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Abstract 

This paper introduces a stochastic structural modelling method which honours interpretations of both faults and 

stratigraphic horizons on maps and cross-sections in conjunction with ancillary prior information such as fault 

orientation and statistical size-displacement relationships. The generated stochastic models sample not only 

geometric uncertainty but also topological uncertainty about the fault network. Faults are simulated sequentially; 

at each step, fault traces are randomly chosen to constrain a fault surface so as to obtain consistent fault geome-

try and displacement profile. For each simulated fault network, stratigraphic modelling is performed to honour 

interpreted horizons using an implicit approach. Geometrical uncertainty on stratigraphic horizons can then be 

simulated by adding a correlated random noise to the stratigraphic scalar field. This strategy automatically main-

tains the continuity between faults and horizons. 

The method is applied to a Middle East field where stochastic structural models are generated from interpreted 

2D seismic lines, first by representing only stratigraphic uncertainty and then by adding uncertainty about the 

fault network. These two scenarios are compared in terms of gross rock volume uncertainty (GRV) and show a 

significant increase of GRV uncertainty when fault uncertainties are considered. This underlines the key role of 

faults on resource estimation uncertainties and advocates a more systematic fault uncertainty consideration in 

subsurface studies, especially in settings in which data are sparse. 

 

 

Introduction 

Structural uncertainty is often a major but neglected 

factor in subsurface studies. Structural uncertainty typi-

cally stems from the lack of observations or ambiguities 

of measurement and associated processing (e.g. limited 

resolution, lack of impedance contrasts, velocity uncer-

tainty in seismic reflection data). In such a context, geo-

logical interpretation is very important and relies on 

regional knowledge about the tectonic and sedimentary 

evolution of the area through time, in addition to physical 

laws describing rock behaviour. However, the interpreta-

tion of seismic data may lead to various interpretations 

by experts (Bond et al. 2007). Consequently, a given 

subsurface model should not be considered as the truth 

but as a possible representation of the subsurface honour-

ing available information at a given stage. Additional 

data may then be used to update or even falsify the model 

in case of inconsistency with new data (Tarantola 2006). 

To address this challenge, several authors have proposed 

generating a set of possible structural models honouring 

subsurface data, then to use inverse methods to reduce 

uncertainty based on potential field or reservoir produc-

tion data (Guillen et al. 2008; Suzuki et al. 2008; Seiler 

et al. 2010; Jessell et al. 2010; Wellmann et al. 2010; 

Aydin et al. (2014); Irving et al. 2014; Lindsay et al. 

2014). The first stage in such approaches is to appropri-

ately sample prior structural uncertainty. Most techniques 

(Lecour et al. 2001; Thore et al. 2002; Caumon et al. 

2007; Mallet & Tertois 2010) start from an initial inter-

pretation and perturb the geometry of the structures, but 

keep the topology frozen, i.e., do not change fault net-

work connectivity. More recently, it has been proposed 

to perturb orientation data, which may have some impact 

on the model topology (Jessell et al. 2010; Wellmann et 

al. 2010; Lindsay et al. 2014; Wellmann et al. 2014). In 

this paper, we propose a method which does not rely on 

an initial fault network interpretation, which removes 

possible interpretation bias carried by the initial model. 

In addition, it allows, in principle, to observe a larger 

variability in the simulated models because extrapolation 

away from the data is not constrained by some initial 3D 

model. 

The Havana modelling tool introduced by Hollund et al. 

(2002) and Holden et al. (2003) similarly enables to 

generate fault networks which may have different topol-

ogies. Originally, it simulated relatively small faults and 

the associated displacement along the pillars of a refer-

ence reservoir grid (Rivenæs et al. 2005). More recently, 

Georgsen et al. (2012) and Røe et al. (2014) have pro-

posed a more flexible data model based on tilted 2D 

grids and Gaussian random fields; faults are defined 

within fixed fault envelopes and intersections are man-

aged by a cookie cutter strategy, which allows for topo-

logical changes in areas where fault envelopes overlap. 

These approaches are suitable to represent uncertainty 

about fault locations on good 3D seismic data sets, but 

tend to only explore the uncertainty around a given struc-

tural scenario.  

In this paper, we focus on fault uncertainties in settings 

where the number and overall topology of faults is poorly 

constrained. This may typically occur in onshore explo-

ration settings, or when 3D seismic acquisition or imag-

ing is challenging, for example in deep and subsalt reser-

voirs and in high-relief onshore areas. In these contexts, 

many different scenarios can be envisioned about the 3D 

fault network and the associated reservoir geometry and 
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connectivity. Exploring these scenarios with classical 

interpretation methods is demanding, costly, and subject 

to interpretive bias (Bond et al. 2007). Therefore, the 

goal of our method is to help interpretation tasks by au-

tomatically generating alternative models of field geome-

try and compartmentalization compatible with observa-

tions. The primary input of our method is a set of inter-

pretation lines corresponding to horizons and fault lines 

picked on 2D sections, together with ancillary infor-

mation (fault families and associated statistics based on 

regional knowledge and fault displacement for each fault 

line). As in Cherpeau et al. (2010 a), the method stochas-

tically regroups fault sticks based on prior knowledge, 

but new rules are introduced to generate more consistent 

fault displacement profiles. The resulting stochastic fault 

networks may have variable fault connections, reflecting 

uncertainties about the correlation of faults between 

sections. For each fault network realization, one or sev-

eral 3D structural models are generated by computing 

and possibly perturbing the stratigraphy.  

