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Abstract

In this thesis, we have investigated the human object interaction recog-

nition by using the skeleton data and local depth information provided by

RGB-D sensors. There are two main applications we address in this thesis:

human object interaction recognition and abnormal activity recognition.

First, we propose a spatio-temporal modeling of human-object inter-

action videos for on-line and off-line recognition. In the spatial modeling

of human object interactions, we propose low-level feature and object re-

lated distance feature which adopted on on-line human object interaction

recognition and abnormal gait detection. Then, we propose object fea-

ture, a rough description of the object shape and size as new features to

model human-object interactions. This object feature is fused with the

low-level feature for online human object interaction recognition. In the

temporal modeling of human object interactions, we proposed a shape

analysis framework based on low-level feature and object related distance

feature for full sequence-based off-line recognition. Experiments carried

out on two representative benchmarks demonstrate the proposed method

are effective and discriminative for human object interaction analysis.

Second, we extend the study to abnormal gait detection by using the

on-line framework of human object interaction classification. The exper-

iments conducted following state-of-the-art settings on the benchmark

shows the effectiveness of proposed method.

Finally, we collected a multi-view human object interaction dataset in-

volving abnormal and normal human behaviors by RGB-D sensors. We

test our model on the new dataset and evaluate the potential of the pro-

posed approach.

Key words: skeleton data, human object interaction recognition, spatio-

temporal modeling, on-line recognition, abnormal gait, multi-view

dataset, rate invariant recognition, trajectories analysis.
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Résumé

Dans cette thèse, nous avons étudié la reconnaissance des actions qui

incluent l’intéraction avec l’objet à partir des données du skeleton et des

informations de profondeur fournies par les capteurs RGB-D. Il existe

deux principales applications que nous abordons dans cette thÃ¨se: la

reconnaissance de l’interaction humaine avec l’objet et la reconnaissance

d’une activité anormale.

Nous proposons, dan un premier temps, une modélisation spatio-

temporelle pour la reconnaissance en ligne et hors ligne des intéractions

entre l’humain et l’objet. Dans la modélisation spatiale, nous proposons

des caractéristiques de bas niveau liés à la distance entre les points du

skeleton et la distance entre l’objet et les points du skeleton. Ces carac-

téristiques ont été adoptées pour la reconnaissance en ligne des intérac-

tions humaines avec l’objet et pour la détection de la démarche anormale.

Ensuite, nous proposons des caractéristiques liées à d’objet qui décrivent

approximativement la forme et la taille de l’objet. Ces caractéristiques sont

fusionnées avec les caractéristiques bas-niveau pour la reconnaissance en

ligne des intéractions humaines avec l’objet. Dans la modélisation tem-

porelle, nous avons proposé un framework élastique pour aligner les tra-

jectoires des distances dans le temps afin de permettre une reconnaissance

hors ligne invariante au taux d’exécution. Les expériences menées sur

deux benchmarks démontrent l’efficacité de la méthode proposée. Dans le

deuxième volet de ce travail, nous étendons l’étude à la détection de la dé-

marche anormale en utilisant le cadre en ligne l’approche. Afin de valider

la robustesse de l’approche à la pose, nous avons collecté une base multi-

vues pour des intéractions humaines avec l’objet, de façon normale et

anormale. Les résultats expérimentaux sur le benchmark des actions anor-

males frontales et sur la nouvelles base prouvent l’efficacité de l’approche.

Mots-clés: Intéraction humaine avec l’objet, base multi-vues, données

skeleton, démarche anormale, modélisations spatio-temporelle, invariance

au taux d’exécution, reconnaissance en ligne, analyse de trajectoires.
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2 Chapter 1. Introduction

Spatio-temporal human representation based on 3D visual perception

data is a rapidly growing research area. Indeed, this represents a task

of interest for a wide spectrum of areas due to its huge potential, like

human-machine interaction, physical rehabilitation, surveillance security,

health care and social assistance, video games.

Comparing to verbal or vocal communication data, visual data forms

one of the most important cues in developing systems for understanding

human behavior. The applications range are from tracking daily activities

to classifying emotional states, as well as detecting abnormal and suspi-

cious activities.

In addition to pose variation and scale variability, high complexity of

human motions and the variability of object interactions represent addi-

tional significant challenges. However, human activity understanding is

a more challenging problem due to the diversity and complexity of hu-

man behaviors and accurate human action recognition is still a quite chal-

lenging task and is gradually moving towards more structured interpreta-

tion of complex human activities involving multiple people and especially

interaction with objects. Motivated by this issue, and the need for effi-

cient algorithms we focus our study on dynamic human object interaction

recognition in this thesis.

Imaging technologies have recently shown a rapid advancement with

the introduction of low cost depth cameras with real-time capabilities, like

Microsoft Kinect that changed the picture by providing 3D depth data of

video-based human action recognition. Compared to standard cameras,

these range sensors provide 3D structural information of the scene, which

offers more discerning information to recover human postures. The infra-

red technology behind these sensors allows them to work in complete

darkness and to be robust to light and illumination variation, a common

issue in 2D videos analysis. The real time acquisition and the advantages

of these data encourage its use in several applications that need to under-

stand and to recognize human object interactions using such a data stream

instead of 2D videos.

Nowadays a lot of literature put effort on the real-time estimation of
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human body joints from depth images. This kind of skeleton data includes

a set of 3D connected joints representing various human body parts to fa-

cilitate the analysis of the human pose and its motion over the time. Many

work already proved the effectiveness of skeleton data for the analysis and

recognition of relatively simple behaviors like human gestures or actions.

Even though the depth cameras generally have better quality 3D action

data than those estimated from monocular video sensors, adopting the

3D joint positions for human-object interaction is not sufficient to classify

action especially including interaction with objects. Actually, during a hu-

man object interaction scene, the hands may hold objects and are hardly

detected or recognized due to heavy occlusions and appearance varia-

tions. A high level of information of the objects is needed to recognize

the human-object interaction. On the other hand, the use of 3D skeleton

joints is not sufficient to distinguish some actions like drinking and picking

phone. Extra inputs need to be included and exploited for more accurate

recognition.

There are several advantages of this data: easy to remove background;

isolating and tracking human body; allowing capturing the human motion

at each frame. Additionally, the 3D depth data are independent of human

appearance (textures) and provide a more complete human silhouette rel-

ative to the silhouette information used in the past. So the emergence of

3D depth data reduces the challenges to human behavior analysis.

Along With the release of the Kinect, effective methods that take ad-

vantage of body-joints information and depth video have been proposed.

There are still many challenges in human object interaction recognition

like rough location and shape of object, invariant to geometric transfor-

mations of the subject and different execution speed of the same action.

All of these problems should be considered in an effective and robust

human object interaction recognition system. Nevertheless, the real-time

nature of the device bring another challenge: online recognition system

especially in the human object interaction context is needed.



4 Chapter 1. Introduction

1.1 Motivation and Challenges

Human activity understanding is a more challenging problem due to the

diversity and complexity of human behaviors [138] and accurate human

action recognition is still a quite challenging task and is gradually mov-

ing towards more structured interpretation of complex human activities

involving multiple people and especially interaction with objects. To the

best of our knowledge, the majority of action recognition past approaches

investigate simple action recognition [3] [108] [130] [99] [7] [128] such as

boxing, kicking, walking, etc. and less effort have been spent on human

object interaction. There are two challenges for human-object interaction

recognition. The first one is online classification that need low level fea-

tures, and the other scenario is to classify full videos. This scenario in-

troduces a new challenge which is the difference in rate and execution

time.

Even though the depth cameras generally have better quality 3D action

data than those estimated from monocular video sensors, adopting the

3D joint positions for human-object interaction is not sufficient to classify

action especially including interaction with objects. Actually, during a

human object interaction scene, the hands may hold objects and are hardly

detected or recognized due to heavy occlusions and appearance variations

[119]. A high level of information of the objects is needed to recognize

the human-object interaction. On the other hand, the use of 3D skeleton

joints is not sufficient to distinguish some actions like drinking and picking

phone. Extra inputs need to be included and exploited for more accurate

recognition.

1.2 Thesis contributions

Motivated by all considerations stated above, this PhD thesis investigate

the issue of human activity recognition using low-cost 3D senors with a fo-

cus on human-object interactions in three main applications; the abnormal

gait detection and human-object interaction recognition within two differ-
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ent scenarios: online recognition and full sequence-based recognition. The

main contributions summarized as follows:

• human object interaction recognition: We propose a framework to rec-

ognize human object interaction for two different scenarios. For on-

line human-object interaction recognition, we propose to use orig-

inal translation and rotation invariant representation of a new ob-

ject feature describing roughly the size and the shape of the object

to recognize human-object interaction. These features are used to-

gether with object-related features use low-level features as input

to classifier. The proposed the distances between the objects and

the human joints represent a rough description of the object shape

and size as new features to model the human-object interactions.

These features are fused with the low-level features (inter-joints)

for human-object interaction recognition. This low-level feature are

calculated in each frame and the sequence is modeled as evolution

of the resulting feature vector; this step is denoted spatio-temporal

modeling. The rough shape and the size of the object detection rep-

resent the next step in the pipeline of online human-object interac-

tion recognition. Together with the low-level feature resulting on

Spatio-temporal modeling, the object feature represent the input of

the random forest classifier.

Several applications require human object interaction recognition

after the action is done. This scenario seems less constraining on

real-time and rapidity of calculus. Furthermore, the full sequence-

based human object interaction recognition seems easier scenario

compared to online recognition. However, this scenario reveals ad-

ditional challenges arise such as execution time differing for same

interaction and significant spatial variation in the way of performing

an action. A more elaborated spatio-temporal modeling is proposed

here. The evolution of the inter-joints and object-joints distances

in time is modeled as trajectories in a high dimension space and a

shape analysis framework is used to analyze and compare the cor-

responding trajectories in a Riemannian manifold. This framework
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has the advantage to make the re-parameterization group acting by

isometry on the space of these trajectories. The distance between

the orbits corresponding to two trajectories is invariant to the rate

of execution in the sequence. Another advantage of the used shape

analysis framework is the calculation of intrinsic means which are

rate invariant. This helps to summarize the shape of trajectories be-

longing to the same class and accelerates the classification.

• abnormal gait detection: The inter-joints distances are used as features

to detect the abnormal gait. These features have the advantage to

be pose, position invariant and discriminative to model the human

articulations movement in a given frame. The abnormal gait detec-

tion is performed on DAI gait dataset following the state-of-the-art

protocol and show that the proposed approach success to classify

abnormal and normal human actions. The result of experiments re-

ports show that some distances related to the knees, ankles and the

feet are more relevant than other distances.

• multi-view 3D human object interaction dataset: We collect a new multi-

view 3D dataset for the purpose of providing an evaluative frame-

work that supports analyzing abnormal and normal human activi-

ties with human object interactions. We evaluate the performance of

our new multi-view dataset using the proposed feature by different

scenarios: recognization from different views and synchronization

of different views. The experiments on our multi-view 3D human

object interaction dataset prove the effectiveness of our method.

1.3 Thesis organization

The rest of the paper is articulated as follow. In Chapter 2, we lay out re-

lated works in the area of human object interaction recognition, abnormal

activity recognition as well as the issue of human behavior understanding

for RGB-D data. In Chapter 3, we introduce the spatial modeling frame

work that we employ to represent the human behavior and human object

interaction. Chapter 4 presents the temporal modeling frame work to in-
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vestigate rate invariant human object interaction. Chapter 5 presents the

method that we employ for the task of human object interaction recog-

nition and its evaluation in comparison with state-of-the-art on several

benchmark action datasets. In Chapter 6, we adopt proposed method on

another application: abnormal activity recognition and test our model on

new collected multi-view 3D human object interaction dataset. Finally, we

conclude this manuscript by summarizing the contributions of this the-

sis, enumerating remaining open problems and proposing directions for

future research.
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2.1 Introduction

Understanding human object interactions is critical for extracting mean-

ing from everyday visual scenes and requires integrating complex rela-

tionships between human pose and object identity into a new perception.

Analysis of human activities and behaviors through visual data has at-

tracted a tremendous interest in the computer vision community. Indeed,

this represents a task of interest for a wide spectrum of areas due to its

huge potential, like human-machine interaction, physical rehabilitation,

surveillance security, health care and social assistance, video games, etc

[58].

In this chapter, we present the issue of object with daily human activi-

ties and relationship between human action and human object interaction.

Then, we discuss the main applications where human object interaction

and action recognition can be involved. Besides depth sensor technolo-

gies which able acquirement of depth images are introduced. Benchmark

datasets of different kinds of data collected for the task of human object

interaction analysis systems are presented. Finally, a review of the state-

of-the-art approaches is presented and discussed.

Figure 2.1 – Illustration of human activity recognition system process. The input is an
unknown activity sequence, the output is an labeled activity of this sequence.
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Figure 2.2 – General framework for human activity recognition system

2.1.1 Human activities recognition system

A generic action or activity recognition system can be viewed as proceed-

ing from a sequence of images to a higher-level interpretation as illustrated

in Figure. 2.1. There are several annotated classes of activity sequences,

and an unknown activity as observed test sequence which should be rec-

ognized by activity understanding system. The task of this system is iden-

tifying and understanding the activities occurring in the videos which con-

sist of massive amounts of raw information in the form of spatio-temporal

pixel intensity variations.

As shown in Figure. 2.2, a general overview of the components of a

human activity recognition system. They include a scene capturing sys-

tem, human tracking, activity representation methods, activity recognition

methods, applications, and datasets. The detailed discussion is given in

subsequent section.

2.1.2 Human activities terminology

A realistic depiction of human activities often involves complex interaction

with the environment. So an initial definition of human behavior termi-

nology is essential before discuss human object interaction in detail. There

are various types of human activities [3], which are categorized into four

different levels depending on their complexity as illustrated in Figure. 2.3

and defined as follows:
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• Gestures: Gestures are defined as the elementary movements of a

person’s body part, and are the basic components describing the

meaningful motion of a person. For instance, ’Stretching an arm’

and ’raising a leg’ are good examples of gestures.

• Actions: Actions are characterized by single person activities that

may be composed of multiple gestures organized temporally with-

out holding any objects, such as ’walking’, ’waving’, and ’punching’.

In addition, like the example ’walking’, can be performed in different

cases: abnormal gait and normal gait. This exceptional case is easily

found in daily life and also a significant issue for human activities

analysis.

• Interactions: Interactions are highly semantic comprehension of hu-

man activities that involve two or more persons and/or objects. For

example, ’picking phone’ and ’using laptop’ are interactions between

one human and one object. Nevertheless, ’two persons fighting’ is

an interaction between two humans and ’a person stealing a suitcase

from another’ is a human-object interaction involving two humans

and one object.

