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Abstract: The construction of a space partition in a cluttered environment allows for the
creation of graph-based paths, establishing safe navigation corridors for agents. Then, it
exploits them according to the available control degrees of freedom and dynamical constraints.
Evaluating corridor safety relies on the distance between the path points and the nearest
obstacles, influencing the real-time performance and robustness of navigation. This paper revisits
the convex lifting method for space partition, emphasizing the generation and enlargement of
safe corridors. The iterative enlargement algorithm pursues an increase in average corridor width
while ensuring a monotonic increase in the minimum corridor width.

Keywords: Robotics, Motion control, Optimization and model predictive control.

1. INTRODUCTION

Path planning is a fundamental concept in robotics, which
can be resumed as the process of choosing waypoints,
ensuring the connectivity between a starting point and a
destination point, and maximizing the maneuverability of
the robot or vehicle in a particular environment. Finding
a practical and effective route while considering obstacles,
dynamic and kinematic constraints, and possible uncer-
tainties is a complex problem recognized as such in the
control design literature (Paden et al., 2016).

Space representation techniques for path planning can
be categorized as follows: sampling-based, connected cells
partition, and lattice representation (Claussmann et al.,
2019). The challenge lies in determining suitable param-
eters to provide sufficient information for local mobility
and global environment description. Sampling-based par-
titioning, widely used in robotics and autonomous systems,
efficiently navigates complex environments by generating a
discrete set of random or strategic points within the config-
uration space, avoiding exhaustive searches. PRM (Proba-
bilistic Roadmaps) Hsu et al. (2007) is a popular sampling-
based algorithm constructing obstacle-free roadmaps, with
points connected by pathfinding algorithms like Dijkstra
(Dijkstra, 1959) or A* (Hart et al., 1968).

Connected cell decomposition methods like Voronoi di-
agrams, visibility graphs, and grid-based methods are
used to depict the navigation space. A pathfinding algo-
rithm operates on these graphs to determine paths based
on specified cost metrics. Voronoi decomposition (Sugi-
hara, 1993) suits cluttered environments, utilizing prede-
termined points often linked to obstacle vertices or the
Chebyshev center. The drawbacks are related to complex
adjacent cells and the need for replanning in dynamic en-
vironments. The visibility decomposition partitions space
by generating segments between obstacle vertices (Lozano-

Pérez and Wesley, 1979). Obstacle enlargement algorithms
are used to adjust the graph and to shift paths away from
obstacles.

The convex lifting approach (Ioan et al., 2020) offers a
distinct method for representing the state space by par-
titioning the environment through convexity. Unlike tra-
ditional path planning techniques, it produces partitions
independent of obstacle topology, thus simplifying the
complexity. It readily ensures path existence, finite-time
selection, and collision-free guarantees. However, it lacks
constraints or performance indices for directly enhancing
corridor width. Thus, there’s a need for an algorithm to
improve corridor robustness and width. Building upon
prior work, this study proposes an enlargement algorithm
aiming for a globally monotonic corridor enhancement and
a non-decreasing minimum corridor width.

The paper is organized as follows. Section 2 provides a
brief explanation of path planning construction via convex
lifting. In Section 3, previous research on safe corridors and
their enhancements are presented. Section 4 proposes the
novel algorithms developed in this work. Finally, Section 5
presents a conclusion summarizing the proposed approach.

Notation: Rn, R>, IN denote the set of real numbers in
n-dimensional space, the set of positive real num- bers and
the set of non-negative real numbers, {1, 2, . . . , N}, respec-
tively. Especially, I2

N := {(i, j) : i ∈ IN , j ∈ IN , i ̸= j}.
Besides, V(S), int(S) and A(S) denote the set of vertices,
the interior and polyhedral volume of polytope S, respec-
tively. Proj(S,S) represents the orthogonal projection of
S onto the space S. Given two sets S1,S2 ∈ Rd, we denote
the Minkowski sum of two sets, denoted by S1 ⊕ S2, is
defined as S1⊕S2 = {x1+x2 : x1 ∈ S1, x2 ∈ S2}. The ball
and distance function are defined as Bn

p,r = {x ∈ Rd : ||x−
p||n ≤ r} and d(S1,S2) = min

s1∈S1,s2∈S2

||s1 − s2||.



