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Abstract: This paper addresses the classification of multiple critical roots of dynamical
continuous linear time-invariant systems including two constant delays in their mathematical
representation. By considering the associated Weierstrass polynomial and its algebraic proper-
ties, we investigate the splitting behavior of such critical roots when the delays are subject to
small variations. Some degenerate cases are also considered. The effectiveness of the proposed
approach is illustrated through several numerical examples.
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1. INTRODUCTION

The stability analysis of linear time-invariant (LTI) sys-
tems with time-delay have been extensively studied in
the past decades and there exists an abundant literature
covering the subject (see, for instance, Niculescu (2001);
Gu et al. (2003); Michiels and Niculescu (2014); Li et al.
(2015) and the references therein).

As discussed in Chen et al. (2010a,b), even in the the
simplest case of a single constant delay, the stability
tests are not easy to perform. Such a difficulty arises
from the fact that that the delay systems are infinite-
dimensional and the corresponding characteristic function
is, in fact, a quasi-polynomial that always have an in-
finite number of characteristic roots (see, for instance,
Michiels and Niculescu (2014) and the references therein).
In the retarded case, by using an appropriate continuity
argument 1 , the problem of (exponential) stability can
be reduced to (i) the detection and (ii) the analysis of
the behavior of the characteristic roots located on the
imaginary axis 2 in the case when such roots exist 3 .

1 a direct consequence of the Rouché’s lemma, see, e.g., Michiels and
Niculescu (2014)
2 Such roots are simply called critical characteristic roots.
3 In fact, in the case when there are no characteristic roots on the
imaginary axis, the stability/instability of the dynamical system free
of delays is preserved for any delay value, i.e. the delay-independent
stability/instability property, see, for instance, Niculescu (2001); Gu
et al. (2003); Michiels and Niculescu (2014) for further arguments.

In this context, one the problem particularly treated in
the literature was to understand how the delay parameters
affect the behavior of the critical characteristic roots, and
to explicitly compute the stability domains in the delay-
parameter space. In the case of a single or commensurate
delays, such domains reduce to a finite number of delay
intervals. For more insights on the existing methods,
one may refer to Niculescu (2001); Olgac and Sipahi
(2002); Gu et al. (2003); Michiels and Niculescu (2014);
Li et al. (2015). To the best of the authors’ knowledge, the
complete characterization of the stability domains in the
incommensurate delays case is still an open problem.

Next, it is well known that the roots of polynomials
are continuous functions of the coefficients as long as
the leading coefficient does not vanish, see, e.g., Knopp
(1996). Furthermore, in the case of simple roots, these
functions are also differentiable. However, in the case of
multiple roots, such a property does not necessarily hold
and Puiseux series may be used to perform the analysis.

In the commensurate delays case, these conclusions are
also valid for quasi-polynomials of retarded type, where the
characteristic roots are seen as functions of one variable
- the delay parameter (see, for instance, Michiels and
Niculescu (2014); Li et al. (2015)). By using an operator-
based approach, such an idea was exploited by Chen et al.
(2010b), where the authors characterized the asymptotic
behavior of multiple critical characteristic roots in semi-
simple 4 and some not semi-simple 5 cases.

4 the same algebraic and geometric multiplicity
5 more precisely, the complete regular splitting case
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Based on the remarks above, the asymptotic behavior of
multiple critical characteristic roots with respect to several
(incommensurate) delays needs a deeper understanding
(degenerate cases classification and characterization).

As mentioned before, one of the natural and standard
approaches to handle such a problem is to study of the
properties of the corresponding Puiseux series solutions.
Such an idea, exploited in the commensurate delays case
(for some insights, see Li et al. (2013)) cannot be extended
straightforwardly to the incommensurate delays. In fact,
as in the multivariate polynomial case, such a method has
several drawbacks and, in some situations, such Puiseux
series solutions do not always exist (see Subsection 3.1
below as well as various examples proposed by Alonso et al.
(1992); Aroca (2004)). In order to avoid such situations,
the problem needs to be well-posed (see, e.g., Monforte
and Kauers (2013)).