• Group Activities: Group activities are the activities performed by

conceptual groups composed of multiple persons and/or objects. ’A

group of persons marching’, ’a group having a meeting’, and ’two

groups fighting’ are typical examples of them.

Except the complexity of these different kinds of human activities, the

execution time of them are also proportional to the complexity degree.

During this thesis, we are more concern with human object interactions

and distinguish between abnormal gait and normal gait, which is more

close to real-world conditions and daily scenes. Hence, more research

needs to be done to address these practical issues.

2.2 Applications

Vision based human motion recognition has fascinated many researchers

due to its critical challenges and a variety of applications. The applications
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Figure 2.3 – Taxonomy of human activities according to the complexity

range from simple gesture recognition to complicated behavior in surveil-

lance system. This leads to major development in the techniques related

to human motion representation and recognition [53] [109].

The objective in an activity-driven application is to analyze and iden-

tify activities so that their semantic meaning can be understood in each

specific domain, and approaches to construct human representations have

been widely used in a variety of real-world applications, including video

analysis [39], surveillance [51], robotics [29], human-machine interaction

[101] augmented and virtual reality [26], assistive living [81], smart homes

[15], education [72], and many others [17], [54], [36].

Here, we present some application areas that will highlight the poten-

tial impact of vision-based activity recognition system.

1. Smart Surveillance:

Nowadays the surveillance systems are automatically tracking indi-

viduals so that human operators can view the video contents con-

tinuously. However, it is a tough task for human to monitor all the

videos all the time, especially during period of the rapid develop-

ment of RGB-D sensors. In reality, we need an intense requirement

of smart surveillance systems to analysis the contents of video af-
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ter a mishap. Not only this kind of systems can be online but also

identify human behavior and motion accurately.

During more special situations and places like military territory, hos-

pitals, traffic congestion analysis, distant human identification, ab-

normal behavior detection, schools, government buildings, commer-

cial premises, and railway stations [66] [75], smart surveillance is

required. Recently, the concept of smart home attracts a lot of atten-

tion from researchers in computer vision domain and will bring a

big change in living condition and habitancy way [41].

2. Behavioral Biometrics:

The study of biometrics is utilizing human physical or behavioral

cues to recognize them. In past decades, finger print, face or iris

can be classified as biometrics on account of relying on physical at-

tributes to perform recognition task. Nowadays, the gait pattern as a

biometric has gaining popularity. The main advantage of the recog-

nition of the gait pattern is that subject cooperation is not necessary

as compared to the other biometrics [95].

3. Entertainment and Art:

Human motion synthesis finds wide use in the gaming and anima-

tion industry like Microsoft Xbox and the work of [52] that recog-

nized sequences of dance movements from depth data. It facilitates

to improve the quality of alteration of the movements and increase

the effectiveness of a scene.

4. Medical:

Human motion recognition is utilized in medical field for both of

doctors and patients in many areas such as neurology, body pos-

ture, orthopaedics and fitness. For example, detection of abnormal

behaviors like observing the performance disabled patients in their

room is helpful for doctors to analysis possible deficiency in their

motions and offer efficient treatment. Except that, elderly people

may have physical or mental diseases can be well taken care of by
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intelligent systems designed based on human behavior analysis [76]

[64].

5. Gesture and Posture Recognition and Analysis:

One of the enduring challenges in human-computer interfaces is

understanding the interaction between a human and a computer.

Human gesture and posture recognition play an important role in

advanced natural interface with computers and computerized sys-

tems. The promising applications such as smart room, sign language

recognition, controlling devices, and others [93] [96] to bring about

improvements in computers that can better interact with humans.

6. Robotics:

In most recent technological developments, robots still have gener-

ally supported limited, scripted interactions, often relying on a hu-

man operator to help with input processing and appropriate behav-

ior selection. So the behavior understanding is significant for robotic

applications. For instance, the robotic designed activities can pro-

duce use scenarios to guide the development, increase user accep-

tance toward robotic applications in consumer markets and develop

success metrics for human-interactive mobile robots (for entertain-

ment or companion purposes), in particular those which targeted to

untrained users for multiple assistive purposes.

7. Sports and Exercise:

There is another study and practice of human activity recognition is

sport which designed for analyzing athletic movements and efficient

frameworks for training [11]. Nevertheless, monitoring system for

the elderly people exercises [27] and feedback system for rehabilita-

tion exercise proposed in [118].

2.3 Scene capturing and human tracking

The applications are key to the selection of a capturing system. Many ap-

plications are adopted multiple cameras or single camera. It is obvious
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that processing the contents captured by single camera system is easier

than multiple camera system, but they may miss the detailed human fea-

tures. Even though the multiple camera system handle this problem well,

the procedure is complicated.

The initial elements of human activities analysis from video content is

detecting subjects as well as corresponding objects. There are many con-

straints like clothing, illumination, background, resolution and frequency

of frames need to be considered. As technology continue to evolve, ad-

vanced capture systems like Mircosoft Kinect [69] and ASUS Xtion Pro Live

[8] emerged. These kind of systems predigest capture scenes procedures

and human tracking. Especially, these systems provide us human skele-

ton joint data, depth data of objects and so on. The obtained data can be

applied on representation methodologies and recognition algorithms for

human activities recognition.

Human tracking is the process of identifying human body pose from

videos. There are many challenges like partial occlusion and variations in

lighting conditions for estimation of human body pose tracking. Due to

the several advantages of these data: easy to remove background; isolating

and tracking human body; allowing capturing the human motion at each

frame. Kinect has changed the picture by providing its depth data and

skeleton stream as an output for further processing on video-based human

activities recognition.

2.3.1 A brief review of Kinect

Microsoft released the software package as well as the hardware of Kinect

for Windows V1 [69] in November 2010, Kinect for Windows V2 [70] in

July 2014 which price is at the consumer level for domestic use. There are

two versions of Kinect shown in Fig. 2.4. The hardware configuration of

Kinect generally consists of an RGB camera and an depth sensor which

provide color images and depth images respectively. The software tools

of Kinect include official SDK which is Kinect Windows SDK [71] and

unofficial SDK, e.g., OpenNI [82], which provide a straightforward access

to RGB and depth data. The Kinect Windows SDK supports multiple
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Kinect sensors and provides a whole body tracker. But we note that the

majority of RGB-D datasets of human activities recognition being use are

generated with Kinect V1, only a few datasets created by Kinect V2.

Figure 2.4 – Illustrations of Kinect sensor. Left one is Kinect2; Right one is Kinect1.

Figure 2.5 – Illustration of resolution capability of Kinect1 and Kinect2.

Kinect for Windows V1 is structured light sensor which is different

from other RGB cameras like stereo cameras [107] which are sensitive to

light changes, a time-of-light (ToF) cameras [129] which have high speed,

depth image covering every pixel and high price. But Kinect for Windows

V2 adopts time of light sensor providing higher resolution capability. The
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comparison 2.5 represents the visual input difference between the Kinect

V1 and Kinect V2.

These advantages of Kinect for Windows sensor and SDK make them

extend to computer vision field and suitable for many applications, such

as 3D-simultaneous localization and mapping (SLAM) [47], people track-

ing [80], object recognition [13], and human activity analysis [25] [65] and

so on.

2.3.2 RGB-D Data

As sensors continue to evolve, the new descriptor is about 3D positions

of human body joints appears. The following graphics show the skeletal

joints the Kinect V1 and Kinect V2 return.

Figure 2.6 – Kinect v1 ID joint map

Thanks to the seminal work of [98], it facilitates the research in human

activities recognition by estimating the joint locations of a human body
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Figure 2.7 – Kinect v2 ID joint map

from depth map accurately. Due to depth map being proved to provide

the data for an efficient human body estimation, human pose can be rep-

resented as a set of 3D humanoid skeleton joints. Kinect V1 was able to

estimate 20 skeleton joints of the whole body and Kinect V2 increased to

25 joints with more detailed information around two hands.

2.4 Datasets

Analysis of human activities and behavior through visual data has at-

tracted a tremendous interest in the computer vision community [58].

As the emergence of 3D data reduces the challenges to human behav-

ior analysis, several datasets have been collected to serve as benchmark

for researchers algorithms. The datasets are categorized into three classes:

single-view activity, multi-view activity and multi-person activity. If only

from literally, the action or activity is of single-view activity datasets are

captured by only one specific view point. For multi-view activity datasets,

there are two or more view points of each action or activity being captured.
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Behind the literal meaning, we should note that each action or activity is

performed by one actor at a time. In addition, the multi-person activity

datasets are composed of not only interactions between two people but

also activities performed by multiple persons.

In thesis, we focus our study on human object interaction recogni-

tion so adopt MSRDaily Activity 3D dataset [116] and 3D Online Action

dataset [139]. We also evaluate our work for abnormal gait detection on

DAI gait dataset [21]. Due to few numbers of abnormal and normal gait

datasets, there is no survey for abnormal and normal gait datasets. We

will introduce DAI gait dataset in details in the later chapter.

Here, we will review the representative RGB-D datasets based on the

three categories and created by Kinect sensor about human activity anal-

ysis [142] [19]. And also the datasets contain human object interaction are

shown in the table. In Table 2.1, we list the characteristics of the selected

RGB-D datasets.

MSR Action 3D dataset

Figure 2.8 – Samples from MSR Action3D dataset [116]

MSR Action3D dataset [116] is the first public benchmark RGB-D ac-

tion dataset collected by Microsoft Research Redmond and University of

Wollongong in 2010. The dataset contains 20 actions: high arm wave, hori-

zontal arm wave, hammer, hand catch, forward punch, high throw, draw x, draw

tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward kick, side

kick, jogging, tennis serve, golf swing, pickup and throw. Each action was

performed by ten subjects for three times. In this dataset, all of actions

performed by each subject facing the camera at a fixed point. Note that
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the subject was required to perform an action by right arm or leg when

this action only needed one are or leg.

Cornell Activity CAD-120 dataset

Cornell Activity CAD-120 dataset [60] contains activities and object inter-

actions and is collected by the Cornell University. It includes 10 types

activities performed by 4 subjects, and each activity was performed twice

with different objects. These activities are making cereal, taking medicine,

stacking objects, unstacking objects, microwaving food, picking objects, cleaning

objects, taking food, arranging objects, having a meal. Note that there are some

activities performed by same subject with different objects. The data of

this dataset consists of color image, depth image and skeleton data. Here,

its skeleton only has 15 joints. So CAD-120 dataset is applied on human

activity analysis and also object detection.

Figure 2.9 – Samples from Cornell Activity CAD-120 [60]

RGB-D activity dataset

RGB-D activity dataset [123] was recorded by the Kinect V2 camera and

collected by Cornell University and Stanford University in 2015. It con-

tains interactions with different objects in each video. As Kinect V2 has

higher resolution of RGB-D data, so the body tracking was improved that

skeleton data consists of 25 body joints. Here, 7 subjects performed 21

type activities which were in different environment: 10 in the office, 11 in

the kitchen. These 21 activities interacted with 23 types of objects: turn-on-

monitor, turn-off-monitor, walking, play-computer, reading, fetch-book, put-back-
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book, take-item, put-down-item, leave-office, fetch-from-fridge, put-back-to-fridge,

prepare-food, microwaving, fetch-from-oven, pouring, drinking, leave-kitchen,

move-kettle, fill-kettle, and plug-in-kettle. Except complex background, the

activities were performed relative to different views.

Figure 2.10 – Example color, depth and skeleton frames from RGB-D activity dataset
[123]

RGBD-HuDaAct dataset

RGBD-HuDaAct dataset [78] as collected by Advanced Digital Sciences

Center Singapore in 2011. It contains 12 categories of human daily activ-

ities performed by 30 subjects and motivated by the definitions provided

by health-care professionals, including: make a phone call, mop the floor, enter

the room, exit the room, go to bed, get up, eat meal, drink water, sit down, stand

up, take off the jacket and put on the jacket. The subjects performed 2-4 repe-

titions of each action. In this dataset, there are human object interactions

and no restriction on which leg or hand was used.
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Figure 2.11 – Example color and depth frames from RGBD-HuDaAct dataset [78]

G3Di

G3Di [12] is a human interaction dataset for scenarios about multi-player

gaming and was collected by Kingston University in 2014. Its data include

color image, depth map and skeleton data. Specially, the dataset adopted

a game sourcing approach where the users were recorded whilst playing

computer games. This dataset contains 12 subjects split into 6 pairs. Each

pair interacted through a gaming interface showcasing six sports involv-

ing several actions: boxing (right punch, left punch, defend), volleyball (serve,

overhand hit, underhand hit, and jump hit), foot- ball (kick, block and save), ta-

ble tennis (serve, forehand hit and backhand hit), sprint (run) and hurdles (run

and jump). In addition, most sequences were captured by a fixed camera

containing multiple action classes in a controlled indoor environment.

Figure 2.12 – Example color, deptnbh and skeleton frame from G3Di dataset [12]
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Multiview 3D event dataset

Multiview 3D event dataset [120] is a large-scale multi-view 3D dataset

created by University of California at Los Angles in 2013. The dataset

obtained by utilizing three stationary Kinect cameras simultaneously at

different viewpoints around the subjects. It contains three kinds of data:

RGB, depth and skeleton. This dataset contains 8 classes of events per-

formed by 8 subjects 20 times independently with different object in-

stances and in various styles. The 8 event classes are: drink with mug,

call with cellphone, read book, use mouse, type on keyboard, fetch water from

dispenser, pour water from kettle, and press button. These events involve 11

object classes: mug, cellphone, book, mouse, keyboard, dispenser, kettle, button,

monitor, chair, and desk. There are human object interactions in this dataset.

Figure 2.13 – Samples from Multiview 3D event dataset [120]

2.5 Related Work Concerning Human object interac-

tion

In the literature of activity recognition, many previous work in behavior

analysis used videos produced by conventional cameras [111], [102], [2],

[68].

Recently, with the development of the commodity depth sensors like

Kinect, there has been a lot of interests in human action recognition from

depth data such as [130], [108], [99], [7], [128], [24], [50], [87]. Instead of

covering all ideas exhaustively, we direct interested readers to some recent

surveys [3], [22], [56], [145] that together overview this domain.

In this section, we present and summarize previous papers on the

recognition of human object interaction and the work of action recogni-



26 Chapter 2. State-of-the-art

tion using human body descriptors which most closely related to our ap-

proach. Additionally, we also apply our proposed algorithm on abnormal

gait detection. So there is a brief survey about abnormal gait detection. In

this section, we briefly review related work about human object interaction

and action recognition from four streams of research: 2D information, 3D

skeleton information, depth information and hybrid information. Next,

we discuss the work based on these four streams respectively.