2. PATH PLANNING USING CONVEX LIFTING

A cluttered environment refers to a finite-dimensional
space with a high concentration of obstacles, creating a
congested and disorganized navigation environment. The
navigation problem in a cluttered environment can be
alleviated by constructing safety corridors, which offer a
secure path from the starting point to the destination
point. A key component is the design of the corridors,
which can be done effectively by exploiting space parti-
tions. The space partitioning in a cluttered environment
can be defined formally as follows:
Definition 1. Let a finite set of disjoint obstacles P =⋃

i∈I Pi in a finite-dimensional space X . The sets {Xi}i∈I
satisfying,

(1) X =
⋃

i∈I Xi

(2) int(Xi) ∩ int(Xj) = ∅, (i, j) ∈ I2

(3) Pi ⊂ int(Xi),∀i ∈ I 2

is called a partition of X induced by the obstacles P.
Furthermore, if sets, X and Xi are polyhedral, then X
is called a polyhedral partition.

The configuration space or feasible region, expressed as
CX (P) = X/P (1)

is the set of all possible poses/waypoints that a robot/agent
can have in its surroundings.

The essence of the convex lifting approach seeks to derive
favorable properties through projection after lifting.
Definition 2. Given a polyhedral partition of a finite-
dimensional space X =

⋃
i∈I Xi, a convex lifting is defined

as a piecewise affine function z : X → R satisfying the
following properties:

z(x) = aTi x+ bi for x ∈ Xi

and
z(x) > aTj x+ bj , ∀x ∈ int(Xi), (i, j) ∈ I2,∀i ̸= j 2

The convex lifting approach in the context of path plan-
ning involves constructing a polyhedral space partition
originating from the obstacles to encapsulate them. Prac-
tically, it is implemented by the construction of surfaces
in a higher-dimensional space Rd+1, such that their pro-
jection on Rd contains one-to-one some given collection of
polyhedra (obstacles).

Starting from the provided obstacles, the convex lifting
generates a lifted polyhedron. The facets of the lifted
polyhedra are projected back onto the original space.
The facets of the projections are used as edges and
the vertices as nodes to construct an interconnection
graph. Dijkstra graph search algorithm (Dijkstra, 1959)
is eventually used for path generation. To establish a
partition X as outlined in Definition 1, it is essential
to construct the lifting function as in Definition 2 with
particular inclusion specifications for each obstacle Pi in
the collection of disjoint polyhedral obstacles P =

⋃
i∈I Pi.

This construction can be tackled by means of a convex
optimization as follows:

min
ai,bi

J =

N0∑
i=1

∥
[
aTi bi

]
∥22 (2a)

s.t. aTi v + bi ≤ M,∀v ∈ V(Pi),∀i ∈ I, (2b)

aTj v + bj ≥ aTi v + bi + ϵ,∀v ∈ V(Pj),∀i ̸= j (2c)

where M, ϵ > 0 are pre-defined boundeness and convexity
parameters. Contrary to the generic convex lifting problem

Fig. 1. Space partitioning via convex lifting.

in Nguyen et al. (2017), boundedness constraints are im-
posed instead of continuity conditions to obtain expansions
outside of the obstacles on the lifted cells. The epigraph of
the computed lifting function represents a polyhedral set

L =
{[

x
z

]
∈ Rd+1 :

[
aTi −1

] [x
z

]
≤ −bi, i ∈ I

}
(3)

Each cell Xi in Definition 1 is obtained by projecting the
facets of the lifted polyhedron L, back into the space, Rd.

Xi = proj(Fd−1
i (L),X ), i ∈ I (4)

Fig. 1 provides an intuitive visual representation of the
lifted polyhedron, L, obstacles, Pi, and projected parti-
tions, Xi. In addition, the properties underlined in Propo-
sition 1 result from the nature of the constraints imposed
in (2a)-(2c).

Proposition 1. The polyhedral partition resulted from (4)
{Xi}i∈I has the following properties:

(1) Pi ⊂ int(Xi),∀i
(2) Xi ∩ Pj = ∅,∀j ̸= i 2

3. FROM PATH PLANNING TO NAVIGATION
CORRIDORS

3.1 Corridor generation

While the generation of a path addresses the feasibility
issue in view of navigation, the corridors allow planning
issues to be managed in cluttered environments when
considering dynamic constraints and uncertainties. They
serve as hard constraints on the trajectory for the agent’s
navigation by delivering a representation of the collision-
free space between obstacles. Corridors are represented by
sets to be included in optimization-based controllers to
navigate the environment’s configuration space by provid-
ing a feasible path and a (convex) constrained domain.