The migration of double characteristic roots depending
on two parameters is studied in Gu et al. (2015); Irofti
et al. (2018), where, without invoking Puiseux series,
under appropriate assumptions 6 , the authors proposed
a more conventional geometric approach to classify the
asymptotic behavior of the critical characteristic roots in
the parameter space. Such a method allows covering some
particular asymptotic behavior in the delay-parameter
space when the parameters change in the neighborhood of
the critical point. Next, in the multiple delays case, Li et al.
(2019) proposed an iterative frequency-sweeping approach,
by leaving one delay parameter free, while the others are
fixed. Thus, the critical characteristic roots depend on
only one parameter, and the analysis is performed by
using the method developed by the same authors in Li
et al. (2015). Finally, in the case of two parameters, some
analysis was proposed by Maurer (1980); Lipman (2017),
by using an appropriate parametrization of a given surface.
This idea was exploited by Mart́ınez-González et al. (2018)
for the computation of roots of quasi-polynomials with two
incommensurate delays without any discussion on multiple
critical characteristic roots.

Taking into consideration the previous discussion, the
main contribution of this paper is threefold:

• Give conditions for the existence of multi-parameter
Puiseux series and give a classification of its solutions;
• Relax the non-degeneracy assumption proposed by

Irofti et al. (2018);
• Propose an appropriate algorithm for studying the

corresponding asymptotic behavior and related its
splitting properties.

More precisely, under some particular conditions that
guarantee the existence of well-defined multi-parameter
solutions, we propose to relax the assumption for the
existence of a parametrization around the multiple roots
as well as its splitting properties. To complete the presen-
tation, an explicit computation of the associated Puiseux
series solution is proposed. To the best of the authors’
knowledge, all these contributions represent a novelty in
the open literature.

The remaining paper is organized as follows: Section 2
includes some preliminary results. In Section 3 some moti-

6 “least degenerate” double critical characteristic roots

vating example is outlined and the problem formulation is
stated. Section 4 is devoted to the main results. In Section
5, several numerical examples are presented. Finally, some
concluding remarks end the paper.

Throughout the paper, the following notations will be
adopted: for z ∈ C, arg (z) ∈ [0, 2π), <(z) (=(z)) denote
the argument, real (imaginary) part of z, respectively.
Next, R+ denotes the set of positive real values, C[x] the
ring of polynomials and C{x} the ring of convergent power
series.

2. PRELIMINARY RESULTS

In the sequel, a dynamical LTI system of retarded type
including two delays τ1 and τ2 is considered. For the sake
of brevity and simplicity, its characteristic function f is
given by the following quasi-polynomial:

f(s, τ1, τ2) := p0(s) + p1(s)e−τ1s + p2(s)e−τ2s, (1)

where pk are polynomials given as,

p0(s) = sn +

n−1∑
`=0

a0`s
`, pk(s) =

n−1∑
`=0

ak`s
`, k ∈ {1, 2}.

2.1 Local Representation Around Multiple Roots

It is possible to reduce the analytic properties of f(z,x)
to some algebraic ones. To this purpose, consider the
following result Mailybaev and Grigoryan (2001):

Theorem 1. (Weierstrass Preparation Theorem). Suppose
that f (z,x) is an analytic function vanishing at the
singular point z0 ∈ C, x0 ∈ Cn, where z = z0 is an
m−multiple root of the equation f (z,x) = 0, i.e.,

f (z0,x0) =
∂f

∂z
= · · · = ∂m−1f

∂zm−1
= 0,

∂mf

∂zm
6= 0, (2)

where derivatives are evaluated at (z0,x0).

