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On the Sensitivity of Characteristic Roots of a Class of Parameterized
Delay-Differential Neutral Systems

César-Fernando Méndez-Barrios1,∗, Silviu-Iulian Niculescu2, and Alejandro Martı́nez-González3

Abstract— This paper focuses on the characterization of the
asymptotic behavior of the critical characteristic roots for a
class of delay-differential dynamical systems of neutral type
whose coefficients smoothly depend on certain parameters.
Such systems can be described by coupled delay-differential
and delay-difference equations, and model time heterogeneity
in propagation and transport phenomena. The asymptotic
behavior of the characteristic roots is addressed by expressing
the solutions as a convergent Puiseux series, which facilitates
handling multiple solutions. Particular attention is paid to the
way the parameters affect the stability of the delay-difference
operator. Illustrative examples complete the presentation and
show the effectiveness of the proposed method.

I. INTRODUCTION

Propagation and transport are typical phenomena whose
mathematical models can be described by delay-differential
equations (DDEs) of neutral type (see, e.g., [1], [2], [3] and
[4], [5] and the references therein). For further examples,
we refer to [6]–[7]. As pointed out in [2] and [3], the
exponential stability of the null solution of the associated
delay-difference equation (in continuous time) represents a
necessary condition for the exponential stability of the (null
solution of the) corresponding DDEs of neutral type (see also
[1]). In the linear case, except for the point spectrum, we
will also have an essential spectrum that cannot be removed
with a bounded perturbation. Thus, in the case of neutral
DDEs, the stability analysis is more involved, and a deeper
comprehension is required to understand the sensitivity of
the spectrum with respect to the system parameters.

Motivated by the previous observations, this paper ad-
dresses the problem above for parameterized linear DDEs
of neutral type, and, more precisely, we are interested in the
behavior of critical characteristic roots of finite multiplicity
and related splitting characterization. Under appropriate as-
sumptions, this paper extends some of the ideas presented
in [8] in the retarded case to deal with multiple roots
located on the imaginary axis as a function of the system
parameters (including the delay). For the computation of
the characteristic roots located on the imaginary axis, we
use the ideas based on matrix pencil properties proposed
by [9] (see also [10] for further discussions). For a different
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approach and related methodology, we refer to [11]–[12] and
the references therein.

Our approach makes use of the Puiseux Theorem and,
inspired by ideas developed in [13], we extend such ideas to
a more general class of dynamical systems. More precisely,
we compute the leading terms of the solution roots (rep-
resented in the form of Puiseux series) around the critical
multiple roots. As expected, particular attention will be paid
to the spectral properties of the associated delay-difference
equation as a function of the parameters that appears in the
neutral case but not in the retarded case. To the best of the
authors’ knowledge, there do not exist similar results in the
open literature, and it represents a novelty.

Throughout the paper, the following standard notations
will be adopted: C is the set of complex numbers, i :=

√
−1,

for z ∈ C, Arg {z} ∈ (−π, π] denotes the main argument.
The unitary open (closed) disk will be denoted by D (D).
For a matrix A, its spectrum is denoted by σ (A), and the
i-th eigenvalue by λi (A). If P is a polynomial (quasi-
polynomial), then σ (P ) denotes the set of roots of P , and
its degree is denoted by deg(P ) = n, n ∈ N.

II. PREREQUISITES AND PROBLEM FORMULATION

A. Neutral Time-Delay Systems

Under appropriate initial conditions, consider the Linear
Time-Invariant Delay Systems with a single discrete delay
τ > 0 of neutral type:

ẏ(t)−Bd(p)ẏ(t− τ) = A(p)y(t) +Ad(p)y(t− τ). (1)

