries. In other words,
we characterize the controller parameters choice (kp, kδ, ki)
such that the quasi-polynomial (25) has at least one root on
the imaginary axis (at s = ±jω) of the complex plane. In
order to introduce formally such ideas, consider the following
definitions.
Definition 1 (Frequency crossing set): The frequency cross-
ing set Ω ∈ R is the set of all ω such that, there exists a
parameters choice (kp, ki, kδ, τ) (or (kp, kδ, τ)) such that:

∆̃ (jω; kp, ki, kδ, τ) = 0. (26)

Remark 3: Taking the complex conjugate of (26), the follow-
ing is true:

∆̃ (−jω; kp, ki, kδ, τ) = ∆̃ (jω; kp, ki, kδ, τ).

Therefore, in the sequel only nonnegative frequencies are
considered, i.e., Ω ⊂ R+ ∪ {0}.
Definition 2 (Stability Crossing Curves): The stability cross-
ing curves T is the set of all parameters (kp, ki, kδ, τ) ∈
R3 × R+ for which there exists at least one ω ∈ R+ ∪ {0}
such that ∆̃ (jω; kp, ki, kδ, τ) = 0. For a fixed delay value
τ∗ ∈ R+, any point k ∈ T is known as a crossing point.
Remark 4: For analysis purpose, in some situations we
consider τ∗ as a fixed parameter. In such cases T will be
composed by the parameters (kp, ki, kδ, τ

∗) ∈ R3 × R+

satisfying Definition 2. Similar definitions hold for ∆, i.e.,
for the Pδ−controller.
Proposition 1: Let τ ∈ R+ be a fixed delay value. Then, the
characteristic equation of the closed–loop system ∆ has at
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least one pair of roots on the imaginary axis (at s = ±jω), if
and only if, the controller gains k(ω) := [kp, kδ]

T , are given
as:

kδ =(−1)n
(
−kp +

LCpvπ
2

τ2
n2

)
, for ω =

nπ

τ
, (27)

kp =LCpvω
2 & kδ = 0, for ω ∈

(
(n− 1)π

τ
,
nπ

τ

)
, (28)

for all n ∈ Z+. Furthermore, it has a single root at the origin
(ω = 0) if and only if:

kδ = −kp and kp 6= 0. (29)

Proof 1: As a first step let us consider the characteristic
equation (25) at s = jω, yielding to

−LCpvω2 + kp + kδ cos(τω)− jkδ sin(τω) = 0. (30)

Clearly (30) holds whenever n ∈ Z and ω = nπ
τ , or when

kδ ≡ 0. Thus, considering such situations in (30) we derive
(27) and (28), respectively. Finally, by setting s = 0 in (30)
and following similar arguments than those presented above,
leads to (29).
Remark 5: It is clear to see from the structure of ∆ or ∆̃, that
in the absence of the delay term, the closed-loop system will
be oscillatory (if kp > 0) or even unstable (if kp < 0). Such
an observation is congruent with the derived experimental
results (see, for instance, the behavior of controller c3, in
section V-B).
Proposition 2: Let τ ∈ R+ and k∗p ∈ R be fixed values. The
characteristic equation of the closed–loop system has a pair
of roots on the imaginary axis (s = jω), if and only if the
controller gains k̃(ω) = [k̃δ(ω), k̃i(ω)]T , are given as:

k̃δ(ω) =
LCpvω

2 − k∗p
cos(τω)

, (31)

k̃i(ω) = −ω tan(τω)(LCpvω
2 − k∗p), (32)

for all ω ∈ R+ such that ω 6= (2n+1)π
2τ with n ∈ Z+ ∪ {0}.

Furthermore, it has a single root at the origin (ω = 0) iff:

ki = 0 and kδ 6= −k∗p. (33)

Proof 2: Consider the characteristic equation (24) with s =
jω,

(kδω sin(τω) + ki) + j
(
kδω cos(τω) + k∗pω − LCpvω3

)
= 0.

(34)
It is clear to see that (34) is fulfilled, as long as the following
equation holds:[

ω sin (τω) 1
ω cos (τω) 0

] [
kδ
ki

]
=

[
0

LCpvω
3 − k∗pω

]
.