Then, there exists a neighborhood U0 ⊂ Cn+1 of the
point (z0,x0) ∈ Cn+1 in which the function f (z,x) can
be expressed as

f (z,x) = W (z,x) b (z,x) , (3)

where W (z,x) is given by

(z − z0)
m

+ wm−1 (x) (z − z0)
m−1

+ · · ·+ w0 (x) , (4)

and w0(x),. . . ,wm−1(x), b (z,x) are analytic functions
uniquely defined by the function f (z,x), and wi(x0) = 0,
b (z0,x0) 6= 0.

In Mart́ınez-González et al. (2019b) the authors proposed
an explicit method for computing the associated Weier-
strass polynomial of (1).

Remark 1. It can be seen from Theorem 1 that, since
b (z,x) is an holomorphic non vanishing function at (0,0).
Then, there must exist some neighborhood U ⊂ Cn+1 at
which b(z,x) preserves the same property. Hence, based
on this observation, we can ensure that the roots behavior
of a given quasi-polynomial f in the neighborhood U will
be completely described by the roots behavior of W (x, x),
see, for instance, Hörmander (1973).

2.2 Splitting Properties

In the case of one parameter, the quasi-polynomial f
defines an appropriate plane curve given by f = 0 (see Wall



(2004); Walker (1978)), and the root locus of a multiple
root of f is characterized by its branches which explicitly
describe a solution curve C ∈ C2. This characterization is
composed by a finite union of r-branches sj(τ

1/mj ) which
can be parametrized as (s, τ) = (ϕ(τ), τmj ). In the form
of Puiseux series, the root locus gives rise to the following
branching:

sjσ(τ) = cjστ
m
j +o (|τ |mj ) , j = 0, . . . , r−1, σ = 1, . . . ,mj

(5)
where each branch has multiplicity mj such that m = m1+
m2 + · · ·+mr.

Definition 2.1. The trivial solution s∗ = 0 has a Complete
Regular Splitting (CRS) property at τ∗ = 0 if cjσ 6= 0, ∀j.
Next, if some of the coefficients cjσ for which mj = 1 may
be equal to zero, then the trivial solution has a Regular
Splitting (RS) property at τ∗ = 0. Finally, in the remaining
cases of the coefficients cjσ, the trivial solution has a Non-
Regular Splitting (NRS) property at τ∗ = 0.

In Mart́ınez-González et al. (2019a), the authors proposed
a methodology based on the first partial derivatives to
analyzed the splitting behavior, see Figure 1. It is worth
mentioning that these results cover only the commensurate
delays case and the extension to incommensurate delays is
not straightforward.
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Fig. 1. Illustration of Completely Regular Splitting (CRS)
property in the case of a triple critical characteristic
root s∗ = j

2.3 Quasi-ordinary Roots

In order to extend the above approach to the multi-
parameter case, the so-called Abhyankar-Jung Theo-
rem must be taken into consideration (see, for in-
stance,Abhyankar (1955)). To this end, the notion of quasi-
ordinary polynomials must be introduced.

Definition 2.2. Let W (z, x1, x2) be a Weierstrass polyno-
mial (3). Then W is a quasi-ordinary polynomial with
respect to z, if the discriminant ∆ is of the form

∆(x1, x2) = xp11 x
p2
2 V (x1, x2), x1, x2 ∈ N, (6)

where V is an analytic function such that V (0, 0) 6= 0.

The discriminant ∆ of a given polynomial is a function
that depends on the coefficients and it can be defined up
to some constant factor as the product of the square of its
roots.

In general, it can be expressed by means of the m-solutions
zi = φ(x) as follows

∆(x) =
∏
i<j

(φi − φj) .

The discriminant of a quadratic Weierstrass polynomial is
given by ∆(x) = w2

1(x) − 4w0(x) (see, for instance, Wall
(2004)).

Now, the existence of parametric equation that satisfies
the equation W = 0 for a quasi-ordinary polynomials,
i.e., the existence of Puiseux series solutions in the multi-
parameter case is given by the following result (see, for
instance Zurro (1993); Lipman (2017)).

