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Optimal Sensor Placement for Partially Known Power System Dynamic
Estimation

Mohammad Ali Abooshahab, Morten Hovd, and Giorgio Valmorbida

Abstract— The synchronized phasor measurement unit
(PMU) provides fast, precise, and synchronized measurements,
which is crucial for power systems dynamic monitoring. How-
ever, replacing conventional SCADA systems with PMUs is
happening gradually and slowly due to its considerable cost.
Hence, with restricted budgets, the installation of these measur-
ing devices should be selective. The majority of previous works
on PMU sensor placement have been focused on steady-state
estimation. Therefore, they concentrate on network topology to
find optimal configurations making the whole network observ-
able at steady-state. However, approaches based on steady-state
or quasi-steady-state operating conditions are not applicable
for power systems experiencing fast and dynamic changes.
Moreover, a dynamic model for several variables and parts
in a power system may be wholly or partly unknown. In such
cases, the concept of partially known power systems as well
as simultaneous input and state estimation can be exploited to
obtain the estimates of the known system states and unknown
inputs. In this work, we develop a greedy approach to obtain
optimal sensor placement for joint input and state estimation
of partially known power grids.

I. INTRODUCTION

Monitoring is significantly essential for modern electrical
grids’ energy management systems. Thanks to the introduc-
tion and development of PMUs, more frequent measurements
are accessible in different parts of a power grid. This allows
for the exploitation of dynamic approaches for power grid
monitoring instead of steady-state or quasi-steady-state esti-
mation. In this case, it is possible to track sudden changes,
including electromagnetic transients [1], cyber-attacks [2],
[3], and dynamics of distributed generators [4]. However,
in practice, few nodes can be covered by PMUs because
they are expensive devices. Thus, it is necessary to place
the PMUs selectively and optimally. Several methods have
been conducted on PMU placement problems. A summary
of different approaches to dealing with the sensor placement
problem can be found in [5]. One of the most popular meth-
ods to address the sensor placement optimization problem is
the greedy algorithm [6], [7] due to its simplicity.

There are several interconnected elements or layers in an
electrical grid, such as distribution, transmission, generation,

Mohammad Ali Abooshahab and Morten Hovd are with the
Department of Engineering Cybernetics, Norwegian University
of Science and Technology, Trondheim, Norway, (e-mails:
{mohammad.ali.abooshahab,morten.Hovd}
@ntnu.no).

Giorgio Valmorbida is with the CentraleSupelec, University of Paris
Plateau de Moulon, 3 rue Joliot-Curie, Gif-sur-Yvette Cedex, France. (e-
mail: giorgio.valmorbida@l2s.centralesupelec.fr)

This work is funded by CINELDI - Centre for intelligent electricity
distribution, an 8-year Research Centre under the FME-scheme (Centre for
Environment-friendly Energy Research, 257626/E20). The authors gratefully
acknowledge the Research Council of Norway and the CINELDI partners’
financial support.

and loads. Many parts of the system may be fully known
with the information required for dynamic modeling fully
available, while other regions may be entirely or partially
unknown. Moreover, the availability of the measurements in
some parts of the modern electrical grids, especially in the
distribution part, is limited. This is due to the consumers’
privacy and the lack of expensive and accurate measuring
devices such as PMUs. Hence, the partially known power
system concept has been recently introduced in [8]. In this
context, the Kalman Filtering - Simultaneous Input and State
Estimation (KF-SISE), proposed and investigated in [9], [10],
is utilized to obtain the estimates of the states and unknown
inputs of the partially known power grid. It should be
borne in mind that various sensor placement methods based
on steady-state/quasi-steady-state conditions, including those
proposed in [11], [12], [13] are not applicable for modern
electrical grids facing fast and dynamic changes. In addition,
these approaches require more sensors than the total number
of states in the system, which means they usually need more
measurements than their dynamic counterparts [2]. Similarly,
sensor placement strategies ensuring observability of the
overall system [14], [15], [16], [17] require an excessive
number of sensors. The proposed method in this paper,
however, requires fewer measurements in an extensive power
network. It requires observability of the known part of the
system, and in addition only one measurement per signal
originating in the unknown parts of the system.