The whole methodology is implemented in a plugin of 

the SKUA-GOCAD geomodelling software. It is applied 

on a Middle East field in order to illustrate its potential 

on an exploration play. Stochastic structural models are 

generated from interpreted seismic lines and are used to 

estimate gross rock volume uncertainty. The results are 

compared to those obtained by only perturbing the stra-

tigraphy of the reference model built from 3D seismic 

data in order to highlight the influence of fault-related 

uncertainties. 

Stochastic structural modelling method 

This section presents the stochastic modelling method 

and in particular the fault object simulation. In our cur-

rent implementation, we represent faults as zero-

thickness slip surfaces. Faults may be a few hundred 

meters to kilometres long. The first step in the stochastic 

modelling workflow consists in characterizing faults 

features from the various input data (e.g. seismic profiles, 

geological cross-sections, wells). 

Cherpeau et al. (2010b) present a framework for stochas-

tic fault modelling which is based on an implicit 3D fault 

representation (also known as level set) and a binary tree 

which defines how faults intersect to define 3D regions. 

This representation has the required flexibility and com-

putational robustness to handle changes of fault connec-

tions during simulation. In Cherpeau et al. (2010a), this 

method is extended to the conditional simulation case, 

e.g. to honour fault traces interpreted from seismic sec-

tions. These methods are briefly reviewed and extended 

in the following, in particular to generate 3D stratigra-

phy. 

Faults are simulated sequentially in the input chronologi-

cal order (i.e., the oldest fault family is simulated first). 

This allows for truncating younger faults by older ones, 

thereby reproducing the arrest of fracture growth when 

abutting on a pre-existing discontinuity. This will deter-

mine whether a younger fault surface crosses or stops at 

an older fault. More complex configurations such as 

splay faults and faults being displaced by younger faults 

are currently not handled in our simulation method.  

 

From the input data, the overall stochastic structural 

modelling strategy first simulates fault surfaces to gener-

ate a fault array, then generates possible stratigraphic 

models. This process is summarized in Figure 1 and 

further described below: 

1. Prepare the data: 

1.1. Interpret fault data to create fault sticks 

(e.g., by picking likely faults traces on 

seismic sections). 

1.2. Attach information about displacement 

and location uncertainty to these fault 

sticks. 

1.3. Associate fault sticks to fault families 

based on orientation and, when relevant, 

displacement information. By default, a 

fault stick may correspond to a fault of any 

family. 

1.4. Interpret horizon data to create horizon 

lines and points. 

2. Start the iterative fault simulation: For each fault 

family by decreasing age,   

Do: Simulate a current a fault F 

2.1. If fault sticks not yet associated to the fault 

exist in the current family, randomly select 

a fault stick and generate an initial geome-

try for fault F, honouring the data points S 

and the fault orientation and center. 

2.2. Try to cluster some fault sticks with S, so 

that F honours several fault sticks. 

2.3. Perturb the initial fault geometry account-

ing for data and interpolation uncertainty. 

2.4. Work out the lateral and vertical termina-

tions of fault F and its branching onto oth-

er faults. 

While: Fault sticks remain to be processed and 

target number of faults is not reached. 

3. Build the stratigraphy: 

3.1. Generate a reference 3D stratigraphy honour-

ing horizon data.  

3.2. Perturb the 3D stratigraphy to reflect data and 

interpolation-related uncertainties.  

Input data and ancillary information 

Location information 

The fault and horizon traces picked on seismic sections, 

interpretive paper cross-sections or maps make up the 
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Fig. 1. Flow chart showing the 

general simulation process. 

 

primary input of our method. Point data may also be 

taken as input, but we will mainly discuss lines in the 

following because they correspond to the common output 

of seismic interpretation and provide useful information 

such as apparent dip. Owing to picking approximations, 

limited resolution of subsurface data and georeferencing 

and time-to-depth conversion errors, the exact location of 

these traces may be uncertain. Therefore, an uncertainty 

is attached to traces using a radial probability distribution 

around line points (Fig. 2), similarly as in Lecour et al. 

(2001), Wellmann et al. (2010). The more general model 

of Røe et al. (2014) for point uncertainty could also be 

used. During fault simulation, each fault trace (also 

named fault stick) will be associated to a fault surface. 

To avoid inconsistencies in these surfaces, we now de-

scribe additional geometric information which can be 

associated to each fault trace. 
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Fig. 2. Example of interpretation data on a vertical seismic 

section. Two seismic reflectors have been picked and are 

shown as green and orange lines. A fault trace is represented as 

a set of points (white squares); red spheres (in red) around each 

point represent the uncertainty about these fault picks. The 

maximum fault throw associated to the fault trace (in black, 

60m in this example) is estimated and attached to the fault 

trace.  