Thus, assuming that ω 6= (2n+1)π
2τ , ∀n ∈ Z+∪{0} we derive

(31) and (32). In a similar way, by setting s = 0 in ∆̃ leads
to (33).
Based on the previous results, for a fixed delay value
τ∗ ∈ R+ the stability crossing curves for a Pδ controller

k = [kp, kδ]
T are characterized by means of the following

manifolds:

T `n :=

{
k ∈ R2

∣∣∣∣kδ = (−1)n
(
−kp +

LCpvπ
2

τ2
n2

)}
,

T pn :=
{
k ∈ R2

∣∣∣k =
[
LCpvω

2, 0
]T
, ω ∈

(π
τ

(n− 1),
π

τ
n
)}

,

where n ∈ Z+. The curve characterizing a real simple
crossing is given by:

To :=
{
k ∈ R2 |kδ + kp = 0 and kp 6= 0

}
.

For the PIδ controller, consider k̃ := [kδ, ki]
T and let τ∗ ∈

R+ and k∗p ∈ R be fixed values. Then, the stability crossing
curves are defined as:

T̃ mn :=

{̃
k∈R2

∣∣∣∣k̃ = k̃(ω), ω∈
(
(sgnn)(2n−1)π

2τ , (2n+1)π
2τ

)}
,

for n ∈ Z+ ∪ {0}, and the curve characterizing a real simple
crossing is given by

T̃o :=
{
k̃ ∈ R2

∣∣ki = 0 and kδ 6= −k∗p
}
. (35)

Thus, the stability crossing curves can be described as

T =∪
n
T `n ∪

n
T pn ∪To, (36)

T̃ =∪
n
T̃ mn ∪ T̃o, (37)

for the Pδ and PIδ controllers, respectively.

B. CROSSING DIRECTIONS
In order to compute a stability index, which is the number
of roots in the RHP for a given parametrical region, it is of
interest to characterize the behavior of the roots as a function
of the corresponding parameter, when a parameter deviates
from any boundary. The following results are the main tools
to achieve such a task.
Proposition 3: Let τ ∈ R+ be a fixed delay value. Then, as
k crosses in any direction from left to right of: T `n , n ∈ Z+

traversing the point k̂ = [k̂p, k̂δ]
T ∈ T `n , one pair of roots

of the characteristic equation (25) moves from the LHP to
the RHP of the complex plane if k̂ satisfies the following
conditions:

k̂δ > 0 for n even, k̂δ < 0 for n odd. (38)

Furthermore, the crossing of the roots is from the RHP to the
LHP if these inequalities are reversed.
Proof 3: Consider the characteristic equation (25). Now, by
the Implicit Function Theorem (see, for instance, [11]), we
have:

ds

dkp
= −

∂∆
∂kp
∂∆
∂s

,
ds

dkδ
= −

∂∆
∂kδ
∂∆
∂s

, (39)

where:
∂∆

∂s
= 2LCpvs− τkδe−τs, (40)

∂∆

∂kp
= 1,

∂∆

∂kδ
= e−τs. (41)
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Then, by taking s = jnπτ , for n ∈ Z+ yields

[
ds

dkp

]−1
∣∣∣∣∣
s=j nπτ

= τkδ(−1)n − j 2πnLCpv
τ

. (42)

Since, τ ∈ R+ and ds
dkδ

= ds
dkp

e−τs, we can conclude:

sgn

{
<
{
ds

dkp

∣∣∣∣
s=j nπτ

}}
= sgn {(−1)nkδ} . (43)

sgn

{
<
{
ds

dkδ

∣∣∣∣
s=j nπτ

}}
= sgn {kδ} . (44)

Therefore, the proof follows straightforwardly by simply
observing that (43)-(44) imply (38).
Proposition 4: Let τ ∈ R+ be a fixed delay value. Then,
one pair of roots of the characteristic equation (25) moves
from the LHP to the RHP of the complex plane as k crosses
the curve T pn in the increasing direction of kδ if n is odd.
Furthermore, the crossing is from the RHP to the LHP if n is
even.
Proof 4: Consider the characteristic equation (25). Making
use of the Implicit Function Theorem and following similar
arguments than those presented in the proof of Proposition 3,
one gets: [

ds

dkδ

]−1

= τkδ − 2LCpvse
τs. (45)