The aim of this paper is, first, to formulate the optimization
problem to solve optimal sensor placement for dynamic
state estimation of partially known systems. To achieve this
goal, we obtain the information matrix corresponding to KF-
SISE and then propose ‘best in’ and ‘worst out’ greedy
algorithms to optimize the placement of sensors in a power
network. The criteria for the minimization in such prob-
lems is usually the covariance of estimation error. However,
estimation error for the unknown input is also critical for
obtaining the overall uncertainty originated using KF-SISE.
Hence, we introduce a new objective function consisting of
both the covariance of estimation error and unknown input
uncertainty. Next, by proving that adding a new measurement
does not corrupt the estimation performance of KF-SISE, we
simplify the inequality constraint of the optimization problem
into equality. Finally, we present the results of numerical
simulations on the Western Systems Coordinating Council
(WSCC) 3-machine-9-bus test system and the IEEE-14-bus
test system. The results are compared with approaches in
the literature and validate the performance of the proposed
sensor placement method for KF-SISE based state estimation
of partially known power networks.



The structure of this paper is as follows. Section II intro-
duces KF-SISE and the concept of partially known power
systems. In Section III, we formulate the sensor placement
problem, and we solve this optimization problem using the
greedy algorithm. We present the simulation results related
to the WSCC-9-bus and IEEE-14-bus network in Section IV
to show the performance of the proposed sensor selection
method.

II. PARTIALLY KNOWN POWER NETWORKS STATE
ESTIMATION

We aim to minimize the overall covariance of the estima-
tion error for the same number of PMUs. We first describe
the filtering method. A summary of KF-SISE, presented in
[9], is given in the following subsection.

A. Filtering algorithm

To simplify matters, we consider initially a linear time-
invariant formulation without direct feedthrough for the
known system:

xt+1 = Axt +Gdt + wt, (1)
yt = Cxt + vt, (2)

where xt, wt ∈ Rn are the state vector and process noise
at time step t, dt ∈ Rm is the disturbance signal from
the unknown part of the system, and yt, vt ∈ Rm are the
measurements and the measurement noise. The following
assumptions are required to use the Kalman filtering for-
mulation of SISE [9].

Assumption 1: The following is assumed to hold:
i wt ∼ N (0, Q), vt ∼ N (0, R) and initial condition xO ∼
N (x̂0|0, PO) are mutually independent Gaussian white
noises,

ii R is diagonal positive definite matrix,
iii the pair (A,C) is observable, and rankCG = rankG =

m.
By defining Xt+1, Kt+1, Mt+1, Dt and Pt+1 respectively
as the prior state covariance matrix, the Kalman gain for
the state vector, the Kalman gain for the unknown input
vector, the posterior disturbance covariance matrix and the
posterior state covariance matrix, and x̂t+1|t+1 as the poste-
rior estimates for the state and d̂t|t+1 as the estimate for
the unknown input of the system, and the measurement
sequence, Yt+1 , {yt+1, yt, . . . , y1}, we state an algorithm
for KF-SISE in Algorithm 1.
B. Information matrix derivation for KF-SISE

In this subsection, we derive the information matrix for
KF-SISE [9], which can simplify the analysis of estimation
error and its covariance further in this study. The following
lemma provides us with the information version of the KF-
SISE.

Lemma 1: Considering (3)-(8), the Information matrix
It+1 , P−1

t+1 for the SISE can be obtained as follows:

It+1 = X−1
t+1 + CTR−1C (10)

Proof: Let us show that It+1 = P−1
t+1. This will be

done by showing that It+1Pt+1 = I , using the expression
for Pt+1 in (8).