2.5.1 Methods based on 2D information

There are a large amount of existing methods for human-object interaction

recognition based on static and 2D videos such as [88] [68] [28] [124] [57]

[4] [73] [144]. Besides videos, some works were based on 2D images. For

example, [42] combined spatial and functional constraints between human

and objects to recognize actions and objects on static images. [31] [30]

learns a discriminative deformable part model (DPM) that estimates both

human poses and object location.

Figure 2.14 – Example of grouplets representation [136]

As introduced above, they have made the object recognition and mo-

tion estimation independent. On the other hand, some researchers have

studied to design a model representing mutual information between ob-

jects and human actions. Here, we present the representative works for

such task. [136] adopted grouplet encode detailed and structured infor-

mation from the images to estimate the 2D poses. Their algorithm dis-
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covered the features called grouplets to describe the mutual information

between humans and objects by encoding the position, appearance and

shape of images patches. As shown in the left Figure. 2.14, three sample

grouplets are shown in three different colors.

Similar to [136], [137] proposed a model to exploit the mutual con-

text of human poses and objects in one coherent framework. They treated

object and human pose as the context of each other in human-object inter-

action activities. We can see from Figure. 2.15, the object was detected for

better understanding the human object interaction.

Figure 2.15 – Objects and human poses can serve as mutual context to facilitate the
recognition of each other. [137]

[89] also inferred the spatial information of objects by modeling the

2D geometric relations between human body and objects. Afterwards, the

spatio-temporal feature was adopted such as [135] [134]. They developed

spatio-temporal AND-OR graph to model the spatio-temporal structure of

the pose in an action.
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Figure 2.16 – The illustration of network architecture from [67]

For fine-grained human object interaction recognition, [143] used the

MSRDaily Activity 3D dataset obtained by Kinect and linked object pro-

posals followed by feature pooling in selected regions. In their work, the

proposed method only analyzed 2D video content without depth map.

But they added skeleton information to localize useful interaction parts

and remove background noise.

Figure 2.17 – The illustration of the approach for fine-grained human object interaction
recognition [143]

Recently, [67] proposed a simple deep convolutional neural networks

(CNNs) models. Then, they fused the features from person-bounding

boxes, global image context and person appearance to detect human activ-

ity labels. The multiple instance learning framework was used to predict

human object interactions and the network architecture about this work is

shown in Figure. 2.16.

[9] proposed a framework for achieving the centerpiece interaction

recognition by capturing the interesting objects of an image. They utilized
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Figure 2.18 – Overview of the progressive interactional object parsing method based on
LSTM network. [79]

2.5D spatial co-occurrence context among objects and designed a hierar-

chical model to learn the features of objects. In [79], a progressive inter-

actional object parsing method was proposed. This method adopted re-

current neural network to implement interactional object parsing for each

frame. Note that they used a set of long-short term memory (LSTM) nodes

instead of all object detection frame by frame, which contained more in-

formation to local objects. Then the results of object parsing were used for

representing human object interaction.

These methods define the human-object interactions on 2D image.

Such contextual cues are often compromised by the viewpoint changes

and occlusions.

2.5.2 Methods based on depth information

Thanks to the work of [98] by using the depth cameras which offers a

cost-effective method to track 3D human poses, many approaches in the

literature adopted skeleton, RGB and depth these feature to model human-

object interaction and human activities. In this part, we mainly discuss the

works based on depth sequences.

Before the emergence of Kinect, there already were some research

investigating on human object interaction and action recognition using

depth maps obtained decent performance. [62] employed an action graph
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to model the dynamics of the actions and sample a bag of 3D points from

the depth map to characterize a set of salient postures that correspond

to the nodes in the action graph. But there are limitations of this work

such as noise and occlusions in the depth maps and sampling scheme is

view dependent. [37] extracted the objects from depth data captured from

TOF camera to perform sub-activity (referred to as action) classification

and functional categorization of objects. Their method first detected the

sub-activity being performed using the estimated human pose from depth

data, and then performed object localization and clustering of the objects

into functional categories based on the detected sub-activity.

Figure 2.19 – Pose estimation from depth data. [37]

[84] took advantage of pose tracks and depth readings and employed

the latent structural SVM to train the model with part-based pose tra-

jectories and object manipulations. In [83], they presented a descriptor

histogram of oriented 4d surface normals (HON4D) capturing the distri-

bution of the surface normal orientation in the 4d volume of time, depth

and spatial coordinates from depth maps.

The idea of projecting each depth map onto these three orthogonal

planes is also employed in [132]. Then, the motion energy is obtained by

computing and thresholding the difference between two successive maps.

Such motion energy is then stacked through all the video sequence result-

ing in a Depth Motion Map (DMM) for each view. Such DMM highlights

areas where main motion takes place during the action. Histogram of Ori-

ented Gradients (HOG) is then applied to DMM maps to extract features

for each view. The three HOG features are concatenated to build a single

feature for each sequence. A SVM classifier is trained on this feature to

perform action recognition. Similarly to [62], this methods suffers from its

view dependency.

Other works propose to extend the idea of spatio-temporal interest
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points (STIPs) to depth data. Indeed, its capability to handle clutter back-

ground and partial occlusions has been proven in RGB video. Hence,

the work in [126] proposes to apply this idea to depth maps by extract-

ing STIPs from depth video called DSTIPs. Then, the 3D cuboid around

each DSTIP is considered to compute the depth cuboid similarity feature

(DCSF) describing the local depth appearance within each cuboid. Finally

the bag-of-words approach is employed to identify a cuboid codebook

and represent the actions. In [133], a novel formulation of the cuboid de-

scriptor is proposed based on its sparsification and its quantization. This

feature called 3D sparse quantization (3DSQ) is then employed in a spa-

tial temporal pyramid (STP) [94] for hierarchically describing the action. A

similar idea of STIP is proposed by Rahmani et al. [46], where key-points

are detected from the 3D point cloud. Each point is then described using

the Histogram of Principal Components (HOPC). The main advantage of

this method is its robustness to viewpoint, scale and speed variations.

Such robustness are important challenges investigated by many re-

searchers. For instance, a binary depth feature called range-sample depth

feature is proposed by Lu and Tang [20]. This feature describing both

shape geometry and motion is robust to occlusion as well as possible

changes in scale, viewpoint and background.

Instead of directly working on depth maps, other methods propose

to consider a depth sequence as a 4D space (3D+t) divided into spatio-

temporal boxes to extract features representing the depth appearance in

each box. For instance,Vieira et al. [114] propose to divide the 4D space

into a grid containing a certain number of 4D cells. Then the spatio-

temporal occupancy pattern (STOP) is computed within each 4D cell. Such

feature counts the number of point that fall into the spatio-temporal grid.

By applying a threshold on this feature, they are able to detect which

4D cells correspond to motionless (red in the figure) and which corre-

spond to motion (green in the figure). The concatenation of such feature

of each 4D cell is used to represent the depth sequences. A similar occu-

pancy feature called random occupancy pattern (ROP) is also employed in



32 Chapter 2. State-of-the-art

[116]. Differently, the 4D sub-volumes are extracted randomly at different

locations and with different sizes.

The 4D space is also investigated in [83]. Then, the depth sequence is

partitionned into spatio-temporal cells. Within each cell the orientation of

4D normals are quantified using 4D projectors to build a 4D histogram.

This feature, called histogram of oriented 4D normals (HON4D), captures

the distribution of the normal vectors for each cell. The idea of comput-

ing surface normals within spatio-temporal cells is also used by Yang and

Tian [131] to describe both local motion and shape information character-

izing human action. However, a limitation of such normal methods is that

they assume correspondence between cells across the sequence. Hence,

these methods may fail when the subject significantly changes his spatial

position during the performance of the action.

In most cases, the works based on depth images adopt the whole depth

maps which is difficult to achieve the real-time recognition. Skeleton de-

scriptor can effectively solve this problem. So we take advantage of this

property of skeleton information applied in our approaches.

The depth data is not suitable for online action recognition from un-

segmented streams.

2.5.3 Methods based on 3D skeleton information

In our work, skeleton information is the primary feature for modeling

human object interactions. But as far as we know, most existing methods

based on skeleton information are human action recognition and there

are few works about human object interactions due to this complexity.

Here, we will introduce the work about both of interactions and action

recognition research based on skeleton data.

In early stage, [43] created a joint space can then be used to predict

potential human poses and joint locations from a single image. This joint

space modeled he physical interaction between human poses and scene

geometry.

[40] performed the Dynamic Time Warping (DTW) on feature vectors

defined by 3d joint trajectories. Here, their skeleton information was ob-
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Figure 2.20 – Illustration of Qualitative Representation of Human Poses [43]

tained from motion capture data. A transfer learning framework ana-

lyzed the joint-3D-trajectories on a spatio-temporal manifold. After that,

Dynamic Manifold Warping (DMW) was introduced to align two human

motion sequences not only 3D but also 2D trajectories and provide a mo-

tion similarity score.

Figure 2.21 – The flow chart of proposed method [40]

As Kinect sensors make available a representative 3D humanoid skele-

ton frame by frame, [127] proposed an approach for human action recog-

nition with histograms of 3D joint locations (HOJ3D) as a compact repre-

sentation of postures is proposed. The HOJ3D computed from the action

depth sequences are re-projected using LDA and then clustered into sev-

eral posture visual words, which represent the prototypical poses of ac-

tions. The temporal evolutions of those visual words are modeled by dis-
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crete hidden Markov models (HMMs). [112] represented a human skele-

ton as a point in the Lie group which is curved manifold, by explicitly

modeling the 3D geometric relationships between various body parts us-

ing rotations and translations. Using the proposed skeletal representation,

it modeled human actions as curves in this Lie group then mapped all the

curves to its Lie algebra, which is a vector space, and performed temporal

modeling and classification in the Lie algebra.

Figure 2.22 – Illustration of skeletons at bottom, middle, and top of the stairs. Only the
skeleton was used in this framework. [85]

Later, the research put effort on online recognition system which skele-

ton information shows the big advantage of. The method [85] analyzed the

quality of movements from skeleton representations of the human body.

They used a non-linear manifold learning to reduce the dimensions of the

noisy skeleton data. Then building a statistical model of normal move-

ment from healthy subjects, and computing the level of matching of new

observations with this model on a frame-by-frame basis following Marko-

vian assumptions.

[139] proposed a middle level representation called orderlet by encod-

ing the spatial configuration of a group of skeleton joints for real time

recognizing human object interactions. This orderlet captured ordinal in-

formation that represented the distance variation between different pair of

joints for modeling interactions. In their method, they also adopted object

shape information extracted for depth images by LOP [117] to accomplish

this task. Additionally, they collected a dataset named only including

human object interactions for cross-environment and online action recog-

nition. We also performed our approached by using depth and skeleton

information on this dataset and details will be shown in the following

sections.
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Figure 2.23 – An illustration of our orderlet representation. [139]

Recently, more works put effort on analyzing human object interac-

tions based on skeleton information. [6] proposed to model the evolution

of human skeleton shapes as trajectories on Kendall’s shape manifolds,

and used a parameterization-invariant metric [104] for aligning, compar-

ing, and modeling skeleton joint trajectories, which can deal with noise

caused by large variability of execution rates within and across humans.

[90] learned dictionaries of sparse codes of sampled spatial-temporal 3D

volumes from depth maps and achieved real-time human action recogni-

tion.

In the work of [115], their method only uses 3D skeletons and per-

formed well on benchmark datasets like MSRDaily Activity dataset. They

proposed an approach by mining a set of key-pose-motifs for each action

class. These key-pose-motifs were figured by soft-quantization dictionary

to improve accuracy. Last, the sequences were classified by matching them

to the motifs of each class and selected by the maximum mathing score.

[18] also tested their algorithm on MSRDaily Activity dataset and also

only using skeleton representation.

[34] utilized the skeletal joints location as input for the task of seg-

mentation, classification and prediction of ongoing human actions. They

incorporated spatial and temporal characteristic of actions for such task.

The also tested their framework on 3D online action dataset which we

adopted in our work.

There are several works [33] [32] which introduced a human represen-
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Figure 2.24 – Overview of the method of [115]

Figure 2.25 – Overview of the method of [34]

tation by comparing the similarity between human skeletal joint trajecto-

ries in a Riemannian manifold [55] and a comprehensive survey [44] of

existing space-time representations of people based on 3D skeletal data.

2.5.4 Methods based on hybrid information

Here we introduce some works proposed hybrid approaches by combin-

ing both depth information and skeleton data features in order to im-

prove recognition performances. [59] defined a Markov Random Field

MRF over the spatio-temporal sequence where nodes represent objects and

sub-activities, and edges represent the relationships between object affor-

dance, their relations with sub-activities, and their evolution over time.

This method needs the video to be pre-segmented. And the object detec-

tion is independent of the contextual feedback from human actions.

[117] used relative skeleton position and local occupancy patterns

(LOP) features to model the human-object interaction, and developed

Fourier Temporal Pyramid to characterize temporal dynamics. [120] pro-

posed a 4D human-object interaction model (4DHOI) for event recognition
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and object detection. They model the 4D human-object interaction with a

hierarchical graph, as Figure. 2.26 shows. In addition, they collected a

new multi-view dataset named Multiview 3D Event Dataset with 8 types

of human object interaction.

Figure 2.26 – Hierarchical graph model of event[120]

In the work of [97], they adopted a combination of multi-modal multi-

part features to recognize human activities as shown in Figure. 2.27.

The multi-modal multi-part features learned by the proposed hierarchi-

cal mixed norm which used for a group feature selection.

Figure 2.27 – Three Levels of the Proposed Hierarchical Mixed Norm for Multimodal
Multipart Learning. [97]

Different from [97], [110] utilized more depth information. They

used spatio-temporal features of segmented body depth map and body
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joint features for activity recognition learning by Hidden Markov Mod-

els (HMM). [125] focused on daily activity recognition which using the

feature extracted from skeletal and depth data. [141] adopted color and

depth data to build their feature named CoDe4D LST features that are

extracted in 4D space.

All of the methods of [97] [110] [125] [141] were performed on MSR-

Daily Activity dataset which we adopt in our framework.

2.6 Related work concerning abnormal gait detection

Now human abnormal gait detection attracts more concern for earlier de-

tection of human diseases. For example, falls on the stairs are a common

cause of accidental injury especially among the older adults. So to un-

derstand the mechanisms behind such accidents is significant for the pre-

vention of falls, and the support of independent living among elderly. In

the sense, the present research aims to apply the recent improvements in

human gait analysis based on low-cost RGB-D devices.