Considering the convex lifting approach and its associated
interconnection graph, the beginning and ending nodes is
required to have a complete path solution (Ioan, 2021) and
can be completed by the Definitions 3-4,

Definition 3. The interconnected graph of paths is de-
noted as Γ(N , E , f) and is defined by the tuple (N , E , f)
where N is set of nodes represented by the vertices of
the graph, E the set of edges, and f : E → R, a weights
function associated with each edge of the graph. 2

The shortest path in terms of given weights may then
be found by using the Dijkstra algorithm (Dijkstra,
1959), which yields the path in terms of Path(x0, xf ) =
(x̄0, x̄1, ..., x̄n, x̄n+1 = x̄f ) which can be seen as waypoints.
Definition 4 describes a continuous path, path size, and
corridor functions.

Definition 4. With given obstacles P, a corridor between
two nodes (x0, xf ) ∈ int(CX (P)), is characterized by
the existence of two functions, γ : [0, 1] → CX (P) and



Fig. 2. Safe corridors and MPC-based navigation.

ρ : [0, 1] → R>0 while satisfying the conditions, γ(0) = x0,
γ(1) = xf and γ(θ) ⊕ B2

0,ρ(θ) ⊂ CX (P), ∀θ ∈ [0, 1]. Then,

a corridor in configuration space can be defined as,

Π = {x ∈ Rd : ∃θ ∈ [0, 1] s.t. x ∈ γ(θ)⊕ B2
0,ρ(θ)} 2 (5)

In particular, the corridor can be defined as the union of
convex sets computed for each segment of the piecewise

linear path: Π =
⋃Nc

i=1 Πi with,

Πi = { x ∈ Rd : ∃θ̃ ∈ [0, 1] s.t. x ∈ γi(θ̃)⊕ B0,ρi(θ̃)
} (6)

where, γi(0) = xi and γi(1) = xi+1. Also, the radius
that defines the ball in (6) can be found by searching the
minimum distance along a path segment.

ρi(0) = min
Pj∈P

d(Pj , γi),∀θ̃ ∈ [0, 1] (7)

Each corridor segment is created by applying the Minkowski
sum of a path segment and a ball defined by the minimum
distance found in (7) as illustrated in Fig. 2.

3.2 MPC-based trajectory generation

In the preceding subsection, a space partitioning-based
geometrical path is created and the associated corridor can
be used as an explicit constraint for an MPC-based naviga-
tion. This method has two advantages: it replaces inherited
non-convex constraints with piecewise convex ones, and
(as long as linear dynamics and convex constraints are
considered) the complexity of the convex MPC technique
can be exploited. In order to fix the ideas, let us consider
a MPC formulation with LTI dynamics of an agent (e.g.
position-speed-acceleration) as follows:

xk+1 = Axk +Buk, (8)

where xk ∈ Rd is the state vector and uk ∈ Rm is the input
vector. The physical limitation of the system induces are
represented by compact convex sets X ⊂ Rd and U ⊂ Rm.
Each corridor segment represents a subset in the feasible
state space domain Πi ⊂ X ⊂ Rd. Using a quadratic cost:

J (Np, x̄i, xk, U) = ∥xk+Np|k − x̄i∥2P

+

Np−1∑
l=1

∥xk+l|k − x̄i∥2Q+
Np−1∑
l=1

∥∆uk+l|k∥2R
(9)

where Np is prediction horizon, x̄i is reference point such
that x̄i ∈ Πi, Q is state penalty matrix, R is control
increment penalty matrix, and P is the terminal cost

penalty matix. The vector U =
[
uk|k ... uk+Np−1|k

]T
is

the optimization argument:

T (Πi,Np,Xf , x̄i,X ) : min
U

J (Np, x̄i, xk, U) (10a)

s.t. xk+l+1|k = Axk+l|k +Buk+l|k, (10b)

uk+l|k ∈ U , ∀l = 1 : Np − 1, (10c)

xk+l|k ∈ Πi, (10d)

xk+Np|k ∈ Xf (x̄i) (10e)

Regarding the non-convexity of the corridor, Π, the MPC
analysis cannot be performed from the starting point to
the endpoint and should be divided into each corridor seg-
ment Πi. Consequently, by integrating state-space dynam-
ics (10b), input constraints (10c), and state constraints
(10d) induced by the generated corridor, the MPC problem
in (10) can be solved at each time step throughout a convex
corridor segment. On the other hand, during the transition
to another corridor, we have to ensure that the agent will
end up in a set defined by terminal constraints, defining a
control invariant set for the agents dynamics.