Now, by considering the set of stability crossing curves
T pn , s = jω for ω ∈ In :=

(
π
τ (n− 1), πτ n

)
and k =[

LCpvω
2, 0
]T

, yields

D(ω) := <
{[

ds

dkδ

]−1
}

= 2LCpvω sin(τω). (46)

The proof ends by noting that D > 0 for all ω ∈ In with n
odd and D < 0 for all ω ∈ In with n even.
Proposition 5: Let τ ∈ R+. Then, a simple root of the
characteristic equation (25) moves from the LHP to the RHP
through the origin as k crosses from left to right the stability
crossing curve To if kδ > 0. Furthermore, the crossing is
from the RHP to the LHP if the inequality is reversed.
Proof 5: By setting s = 0, the proof follows the same lines
as the proof of Proposition 3.
Proposition 6: Let τ ∈ R+ and k∗p be fixed values. Then, a
simple root of the characteristic equation (24) moves from the
LHP to the RHP through the origin as k̃ crosses the kδ-axis
in the increasing direction of ki if kδ < −k∗p . Furthermore,
the crossing is from the RHP to the LHP if the inequality is
reversed.
Proof 6: The proof follows similar ideas to those presented in
the proof of Proposition 3 but setting s = 0 and computing
ds
dki

.

C. FRAGILITY
In this section we propose an auxiliary result to deal with
the fragility problem of a given controller. This result allows
evaluating the robustness of a stabilizing controller against
parametric uncertainties. Such a measure will become ex-
tremely useful when the controller is implemented digitally
since there is always a natural uncertainty in the controller pa-
rameters due to the finite word length and to rounding errors
in numerical computations. Thus, the fragility measure is a
desirable parameter to be considered in the design procedure.
In this work, we focus exclusively on the delayed and integral
action, that is, in the proper tuning of the gains kδ and ki by
considering the proportional gain kp and the delay time value
τ as fixed parameters.

Consider now the fragility problem, which consists of
computing the maximum controller parameters deviation d
of a given stabilizing controller k̄ = [k̄δ, k̄i]

T , such that the
closed-loop system remains stable. More precisely, such that
the controller gains pair k̄ satisfy the following inequality:√

(kδ − k̄δ)2 + (ki − k̄i)2 < d. (47)

In order to address this problem, let k̃(ω) = [k̃δ(ω), k̃i(ω)]T

as given in Proposition 2. Bearing in mind this notation, we
have the following:
Proposition 7: Let τ ∈ R+ and k∗p ∈ R be fixed values and
k̄ be a stabilizing controller. Then, the maximum parameter
deviation d of k̄, such that the closed-loop system remains
stable, is given by:

d := min
ω∈Ωf

{∥∥∥k̃(ω)− k̄
∥∥∥ , |k̄i|} , (48)

where the set Ωf is defined as

Ωf :=

{
ω ∈ Ω

∣∣∣∣ 〈 d

dω
k̃(ω), k̃(ω)− k̄

〉
= 0

}
, (49)

where 〈·, ·〉 stands for the inner product.
Proof 7: Assuming that k̄ is a stabilizing choice of param-
eters, then, this is located inside a stability region defined
by some appropriate stability crossing boundaries. Therefore,
the closed-loop system losses stability if the controller’s
parametrical choice k̄ continuously variates in such a way
that it crosses for at least one of its boundaries. Therefore, it
is of interest to compute the minimal distance between k̄ and
the different stability crossing curves.

First, to compute such distance for ω 6= 0, it is necessary to
identify the points k̃(ω) at which the tangent vectors to this
curve are orthogonal to k̃(ω)− k̄. It is clear to see, that such
points must satisfy the following equality〈

d

dω
k̃(ω), k̃(ω)− k̄

〉
= 0.

Second, since boundaries are needed, we must consider the
distance to T̃o, which is given directly by the magnitude of
|k̄i|. Therefore, the proof concludes by taking the minimum
of these values, i.e., d is given by (48).
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FIGURE 3. Experimental Test Bench - Main Components.