Figure 2.28 – Optical flow computation for an example stair descent. There are the
mean vertical and horizontal optical flow, original images, and resulting optical flow in

the three rows. [100]
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In the work of [100], they used monocular RGB images to detect un-

usual human events on stairs. They tracked both feet by using a mixed

state particle filter, and computed two different sets of features to clas-

sify stairs descents using a hidden Markov model: the foot positions and

velocities and the parameters of the mean optical flow over a foreground

region.

For the same issue, [86] analyzed the abnormal gait from skeletons

information. They used binary classifiers of harmonic features to detect

abnormalities in stairs descents from the skeleton joints of Kinect. The 3D

skeleton joints, provided by Kinect, were adopted to estimate the walking

speed and extract the feature by encoding human motion during stair-

way descent. They implemented fall detection automatically. Compared

to previous research which utilized feet identified visual tracking as the

best feature of dangerous activities, 3D motion of the hips was proved by

experimental results that was the most relevant feature in detecting abnor-

mal gait experimentally shown to be the most informative component in

detecting abnormal gait.

Figure 2.29 – Sample of front (a), side (b) and bottom (c) views that make up a specific
instance of the JMH feature. [21]
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Along similar lines, [21] detected joint motion history feature based

on RGB-D devices and used the BagOfKeyPoses to classify temporal fea-

ture sequences JMH (Figure. 2.29) for abnormal gait detection. They

recorded their own dataset for abnormal gait detection by Microsoft Kinect

V2 which obtained 3D skeleton data that was only input data for spatio-

temporal features. The spatio-temporal features were learned by a bag of

key poses model. Then reduced the dimensionality by axis projection to

get JMH feature which be classified to detect abnormal behaviors. Spe-

cially, the protocol of this work is different from other works: their train-

ing set only included normal class but testing set included abnormal and

normal samples. In our work, We use the dataset to test our approach.

2.7 Conclusion

As discussed above, the Kinect sensor changes the picture of human ac-

tivity analysis, especially brings many advantages for human object inter-

action recognition. From recent research works, many researcher turned

to the study of depth or skeleton information rather than RGB data for

human object interaction or abnormal gait analysis.

Depth information based approaches implement the description of ac-

tions and interactions by using their geometrical data which is global or

local. Note that some approaches adopted global sequence which is infor-

mative to analyze the whole video of human activities. Indeed, this kind

of approaches show their advantage of avoiding occlusions and noises.

However, they are less efficient than the approached that adopted local

depth data of human activities. Specially, the real time issue emerges in

recent research.

Skeleton information estimated from depth map brings benefits to hu-

man object interaction and abnormal gait recognition. Modeling the skele-

ton information facilitates online detection for these tasks. Still, there are

limitations of skeleton data in the cases of human object interaction. The

object details can not be described well when recognizing similar interac-

tions like using laptop and reading book. So the depth information can

hand it well for complex behaviors. Due to this issue, hybrid information
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combining strengths of skeleton and depth data are appreciated, where

the real time recognition hardly to implement.

The balance between skeleton and depth to achieve efficient and accu-

rate human object interaction recognition is the challenges we should be

concerned about. Hence, a better solution should be explored for human

object interaction understanding.

Thus, in the following chapter, we investigate this issue and propose a

spatio-temporal modeling of human object interaction videos for on-line

and off-line recognition. Meanwhile, the on-line frame work is applied on

solving the problem of detecting abnormal gait.

First, spatial modeling framework is adopted for generating two kinds

of features: low-level feature and object feature. Second, temporal mod-

eling frame is used for solving the issue about rate-invariant. Finally, the

sequences are modeled for two scenarios that are on-line classification and

rate-invariant classification for off-line. Both scenarios adopt Random For-

est classifier to implement human object interaction recognition.
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3.1 Introduction

Generally, an action or activity recognition system can be viewed as pro-

ceeding from a sequence of images to a higher-level interpretation in a

series of steps [109]. The major steps involved are the following:

1. Input video or sequence of images

2. Extraction of concise low-level features (e.g. tracking and object de-

tection)

3. Mid-level action descriptions from low-level features (e.g. activity

recognition modules)

4. High-level semantic interpretations from primitive actions.

In the literature of activity recognition, most of the previous works

have focused on simple human action recognition such as boxing, kick-

ing, walking, etc. However, human activity understanding is a more chal-

lenging problem due to the diversity and complexity of human behaviors

[138] and accurate human action recognition is still a quite challenging

task and is gradually moving towards more structured interpretation of

complex human activities involving multiple people and especially inter-

action with objects. Actually, during a human object interaction scene,

the hands may hold objects and are hardly detected or recognized due to

heavy occlusions and appearance variations [119]. A high level of infor-

mation of the objects is needed to recognize the human-object interaction.

In this chapter, we introduce three kinds of feature to represent hu-

man object interaction. First, we adopt pairwise distance between skeleton

joints as low-level feature to represent human action. Then, we use LOP

algorithm to detect object location and propose object related distance fea-

ture. Last, for a better description of human object interaction, we modify

LOP algorithm to obtain the more information of object and further to

achieve object feature.
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3.2 Low-level feature

The invariance to the translation and rotation of the subject in the scene is a

necessary condition of human-object interaction recognition systems: two

instances of the same action differing only for the position and orientation

of the person with respect to the scanning device should be recognized as

belonging to the same action class.

This goal can be achieved either by adopting a translation and rotation

invariant representation of the action sequence or providing a suitable

distance measure that copes with translation and rotation variations.

We propose to use the inter-joints distances that handles well with

the situations discussed above. The skeleton information is denoted as J

which contains n joints from the original skeleton data.

J = {j1, j2, ..., jn} (3.1)

d refers to the set of the pairwise distances between the joint a and joint b

from J.

d = {d(a, b)} , a ∈ J , b ∈ J (3.2)

In Fig. 3.1, there are examples of pairwise distances between skeleton

joints of two human object interactions: one is using remote and the other

is reading book. The red lines represent the pairwise distances between

each joints.

3.3 Object related distance feature

For completely describing human object interaction, the object detection is

very important step during the whole feature extraction procedure. Here,

we adopt Local Occupancy Patterns (LOP) [117] to find the object location.

Then, we obtain our object related distance feature by utilizing the position

information of object.
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Figure 3.1 – Examples of pairwise distances between skeleton joints

3.3.1 LOP algorithm

The Local Occupancy Patterns feature obtained by utilizing the local in-

teraction information that is local depth information around a particular

joint. Hence, the interaction can be characterized by this type of informa-

tion.

In each frame t, there is 3D point cloud generated from the depth map

of each frame. The local space of each joint j is represented by Nx × Ny ×

Nz spatial gird. The grid size for each bin is (Sx × Sy × Sz) pixels. So

the point of each bin bxyz is counted for obtaining the feature oxyz of it.

There is a sigmoid normalization function applied. As a result, the local

occupancy data of this bin is

oxyz = δ

 ∑
qεbxyz

Iq

 (3.3)

Iq = 1 refers to a point in the location q . Iq = 0 refers to no point in

this location. δ(.) is the function which is sigmoid normalization:
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δ(x) =
1

1 + e−βx (3.4)

The feature vector oxyz of the whole bins in the spatial gird around this

joint i is the LOP feature which denoted by oi.

Figure 3.2 – Illustration of Local Occupancy Patterns (LOP) algorithm

3.3.2 Object representation

The object position is detected by the LOP algorithm. For each frame,

all pairwise distances of 20 skeleton joints and object one are calculated.

When the action does not have object, the corresponding entries in the

distance matrix are blank and are filled using an imputation technique

[10].

In our framework, we employed the mean imputation method, which

consists of replacing the missing values by the means of values already

calculated in presence of the object from the training set. The skeleton

and object information is denoted as Jo which contains 20 joints from the

original data and object joint represented by jo.

Jo = {j1, j2, ..., j20, jo} (3.5)

Here, Do refers to the set of the pairwise distances between the joint a
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Figure 3.3 – Examples of our pairwise joint distance features on MSRDaily Activity 3D
Dataset. The red one refers to object joint for each action.

and joint b from Jo.

Do = {d(a, b)} , a ∈ Jo , b ∈ Jo (3.6)

Thus the low-level feature vector is composed by the all pairwise dis-

tances between the joints and the distances between the object and the

joints. The size of this vector is equal to m × (m − 1)/2, with m = 21:

the 20 joints and the object joint. The concatenation of this feature vector

along frames gives rise to a trajectory. The shape of the resulting trajecto-

ries will be investigated in the later sections for human object interaction

classification.

We report in Fig. 3.3 examples of different human action interactions.

The object is reported in red and the joints are reported in green. The

proposed features are the pairwise distances between all these points in

3D.

3.4 Object feature

It is insufficient to only use the 3D joint positions to fully model an action,

especially when the action includes the interactions between the subject
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and other objects. Therefore, it is necessary to design a feature to describe

the local depth appearance for the joints.

For tracking of hands in action or in interaction with objects provides

rich information that can be used to interpret a number of human activ-

ities. In this section, we propose an novel feature based on depth infor-

mation around two hands for more complicated human object interaction

analysis.

Semantically, human-object interactions are relevant to characters of

objects for each of them. That is why many works devoted themselves

to object detection for recognizing interactions. But this is a difficult and

time consuming way to realize online classification. As we discussed in

the previous part, it is insufficient to only use the 3D joint positions to

fully model an action, especially when the action includes the interactions

between the subject and other objects such as drinking and picking phone.

The extra input like depth information need be adopted in order to have

more precise classification.

Motivated by properties of objects, we try to utilize the size and shape

information of objects which is more efficient and convenient way for on-

line human-object interaction recognition. When performing an interac-

tion, human usually hold objects by two hands. Moreover, the depth

points located around the skeleton joints of two hands contain a lot of

messages about the size and shape of objects.

3.4.1 Modified LOP

Different from LOP algorithm, we modified the LOP algorithm using

depth information around two hands for efficient human object interac-

tion modeling.

As with LOP algorithm, there is 3D point cloud generated from the

depth map of each frame t. We will utilize the information from the local

space of each hand joint j is represented by Nx×Ny×Nz spatial gird. The

grid size for each bin is (Sx × Sy × Sz) pixels.

In the next part, we will discuss about the optimization of the grid size.
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Figure 3.4 – Illustration of modified LOP algorithm

3.4.2 Size estimation

Figure 3.5 – The illustration of object cube size. In the first row, the green rectangular
and red rectangular represent small and large cube respectively. The yellow rectangular

in the second row represent the appropriate size of object cube.

The feature vector calculation depends on the size of chosen cubes to

detect these points. If the cube size is too small like the situation shown
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at the top left in Fig. 3.5, the green rectangular is too small to show the

features of different object. So the resulting feature will not be discrim-

inative for interaction classification. If the cube size is too big like the

situation shown at the top right in Fig. 3.5, the red rectangular is so big

that contains a lot of context from background and other parts of body. So

we have to detect object in a appropriate size as shown in the second row

in Fig. 3.5. In the experiment, the retained size of cubes is 50. A trade of

the size of this cube and the results will be discussed later in experimental

section.

3.4.3 Shape estimation

For estimating the rough shape of each object in the human object inter-

actions, we apply principal component analysis (PCA) on object features.

Before discussing the detail of rough shape about objects, we briefly intro-

duce the principle of PCA.

PCA

Figure 3.6 – Illustration of principal component analysis

Principal component analysis (PCA) is a statistical procedure that uses

an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables

called principal components. The number of principal components is less
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Figure 3.7 – Examples of our object features on 3D Online Action dataset. The red cube
refers to object cube for each action.

than or equal to the number of original variables. This transformation is

defined in such a way that the first principal component has the largest

possible variance (that is, accounts for as much of the variability in the

data as possible), and each succeeding component in turn has the highest

variance possible under the constraint that it is orthogonal to the preced-

ing components. The resulting vectors are an uncorrelated orthogonal

basis set. PCA is sensitive to the relative scaling of the original variables.

Shape estimation

The object is assumed to be present around one hand, thus similarly to the

LOP algorithm [117] that counts the number of points inside a given cube

around given point (hand for example) and decides the presence of an

object given a threshold, we extend this algorithm to exploit the number

of the points inside the cube and the 3D coordinates of these points to

built the object feature.

The number of depth points refers to the rough size of objects and the

coordinates of these points refer to the rough shape of objects. The PCA

algorithm is applied on the coordinates in order to determine the principal

directions of the object inside the cube. These directions are concatenated

with the number of the points to built the object feature.
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3.5 Conclusion

In this chapter, we have brought in the conceptions about low-level feature

and objection feature. The low-level feature consists of pairwise distance

between human skeleton joints and object related distance feature that

uses LOP algorithm to detect object location. Except the feature only based

on skeleton data, we propose object feature based on describing the rough

shape and size of objects which include depth information around two

hands. This proposed object feature can be useful for better description

the relationship between human pose and object.

Due to the different properties of these two features, they are adopted

in the different applications which will be introduced in further detail.
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4.1 Introduction

As introduced in the beginning of the last chapter, there are several steps

for human object interaction recognition system which can be viewed as

proceeding from a sequence of images to a higher-level interpretation. In

the chapter, we will bring in the higher level interaction description to

meet the different challenge: rate invariance.

We start by outlining a mathematical framework for helping in ana-

lyzing the temporal evolution of human object interactions when viewed

as trajectories on shape space of distance trajectories. This framework re-

spects the underlying geometry of the shape space of the trajectories and

helps maintain desired invariance. Then calculate the distance between

the mean trajectory of each action to the trajectories from testing set based

on square-root velocity function (SRVF) [102].

So that the trajectories from different action classes can be fairly com-

pared in a another shape space.

4.2 Distances Evolution Modeling and problem posi-

tion

Figure 4.1 – An illustration of sequences alignment in normal space

For human object interaction recognition, one of the challenges is the
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variations in the execution speed of the action. So a rate invariant frame

work for modeling human object interaction temporally is proposed. It is

inaccurate if we intend to align two sequences in normal space directly.

There is an illustration Fig. 4.1 for explaining this situation. We can see

that the locations of these points on curve c1 which refers to human object

interaction are not changing after alignment on normal space. However,

the corresponding location of curve c2 which refers to human object inter-

action after alignment on normal space are totally different from c1. So

we will not compare the sequences in this space in order to be invariant

to the rate of execution.

In general, the problem of sequence alignment is reduced to a problem

of high dimension curves reparametrization. For more details, please refer

to appendix. So the square-root velocity function (SRVF) is used for such

task. After SRVF, the curve c1 is are represented as q1 in a higher dimen-

sional space that we call it shape space here. The corresponding location

of each point remains the same after alignment.

Figure 4.2 – An illustration of sequences alignment in shape space
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4.3 Background on Shape Analysis Framework

Here, we briefly introduce the duty of square-root velocity function (SRVF)

and Karcher mean on a manifold M.

