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A nonsmooth Frank–Wolfe algorithm through a dual
cutting-plane approach

Guilherme Mazanti∗† Thibault Moquet∗† Laurent Pfeiffer∗†

March 30, 2024

Abstract

An extension of the Frank–Wolfe Algorithm (FWA), also known as Conditional Gradient al-
gorithm, is proposed. In its standard form, the FWA allows to solve constrained optimization
problems involving β-smooth cost functions, calling at each iteration a Linear Minimization Oracle.
More specifically, the oracle solves a problem obtained by linearization of the original cost function.
The algorithm designed and investigated in this article, named Dualized Level-Set (DLS) algorithm,
extends the FWA and allows to address a class of nonsmooth costs, involving in particular support
functions. The key idea behind the construction of the DLS method is a general interpretation of
the FWA as a cutting-plane algorithm, from the dual point of view. The DLS algorithm essentially
results from a dualization of a specific cutting-plane algorithm, based on projections on some level
sets. The DLS algorithm generates a sequence of primal-dual candidates, and we prove that the
corresponding primal-dual gap converges with a rate of O(1/

√
t).

Keywords: Frank–Wolfe algorithm, Conditional Gradient algorithm, cutting-plane algorithms, simpli-
cial algorithms, duality in convex analysis, nonsmooth optimization.

Mathematics Subject Classification (2020): 90C25 · 90C30 · 90C46.

1 Introduction
The Frank–Wolfe Algorithm (FWA), also known as Conditional Gradient Algorithm, is an iterative
minimization algorithm which was first introduced in [9]. It aims at solving numerically problems of the
form

minimize
x∈K

f(x), (1)

where f is a convex function with Lipschitz-continuous gradient and K is a closed convex bounded set
of some Banach space X . This method relies on a Linear Minimization Oracle (LMO) of the form

minimize
x∈K

⟨µ, x⟩, (LMOµ)

for some well-chosen µ ∈ X ∗. The result of this oracle is used to update the candidate to optimality
through convex combinations.

One simple choice consists in taking, at iteration t,

µt = ∇f
(
xt
)
, γt = 2/(t+ 2), and xt+1 = γtv

t + (1− γt)x
t,

where vt is a solution to (LMOµ) with µ = µt. We will refer to that method as agnostic FWA. It is
well-known, (see for instance [11]) that the agnostic FWA converges (in value) to a minimizer of f over
K with a speed of order 1/t.

There are many other possible choices for iteration updates. We mention the FWA with line-search
and the fully-corrective FWA, which consist in taking

xt+1 ∈ argmin
x∈K̃t

f(x), (2)
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with K̃t respectively defined by conv{xt, vt} and conv
{
v0, . . . , vt

}
. In other words, we replace in Prob-

lem (1) the feasible set K by an inner polyhedric approximation, the set K̃t. These variants enjoy in
general the same sublinear convergence properties; yet improved rates of convergence can be obtained in
many situations, see [21].

A great number of applications of the FWA can be found in [11, 19] and references therein. We
mention, among others, machine learning (see [11, 15]), optimal transport (see [8]), image processing
(see [12]), and potential mean-field games (see [16, 18]).

The article is dedicated to the design of an extension of the FWA which can handle nonsmooth cost
functions, and which we call Dualized Level-Set (DLS) method. It allows to solve problems of the form

minimize
x∈E1

f(x) + σQ(Ax− b) + ιK(x),

where E1 and E2 are Hilbert spaces, A : E1 → E2 is a bounded linear operator, b ∈ E2, f is convex and
has Lipschitz-continuous gradient, K ⊂ E1 is a set for which we have an LMO, and Q ⊂ E2 is of the
form Q = Q1 +Q2, where Q1 is a closed convex bounded set and Q2 is a closed convex cone. The term
σQ(Ax− b) is in general non-differentiable with respect to x. It typically describes equality constraints
of the form Ax = b (if Q = E2) or finitely many inequality constraints of the form Ax ≤ b (if Q is the
closed positive orthant of E2 = Rm).

There already exist some extensions of the FWA to a nonsmooth framework. We mention the Frank-
Wolfe Augmented Lagrangian (FW-AL) method from [10], the Conditional-Gradient-based Augmented
Lagrangian (CGAL) algorithm from [22] and the Conditional Gradient with Augmented Lagrangian and
Proximal-step (CGALP) from [20]. All rely on a Moreau regularization of the nonsmooth term (σQ in our
framework), which amounts to the augmented Lagrangian method when σQ(Ax−b) models inequality or
equality constraints. It is proved in [20, Theorems 4.1 and 4.2] that the sequence of candidates generated
by the CGALP method is asymptotically feasible and that the associated Lagrangian values converge at
a rate of o(1/tb), where b ∈ [0, 1/3) is a parameter of the algorithm (see also the discussion provided in
[20, Examples 3.4 and 4.4]).

We follow a different approach, based on an interpretation of the fully-corrective FWA as a cutting-
plane algorithm, from the point of view of the dual problem. This interpretation is not new and can be
found in [1, Section 7.7] and in [24]. In [24], the authors use a specific implementation of the Frank–Wolfe
algorithm to construct a new variant of cutting-plane algorithm that enjoys a linear convergence. As we
will explain below, we follow the reverse path. Let us mention that [2] gives a dual interpretation of the
agnostic FWA as a mirror descent algorithm. We will explain more in detail the dual interpretation of
the fully-corrective FWA in Section 3, we only give a rough description of it in this introduction. Observe
that the dual of Problem (1) is given by

minimize
µ∈X∗

f∗(µ) + σK(−µ).

The dual of Problem (2) is the same problem, with K replaced by K̃t. Since K̃t ⊂ K, σK̃t is a lower
approximation of σK ; moreover, since K̃t is polyhedral, σK̃t is piecewise affine. So the FWA algorithm
(with line search or the fully corrective variant) amounts to solving at each iteration a simplified version
of the dual problem obtained through a piecewise-affine lower approximation of the dual cost: this is the
basic principle of every cutting-plane-type method. To be rigorous, let us note that cutting-plane methods
usually approximate the whole cost function while here, only the second term is approximated. Such
methods are referred to as simplicial methods in [1, 24]. We find it convenient to keep the terminology
cutting-plane in this article.

In a nutshell, our general strategy for the design of the desired extension of the FWA consists in
“dualizing” a cutting-plane-type algorithm. This strategy brings two main difficulties. First, we need
convergence guaranties for the dualized algorithm (and not just for the chosen cutting-plane-type al-
gorithm). Second, the dualized algorithm must be implementable. Our attention has focused on the
method introduced in [17, Section 2.2.1], which we will refer to as the Level-Set method. While the
simplest cutting-plane algorithms simply consists in minimizing a piecewise affine approximation of the
cost function, the Level-Set method updates the current candidate to optimality by projecting it onto
a level set of the piecewise affine approximation. The addition of this projection step attenuates the
instabilities from which the basic cutting-plane methods suffer. Moreover, it enables the authors of [17]
to perform a quantitative convergence analysis. They indeed prove that the Level-Set method exhibits
a rate of convergence of O(1/

√
t). This rate of convergence is actually established for some quantity

denoted ∆(t), which we interpret as a primal-dual gap. The fact that not only the optimality gap, but

2



also the primal-dual gap, converges (with a certain rate) is a crucial aspect, since it allows to show the
convergence of FWA-type algorithm obtained through dualization. The convergence of the primal-dual
gap in the Level-Set method is our main interest for it.

Our DLS method is not a direct dualization of the Level-Set method, but rather a dualization of
an extension—in two directions—of the Level-Set method. In the original formulation of the Level-Set
method, the full cost function is approximated with a piecewise affine cost. In our algorithm, the term f∗

of the dual problem remains unchanged, which requires us to proceed to an extension of the convergence
proof of the Level-Set method in which only some part of the cost function is approximated (through
a piecewise affine function). The second extension of the Level-Set method that we need to perform
concerns the projection step. In the original method, the projection step is done with respect to the
Euclidean norm. The dualization of this step would require the knowledge of f∗, which we consider
as too demanding. We propose to change the Euclidean norm by a specific Bregman distance, which
ultimately yields a more tractable projection step. The DLS algorithm enjoys the same convergence rate
as the original Level-Set method, in O(1/

√
t). Let us stress however that this convergence rate does not

account for the possible increase of complexity of each iteration.
This article is organized as follows. In Section 2 we present our notations and some preliminary results.

In Section 3 we give an insight on the primal and dual interpretation of the Frank–Wolfe Algorithm, and
we then present our Extended Level-Set (ELS) method and its theoretical guarantees. In Section 4 we
derive our DLS method, obtained by application of the ELS method to the dual problem, and we prove
its convergence. The proofs of the technical results are postponed to Section 5. Finally, Section 6 is
dedicated to numerical examples.

2 Preliminaries and notations
General notations In the following, R̄ denotes the ordered set R ∪ {+∞,−∞} and R̄+ the ordered
set R ∪ {+∞}. Let E be a Hilbert space. Its inner product is denoted as ⟨ · , · ⟩E and the deriving norm
∥ · ∥E , defined for all x ∈ E as ∥x∥E =

√
⟨x, x⟩E . When we deem that no confusion is possible, we will

drop the subscript for the inner product and the norm. Let X be a Banach space endowed with the norm
∥ · ∥X . We denote as X ∗ its topological dual, i.e., the space of continuous linear forms over X , as ∥ · ∥X∗

the associated dual norm, and as ⟨ · , · ⟩X∗,X the natural pairing. Likewise, we will drop the subscripts
when we deem that no confusion is possible. We recall that X ∗ endowed with ∥ · ∥X∗ is a Banach space
and that a Hilbert space E is a Banach space. Also, we always identify E∗ with E . In this section, we
make the convention that spaces denoted by the letter E (possibly with subscripts) are always assumed
to be Hilbert spaces, while spaces denoted by the letter X (possibly with subscripts) are always assumed
to be Banach spaces.

Unless specified otherwise when required, the definitions below are taken similarly over both X and
X ∗. Let f : X → R̄. We denote as epi(f) the epigraph of f , defined as

epi(f) =
{
(x, λ) ∈ X × R

∣∣λ ≥ f(x)
}
.

We recall that f is convex (respectively (weakly) lower semicontinuous) iff epi(f) is convex (respectively
(weakly) closed). We denote as Γ(X ) the set of convex lower semicontinuous functions from X to R̄ and
as Γ0(X ) the subset of those which are proper, i.e., which never take the value −∞ and are not constant
equal to +∞.

In what follows, we assume f ∈ Γ0(X ). We denote as dom(f) the domain of f , which is the set

dom(f) = {f ∈ R} =
{
x ∈ R

∣∣ f(x) ∈ R
}
.

For any x ∈ X , we denote as ∂f(x) the set of its subgradients at x, i.e., the set

∂f(x) =
{
µ ∈ X ∗ ∣∣ ∀y ∈ X , f(y) ≥ f(x) + ⟨µ, y − x⟩

}
,

and as dom(∂f) the set dom(∂f) = {∂f ̸= ∅}. Notice that dom(∂f) ⊂ dom(f). For a function g ∈
Γ0(X ∗) and µ ∈ X ∗, we define ∂g(µ) as

∂g(µ) =
{
x ∈ X

∣∣∀λ ∈ X ∗, g(λ) ≥ g(µ) + ⟨λ− µ, x⟩
}
.

Let E ⊂ X , x̄ ∈ X , and F be a subset of some topological space. We denote as

• conv(E) the convex hull of E, and conv(E) the set conv(E). We omit the parentheses when E is
given as the description of its elements;
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• ιE : X → {0,+∞} the characteristic function of E, defined for all x ∈ X as

ιE(x) =

{
0 if x ∈ E,
+∞ otherwise;

• σE : X ∗ → R̄ the support function of E, defined for all µ ∈ X ∗ as

σE(µ) = sup
x∈E

⟨µ, x⟩.

We recall that we have σE = σconv(E).

We now assume that E is nonempty. We denote as

• NE(x̄), the normal cone of E at x̄, defined as ∂ιE(x̄), or in explicit terms as

NE(x̄) =

{
∅ if x̄ /∈ E,{
µ ∈ X ∗ ∣∣ ∀x ∈ E, ⟨µ, x− x̄⟩ ≤ 0

}
otherwise;

• d( · , E) : X → R the distance to E, defined for all x ∈ X as

d(x,E) = inf
x′∈E

∥x− x′∥;

• C(E;F ) the set of continuous functions over E taking values in F , as C(E) the space C(E;R), and
as Cb(E) the subset of C(E) of bounded functions over E;

• M(E) the space of signed Radon measures over E, M+(E) the subset of M(E) of nonnegative
measures, and P(E) the set of probability measures over E, i.e., the subset of M+(E) of measures
m of total mass m(E) = 1.

Duality We denote the Legendre–Fenchel transform, or conjugate, of f as f∗ : X ∗ → R̄. It is defined
for all µ ∈ X ∗ as

f∗(µ) = sup
x∈X

⟨µ, x⟩ − f(x).

Notice that f∗ lies in Γ(X ∗), as a supremum of convex (lower semi-)continuous functions of µ. For
g : X ∗ → R̄, its conjugate is the function g∗ : X → R̄ defined for all x ∈ X as

g∗(x) = sup
µ∈X∗

⟨µ, x⟩ − g(µ),

and we denote as f∗∗ = (f∗)
∗ the biconjugate of f . Notice that, with this definition, for any E ⊂ X , we

have σE = ιE
∗. It follows from the definition of the Legendre–Fenchel transform that, for any f : X → R̄,

g : X ∗ → R̄, and (x, µ) ∈ X × X ∗,

f(x) + f∗(µ) ≥ ⟨µ, x⟩ and g(µ) + g∗(x) ≥ ⟨µ, x⟩, (3)

these inequalities being known as the Fenchel–Young inequality. We also recall the Fenchel–Moreau
Theorem [23, Theorem 2.3.3].