Algorithm 1 State and disturbance estimation using KF-
SISE
For positive definite matrix D large,
Prediction step: compute Xt+1, Kt+1, Mt+1 as follows:

Xt+1 = APtAT +GDGT +Q, (3)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (4)

Mt+1 = DGTCT (CXt+1C
T +R)−1. (5)

Update step: compute xt+1|t+1, dt|t+1, Pt+1 and Dt, as
follows:

x̂t+1|t+1 = Ax̂t|t +Gd +Kt+1(yt+1 − CAx̂t|t − CGd),
(6)

d̂t|t+1 = d +Mt+1(yt+1 − CAx̂t|t − CGd), (7)
Pt+1 = (I −Kt+1C)Xt+1, (8)
Dt = (I −Mt+1CG)D. (9)

Note that P−1
t+1 is full rank due to the observability condition

in Assumption 1. We have, using (4):

It+1Pt+1 = (X−1
t+1 + CTR−1C)(I −Kt+1C)Xt+1

=(X−1
t+1 + CTR−1C)

×(Xt+1 −Xt+1C
T (CXt+1C

T +R)−1CXt+1)

=I − CT
[
(CXt+1C

T +R)−1 −R−1

+R−1CXt+1C
T (CXt+1C

T +R)−1
]
CXt+1

=I − CT
[
(CXt+1C

T +R)−1(I +R−1CXt+1C
T )

−R−1
]
× CXt+1

=I − CT [R−1 −R−1]CXt+1

=I

Since the inverse of a full rank matrix is unique, we conclude
It+1 = P−1

t+1.

C. Steady state formulation of estimation

For the steady-state Kalman filter version of SISE, KF-
SISE, we would have to solve an ARE (11) to obtain X∞ -
and then (12)-(15) follow [9]:

X∞ = dare(AT , CT , Q+GDGT , R); (11)

K∞ = X∞CT (CX∞CT +R)−1; (12)

M∞ = DGTCT (CX∞CT +R)−1; (13)
P∞ = (In − CK∞)X∞; (14)
D∞ = (Im −M∞CG)D. (15)

The ARE solution here denoted X∞, is the steady-state
prediction error covariance from (3). P∞ indicates the ex-
pected state estimation error corresponding to the given
measurement matrix. For the same number of PMUs, we
aim to minimize this overall error.

D. Model for the test system

This subsection is devoted to describe a dynamic model for
the power network and to clarify the partially known power
network concept. To derive a dynamic model for our power
network, the following assumptions are considered [8]:



State variables External variables Parameters
angular frequency ωr external load PG rotor damping coeficient D
mechanical power Pm frequency setpoint fO time constant TS
rotor shaft angle δ load setpoint Lcre governor feedback gain k
valve position a droop characteristic R

motor inertia M

TABLE I: Variables and parameters for components in the
test cases.

Assumption 2: The following is assumed to hold:

i Transformers are neglected because their impedances are
negligible compared to the impedances of the transmis-
sion lines.

ii The ratio of the transmission/distribution lines reactance
to their resistance is assumed to be significantly above
unity [18].

iii The power angle at Bus 1 is assumed to be the network’s
reference power angle.

In the test systems, synchronous generators and loads con-
tribute to the power system dynamics. Generators dynamic
model can be described as [19], [20]:

∂

∂t


ωr
Pm
a
δ


k

=


−D/M −1/M 0 0

0 −1/TS 1/TS 0
k 0 −kR 0
1 0 0 0


k


ωr
Pm
a
δ


k

+


0 0
0 0
−k −k
0 0


k

[
Lcre
ωO

]
k

+


−1/M

0
0
0


k

PGk, (16)

where variables and parameters are given in Table I. Simi-
larly, buses containing rotating loads with known PL is:

∂

∂t

[
ωr
δ

]
k

=
[
−D/M 0

1 0

]
k

[
ωr
δ

]
k

+
[
−1/M

0

]
k
PLk +

[
−1/M

0

]
k
PGk. (17)