4.3.1 Square Root Velocity Function SRVF

Let β : I → Rm, where I = [0, 1], represents a parameterized curve in Rm.

To analyze the shape of β, we shall represent it mathematically using

the square-root velocity function (SRVF) [103], denoted by q(t), according to:

q(t) = β̇(t)√
‖β̇(t)‖

; q(t) is a special function of β that simplifies computations

under elastic metric.

Actually, under L2-metric, the re-parametrization group acts by isome-

tries on the manifold of q functions, which is not the case for the original

curve β. To elaborate on the last point, let q be the SRVF of a curve β.

Then, the SRVF of a re-parameterized curve β ◦ γ is given by
√

γ̇(q ◦ γ).

Here γ : I → I is a re-parameterization function and let Γ be the set of all

such functions.

Define the preshape space of such curves: C = {q : I → Rm|‖q‖ =

1} ⊂ L2(I, Rm), where ‖ · ‖ implies the L2 norm. With the L2 metric

on its tangent spaces, C becomes a Riemannian manifold. Also, since the

elements of C have a unit L2 norm, C is a hypersphere in the Hilbert space

L2(I, Rm). The geodesic path between any two points q1, q2 ∈ C is given

by the great circle, ψ : [0, 1]→ C, where

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) , (4.1)

and the geodesic length is θ = dc(q1, q2) = cos−1(〈q1, q2〉).

In order to study shapes of curves, one identifies all re-

parameterizations of a curve as an equivalence class.

Note that the parameterization of a trajectory during an action corre-

sponds to the rate of the action. Thus comparison of equivalent classes

rather than trajectories themselves is rate invariant differentiation which

reduces the difference in rate between actions and facilitates the action

recognition.
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Let’s define the equivalent class of q as: [q] = {
√

γ̇(t)q(γ(t)), γ ∈ Γ}.

The set of such equivalence classes, denoted by S .
= {[q]|q ∈ C} is called

the shape space of open curves in Rm. As described in [103], S inherits a

Riemannian metric from the larger space C due to the quotient structure.

To obtain geodesics and geodesic distances between elements of S , one

needs to solve the optimization problem:

γ∗ = argminγ∈Γdc(q1,
√

γ̇(q2 ◦ γ)). (4.2)

The optimization over Γ is done using the dynamic programming algo-

rithm. Let q∗2(t) =
√

˙γ∗(t)q2(γ∗(t))) be the optimal element of [q2], associ-

ated with the optimal re-parameterization γ∗ of the second trajectory, then

the geodesic distance between [q1] and [q2] in S is ds([q1], [q2])
.
= dc(q1, q∗2)

and the geodesic is given by Eqn. 4.1, with q2 replaced by q∗2 .

4.3.2 Karcher mean

One advantage of a shape analysis framework of the trajectories is that

one has the actual deformations in addition to distances. In particular,

we have a geodesic path in S between the two trajectories β1 and β2 in

Rm. This geodesic corresponds to the optimal elastic deformations of two

trajectories. The Riemannian structure defined on the manifold of shape

of the trajectories in S enables us to perform such statistical analysis for

computing curves (trajectories) mean and variance. The Karcher mean

utilizes the intrinsic geometry of the manifold to define and compute a

mean on that manifold. It is defined as follows: Let ds(βi, βj) denote the

length of the geodesic from βi to βj in S .

To calculate the Karcher mean of trajectories {β1, ..., βn} in S , define

the variance function:

V : S → R,V(N) =
n

∑
i=1

ds(SRVF(βi), SRVF(βj))2 (4.3)

The Karcher mean is then defined by:

β = arg min
µ∈S
V(µ) (4.4)



60 Chapter 4. Temporal Modeling

The intrinsic mean may not be unique, i.e. there may be a set of points in

S for which the minimizer of V is obtained. To interpret geometrically, β

is an element of S , that has the smallest total deformation from all given

trajectories.

Algorithm 1: Karcher mean algorithm

Set k = 0. Choose some time increment ε ≤ 1
n . Choose a point µ0 ∈ S as an initial

guess of the mean. (For example, one could just take µ0 = β1.)

1- For each i = 1, ..., n choose the tangent vector ti ∈ Tµk (S) which is tangent to the
geodesic from µk to βi. The vector g = ∑i=n

i=1 ti is proportional to the gradient at µk of
the function V .
2- Flow for time ε along the geodesic which starts at µk and has velocity vector g. Call
the point where you end up µk+1.
3- Set k = k + 1 and go to step 1.

4.4 Trajectories classification

Note that the both training and testing data are built by spatio-temporal

modeling and the red point is the object position we assumed. First,

Spatio-Temporal Modeling (STM) is applied on each video of training and

testing data to get trajectories of dimension Rm∗n (where n is the number

of frames for each video). Then, the rate-invariant mean shape µi of each

action ai, i = 1..k is calculated. The feature vector for a given trajectory

is then built by concatenating the distances dS between this trajectory and

all of the mean trajectories.

4.4.1 Pre-processing: Trajectories re-sampling and smoothing

Since the trajectories contains a number of imperfections, such as spikes.

The data pre-processing is very important and non-trivial. We use smooth-

ing filter which reduces high frequency components (spikes) in the tra-

jectories, improves the shapes of trajectories. Here, it is the resampling

formula we used in this work:

β (t) = 0.25β (t− 1) + 0.5β (t) + 0.25β (t + 1) (4.5)

We also did the test on the curves with resampling or not, and the
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curves with smoothing or not. Table. 4.1 shows the performance of the 3D

online action [139] when we utilized different pre-processing methods.

Table 4.1 – The performance of different pre-processing methods

Pre-processing Recognition Rate
Only after resampling 72%
Only after smoothing 75.5%
After resampling and smoothing 76%

4.4.2 Sequence Classification

We will apply the framework we introduced above on our low level feature

extracted from skeleton data of each frame which dimension is R210.

Figure 4.3 – An illustration of sequences alignment in shape space

In this way, the distance between the shape of two curves in Rm is
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invariant to their translation, scale, rotation and re-parametrization. f is

reparametrization function.

4.4.3 Mean shape of trajectories and feature vector calculation

The mean are calculated on trajectories belonging to the same action in

order to get mean of the trajectory for each action. These means will be

used in the classification of the trajectories. Moreover, the mean trajectory

is invariant to the rate of execution of given videos due to the elastic metric

used in the calculation of the mean.

The main step of feature vector calculation is shown in Fig. 4.4. The

feature vector is built by using the distances to the means of the actions

calculated on train data. Given train set T = {β1, ..., βn} ∈ R210∗n, each

trajectory corresponds to an action class labeli ∈ {a1, ..., ak}. We first calcu-

late, using algorithm 1, the mean µi for each class. Next, we calculate the

geodesic distance dS between a given curve β and the mean curves. Thus

a vector of distance of size k is provided as feature vector to classify the

curve β. For example, this is a feature vector size k of one video sequence:

dS =
{

d(β1, µ1), d(β1, µ2), ..., d(β1, µk)
}

(4.6)

4.5 Conclusion

In this chapter, we have introduced the temporal modeling framework

that we employs for shape analysis of human object interaction. Within

this framework, the shape of a curve is captured using a single representa-

tion called the square-root velocity function and interpreted in a manifold

called shape space.

In order to compare shapes on such space, we exploit an elastic dis-

tance representing similarity between shapes independently to their size,

location, orientation and elasticity. As demonstrated in the following, this

established temporal modeling framework is the core of our study on hu-

man behavior understanding.
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Figure 4.4 – Overview of off-line classification.
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5.1 Introduction

The goal of building human representations is to extract compact, de-

scriptive information, like features, to encode and characterize a human’s

attributes from perception data such as gesture, action, and interaction,

when developing recognition or other human-centered reasoning systems

[44].

In this section, we develop an approach for two different scenarios with

different challenges. As show in Fig. 5.1, there are online classification

and full sequence based rate invariant classification. The low-level feature

adopted on both scenarios due to its property. We will introduce and

discuss these two applications and corresponding results in the following

parts.

As we can see from Fig. 5.1, there are two main applications: on-

line and off-line classification which are represented by orange and green

lines respectively. Here, the two orange lines refer to different frameworks.

First, we adopt low-level feature and object related distance feature that

already introduced in previous chapter to build our feature vector for clas-

sifying task by Random Forest algorithm. Second, we adopt the low-level

feature and object feature to build our feature vector by PCA algorithm

for such task using the same classifier. The green line referring to off-line

classification adopts the low-level feature and object related distance fea-

ture which are the input for shape analysis framework to build feature

vector for Random Forest-based human object interaction recognition.

Random Forest-based human object interaction recognition

For the classification task we used the multi-class version of Random

Forest algorithm. The Random Forest algorithm was proposed by Leo

Breiman in [16] and defined as a meta-learner comprised of many indi-

vidual trees. It was designed to operate quickly over large datasets and

more importantly to be diverse by using random samples to build each

tree in the forest. Diversity is obtained by randomly choosing attributes at

each node of the tree and then using the attribute that provides the highest

level of learning. Once trained, Random Forest classify a new action from
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Figure 5.1 – Overview of our method. The main steps are shown: low-level feature
extraction from each frame; Spatial and temporal modeling; Shape analysis of feature
vector for rate invariant classification; low-level feature and fused object feature for

online classification; Random Forest based classification
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an input feature vector by putting it down each of the trees in the forest.

Each tree gives a classification decision by voting for that class. Then, the

forest chooses the classification having the most votes (over all the trees in

the forest). In our experiments we used Weka multi-class implementation

of Random Forest algorithm by considering different trees. A study of the

effect of the number of the trees is reported later in the experimental part.

5.2 Online human object interaction classification

Indeed, the trade-off between the accuracy and observation size for rapid

and real-time recognition is an important topic in a wide spectrum of real

applications, this motivates the first scenario we develop in this thesis:

online human-object interaction recognition. The main challenge here is

the accurate and real time recognition thus we propose to use low-level

features as input to classifier. Actually, the skeleton features (low-level)

are easy to extract and track from depth maps thanks to the work of [98],

utilizing low level features to describe interactions and the most relevant

parts of human poses with respect to object can make it possible to achieve

rapid and online recognition of human-object interactions.

The LOP algorithm [117] is applied on each frame of input sequence

to detect the presence and the position of the object. Then the low-level

features are calculated in each frame and the sequence is modeled as evo-

lution of the resulting feature vector; this step is denoted spatio-temporal

modeling. The rough shape and the size of the object detection represent

the next step in the pipeline of online human-object interaction recog-

nition. Together with the low-level feature resulting on spatio-temporal

modeling, the object feature represent the input of the random forest clas-

sifier.

5.2.1 Feature vector building

Using the Spatio-Temporal Modeling (STM) of low-level feature described

in the previous chapters, we now develop an online framework with dif-

ferent kinds of object features for helping in analyzing human-object inter-
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actions when viewed as trajectories. These object features help maintain

desired invariance.

The first step in the on-line recognition system is the object feature ex-

traction. Here, we perform our online framework on two types of feature

vectors respectively. First, we only use low-level feature and object re-

lated distance feature to build final feature vector for online classification.

Second, the object feature will be fused later with the low-level extracted

features to built the final features vector which will be classified online.

Both of them utilize Random Forest algorithm as classifier.

Dynamic shape deformation analysis

To capture the dynamic of object and skeleton deformations across se-

quences, we consider the two type of feature vectors computed at n succes-

sive frames. In order to make possible to come to the recognition system

at any time and make the recognition process possible from any frame of

a given video, we consider sub-sequences of n frames as sliding window

across the video.

Thus, we chose the first n frames as the first sub-sequence. Then, we

chose n-consecutive frames starting from the second frame as the second

sub-sequence. The process is repeated by shifting the starting index of the

sequence every one frame till the end of the sequence.

The feature vector for each sub-sequence is built based on the concate-

nation of individual features of the n frames of the sub-sequence.

Thus, each sub-sequence is represented by a feature vector of size the

number of distances for one frame times the size of the window n. For the

sliding window of size n ∈ [1, L] that begins at frame i, the feature vector

is:

x = [Vi, Vi+1, ..., Vi+n−1] ,

with L the length of the sequence.

For n = 1, our system is equivalent to recognition frame by frame

without any memory of previous frames. If n = L, the length of the

video, our system will provide only one decision at the end of the video.
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The effect of the size of the window on the performance is studied later in

experimental part.

5.2.2 Classification

3D Online Action dataset

For the online classification evaluation We will evaluate the performance

of our approach for action recognition based on the dataset 3D Online

Action dataset [139]. This dataset contains seven types of actions which all

those actions are human-object interactions: drinking, eating, using laptop,

picking up phone, reading phone (sending SMS), reading book, and using remote.

The bounding box of the object in each frames is manually labeled. In our

approach, we use the object labels to locate our object feature. All of the

videos are captured by Kinect. Each action was performed by 16 subjects

for two times. We compare our approach with state-of-the-art methods on

the cross-subject test setting, where half of the subjects are used as training

data and the rest of the subjects are used as test data.

Figure 5.2 – Skeleton frames from 3D Online Action dataset

Comparative Evaluation on 3D Online Action dataset

We evaluate the performance of our approach for action recognition based

on the dataset 3D Online Action dataset [139]. We compare our approach

with the state-of-the-art methods on the cross-subject test setting, where

half of the subjects are used as training data and the rest of the subjects

are used as test data.

Up to now, our work is the second one based on the 3D Online Action

dataset. The first work based on 3D Online action dataset is [139]. The

performance presented in this paper uses temporal variation of a joint
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Table 5.1 – Comparison of low-level feature-based online classification on 3D Online
Action dataset with state of the art results

Method Accuracy
[139] (with memory of previous frames) 71.4%
STM of low-level feature (without memory of previous frames) 72.1%
STM of low-level feature with memory of 10 frames 75.8%

location. We compare our approach based on low-level feature and ob-

ject related distance feature with the state-of-the-art method on the 2-fold

cross-validation and the comparison of the performance is shown in Table

6.1.

Figure 5.3 – Confusion matrix using one frame for the proposed approach on 3D Online
Action.

The recognition rate of the discriminative Orderlet Mining is 71.4%,

we note that the feature used in their method is with memory of previous

frames. Fig. 5.3 shows the confusion matrix without memory of previous

frames of the proposed method. Over all seven action categories, ’eating’,

’using laptop’ and ’reading book’ have the best recognition rate. ’drinking’

is the most confused action in all cases; it is mostly confused with ’reading

phone’.