Theorem 2.1 (Fenchel–Moreau). Assume that f : X → R̄+ and f ̸≡ +∞. Then f ∈ Γ0(X ) iff f∗∗ = f ,
and in that case f∗ ∈ Γ0(X ∗).

The following result is an easy consequence of Theorem 2.1 and the definitions of f∗, ∂f , and ∂f∗.

Lemma 2.2. Let f ∈ Γ0(X ) and (x, µ) ∈ X × X ∗. Then

µ ∈ ∂f(x) ⇔ f(x) + f∗(µ) = ⟨µ, x⟩ ⇔ x ∈ ∂f∗(µ).

Remark 2.3. Let E ⊂ X be a nonempty closed convex set and µ ∈ X ∗. From Lemma 2.2, we have

∂σE(µ) = argmax
v∈E

⟨µ, v⟩ =
{
v ∈ E

∣∣σE(µ) = ⟨µ, v⟩
}
.
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Using Remark 2.3 and the fact that inf
v∈K

⟨µ, v⟩ = − sup
v∈K

⟨µ,−v⟩, we obtain at once the following result.

Corollary 2.4. Let K ⊂ X be a nonempty closed convex set and µ ∈ X ∗. Then

argmin
v∈K

⟨µ, v⟩ = −∂σ−K(µ)

We next recall the Fenchel–Rockafellar duality theorem (see [23, Theorem 2.8.3 and Corollary 2.8.5]),
which plays a major role in this work.

Theorem 2.5 (Fenchel–Rockafellar). Let X1 and X2 be two Banach spaces, f ∈ Γ0(X1), g ∈ Γ0(X2),
and A : X1 → X2 be a bounded linear operator. Assume that

0 ∈ int(A dom(f)− dom(g)). (4)

Then, the following two problems have opposite values:

minimize
x∈X1

f(x) + g(Ax), (5)

minimize
µ∈X∗

2

f∗(A∗µ) + g∗(−µ), (6)

where A∗ : X ∗
2 → X ∗

1 is the adjoint operator of A. Moreover, if V < +∞, where V denotes the value of
Problem (5), then Problem (6) has a solution.

Problem (6) will be called dual problem to (5). When a problem and its dual have opposite values,
we say that they are in strong duality. We will call primal-dual gap of Problems (5) and (6) the quantity
∆(x, µ) defined for (x, µ) ∈ X1 ×X ∗

2 by

∆(x, µ) =
(
f(x) + g(Ax)

)
+
(
f∗(A∗µ) + g∗(−µ)

)
. (7)

We next collect some elementary properties of the primal-dual gap.

Corollary 2.6. Let (x, µ) ∈ X1×X ∗
2 . Then ∆(x, µ) ≥ 0. Moreover, if (4) holds true, then the following

statements are equivalent:

(i ) ∆(x, µ) = 0,

(ii ) x is a solution to Problem (5) and µ is a solution to Problem (6),

(iii ) A∗µ ∈ ∂f(x) and −µ ∈ ∂g(Ax),

(iv ) x ∈ ∂f∗(A∗µ) and Ax ∈ ∂g∗(−µ).

Proof. Observe that, by definition of the adjoint operator,

∆(x, µ) =
(
f(x) + f∗(A∗µ)− ⟨A∗µ, x⟩X∗

1 ,X1

)
+
(
g(Ax) + g∗(−µ) + ⟨µ,Ax⟩X∗

2 ,X2

)
.

The nonnegativity of the primal-dual gap then follows from the Fenchel–Young inequality (3). The
equivalence between i and ii is a consequence of Theorem 2.5. Also, ∆(x, µ) is null iff both terms in the
above decomposition are null. This is equivalent to iii and to iv, by Lemma 2.2, which concludes the
proof.

Bregman distances Let Ξ ∈ Γ0(E) be β-strongly convex, i.e., such that Ξ − β
2 ∥ · ∥

2
E is convex. We

denote as BΞ : E × dom(Ξ) × E → R̄ the Bregman distance associated with Ξ, which we define for all
µ ∈ E , µ′ ∈ dom(Ξ), and w ∈ E as

BΞ(µ, (µ
′, w)) =

{
+∞ if w ̸∈ ∂Ξ(µ′),
Ξ(µ)− Ξ(µ′)− ⟨µ− µ′, w⟩ otherwise.

(8)

Let us note that this definition of the Bregman distance is not quite the standard one, in which one
usually requires Ξ to be differentiable. In this case, one can eliminate w from the above definition and
replace it by ∇Ξ(µ′), which yields the standard definition. In particular, when Ξ = 1

2∥ · ∥
2, we have

BΞ(µ, (µ
′, w)) = 1

2∥µ
′ − µ∥2 + ι{0}(w − µ′).
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Remark 2.7. Notice that, since Ξ is β-strongly convex, we have for all µ ∈ E , µ′ ∈ dom(Ξ), and w ∈ E

BΞ(µ, (µ
′, w)) ≥ β

2
∥µ− µ′∥2

and thus BΞ(µ, (µ
′, w)) = 0 iff µ = µ′ and w ∈ ∂Ξ(µ′).

The following lemma follows from direct calculations.

Lemma 2.8. For all a, b ∈ dom(∂Ξ), c ∈ dom(Ξ), wa ∈ ∂Ξ(a), and wb ∈ ∂Ξ(b), we have the identity

BΞ(c, (b, wb)) +BΞ(b, (a,wa))−BΞ(c, (a,wa)) = ⟨c− b, wa − wb⟩.

Coercive functions Let f : X → R̄ and α ∈ R. We call sublevel set of f at height α the set

{f ≤ α} =
{
x ∈ X

∣∣ f(x) ≤ α
}
.

We say that f is coercive if
f(x) −→

∥x∥→+∞
+∞.

Remark 2.9. Notice that a function f is coercive iff its sublevel sets are bounded. Also notice that the
sublevel sets of a convex function are convex.

When E1 and E2 are two Hilbert spaces, with inner products ⟨ · , · ⟩E1
and ⟨ · , · ⟩E2

respectively, unless
specified otherwise, we endow the product space E = E1 × E2 with the canonical inner product, defined
for all x1, y1 ∈ E1 and all x2, y2 ∈ E2 as

⟨(x1, x2), (y1, y2)⟩E = ⟨x1, y1⟩E1
+ ⟨x2, y2⟩E2

.

Let f1 : X1 → R̄+ and f2 : X2 → R̄+. We denote their direct sum as f1⊕f2 : X1×X2 → R̄+. It is defined,
for all x1 ∈ X1, x2 ∈ X2 as

f1 ⊕ f2(x1, x2) = f1(x1) + f2(x2).

The proof of the following lemma is straightforward.

Lemma 2.10. Let E1, E2 be two Hilbert spaces. Let f1 : E1 → R̄+ and f2 : E2 → R̄+ be two coercive
functions. Assume that both f1 and f2 are bounded from below. Then f1 ⊕ f2 is coercive.

We also state here the next lemma on the duality between functions with Lipschitz gradients and
strongly convex functions, whose proof can be found in [3, Theorem 18.15 and Corollary 11.16].

Lemma 2.11. Let f ∈ Γ0(E) and β > 0. Then f is Fréchet differentiable and its gradient ∇f is
β-Lipschitz continuous if and only if the function f∗ is 1/β-strongly convex. In this case, f∗ is also
coercive.

Perspective functions Let f ∈ Γ0(E). We denote its perspective function as f̃ : E ×R → R̄+ and we
define it, following [7], as

f̃(x, s) =


sf
(x
s

)
if s > 0,

sup
y∈dom(f)

f(y + x)− f(y) if s = 0,

+∞ otherwise.

We shall need in the sequel the following property of perspective functions, which can be found in [7,
Proposition 2.3].

Lemma 2.12. Let f ∈ Γ0(E). Then f̃ ∈ Γ0(E × R). Moreover,

(f̃)∗(µ, z) = ιepi(f∗)(µ,−z).

If f is Fréchet-differentiable, then for all s > 0 and x ∈ E, f̃ is Fréchet-differentiable at (x, s) and

∇f̃(x, s) =
(
∇f
(x
s

)
, f
(x
s

)
−
〈
∇f
(x
s

)
,
x

s

〉)
. (9)

Finally, if ∇f is continuous at x
s , then ∇f̃ is continuous at (x, s).
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3 The Extended Level-Set method
We introduce in Section 3.1 a prototype of the Frank–Wolfe algorithm, which contains as particular
cases both the fully-corrective FWA and our DLS method. We give a dual interpretation of this method
as a general prototype for a cutting-plane algorithm. In Section 3.2, we introduce our extension of the
Level-Set method of [17], which we call Extended Level-Set (ELS) method. This method is a general
cutting-plane-type algorithm, which will later yield the desired extension of the FWA by dualization.
We give a convergence result for the ELS method in Section 3.3.

3.1 A dual point of view on the fully-corrective FWA
The FWA aims at solving problems of the form

minimize
x∈X

f(x) + ιK(x), (p)

where X is a Banach space, K is a nonempty closed convex subset of X , and f ∈ Γ0(X ). The dual
problem of Problem (p) is

minimize
µ∈X∗

f∗(µ) + σ−K(µ). (d)

The primal dual-gap of Problems (p) and (d) is then given, for (x, µ) ∈ X × X ∗, by

∆(x, µ) = f(x) + ιK(x) + f∗(µ) + σ−K(µ),

following (7). By Corollary 2.6, we have ∆(x, µ) ≥ 0. Let us assume that 0 ∈ int(dom(f)−K). Then
Theorem 2.5 ensures that Problems (p) and (d) are in strong duality. Moreover, by Corollary 2.6, for
any pair (x, µ) ∈ X × X ∗, x and µ are respectively solutions to Problems (p) and (d) iff ∆(x, µ) = 0.

Algorithm 1 below is a general form of the Frank–Wolfe algorithm. It relies on the linear minimization
oracle LMO : X ∗ → K, which is such that

∀µ ∈ X ∗, LMO(µ) ∈ argmin
x∈K

⟨µ, x⟩. (LMO)

Algorithm 1 covers the classical fully-corrective FWA, in the case where f is continuously differentiable
with a Lipschitz-continuous gradient: it suffices to fix a point x0 ∈ K, to define µ0 = ∇f(x0), K−1 =
{x0}, and finally, at each iteration, to define µt+1 as ∇f(x̂t+1) in the last step. The Dual update step
is facultative and can be omitted in general. Notice that in the case of the fully-corrective FWA, this
step is implementable without explicit knowledge of f∗ and σ−K since, for µt = ∇f(x̂t), we have

f∗(µt) =
〈
µt, x̂t

〉
− f(x̂t) and σ−K(µt) = −

〈
µt, vt

〉
,

by Lemma 2.2 and Corollary 2.4.
Algorithm 2 is equivalent to Algorithm 1. First we note that the two Oracle steps are equivalent,

as a direct consequence of Corollary 2.4. We next notice that Problem (dt) is the dual of Problem (pt).
Also, for the same reason as with Problems (p) and (d), Problems (pt) and (dt) are in strong duality,
which ensures that the definitions of ht in the algorithms are equivalent. We note that, in the case of
the fully-corrective FWA, defining µt+1 as ∇f(x̂t+1) is equivalent to directly define µt+1 as a solution to
Problem (dt).

Algorithm 2 can be seen as a general cutting-plane method for the dual problem (d). By construction,
−vt ∈ ∂σ−K(µt), so the map µ 7→ ⟨µ,−vt⟩ is a linear lower bound of σ−K , exact at µ = µt. This implies
that σ−Kt is a lower approximation of σ−K , which is exact at the points µ0, . . . , µt. If moreover K−1

is the convex hull of a finite number of points, then σ−Kt is piecewise affine. We will call the map
µ 7→ ⟨µ,−vt⟩ a cut, and by extension, we will simply call cut any element of Kt.

Let us comment on the role of the quantities h̄t and ht. Denote by Vd the value of Problem (d). From
the definition of h̄t, we directly see that it is an upper bound of Vd. Since σ−K̃t ≤ σ−K and since ht is
the value of Problem (dt), we deduce that ht is a lower bound of Vd. This implies in particular that the
candidate µ̂t obtained at iteration t of the algorithm is (h̄t − ht)-optimal. We can retrieve this property
by noticing that

h̄t − ht = ∆(x̂t, µ̂t).

The interpretation of the quantity (h̄t − ht) as a primal-dual gap is of a key importance for the design
of the desired extension of the FWA.
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Algorithm 1: FWA for Problem (p)
Require: µ0 ∈ dom(f∗);
Find K−1 ⊂ K such that

0 ∈ int
(
dom(f)−K−1

)
;

for t = 0, . . . do
Available at iteration t:
µt ∈ E , Kt−1 ⊂ K;

Oracle:
Set vt = LMO(µt);

Dual update:
Optional. Take µ̂t a solution to

minimize
µ∈{µ0, ...,µt}

f∗(µ) + σ−K(µ);

Set h̄t = f∗(µ̂t) + σ−K(µ̂t);

Primal update:
Set Kt = Kt−1 ∪ {vt};
Find a solution x̂t of

minimize
x∈conv(Kt)

f(x); (pt)

Set ht = −f
(
x̂t+1

)
;

Dual candidate:
Generate a new candidate µt+1.

end

Algorithm 2: Dual FWA for Problem (d)
Require: µ0 ∈ dom(f∗);
Find K−1 ⊂ K such that

0 ∈ int
(
dom(f)−K−1

)
;

for t = 0, . . . do
Available at iteration t:
µt ∈ E , Kt−1 ⊂ K;

Oracle:
Find vt ∈ −∂σ−K(µt);

Dual update:
Take a solution µ̂t to

minimize
µ∈{µ0, ...,µt}

f∗(µ) + σ−K(µ);

Set h̄t = f∗(µ̂t) + σ−K(µ̂t);

Primal update:
Set Kt = Kt−1 ∪ {vt};
Find a solution νt+1 of

minimize
µ∈E

f∗(µ) + σ−Kt(µ); (dt)

Set ht = f∗
(
νt+1

)
+ σ−Kt

(
νt+1

)
;

Dual candidate:
Generate a new candidate µt+1.

end

Let us recall our general objective: generalizing the FWA to the case of problems with nonsmooth
costs f , utilizing the duality with cutting-plane-type algorithms. At a dual level, this means that we
do not want to assume f∗ to be strongly convex, which does not seem restrictive at the first sight,
since for basic cutting-plane methods, f∗ is simply the characteristic function of some given closed and
bounded feasible set. By basic, we have in mind the methods for which one simply defines the next dual
candidate µt+1 as νt+1. Though these methods are known to converge, the convergence is in practice
slow (see [5, Section 9.3.2]); moreover, to ensure the convergence of the corresponding FWA (obtained
by “back”-dualization) to a minimizer, we need to ensure that the primal-dual gap h̄t−ht converges to 0.
In view of our objectives, our attention has focused on the cutting-plane method calld Level-Set method
proposed and analyzed in [17, Section 2.2.1], for which the convergence of the primal-dual gap is known.
As we already pointed out in the introduction, we need to utilize a double extension of this method,
since f∗ is restricted to be a characteristic function in [17, Section 2.2.1] and since a certain projection
step realized for the generation of a novel dual candidate (in the last step of the algorithm) must also be
generalized. The next section is dedicated to the generalization of the Level-Set method.