The above representation is inspired by [14], in (1) the
matrix functions A,Ad, Bd : P 7→ Rn×n are assumed to
be continuously differentiable functions of p, where P ⊂ R
is an appropriate open set. The characteristic function of (1)
is denoted by f : C× R+ × P → C and is defined as

f (s; τ, p) :=

q∑
k=0

pk(s; p)e
−kτs, (2)

where pk(s; p) are polynomial functions of s given by

p0(s; p)≜sn+
n−1∑
i=0

a0i(p)s
i, pk(s; p)≜bk(p)s

n+
n−1∑
ℓ=0

akℓ(p)s
ℓ,

and the coefficients akℓ and bk are assumed to be continu-
ously differentiable functions of p ∈ P . It is well known that
in order to achieve the asymptotic stability of (1) for arbitrary
delay values, it is necessary to preserve the stability of the



neutral chain (see, for instance [9]). Such a neutral part is
characterized by the following difference equation:

y(t) +

q∑
k=1

bk(p)y(t− kτ) = 0. (3)

In this vein, the stability analysis of (3) can be performed
by means of the following result:

Proposition 2.1 ([9]): Let P be an open and non-empty
subset of R. Then, the difference equation (3) will be
asymptotically stable for all τ ≥ 0 and all p ∈ P if and
only if the function N defined by

N(s; p) = 1 +

q∑
k=1

bk(p)e
−kτs, (4)

has all its roots in C−.
Bearing in mind the previous result, let p∗ ∈ P and τ∗ > 0
be fixed values. Then, (1) will be asymptotically stable
if Proposition 2.1 holds and all the solutions of quasi-
polynomial (2) are located at C− (see, for instance, [9]).

B. Asymptotic Behavior

As mentioned, the behavior of the solutions on the imag-
inary axis for smooth variations of the parameter p (or
τ ) becomes of core importance. Furthermore, the task of
describing such behavior gets much more complex when the
solution is multiple (m ∈ N, s.t. m > 1). A key notion to
describe such behavior is to express the solution as Puiseux
series [15]. In this regard, by denoting the parameter p or
τ by ξ, the equation f(s; ξ) = 0 defines a solution curve
C ∈ C2 which is composed by the finite union of r−branches
sj
(
ξ1/mj

)
, each of these branches can be expressed as a

Puiseux series:

sj,σ(ξ)=cj,σξ
1

mj +o
(
|ξ|

1
mj

)
, j = 1, . . . , r, σ = 1, . . . ,mj ,

where each branch has multiplicity mj , such that m = m1+
m2 + · · ·+mr. In the case when r = 1, then sj,σ and cj,σ
will be simply denoted by sσ and cσ , respectively.

C. Problem Formulation

As mentioned in the Introduction, this note focuses ex-
plicitly on the following problems:

(i) first, for a given quasi-polynomial f(s; τ, p) and a
known simple solution (iω∗, τ∗, p∗) ∈ C×R+×R
find all coefficients γj ∈ C, j ∈ N of the power
series expansion of the solution s (p), i.e,

s (ξ) = iω∗ +

∞∑
j=1

γj(ξ − ξ∗)
j
,

(ii) second, for a known multiple solution
(iω∗, τ∗, p∗) ∈ C × R+ × R, find the first
coefficients of the Puiseux series expansion of the
solution s (ξ),

s (ξ) = iω∗ + γ1 (ξ − ξ∗)
1
m + o

(
|ξ − ξ∗|

1
m

)
,

and,

(iii) finally, find the stability crossing directions, that is,
determine whether the solution s (ξ) enters to the
right half-plane of the complex plane (RHP), or to
the left half-plane of the complex plane (LHP) for
ξ > ξ∗,

where ξ denotes one of the parameters τ or p, according to
the context. Observe that in the case of Problem–(i), our aim
is to give a complete characterization of the solution s(ξ).

III. MAIN RESULTS

It is well known that, even though the characteristic roots
may all have negative real parts, it is still possible for some
solutions to be unbounded (see, for instance, [9]). Keeping
in mind such a fact, we will consider conditions ensuring
that the characteristic function has continuous bounded roots.
In this manner, we will take a systematic stability analysis
concerning the behavior of the Critical Roots located on
the imaginary axis of the complex plane, either simple or
multiple, when the parameter p (or the delay τ ) is under
small smooth variations.