Actually, they used temporal variation cross frames to build their fea-

ture vector. In our method, when n = 1, the feature has no memory of

previous frames, the mean value of the recognition rate by the Random
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Forest is 72.05%. For fair comparison, we need to compare our recognition

rate with n > 1 to the result in [139]. We achieve 75.8% recognition rate

for n = 10, which represents better performance than [139]. This result

can be due to the use of the distance between the object and the joints that

is more relevant than the object position used in [139].

Table 5.2 – Comparison of object feature-based online classification on 3D Online
Action dataset with state of the art results

Method Accuracy
[139] (with memory of previous frames) 71.4%
Number of the points in cubes 77.22%
Principle coordinates of the points in cubes 77.26%

As shown in Table 5.2, we compare our methods based on two different

object features that are the number of the points and principle direction

of these points in specific cube around right and left hands with discrim-

inative orderlet mining [139]. To our best knowledge, this is only work

on this database for real time classification. We achieves the classifica-

tion accuracy based on these two kinds of features are 77.22% and 77.26%

respectively. The memory both of them are 50 frames.

Effect of the number of trees in Random Forest algorithm on low-level

feature-based classification

Figure 5.4 – Human-Object interaction recognition results using a Random Forest
classifier when varying the number of trees.
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The performance of Random Forest classifier varies with the number of

trees. Thus, we perform the experiments with different numbers of trees;

the results of this experimentation is shown in Fig. 5.4. As illustrated in

this figure, the recognition rate raises with the increasing number of trees

until 60, when the recognition rate reaches 72.5%, and then becomes quite

stable. Thus, in the following we consider 50 trees and we report detailed

results with this number of trees.

Effect of the temporal size of the sliding window on low-level feature-

based classification

We have conducted additional experiments when varying the temporal

size of the sliding window used to define the sub-sequences. In Fig. 5.5,

we report results for a window size equal to 2, 5 and 10 frames. The recog-

nition rates are respectively 72.8%, 74.8% and 75.8%. Finally, we use the

whole length of the sequence (on average this is about 100 frames). From

the figure, it clearly emerges that the action recognition rate increases

when increasing the temporal length of the window. This reveals the im-

portance of the temporal dynamics and shows that the spatio-temporal

analysis outperforms a spatial analysis of the frames. By considering the

whole sequences for the classification, the result reaches 82%.

Effect of temporal size of the sliding window on object feature-based

online classification

We have conducted additional experiments when varying the temporal

size of the sliding window used to define the sub-sequences. We test

different sizes of sliding window on the two kinds of feature discussed

above and report results on these two datasets for a window size equal to

20, 50 and 80 frames. In Fig. 5.6, there two lines show that: the blue one is

the recognition rates of the principle coordinates of the points in cubes on

3D Online Action dataset are respectively 73.74%, 77.22% and 78.27%; the

red one is the the recognition rates of the number of the points in cubes

on 3D Online Action dataset are respectively 74.11%, 77.26% and 77.81%.
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Figure 5.5 – Effect of the temporal size of the sliding window on low-level feature-based
classification on 3D Online Action dataset. The classification rates increase when

increasing the length of the temporal window.

Figure 5.6 – Effect of the temporal size of the sliding window on object feature-based
online classification on 3D Online Action dataset
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Relevant features

We reveal the relevant features for human object interaction recognition.

The distances between the object and the joints are selected ones in gen-

eral. In order to better understand the behavior of the proposed approach,

we perform binary classification of each interaction. For action 1 (drink-

ing), we label the data from action 1 as the first class, the second class

includes all the remaining actions. The best features to classify action 1

(drinking) are revealed. We repeat this experiments for all the remaining

actions separately. Fig. 5.7 shows the results of this experiment. The pair-

wise distances between the the yellow and red joints are the best features

to recognize each human object interaction.

For example, the best features for drinking (action 1) are the pairwise

distances between the object joint and the skeleton joints which are on

the right hands, on both sides of the crotch, on the left hand and on the

left feet. Another example, for eating (action 2), the best features are the

pairwise distances between the object joint and the skeleton joints which

are on the left hand and on the right hand. There is another situation,

for using laptop (action 3), the best features are the pairwise distances

between the object joint and the skeleton joints which are on the crotch and

on the spinal part. Based on the attributed distances, we know which joint

on the skeleton data for each action is more meaningful for recognizing

different human object interactions.

MSRDaily Activity 3D Dataset

We will evaluate the MSRDaily Activity 3D dataset[117] for both of online

and rate-invariant classifications. It is a daily activity dataset captured

by Kinect [69] device, to cover human daily activities in the living room.

There are 16 action classes: drink, eat, read book, call cellphone, write on a

paper, use lap- top, use vacuum cleaner, cheer up, sit still, toss paper, play game,

lay down on sofa, walk, play guitar, stand up, sit down each of which was

performed twice by 10 subjects. For each video, it provides 3 kinds of

data: RGB, depth image and joint and 320 samples in total. Additionally,
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Figure 5.7 – Selected features for each interaction, the best features are the distances
between the yellow and red joints.
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the activities includes human-object interactions and human motion that

is the most important reason we choose this dataset.

Figure 5.8 – Selected RGB (top) and raw depth images (bottom) from MSRDaily
Activity 3D dataset [117]

Comparative Evaluation on MSRDaily Activity 3D dataset

In the following we provide a comparative performance analysis of our

on-line classification approach with other state-of-the-art solutions using

MSRDaily Activity 3D Dataset. We used the same protocol as [139], where

half of the subjects are used as training data and the rest of the subjects

are used as test data.

Table 5.3 – Comparison of low-level feature-based online classification on MSRDaily
Activity 3D dataset with state of the art results

Method Accuracy
[139] (with memory of previous frames) 71.4%
STM of low-level feature 76.35%

As shown in Table 5.3, we compare our method based on low-level

feature and object related distance feature with discriminative orderlet

mining [139]. To our best knowledge, this is only work on this database

for real time classification. We achieves the classification accuracy are

71.4%. The memory both of them are 50 frames.

As we know, most current methods worked on MSRDaily Activity 3D

dataset only based on the whole sequences, not online classification. We

used the same protocol as [139], where we use the videos from half of the

subjects for training and the other half for testing. For fair comparison,
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Table 5.4 – Comparison of object feature-based online classification on MSRDaily
Activity 3D dataset with state of the art results

Method Accuracy
Continuous Recognition in [139] 60.1%
Number of the points in cubes 74.86%
Principle coordinates of the points in cubes 75.53%

we show our results comparing with online methods in Table 5.4. Here

we also adopt two different object features with the same memory set to

compare with state of the art results. We can see from Table 5.4, we achieve

the classification accuracy of 76.35%, which is much better than the frame

level accuracy of discriminative orderlet mining [139]. The best one is the

feature based on the principle coordinates of the points in cubes which

classification accuracy is 75.53%.

Effect of temporal size of the sliding window on object feature-based

online classification

As with 3D Online Action dataset, we can see from Fig 5.9 that there

two lines show that: the blue one is the recognition rates of the princi-

ple coordinates of the points in cubes on MSRDaily Activity 3D Dataset

are respectively 71.59%, 75.33% and 75.53%; the red one is the the recog-

nition rates of the number of the points in cubes on ORGBD dataset are

respectively 70.68%, 74.66% and 75.66%.

From the figures, they clearly emerge that the action recognition rate

increases when increasing the temporal length of the window. This re-

veals the importance of the temporal dynamics and shows that the spatio-

temporal analysis outperforms a spatial analysis of the frames.

5.3 Off-line human object interaction classification

In this section, the scenario is different here and the challenges also are

different. Actually, to recognize a full video, the rate invariance becomes

the major challenge.

Several applications require human object interaction recognition after

the action is done. This scenario seems less constraining on real-time and
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Figure 5.9 – Effect of temporal size of the sliding window on object feature-based online
classification MSRDaily Activity 3D dataset

rapidity of calculus, however additional challenges arise such as execution

time differing for same interaction and significant spatial variation in the

way of performing an action.

The object detection and the spatio-temporal modeling are common

steps in both scenarios. The input sequences are modeled as trajectories

in R210×n (where n is the number of frames for each video) via a Spatio-

Temporal Modeling (STM). A rate invariant shape analysis of these trajec-

tories is then performed and this make the comparison of the sequences

invariant to the rate. The shape analysis framework includes calculation

of intrinsic mean of the trajectories issued from the same interaction for

training data. The rate invariant distance between a trajectory issued from

testing data and all mean trajectories calculated on training data built the

final feature vector that represents the input of Random Forest classifier.

In several applications like abnormal activity detection, the earlier the

decision can be done the better it is. We propose in this scenario an early

detection of human object interaction recognition.
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5.3.1 Feature Vector Building

For off-line classification, the final feature vector calculation we use is

based on trajectories calculation we introduce in the Chapter 4. So here,

we perform our feature vector directly on the MSRDaily Activity 3D

dataset including human action and human object interaction for rate in-

variant classification.

5.3.2 Classification

As the property of rate-invariant classification which is not online method,

we just evaluated this method on MSRDaily Activity 3D dataset.

Table 5.5 – Comparison of Rate-invariant Classification on MSRDaily Activity 3D
dataset with state of the art results

Method Accuracy
Skeleton in [117] 68.0%
4DHOI model [119] 70.0%
Skeletal shape trajectories [5] 70.0%
Discriminative Orderlet Mining on Batch Recognition [139] 73.8%
Rate-invariant classification 77.05%

As our feature vectors built only based on skeleton joint information,

this dataset is very challenging if the depth information is not used. To

make it fair for comparison, we mainly compared with the algorithms on

skeleton feature [117], [119] and [139]. [5] only used skeleton information

that is the same as our work. We used the same experimental setting

as [139] and performed on the 2-fold cross-validation which is using the

samples of half of the subjects as training data, and the samples of the rest

half as testing data. The comparison of the performance is shown in Table

6.1. We can notice in Table 6.1 that we obtained better accuracy than other

works. The accuracy of our approach is 77.05%.

Effect of the number of trees in Random Forest algorithm on off-line

classification

The performance of Random Forest classifier varies with the number of

trees. Thus, we perform the experiments with different numbers of trees;

the results of this experimentation is shown in Fig. 5.10. As illustrated in
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this figure, the recognition rate raises with the increasing number of trees

until 60, when the recognition rate reaches 72.5%, and then becomes quite

stable. Thus, in the following we consider 50 trees and we report detailed

results with this number of trees.

To fully evaluate our method, we perform the experiments with dif-

ferent numbers of trees. So we can see clearly that the performance of

Random Forest classifier varies with the number of trees from Fig. 5.10.

As illustrated in this figure, the recognition rate raises with the increasing

number of trees until 150; the recognition rate reaches the peak 77.05%

and then becomes quite stable.

Figure 5.10 – Human object interaction recognition results using a Random Forest
classifier when varying the number of trees.

5.4 Early recognition

The recognition here is still off-line, however, the earlier the decision can

be provided the better it is in several applications like abnormal activities

detection. For this end, we provide the recognition rate using the first k×

10% of the data, with k = 1, 2...10. A given test sequence is first modeled

as a trajectory in R210 and then the corresponding part of the trajectory is

compared to the corresponding part of karcher mean trajectories.

As illustrated in Fig. 5.11, the recognition rate increases slowly using
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Figure 5.11 – Early detection: trade off between the recognition rate and the percentage
of used data.

10 to 40% of the data. Then the slope becomes greater until 70% of the

data where the performance reaches about 67%. The improvement further

is slower using more data.

5.5 Conclusion

In this section, it demonstrated and justified experimentally the effective-

ness of the proposed method in the application of human-object interac-

tion recognition within two different scenarios: online recognition and full

sequence-based recognition. These two scenarios of human-object interac-

tion recognition reveal different challenges.

For the online recognition, we not only use the set of joints located in

the skeleton, the inter-joints distances and the object-joints distances but

also object feature which utilized the depth information around two hands

were used to classify the human object interaction in real-time.

For the full sequence-based recognition, we use STM to model the

pairwise distances of skeleton joints and object joints in each video as a
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trajectory. Then we compute the mean shape of trajectories corresponding

to each action in a rate-invariant way. Human-object interaction classifica-

tion is solved using Random Forest algorithm applied the feature vector

calculated based on the distances to the means of actions.

Experiments performed on MSRDaily Activity 3D dataset and 3D On-

line dataset testing on human motion and human-object interaction have

demonstrated that our proposed approach gives comparative results with

respect to state-of-the-art work.
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6.1 Introduction

Comparing to verbal or vocal communication data, visual data forms one

of the most important cues in developing systems for understanding hu-

man behavior. The applications range are from tracking daily activities to

classifying emotional states, as well as detecting abnormal and suspicious

activities.

As we know, one of the essential measure of human being’s perfor-

mance related to psychological well being is human gait. The character

and quality of human gait depends on the strength of the involved mus-

cles and a complex mental coordination process [45]. For this reason,

abnormal gait detection is very significant for elderly assistant system, es-

pecially the diagnosis of neurological diseases. In addition, the increasing

risk of cognitive impairment is affected by physical frailty [74] [113].

So the exploration of deviations from normal gait is necessary for help-

ing current frailty assessment. Besides, a quantitative evaluation of human

being’s gait attracts more concern for earlier detection of human diseases.

In the sense, the present research aims to apply the online framework

we used on human object interaction recognition in human abnormal and

normal gait analysis.

6.2 Abnormal Activity Recognition

DAI gait dataset

The DAI gait dataset [21] is collected in recording a front view of a corri-

dor which contains seven subjects walk towards the camera normally and

abnormal gait. This dataset have two types of anomalies which are knees

injured and feet dragged performed by the right and the left leg respec-

tively. So there are four different abnormal gait types. With other four

normal instances, each of the seven subjects made of 56 sequences totally.

We report some skeleton frames from DGD dataset in Fig. 6.1.

All of the videos are captured by Kinect V2. The experimental setting

is the same as in [21] which employed 20 of the available joints, discarding

the fingers and a redundant joint of the torso (Spine Shoulder).
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Figure 6.1 – Some skeleton frames of right knee injured abnormal gait from DAI gait
dataset.

Fig.6.2 shows the joints order of DAI gait dataset.

Figure 6.2 – Joints Order of DAI gait dataset.

6.2.1 Experimental protocol

The abnormal gait detection is performed on DAI gait dataset following

the state-of-the-art protocol. We selected two abnormal and two normal

sequences of each subject randomly as training set which contains 28 se-
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quences. The remaining of the dataset is testing set. We compare our

approach with the state-of-the-art methods on the cross-subject test set-

ting.

We propose an approach for dynamic abnormal gait detection using

frame-based feature and a memory of k previous frames. For k = 0,

we achieve the recognition without any memory of previous frames. We

demonstrate that the use of few distances can be enough for his classifica-

tion problem.