The model derivation process for the WSCC-9-bus network
as in [8] is given in the Appendix. Aggregating all states
of different components (machines, loads, condensers, and
...) in network results in an abridged version of the power
network as follows:

˙̄x = Ax̄ + w

where w represents the noise originating from modeling
uncertainties, and ū is the input corresponding to reordered
state vector with input matrix B. For this simplified model,
some parts of the power system may be entirely or partially
unknown. In such cases, a cut is made to separate the known
part from the unknown part. Then the states associated with
unknown parts will be removed from the system dynamics.
These unknown parts are modeled as unknown inputs flowing
from the unknown part to the known part of the system.
These unknown inputs are denoted by d, and the truncated
state vector and its system matrix are represented by x̄tr
and Atr, respectively. Thus, the model for a partially known
power network can be given as:

˙̄xtr = Atrx̄tr + Gd + wtr

where wtr denotes the modeling noise for the partially
known power network.

E. The measurement model

Modern PMUs can measure several variables in the power
system, including bus voltage, bus current, valve position,
and the output of the power system stabilizer [21], [22].
Moreover, state variables for a bus with a PMU can be
measured directly [22]. In this case, we can choose the valve
position ak, the mechanical power Pm,k, rotor frequency
fr,k, and power angle δk as available measurements at gen-
erator i with PMU [22]. Thus, the PMU-based measurement
equation can be modeled as a linear function of states.

y = Cx + v, y, v ∈ Rp

This model fits the model (1)-(2), so the filtering algorithm
described in Section II is applicable for partially known
systems.

III. SENSOR PLACEMENT PROBLEM FORMULATION

This section aims to propose a systematic way for sensor
placement for power network state estimation using S-SISE.
The sensor selection vector is defined in [23] as

w = [w1, · · · , wm]T , wk ∈ {0, 1},
where wk specifies the availability of ith sensor. Hence, the
general measurement equation can be expressed as

yt,w = Cwxt + Φwνt

and Cw = ΦwC, (18)

where Φw ∈ {0, 1}||w||1p is a matrix constructed from
diag(w) such that all rows corresponding unselected sensors
have been omitted from this matrix.

A. Problem statement

The problem we wish to solve can be stated as

min
w

trace(P∞,w) subject to 1Tw ≤ ns, (19)

with (P∞,w) in (14) and defined above, where ns ≤ p is the
maximum number of sensors available. Note that Boolean
variables in w in the constraints of the optimization problem
and the matrix Cw the optimization problem make it non-
convex. The two lemmas below will be used in our first
result, which shows that adding a sensor can only improve
the cost in (19).

Lemma 2 ([24], [25]): For two selections w and w̃, if
wk = w̃k for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1 then
Xt+1,w̃ ≤ Xt+1,w and X∞,w̃ ≤ X∞,w.

Lemma 3 ([24], [26]): For two given matrices A, B if
A ≥ B then A−1 ≤ B−1

Let C[k] denote the kth row of the measurement matrix
C, and R[k,k] denote the kth diagonal element of R. Next,
we introduce the following definition:

Definition 1: Sensing precision matrix.
For each measurement k, the sensing precision matrix Sk,
and its assimilated version S̃ are defined in [25], [27] as
follows:

Sk = CT[k]R
−1
[k,k]C[k], (20)

S̃ =

p∑
k=1

CT[k]R
−1
[k,k]C[k] (21)



Remark 1: Note that the assimilated sensing precision
matrix S̃ is the second term of the information matrix
equation (10).

Theorem 1: If w and w̃ are two sensor selections such
that wk = w̃k for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1
then P∞,w̃ ≤ P∞,w.

Proof: Based on Lemma 3, we exploit information
matrix for t = 0, · · · , k − 1, and by using (10) and (20),
we obtain

I1,w̃ = X−1
1,w̃ + S̃w + Sj

where S̃w is the assimilated sensing precision matrix for the
sensor selection set w, and Sj is the sensing precision matrix
defined in (20). From Lemma 2 and Lemma 3, we have that
X−1

1,w̃ ≥ X
−1
1,w; thus,

I1,w̃ ≥ (X−1
1,w + S̃w) + Sj = I1,w + Sj

Sj ≥ 0; hence,
I1,w̃ ≥ I1,w.