A. Critical Values Characterization

It is well known that when (3) is stable, the continuity
of the solutions f(s; τ, p) = 0 with respect to p or τ is
ensured. This property has an important implication, that
is, the change in stability with respect to the delay value
is determined by the asymptotic behavior of the critical
roots s = iω. Hence, it is of vital importance to determine
conditions on τ or p that allow detecting critical solutions,
that is, solutions on the imaginary axis, or in other words,
to find τ of p for which there exist s∗ = iω such that
f(iω; τ, p) = 0. The following result allows this procedure.

Proposition 3.1 ([9]): For a fixed p∗ ∈ R assume that
conditions in Proposition 2.1 holds. For k = 0, 1, . . . , n− 1,
introduce

Tn (p
∗) :=


1 0 · · · 0

b1 (p
∗) 1 · · · 0

...
. . . . . .

...
bq−1 (p

∗) bq−2 (p
∗) · · · 1

 ,

Tk (p
∗) :=


a0i (p

∗) 0 · · · 0
a1i (p

∗) a0i (p
∗) · · · 0

...
. . . . . .

...
aq−1,i (p

∗) aq−2,i (p
∗) · · · a0i (p

∗)

 ,



Hn (p
∗) :=


bq (p

∗) bq−1 (p
∗) · · · b1 (p

∗)
0 bq (p

∗) · · · b2 (p
∗)

...
...

. . .
...

0 0 · · · bq (p
∗)

 ,

Hk (p
∗) :=


aqi (p

∗) aq−1i (p
∗) · · · a1i (p

∗)
0 aqi (p

∗) · · · a2i (p
∗)

...
...

. . .
...

0 0 · · · aq (p
∗)

 ,

Pk (p
∗) :=

[
(i)iTi (p

∗) (i)iHi (p
∗)

(−i)iHT
i (p∗) (−i)iTT

i (p∗)

]
, k = 0, . . . , n.

Define further,

P (p∗) :=


0 I · · · 0
...

. . . . . .
...

0 0 · · · I
−P−1

n P0 −P−1
n P1 · · · −P−1

n Pn−1

 .

F (s) :=


0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1
−p0(s; p) −p1(s; p) · · · −pq−1(s; p)

 (5)

G(s) := diag(1, · · · , 1, pq(s; p)). (6)

Then, the critical delay values are given by

τk :=
αk,i

ωk
, i = 1, . . . ,m, k = 1, . . . , l,

where m ≤ q, l ≤ 2nq, 0 ̸= ωk ∈ σ(P ) ∩ R+ and αk,i ∈
[0, 2π) such that satisfy e−jαk ∈ σ (F (jωk), G(jωk)).

Remark 3.1: It is worth mentioning that Proposition 3.1
results as a slight modification to Theorem 1 presented in
[16].
According to Proposition 3.1, we need to provide the stability
of the neutral part, that is, guaranteeing the stability of N .
In this regard, our aim is to determine the set of all critical
values

P :=
{
p∗j ∈ R : j ∈ N and N(iω, p∗j ) = 0 for someω ≥ 0

}
.

Since P is a countable set, without any loss of generality,
for P ̸= ∅, we will assume that P is an ordered set, that
is, if p∗j , p

∗
k ∈ P with j < k, then p∗j < p∗k. Under these

considerations, if P ̸= ∅ and, if for some p∗ ∈ R we have
that N is stable, then, N will remain stable for any p ∈
(pj , pj+1), where pj satisfy pj < p∗ < pj+1. To determine
the set P , let us introduce the following parameter-dependent
matrix WN : R → Rq×q:

WN (p) := Tn (p)T
T
n (p)−HT

n (p)Hn (p) . (7)

We have the following :
Proposition 3.2: Consider the neutral quasi-polynomial

(4). The following statement holds:
p∗ is a critical point if and only if

(i) 0 ∈ σ
(
WN̂ (p∗)

)
;

(ii) σ
(
N̂(z; p∗)

)
∩ ∂D ̸= ∅;

where the function N̂(z; p) is a polynomial defined by

N̂(z; p) := zq +

q∑
k=1

bk(p)z
q−k. (8)

The stability of the characteristic function N(s, p) plays
a fundamental role in our analysis because it allows the
continuity of the roots of f(s; τ, p). In this situation, with
N(s, p) stable, the crossing directions of critical roots allows
the stability analysis of the neutral quasi-polynomial f .