6.2.2 Experimental results

Table. 6.1 lists the results of our approach and result of the state of the

art[21] based on DAI gait dataset. However, our protocol is different from

the protocol used in [21]. Actually, in [21], the authors did the training on

normal sequences and detect the abnormal ones among the test sequences.

Whereas, our training set includes also some abnormal sequences.

Table 6.1 – Reported results Comparison to state of the art

Method Accuracy
Joint Motion History Features (37,42)[21] 98%
Our approach (without memory) 81%
Our approach (with 42 frames) 94.23%
Our approach (with 60 frames) 98.47%

Using a sliding window of size 37 to 42, Alexandros et al. [21] reported

98% F1-measure. We report 81% recognition rate using only one frame,

94.23% using a sliding window of 42 frames and 98.47% using a sliding

window of 60 frames.

Effect of the temporal size of the sliding windows

In order to study the effect of size of the sliding window, we report the

classification results using several values of the window size as illustrated

in Fig. 6.3. One can see that the more frames we use in the window, the

better the result is. Using only 37 frames, the recognition rate is 90%. It

reaches 94.23% and 97.01% for window size 42 and 50 respectively. Using

60 frames in the sliding window, the recognition rate is 98.47%.
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Figure 6.3 – Effect of the temporal size of the sliding window on the results. The
classification rates increase when increasing the length of the temporal window.

Relevant features

The proposed approach is based on a feature vector of 190 inter joints dis-

tances per frame. One important question is are some distances more rel-

evant than others to classify normal and abnormal gaits? Can one do this

binary classification (normal versus abnormal) using only one distance?

We investigate these questions and report classification results based

on individual distances. We show in Table. 6.2 some classification results

based on one distance which has a memory with 40 frames. The distances

number 170 is able to classify normal and abnormal gaits with a success of

92.18%. The classification results based on distances 171, 178,188 and 184

are respectively 92%, 89.83%, 93.09% and 97.15%. The distance 179 report

a success of 98.46% which is better than the result reported using all the

distances together.

Table 6.2 – Selected features recognition rate

Number of features Recognition rate
No.170 92.18%
No.171 92%
No.178 89.83%
No.179 98.46%
No.184 97.15%
No.188 93.09%

We report in Fig. 6.4 and Fig. 6.5 an illustration of the most relevant

distances for normal-abnormal gait classification. As illustrated in these
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Figure 6.4 – Illustration of distances No.171 and No.178 from DAI gait Dataset.

figures, the most relevant distances correspond to the distance between the

knee and the foot of the same leg (distance No.171), the distance between

knee and the foot of the other leg (distance No.178), the distance between

the feet from different legs (distance No.184) and the distance between

ankles (distance No.179). This result is in agreement with the data as the

4 abnormal types in the dataset are:

• RKI: Right knee injury (cannot bend the right knee, starting with left

foot)

• LKI: Left knee injury (cannot bend the left knee, starting with right

foot)

• RFD: Right foot dragging (dragging right leg, starting with left foot)

• LFD: Left foot dragging (dragging left leg, starting with right foot)

In order to better understand the behavior of the relevant distances,

we computer the mean normal distance No.179 (distance between right

and left ankles) and the mean abnormal one. We show previously that the

classification of normal-abnormal gaits using only this distance is better

than one based on all distances.

Fig. 6.6 shows the evolution of the mean of this distance in both normal

and abnormal cases. One can see that the mean distance is bigger in
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Figure 6.5 – Illustration of distances No.179 and No.184 from DAI gait Dataset.

general in the abnormal case and it includes more oscillations than the

normal one. It is clear that the variation of this distance is more stable in

the normal case.

Figure 6.6 – The mean distance of abnormal and normal gait between joints No.15 and
19.

Leave-one-actor-out Experiments

We did leave-one-actor-out experiments on DAI gait dataset. For each

time, we selected all kinds of actions of one subject as testing set and the

rest of the dataset as training set. In total, we have 7 subjects so we did the
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same experiments seven times. At last, we obtained the mean recognition

rate of the seven results. Now we can see the performance of each subject

without memory, with 42 frames and with 60 frames as shown in Table.

6.3.

Table 6.3 – Leave-one-actor-out Experiments

Subjects without memory with 42 frames with 60 frames
Subject 1 69.9% 88.12% 100%
Subject 2 65.36% 72.99% 88.26%
Subject 3 80.49% 96.58% 100%
Subject 4 66.57% 90.35% 99.12%
Subject 5 77.1% 89.35% 98.43%
Subject 6 77.53% 90.32% 100%
Subject 7 75.41% 93.36% 100%
Mean 73.19% 88.72% 97.97%

From all the results of DAI gait dataset, the proposed approach suc-

ceeded in classifying abnormal and normal human actions. The result of

experiments reports show that some distances related to the knees, ankles

and the feet are more relevant than other distances.

6.3 Multiview 3D human object interaction dataset

To evaluate our method, we built a large-scale 3D event dataset with ab-

normal and normal human activities involved human object interactions.

It is captured by two stationary Kinect sensors from different viewpoints

simultaneously. It includes 8 event categories: press button with injured arm

or with injured leg, pick phone with injured arm or with injure leg, use remote

and take it back with injured arm or with injure leg, fetch water from dispenser

with injured arm, walk around holding cane with injured leg, walk around hold-

ing umbrella with injured leg, remove chair with injured leg, walk with plate and

put it back on the table with injured arm or with injure leg and 3 modalities

include normal, injured arm and injured leg. All these activities were per-

formed by 10 different subjects each two times in normal and abnormal

way. Each event category includes about 30 video sequence instances. For

each frame, the Kinect V2 provides 25 skeleton joints which is different

from Kinect V1 which provides 20 skeleton joints.
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Figure 6.7 – The setting up of dataset collection
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Figure 6.8 – The setting up of dataset collection

Here, Fig. 6.7 and Fig. 6.8 are the photographs of the system we set up.

We have two Kinects (one on the left and one on the right), mounted on

tripods so that we get a big enough common fields (see next forwarded

mail to see the trace on the floor (dashed lines) that corresponds to the

area where both Kinects provide a good detection of the skeleton. This

represent a surface of about 3 x 3 meters starting at (about, again) 1,5

meters from the Kinects’ lenses).

There are several characteristics which make the new multi-view

dataset challenging. In the first place, we use two Kinect sensors to capture

the video. As the various types of subjects’ action, the synchronization

from different view for rate invariant recognition is a big issue to address.

In the second place, we not only capture the normal persons holding dif-

ferent objects but also abnormal persons executing activities with objects.

At last, there are two abnormal modalities which means our new dataset

has large variety when each subject performing an event.



6.3. Multiview 3D human object interaction dataset 95

6.3.1 Experimental protocol

Due to the new multi-view data, we test our on-line framework on the new

dataset in two main scenarios: different views and synchronized view. In

the scenario of synchronized view, we divide it into two different exper-

iments based on person independent or not. For each scenario, there are

three different protocols according to the properties of the new dataset. In

the first protocol, there are two classes which are normal and abnormal.

As there are two types of abnormal modalities, we make three classes:

normal, injured arm and injured leg in the second protocol. In the third

protocol, we class them by different types of activities.

So in the experiments of different views, we use all of the videos from

the one of Kinect sensors as the training set and all of the videos from

the other. In the experiments of synchronized view on person dependent,

due to each action performing twice, we use all the first iteration videos

as training set and the second time as testing set. In addition, for synchro-

nized view on person independent, we choose all the videos from half

actors as training set and the other half of actors’ videos as testing data.

All these experiments were based on the 2-fold cross-validation.

Trajectories synchronization

For the synchronized view experiments, we propose two steps for syn-

chronizing the same action from different views. First, we use the resam-

pling algorithm and the function 4.2 of shape analysis framework for the

alignment of trajectories from each frame. Second, after alignment, we

adopt the proposed fusion framework to achieve a fused trajectories by

selecting the best distance attributes from each trajectory. For the fusion

algorithm, we will detail it later.

As shown in Fig. 6.9, we apply the same framework like we did in the

temporal modeling. The β1 and β2 refer to the feature matrix obtained

from the low-level feature based on the same action from different views.

β1 (t0) is the trajectory of first frame of β1 and β1 (t1) is the trajectory of

second frame of β1. So the β1 (t) is the one of trajectories of the frames of
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β1 and β2 is the same. So after resampling, we align them frame by frame.

β2 ∗ γ∗

is the aligned trajectory after applying the function γ∗ (4.2). Then, we fuse

the β1 and β2 ∗ γ∗ as following for the same action.

Figure 6.9 – The illustration of trajectories synchronization

Trajectories fusion

As explained above, we need fuse the trajectories for each frame of the

videos from K1 and K2 which refer to these two Kinect sensors. In Fig.

6.10, we can notice that there are three colors to represent different dis-

tance attributes. Here, we calculate the distance between β1 (t) and β2 (t)

: if they are not close, we choose the mean of the corresponding distances

(red); if they are close, we choose the smoother one by comparing their

own curvature 6.1.

k = |dt/ds| (6.1)

t is the velocity vector which is also the difference between the distance

attributes on β1 (t) and β2 (t).
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Figure 6.10 – The illustration of trajectories fusion. The green, yellow and red points
refer to the distance on β (t) of the videos from K1, K2 after synchronization and mean

respectively.

6.3.2 Experimental results

Table 6.4 – The results of different scenarios for the task of multi-view human object
interaction recognition

Protocols Accuracy (%)
Different views

Protocol1 74.32

Protocol2 60.61

Protocol3 77.05

Synchronized view on person dependent
Protocol1 67.12

Protocol2 55.24

Protocol3 70.17

Synchronized view on person independent
Protocol1 62.21

Protocol3 51.41

Protocol3 65.27

During these experiments, we built our feature vectors based on the

on-line framework. Due to the different characters of two scenarios, differ-

ent views experiments use the low-level feature for the task of abnormal

and normal human object interaction recognition. In the synchronized

view experiments, we build the feature vectors based on fusing the low-
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level feature of the same action from different view by shape analysis

framework.

By analyzing Table. 6.4, it can be noticed that the results of the two

scenarios based on the three protocols show the success of the proposed

method.

6.4 Conclusion

In this section, we propose a spatio-temporal modeling of the skeleton

data based on inter-joint distances for normal and abnormal gaits clas-

sification. The proposed features are discriminative enough to classify

abnormal and normal human actions. We report 98.47% recognition rate

and show that some distances related to the knees, ankles and the feet are

more relevant than other distances. Future work will be focused on more

features to be able to distinguish the different types of abnormal gaits.

In addition, we collected a RGB-D-based multi-view 3D human object

interaction dataset including abnormal and normal human behaviors by

two Kinect sensors. We test our model on the new dataset by two different

scenarios: different views and synchronized view. The evaluation on the

scenario of different views obtained best recognition rate which is 77.05%

and also proved the effectiveness of the proposed framework.
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7.1 Summary

In this thesis, we presented contributions to the human activity recog-

nition using low-cost 3D sensors with a focus on human-object interac-

tions. We demonstrated and justified experimentally the effectiveness of

our method in two main applications; the abnormal gait detection and

human-object interaction recognition within two different scenarios: on-

line recognition and full sequence-based off-line recognition. The last two

scenarios of human-object interaction recognition reveal different chal-

lenges.

We model activities in spatial and temporal way respectively for dif-

ferent applications. Firstly, we propose low-level feature is composed of

inter-joints distance and object related distance which adopted on online

human object interaction recognition and abnormal gait detection.

Secondly, we propose object feature, a rough description of the object

shape and size as new features to model the human-object interactions.

This object feature is fused with the low-level feature for online human ac-

tivity recognition. These features have the advantage to be pose, position

invariant and discriminative to model the human articulations movement

in a given frame. A Random Forest based classification algorithm to this

end.

The experiments about online human object interaction recognition

conducted on 3D Online dataset and MSRDaily Activity dataset respec-

tively, following state-of-the-art setting demonstrate the effectiveness of

the proposed framework. The abnormal gait detection is performed on

DAI gait dataset following the state-of-the-art protocol and show that the

proposed approach success to classify abnormal and normal human ac-

tions. We report 98.47% recognition rate and show that some distances

related to the knees, ankles and the feet are more relevant than other dis-

tances.

Furthermore, the full sequence-based human object interaction recog-

nition seems easier scenario compared to online recognition. However,

this scenario reveals a new challenge which consists on rate invariance.

A more elaborated spatio-temporal modeling is proposed here. The evo-
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lution of the inter-joints and object-joints distances in time is modeled as

trajectories in a high dimension space and a shape analysis framework

is used to analyze and compare the corresponding trajectories in a Rie-

mannian manifold. This framework has the advantage to make the re-

parameterization group acting by isometry on the space of these trajecto-

ries. The distance between the orbits corresponding to two trajectories is

invariant to the rate of execution in the sequence. Another advantage of

the used shape analysis framework is the calculation of intrinsic means

which are rate invariant. This helps to summarize the shape of trajecto-

ries belonging to the same class and accelerates the classification based on

Random Forest.

Experiments performed on MSRDaily Activity dataset have demon-

strated that our proposed approach gives comparative results with respect

to state-of-the-art work.

To evaluate our algorithm, we built a multi-view 3D human object

interaction dataset including abnormal and normal human activities using

two simultaneous Kinect sensors from different viewpoints around the

subjects. The experiment results on this dataset show the effectiveness of

our method.

7.2 Limitations and future work

In this section, we briefly describe some directions that could extend our

work. As mentioned before, it is necessary to deal with the issues like seg-

mentation, modeling, and occlusion handling. Beyond that, the humanoid

image model representations are high sensitive to the inter-class activities.

So an invariant system exploration is one of major challenges for same

human object interaction class with wide variability in the features.

Except action execution rate we deal with in this thesis, camera view

point is significant for applications such as surveillance. There are some

successful approaches on single view but for multi-view miserably. So

there is the need to explore a framework for a given action captured from

the different viewpoints for different people.

Additionally, intention reasoning plays a very important role in secu-
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rity applications. For most of the cases, the system is trained for specific

actions, and may fail for different unpredicted actions. For the detection

of fighting, if the system is trained for kicking and punching, it may fail to

detect hitting with an object in fighting even though it is a part of fighting.

Today’s systems may fail to identify the difference between Karate practice

and actual fighting due to ignorance of the intention reasoning parameter.

So, there is a strong need of designing robust generalized systems with

intention reasoning.

Finally, providing product for real world problems is the most impor-

tant issue we need address in future work. Various available algorithms

for human motion representation, and recognition are mainly, driven by

specific applications or datasets. Many researchers and organizations are

actively involved in the domain, and have provided a variety of datasets.