TABLE 2. Passive Elements of the Boost dc/dc Converter

X11

1 ParametersX11

1 Value Units
Cpv 352× 10−6 F
L 4.77× 10−3 H
C 144× 10−6 F

V. EXPERIMENTAL RESULTS

This section presents the application of the previous results to
the experimental test bench depicted in Figure 3. More pre-
cisely, the design of a stabilizing controller for the PV boost
dc/dc converter system. First, by means of the stability cross-
ing curves, the tuning methodology of the PIδ−controller
is presented. Second, several experimental results have been
taken into consideration in order to evaluate the performance
of the control strategy. The standalone PV system consists of
a boost dc/dc converter, five 12 V lead-acid batteries with a
capacity of 80 Ah as load and a solar array simulator as PVM.
A series connection has been considered for the battery bank
which establishes a dc bus voltage of 60 V. The parameters
values of the passive elements of the boost dc/dc converter
are summarized in Table 2. These values were chosen by
considering a continuous mode operation at a rated power
of 350 W and the power converter PWM stage operating at
a switching frequency of fc = 10 KHz (see, for instance,
[23]). The control algorithm was implemented on a DS1104
dSpace board at sampling frequency fs = 40 KHz. However,
the measurements presented in this section were obtained
using the following Tektronix equipment: an ac/dc current
probe (A622), a high voltage differential probe (P5200) and
a digital signal oscilloscope TDS2024B. Finally, the active
elements, the power diode D and the power switch Q are
STTH30R04W and IRFP250N, respectively. The main com-
ponents are illustrated in Fig. 3.

A. TUNING METHODOLOGY OF THE PIδ CONTROLLER
Let us consider the system (17) in closed-loop with the
Pδ−controller, where the fixed delay value has been chosen
equal to τ = 2 × 10−3s. By means of Proposition 1, we
construct the stability crossing curves depicted in Fig. 4.

FIGURE 4. kp − kδ Parameters Space Analysis.

In addition, also in this figure for each stability boundary,
the crossing directions for which at least a root moves from
the LHP to the RHP are indicated by arrows. These crossing
directions are derived by applying Propositions 3, 4 and 5.
Using the crossing directions of T pn presented in Proposition
3, we can find easily the segments at which the roots will
cross to the LHP. Giving as a result the two stability regions
illustrated in Fig. 4.

As a next step, let us consider the tuning of the ki term.
To this end, let us consider first the stabilizing Pδ−controller
c1, where (kp, kδ) = (2,−1). Then, taking k∗p = 2 in
Proposition 2 yields the stability crossing curves depicted in
Fig.5.

As in the previous step, by means of Proposition 6 we
compute the crossing directions, allowing us to derive the
stability region illustrated in Fig. 5. Moreover, the fragility
of the stabilizing controller c1 is analyzed. Using Proposition
7 we compute the maximum deviation allowed, such that the
controller c1 remains stable. The results are summarized in
Table 3 and illustrated in Fig. 5.

TABLE 3. Fragility Analysis of Controller c1 for τ = 2× 10−3.

kp ki kδ AX1

XX
ωAX1

XX

∣∣k̄i∣∣ d

2 500 −1 1.214× 103
2

500 0.137

B. EXPERIMENTAL TESTS
For the experimental tests, the characteristic current-voltage
curve set in the solar array simulator was programmed with
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FIGURE 5. kδ − ki Parameters Space Analysis.
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FIGURE 6. Characteristic Current-Voltage Curve Set in the Solar Array
Simulator.

180 W in standard conditions as can be appreciated from Fig.
6. From this figure, it is worth to notice that the MPP is
located at vmpp = 30 V, impp = 6 A and Pmpp = 180 W.
As mentioned in the test bench description, we consider a
battery bank as load of the MPPT system. This common
scenario is known as an isolated PV system, at which the
main goal is to keep the battery bank completely charged
using the energy gathered by the PV modules. Observe that
since the auxiliary control law v only needs the PV voltage
x1 = vpv , one may notice that the total control law (5) will
also require the output voltage x3 = vo. However, in this
experimental results we consider this as a constant voltage
of 60V since in general this will be the common case. It is
worth mentioning that even though this voltage is varying
slowly as batteries are being charged, for control purposes,
such a voltage can be considered as constant. This, since
the numerical uncertainties will be coped by means of the

integral action. In conclusion, for the experiments presented
in this section only the PV voltage vpv sensor was needed.
Based on the stability regions presented in Fig. 4, we consider
the four different controllers summarized in Table 4 and
illustrated in Fig. 4.