Repeating this procedure until k − 1, yields

Ik,w̃ ≥ Ik,w.

Then, following Lemma 1, we have

Pk,w̃ ≤ Pk,w,
which holds for all k, letting k →∞ gives

P∞,w̃ ≤ P∞,w.

As a result, adding a new sensor has no adverse effect
on estimation accuracy. Therefore the inequality constraint
in (19) can be changed to an equality constraint.

Note that, if we in KF-SISE also wish to take the input
estimation into account, so the problem given in (19) can be
extended to:

min
w

trace(P∞,w) + trace(D∞,w) subject to 1Tw ≤ ns,
(22)

Theorem 2: If w and w̃ are two sensor selections such
that wk = w̃k for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1
then Dw̃ ≤ Dw.

Proof: Take

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1

By performing matrix inversion, we can obtain

Kt+1 = Pt+1CR
−1 = Xt+1C

T (CXCT +R)−1.

Thus,

CT (CXt+1C
T +R)−1 = X−1

t+1Pt+1CR
−1.

Therefore,

Mt+1 = DGTX−1
t+1Pt+1CR

−1.

In addition,
Dt = (I −Mt+1CG)D. (23)

Consider the second term of the above equation

Mt+1CGD = DGTX−1
t+1Pt+1CR

−1CGD.

Now, we rewrite the above equation for yw̃t+1 as

Mw̃
t+1Cw̃GD = DGTX w̃t+1

−1Pw̃t+1Cw̃R
−1Cw̃GD.

Using Theorem 1 leads to:

Mw̃
t+1Cw̃GD

≥ DGTXwt+1
−1(Xwt+1

−1 + Sj)
−1(CwR

−1CTw + Sj)GD.

Note that since Pwt+1
−1 ≥ Xwt+1

−1 ≥ CTwR−1Cw, we have

Mw̃
t+1Cw̃GD ≥ DGTXwt+1

−1Pwt+1(CTwR
−1Cw)GD,

and then
Mw̃

t+1Cw̃GD ≥Mw
t+1CwGD,

which means
Dw̃t+1 ≤ Dwt+1.

B. Greedy algorithm for sensor placement

This section proposes two methods using the greedy algo-
rithm to address Problem (19). The solution is obtained such
that the equality constraint in (19) holds. One algorithm starts
with zero sensors, nw = 0, and increments nw until (19)
holds; we call this the ‘best in’ greedy algorithm. The second
algorithm starts with nw = p and decrease nw until nw = ns,
we call this the greedy algorithm ‘worst out’.

Note that Assumption 1. iii should be satisfied to recon-
struct all signals of our interest, The two greedy algorithms
are given in Algorithm 2 and 3. Algorithm 3 is called the

Algorithm 2 Greedy algorithm ‘best in’ [28]
1) Initialization:

k = 1, Φk = Φw,wk = {}
where Φw is defined in (18).
Necessary measurements selection:
Identify measurement sets wk of minimum cardinality
satisfying Assumption 1. iii.

a) From sets of measurements satisfying Assumption 1.
iii, select wk such that:

wk = arg min trace(Pw∞)

b) Update the measurement set:

Φk+1 = Φk\wk,wk+1 = wk ∪ wk
2) Next measurement selection:

wk = arg min trace(Pw∞)

3) Update the measurement set (as in 1)b) above)
4) If 1Twk < ns go to step 2) else Stop.

Greedy descent algorithm or greedy ’worst out’ algorithm. In
this algorithm, it is assumed that all measurements are avail-
able. Then the worst measurement from the measurement set
would be omitted.