3.2 Statement of the ELS method
The aim of this section is to present an algorithm, which we call Extended Level-Set (ELS) method, to
solve problems of the form

minimize
µ∈E

ψ(µ) + σE(µ), (D)

where E is a Hilbert space, ψ ∈ Γ0(E), and E ⊂ E is a nonempty closed convex set. As its name suggests,
the ELS method is an extension of the Level-Set method proposed in [17, Section 2.2.1], which is itself
an extension of the Cutting-Plane Algorithm.

We denote by VD the value of Problem (D). The problem dual to Problem (D) is

minimize
x∈−E

ψ∗(x) (P )

and we denote by VP its value. Given x and µ in E , according to (7), the primal-dual gap between
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Problems (D) and (P ) is
∆(x, µ) = ψ(µ) + σE(µ) + ψ∗(x) + ι−E(x).

A direct modification of the proof of Corollary 2.6 shows that ∆(x, µ) = 0 if and only if µ is a solution
to Problem (D), x is a solution to Problem (P ), and VP + VD = 0.

We fix a β-strongly convex function Ξ ∈ Γ0(E). Recall that BΞ denotes the associated Bregman
distance, in the sense of the definition (8). The ELS method is described in Algorithm 3. Note that the
Primal update involves a function called pruning, whose output is a subset of E. For the moment,
we simply take Et = Et−1 ∪ {vt}. We first investigate the convergence of the algorithm in this setting;
we will later propose some pruning rules which preserve the convergence speed of our algorithm (see the
last paragraph of Section 3.3).

Algorithm 3: Extended Level-Set method for Problem (D)

Require: µ0 ∈ dom(σE) ∩ dom(∂Ξ) ∩ dom(ψ), w0 ∈ ∂Ξ
(
µ0
)
, E−1 ⊂ E, λ ∈ (0, 1);

Set h̄−1 = +∞;
for t = 0, . . . do

Available at iteration t: µt ∈ E , wt ∈ E , Et−1 ⊂ E, h̄t−1 ∈ R̄+;
Oracle:

Find vt ∈ ∂σE(µ
t);

Dual update:
Set h̄t = min

{
h̄t−1, ψ (µt) + σE(µ

t)
}
;

Primal update:
Set ht = infµ∈E ψ(µ) + σEt−1∪{vt}(µ);
Set Et = pruning

(
Et−1 ∪ {vt}

)
⊂ conv

(
Et−1 ∪ {vt}

)
;

Dual candidate:
Set ∆t = h̄t − ht;
Set ℓt = λh̄t + (1− λ)ht;
Set Qt = {ψ + σEt ≤ ℓt};
Set a new candidate µt+1 as the solution to:

minimize
µ∈Qt

BΞ

(
µ,
(
µt, wt

))
; (10)

Take wt+1 ∈ ∂Ξ
(
µt+1

)
such that wt − wt+1 ∈ NQt(µt+1);

end

Remark 3.1. We want to highlight Algorithm 3 as being a specific instance of Algorithm 2, where ψ plays
the role of f∗, E and Et that of −K and −Kt respectively, and vt is replaced by its opposite vector.

We now present the elements which support our claim that this algorithm is an extension of the
Level-Set method.

• In our algorithm, we keep the function ψ as is and take subgradients of σE , whereas in [17,
Section 2.2.1], subgradients of the whole cost function are taken.

• The step described in Problem (10) is a projection step of µt onto the set Qt, following the Bregman
distance associated with Ξ. Note that, when Ξ is differentiable, using a first-order optimality
condition for µt+1 in (10), we have that wt −∇Ξ(µt+1) ∈ NQt(µt+1), which ensures the existence
of wt+1 in the very last step.

We now present a list of hypotheses under which the algorithm is well-defined and converges. Let us
stress that some of these assumptions are not explicit, for example Assumption (H6) below. Though it
would be easy to transform these assumptions into explicit ones by slightly weakening them, we recall
that our main interest does not lie in the ELS method as such but rather in its dual counterpart, our
DLS method, for which explicit assumptions will be made later on.

(H1) We have dom(σE) ∩ dom(∂Ξ) ∩ dom(ψ) ̸= ∅.

(H2) For all t ∈ N, ∂σE(µt) ̸= ∅. There exists a constant Coracle such that, for all t ∈ N, the vector vt
verifies ∥vt∥ ≤ Coracle.
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(H3) The set E−1 required at the beginning of the algorithm is bounded and such that ψ + σE−1 is
coercive.

We fix a constant CE−1 such that E−1 ⊂ B(0, CE−1). We denote as Q−1 the set
{
ψ + σE−1 ≤ h̄0

}
.

This set is convex, nonempty as a consequence of Assumption (H1), and bounded as a consequence of
Assumption (H3). Let then CQ−1 > 0 be such that Q−1 ⊂ B(0, CQ−1).

(H4) We have Q−1 ⊂ dom(Ξ) and the function Ξ is bounded over the set Q−1 by a constant CΞ,Q−1 > 0.

(H5) For all t ∈ N, there exists wt+1 ∈ ∂Ξ
(
µt+1

)
such that wt − wt+1 ∈ NQt(µt+1). There exists a

constant C∂Ξ > 0 such that for all t ∈ N, ∥wt∥ ≤ C∂Ξ.

(H6) There exists a constant Cψ > 0 such that, for all t ∈ N,∣∣ψ (µt+1
)
− ψ

(
µt
)∣∣ ≤ Cψ

∥∥µt+1 − µt
∥∥.

In the rest of this section, we assume that all these assumptions are verified and we recall that, except
for the last paragraph of this section, we assume that we take Et = Et−1 ∪ {vt} in the Primal update
step of Algorithm 3. We next provide some first properties of Algorithm 3.

Proposition 3.2. The Extended Level-Set method from Algorithm 3 is well-posed and, for any t ∈ N,
we have

−∞ < ht ≤ ht+1 ≤ −VP ≤ VD ≤ h̄t+1 ≤ h̄t < +∞. (11)

Moreover, for any t ∈ N, there exist two elements x̂t and µ̂t such that

x̂t ∈ argmin
x∈E

ψ∗(x) + ι−conv(Et−1∪{vt})(x) and µ̂t ∈ argmin
µ∈{µ0, ...,µt}

ψ(µ) + σE(µ). (12)

We also have

−ht = ψ∗(x̂t)+ ι−E
(
x̂t
)
, h̄t = ψ

(
µ̂t
)
+ σE

(
µ̂t
)
, and ∆t = ∆

(
x̂t, µ̂t

)
. (13)

Finally, the sequence (∆t)t∈N is nonincreasing.

Proof. We do a proof by induction. We claim that, for any t ∈ N, the algorithm can be run until the
beginning of iteration t and that the following is satisfied:

µt ∈ dom(ψ), wt ∈ ∂Ξ(µt), E−1 ⊂ conv
(
Et−1

)
, and t ≥ 1 ⇒ h̄t−1 ≤ h̄0.

We also claim that Et−1 is a bounded subset of E. For t = 0, the claim follows from Assumption (H1).
Let us assume that it is satisfied for some t ∈ N and let us consider the execution of the iteration t of
the method.

The Oracle step is well-defined, by Assumption (H2), which also implies that µt ∈ dom(σE). Con-
cerning the Dual update step, since µt ∈ dom(σE) ∩ dom(ψ), we have ψ(µt) + σE(µ

t) < +∞ and thus
h̄t <∞. If t = 0, then h̄t = h̄0. If t ≥ 1, then h̄t ≤ h̄t−1 ≤ h̄0.

Let us move to the Primal update step. Since E−1 ⊂ conv
(
Et−1 ∪ {vt}

)
, we have that ψ+σE−1 ≤

ψ + σEt−1∪{vt}, which implies that ψ + σEt−1∪{vt} is coercive, by Assumption (H3). Since this function
is also convex and lower semicontinuous, it has a minimizer νt and ht is finite, by [3, Proposition 11.14].
Since Et−1 ∪ {vt} is bounded, then so is Et, and we have dom

(
σEt−1∪{vt}

)
= E . Applying Theorem 2.5,

we deduce that
−ht = inf

x∈E
ψ∗(x) + ι−conv(Et−1∪{vt})(x)

and that the above problem has a solution x̂t. This implies that ht ≤ −VP ≤ VD. By construction,
x̂t ∈ −conv

(
Et−1 ∪ {vt}

)
⊂ −E, which implies that −ht = ψ∗(x̂t) + ι−E(x̂

t). From the definition of Et,
we have that E−1 ⊂ conv(Et).

Finally, we discuss the Dual candidate step. We have ∆t ≥ 0, because h̄t ≥ VD ≥ −VP and
ht ≤ −V P . By definition of ℓt, we have ht ≤ ℓt ≤ h̄t. Since moreover Et ⊂ conv

(
Et−1 ∪ {vt}

)
, we have

ψ(νt) + σEt(νt) ≤ ψ(νt) + σEt−1∪{vt}(ν
t) = ht ≤ ℓt,

which implies that νt ∈ Qt and thus Qt is nonempty. Since h̄t ≤ h̄0 and σEt ≥ σE−1 , we deduce that
Qt ⊂ Q−1 ⊂ dom(Ξ) = dom(BΞ(·, (µt, wt))), by Assumption (H4). This implies that Problem (10) has
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a solution µt+1. Note that µt+1 ∈ Qt ⊂ dom(ψ). Finally, the existence of wt+1 ∈ ∂Ξ(µt+1) ∩
(
wt −

NQt(µt+1)
)

is ensured by Assumption (H5). Therefore, the claim is verified for t + 1, which proves the
well-posedness of the algorithm.

Concerning the proof of (11), it remains to prove that h̄t is nonincreasing and that ht is nondecreasing.
It is obvious that h̄t is nonincreasing. The fact that ht ≤ ht+1 is a consequence of the inclusion Et−1 ∪
{vt} ⊂ conv

(
Et ∪ {vt+1}

)
, which ensures that σEt−1∪{vt} ≤ σEt∪{vt+1}.

Next, concerning (12) and (13), we have already proved the existence of x̂t and we have already
justified that −ht = ψ∗(x̂t) + ι−E (x̂t). The existence of µ̂t and the fact that h̄t = ψ (µ̂t) + σE(µ̂

t) is
straightforward. The equality ∆t = ∆(x̂t, µ̂t) is then a simple consequence of the definition of the primal-
dual gap. Finally, (∆t)t∈N in nonincreasing because (h̄t)t∈N and (ht)t∈N are respectively nonincreasing
and nondecreasing. This concludes the proof of the proposition.

Remark 3.3. Problem (10) has a unique solution since Ξ is strongly convex and Qt is convex.

3.3 Convergence analysis
The aim of this subsection is to prove the convergence of Algorithm 3 under the previous assumptions
and provide its convergence speed. We start by noticing that, exactly as in the proof of the lemma inside
[17, Theorem 2.2.1], we have the following property.

Lemma 3.4. Let t1 ≤ t2 be such that ∆t2 ≥ (1− λ)∆t1 . Then ht2 ≤ ℓt1 .

The next theorem deals with the convergence of Algorithm 3. Its proof follows closely the analysis
in [17, Theorem 2.2.1], but additional care is needed in order to take into account our generalizations,
in particular the use of the Bregman distance BΞ for the projection step. We hence provide a detalied
proof below, which makes use of the constants Coracle, CE−1 , CQ−1 , CΞ,Q−1 , C∂Ξ, and Cψ, introduced
with Assumptions (H2) to (H6).

Theorem 3.5. Consider the Extended Level-Set method from Algorithm 3 under Assumptions (H1)
to (H6) and with Et = Et−1 ∪ {vt} in the Primal update step. The primal-dual gap ∆t converges to
0 with a speed of order 1/

√
t, i.e., there exists C > 0 such that, for all t ∈ N∗,

∆t ≤ C√
t
.

Proof. Step 1. Let T ∈ N and set ε = ∆T and I = {0, . . . , T}. We recall that, using the monotonicity
of (∆t)t∈N, we have ε = inf

t∈I
∆t. We split I in a partition I1, . . . , Im as follows:

• We set p = 0 and i0 = −1.

• While ip < T , we set

ip+1 = max
{
t ∈ {0, . . . , T}

∣∣∆t ≥ (1− λ)∆ip+1
}

and Ip+1 = {ip + 1, . . . , ip+1}

and we increment p by 1.