Another issue that should be pointed out regarding the
tuning of the MPC is that the prediction horizon should
be chosen such that an agent can reach the terminal set,
Xf (x̄i) from any initial point within the corridor. Using
the BRS (backward reachable set) construction, one can
calculate a prediction horizon that guarantees recursive
feasibility. This step includes iteratively advancing back-
ward to a set such that Si ⊂ X (x̄i) from the terminal set
of the segment i by taking into account the dynamics and
constraint sets. The related control invariance set design
step is recalled in the Algorithm 1 for completeness.

Algorithm 1 Controlled Invariance and BRS computation.

Input: x̄, A,B, U,Πi

Output: Xf , Np

1: Obtain a stabilizing feedback gain, K, by solving the Riccati
equation for the system (8).

2: Find the closed loop system matrix, Ac = A+BK.
3: Define a Xf = O0 = {Hx ≤ w}, such that Xf ⊆ Πi ∩Πi+1

4: for j = 1 : N do

5: Oj = Oj−1 ∩ {HAj
c ≤ w}

6: end for X0
f = Oj

7: Solve the following LP:

max
λ

λ s.t. x̄i ⊕ λX 0
f ⊂ Πi, λ < 1 (11)

8: R̃i
0 = x̄i ⊕ λXf , j = 0

9: while R̃i
j ⊂ Πi | R̃i

j+1 ̸= R̃i
j do

10: R̃i
j = A−1(R̃i

j−1 ⊕ (−BU)) ∩Πi

11: Np+ = 1
12: end while

Remark 1. Reachability analysis underlying Algorithm 1
is affected by the size of the terminal set, which is related
to the size of the corridors. BRS computation will better
perform (resulting in a smaller number of prediction steps
in MPC) if the terminal set and the corridors are larger.

Remark 1 points to the necessity of a corridor enlarge-
ment. Once the prediction horizon and terminal set are
constructed, one can solve the MPC problem for the se-
quence of the corridors iteratively. For each corridor, the
parameters Np, Xf and x̄i are updated, and the terminal
state is considered as the initial state of the next iteration.
Fig. 2 depicts the results of Algorithm 1 for an integrator-
like dynamics.

3.3 Enlargement with obstacle scaling

Starting from the need of large navigation corridors, the
improvement of the paths obtained through convex lifting
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(b) Results.

Fig. 3. Enlargement with obstacle scaling

was investigated in Mirabilio et al. (2022). The concept
involves constructing partitions while iteratively enlarging
the obstacles as a subset of polyhedral space partition.

Let Q and H be two non-empty convex obstacles, respec-
tively defined as in the following:

Q = {x ∈ Rd : Aqx ≤ bq}, Aq ∈ Rq×d, bq ∈ Rq (12)

H = {x ∈ Rd : Ahx ≤ bh}, Ah ∈ Rh×d, bh ∈ Rh (13)

where Q and H represent obstacles and space partitions
respectively, such that Q ⊂ H, with q, h ∈ N. Recalling
the Extended Farkas’ Lemma in Hennet (1989):

Theorem 1. Considering two non-empty polytopes, H, de-
fined by Ahx ≤ bh and Q, defined by Aqx ≤ bq such that
Q ⊂ H,H is satisfied by any point byQ, if and only if there
exist a matrix U ∈ Rh×q satisfying conditions UAq = Ah
and Ubq ≤ bh.

Qλ = {x ∈ Rn : Aqx ≤ λbq + (1− λ)Aqcq (14)

Then, the enlarged set can be defined as in (14). Enlarge-
ment is achieved regarding the linear optimization problem
shown in equation (15).

min
cq,µ1,µ2,Ũ

µ1 (15a)

s.t. ŨAq = µ1Ah, Ũ ≻ 0, (15b)

Ũbq −Ahcq ≤ µ2bh, (15c)

Aqcq ≤ bq (15d)