 

Fig. 3. Ambiguity about fault trace information. Many faults 

may honour a fault trace interpreted on a 2D section. Example 

of two fault surfaces representing two different faulting events 

honouring the same fault trace. 

Orientation information from fault traces 

As a fault trace is a 2D interpretation on a seismic section 

or map, the dip of a fault trace does not represent the true 

dip of the fault. Indeed, the apparent dip on a cross-

section is smaller than the true fault dip, unless the seis-

mic section is strictly perpendicular to the fault strike: 

)sin()tan()tan(  trueapparent dipdip ,  (1) 

where α is the angle between the cross-section and the 

fault strike 

Equation (1) basically tells that the uncertainty about the 

true dip is small only when the cross-section is almost 

orthogonal to the fault strike. In practice, the angle α is 

unknown so little information can be deduced from ap-

parent orientation alone (Fig. 3), but this information 

may be used to assign a fault to a fault family. 

Slip information 

Geological maps and cross-sections do not only provide 

location and orientation information about faults but also 

indications about the fault slip (Fig. 2). In seismic data 

interpretation, semi-automatic methods may also esti-

mate such information. For instance, Liang et al. (2010) 

proposed the computation of throw vectors based on 

cross-correlation of adjacent seismic traces. 

In this work, we associate to each fault trace a positive 

value representing the maximum vertical slip component. 

This information is used to constrain the fault size and 

obtain coherent displacement profiles on the simulated 

faults. The discrimination between fault types (normal or 

inverse) is made when assigning each fault trace to a 

given fault family characterized by a type and a strike 

and dip distributions. A signed slip value could also be 

relevant in tectonically complex domains where strike-

slip is dominant or when fault throw may have been 

reversed owing to fault reactivations. 

Size/Slip model 

In the field, faults are never observed entirely. Uncertain-

ties about lateral fault extent also exist in the presence of 

3D seismic data because faults are not easily identified 

when the displacement is below seismic resolution. 

Through several systematic studies, it has been shown 

that the maximum displacement dmax and fault size L are 

generally related by a power law (Yielding et al. 1996; 

Kim & Sanderson 2005): 

𝑑𝑚𝑎𝑥 = 𝑐𝐿𝑛, with 𝑛 ∈ [0.5, 2]. (2) 

 

This information is very interesting in the context of 

stochastic fault simulation because it provides a con-

straint on fault size based on the observed displacement. 

The exponent n is often assumed to be equal to 1 (Kim & 

Sanderson 2005). The factor c corresponds to the dis-

placement at unit length and may be estimated from 

analogues. 

On a cross-section, the maximum observed vertical dis-

placement (fault throw) is only an approximation of the 

true one owing to several factors: 

 The maximum throw may not be observed, so 

the fault size may be under-estimated. 

 Some faults may be missed or misinterpreted 

during interpretation, e.g. two close faults may 

be interpreted as one single fault leading to an 

over-estimation of the fault size. 

Therefore, a possible perspective could be to use random 

variables to sample parameters c and n in order to ac-

count for uncertainty about the maximum observed throw 

and the approximate nature of this type of statistical 

model. 
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Fig. 4. Flow chart showing the fault simulation steps. See text for details.  

http://dx.doi.org/10.1144/petgeo2013-030


N. Cherpeau & G. Caumon, Petroleum Geosciences 21(2015):233-247. doi:10.1144/petgeo2013-030 
Author’s version. © 2015 The Author(s). Published by The Geological Society of London for GSL and EAGE 

 

Fig. 5. Fault represented as an implicit surface. The fault is 

defined by the equipotential f of a volumetric scalar field 

DF(x,y,z). 

Fault families 

Characteristic fault shape parameters can be summarized 

through statistical distributions of size, orientation and 

sinuosity. Similar faults are grouped into fault families, 

each family relating to a given faulting event character-

ized from regional tectonic knowledge, e.g. a NW-SE 

extension or a W-E transtension. Fault families are 

ranked chronologically to represent the time sequence of 

the fault events and to model observed fault truncations: 

a fault terminates on or crosses existing faults. 

Fault traces are assigned to specific fault families when 

possible:  

 If the global fault orientation is believed to be 

almost perpendicular to seismic sections (e.g. 

from regional context), fault traces can be re-

stricted to some fault families based on apparent 

orientation, e.g., to distinguish opposed-dipping 

faults. 

 If the throw information is sufficient to discrim-

inate the fault type for a given fault trace, the 

fault trace can be restricted to belong to specific 

fault families corresponding to this particular 

fault type. 

When fault traces are assigned to several fault families, 

only the simulated faults of these families can honour 

these fault traces. 

Additionally, families contain information about the 

target number of fault surfaces to be simulated. The actu-

al number of faults in a realization may be equal to that 

target if it is sufficient to honour all fault sticks, or larger 

otherwise.  

Stratigraphic information 

The stratigraphic data corresponds to points or lines 

representing stratigraphic horizons interpreted on seismic 

sections, either manually or using horizon tracking tools. 