Following [17], for all p ∈ {0, . . . ,m − 1}, the iteration ip + 1 is called critical. Notice that, using the
monotonicity of the sequence (∆t)t∈N, we have, for all p ∈ {1, . . . ,m} and t ∈ Ip,

∆t ≥ (1− λ)∆ip−1+1. (14)

Now, let p ∈ {1, . . . ,m} and χp be a minimizer of ψ+σEip . Notice that such a minimizer exists, since
ψ + σEip ∈ Γ0(E) and is coercive using Assumption (H3). Then, Lemma 3.4 applied with t1 = t ∈ Ip
and t2 = ip shows that

ψ (χp) + σEip (χ
p) = hip ≤ ℓt.

Since for all t ∈ Ip, we have σEt ≤ σEip , this yields χp ∈
⋂
t∈Ip Q

t. This construction holds for any
p ∈ {1, . . . ,m}.

Step 2. Let p ∈ {1, . . . ,m}. For all t ∈ N, we set τ tp = BΞ(χ
p, (µt, wt)) ≥ 0. Now, let t ∈ Ip. We use the

identity from Lemma 2.8 with a = µt, b = µt+1, c = χp, wa = wt, and wb = wt+1, which yields

τ t+1
p +BΞ

(
µt+1,

(
µt, wt

))
− τ tp =

〈
wt − wt+1, χp − µt+1

〉
.
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Reordering and using Assumption (H5) yields

0 ≤ τ t+1
p ≤ τ tp −BΞ

(
µt+1,

(
µt, wt

))
. (15)

In turn, using Remark 2.7, we have

0 ≤ τ t+1
p ≤ τ tp −

β

2

∥∥µt − µt+1
∥∥2 ≤ τ tp −

β

2C2

∣∣ψ (µt+1
)
+ σEt

(
µt+1

)
− ψ

(
µt
)
− σEt

(
µt
)∣∣2, (16)

where C = Cψ +max(CE−1 , Coracle). Indeed,∣∣ψ (µt+1
)
+ σEt

(
µt+1

)
− ψ

(
µt
)
− σEt

(
µt
)∣∣ ≤ ∣∣ψ (µt+1

)
− ψ

(
µt
)∣∣+ ∣∣σEt

(
µt+1

)
− σEt

(
µt
)∣∣

≤ C
∥∥µt+1 − µt

∥∥,
using Assumption (H6) and the fact that Et ⊂ B(0,max(CE−1 , Coracle)), which is itself a consequence
of the definition of Et and of Assumptions (H2) and (H3). Moreover, we know that∣∣ψ (µt+1

)
+ σEt

(
µt+1

)
− ψ

(
µt
)
− σEt

(
µt
)∣∣ ≥ (1− λ)∆t, (17)

since

ψ
(
µt
)
+ σEt

(
µt
)
− ψ

(
µt+1

)
− σEt

(
µt+1

)
≥ ψ

(
µt
)
+ σEt

(
µt
)
− ℓt

≥ h̄t − ℓt

= (1− λ)∆t,

where we use, in order, the fact that ψ
(
µt+1

)
+ σEt

(
µt+1

)
≤ ℓt and the definitions of h̄t and of ∆t.

Combining eqs. (16) and (17) yields

0 ≤ τ t+1
p ≤ τ tp −

β

2C2

(
(1− λ)∆t

)2
,

which implies, using the nonnegativeness and nonincreasingness of the sequence (∆t)t∈N,

0 ≤ τ t+1
p ≤ τ tp −

β

2C2

(
(1− λ)∆ip

)2
. (18)

Taking t = ip and iterating ip − ip−1 − 1 times eq. (18) yields

0 ≤ τ ip+1
p ≤ τ ip−1+1

p − (ip − ip−1)
β

2C2

(
(1− λ)∆ip

)2
. (19)

Notice also that
τ ip−1+1
p ≤ 2

(
CΞ,Q−1 + C∂ΞCQ−1

)
, (20)

since, for all t ∈ N,
τ tp ≤

∣∣Ξ (χp)− Ξ
(
µt
)∣∣+ ∣∣〈wt, χp − µt

〉∣∣.
Combining eqs. (19) and (20) yields

0 ≤ 2
(
CΞ,Q−1 + C∂ΞCQ−1

)
− (ip − ip−1)

β

2C2

(
(1− λ)∆ip

)2
,

and thus

|Ip| = ip − ip−1 ≤
4C2

(
CΞ,Q−1 + C∂ΞCQ−1

)
β ((1− λ)∆ip)

2 =
C̄

((1− λ)∆ip)
2 . (21)

Step 3. Since we have, by definition of the indices ip and nonincreasingness of (∆t)t∈N,

∆im−1+1 ≥ ∆im = ∆T = ε and ∆ip+1 ≥ (1− λ)∆ip+1 > ∆ip+1+1 for all p ∈ {1, . . . ,m− 2},

then for all p ∈ {1, . . . ,m− 1}, we have

∆ip ≥ ε

(1− λ)m−1−p . (22)
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Summing eq. (21) then yields

T + 1 =

m∑
p=1

|Ip| ≤
C̄

(1− λ)2

m∑
p=1

(
1

∆ip

)2

≤ C̄

(1− λ)2

(
1

ε2
+

m−1∑
p=1

(1− λ)2(m−1−p)

ε2

)

≤ C̄

(1− λ)2ε2

1 +
∑
p∈N

(1− λ)2p

 =
C̄

(1− λ)2ε2

(
1 +

1

λ(2− λ)

)
, (23)

which shows the expected result.

Remark 3.6. We can minimize eq. (23) with respect to λ, which gives λ̄ = 1−
√
2−

√
2 ≈ 0.23.

The pruning step As is, the main issue with the Extended Level-Set method from Algorithm 3 is
that we need to keep track of all the subgradients vt. This may become costly in terms of memory and of
computation time of ht and of µt+1, as the set Et appears in the definition of Qt. This is why we propose
to apply pruning steps in our algorithm. By pruning, we mean that we want to define Et as a smaller set
than Et−1∪{vt}, in the sense that Et ⊂ conv

(
Et−1 ∪ {vt}

)
. Note that imposing Et ⊂ conv

(
Et−1 ∪ {vt}

)
at each iteration implies that Et ⊂ conv

(
E−1 ∪ {v0, . . . , vt}

)
and gives thus the boundedness of Et.

Pruning offers the possibility to chose a set Et with a small cardinality, so as to simplify the im-
plementation of the Primal update and Dual candidate steps. We establish in this paragraph some
sufficient properties on the choice of Et which ensure that Algorithm 3 remains well-posed and that its
convergence properties are preserved. The proof of Proposition 3.2 reveals that the algorithm indeed
remains well-posed if we require that E−1 ⊂ conv(Et). The convergence proof of Theorem 3.5 still holds
if the following holds.

(i ) The sequences
(
h̄t
)
t∈N and

(
ht
)
t∈N keep the same monotonicity as shown in (11).

(ii ) The function ψ + σEt remains coercive.

(iii ) We are able to find χp ∈
⋂
t∈Ip

Qt, where Ip describes a subinterval defined in the proof of Theo-

rem 3.5.

For property (iii ) to hold, we decide to only make pruning steps at the critical iterations. Notice
that detecting a critical iteration is easy, since it only requires to keep track of ∆j , where j denotes the
last critical iteration. For property (ii ) to hold, we only need to keep E−1 ⊂ conv(Et) after the pruning
step, as we already required for the well-posedness of the algorithm. Lastly, for property (i ), notice that
the monotonicity of the sequence

(
h̄t
)
t∈N is preserved, and for the monotonicity of

(
ht
)
t∈N, it suffices

that ht be preserved by pruning steps, i.e., that, for all t ∈ N,

ht = h̃t := inf
µ∈E

ψ(µ) + σEt(µ). (24)

By definition, this equality holds at noncritical iterations. Let then t be a critical iteration. Since
Et ⊂ conv

(
Et−1 ∪ {vt}

)
, we have h̄t ≥ h̃t. Since Et is bounded, we have

h̃t = −min
x∈E

ψ∗(x) + ι−conv(Et)(x). (25)

We recall that we proved in Proposition 3.2 that ht = −ψ∗(x̂t) and that x̂t ∈ conv
(
Et−1 ∪ {vt}

)
.

Therefore, to ensure that h̃t ≥ h̄t (and thus for property (i ) to hold) it suffices to require that x̂t ∈
conv(Et).

We summarize the previous discussion by presenting, in Algorithm 4, the extension of Algorithm 3
with a pruning step satisfying the above requirements, and we deduce at once the following convergence
result.

Theorem 3.7. Consider the Extended Level-Set method with pruning from Algorithm 4 under Assump-
tions (H1) to (H6). The primal-dual gap ∆t converges to 0 with a speed of order 1/

√
t.
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Algorithm 4: Extended Level-Set method for Problem (D) with pruning

Require: µ0 ∈ dom(σE) ∩ dom(∂Ξ) ∩ dom(ψ), w0 ∈ ∂Ξ
(
µ0
)
, E−1 ⊂ E, λ ∈ (0, 1);

Set h̄−1 = +∞ and ∆̄ = +∞;
for t = 0, . . . do

Available at iteration t: µt, wt, Et−1, h̄t−1 as in Algorithm 3, and ∆̄ ∈ R+ ∪ {+∞};
Oracle:

Find vt ∈ ∂σE(µ
t);

Set Ẽt = conv
(
Et−1 ∪ vt

)
;

Dual update:
Set h̄t, ht, ∆t, ℓt as in Algorithm 3, and take x̂t as a solution to

minimize
x∈E

ψ∗(x) + ι−Ẽt(x) ;

Pruning:
if ∆t < (1− λ)∆̄ then

Take Et ⊂ conv
(
Et−1 ∪ {vt}

)
such that {−x̂t} ∪ E−1 ⊂ conv(Et);

Set ∆̄ = ∆t;
else

Set Et = Et−1 ∪ {vt};
end

Dual candidate:
Take Qt, µt+1, and wt+1 as in Algorithm 3;

end

4 The Dualized Level-Set method
We present in this section the general nonsmooth problem that we aim at solving with our DLS algo-
rithm, Problem (P). Our approach consists in applying the ELS method from Algorithm 4 to its dual,
Problem (D).

4.1 Framework and mathematical assumptions
Let E1 and E2 be Hilbert spaces and E their product space. We aim at solving problems of the form

minimize
x1∈E1

f(x1) + σQ(Ax1 − b) + ιK(x1), (P)

where A : E1 → E2 is a linear operator, b ∈ E2, Q ⊂ E2, and K ⊂ E1. We denote by V the value of
Problem (P).

Structural assumptions We make the following assumptions.

(A1) The function f : E1 → R is convex and has β-Lipschitz gradient, for some β > 0.

(A2) The set Q ⊂ E2 is nonempty and can be decomposed in Q = Q1 +Q2, where Q1 is a closed convex
bounded set and Q2 is a closed convex cone. Let then CQ1

be such that Q1 ⊂ B(0, CQ1
).

(A3) The set K ⊂ E1 is nonempty, closed, and convex.

(A4) The operator A : E1 → E2 is linear and bounded.

(A5) There exists µ0 ∈ dom(∂f∗)×Q such that µ0
1 +A∗µ0

2 ∈ dom(σ−K).

Notice that, in this context, we have

dom(σQ(· − b)) = b+Q⊖
2 , where Q⊖

2 =
{
x2 ∈ E2

∣∣∀µ2 ∈ Q2, ⟨µ2, x2⟩E2
≤ 0
}
.

Moreover, Problem (P) is equivalent to

minimize
x∈E

f(x1) + σQ(x2 − b) + ιK(x), (26)
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where
K =

{
x ∈ E

∣∣x1 ∈ K, x2 = Ax1
}
,

in the sense that the value of Problem (26) is V and x is solution to Problem (26) iff x2 = Ax1 and x1
is solution to Problem (P).

Qualification condition We require the following qualification condition.

(A6) There exists a compact set K−1 ⊂ K such that

−b ∈ int
(
Q⊖

2 −A conv
(
K−1

))
. (27)

Remark 4.1. Note that, if Q is bounded, then Q2 = {0}, so that Q⊖
2 = E2 and the qualification condition

(27) is satisfied.

The dual problem to Problem (26) writes:

minimize
µ∈E

f∗(µ1) + ιQ(µ2) + ⟨µ2, b⟩E2
+ σE(µ), where E = −K. (D)

Lemma 4.2. Under Assumptions (A1) to (A6), the value of Problem (D) is equal to −V . Moreover, if
V < +∞, then Problem (D) has a solution.

Proof. By Theorem 2.5, it suffices to verify that 0E ∈ int(dom(f)× dom(σQ(· − b))−K). The inclusion
(27) indeed implies that

0E ∈ E1 × int
(
b+Q⊖

2 −A conv
(
K−1

))
⊂ E1 × int

(
b+Q⊖

2 −AK
)

= int
(
E1 ×

(
b+Q⊖

2 −AK
))

= int
((
E1 ×

(
b+Q⊖

2

))
−K

)
,

as was to be proved.

We define ψ : E → R̄ as, for all µ ∈ E

ψ(µ) = f∗(µ1) + ιQ(µ2) + ⟨µ2, b⟩E2
(28)

so that Problem (D) has the form of Problem (D). For future reference, we let CK−1 > 0 be such that
K−1 ⊂ B(0, CK−1) and we set

E−1 =
{
x ∈ E

∣∣x1 ∈ −K−1, x2 = Ax1
}
.

4.2 Numerical assumptions and statement of the algorithm
Before providing the statement of the DLS algorithm, we list the required numerical assumptions for its
implementation.

(N1) For a given µ1 ∈ E1, we are able to find efficiently a solution to the problem

minimize
v1∈K

⟨µ1, v1⟩E1
. (29)

In other words, we have a LMO on K at µ1.

(N2) For a given µ2 ∈ E2, we can find efficiently a vector µ̄2 ∈ argmin
ν2∈Q

∥µ2 − ν2∥E2
. In other words, we

can project efficiently onto Q. Notice that this also gives an easy access to d(µ2, Q).