B. Asymptotic Characterization

Let us consider the asymptotic behavior of simple and
multiple critical roots for both f(s; τ, p) and N̂(z; p). With
the aim of presenting a unified approach, we will denote by η
to refer to either f or N̂ ; similarly, µ will indicate a solution
on D or ∂C+, and, according to the context, ξ will represent
either p or τ .

1) Simple Solutions: as a first step, let us derive the
complete characterization of a simple solution µ(ξ). To this
end, the following result facilitates this task.

Proposition 3.3: Let µ∗ = µ0 ∈ C at ξ = ξ∗ be a simple
critical solution of the function η(µ, ξ). Then, the complete
description of µ (ξ) around the critical point is given by

µ(ξ) = µ0 +

∞∑
k=1

ck(ξ − ξ∗)
k
, (9)

where the coefficient ck are being computed as follows:

ck = −
(
∂η

∂µ

)−1
[
∂kη

∂ξk
+

k−1∑
ℓ=1

∂kη

∂ξk−ℓ∂µℓ
cℓ +

+
∑ j!

j1!j2! · · · jr!
∂ℓ+jη

∂µℓ∂ξj
cj11 cj22 · · · cjrr

]
, (10)

where the summation take values over

j ∈ {2, 3, . . . }, r ∈ {1, 2, . . . },
j1, j2, . . . , jr ∈ {0, 1, . . . }, ℓ ∈ {0, 1, . . . }

such that ℓ+ j1 + 2j2 + · · ·+ rjr = k.
Remark 3.2: It can be seen from Proposition 3.3 that the

higher-order terms are determined by following a recursive
procedure.

Remark 3.3: As we will see later, the complete descrip-
tion of the asymptotic behavior of the solutions will allow
a better comprehension of the degenerate cases. Specifically,
such a description will be very useful in determining the
crossing directions.

2) Multiple Solutions: let us consider now the asymptotic
behavior of a m−multiple critical root µ∗ of η at ξ∗. In this
case, it is possible to characterize the root locus of η around a
multiple root by its branches (see, for instance, [15]), where
each of these branches can be expressed as a Puiseux series:

µj,σ(ξ) = cj,σξ
1

mj + o
(
|ξ|

1
mj

)
, (11)



with j = 1, . . . , r, σ = 1, . . . ,mj . The parametrization of
each branch has (partial) multiplicity mj , such that m =
m1 +m2 + · · ·+mr. In the case when r = 1, then µjσ and
cj,σ will be simply denoted by µ and cσ , respectively.

Now, to derive a characterization of a multiple root around
µ∗, we consider the structure (11). For such an end, let us
introduce the constant ρ ∈ N, which has a similar to the
multiplicity m, that is, let ρ be the natural number satisfying:

∂η

∂ξ

∣∣∣∣
(µ∗;ξ∗)

= · · · = ∂ρ−1η

∂ξρ−1

∣∣∣∣
(µ∗;ξ∗)

=0,
∂ρη

∂ξρ

∣∣∣∣
(µ∗;ξ∗)

̸= 0. (12)

Bearing the above notation in mind, the following result
allows deriving the first terms of the Puiseux series.

Proposition 3.4: Let µ = µ∗ be a m−multiple root of
η(µ; ξ) at ξ = ξ∗. Then, the m−zeros can be expanded as

µj,σ(ξ) = µ∗ + cj,σ (ξ − ξ∗)
βj + o

(
|ξ − ξ∗|βj

)
,

for j = 1, 2, . . . , r, σ = 1, . . . ,mj and m = m1 + · · ·+mr.
The characterization of the splitting behavior is given by the
following cases:

(i) if ρ = 1, then there exists only one ramification, that is,
r = 1, its exponent is β1 = 1/m and, its corresponding
coefficient cσ is given by:

cσ =

∣∣∣∣∣m!