Remark 2: Algorithm 3 is easier to implement, and it does
not need to perform a recoverability check (Assumption 1.
iii). Hence, it is more straightforward to exploit Algorithm
3 when using the KF-SISE method in general. However, for
large systems with a low number of sensors, Algorithm 2
might be used because of its lower computational cost and
faster speed.



Algorithm 3 Greedy descent ‘worst out’
1) Initialization:

k = 1, Φk = Φw,

and wk is initialized as a vector of ones.
2) Next measurement selection for deletion:

wk = arg min |trace(Pw∞(wk\{wk}))|
3) Update the measurement set and select the subsequent

measurement:

Φk+1 = Φk\wk,wk+1 = wk\wk
4) If 1Twk > ns go to step 2) else Stop.

IV. NUMERICAL RESULTS

In this part, we evaluate the proposed method’s optimality
using the WSCC-9 bus network Figure 1. To illustrate the
proposed method, we assume each sensor can measure one
state at each bus. Hence, we need to solve Problem (19) with
ns = 4. After solving the Problem (19) with the Greedy
algorithm given in Algorithm 2, we found that first, we need
two measurements to assess the angular frequency at bus 1
and 2; in addition, measuring valve position first at bus one
and then at bus two can give us the minimum value for our
objective function, while Table II shows that this solution is
the optimal solution for this problem.

We also implement Algorithm 3 for this problem. We
start with the full set of available sensors (for simplicity,
it is assumed the maximum number of sensors is nine and
each sensor can measure only one state of the system),
and then select the worst sensor concerning the optimality
criteria and remove the worst sensor from the optimal sensor
set. This is done until the optimal sensor set contains the
maximum number of measurements that is ns = 4 here.
Using Algorithm 3 yields removing ωr4, P1, P2, δ2, δ4 from
the optimal sensor set, respectively and results in Cw∗ =
{ωr,1, ωr,2, a1, a2} as the optimal sensor set. This sensor
set is the same as the one we obtained with Algorithm 2.

The estimation results for the WSCC-9-bus power system
is given in Figure 2. We see that the estimates are accurate
for the system states.

Fig. 1: WSCC-9 bus power system [8].

We further use the sensor selection method for the IEEE-
14 bus power system. Note that sensor placement strategies

Measurements traceP∞ + traceD∞
ωr1, ωr2 30.62 + 6.84
ωr1, ωr2, δ2,δ4 11.84 + 2.52
ωr1, ωr2, δ2,a1 7.59 + 1.69
ωr1, ωr2, δ2,P1 9.59 + 2.09
ωr1, ωr2, δ2,a2 4.6 + 1.24
ωr1, ωr2, δ2,P2 5.79 + 1.52
ωr1, ωr2, δ2,ωr4 12.61 + 3.12
ωr1, ωr2, δ4,a1 10.14 + 2.24
ωr1, ωr2, δ4,P1 11.97 + 2.82
ωr1, ωr2, δ4,a2 5.1 + 1.46
ωr1, ωr2, δ4,P2 6.19 + 1.62
ωr1, ωr2, δ4,ωr4 10.15 + 2.42
ωr1, ωr2, a1,P1 14.52 + 3.49
ωr1, ωr2, a1, a2 4.16 + 0.84

ωr1, ωr2, a1,P2 7.61 + 1.71
ωr1, ωr2, a1,ωr4 15.41 + 3.76
ωr1, ωr2, P1,a2 6.59 + 1.65
ωr1, ωr2, P1,P2 10.15 + 2.34
ωr1, ωr2, P1,ωr4 21.591 + 4.42
ωr1, ωr2, a2,P2 8.56 + 1.74
ωr1, ωr2, a2,ωr4 9.90 + 2.11
ωr1, ωr2, P2,ωr4 14.56 + 3.62
ωr1, ωr2, P1, P2,δ2 4.77 + 1.02

TABLE II: Trace of P∞ + trace of D∞
based on steady-state/ quasi-steady-state conditions given
in [15], [29], [11], [12] are not applicable here. The ob-
servability based sensor placement methods with different
optimization criteria including steady-state error covariance
[14], max, min and mean uncertainties [15], identifiability
criteria [16], and the empirical observability Gramian [17]
require at least five measurements to guarantee observability
of the IEEE-14 bus power system with five generators and
nine dynamic loads. From Table III, we can observe that
by using the empirical observability Gramian method [17],
and even five measurements, we cannot obtain accurate state
estimates. However, by using the proposed method in this
paper (Algorithm 2 & 3), the optimal sensor selection set is
found as {ωr,1, ωr,2, ωr,3}.