(N3) For any simple set K ′, we can solve efficiently the problem

minimize
x1∈E1

f(x1) + σQ(Ax1 − b) + ιconv(K′)(x1), (30)

where we say that K ′ is simple if it is of the form K−1 ∪ S for some finite set S.
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Before we state our last numerical assumption, we specify the Bregman distance BΞ that will be used
and state a few basic properties that it satisfies. We define Ξ: E → R̄ as, for all µ ∈ E ,

Ξ(µ) = f∗(µ1) +
1

2
∥µ2∥2E2

. (31)

Remark 4.3. Notice that, thanks to Assumption (A1), Ξ is strongly convex, and that we have, for all
µ ∈ E ,

∂Ξ(µ) = ∂f∗(µ1)× {µ2} .
Thus, for all µ̂ ∈ E , µ1 ∈ dom(∂f∗), w1 ∈ ∂f∗(µ1), and µ2 ∈ E2, we have

BΞ(µ̂, (µ, (w1, µ2))) = Bf∗(µ̂1, (µ1, w1)) +
1

2
∥µ̂2 − µ2∥2E2

. (32)

Remark 4.4. The idea of using a Bregman distance derived from f∗ is reminiscent from the article [2], in
which a dual interpretation of the agnostic FWA is given as a mirror descent algorithm. The Bregman
distance involved in the mirror descent is the one associated with the Fenchel conjugate of the cost
function.

The following lemma is required for the statement of our last numerical assumption. Its proof is
deferred to Section 5.

Lemma 4.5. Let S ⊂ E1 be compact. There exists a bounded linear operator E : M(S) → E1 such that,
for all m ∈ M(S), Em is the unique vector verifying

∀µ ∈ E1,
∫
S

⟨µ, v⟩E1
dm(v) = ⟨µ,Em⟩E1

.

Moreover, if m ∈ P(S), then Em ∈ conv(S).

Remark 4.6. The vector Em can be interpreted as the m-average over S. We also point out that simple
sets are compact.

Our last numerical assumption is the following.

(N4) Let S ⊂ E1 be simple. We can compute efficiently a solution to the problem

minimize
m∈−M+(S)

f̃
(
−Em+ wt1, 1−m(S)

)
+

1

2

(
∥µ̃2∥2E2

− d(µ̃2, Q)
2
)
− ℓtm(S), (33)

where µ̃2 = −AEm+m(S)b+ µt2.

Remark 4.7. If S is a finite set {sj , j ∈ {1, . . . , J}}, then finding m ∈ M(S) consists in finding a vector
(mj)j∈{1, ...,J} ∈ RJ , and in this case Em =

∑J
j=1mjsj .

Remark 4.8. The availability of efficient methods for the resolution of Problems (30) and (33), involved
in the numerical assumptions (N3) and (N4), heavily depends on the nature of f and Q. Let us insist on
the fact that they do not need the knowledge of f∗. Concerning the resolution of Problem (30), we note
that, if Q is bounded and K−1 is finite, then the problem amounts to minimizing a Lipschitz-continuous
cost function over a convex hull, which can be done with the mirror descent algorithm [4]. Problem (33)
involves a smooth cost function to be minimized with simple constraints. Thus it can therefore easily be
handled with the projected gradient method. Let us also note that the complexity of the two problems
possibly increases along the iterations as we have no a priori upper bounds on the cardinality of K ′. We
will further comment on this issue in the conclusion of the article.

We are finally in position to state our DLS algorithm, its statement is provided in Algorithm 5. The
main idea to obtain it is to apply Algorithm 4 to problem (D), which gives Algorithm 6 (where we use
(28) as well as Remark 4.3 to rewrite expressions depending on ψ and Ξ in terms of f∗ and Q). Suitable
manipulations, which we detail below in Subsection 4.3, allow one to prove that our DLS algorithm,
Algorithm 5, is an instance of Algorithm 6.

4.3 Duality between the ELS and the DLS methods
We justify in this subsection the fact that our DLS method, Algorithm 5, is an instance of the ELS
method applied to the dual problem Problem (D), Algorithm 6.

We first note that the requirements of Algorithms 5 and 6 coincide, since dom(σE) = {µ ∈ E |
µ1 + A∗µ2 ∈ dom(σ−K)}. We next study the relations between corresponding steps of Algorithms 5
and 6.
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Algorithm 5: Dualized Level-Set method for Problem (26)

Require: µ0 ∈ dom(∂f∗)×Q such that µ0
1 +A∗µ0

2 ∈ dom(σ−K), w0
1 ∈ ∂f∗

(
µ0
1

)
, λ ∈ (0, 1);

Set h̄−1 = +∞, µ̂−1 = µ0, and ∆̄ = +∞;
for t = 0, . . . do

Available at iteration t: µt ∈ E , µ̂t−1 ∈ E , x̂t1 ∈ E1, wt1 ∈ E1, h̄t−1 ∈ R̄+, ∆̄ ∈ R+ ∪ {+∞},
Kt−1 ⊂ E1;

Oracle:
Find vt1 ∈ −argmin

v1∈K
⟨µt1 +A∗µt2, v1⟩E1

and set K̃t = conv
(
Kt−1 ∪ {−vt1}

)
;

Dual update:
Set h̄t = min

{
h̄t−1, ⟨µt2, b⟩E2

+ ⟨µt1, wt1⟩E1
+ ⟨µt1 +A∗µt2, v

t
1⟩E1

− f (wt1)
}
;

if h̄t < h̄t−1 then
Set µ̂t = µt

else
Set µ̂t = µ̂t−1

end

Primal update:
Take a solution x̂t1 to: minimize

x1∈K̃t
f(x1) + σQ(Ax1 − b);

Set ht = −f (x̂t1)− σQ(Ax̂
t
1 − b), ∆t = h̄t − ht, and ℓt = λh̄t + (1− λ)ht;

Pruning:
if ∆t < (1− λ)∆̄ then

Take Kt ⊂ conv
(
Kt−1 ∪ {−vt}

)
simple and such that x̂t1 ∈ conv(Kt);

Set ∆̄ = ∆t;
else

Set Kt = Kt−1 ∪ {−vt1};
end

Dual candidate:
Find mt ∈ −M+(Kt) solution to Problem (33) with S = Kt;

Set wt+1
1 =

wt
1−Emt

1−mt(Kt) , µ
t+1
1 = ∇f

(
wt+1

1

)
, and µt+1

2 = projQ(µt2 +mt(Kt)b−AEmt);

end

Algorithm 6: Extended Level-Set method for Problem (D)

Require: µ0 ∈ dom(σE) ∩ (dom(∂f∗)×Q), w0
1 ∈ ∂f∗

(
µ0
1

)
, λ ∈ (0, 1);

Set h̄−1 = +∞ and ∆̄ = +∞;
for t = 0, . . . do

Available at iteration t: µt ∈ E , wt ∈ E , h̄t−1 ∈ R̄+, ∆̄ ∈ R+ ∪ {+∞}, Et−1 ⊂ E ;
Oracle:

Choose vt ∈ ∂σE(µ
t) and set Ẽt = conv

(
Et−1 ∪ {vt}

)
;

Dual update:
Set h̄t = min

{
h̄t−1, f∗(µt1) + ⟨µt2, b⟩E2

+ σE(µ
t)
}
;

Primal update:
Take a solution x̂t to: minimize

(x1,x2)∈−Ẽt
f(x1) + σQ(x2 − b);

Set ht = inf
µ∈E1×Q

f∗(µ1) + ⟨µ2, b⟩E2
+ σẼt(µ), ∆t = h̄t − ht, and ℓt = λh̄t + (1− λ)ht;

Pruning:
As in Algorithm 4.

Dual candidate:
Set Qt = {ψ + σEt ≤ ℓt};
Take µt+1 as the solution to: minimize

µ∈Qt
Bf∗(µ1, (µ

t
1, w

t
1)) +

1
2∥µ2 − µt2∥

2
E2

;

Take wt+1
1 ∈ ∂f∗

(
µt+1
1

)
such that (wt1 − wt+1

1 , µt2 − µt+1
2 ) ∈ NQt(µt+1);

end
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Oracle From Corollary 2.4 and the definition of the adjoint operator, we get that, for all µ′ ∈ E , if we
set µ1 = µ′

1 + A∗µ′
2 and let v1 be given by the LMO on K at µ1, then −(v1, Av1) ∈ ∂σE(µ

′). Thus, the
LMO on K allows us to find an element of ∂σE(µt). Also, for all t ∈ N, since A is linear and bounded,
we have Ẽt =

{
x ∈ E |x1 ∈ −K̃t, x2 = Ax1

}
.

Dual update The update of h̄t in Algorithm 5 is justified using the Oracle, Lemma 2.2, and Re-
mark 2.3.

Primal update First notice that, for all µ ∈ E , we have

(f ⊕ σQ(· − b))
∗
(µ) = f∗(µ1) + ⟨µ2, b⟩+ ιQ(µ2).

Let now t ∈ N. Since Ẽt is bounded, we have

inf
µ∈E1×Q

f∗(µ1) + ⟨µ2, b⟩E2
+ σẼt(µ) = − inf

x∈E
f(x1) + σQ(x2 − b) + ι−Ẽt

(x)

= − inf
x1∈E1

f(x1) + σQ(Ax1 − b) + ιK̃t(x1).

This justifies the updates of ht and x̂t.

Pruning Notice that, for all t ∈ N, the set Kt is simple, and thus compact, and that the set Et can
always be taken as

Et =
{
x ∈ E |x1 ∈ −Kt, x2 = Ax1

}
. (34)

Dual candidate We focus on the projection problem, that is,

minimize
µ∈Qt

Bf∗
(
µ1,
(
µt1, w

t
1

))
+

1

2

∥∥µ2 − µt2
∥∥2
E2
. (35)

The next proposition, whose proof is provided in Section 5, collects the properties of this problem that
allow one to justify that the Dual candidate step of Algorithm 5 is an instance of the corresponding
step of Algorithm 6.

Proposition 4.9. Let t ∈ N and mt be a solution to Problem (33) with S = Kt. The following hold:

i ) Up to a shift in its value, Problem (33) is the dual of Problem (35).

ii ) Set wt+1
1 and µt+1 as in Algorithm 5, i.e., as

wt+1
1 =

wt1 − Emt

1−mt(Kt)

µt+1
1 = ∇f

(
wt+1

1

)
µt+1
2 = projQ

(
µt2 +mt(Kt)b−AEmt

)
.

Then:

a) The solution to Problem (35) is µt+1.

b) We have wt+1
1 ∈ ∂f∗

(
µt+1
1

)
and (wt1 − wt+1

1 , µt2 − µt+1
2 ) ∈ NQt(µt+1). Moreover, if Assump-

tion (H2) is satisfied, then we can bound wt1 uniformly in t.

4.4 Convergence analysis
We now want to prove that, under our standing assumptions, Algorithm 5 converges. At the light of
Subsection 4.3, it suffices to show that Algorithm 6 converges and, for that purpose, one is left to verify
that the assumptions of the convergence theorem for Algorithm 4, Theorem 3.7, are satisfied in our
setting. We assume in the sequel that Assumptions (A1) to (A6) are verified.

We start by remarking that, thanks to (28), Remark 4.3, and the definition of E in Problem (D), we
immediately obtain the following result from Assumption (A5) and a straightforward computation.

Lemma 4.10. Assumption (H1) is satisfied.
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We next turn to the verification of Assumption (H3).

Lemma 4.11. Assumption (H3) is satisfied.

Proof. We recall that we defined the set E−1 as

E−1 =
{
x ∈ E

∣∣x1 ∈ −K−1, x2 = Ax1
}
,

and that we want to show that E−1 is bounded and

ψ(µ) + σE−1(µ) −→
∥µ∥E→+∞

+∞.

Boundedness of E−1 is immediate since K−1 is bounded and A is a bounded linear operator.
The qualification condition (27) implies that there exists ε > 0 such that for all µ2 ∈ E2 \{0} we have

ε
µ2

∥µ2∥E2

− b ∈ Q⊖
2 −A conv

(
K−1

)
.

In other words, there exists ε > 0 such that for all µ2 ∈ E2 \ {0}, there exists xµ2
∈ conv

(
K−1

)
and

zµ2
∈ Q⊖

2 such that
ε

µ2

∥µ2∥E2

− b = zµ2
−Axµ2

. (36)

Now, we fix such an ε > 0. Equation (36) implies that, for all µ2 ∈ E , there exists xµ2
∈ conv

(
K−1

)
and

zµ2 ∈ Q⊖
2 such that

ε∥µ2∥E2
− ⟨µ2, b⟩E2

= ⟨µ2, zµ2⟩E2
− ⟨µ2, Axµ2⟩E2

. (37)

Notice that eq. (37) also holds for µ2 = 0 (with arbitrary choices of xµ2
∈ conv

(
K−1

)
and zµ2

∈ Q⊖
2 ).

Let then µ1 ∈ E1 and µ2 ∈ Q. We know that

• Using the decomposition Q = Q1 +Q2, there exist µa2 ∈ Q1 and µb2 ∈ Q2 such that

µ2 = µa2 + µb2. (38)

• There exist xµ2
∈ conv

(
K−1

)
and zµ2

∈ Q⊖
2 satisfying eq. (37).

We have

ψ(µ) + σE−1(µ) = f∗(µ1) + ⟨µ2, b⟩E2
+ ιQ(µ2) + σE−1(µ)

≥ f∗(µ1) + ⟨µ2, b⟩E2
− ⟨µ1, xµ2

⟩E1
− ⟨µ2, Axµ2

⟩E2
(39)

≥ f∗(µ1)− CK−1∥µ1∥E1
+ ε∥µ2∥E2

− ⟨µ2, zµ2
⟩E2

(40)

≥ f∗(µ1)− CK−1∥µ1∥E1
+ ε∥µ2∥E2

− ⟨µa2 , zµ2
⟩E2

(41)

≥ f∗(µ1)− CK−1∥µ1∥E1
+ ε∥µ2∥E2

− CQ1

(
ε+ CK−1∥A∥+ ∥b∥E2

)
, (42)

where

• Equation (39) derives from the facts that µ2 ∈ Q and (−xµ2
,−Axµ2

) ∈ conv
(
E−1

)
.