Theorem 2. (Abhyankar-Jung Theorem). Let f ∈ C[z] be
a quasi-ordinary polynomial in z with analytic coefficients
in (x1, x2). Then, there exist a natural number r such that
the roots of f are given by convergent fractional power

series that belong to C{x1/r1 , x
1/r
2 }.

2.4 Regularity Condition

Consider now the quasi-polynomials f(s, τ1, τ2) described
in (1), with a multiple root s = 0 at (τ∗1 , τ

∗
2 ). Furthermore,

we restrict the analysis to the case when f satisfies the
following assumption:

Assumption 2.1. (Regularity Condition). Let s = 0 be a
m-multiple of the quasi-polynomial f at (τ∗1 , τ

∗
2 ). Then,

the following condition

∂f

∂τi

∣∣∣∣
(0,0)

6= 0 (7)

holds for at least one τi with i = 1, 2.

Remark 2. As a consequence of the Implicit Function
Theorem, if the Regularity Condition (7) holds for both
τ1 and τ2, then, the characteristic equation f = 0 defines
the parameters (τ1, τ2) as continuous functions of s, in
some sufficiently small neighborhood of s = 0. This
implies that the regularity condition presented in (7), relax
the conditions imposed by the so-called non-degeneracy
condition proposed by Irofti et al. (2018).

Lemma 3. If the following condition:

∂f

∂τi

∣∣∣∣
s0

6= 0, i = 1, 2.

holds, then the equation f(s, τ1, τ2) = 0 is satisfied by the
unique solutions τ1 and τ2 defined by continuous functions
τi(s0) with s0 ∈ V∗δ (iω) excluding the double root s∗ = iω.

3. PROBLEM FORMULATION

The present work focuses on the analysis of the asymp-
totic behavior of multiple imaginary roots under multi-
parameter perturbations. More precisely, we consider as
variable parameters the pair (τ1, τ2).

In this vein,for the quasi-polynomial f(s, τ1, τ2), we will
focus in the following problems:

(1) derive the splitting behavior of a double root at iω
under small variations of the delays (τ1, τ2);

(2) characterize conditions on the delay-parameter space
(τ1, τ2) guaranteeing the existence of Puiseux series



s(τ1, τ2) of multiple roots, together with its corre-
sponding region of convergence, of the form

s(τ ) = c1τ
1/d
1 + c2τ

1/d
1 + c3τ

1/d
1 τ

1/d
1 + o(τ

1/d
1 τ1/dn ),

where d ∈ {1, 2};
(3) characterize the existing links between the assump-

tions made in previous works devoted to the same
problem and the condition for quasi-ordinary singu-
larities.

3.1 Insights on Multivariate Polynomial Perturbations

In the sequel, we present some difficulties that arise
when considering multi-parameter functions. In order to
illustrate such arguments, we will present two examples
that motivate the proposed approach.

Example 4. Consider the following polynomial:

P (z, ε) = z2 + 3ε1z + 2
(
ε21 + 2ε22

)
,

where ε = (ε1, ε2) ∈ R2. Here, ε1 and ε2 are considered
as perturbation parameters. It is clear to see, that if ε1 =
ε2 = 0, z = 0 is a root of multiplicity two. We can see that
P is a Weierstrass polynomial (3) such that the regularity
condition (7) is not satisfied. In this case, the solutions
z1,2 (ε) are not continuous at ε := (ε1, ε2) = (0, 0).
Furthermore, z1,2 (ε) does not have a unique representa-
tion as a power series which is convergent in some punc-
tured neighborhood of the origin. In order to illustrate this
assertion on P , let us consider the case when |ε1| < |ε2|.
In this region the solutions admit the following represen-
tation:

z1,2 (ε) =−1

2
(3ε1 ± i4ε2) +

1

16
ε1

(
±iε1
ε2
± i

64

(
ε1
ε2

)3

+

± i

2048

(
ε1
ε2

)5

+O

((
ε1
ε2

)5
))

.