∂η
∂ξ

∂mη
∂µm

∣∣∣∣∣
1
m

ei
(2σ−1)π+θ

m , (13)

where θ := Arg
{

∂η
∂ξ /

∂mη
∂µm

}
and σ = 1, 2, . . . ,m.

(ii) if ∂2η
µ∂ξ ̸= 0, 1 < ρ < ∞ and m ≥ 2, the first ramifica-

tion posses exponent β1 = 1/m1 and coefficient:

c1,σ =

∣∣∣∣∣∣m1!

∂2η
∂ξ∂µ

∂m1η
∂µm1

∣∣∣∣∣∣
1

m1

ei
(2σ−1)π+θ

m1 , (14)

where m1 := m − 1, θ := Arg
{

∂2η
∂ξ∂µ/

∂m1η
∂µm1

}
and

σ = 1, . . . ,m1. For the second ramification, the corre-
sponding coefficients are given by:

c2,1 = −
∂ρη
∂ξρ

∂2η
∂ξ∂µ

, and β2 = ρ− 1, m2 = 1. (15)

Otherwise µ2,1 is an invariant root, i.e., µ2,1 = µ∗ for
all ξ.

(iii) if ρ = m and ∂η
∂ζα∂µβ = 0 for some α, β ∈ N such that

α + β > m, then there is only one ramification with
exponent β1 = 1, where its coefficients are given by:

cσ =

∣∣∣∣∣m!

∂mη
∂ξm

∂mη
∂µm

∣∣∣∣∣
1
m

ei
(2σ−1)π+θ

m , (16)

where θ := Arg
{

∂mη
∂ξm / ∂mη

∂µm

}
and σ = 1, 2, . . . ,m.

C. Crossing Directions Characterization

To derive a complete characterization of the stability
properties of the critical solutions, it will be necessary to
understand its local behavior. In this context, the remaining
part of this section will analyze the crossing directions of a
critical solution as the parameter ξ crosses the critical value
ξ∗ in the increasing direction. In the seek for simplicity, the
analysis of the neutral part will be carried out by means of
the polynomial N̂ introduced in (8), which implies that we
will be looking for the behavior of the solution z(p) of the
equation

N̂ (z; p) = 0, (17)

on the unit circle. In this regard, we will examine such
a solution to determine when it crosses the unit circle in
the inner or outer direction or even when z(p) touches it
tangentially. In summary, the conduct of z(p) around z(p∗)
will have one of the following behaviors:
(i) it crosses the unit circle;

(ii) it is tangent to a point on the unit circle;
(iii) it intersects the unit circle with other solutions;
Some of the above possibilities are described in Fig. 1. It is
worth to mention that similar behaviors may occur for the
solutions on the imaginary axis.

ℜ(z)

ℑ(z)

zj(p
∗)

zr(p
∗)

zk(p
∗)

zℓ(p
∗)

zj(p)

zr(p)

zk(p)

zℓ(p)

-1

-0.5

0

0.5

1

ℜ(z)

ℑ(s)

zℓ(p)

zj(p)

zj(p)

zk(p)

zk(p)

z(p∗)

z(p∗)

Fig. 1: Some possible behaviors of z(p). (Upper) cases (i)-
(ii). (Lower) case (iii).

1) Simple Solutions: the following result seeks to describe
such behavior in such a way that crossing direction is
described.

Proposition 3.5: Under the assumption that the critical
solutions of N̂ are simple, the following statements are
equivalent:
(i) The root z∗ = eiθ

∗
is crossing ∂D towards instability

(stability).



(ii) The following inequality holds:

d | z |
dp

∣∣∣∣
p=p∗

> 0 (< 0) ,

for any p sufficiently close to p∗, but p > p∗.
(iii) The following inequality holds:

ℜ


dN̂

(
eiθ

∗
;p
)

dp |p=p∗

z dN̂(z;p∗)
dz |z=eiθ∗

 < 0 (> 0) , (18)

then for any p sufficiently close to p∗ but p > p∗.
It is worth mentioning that under some situations (18)
vanishes, in such a case, the following result allows for
providing a second-order analysis.