• Equation (40) is a consequence of the Cauchy–Schwarz inequality, of the fact that ∥xµ2
∥E2

≤ CK−1 ,
and of eq. (37).

• Equation (41) derives from the fact that zµ2 ∈ Q⊖
2 , and thus

〈
µb2, zµ2

〉
E2

≤ 0 since µb2 ∈ Q2.

• Equation (42) is a consequence of the Cauchy–Schwarz inequality, of the fact that eq. (36) yields
∥zµ2∥E2

≤ ε+ CK−1∥A∥+ ∥b∥E2
, and of the fact that ∥µa2∥E2

≤ CQ1
.

Finally, notice that the function µ2 ∈ E2 7→ ε∥µ2∥E2
is coercive and lower bounded, and so is the function

µ1 ∈ E1 7→ f∗(µ1) − C∥µ1∥E1
∈ R as a consequence of Lemma 2.11. The expected result then derives

from Lemma 2.10.

We next use the inequality (42) from the proof of Lemma 4.11 in order to verify Assumption (H4).

Lemma 4.12. Assumption (H4) is satisfied.
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Proof. Recall that Q−1 = {ψ + σE−1 ≤ h̄0}. Thus, by (42), we obtain that f∗(µ1) and ∥µ2∥E2
are

finite for every µ ∈ Q−1, yielding that Q−1 ⊂ dom(Ξ). In addition, it also follows from (42) that
µ 7→ f∗(µ1)− CK−1∥µ1∥E1

+ ε∥µ2∥E2
is bounded over Q−1, and we conclude thanks to the definition of

Ξ and the strong convexity of f∗.

Lemma 4.13. If Assumption (H2) is satisfied, then Assumption (H5) is satisfied.

Proof. Recall that, for all µ ∈ E , ∂Ξ(µ) = ∂f∗(µ1) × {µ2}. Thus, we have wt = (wt1, µ
t
2) ∈ ∂Ξ(µt),

for all t ∈ N. The only thing left to show is that there exists a constant C∂Ξ > 0 such that, for all
t ∈ N, we have ∥wt∥ ≤ C∂Ξ. This derives from the fact that wt1 is uniformly bounded in t, as stated in
Proposition 4.9.ii.b, and that, for all t ∈ N, we have µt+1 ∈ Qt ⊂ Q−1 and Q−1 is bounded.

Lemma 4.14. If Assumption (H2) is satisfied, then Assumption (H6) is satisfied.

Proof. We want to show there exists Cψ > 0 such that for all t ∈ N we have∣∣ψ (µt+1
)
− ψ

(
µt
)∣∣ ≤ C

∥∥µt+1 − µt
∥∥
E .

Let t ∈ N, we have∣∣ψ(µt+1)− ψ(µt)
∣∣ = ∣∣∣f∗(µt+1

1

)
− f∗

(
µt1
)
+
〈
µt+1
2 − µt2, b

〉
E2

∣∣∣ ≤ ∣∣f∗(µt+1
1

)
− f∗

(
µt1
)∣∣+ ∣∣∣〈µt+1

2 − µt2, b
〉
E2

∣∣∣.
Recall that wt+1

1 ∈ ∂f∗
(
µt+1
1

)
, and thus

f∗
(
µt+1
1

)
− f∗

(
µt1
)
≤
〈
µt+1
1 − µt1, w

t+1
1

〉
E ≤

∥∥wt+1
1

∥∥
E1

∥∥µt+1
1 − µt1

∥∥
E1
.

Likewise, we have
f∗
(
µt1
)
− f∗

(
µt+1
1

)
≤
∥∥wt1∥∥E1

∥∥µt1 − µt+1
1

∥∥
E1
.

This yields ∣∣ψ (µt+1
)
− ψ

(
µt
)∣∣ ≤ (max

{∥∥wt+1
1

∥∥
E1
,
∥∥wt1∥∥E1

}
+ ∥b∥E2

)∥∥µt+1 − µt
∥∥
E ,

and the conclusion follows since wt1 in uniformly bounded in t, as stated in Proposition 4.9.ii.b.

Gathering Lemmas 4.10 to 4.14 and combining with the discussion of Subsection 4.3, we obtain at
once the following result.

Theorem 4.15. Consider the Dualized Level-Set method from Algorithm 5 under Assumption (H2) and
Assumptions (A1) to (A6). Then the primal-dual gap ∆t converges to 0 with a speed of order 1/

√
t. Also,

we have, for all t ∈ N, x̂t2 = Ax̂t1, and we have the same convergence speed for f (x̂t1) + σQ(Ax̂
t
1 − b)− V

and for f∗(µ̂1) + ιQ(µ̂2) + ⟨µ̂2, b⟩E2
+ σE(µ̂) + V .

Remark 4.16. • We have kept Assumption (H2) in its non-explicit formulation on purpose. It is of
course satisfied if K is bounded, since then K is weakly compact and thus Problem (29) has a solution
for any µ1.

• In the general context of the ELS algorithm, it is actually sufficient to require the existence of a constant
Coracle > 0 such that for any µ ∈ Q−1, the linear minimization oracle has a solution in B(0, Coracle).
In the more specific context of the DLS algorithm, we have Q−1 ⊂ dom(f∗)×Q. Moreover, Q−1 is a
bounded set. Therefore, Assumptions (H2) and (N1) can be replaced by the following one:

(A0) For any R > 0, there exists Coracle such that for any (µ′
1, µ

′
2) ∈ (dom(f∗) × Q) ∩ B(0, R),

Problem (29) has a solution v ∈ B(0, Coracle), when called with µ1 = µ′
1 +A∗µ′

2.

4.5 Extension of the Generalized Conditional Gradient
A now classical extension of the Frank–Wolfe algorithm, called generalized Frank–Wolfe (or generalized
conditional gradient method, see [14]), consists in linearizing only partially the cost function. The
contribution of the cost function which is not linearized remains then in the oracle and replaces the
characteristic function of the feasible set.

In this subsection, we show that our algorithm can handle a situation of this kind, thanks to a natural
augmentation of the problem through a slack variable. Let E1a and E2 be Hilbert spaces. We aim at
solving the following generalization of Problem (P):

minimize
x1a∈E1a

fa (x1a) + σQ(Aax1a − b) + h (x1a) . (43)
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Structural assumptions We make the same assumptions on fa, Q, and Aa as we made on f , Q, and
A in Section 4.1, and we assume that h ∈ Γ0(E1a) and is supercoercive, i.e., lim∥x∥→+∞ h(x)/∥x∥ = +∞.

Qualification condition We assume that we can find K−1
a ⊂ dom(h) compact such that h is bounded

over conv
(
K−1
a

)
and −b ∈ int

(
Q⊖

2 −Aa conv
(
K−1
a

))
.

Oracle We assume that we have the following oracle: for all µ1a ∈ E1a, we can find a solution to the
problem

minimize
v1a∈E1a

⟨µ1a, v1a⟩E1a
+ h (v1a) .

Remark 4.17. This is indeed a more general framework, since we can take h = ιKa
, in which case we

make exactly the same Structural assumptions and make the same Qualification condition as in
Section 4.1, and the Oracle is a LMO on Ka.

Under these assumptions, we can rewrite our problem in the framework of Section 4.1. For this, we
take E1 = E1a × R, the function f defined as, for all x1 = (x1a, x1b) ∈ E1

f(x1) = fa(x1a) + x1b,

which is indeed convex with gradient β-Lipschitz continuous, the bounded linear operator A defined as,
for all x1 ∈ E1

A (x1a, x1b) = Aax1a,

and the closed convex set K = epi(h). In this context, f∗ is given by, for all µ1 = (µ1a, µ1b) ∈ E1

f∗(µ1a, µ1b) = fa
∗(µ1a) + ι{1}(µ1b)

and the adjoint operator of A is the operator A∗ given, for all µ2 ∈ E2, by A∗µ2 = (A∗
a µ2, 0).

Also, this new problem verifies the Qualification condition introduced in Section 4.1, with K−1 =
K−1
a × {M}, where M denotes an upper bound of h over K−1

a . Clearly K−1 ⊂ K is compact. Since
A conv

(
K−1

)
= Aa conv

(
K−1
a

)
, we have −b ∈ int

(
Q⊖

2 −A conv
(
K−1

))
and the problem is indeed quali-

fied.
We now need to verify that we indeed have an Oracle for the rewritten problem. As was explained

in Remark 4.16, it is sufficient to verify Assumption (A0). We fix an arbitrary constant R > 0 and take
(µ′

1, µ
′
2) ∈ (dom(f∗)×Q)∩B(0, R). Therefore µ′

1 = (µ′
1a, 1), with µ1a ∈ dom(fa

∗). Let µ1a = µ′
1a+A

∗
aµ

′
2.

We have

v̄1 ∈ argmin
v1∈K

⟨µ′
1 +A∗µ′

2, v1⟩E1
⇔ v̄1 ∈ argmin

(v1a,v1b)∈epi(h)
⟨µ′

1a +A∗
a µ

′
2, v1a⟩E1a

+ v1b

⇔ v̄1b = h (v̄1a) and v̄1a ∈ argmin
v1a∈E1a

⟨µ1a, v1a⟩E1a
+ h (v1a) .

Then v̄1a is given by our Oracle. As a direct consequence of Lemma 2.2 the above statements are
equivalent to: v̄1a ∈ ∂h∗(−µ1a) and v̄1b = ⟨−µ1a, v̄1a⟩E1a

−h∗(−µ1a). Since we have a bound on (µ′
1, µ

′
2),

we also have one on −µ1a. Applying [3, Propositions 14.15(ii) and 16.17(iii)], we deduce that |h∗(−µ1a)|
and ∥v̄1a∥E1a

are bounded by some constant independent of (µ′
1, µ

′
2), depending only on R. Then |v̄1b| is

bounded (in the same sense). This concludes the verification of Assumption (A0).

5 Technical proofs
In this section, we provide the proofs of Lemma 4.5 and Proposition 4.9. Both these results concern the
dualization of the projection problem with respect to the Bregman distance associated with the function
Ξ from (31), Problem (35). Recall that, for t ∈ N, Problem (35) is

minimize
µ∈Qt

Bf∗
(
µ1,
(
µt1, w

t
1

))
+

1

2

∥∥µ2 − µt2
∥∥2
E2
, (35)

and we denote here its value by V t.
We want to write a problem equivalent to Problem (35) which fits in the framework of the Fenchel–

Rockafellar duality, i.e., which is of the form

minimize
X∈X1

F (X) +G(LX) (44)
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where L : X1 → X2 is a bounded linear operator, X1 and X2 are Banach spaces, F ∈ Γ0(X1), and
G ∈ Γ0(X2).

We recall that Bf∗ is defined, for all µ1 ∈ E1, µ′
1 ∈ dom(∂f∗), and w1 ∈ ∂f∗(µ′

1) as

Bf∗(µ1, (µ
′
1, w1)) = f∗(µ1)− f∗(µ′

1)− ⟨µ1 − µ′
1, w1⟩E1

and that, for all µ ∈ E , we have

µ ∈ Qt ⇔

{
µ2 ∈ Q,

∀v ∈ Et, f∗(µ1) + ⟨µ2, b⟩E2
+ ⟨µ, v⟩E − ℓt ≤ 0.

Thus, Problem (35) is equivalent to

minimize
µ∈E1×Q

f∗(µ1)−
〈
µ1, w

t
1

〉
E1

+
1

2
∥µ2∥2E2

−
〈
µ2, µ

t
2

〉
E2

(45)

s.t. ∀v ∈ Et, f∗(µ1) + ⟨µ2, b⟩E2
+ ⟨µ, v⟩E − ℓt ≤ 0,

in the sense that the value of Problem (45) is V t−f∗(µt)+ ⟨µt1, wt1⟩E1
− 1

2∥µ
t
2∥

2
E2

and that Problems (35)
and (45) have the same solution. Since v ∈ Et iff v1 ∈ −Kt and v2 = Av1, this last problem is itself
equivalent to

minimize
(µ,z)∈(E1×Q)×R

z −
〈
µ1, w

t
1

〉
E1

+
1

2
∥µ2∥2E2

−
〈
µ2, µ

t
2

〉
E2

+ ιepi(f∗)(µ1, z) (46)

s.t. ∀v1 ∈ −Kt, z + ⟨µ2, b⟩E2
+ ⟨µ1 +A∗µ2, v1⟩E1

− ℓt ≤ 0,

in the sense that they have same value, and that (µ, z) is the solution to Problem (46) iff z = f∗(µ1)
and µ is the solution to Problem (45).

Let us now show that Problem (46) has the expected shape. Let Lt : E ×R → C(Kt) be the bounded
linear operator defined, for (µ, z) ∈ E × R, by

Lt(µ, z) = z + ⟨µ2, b⟩E2
− ⟨µ1 +A∗µ2, · ⟩E1

.