Now, if instead of the previous region, we consider the
region |ε2| < |ε1|. Then, for k ∈ {1, 2} the solutions admit
the following representation

zk(ε)=−2k−1ε1+(−1)
k
4ε2

(
ε2
ε1

+4

(
ε2
ε1

)3
+ 32

(
ε2
ε1

)5
+O

((
ε2
ε1

)5)
.

The previous example shows the difficulties inherent in
the study of the migration of the solution for small
perturbation of the parameters.

Example 5. Consider now the perturbed polynomial Q
given by

Q(z, ε)=z3+(ε1+ε1ε2)z2+(ε1+ε2+ε21ε2)z+(ε21+ε1ε2). (8)

It is easy to see that one of the roots is given by z1(ε1) =
−ε1, and the polynomial (z+ ε1)−1Q(z, ε) posses a double
root at z2,3 = 0 if (ε) = (0, 0). The two remaining roots
can be found using the binomial expansion, with expansion
given as follows

z2,3 = ±iε1/22 +O
(
ε
1/2
1 ε

1/2
2

)
These two solutions posses the form given in (2) in the
problem formulation, with c1 = c2 = 0 and c3 = i. A
particular case of fractional power series solution, known as
quasi-ordinary singularities, can be expressed as z1,2(ε) =

ε
u/2
1 ε

v/2
2 ϕ(ε

1/2
1 , ε

1/2
2 ) such that ϕ(0, 0). This situation is

guaranteed by the structure of the corresponding discrim-
inant of Q.

4. MAIN RESULTS

As mention in the Introduction, our approach is based on
the properties of the associated Weierstrass polynomial
(4). This allows us using the algebraic properties for the
root behavior analysis. Since any critical solution (s∗, τ ∗)
can always be translated to the origin by appropriate shifts
s 7→ s − s∗, τ1 7→ τ1 − τ∗1 , τ1 7→ τ1 − τ∗1 hereinafter
we will assume that (s∗, τ∗1 , τ

∗
2 ) = (0,0). In addition, we

will consider that m ∈ N with m ≥ 2 is the algebraic
multiplicity of f at (0,0), that is,

f (0,0) =
∂f

∂s

∣∣∣∣
(0,0)

= · · · = ∂m−1f

∂zm−1

∣∣∣∣
(0,0)

= 0 and
∂mf

∂zm

∣∣∣∣
(0,0)

6= 0.

4.1 Puiseux Series Solutions for Quasi-Polynomials

By means of a recursive procedure, in the commensurate
delays case, Mart́ınez-González et al. (2019a) propose a
method to compute the splitting behavior of multiple root
for quasi-polynomials under the variation of the delay
parameter. By defining an appropriate solution surface
around a multiple root, such a procedure can be extended
to systems with two delay parameters. In other words,
the space curve C defined by the set {(s, τ1, τ2) ∈ C ×
R2 : f = 0} can be parametrized by fractional power
series in (τ1, τ2) called Puiseux series, as in the case of
one parameter delay discussed in Section 2.2.

Proposition 6. Let the regularity condition (7) holds for
i = 1. Then, the quasi-polynomial f admits Puiseux series
solutions in τ1 of the form

s(τ ) = c1(τ2)τ
1/m
1 + o

(
τ 1/m

)
where the coefficients ck(p2) can be expressed as a power
fractional series in τ2.

The above results give some explicit representation of
m-solutions which determine the solution surface. These
solutions are in the form of Puiseux series, which give some
insights on the splitting for a fixed τ2. In previous works,
by using iterated Newton diagram procedure, the leading
terms of the quasi-polynomial f(s, τ ) are given in an
explicit manner. Now, under the regularity condition (7)
the following property guarantees the existence of Puiseux
series solutions in the general case.