TABLE 4. PIδ Controllers Parameters

ci kp ki kδ X11

1 τ [s] X11

11

c1 2 500 −1 X11

1 2× 10−3X11

1
c2 10 600 2 2× 10−3

c3 2 500 0 2× 10−3

c4 2 500 1 2× 10−3

Moreover, from figure 4, it is easy to see that two of these
controllers are stabilizing controllers (c1, c2), whereas the
others are not (c3, c4). It is worth to mention that the integral
term of each stabilizing controller is designed individually
following the procedure presented above. Furthermore, the
unstable ones are just a variation of c1 in which the gain
related to the delayed action is perturbed.

Now, in order to test the performance of the controllers
c1 and c2, the following two scenarios are taken into con-
sideration: 1 V and 5 V set-point changes. In this vein, one
of the most common MPPT techniques “perturb and ob-
serve” (P&O) consists in varying the PV voltage reference
in consistent steps changes, by observing the PV power in
order to locate the MPP. These tests are designed to analyze
the closed-loop system reliance on an online MPPT tracking
system that attends such behavior.

The results are summarized in Figs. 7 and 8, where from
these figures we can notice that there always exists an abrupt
transitory state in which the settling time measured goes
from 9 ms to 10.9 ms, where these experiments have been
implemented for 1 V and 5 V set-point changes.

Furthermore, it is shown in every test that the control effort
remains in the operation interval u ∈ [0, 1] with this delayed
strategy, even for the 5 V set-point changes. This is the ideal
scenario in which the closed-loop system must remain. Now,
from the comparative table shown in the introduction (Table
1), we can observe that the settling times documented for
these experiments goes from 0.2 ms to 300 ms. In addition,
we would like to highlight the fact that all these strategies
needs at least two sensors, while as discussed above, in the
experimental test bench shown in this work, only the PV
voltage sensor is required.

As a second experimental test, let us evaluate the system
under transient conditions. To this end, the test consists in
setting a constant voltage reference v∗pv = 30 V, while an
irradiance disturbance which oscillates from 100 W/m2 to
1000 W/m2 is applied by the solar array simulator. We con-
sider this as an abrupt scenario, irradiance variation through
the day or even shading caused by clouds movement can
be considered as slower scenarios which would be easier to
handle for the control system. The obtained results are shown
in Fig. 9 for the controllers c1 and c2. Moreover, from these
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FIGURE 7. Set-Point Variation Tests - Controller c1

figures, we can observe a stable regulation with expected
transient scenarios enhanced. Hence, despite any disturbance,
the PV voltage tends to the voltage reference v∗pv = 30 V.

−2 0 2 4 6 8 10 12
28

29

30

31

32

v
p
v
(V

)

−2 0 2 4 6 8 10 12
4

6

8

i p
v
(A

)

−2 0 2 4 6 8 10 12

160

180

200

p
p
v
(W

)

−2 0 2 4 6 8 10 12

0

0.5

1

u

−2 0 2 4 6 8 10 12

50

60

70

80

v
o
(V

)

Time(ms)

ts = 6.3ms

V ∗

pv

(a) 1V Variation - Controller c2

−2 0 2 4 6 8 10 12

25

28

30

32

v
p
v
(V

)

−2 0 2 4 6 8 10 12

0

2

4

6

8

i p
v
(A

)

−2 0 2 4 6 8 10 12

0

60

120

180

p
p
v
(W

)

−2 0 2 4 6 8 10 12

0

0.5

1

u

−2 0 2 4 6 8 10 12

50

60

70

80

v
o
(V

)

Time(ms)

V ∗

pv

ts = 7.1ms

(b) 5V Variation - Controller c2

FIGURE 8. Set-Point Variation Tests - Controller c12.