For any (µ, z), Lt(µ, z) is indeed a continuous and bounded function, since it is affine and defined on
a bounded set. Clearly Lt is a linear operator, it is easy to verify that it is bounded. Next, given
(µ, z) ∈ (E1×Q)×R, we see that the constraint in Problem (46) is satisfied iff Lt(µ, z)−ℓt ∈ C(Kt;R−).
From this last point, we define Gt : C(Kt) → R̄+ as, for all ϕ ∈ C(Kt),

Gt(ϕ) = ιC(Kt;R−)

(
ϕ− ℓt

)
and F t : E × R → R̄ as, for all µ ∈ E and z ∈ R,

F t(µ, z) = z −
〈
µ1, w

t
1

〉
E1

+ ιepi(f∗)(µ1, z) +
1

2
∥µ2∥2E2

−
〈
µ2, µ

t
2

〉
E2

+ ιQ(µ2), (47)

and we notice that F t ∈ Γ0(E × R) and Gt ∈ Γ0(C(Kt)). Finally, Problem (46) reads

minimize
(µ,z)∈E×R

F t(µ, z) +Gt(Lt(µ, z)), (48)

which is under the form (44), as required. The dual problem to Problem (48) is then

minimize
m∈C(Kt)∗

F t
∗
(
Lt

∗
m
)
+Gt

∗
(−m) (49)

where Lt∗ : C(Kt)
∗ → E × R is the dual operator of Lt.

The aim of what follows is to provide a more explicit expression of Problem (49). We start by
identifying, in the following lemma, the set C(Kt)

∗ over which we minimize as a set of measures. Such
an identification is immediate since Kt is compact.

Lemma 5.1. We have C(Kt) = Cb(Kt) and C(Kt)
∗
= M(Kt). Moreover, M(Kt) is endowed with the

total variation norm ∥m∥ = |m|(Kt).

Let us now prove Lemma 4.5.
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Proof of Lemma 4.5. Let S be a compact subset of E . Let us first show that there exists a bounded
linear operator E : M(S) → E such that, for all m ∈ M(S), Em is the unique vector verifying

∀µ ∈ E , ⟨µ,Em⟩E =

∫
S

⟨µ, v⟩Edm(v).

First, we show that for all m ∈ M(S), there exists a unique vector vm such that, for all µ ∈ E , we have

⟨µ, vm⟩E =

∫
S

⟨µ, v⟩E dm(v).

Since S is compact, there exists CS ∈ R such that S ⊂ B(0, CS). Let m ∈ M(S). We define Im : E → R̄
as, for all µ ∈ E ,

Im(µ) =

∫
S

⟨µ, v⟩E dm(v).

Since for all µ ∈ E , |Im(µ)| ≤ CS∥m∥∥µ∥E and for all v ∈ E , µ 7→ ⟨µ, v⟩E is linear, then Im is linear
and continuous. Thus, using Riesz’s representation theorem, there exists a unique vm ∈ E such that for
all µ ∈ E , Im(µ) = ⟨µ, vm⟩E . Furthermore, m ∈ M(S) 7→ vm is also linear. Let then E : M(S) → E be
defined as, for all m ∈ M(S), Em = vm. Then ∥Em∥E ≤ CS∥m∥ and thus E is continuous.

It remains to show that, for a given m ∈ P(S), we have Em ∈ conv(S). It suffices for this to show
that ιconv(S)(vm) ≤ 0. We have

ιconv(S)(vm) = σS
∗(vm) = sup

µ∈E
⟨µ, vm⟩E − σS(µ).

For µ ∈ E , we have

⟨µ, vm⟩E − σS(µ) =

∫
S

(⟨µ, v⟩E − σS(µ)) dm(v)

by definition of vm and using the linearity of the integral and the fact that m(S) = 1. Moreover, for all
v ∈ S, we have

⟨µ, v⟩E − σS(µ) ≤ ιS(v) = 0

using inequality (3). Thus, by positivity of the integral, we have ⟨µ, vm⟩E − σS(µ) ≤ 0. Since this holds
for any µ ∈ E , we have ιconv(S)(vm) ≤ 0, which is the required result.

We next turn to the question of providing explicit expressions for the functions F t
∗

and Gt
∗

and the
linear operator Lt

∗
appearing in Problem (49).

Lemma 5.2. The functions F t
∗

and Gt
∗

and the linear operator Lt
∗

are as follows:

i ) The function F t
∗
: E × R → R̄+ is given, for all (x, s) ∈ E × R, by

F t
∗
(x, s) = f̃(x1 + wt1, 1− s) +

1

2

(∥∥x2 + µt2
∥∥2
E2

− d
(
x2 + µt2, Q

)2)
.

ii ) The function Gt
∗
: M(Kt) → R̄+ is given, for all m ∈ M(Kt), by

Gt
∗
(m) = ℓtm(Kt) + ιM+(Kt)(m).

iii ) The operator Lt∗ is given, for all m ∈ M(Kt), by

Lt
∗
m =

((
−Em,−AEm+m(Kt)b

)
,m(Kt)

)
Proof. i ) Let x ∈ E and s ∈ R. We have

F t
∗
(x, s) = sup

(µ,z)∈E×R
⟨(µ, z), (x, s)⟩ − F t(µ, s)

= sup
(µ1,z)∈epi(f∗)

〈
µ1, x1 + wt1

〉
E1

+ z(s− 1) + sup
µ2∈Q

〈
µ2, x2 + µt2

〉
E2

− 1

2
∥µ2∥2E2

.

By Lemma 2.12, it holds that

sup
(µ1,z)∈epi(f∗)

〈
µ1, x1 + wt1

〉
E1

+ z(s− 1) = f̃
(
x1 + wt1, 1− s

)
.

Then, using [3, Example 13.5], we have

sup
µ2∈Q

〈
µ2, x2 + µt2

〉
E2

− 1

2
∥µ2∥2E2

=
1

2

(∥∥x2 + µt2
∥∥2
E2

− d
(
x2 + µt2, Q

)2)
.
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ii ) Let m ∈ M(Kt). We have

Gt
∗
(m) = sup

ϕ∈C(Kt)

∫
Kt

ϕdm− ιC(Kt;R−)

(
ϕ− ℓt

)
= sup
ϕ∈C(Kt;R−)

∫
Kt

(ϕ+ ℓt) dm

= ℓtm(Kt) + sup
ϕ∈C(Kt;R−)

∫
Kt

ϕdm = ℓtm(Kt) + ιM+(Kt)(m).

iii ) The operator Lt∗ is characterized by the relation

∀µ ∈ E ,∀z ∈ R,∀m ∈ M
(
Kt
)
,

∫
Kt

Lt(µ, z)(v) dm(v) =
〈
(µ, z), Lt

∗
m
〉
.

Using Lemma 4.5, we have, for all µ ∈ E , z ∈ R, and m ∈ M(Kt)∫
Kt

Lt(µ, z)(v) dm(v) = z m(Kt) +
〈
µ2,m(Kt)b

〉
E2

−
∫
Kt

⟨µ1 +A∗µ2, v⟩E1
dm(v)

=
〈
(µ1, µ2, z), (−Em,−AEm+m(Kt)b,m(Kt))

〉
.

This concludes the proof.

Now that we have computed F t
∗

and Gt
∗
, we compute in the next lemma their subgradients.

Lemma 5.3. i ) The function F t
∗ is Fréchet-differentiable over E × R− with continuous gradient, and

we have, for all (x, s) ∈ E × R−,

∇F t∗(x, s) =
(
∇f(y1), projQ

(
x2 + µt2

)
, −f (y1) + ⟨∇f(y1), y1⟩E1

)
, where y1 =

x1 + wt1
1− s

.

ii ) For all m ∈ M+(Kt)

∂Gt
∗
(m) = ℓt1Kt +

{
ϕ ∈ C

(
Kt;R−

) ∣∣ ∫
Kt

ϕdm = 0

}
,

where 1Kt ∈ C(Kt) is the function constantly equal to 1 in Kt, and, for all m ∈ M(Kt) \M+(Kt),
∂Gt

∗
(m) = ∅.

Proof. i ) The conclusion follows from the following facts:

• The function f̃ is differentiable with continuous gradient over E ×R∗
+, with its formula given in (9).

• If s ≤ 0, then 1− s > 0.
• Using [3, Corollary 12.30], we have ∇d( · , Q)

2
= 2(Id−projQ), which is continuous.

ii ) We denote by ψt : M(Kt) → R the function defined for all m ∈ M(Kt) as ψt(m) = ℓtm(Kt),
so that Gt∗ = ψt + ιM+(Kt). Notice that ψt is linear, and thus convex, and continuous, and that
ιM+(Kt) ∈ Γ0(M(Kt)). Thus, we have, for all m ∈ M(Kt),

∂Gt
∗
(m) = ∂ψt(m) + ∂ιM+(Kt)(m).

Clearly, this implies that, for all m ∈ M(Kt) \M+(Kt), we have ∂Gt∗(m) = ∅. Now, let m ∈ M+(Kt).
We have

ψt(m) =

∫
Kt

ℓt1Kt dm

and thus, ∂ψt(m) = {ℓt1Kt}.
We are thus left to compute ∂ιM+(Kt)(m) for m ∈ M+(Kt). By definition, we have

∂ιM+(Kt)(m) =

{
ϕ ∈ C

(
Kt
) ∣∣∀m̄ ∈ M+

(
Kt
)
,

∫
Kt

ϕ(dm̄− dm) ≤ 0

}
.

Let ϕ ∈ C(Kt). We consider three cases.
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a) There exists v̄1 ∈ Kt such that ϕ(v̄1) > 0. To show that ϕ ̸∈ ∂ιM+(Kt)(m), we have to find
m̄ ∈ M+(Kt) such that

∫
Kt ϕ(dm̄ − dm) > 0. We set m̄ = m + δv̄1 . Then clearly m̄ ∈ M+(Kt),

and we have ∫
Kt

ϕ(dm̄− dm) = ϕ(v̄) > 0.

And thus, ϕ ̸∈ ∂ιM+(Kt)(m).

b) We have ϕ ∈ C(Kt;R−) and
∫
Kt ϕdm < 0. Set m̄ = 1

2m. Then m̄ ∈ M+(Kt) and∫
Kt

ϕ(dm̄− dm) = −1

2

∫
Kt

ϕdm > 0.

Thus, ϕ ̸∈ ∂ιM+(Kt)(m).

c) We have ϕ ∈ C(Kt;R−) and
∫
Kt ϕdm = 0. Let m̄ ∈ M+(Kt). Then∫

Kt

ϕ(dm̄− dm) =

∫
Kt

ϕdm̄ ≤ 0.

Thus, ϕ ∈ ∂ιM+(Kt)(m).

Since those three cases make a partition of C(Kt), the result follows.

Our next result proves that there is strong duality between between Problems (48) and (49) and
provides optimality conditions for these problems.

Proposition 5.4. There exists (µ̄, z̄) ∈ E×R such that F t(µ̄, z̄) < +∞ and Gt is continuous at Lt(µ̄, z̄).
Thus, Problems (48) and (49) have opposite values and, for all (µ, z,m) ∈ E ×R×M(Kt), the following
are equivalent:

i ) (µ, z) is solution to Problem (48) and m is solution to Problem (49).

ii ) Lt∗m ∈ ∂F t(µ, z) and −m ∈ ∂Gt(Lt(µ, z)).

iii ) (µ, z) = ∇F t∗
(
Lt

∗
m
)

and Lt(µ, z) ∈ ∂Gt
∗
(−m).

Proof. Notice that ψ + σEt ∈ Γ0(E) and it is coercive since it is lower bounded by ψ + σEt , which is
coercive thanks to Lemma 4.11. Let then µ̄ ∈ E be a solution to

minimize
µ∈E

ψ(µ) + σEt(µ)

and set α = ψ(µ̄) + σEt(µ̄). Note that, since Et ⊂ Ẽt (where Ẽt is the set defined in Algorithm 6), we
deduce that α ≤ ht (where we use once again the notations of Algorithm 6).

It follows from (28) that f∗(µ̄1) < +∞ and µ̄2 ∈ Q, and we deduce from (47) that F t(µ̄, f∗(µ̄1)) <
+∞. Notice also that, for every v ∈ Kt, we have

Lt(µ̄, f∗(µ̄1))(v) = ψ(µ̄)− ⟨µ̄, (v,Av)⟩E2
≤ ψ(µ̄) + σEt(µ̄) = α ≤ ht < ℓt,

and thus Gt is continuous at Lt(µ̄, f∗(µ̄1)).
We thus obtain that 0 ∈ int(Ltdom(F t)− dom(Gt)), and the other conclusions of the proof follow

from Theorem 2.5, Corollary 2.6, and the fact that 1−m(Kt) > 0.

The aim of our next results is to show that, if wt+1 and µt+1 are defined as in Algorithm 5, then they
necessarily satisfy the properties required for the corresponding elements in Algorithm 6. We start with
the following property of wt+1.

Lemma 5.5. Let mt be a solution to Problem (49) and set wt+1 as in Algorithm 5, i.e., as

wt+1 =
wt − Emt

1−mt(Kt)
.

Then wt+1 ∈ conv({wt} ∪Kt).

25



Proof. We recall that mt ∈ −M+(Kt). There are two cases. If mt (Kt) = 0, then wt+1 = wt. Otherwise,
if mt (Kt) < 0 we set m̃t = mt

mt(Kt) ∈ P(Kt) so that Em̃t ∈ conv(Kt). Then, using the linearity of E, we
have

wt+1 =
1

1−mt (Kt)
wt − mt (Kt)

1−mt (Kt)
Em̃t.

The result follows.

Note that, if Assumption (H2) is satisfied, then the sets Kt are uniformly bounded in t. Hence, as
an immediate consequence of Lemma 5.5, we obtain the following result.

Corollary 5.6. Assume that Assumption (H2) is satisfied. Then we can bound wt uniformly in t.

We next verify that the choices of wt+1
1 and µt+1 in Algorithm 5 satisfy the required conditions from

Algorithm 6.

Lemma 5.7. Let t ∈ N and consider the elements µt, µt+1, wt1, and wt+1
1 defined as in Algorithm 5.