As compared to fault data which are associated to fami-

lies, horizon points or lines are associated with layering 

information in the form of a stratigraphic column. This 

piece of information is essential to generate layer geome-

tries, especially in the presence of unconformities. Addi-

tionally, stratigraphic orientation as observed on wells 

may be used as input, both on main stratigraphic hori-

zons and within layers (see Caumon et al. (2013) for 

details).  

Fault network simulation 

The method proceeds iteratively by fault family (Fig. 1). 

We now describe the elementary steps for simulating one 

fault of a given family, see also Figure 4. For the sake of 

simplicity, we assume below that each fault to simulate 

contains at least one fault pick (otherwise, the fault pa-

rameters are simply drawn randomly from the statistical 

information associated to the current fault family). 

Step 2.1: Initial fault geometry computation 

A fault trace S is first randomly drawn from the input 

fault data (Fig. 4a). If the average plane of the fault trace 

is inconsistent with the orientation distribution of the 

associated fault family, the dip and the strike are random-

ly drawn from that distribution. Then, a fault centre is 

randomly drawn in the neighbourhood of S (Fig. 4b). 

This fault centre is drawn in a volumetric probability 

distribution function, which is uniform if no input infor-

mation is provided. This distribution may also account 

for the distance to other faults, e.g. to simulate secondary 

faults occurring in the vicinity of existing major faults 

(conditional distribution law), or conversely to emulate 

screening effects (Ackermann & Schlische 1997). 

At this point, fault parameters (fault trace S, orientation 

and centre) are used to define the initial fault geometry 

(Fig. 4c). In our implementation, a fault is an implicit 

surface defined as the equipotential f of a volumetric 

scalar field DF(x,y,z) within a given volumetric domain A 

meshed with tetrahedra (Frank et al. 2007; Caumon et al. 

2013): 

 𝐷𝐹(𝑥, 𝑦, 𝑧) = 𝑓,       ∀ (𝑥, 𝑦, 𝑧) ∈ 𝐴.              (3) 

Each simulated fault is defined by its own scalar field 

(Fig. 5). The interpolation is performed in a tetrahedral 

mesh and scalar field values are stored on the mesh verti-

ces. This scalar field is computed by numerical optimiza-

tion as described by Frank et al. (2007) and Caumon et 

al. (2013), which makes it convenient to rapidly update 

the fault geometry in further steps. 

Step 2.2: Data clustering 

Once an initial fault surface has been computed, availa-

ble fault traces are considered as candidates for possible 

inclusion in the fault surface being built. Therefore, the 

algorithm first performs a three-step filtering in order to 

ensure plausible fault geometry and slip profile. All 

available fault traces from the same family are consid-

ered as candidates by the set of filtering rules below. 
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Data filtering based on size information (Fig. 4, d) 

Depending on the target fault size as defined in the cur-

rent fault family, fault traces that are too far away from 

the current fault centre are discarded. Indeed, their inclu-

sion in the fault would lead to a fault too long as com-

pared to the input size distribution for the family. Addi-

tionally, fault sticks which are not in the same fault block 

as the fault centre may be ignored to avoid crossing con-

tacts between faults. With our current representation of 

fault blocks based on extrapolated faults, this option is 

generally irrelevant because it tends to generate smaller 

and smaller faults as simulation proceeds 

Data filtering based on data orientation(Fig. 4, e) 

In general, fault traces with opposed dip should not be 

clustered, because it would imply significant changes in 

fault dip and unrealistic stratigraphic geometry. For a 

given fault trace S, we propose to compute the distance  

between the furthest point 𝑝𝑓 and the closest point 𝑝𝑐 

projected onto the fault surface, respectively 𝑝𝑓
𝑖𝑚𝑝𝑎𝑐𝑡

 and 

𝑝𝑐
𝑖𝑚𝑝𝑎𝑐𝑡

. The angle 𝛼′ between the vectors 𝑣𝑆(𝑝𝑓 , 𝑝𝑐) and 

𝑣𝑆
𝑖𝑚𝑝𝑎𝑐𝑡

(𝑝𝑓
𝑖𝑚𝑝𝑎𝑐𝑡

, 𝑝𝑐
𝑖𝑚𝑝𝑎𝑐𝑡

) is then computed. Clustering 

is not allowed if 𝛼′ is deemed too large, which ensures an 

acceptable dip change in case of clustering (Fig. 6). In 

case S is sub-horizontal, this strategy avoids clustering 

data points that would entail a too large strike change for 

the fault being built. In practice, 𝛼′ should not be chosen 

greater than 30o to ensure realistic orientation changes. 

This strategy could be modified to allow for listric fault 

geometries. 

Data filtering based on throw information (Fig. 4, f) 

The maximum throw attached to fault traces provides 

useful information that can help clustering fault traces in 

a consistent way. Indeed, the slip amplitude is often 

assumed to be sub-maximum to maximum at the fault 

centre and null at fault tip-line (Barnett et al. 1987; 

Walsh et al. 2003) (Fig. 7). 