µ1 − µ2 = 1, µ1 ≥ 1, µ2 ≥ 0, (15e)

where µ1 and µ2 are the auxiliary variables used to trans-
form nonlinear optimization problem (22) in Mirabilio

et al. (2022) into linear one and Ũ is the resulting matrix
corresponds to Theorem1. Constraint in (15d) guaran-
tees the center of the enlargement will be inside of the
obstacles, cq ∈ Q. After solving the linear optimization
problem in (15), λM , the enlargement coefficient can be
calculated as λM = 1 + 1/µ∗

2. In the optimization prob-
lem, the maximum enlargement of an obstacle, Pi, con-
strained with the encapsulating partition, Xi, is solved
for each obstacle. Next, the minimum of the achievable
enlargement is selected, and the enlargement operation
is performed for all obstacles. The algorithm is repeated
until the enlargement coefficient, λM , is converged to a
certain value. Since enlarged obstacles in each iteration, k,
ensures P 0

i ⊂ P 1
i ... ⊂ P k

i , the algorithm doesn’t make any
concessions with regards to feasibility. An analysis related
to the Algorithm 2 is performed, and enlargement results
are illustrated in Fig. 3a for comparison. The dotted line
shows the boundaries of the initial space partition. As is
seen, one can achieve better performance regarding the
performance index computed based on (16).

p̄ =
1

NẼ

∑
Ẽi∈Ẽ

min
Pi∈P

d(Pj , Ẽi) (16)

Algorithm 2 Enlargement with polytope scaling.

Input: X ,P =
⋃N

i=1
Pi, ϵ,M > 0, and λ̄M.

Output: {Xi}i∈I .
1: P0 = P.
2: while λk

M > λ̄M do

3: Find {Xi}i∈I by solving (2) with respect to Pk for
Lk and project the facets of Lk into X . as in (4)

4: For each (Pk
i ,X

k
i ), solve the optimization problem in (15)

for λk
M,i and ckq,i, then find λk

M = mini∈Iλ
k
M,i.

5: Compute set Pk+1 by scaling each Pk
i using (14).

6: end while

with Ẽ is set of edges for all possible paths and NẼ = |Ẽ |
number of edges. The performance index corresponds to
the average width of all possible paths. However, the
minimum width of the corridor,

d = min
Pj∈P

d(Pj , Ei), for i = 1, ..., |Ẽ | (17)

directly affects the global corridor performance and this is
independent of the average corridor width. Furthermore,
opting for the center of enlargement on obstacle facets via
optimization problem (15) can lead to significant reduc-
tions in minimum corridor width. Hence, based on these
findings, we suggest incorporating the second performance
index outlined in (17) into the enlargement analysis.

In order to illustrate the potential issues in the obstacle
scaling, the result of the existing algorithm is tested 1 as
shown in Fig. 3a and Fig. 3b. The dotted black lines in Fig.
3a shows the space partition, X 0. In Fig. 3b, performance
indices are shown in blue, and the enlargement coefficient
is shown in red line. The convex lifting optimization con-
stants are selected as follows: ϵ = 10−4, M = 105 and
λ̄M = 1.005. The average corridor width reaches approx-
imately 5.4. However, the second performance index, d,
increases only marginally, and this issue will represent the
focus of the developments in the next section.

4. NOVEL SOLUTIONS FOR CORRIDOR
ENLARGEMENT

In this section, several methods to overcome the issues
of corridor enlargements are presented with the aim of
obtaining a homogeneous enlargement. The procedures
will proceed iteratively, providing an increase in the mean
corridor width while preserving the feasibility.

4.1 Chebyshev-centered enlargement approach

As a first technique, one can use the enlargement method
mentioned previously by ensuring the center of each en-
largement is inside the respective obstacle (polytope). An
intuitive candidate in this respect is the Chebyshev center.

cq = argmin
xc

− r (18a)

s.t. {x ∈ Rd : ||x− xc||2 ≤ r} ⊆ X , xc ∈ X , (18b)
Computing the Chebyshev center is actually an effective
linear program Boyd and Vandenberghe (2004).

min
µ1,µ2,Ũ

µ1 (19a)

s.t. ŨAq = µ1Ah, Ũ ≻ 0, (19b)

Ũbq −Ahcq ≤ µ2bh, (19c)

µ1 − µ2 = 1, µ1 ≥ 1, µ2 ≥ 0, (19d)

1 YALMIP (Löfberg, 2004) and MPT toolboxes (Herceg et al., 2013)
are used for the construction.
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Fig. 4. Enlargement with Chebyshev-centered scaling.