Define Qt as in Algorithm 6. Then

Qt = {µ ∈ E1 ×Q | f∗(µ1) + ⟨µ2, b⟩E2
− ⟨µ1 +A∗µ2, v1⟩E1

≤ ℓt for all v1 ∈ conv
(
Kt
)
}, (50)

µt+1 is the solution to Problem (35), and

(wt1 − wt+1
1 , µt2 − µt+1

2 ) ∈ NQt(µt+1). (51)

Proof. First, Equation (50) derives from the definition of Qt in Algorithm 6 and from eq. (34).
To prove the second statement, note that, thanks to Assumption (A1), f∗ is strongly convex, and

thus Problem (35) admits a unique solution µ. Due to the discussion at the beginning of the section, µ
is solution to Problem (35) if and only if (µ, f∗(µ1)) is solution to Problem (48).

On the other hand, the element mt from Algorithm 5 is solution to Problem (33) with S = Kt,
which, thanks to Lemmas 5.1 and 5.2, is equivalent to mt being a solution to Problem (49). Thus, by
Proposition 5.4, we necessarily have (µ, f∗(µ1)) = ∇F t∗(Lt∗mt). Using the expression of ∇F t∗ from
Lemma 5.3 and that of Lt

∗
from Lemma 5.2, we finally deduce that µ = µt+1.

Let us now turn to the proof of (51). Note that, by definition of the normal cone, (51) is equivalent
to having 〈

wt1 − wt+1
1 , µ1 − µt+1

1

〉
E1

+
〈
µt2 − µt+1

2 , µ2 − µt+1
2

〉
E2

≤ 0

for every µ = (µ1, µ2) ∈ Qt.
For µ ∈ Qt, we set

Λt(µ) =
〈
wt1 − wt+1

1 , µ1 − µt+1
1

〉
E1

+
〈
µt2 − µt+1

2 , µ2 − µt+1
2

〉
E2
.

First, we notice that〈
µt2 − µt+1

2 , µ2 − µt+1
2

〉
E2

=
〈
µt2 −AEmt +mt(Kt)b− µt+1

2 , µ2 − µt+1
2

〉
E2

+
〈
AEmt −mt(Kt)b, µ2 − µt+1

2

〉
E2

≤
〈
AEmt −mt(Kt)b, µ2 − µt+1

2

〉
E2
,

since µt+1
2 = projQ(µt2 −AEmt +m(Kt)b). Also notice that, by definition of wt+1

1 , we have

wt1 = Emt +
(
1−mt(Kt)

)
wt+1

1

and thus
wt1 − wt+1

1 = Emt −mt(Kt)wt+1
1

and
Λt(µ) ≤

〈
µ− µt,

(
Emt, AEmt

)〉
E −mt(Kt)

〈
µ− µt+1,

(
wt+1

1 , b
)〉

E .

Clearly, the result holds if mt = 0M(Kt).
Now, assume that mt ̸= 0M(Kt). We recall that, by definition of µt+1

1 in Algorithm 5, we have
wt+1

1 ∈ ∂f∗
(
µt+1
1

)
, and thus 〈

µ1 − µt+1
1 , wt+1

1

〉
E1

≤ f∗(µ1)− f∗
(
µt+1
1

)
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which yields, using the fact that −mt ∈ M+(Kt),

Λt(µ) ≤
〈
µ− µt+1,

(
Emt, AEmt

)〉
E −mt(Kt)

(
f∗(µ1)− f∗

(
µt+1
1

)
+
〈
µ2 − µt+1

2 , b
〉
E2

)
.

Recalling that mt is solution to Problem (49) and (µt+1, f∗
(
µt+1
1

)
) is solution to Problem (48), it follows

from Proposition 5.4 that Lt
(
µt+1, f∗

(
µt+1
1

))
∈ ∂Gt

∗
(−mt). Hence, from Lemma 5.3, we have∫

Kt

[
f∗
(
µt+1
1

)
+
〈
µt+1
2 , b

〉
E2

− ℓt −
〈
µt+1
1 +A∗µt+1

2 , v1
〉
E

]
dmt(v1)

= mt(Kt)
(
f∗
(
µt+1
1

)
+
〈
µt+1
2 , b

〉
E2

− ℓt
)
−
〈
µt+1
1 +A∗µt+1

2 ,Emt
〉
E = 0,

and thus
Λt(µ) ≤

〈
µ1 +A∗µ2,Em

t
〉
E −mt(Kt)

(
f∗(µ1) + ⟨µ2, b⟩E2

− ℓt
)
.

Since µ ∈ Qt, it follows from (50) that, for all v1 ∈ conv(Kt),

Λt(µ) ≤
〈
µ1 +A∗µ2,Em

t
〉
E −mt(Kt)⟨µ1 +A∗µ2, v1⟩E1

.

Set v̄1 =
Emt

mt(Kt)
. We have v̄1 ∈ conv(Kt) since

mt

mt(Kt)
∈ P

(
Kt
)

and E is linear, and taking v1 = v̄1

in the above inequality yields Λt(µ) ≤ 0, which concludes the proof.

We finally collect the results of this section in order to provide a proof for Proposition 4.9.

Proof of Proposition 4.9. i ) Thanks to Lemmas 5.1 and 5.2, Problem (33) coincides with Prob-
lem (49), and the latter is the dual of Problem (48), which is equivalent (up to a change in its value and
a transformation in its variables, as discussed in the beginning of this section) to Problem (35).

ii ) Part a of the conclusion follows from Lemma 5.7, while part b follows by combining the definition
of µt+1

1 in Algorithm 5, Lemma 2.2, Corollary 5.6, and Lemma 5.7.

6 Numerical examples
In this section, given n ∈ N∗ and p ∈ [1,+∞], we denote by Bnp the closed unit ball in Rn for the ℓp
norm, which is denoted by ∥ · ∥p. We denote by Mn,m(R) the set of real matrices of size n ×m. For
square matrices, we write Mn(R) instead of Mn,n(R). The vector space of symmetric matrices of size n
is denoted by Sn(R) and the subset of those which are positive semidefinite is denoted by S+

n (R).

6.1 A projection problem
We first test our algorithm in a simple problem taken from [20]. Let p ∈ {1, 2} and A ∈ M1,2(R)\{0}.
We aim at solving

minimize
x∈B2

p

1

2
∥x− y∥2 s.t. Ax = 0. (52)

Notice that the feasible set of the problem is a segment, obtained as the intersection of a convex set and
a line, whose extremities can be computed analytically. The projection of a point onto a segment being
easy to solve, the problem can be solved analytically without difficulty.

Structure This problem fits in our framework if we take E1 = R2, f = 1
2∥· − y∥2, E2 = R, Q1 = {0},

Q2 = R, b = 0, and K = B2
p . For this choice, we indeed have σQ = ι{0}. Notice that, since K is compact,

Assumption (H2) is satisfied.

Qualification condition This problem is qualified. Indeed, if Ker(A) = R × {0}, then we can take
K−1 = {(0,−1), (0, 1)}, and otherwise we can take K−1 = {(−1, 0), (1, 0)}.

Oracle The LMO writes: minimize
x∈B2

p

⟨µ, x⟩, for a given µ ∈ R2. For p = 1, the set K = B2
1 is the convex

hull of the four points (0, 1), (0,−1), (1, 0), and (−1, 0), therefore, for any µ ∈ R2, one of them is solution
to the LMO, making its resolution easy. For p = 2, two cases must be considered. If µ = 0, any point in
K is a solution. Otherwise, the unique solution is given by −µ/∥µ∥2.
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Numerical results We provide numerical results for a fixed value of A and for 104 iterations of the
algorithm. For the two possible values of p, we consider two values of y, denoted y1 and y2 and chosen
in such a way that, for y = y1, the solution to Problem (52) lies on the boundary of K (i.e., on the unit
sphere) and, for y = y2, the solution lies in the interior of K.

Let us note that for p = 1, the (primal) solution is obtained after finitely many iterations, since K is
the convex hull of finitely many points. We also obtain an optimal primal solution in a finite number of
iterations if it lies in the interior of K (for y = y2). We do not expect in general to find the dual solution
in finitely many iterations.

In Figures 1a to 1d, we show the evolution of the primal-dual gap ∆t at each iteration, in log-log
scale, for λ ∈ {0.05, 0.1, 1−

√
2−

√
2, 0.5}, for the pairs (y, p) taken respectively as (y1, 1), (y2, 1), (y1, 2),

and (y2, 2). For the pruning rule, we simply take Kt = {x̂t} ∪K−1 at critical iterations.
We notice that, in all of these cases, the primal-dual gap show a numerical decrease toward 0 with a

speed of order 1/t, with the curves for λ = 0.5 decreasing slightly more slowly than those with the other
choices of λ. We recall that our proof shows only a speed of order 1/

√
t. In Figures 2a and 2b, we show

the number of cuts at each iteration for the same values of λ and for the pairs (y, p) taken respectively
as (y1, 2) and (y2, 2). We do not show the number of cuts for p = 1 since in that case it is bounded by
4 (the four extremal points of K, which contains K−1). We notice that the number of cuts stays lower
for smaller values of λ. This result was to be expected, since pruning steps should happen more often for
lower values of λ.
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Figure 1: Primal-dual gap for 4 instances of Problem (52)
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Figure 2: Evolution of the number of cuts for 2 instances of Problem (52)

6.2 A semidefinite program
We now test our algorithm with the following problem, extracted from [22]. Let n ∈ N∗ and let C ∈
Sn(R). We aim at solving

minimize
X∈S+

n (R)
⟨C,X⟩Mn(R) s.t. diag(X) = 1Rn (53)

where ⟨A,B⟩Mn(R) = tr(ATB) is the canonical inner product.

Structure This problem fits in our framework if we take E1 = Sn(R), f = ⟨C, · ⟩Mn(R), E2 = Rn,
A the linear operator which maps X to its diagonal, Q1 = {0}, Q2 = Rn, b = 1Rn and K = S+

n (R) ∩
{tr ≤ n+ 1}. Notice that, in this context, A∗ is the linear operator which maps a vector Y to the diagonal
matrix whose diagonal is Y . The definition of the set K is dictated by the qualification condition and
by the necessity to have an oracle.

Qualification condition This problem verifies the qualification condition by takingK−1 as the convex
hull of the null matrix and of the matrices (n + 1)Ei,i, i ∈ {1, . . . , n}, where Ei,j , i, j ∈ {1, . . . , n} are
the elementary matrices.

Oracle A direct application of the spectral theorem reveals that K = (n+ 1) conv(K ′), where the set
K ′ is defined by K ′ = {0} ∪

{
vvT | ∥v∥2 = 1

}
. This allows to show the following lemma.

Lemma 6.1. Let M ∈ Sn(R). Consider the problem

minimize
V ∈K

⟨M,V ⟩Mn(R). (54)

Let s denote the small eigenvalue of M . If s ≥ 0, then the null matrix is a solution to the problem.
Otherwise, if s < 0, let v̄ be an eigenvector associated with s, of norm equal to 1. Then (n+ 1)v̄v̄T is a
solution to the problem.

As in the previous subsection, since K is bounded, Assumption (H2) is satisfied.

Numerical results We set n = 10 and take a random matrix C ∈ Sn(R). We then run the algorithm
until the primal-dual gap ∆t reaches 10−6. We use the same pruning rule as in Section 6.1. In Figure 4,
we show the number of cuts at each iteration, respectively for λ = 0.05 and λ = 0.7. Although we do
not show it, the number of cuts for the other values of λ stays below 45. We notice that, as we expected,
the maximal number of cuts is lower for smaller values of λ.
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Figure 3: Primal-dual gap

In Figure 3, we show the primal-dual gap at each iteration for λ ∈
{
0.05, 0.1, 1−

√
2−

√
2, 0.5, 0.7

}
, in

y-log scale. We can see that, numerically, our algorithm has a linear convergence speed for this problem.
Also notice that, unlike the previous problem, the algorithm seems to converge faster for larger values
of λ. We do not know the reason for this behavior.
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Figure 4: Number of cuts at each iteration

7 Conclusion and open problems
In this article, we proposed a Dualized Level-Set method for problems of the form

minimize
x1∈E1

f(x1) + σQ(Ax1 − b) + ιK(x1),

which we derived from an extension of the Level-Set method. We showed guarantees for the convergence
of this algorithm. There are some improvement perspectives we can think of.

• Our experiments show better numerical convergence rates than we expected, which might be due
to the specific form of these problems. This should not be surprising since some classical versions
of the FWA are also known to have an improved convergence rate in some contexts, see for instance
[6, Section 2.2].

• We assume that we are able to solve exactly our subproblems. An extension of our results could
concern the situation where the problems are only solved up to a certain precision, as was done in
[11] for the FWA.

• We chose to keep the parameter λ fixed along the iterations. Our numerical results, in particular
those done for the semidefinite program, show that the value of λ may have a significant impact
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on the efficiency of the algorithm. Future improvements may therefore concern variants of the
algorithm in which λ is adapted along the algorithm. For instance, we think our proof could be
adapted if we take 0 < λmin ≤ λ ≤ λmax < 1, with changes of λ occurring only at critical iterations.

• The nonsmooth term in the cost function is restricted to be of the form σQ(Ax− b), with Q of a
specific shape. A possible extension may deal with the case of a general nonsmooth term g. From
an algorithmic point of view, this would lead to a more general projection problem, whose dual
(Problem (33)) would involve the Moreau envelope of g∗. Yet some difficulties would arise in the
extension of Lemma 4.11, whose proof heavily relies on the structure of the nonsmooth term.

• Our numerical experience shows that pruning rules are unavoidable. Indeed, an implementation of
the algorithm which retains all cuts computed at each iteration quickly becomes intractable. Yet
the pruning rule that we proposed is not completely satisfactory in so far as we do not have a
priori bounds on the number of cuts which need to be stored. As was seen on Figure 2, the critical
iterations may occur at diminishing frequency, leading to an accumulation of many cuts. In [13],
the author develops a variant of the Level-Set method with a different pruning rule, for which the
number of cuts to be stored is bounded by the dimension of the space. We expect that his method
can be extended in the same manner as we extended the Level-Set method of [17].
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