Therefore, a fault honouring a trace S with maximum 

displacement dS may or may not be clustered with a trace 

S’ with maximum displacement dS’ depending on the 

following configurations: 

(1) If S and S’ are on both sides of the fault centre, 

no rule applies, so clustering is possible (trace 

S0’ in Figure 8); 

(2) If S’ is between S and the fault tip-line, dS’ 

should be smaller than dS (trace S2’ in Figure 8); 

(3) If S’ is between S and the fault centre, dS’ should 

be larger than dS (trace S1’ in Figure 8). 

These rules must be strictly applied in the case of isolat-

ed faults but are not appropriate when faults are close 

and interact because the displacement profile may then 

be more complex. They do not apply either if faults have 

grown by segment linkage (Walsh et al. 2003). Conse-

quently, a tolerance ε is introduced for more general fault 

displacement profiles, which yields the following updat-

ed rules in cases 2 and 3: 

 
Fig. 6. Fault trace filtering based on orientation. The closest 

and furthest points of each trace S1 and S2 from fault F are 

projected onto F. Angle 𝛼1
′  is too large so F cannot honour S1 

whereas 𝛼2
′  is small which enables F to possibly honour S2. The 

filtering ensures reasonable dip or strike changes in case the 

fault trace is sub horizontal. 

 

Fig. 7. Isolated fault displacement distribution. The fault dis-

placement is maximum at the centre of the fault and null at tip-

line. 
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Fig. 8. Fault trace filtering based on displacement infor-

mation. The fault honours the fault trace S with attached 

displacement dS and three other fault traces 𝑆0
′ ,  𝑆1

′ , 𝑆2
′  

(with respectively displacement 𝑑𝑆1
′ , 𝑑𝑆2

′  and 𝑑𝑆3
′ ) are 

candidates for clustering. Fault trace 𝑆0
′  is not on the 

same side of the fault centre than S; therefore  𝑆0
′  is not 

filtered out because no rule applies. Fault trace  𝑆1
′ is 

between S and the fault centre, so 𝑑𝑆1
′  should be larger 

than dS (Eq. (3)) for considering  𝑆1
′ as candidate for 

clustering. Fault trace  𝑆2
′  is between S and the fault tip-

line, so 𝑑𝑆2
′  should be smaller than dS (Eq. (2)) to consi-

der  𝑆2
′  as candidate for clustering. 

 If S’ is between S and the fault tip-line, dS’ must sat-

isfy: 

 𝑑𝑆′ ≤ 𝑑𝑆(1 + 𝜀).   (4) 

 If S’ is between S and the fault centre, dS’ must sat-

isfy: 

 𝑑𝑆′ ≥ 𝑑𝑆(1 − 𝜀).   (5) 

 

If these relations are not honoured, S’ is not associated 

with S. Other rules could also be considered to constrain 

data clustering. Indeed, if the difference of displacement 

observed at two relatively close fault sticks is large, these 

two fault sticks are unlikely to belong to the same fault 

because it would imply the stratigraphy to be highly 

curved along the fault strike. This may also be the sign of 

a branching fault occurring between the fault sticks.  

Data clustering based on angle criterion (Fig. 4, g)  

The three previous processing steps aim at filtering kin-

ematically inconsistent fault sticks. Then, remaining fault 

sticks are considered as candidates for possible clustering 

with the fault being built. The data clustering probability 

of each candidate relies on the angle α it forms with the 

initial fault surface (Fig. 9) (Cherpeau et al. 2010a). 

Small α angles entail small fault surface changes as com-

pared to large α angles, hence are considered more likely, 

i.e. the smaller α, the higher the probability of clustering. 

The algorithm first defines a Gaussian cumulative distri-

bution function CDFc(α): the distribution is centred 

(mean 0) and its standard deviation is arbitrarily chosen 

to 20 degrees. For a fault stick with angle α, the algo-

rithm computes the probability of clustering pc(α) as 

follows (Fig. 10): 

𝑝𝑐(α) = 1 − |0.5 − 𝐶𝐷𝐹𝑐(α)| × 2 
Therefore, a fault stick with α equal to zero is systemati-

cally considered for clustering and the probability of 

clustering is equal to 0.32 for α=20˚, which limits high 

curvature changes. The mean m of CDFc(α) is updated to 

be the mean of α angles of accepted fault sticks in order 

to only draw coherent fault sticks. From a computational 

point of view, this methodology avoids updating the fault 

geometry and α angles each time a fault stick is drawn. 

Steps 2.3 and 2.4: final fault geometry computation 

Fault sinuosity (Fig. 4,h) 

Once data clustering has been performed, the fault scalar 

field is updated so that the fault equipotential surface 

passes through the retained fault traces. This is achieved 

by using all traces in the optimization of the scalar field 

DF (Eq. (3)). Then, the fault scalar field is stochastically 

perturbed to obtain the final fault geometry. The pertur-

bation consists in adding a correlated random field gen-

erated by a conditional Sequential Gaussian Simulation 

whose parameters are determined from the input sinuosi-

ty parameters. The value of the random field is set to 

zero at conditional fault trace locations if no uncertainty 

exists. If a perturbation range is attached to fault traces, 

the value of the perturbation is drawn from a triangular 

law whose mode is the current location. As in Lecour et 

al. (2001), a probability field simulation (Srivastava 

1992) is used to provide the random numbers in order to 

ensure a correlated geometry between data points. 