Proposition 7. Suppose that the Assumption 2.1 is satis-
fied for τi with i = 1, 2. Then, the leading terms are given
as

sj(τ ) = c1τ
1/m
1 + c2τ

1/β
2 + o

(
τ 1/m

)
, (9)

where m,β ∈ N such that β ≤ m.

Proposition 8. Assume that f satisfies (7) for τi with
i ∈ {1, 2}. Let n ∈ N, such that the following partial
derivatives are satisfied:

∂f

∂τj
= · · · = ∂n−1f

∂τn−1j

= 0,
∂nf

∂τnj
6= 0, (10)

for n > 1, j ∈ {1, 2} and j 6= i. Then, the m−solutions of
f are characterized as,

sk(τ1, τ2) = τ
1/m
i τ

1/ni

j ϕk(τ
1/m
i , τ

1/ni

j ), k = 1, 2, . . . ,m,

for some ni ≤ m and ϕk(0, 0) 6= 0.



4.2 Double Root of Quasi-Polynomials

The above construction does not give any details on the
characterization of the root behavior in the parameter
space (τ1, τ2). Thus, to describe such a behavior, it will
be shown the explicit relationship between the local form
(quadratic polynomial in s) and the branches of the double
root. Hence, by assuming that m = 2 and according to the
previous results, the Weierstrass polynomial W (s, τ) can
be expressed by:

W (s, τ) = s2 + w1(τ1, τ2)s+ w0(τ1, τ2). (11)

It is possible to characterize the the root behavior by
means of the Discriminant Ds given by:

Ds(τ1, τ2) := w2(τ1, τ2)− 4w0(τ1, τ2). (12)

Clearly, in the parameter space (τ1, τ2), the condition
Ds = 0 guarantees the existence of a double root.

Proposition 9. Let s∗ = iω be a double root of the quasi-
polynomial f(s, τ). Then, there exists a change of variable
such that the roots have the form

z2 = ϕ(τ1, τ2),

where ϕ can be expressed in the form convergent power
series of order 1 in τ1 and τ2.

4.3 Complete Regular Splitting

Now, to obtain information on the migration of a double
root we study the properties of the branch given by
the Puiseux series, but, without its explicit computation.
Notice that the existence of such a series is guaranteed by
Proposition 7. Hence, the migration of the double root in
all cases is summarized by the following result.

Proposition 10. Let W be the Weierstrass polynomial of
f for the critical point (0,0), such that Ds = 0. Assume
that the regularity condition (7) is satisfied for τ1 and τ2.
Then, in a neighborhood of (0,0) the two solutions of f
possess the Completely Regular Splitting Property (CRS)
with respect to τ1 and τ2, that is, both solutions can be
expressed as:

s1,2(τ) = ±c1τ1/21 ± c2τ1/22 +O (τ ) ,

where c1 6= 0 and c2 6= 0.

5. NUMERICAL EXAMPLES

In this section, we consider several numerical examples
encountered in the control literature, that will allow us to
illustrate the effectiveness of the proposed results.

Example 11. Consider the following quasi-polynomial

f(s, τ1, τ2) = p0(s) + p1(s)e−τ1s + e−τ2s (13)

where

p0(s) := s2 − 2s+ 2,

p1(s) := 2 cos(1)s− 2 (cos(1) + sin(1)) .

Simple computations show that for (τ1, τ2) = (1, 2), f has
a critical root at s∗ = i with multiplicity two. Additionally,
the first partial derivatives are given by

∂f

∂τ1

∣∣∣∣
(i,1,2)

≈ 2.91 + i0.584,
∂f

∂τ2

∣∣∣∣
(i,1,2)

≈ −0.91 + i0.416.

By applying Proposition 6, we conclude that the solutions
of the Weierstrass polynomial can be expanded as a
Puiseux series.