Finally, to complete the tests we consider the two unstable
controllers for a constant regulation with v∗pv = 30 V and
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FIGURE 9. Controller Performance Tests.

without any transient condition. In this vein, as expected,
Fig. 10 illustrates the unstable responses. One may notice
from Table 4 that the experiment shown in Fig. 10a has
a lack of the delayed action, illustrating that the proposed
controller needs the “gain-delay block” in order to have an
asymptotically stable behavior. In a similar fashion, it is
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FIGURE 10. Controller Performance Tests.

interesting to observe how the design analysis suggests the
use of a negative gain kδ (for c1), in which if we switch the
sign to this gain, results in an unstable behavior, as can be
appreciated from Fig. 10b.
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C. GRAPHICAL COMPARISONS
In general, in model-based control schemes implementations
there are several factors that may impact their performance,
between the most important it can be mentioned: physi-
cal control computation, controller parameters tuning, non-
modeled dynamics, and model parameters uncertainty. Also,
measuring and comparing different control schemes is not
always an obvious task if more than one performance feature
is considered. With these facts in mind, in this section, a
graphics-based qualitative comparative consisting of a radar
chart is proposed and explained in detail in the following
lines.

First of all, this radar chart is shown in Fig. 11 and consists
of a three-level performance metrics (poor, decent, good)
and uses three performance features: settling time, number
of required measurements, and simplicity of the controller
structure. The first two features are directly borrowed from
Table 1, whereas the third one is the authors’ opinion regard-
ing the computational complexity. Considering a particular
control strategy, the main idea is to draw a triangle in which
corners represent the performance of such in each feature.
Being a poor performance the most inner corners and a good
one being the most outer ones.

As discussed in the Introduction, and explicitly shown
in Table 1, there are a variety of strategies applied to PV
systems along with a similar approach to the one studied
in this paper. In the proposed comparison, we consider only
three of them along with the one proposed in this work. To
summarize, Fig. 11 depicts four polygons with different con-
tours corresponding to each control law: sliding mode control
[6] (dashed contour), PIδ−controller (solid contour/shaded
one), adaptative control [30] (double dotted contour), back-
stepping/sliding mode strategy [7] (dotted contour).

To conclude, from Fig. 11 we highlight the following
observations:

1) The backstepping/sliding mode strategy used in [7] has
a conservative performance in all considered features.
In other words, is the slowest one and requires the
most out of measurement hardware and computational
complexity.

2) The sliding mode strategy presented in [6] is the fastest
one by using some decent hardware and software re-
quirements.

3) The proposed delay-based controller is the simplest
of all of them in its computation and implementation.
However, it has a decent settle time but is not the fastest
one.

In addition, it is worth mentioning that [6] requires an extra
current sensor ipv in comparison with the PIδ-based con-
troller.

VI. CONCLUDING REMARKS
A non–linear delay–based control scheme is proposed to
solve the closed-loop stabilization problem of a MPPT-Boost
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FIGURE 11. Radar Diagram Illustrating the Performance of the Controllers on
Various Assessment Aspects Related to the Photovoltaic Dynamics.

Converter as a PV system. The conception of such an idea
is formed by two control strategies. First, an output feedback
linearization technique transforming the overall system into a
two-degree oscillators chain. Second, a proportional-delayed
controller with an integral action is proposed to stabilize
such a chain. This idea is the conceptual contribution of
the paper and which application is the main technical one.
Formed likewise, by two steps presented in this work. On one
hand, the zero dynamics internal stability analysis developed
through well-known Lyapunov stability criteria. On the other
hand, the design of the delay-based linear controller, this
consisting of a detailed analysis of the characteristic roots
(of closed-loop previously linearized system) behavior as the
controller’s parameters are varied. Also, the fragility problem
for the PIδ is discussed, and an auxiliary result to measure the
robustness of the controller against parametrical uncertainties
and variations is presented. In addition, experimental results
concerning set-point changes (mimicking a P&O tracking
system) and evaluation under transient conditions are ad-
dressed using only one voltage sensor in an isolated PV
system application. Finally, from an overall review of this
work, it is worth enhancing two main advantages. First, the
lack of need for a current sensor in the loop in comparison
with the literature presented in Tab. 1. Second, the avoidance
of a derivative action in the PID–alike linear controller, which
is replaced by a delayed action.
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