Fault extension (Fig. 4,i) 

The next simulation step consists in modelling the exten-

sion of the fault. For that, we represent the fault existence 

domain A (Eq. (2)) by thresholding a 3D scalar field 

(Cherpeau et al. 2011). This scalar field is initialized 

analytically with a 3D ellipsoid around the fault centre. 

Without any further information and based on previous 

studies (Barnett et al. 1987; Walsh et al. 2003), the 3D 

ellipsoid is built from size parameters simulated from the 

input statistical distributions given by the users. It is also 

possible to use displacement/size statistical relationships 

to randomly draw the fault size, see Eq. (2).  

Fault intersection (Fig. 4,j) 

The simulated fault may intersect previously simulated 

faults, hence the final step consists in honouring fault 

intersections. The algorithm first tests the intersection 

with neighbour faults using a Binary Partition Tree that 

describes the fault spatial layout (Fuchs et al. 1980).  
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Fig. 9. Data clustering based on angle criterion (map view). (a) 

The angles αi between data points and the initial fault surface 

are computed (map view). The probability of clustering in-

creases when αi decreases. (b) Example of different fault sur-

faces corresponding to different data clustering. From Cherpeau 

et al. (2010a). 

 

Fig. 10. Probability law of data clustering. The probability 

pc(α) depends on the angle α between data points and the initial 

fault surface (Fig. 9). If α equals zero, it means the data points 

are already on the fault surface, thus the clustering probability 

is 1. The probability pc(α) is symmetrical about the zero angle 

and quickly decreases towards large angles to avoid sinuous 

faults. 

 

 

Fig. 11. Partial branching between two faults. In the case of 

partial branching, the algorithm may consider it as a crossing 

contact (in which the two faults are conjugate, a) or branching 

contact (in which the fault assumed youngest is truncated by 

the other fault, b). 

Then, it propagates to further faults only if needed so as 

to limit computational time. 

In some cases, the outline of the simulated fault inter-

sects another fault in only one point (partial branching, 

see Figure 11). To our knowledge, this type of configura-

tion has received little attention in the literature, either 

because it is never observed on outcrop or simply be-

cause it does not exist in nature. In such a case, we pro-

pose the fault contact to be considered either as crossing 

(Fig. 11a) or branching (Fig. 11b).   

Stopping criterion 

A target number of faults is given as input for each fault 

family. It can be estimated by the supposed number of 

fault traces per fault, regional analogues, other prior 

information or modelling constraint. The simulation 

process continues as long as the number of simulated 

faults is smaller than the input number of faults or some 

fault traces are still available, i.e. fault traces not includ-

ed in any simulated fault. The number of faults may also 

be randomized so that the algorithm generates fault net-

work realizations with varying numbers of faults 

(Cherpeau et al. 2012). 
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Stratigraphic modelling 

Computing the stratigraphy 

The method uses implicit surfaces to represent fault sur-

faces. Consequently, the tetrahedral mesh supporting the 

fault simulation is not conformable to the simulated 

faults. However, these discontinuities need to be intro-

duced into the mesh to be able to compute the strati-

graphic field with displacement along fault surfaces 

(Caumon et al. 2013). This work uses a resampling and 

point insertion Delaunay method implemented in the 

SKUA software to compute fault blocks from fault sur-

faces (Lepage 2003; Jayr et al. 2008). Then, one or sev-

eral stratigraphic fields DS(x,y,z), depending on the num-

ber of stratigraphic unconformities, are interpolated 

through the faulted model with horizon data guiding and 

constraining the process in a deterministic manner (for 

more details, see Frank et al. (2007); Jayr et al. (2008) 

and Caumon et al. (2013)).  

Stratigraphy-related uncertainty 

Stratigraphic horizon uncertainties can be divided into 

two terms: 

 A continuous uncertainty about the horizon depth 

away from the boreholes and cross-sections. In 

sparse data settings, it mainly consists of interpola-

tion and interpretation uncertainties. In seismic da-

ta settings, it relates to time-to-depth conversion 

and hence to the uncertainty about the velocity 

field in the overburden (Abrahamsen 1992; Thore 

et al. 2002). This term can be sampled by perturb-

ing horizon geometry while preserving the fault 

displacement fields. It generally represents the first 

order uncertainty. 

 A discontinuous uncertainty reflecting the uncer-

tainty about the fault displacement field (Suzuki et 

al. 2008). This uncertainty can be significant away 

from cross-sections in 2D data settings. In the pres-

ence of 3D seismic data, this uncertainty may also 

be large in poorly imaged areas such as in subsalt 

structures. 

These two uncertainties are handled by adding two corre-

lated random fields (Fig. 12, middle) to the initial strati-

graphic scalar field (Fig. 12, top) to obtain the final ge-

ometry (Fig. 12, bottom) (Caumon et al. 2007, Caumon 

2010). This correlated noise is computed in the deposi-

tional space (Mallet, 2014) for the continuous term 

(R1(x,y,z)) (Fig. 12, middle left), which ensures a coher-

ent layer perturbation across faults. A second random 

field R2(x,y,z) is computed in the xyz Cartesian space to 

model the discontinuous term (Fig. 12, middle right) with 

locally varying anisotropy aligned on the stratigraphic 

orientation. This second random field is discontinuous 

across faults to account for fault throw uncertainty. As 

such it is computed directly on the tetrahedral mesh 

through an extension of the GsTL algorithms (Remy et 

al. 2002) to the tetrahedral SKUA data structure. In both 

cases, the random field is set to zero at data location to 

guarantee data conditioning. 