Example 12. Consider now the quasi-polynomial:

f(s, τ ) = p0(s) + p1(s)e−sτ1 + p2(s)e−sτ2

where

p0(s)=s5+s4+
4 + π

2
s3+2s2+

2 + π

2
s+2, (14a)

p1(s)=1, p2(s) = 2s4+4s2 + 2. (14b)

For (τ1, τ2) = (π, 1), f has a double root at s = i. Let f̂
be the quasi-polynomial derived by shifting from (i, π, 1)
to the origin. Then the first non-zero partial derivatives of
the quasi-polynomial at (0, 0, 0) are given by

∂f̂

∂τ1

∣∣∣∣∣
(0,0)

= i,
∂nf̂

∂τn2

∣∣∣∣∣
(0,0)

= 0, ∀n ∈ N, (15)

∂2f̂

∂s∂τ1

∣∣∣∣∣
(0,0)

= 1− iπ, ∂n+1f̂

∂s∂τn2

∣∣∣∣∣
(0,0)

= 0, ∀n ∈ N. (16)

It is clear that the associated Weierstrass polynomial W
has the following structure:

W (s, τ ) := s2 + w1(τ ) + w0(τ ).

Moreover, since the regularity condition (7) holds, we only
need to compute w0(τ ). After simple computations, one
gets:

w0(τ ) =
−2i

(8 + π2) + i(8− 3π) + 16e−i
τ1 + o (τ ) .

Thus, its solutions are given by:

s(τ )=i±
√
2i3/2√

(8+π2)+i(8−3π)+16e−i
(τ1−π)1/2 +O (|τ − τ ∗|) .

Proposition 10 guarantees that the solution (i, π, 1) has
the CRS property. This behavior is illustrated in Figure 2.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

ℑ(s)

0.9

0.95

1

1.05

1.1

ℜ(s)
s0,1(τ), τ1<π, τ2<1

s0,0(τ), τ1<π, τ2<1

Fig. 2. Root locus of quasi-polynomial f (s, τ ) (14) around
(i, π, 1).

Example 13. Consider now the special case of a model of
population dynamics discussed by Irofti et al. (2018):

f(s, τ1, τ2) = s− a− b1− e−sτ1
s

− c1− e−sτ2
s

. (17)

Taking the same values as the ones proposed by Irofti
et al. (2018), that is, a = −0.214104, b = −0.996801 and
c = 0.5, we know that for (τ∗1 , τ

∗
2 ) ≈ (3.84003026849,

10.44866732901), f possesses a double root at s∗ = i. In
this case, we have the following partial derivatives:

∂f

∂τ1

∣∣∣∣
(i,τ∗)

6= 0,
∂f

∂τ2

∣∣∣∣
(i,τ∗)

6= 0.



Thus, the regularity condition (7) holds for τ1 and τ2, and
consequently, by using Proposition 6, its solutions can be
expanded as Puiseux series with fractional power of 1

2 .
Furthermore, by Proposition 7, its solutions behave as:

s(τ )=i± (0.3885− 0.3307i)(τ2−τ∗2 )1/2 +O (|τ − τ ∗|) .

6. CONCLUDING REMARKS

The paper addresses the asymptotic behavior of multi-
ple critical roots for quasi-polynomials of retarded-type
with two incommensurate delays. The proposed approach
allows identifying the structure of the solutions by only
computing some partial derivatives. Thus, such results
reveal if the solutions behave as a power series or as a
Pusieux series. Besides, the adopted approach allows to
relax some conditions imposed on the quasi-polynomial in
some results previously reported in the literature, and as
a consequence, our method allows capturing the behavior
of any quasi-polynomial of retarded type with algebraic
multiplicity two.
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frequency-sweeping approach for stability analysis of
linear systems with multiple delays. IMA Journal of
Mathematical Control and Information, 36(02), 379–
398.

Li, X.G., Niculescu, S.I., Çela, A., Wang, H.H., and
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