Placement methods Measurements min trace P∞
Method in [17] 5 7.34× 106

Algorithm 2 & 3 3 86.75

TABLE III: Optimal sensor placement for the IEEE-14 bus
power system

For this sensor selection, trace(P∞ + D∞) = 86.75 +
17.61. Several state estimates and their actual states for
IEEE-14 bus power system using KF-SISE and Algorithm
2 & 3 are depicted in Figure 4.

V. CONCLUSION

This paper presents two greedy algorithms for the place-
ment of sensors in partially known power networks. Sim-
ulations are carried out on two power benchmarks, and
results are presented. The information matrix for KF-SISE is
derived, and it is utilized to address the optimization problem
using the greedy algorithm. By considering the effects of
disturbance on KF-SISE, we derive the new formulation for
the optimization problem. This formulation accounts for both
the state and input estimation error. The results are compared
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Fig. 2: State estimation for the WSCC-9-bus power system using KF-SISE and the proposed sensor placement algorithms.
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Fig. 3: Transformer-less dynamic power grid model of IEEE-
14-bus-system, with circuit cut dividing known and unknown
parts [30].
to other sensor placement methods in order to validate the
presented sensor placement method.

Future work is required for cases where measurement sets
are not independent, and R is not diagonal. We shall report
on these problems elsewhere.
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APPENDIX
Each unit (generator or load) at bus k can be modeled as

ẋk = Akxk + Bkuk + B
(G)
k PGk. (24)

where B(G)
k is the external input matrix corresponding to the external load. By

aggregating the generator and load models, we can obtain

x = [x
T
1 , · · · , x

T
k , · · · ]

T (25)

P = [P
T
G1, · · · , P

T
Gk, · · · ]

T

δ = [δ
T
1 , · · · , δ

T
k , · · · ]

T

A = blk(A1, · · · , Ak, · · · )

B
(G)

= blk(B
(G)
1 , · · · , B(G)

k , · · · ).

where blk indicates a block diagonal matrix.
For the WSCC-9-bus power system, the reduced model susceptance matrix of the 9-bus
network in Figure1 is given as follows:

B =


−0.33 0 0 0.18 0.16 0

0 −0.45 0 0.31 0 0.15
0 0 −0.57 0 0.36 0.21

0.18 0.31 0 −0.48 0 0
0.16 0 0.36 0 −0.52 0
0 0.15 0.21 0 0 −0.36

,
Taking Assumption 1 into account, the approximations of the power signals are as

follows:
P = Bδ.

Now, we neglect the known inputs from the model description, so we obtain

ẋ = Ax + B
(G)

Bδ.

Furthermore,
ẋ = (A + B

(G)
BΨδ)x,

where Ψδ is a δ selection matrix δ = Ψδx. Without loss of generality, we reorder the
state vector for each individual unit to simplify the observation of the interconnections
in the system matrix.

xk =

[
x̂k
δk

]
, k = 1, · · · , 6

Likewise, we reorder the model matrices correspondingly:

Ak =

[
Gk 0

1 0 0 0

]
, k = 1, · · · , 3

Ak =

[
Lk 0
1 0

]
, k = 4, · · · , 6 (26)

where Gk and Lk are obtained as a result of this re-organization. For
k = 1, · · · , 6, and the system state vector can be described as x̄ =
[x̂T1 , · · · , x̂

T
k , · · · δ

T
2 , · · · , δ

T
k , · · · ]

T .