Specific care is needed to ensure a homogeneous pertur-

bation of the stratigraphic scalar field DS(x,y,z). Indeed, 

the random noise has to be scaled by the local norm of 

the gradient of DS(x,y,z) so that the amplitude of pertur-

bation in meters can be considered even if the layer 

thickness varies over the domain of interest (Caumon 

2010). The perturbed stratigraphic field 𝐷𝑆
′(𝑥, 𝑦, 𝑧) is 

obtained as follows (figure 12, bottom): 

         𝐷𝑆
′(𝑥, 𝑦, 𝑧) =  𝐷𝑆(𝑥, 𝑦, 𝑧) +  𝑅1(𝑥, 𝑦, 𝑧) ×

|∇𝐷𝑆(𝑥, 𝑦, 𝑧)| +  𝑅2(𝑥, 𝑦, 𝑧) × |∇𝐷𝑆(𝑥, 𝑦, 𝑧)| (6) 

Consequently, several stochastic stratigraphic fields can 

be generated for a given fault network realization. Mallet 

& Tertois (2010) similarly account for geometric uncer-

tainty about faults and horizons but their methodology 

relies on a preferred deterministic geometric model (Mal-

let, 2014). Here, this uncertainty compounds with that 

which is sampled by the stochastic fault network realiza-

tions.  

Simulation choices: discussion 

The simulation process presented above generates sto-

chastic structural models to account for possibly large 

structural uncertainties. The various parameters describ-

ing a fault surface (choice of fault traces, orientation, 

centre, sinuosity, and dimension) are simulated sequen-

tially for each fault. The relative order of these steps is 

arbitrary and could be changed; for instance, the fault 

extension could be simulated before the data clustering 

step. In this case, the clustering rules would be stricter as 

the method actually takes the maximum fault size from 

input distribution. The fault centre could also be drawn 

after the data clustering to allow for more fault trace 

inclusion possibilities. However, we consider the fault 

centre as being a crucial parameter because it determines 

the neighbourhood of the future fault. This choice is also 

motivated by the perspective of including more input 

information during the fault nucleation step, e.g. to fa-

vour nucleation in high displacement areas and avoid 

nucleation in low displacement areas. 

In general, the simulation steps should first randomly 

draw the fault characteristics which are most constrained 

by observations. Then, these well constrained fault pa-

rameters should help constraining the simulation of the 

less informed fault characteristics, along with geological 

rules, physical laws or prior geological knowledge. 

In some geodynamic contexts, recent faults may also 

displace older ones; this is not presently allowed in the 

current workflow. This may be emulated by simulated 

older faults as independent surfaces on the more recent 

fault surface. Several strategies need to be considered to 

add such poly-phased tectonics in the proposed algo-

rithm; some recent related works such as vector-field 

based deformations open interesting avenues to address 

this problem (Bouziat 2012; Laurent et al. 2013).  
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Fig. 12. Method for modelling stratigraphic uncertainty. Top: initial geometry. Middle: the uncertainty is composed of a stratigraphic 

and a Cartesian correlated random fields. Bottom: updated horizon geometry which corresponds to the sum of the initial geometry 

with the perturbations fields. 

 

Application to a Middle East field case 

In this section, we propose to illustrate the methodology 

on a Middle East field to show the impact of both fault 

and horizon uncertainties on gross rock volume (GRV) 

estimations in a sparse data situation such as encountered 

from exploration to development phases. One of our 

main objectives here is to consider how much fault un-

certainty affects the GRV as compared to considering 

deterministic fault network and solely assessing reservoir 

depth and thickness uncertainty. The studied area is a 

horst with normal faults and three main horizons overly-

ing three stratigraphic reservoir units. 

Input data 

Both horizons and faults are interpreted on five fictive 

seismic lines orthogonal to the regional horst direction. 

These five lines and the associated 2D structural interpre-

tations are generated from a 3D seismic dataset and the 

corresponding reference interpretation (Fig. 13). For each 

fault trace S, the maximum vertical offset of horizons on 
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Fig. 13. The reference interpretation has been built from a full 

3D seismic survey. Faults and horizons have been interpreted 

on five fictive seismic lines. Fault traces have been grouped 

according to their orientation. SW dipping traces (green colour) 

are set to belong to family1. NE dipping traces (yellow colour) 

are set to belong to family2. Other fault traces (pink colour) are 

not classified hence can correspond to a fault from any fault 

family. Scale is not given and orientation has been modified for 

confidentiality reasons. 

both sides of the fault is measured and associated to S in 

the data base. Interpreted data are composed of twenty-

five fault traces and data points corresponding to strati-

graphic horizons. Uncertainty about fault location is set 

to 10m for each fault trace to reflect picking and migra-

tion uncertainty, with a triangular radial probability func-

tion centred on the reference location. In this scenario, 

uncertainty in time-to-depth conversion is assumed neg-

ligible as compared to the uncertainty due to the lack of 

data between the sections, so horizon picks are consid-

ered deterministic. For confidentiality reasons, orienta-

tion has been changed from original data, GRV unit is 

arbitrary, the stratigraphic ages and scale are not given. 