Consequently, the framework (15) can be adapted by
removing (15d), leading to the optimization problem (19).
For the sake of completeness, the whole procedure is
described in Algorithm 3, and the result of the procedure
is illustrated in Fig. 4a for the same numerical example.

Remark 2. The Chebychev-centered method provides an
iterative enlargement for each obstacle ensuring the per-
formance index in (17) is non-decreasing. 2

The numerical results of the Chebyshev-centered enlarge-
ment method are depicted in Fig. 4b with the same convex
lifting optimization parameters. The maximum enlarge-
ment for the polytope cannot be achieved under such a
strong structural constraint; thus, a low convergence rate
can be considered normal. As discussed in Remark 2, the
method performs better with respect to the minimum
corridor performance index, which converges to a value
of approximately 1.2. Also, the improvement in the mini-
mum corridor width is done to the detriment of the mean
corridor width, which is found to be 5.1.

Proposition 2. Consider a cluttered environment with a
set of obstacles, P, with the property of non-homogeneity
in terms of obstacle size such that A(Pi) >> A(Pj) where
(i, j) ∈ I2. Then, the result of the enlargement with the
scaling coefficient employed in Algorithm 2 and 3 may not
provide a global consistent corridor enlargement. 2

Sketch of proof. Lets consider two obstacles, such that
A(P0

1 ) >> A(P0
2 ) such that an adjacent facet, Fk

1,2 =

adj(X k
1 ,X k

2 ) is shared by X1 and X2 resulted from (2).
The distances, dk1 , dk2 between the facet and these two
obstacles can be constructed as dk1 = d(P0

1 ,Fk
1,2) and

dk2 = d(P0
2 ,Fk

1,2). Clearly, the distance between these two

obstacles is Dk
1,2 = d(Pk

1 ,Pk
2 ) and that the aim of the

enlargement is to achieve a ratio

(dk1 + dk2)/Dk
1,2 −→ 1 (20)

where dk1 ≃ dk2 . However, with the existence of a large
size difference with the same enlargement coefficient, the
relation between the volume will impact the distance and
dk+1
1 − dk1 >> dk+1

2 − dk2 . This relation causes dk1 < dk+1
1

Algorithm 3 Chebyshev-centered enlargement with polytope scaling.

Input: X ,P =
⋃N

i=1
Pi, ϵ,M > 0, and λ̄M.

Output: {Xi}i∈I .
1: P0 = P.
2: while λk

M > λ̄M do

3: Find {Xi}i∈I by solving (2) with respect to Pk for Lk and
project the facets of Lk into X . as in (4)

4: Compute cq,i for each Pk
i , regarding the problem (18).

5: For each (Pk
i ,X

k
i ), solve the optimization problem in (19)

for λk
M,i, then find λk

M = mini∈Iλ
k
M,i.

6: Compute set Pk+1 by scaling each Pk
i using (14).

7: end while
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Fig. 5. Enlargement based on Minkowski-sum.

whereas dk2 > dk+1
2 which provokes shrinkage in the X k+1

2
and that the enlargement with a coefficient as proposed
in Algorithm 2 and 3 do not provide a proper corridor
enlargement achieving (20). 2

In other words, for obstacles of different sizes, the en-
largement coefficient may not reflect the impact on the
absolute corridor enlargement. In view of the insight of-
fered by Proposition 2, the next methods aim to propose
alternatives to achieve global enlargement by considering
directly the performance indices in (16) and (17).

4.2 Minkowski-sum based enlargement approach

The methods presented so far perform the enlargement
regardless of the distance between obstacles and facets.
As an alternative to such a relative procedure, an absolute
enlargement can be obtained by means of the Minkowski
addition of a properly adjusted set to each of the obstacles
in the environment. The main advantage of the Minkowski-
sum-based enlargement is the capability of adapting the
enlargement, considering each critical distance between
obstacles and facets while preserving the feasibility of the
lifting.

The method is summarized in Algorithm 4. To obtain a
common set that provides enlargement, at first, all adja-
cent facets of the generated state partition are identified,
and each distance, di and dj , between the adjacent facet
and the obstacle located as a subset of the partition is
calculated. The resulting hyperplane is treated as a sep-
arating hyperplane between the concerning obstacle and
the facet. The same process is applied to the obstacles
located in the adjacent partition. When all hyperplanes
are found for all adjacent facets, the intersection of the
hyperplanes results in a polytopic common set that is used
in enlargement, ensuring that Pk+1

i ⊆ X k
i for ∀i ∈ I.