In order to design and deploy vision based systems for various surveil-

lance, and control and analysis applications in real time environment,

there is the need of a rigorously prepared, standardized common dataset

to assess and compare the algorithmic performances. Advances in other

domain can be applied for more accurate results. The future work should

lead the Computer Vision community to provide a robust solution for real

world problems in various applications.
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Appendix

We need to quantify shape deformations of curves involving bend-

ing, stretching and shrinking. Consider the two curves. Let us fix the

parametrization of one of them to be arc-length. That is we are going to

traverse that curve with speed equal to one. In order to better match the

curve with the down one, one should know at what rate we are going

to move along the second curve so that points reached at the same time

on two curves are as close as possible under some geometric criterion. In

other words, peaks and valleys should be reached at the same time. An

elastic metric is the measure of that shrinking. This is termed an elastic

matching [102].

Elastic metric

Let B the set of all parametrized curves in Rn. β : I → Rn. β is supposed

to be continuous and β̇(t) exists almost everywhere.

Let β an element of B which derivative never vanishes: β̇(t) 6= 0, ∀t.

β̇ can be seen as: β̇(t) = exp(φ(t))υ(t), where φ represent the log-speed

and υ(t) represent the direction vector as: φ(t) = log(‖β̇(t)‖) and υ(t) =

log(‖β̇(t)‖). Clearly υ(t) and φ completely specify β̇ and the curve is seen

as element in Φ× Υ, where Φ = {φ : [0, 1] → R} and Υ = {υ : [0, 1] →

Sn−1}. Intuitively, φ tells us the (log of the) speed of traversal of the curve,

while υ tells us direction of the curve at each time t. In order to quantify

the magnitudes of perturbations of β, a metric on Φ×Υ should be putted.

First we note that the tangent space of Φ× Υ at any point (φ, υ) is given

by

T(φ,υ)(Φ, Υ) = {(u, v) : u ∈ TφΦ, v ∈ TυSn−1} (7.1)

with TφΦ = Φ. as it is a linear space. Υ is a hypersphere in the Hilbert

space L2(I, Rn) and its tangent space is given by:

TυΥ = { f , f : [0, 1]→ Rn , ∀t,< f (t), υ(t) >= 0} (7.2)
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Suppose (u1, f 1) and (u2, f 2) are both elements of T(φ,υ)(Φ, Υ) and let

a et b be positive numbers.

Definition [102](Elastic Metric). For every point (φ, υ) ∈ (Φ × Υ),

define an inner product on the tangent space T(φ,υ)(Φ, Υ) as:

< (u1, f 1), (u2, f 2) >= a2
∫ 1

0
u1(t)u2(t) exp(φ(t))dt+ b2

∫ 1

0
< f 1(t), f 2(t) > exp(φ(t))dt

(7.3)

Note that <,> in the second integral on the right denotes the standard

dot product in Rn. This elastic metric has the interpretation that the first

integral measures the amount of stretching, since u1 and u2 are variations

of the log speed φ of the curve, while the second integral measures the

amount of bending, since f 1 and f 2 are variations of the direction υ of

the curve [102]. Therefore, the choice of weights a and b determines rel-

ative penalty on bending and stretching and a family of elastic metric

is formed.The use of this metric to compare curves is motivated by the

fact that the groups SO(n) and Γ both act by isometries. Let O ∈ SO(n)

acts on a curve β by (O, β)(t) = Oβ(t) and γ ∈ Γ acts on β by (γ, β)(t).

O ∈ SO(n) acts on (φ, υ) by (O, (φ, υ)) = (φ, Oυ) and γ ∈ Γ acts on (φ, υ)

by (γ, (φ, υ)) = (φ ◦γ+ ln ◦ γ̇, υ ◦γ). O ∈ SO(3) acts by the restriction of a

linear transformation on the tangent space of Φ×Υ: (O, (u, f )) = (u, O f ),

where (u, f ) ∈ T(φ,υ)(Φ, Υ) and (u, O f ) ∈ T(φ,Oυ)(Φ, Υ).

The action of γ given in the above formula is affine linear, because of

the term ln ◦ γ. This make its action on the tangent space the same,

but without this additive term: (γ, (u, f )) = (u ◦ γ, υ ◦ γ), where

(u, f ) ∈ T(φ,υ)(Φ, Υ) and (u ◦ γ, υ ◦ γ) ∈ T(γ,(φ,υ))(Φ, Υ). Combining

the action of SO(3) and Γ with the inner product presented in equation

7.3 on (Φ, Υ), it is easy to verify that these actions are by isometries, ie,

< (O, (u1, f1)), (O, (u2, f2)) >(O,(φ,υ))=< (u1, f 1), (u2, f2) >(φ,υ)

< (γ, (u1, f1)), (γ, (u2, f2)) >(γ,(φ,υ))=< (u1, f 1), (u2, f2) >(φ,υ)

We note that in-depending of the values of a and b, both the groups

SO(3) and Γ act by isometries. An important question is: Is there some

particular choice of weights a and b to make calculus easier? We propose
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to use SRV representation already used in previous chapter for its simplic-

ity of calculus. In this chapter the SRV representation finds its potential

for elastically match curves.

Square Root Velocity representation SRV

In term of (φ, υ), SRV is given by q(t) = exp( 1
2 φ(t))υ(t). The tangent

vector to L2(I, Rn) at q is given by a simple derivation calculus as: h =

1
2 exp( 1

2 φ)uυ + exp( 1
2 φ) f . Let (u1, f1) and (u2, f2) denote two elements of

T(φ,υ)(Φ, Υ), and let h1 and h2 denote the corresponding tangent vectors to

L2(I, Rn) at q. The L2 inner product of h1 and h2 is given by:

< h1, h2 >=
∫ 1

0
<

1
2

exp(
1
2

φ)u1υ+ exp(
1
2

υ) f1,
1
2

exp(
1
2

phi)u2υ+ exp(
1
2

υ) f2 > dt

(7.4)

< h1, h2 >=
∫ 1

0
(

1
4

exp(φ)u1u2 + exp(φ) < f1, f2 >)dt (7.5)

In this computation, υ(t) is an element of the unit sphere hence the

fact < υ(t), υ(t) >= 1 was used to reduce the formula. It was used also

that < υ, fi(t) >= 0 since each fi(t) is a tangent vector to the unit sphere

at υ(t).

This expression illustrates a particular elastic metric: for a = 1
2 and

b = 1. Therefore, the L2 metric on the shape of SRV representations corre-

sponds to the elastic metric on Φ× Υ and this makes the calculus simpler.

Actually, expressed in terms of SRV, the L2 metric does not depend on

the point at which these tangent vectors are defined. Finally, the inner

product is simply given by:

< h1, h2 >=
∫ 1

0
< h1(t), h2(t) > dt (7.6)

In term of β, the SRV map is defined as: SRV : B→ L2(I, Rn)

q(t) =
β̇(t)√
‖β̇(t)‖

. (7.7)
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if β̇(t) 6= 0 and 0 otherwise.

Riemannian elastic metric on open curves

Let β : I = [0, 1] → Rn, represent a curve. To analyze the shape of β,

we shall represent it mathematically using the square-root velocity function

(SRVF), denoted by q(t), according to:

q(t) =
β̇(t)√
‖β̇(t)‖

. (7.8)

q(t) is a special function of β that we already used in previous chap-

ter for its simplicity of calculus. Actually, the classical elastic metric for

comparing shapes of curves becomes the L2-metric under the SRVF rep-

resentation. This point is very important as it simplifies the calculus of

elastic metric to the well-known calculus of functional analysis under the

L2-metric. Hence, the SRV representation finds its potential for its abil-

ity for elastic matching. Actually, under L2-metric, the re-parametrization

group acts by isometry on the manifold of q function (or SRV represen-

tation). This is not valid in the case of β. More formally, let β1 and β2

represent two curves and Γ = {γ : [0, 1] → [0, 1], γ is a diffeomorphism }

the set of all re-parametrizations.

‖β1 − β2‖ 6= ‖β1 ◦ γ− β2 ◦ γ‖. (7.9)

The use of SRV representation allows the re-parametrization group to

act by isometry on the manifold of SRV representations. This point is very

important as the curve matching could be done after re-parametrization.

The change of parametrization before the matching is able to reduce the

effect of stretching and/or stretching of the curve.

We define the set (Pres-shape space):

C = {q : I → Rn, ‖q‖ = 1} ⊂ L2(I, Rn) . (7.10)

The closure condition described in previous chapter is no more nec-

essary in this case. This simplifies the calculus, with the L2 metric on its
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tangent spaces, C becomes a Riemannian manifold. In particular, since the

elements of C have a unit L2 norm, C is a hypersphere in the Hilbert space

L2(I, Rn). In order to compare the shapes of two curves, we can compute

the distance between them in C under the chosen metric. This distance

is defined to be the length of a geodesic connecting the two points in C.

Since C is a sphere, the geodesic length between any two points q1, q2 ∈ C

is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (7.11)

and the geodesic path ψ : [0, 1]→ C, is given by:

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1, q2). The space of all curves is a sphere in Hilbert space.

Thus, the geodesic on the space of curves is the arc of the great circle

connecting the two curves seen as elements of this sphere.

As we did in last chapter, we define the equivalent class containing q

as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

to be equivalent from the perspective of shape analysis. The set of such

equivalence classes, denoted by S .
= C/(SO(3) × Γ) is called the shape

space of open curves in Rn. S inherits a Riemannian metric from the larger

space C due to the quotient structure [102].

Thanks to SRV representation, the groups Γ× SO(3) act by isometries.

This is a necessary condition to let the quotient space S inherit the metric

from the pre-shape space C.

To obtain geodesics and geodesic distances between elements of S , one

needs to solve the optimization problem:

(O∗, γ∗) = arg .min(O,γ)∈SO(3)×Γdc(q1,
√

γ̇O(q2 ◦ γ)) .

For a fixed O in SO(3), the optimization over Γ is done using Dynamic

Programming. More description of this optimization method is given in
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the next section. Similarly, for a fixed γ ∈ Γ, the optimization over SO(3)

is performed using Singular Value Decomposition method.

By iterating between these two, we can reach a solution for the joint

optimization problem. Let q∗2(t) =
√

˙γ∗(t)O∗q2(γ∗(t))) be the opti-

mal element of [q2], associated with the optimal rotation O∗ and re-

parameterization γ∗ of the second curve, then

ds([q1], [q2])
.
= dc(q1, q∗2) , (7.12)

and the shortest geodesic between [q1] and [q2] in S is given by:

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q∗2)

,

where θ is now ds([q1], [q2]).

Optimal Re-parametrization for curve matching

For the current rotation O ∈ SO(n), let q̂2 = Oq2 and define a cost function

H : Γ→ R>=0 by:

H(γ) =
∫ 1

0
‖q1(t)−

√
˙γ(t)q̂2(γ(t)‖2 dt (7.13)

In order to find the optimal re-parametrization, we need to find a min-

imum of H in Γ. Several methods allow to do that like dynamic program-

ming [91]. The cost function H is additive over the path (t, γ(t)).

Dynamic programming

Dynamic Programming algorithm (DP) [91], was first introduced in 1962

by Bellman and Dreyfus to solve matching problem. The key idea be-

hind dynamic programming is quite simple. In general, to solve a given

problem, we need to solve different parts of the problem (sub-problems),

then combine the solutions of the sub-problems to reach an overall solu-

tion. Often, many of these sub-problems are really the same. The dynamic

programming approach seeks to solve each sub-problem only once, thus
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saving a lot of computation. This is especially useful when the number

of repeating sub-problems is exponentially large. This method is based

on minimization of a certain type of cost function. This cost function has

to be additive in time t, which the case in the cost function presented in

equation 7.13. γ is seen as a graph from (0, 0) to (1, 1) in R2 such that

the slop of this graph is always strictly between 0 and 90 degrees. To de-

compose the large problem into several sub-problems, define a partial cost

function:

E(s, t; γ) =
∫ t

s
‖q1(t)−

√
˙γ(τ)q̂2(γ(τ)‖2 dτ (7.14)

so the original cost function defined in 7.13 is simply E(0, 1; γ). The com-

puter implementation details are provided in the next section.

Computer implementation

We remind that our goal is to find an optimal path from (0, 0) to (1, 1)

in R2, corresponding to (t, γ(t)) that minimizes the cost function pre-

sented in equation 7.13. In order to use a numerical approach, the do-

main [0, 1]× [0, 1] is replaced with a finite grid and we restrict over search

to that grid. The grid Gn × Gn is formed by uniform partition of Gn as

Gn = {1/n, 2/n, ..., (n− 1)/n, 1}. The search will be done over the set of

all restrictions of γ to this grid. The total cost associated with the path is

the sum of the costs associated with its linear segments. On an n× n grid

there are only a finite number of paths, even less when we impose the

slope constraint. Actually the path is never vertical or horizontal. How-

ever, this number of paths grows exponentially with n and we can not

possibly search over all possible paths in an exhaustive fashion. Instead,

the DP finds the optimal path in O(n2) time.

Denote a point on the grid (i/n, j/n) by (i, j). Certain nodes are not al-

lowed to go to (i, j) due to the slope constraint. Denote by Nij the set of

nodes that are allowed to go to (i, j). For instance N(i, j) = {(k, l)/0 ≤

k < i; l < j ≤ n} is a valid set. Let L(k, l; i, j) denote a straight line joining

the nodes (k, l) and (i, j); for (k, l) ∈ Nij this is a line with slope strictly

between 0 and 90 degrees. This sets up the iterative optimization problem:
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(k̂, l̂) = arg .min(k,l)∈Nij
L(k, l; i, j) . (7.15)

with E as defined in equation 7.14. Define the minimum energy of

reaching the point (i, j), in an iterative fashion as:

Algorithm 2: Dynamic Programming Algorithm.
E = zeros(n, n);

E(1, :) = 1;

E(:, 1) = 1;

E(1, 1) = 0;

for i← 2 to n do

for j← 2 to n do

for Num← 1 to size (Nbrs, 1) do

k = i− Nbrs(Num, 1);

l = j− Nbrs(Num, 2);

if (k > 0&l > 0) then
Hc(Num) =

H(k, l) + FunctionE(q1,
√

˙γ(τ)q2, k/n, l/n, j/n);

else

Hc(Num) = C;

H(i, j) = min(Hc);

In this algorithm, C is a large positive number, FunctionE is

a subroutine that computes E(k̂/n, l̂/n; L(k̂, l̂; i, j)) the partial cost

function defined in equation 7.14, and Nbrs is a list of sites used

to define Nij. Typically, Nbrs is a two-column matrix of type

{(1, 1); (1, 2); (1, 3); (2, 3); (3, 1); (3, 2); ..., } depending on the number of

preceding neighbors included in the implementation.
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