Proposition 3.6: Let p = p∗ be a critical parameter,
such that z∗ = eiθ

∗
corresponds to the critical solution of

N̂ . Under the assumption that z∗ is simple, the following
statements are equivalent:

(i) The solution z(p) stays outside (inside) of the unit circle
∂D.

(ii) The following inequality holds:

d2|z|
dp2

∣∣∣∣
p=p∗

> 0, (< 0) (19)

for any p sufficiently close to p∗, but p > p∗.
(iii) The following inequality holds:

ℜ


φ (z; p)

z
(

∂N̂(z;p∗)
∂z

)3
∣∣∣∣∣∣∣
z=z∗

p=p∗

+ℑ


∂N̂(z;p)

∂p

∣∣∣∣∣
p=p∗

z
∂N̂(z;p∗)

∂z

∣∣∣∣∣
p2

z=z∗


2

>0, (< 0)

where

φ(z; p) := 2
∂2N̂

∂z∂p

∂N̂

∂p

∂N̂

∂z
− ∂2N̂

∂z2

(
∂N̂

∂p

)2

,

for any p sufficiently close to p∗ but p > p∗.
To give a complete description of the asymptotic behavior of
simple roots, the following result gives a general framework.

Proposition 3.7: Let ξ = ξ∗ be a critical parameter and
µ∗ ∈ C its corresponding critical solution, such that ℜ(cj) ≡
0 or cos (Arg {cj} −Arg {µ∗}) ≡ 0, for j = 1, 2, . . . , k−1,
where cj are the coefficients given in (9). Then, the root
µ for sufficiently close to ξ is crossing towards instability
(stability) if

(i) if η = f :

ℜ(ck) > 0 (< 0). (20)

(ii) if η = N̂ :

cos (Arg {ck} −Arg {µ∗}) > 0 (< 0). (21)

for any ξ sufficiently close to ξ∗ but ξ > ξ∗.

2) Multiple Solutions: finally, and to complete the anal-
ysis, the following results give the characterization of the
crossing direction of MCR’s.

Proposition 3.8: Let ξ∗ be a m-multiple root of η(µ, ξ).
For ξ > ξ∗ sufficiently close ξ∗, the characteristic root µj,σ

(3.4) will enter the unstable region (stable region) if

cos (Arg {cjσ} − θ∗) > 0(< 0), σ = 0, 1, . . . ,mj , (22)

where θ∗ = Arg {µ∗}.

IV. ILLUSTRATIVE EXAMPLES

In order to illustrate the effectiveness of the proposed
approach, several numerical examples are proposed.

Example 4.1: As a first example, let us consider the quasi-
polynomial f(s; τ, p) :=

p0(s) + p1(s, p)e
−τs+ p2(s, p)e

−2τs+ p3(s, p)e
−3τs, (23)

where

p0 (s) := s4+2s3+5s2+ 3s+ 2,

p1 (s, p) :=
(
p+ 3

5

)
s4+ s2+ 2,

p2 (s, p) :=
(
99p
50 + 11

100

)
s4+ s2+ s+ 2,

p3 (s, p) :=
(

47p2

125 + 3
500

)
s4+ 2s3+ 5s.

From (23) we have that N̂ is given by:

N̂(z; p) := z3+
(
p+ 3

5

)
z2+

(
99p
50 + 11

100

)
z+
(
47p2

125 + 3
500

)
. (24)

Thus, as a first step, we determine the stability of the
neutral part. To such an end, we apply Proposition 3.2 and
Proposition 3.5. Table I summarizes the results.

TABLE I: Critical parameters for the delay-difference oper-
ator in quasi-polynomial (23).

pk Proposition 3.2-(ii)
{
z ∈ C| N̂(z; p∗) = 0

}
ℜ


dN̂
dp

∣∣∣∣
p=p∗

z
dN̂
dz

|
∣∣∣∣
z=z∗


p1 -7.300382509 {−2.45723, 1, 8.15761} 0.101427 (+)
p2 -0.6251494057 {−1.11235, 0.137498, 1} 1.377616 (+)
p3 -0.4400048822 {−1, 0.107582, 0.732423} 0.683178 (+)
p4 0.5 {−0.5± i0.866025,−0.1} −0.847032 (−)
p5 3.046387861 {−1.32319± i1.32084,−1} −0.708941 (−)

From the above, it follows that the set P is given by

P := {−7.300382,−0.625149,−0.440004, 0.5, 3.046387} .