Algorithm 4 Enlargement with Minkowski-Sum

Input: X ,P0 =
⋃N

i=1
P0
i , ϵ,M > 0, and ā.

Output: {Xi}i∈I .
1: while A(Sk) > ā do
2: Find {Xi}i∈I by solving (2) with respect to Pk for Lk and

project the facets of Lk into X as in (4) and find all edges
as E = F({Xi}ki∈I).

3: for each El ∈ E do
4: Find adjacent partition pairs such that El = adj(Xk

i ,Xk
j ).

5: Compute the basis w = min(di,dj) where di =

d(El,Pk
i ).

6: Compute separating hyperplanes {x ∈ Rn : Hmx ≤
w},m ∈ {i, j} which defines the boundary of the par-
tition for each index, i and j.

7: Sk =
⋂
m

{x ∈ Rn : Hmx ≤ w},m ∈ {i, j}

8: end for
9: Calculate enlargement, Pk+1

i = Pk
i ⊕Sk, for each Pk

i ∈ Pk.
10: end while



(a) Illustration.
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Fig. 6. Enlargement using the Minkowski-sum with a ball.

For the illustration, the Algorithm 4 is performed for
the same cluttered environment as before with the same
convex lifting optimization parameters, and the result is
shown in Fig. 5a and Fig. 5b. The constant, ā, is selected
as 0.001, and the procedure lasts 16 iterations to reach
the threshold value. In Fig. 5b, the monotonic decrease in
the volume of set Sk can be observed. Also, the minimum
corridor width converges approximately to the limit value
of 1.5. In contrast, the Minkowski-sum-based method
provides better performance regarding the performance
index in (17). As a drawback of the Minkowski-sum-
based enlargement, the computed common set can become
complex due to the change of shape at each iteration.

4.3 Minkowski-sum based enlargement using a predefined
shape (ball)

The drawback mentioned in the previous subsection can be
addressed readily by pre-imposing the shape or the gener-
ators of the operand in the Minkowski-sum. A polyhedral
set generated by a ball with the appropriate norm (1 or
∞) avoids the aforementioned complexities. The method
is summarized in Algorithm 5, and it proceeds similarly
to Algorithm 4. As a distinction, instead of computing
distance from facets, the minimum distance is calculated
as in (17). Then, the 1-norm ball, B1

p,r, is defined by the
minimum distance instead of a common set in Algorithm
4. The norm of the ball is chosen to be the 1-norm for its
simplicity and to maintain feasibility.

The final enlargement and the result of the procedure
are illustrated in Fig 6a and Fig 6b, respectively. The
optimization parameters are the same as for the previous
methods. The simplicity of the final obstacles can be
observed in the related figure.

Algorithm 5 Enlargement with Minkowski-sum by using ball

Input: X ,P0 =
⋃N

i=1
P0
i , ϵ,M > 0, and ā.

Output: {Xi}i∈I .
1: while A(B1

0,d) > ā do

2: Find {Xi}i∈I by solving (2) with respect to Pk for Lk and
project the facets of Lk into X as in (4) and find all edges
as E = F({Xi}ki∈I).

3: Compute the minimum distance between obstacles and the
facets, d = min

Pj∈P
d(Pj , Ei), for i = 1, ..., |E|

4: Calculate enlargement, Pk+1
i = Pk

i ⊕B1
0,d, for each Pk

i ∈ Pk.

5: end while

5. CONCLUSION

The paper reviewed the previous developments in the
path-planning framework using convex lifting. The neces-
sity of the enlargement of the corridors was recalled for the
MPC-based navigation. The purpose of this enlargement

is to create wider paths for an agent to maneuver and per-
form obstacle avoidance in a cluttered area. The previous
enlargement attempts were recalled, and the drawbacks
of the respective algorithm were pointed out. A series of
novel enlargement approaches are proposed to overcome
the identified drawbacks. Most importantly, the paper
proposes the use of a novel performance index based on the
segment of the path. Compared with the existing methods,
an improved efficiency is obtained with respect to the
convergence rate and minimum corridor width. On the
other hand, it is shown that fine-tuned enlargement sets
can bring computational burden, and the use of predefined
shapes can represent adequate alternatives. Future work
will focus on the development of the same theoretical
foundation for dynamic cluttered environments.
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