Moreover, since σ{N̂(z; 10)} = {−2.747, 1.256, 10.891},
Table I allows concluding that Is = (−0.4400048, 0.5)
corresponds to the stable interval for N̂ . Figure 2 illustrates
the behavior of σ

(
N̂(z; p)

)
for p ∈

(
− 3

5 ,
3
4

)
. Now, by

taking p∗ = 0 ∈ Is we apply Propositions 3.1, 3.3 and
3.7 to obtain the results summarized in the Table II. Since
f(0; 0, 0) is stable, Table II allows us to conclude that system
(23) will be asymptotically stable for any τ ∈ [0, 0.135612).

Example 4.2: As a final example, consider the following
quasi-polynomial:

f(s; τ, p) :=(s+a(p))+
(
1
5s+b(p)

)
e−τs+

(
2
5s+d(p)

)
e−3sτ,



Fig. 2: Behavior of z(p) for p ∈
(
− 3

5 ,
3
4

)
.

TABLE II: Critical delays of quasi-polynomial (23).

Proposition 3.1 Proposition 3.3

iωk τk c1 Proposition 3.7

±i3.017122 1.580251267 0.135678± i1.690265 0.1356 (+)
±i1.872312 2.868857313 −0.081335± i0.441718 −0.0813 (−)
±i1.443155 0.135612412 0.519451± i0.489140 0.5194 (+)
±i0.869184 3.340121652 0.032804± i0.206203 0.0328 (+)
±i0.273967 13.12182504 −0.000922± i0.018632 −0.0009 (−)

where the coefficients a, b, d are given by:

a(p)=−1
8 csc

(
3p
8

)(
8b sin

(
p
4

)
+5
(
cos
(
p
4

)
+5cos

(
3p
8

)
+2
))
,

b(p)= 1
8

(
25 csc

(
p
4

) (
8 sin

(
3p
8

)
− p

5

(
cos
(
p
4

)
+ 6
))

+ 40
)
,

d(p)= 1
8 csc

(
3p
8

)(
5
(
cos
(
p
8

)
+2cos

(
3p
8

)
+5
)
− 8b sin

(
p
8

))
;

In this case, the delay-difference operator is stable. Then, by
applying Proposition 3.1 we obtain p = 16.297 . . . and τ =
0.6518 . . ., giving a critical solution at s∗ = ±i3.125 with
multiplicity m = 2. To analyze this solution, we compute:

∂f

∂s

∣∣∣∣
(s∗;p∗,τ∗)

=0,
∂2f

∂s2

∣∣∣∣
(s∗;p∗,τ∗)

= 2.56516 + 3.63221i,

∂ρf

∂τρ

∣∣∣∣
(s∗;p∗,τ∗)

= −0.638937− 6.38911i.

Since ∂f
∂τ ̸= 0 we have ρ = 1, and by Proposition 3.4-(i),

there is only one ramification s1,σ (13) with β1 = 1
2 and

c1,σ , thus its asymptotic behavior around s∗ is described by:

s1,σ(τ)= s∗±(1.64+0.43i) (τ−τ∗)
1
2+o

(
|τ−τ∗|

1
2

)
, σ = 1, 2.

Figure 3 illustrates the behavior of all solutions close to s∗.

V. CONCLUDING REMARKS

In this paper, the asymptotic behavior of simple and
multiple critical roots for quasi-polynomials of neutral type
with commensurate delays has been considered. Specifically,
we have proposed tools to analyze the asymptotic behavior
of multiple critical solutions for quasi-polynomials of neutral
type as a function of the system’s parameters. The effec-
tiveness of the proposed method is illustrated through some
numerical examples. To the best of the authors’ knowledge,
such a characterization represents a novelty in the open
literature.
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Fig. 3: Behavior of s1,σ around s∗ = ±i3.125.
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