Fault network characterization 

Fault families 

From the interpreted fault traces and regional context, 

faults are grouped into two normal fault families corre-

sponding to an east/west extension: 

(1) family1 strikes [N80-N100] and dipping [60-70]. 

Most traces seem oriented along that direction 

(green data points in Figure 13) and the mini-

mum number of faults in the area is set to 5.  

(2) family2 corresponds to opposed-dipping faults, 

hence is oriented [N260-N280], dips [60-70] 

(yellow data points in Figure 13) and the mini-

mum number of faults in the area is set to 3. 

For both families, the maximum number of faults is at 

most equal to the number of fault sticks in that family. In 

this particular study, we choose to keep the models as 

simple as possible by stopping the fault simulation as 

soon as all fault sticks belonging to a given family have 

been associated to a fault surface. Therefore, the actual 

number of faults in each realization only depends on the 

outcome of the fault stick clustering procedure described 

above.  

From regional reservoir analogues, a third fault family, 

family3, oriented [N160-N180] with dip uniformly dis-

tributed in [60-70] is also expected. The number of faults 

for family3 is set to 2. The relative age of the two first 

fault families cannot be deduced from the available data 

and tectonic history, so families are considered cogenet-

ic, i.e. there is no systematic truncation rule between 

faults from different fault families. The third fault family, 

family3, is considered branching on the two first families, 

so the algorithm simulates first family1 and family2. 

Fault size 

The size/slip model (Eq. (2)) introduced previously is 

used to estimate the fault size. In the absence of regional 

analogue data, we use the coefficient 𝑐 = 0.02  provided 

by Kim & Sanderson (2005) for normal faults. 

The throws observed on the seismic sections range from 

20 to 260m, which corresponds to a maximum fault 

elongation of 13km. As discussed above, this can be 

considered as a lower bound of the actual throw because 

largest throw amplitude may occur between sections.  

Stratigraphic uncertainty 

The layer geometry is perturbed by adding random field 

realizations to the implicit stratigraphic model in SKUA. 

These perturbation fields are simulated using a Sequen-

tial Gaussian Simulation conditioned to be zero at hori-

zon picks. The perturbation amplitude is considered 

centred Gaussian in both cases, with zero mean and 

standard deviations 𝜎1 = 17m for the continuous uncer-

tainty and 𝜎2 = 8m for the discontinuous uncertainty. 

Gaussian variograms are used for both continuous and 

discontinuous stratigraphic uncertainties in order to ob-

tain smooth perturbations. Variogram ranges are equal to 

2,500m horizontally and 600m vertically for the continu-

ous term R1. The discontinuous term R2 is modelled with 

a variogram having ranges equal to 1,000m horizontally 

and 300m vertically.  

Results 

Fault networks 

190 fault networks have been simulated using interpreted 

fault traces and input fault families. All realizations have  
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Fig. 14. Gross rock volumes (GRV) distributions for units U1, U2, U3 and total volume (unit is arbitrary for confidentiality reasons) 

for case A (topological uncertainties about both faults and stratigraphy, in blue) and case B (uncertainty in the stratigraphy only, in 

yellow). P10, P90 and interquartile range (IQR) are represented for both cases. The reference model (red arrows) corresponds to a 

medium case for all units, but case A entails much larger GRV uncertainty than case B. 

 

a larger number of faults than the reference one (Fig. 13) 

because most simulated faults contain less fault traces 

than the reference model. This may be explained by: 

 Clustering rules (displacement profile, orientation 

deviation) that are too restrictive. 

 Fault size underestimation, due to an approximated 

maximum slip or inappropriate parameters c and n 

in Equation (2). Indeed, if we consider the largest 

fault in the reference model and assume n equal to 

one, the parameter c is equal to 0.013 whereas we 

used 0.02 in the simulation. This may suggest that 

some faults have been merged in the reference in-

terpretation or that some have grown by segment 

linkage. 

In a real situation, no reference model would be available 

so we chose to proceed with the stratigraphic and gross 

rock volume uncertainty assessment using all the 190 

stochastic fault networks.  

Gross Rock Volumes (GRV) 

For each stochastic fault network, five stratigraphic fields 

have been computed by adding the stratigraphic field 

obtained by interpolating horizon data through the fault 

blocks with a random noise composed of the first and 

second order perturbation R1 and R2. Consequently, 950 

structural models have been generated using the method 

presented above. These models, referred to as case A, 

were then used to study the uncertainty on the gross rock 

volumes above a deterministic planar water-oil contact 

with no transition zone located at 2800m depth in the 

three distinct stratigraphic units. 

To compare the GRV uncertainty accounting for topolog-

ical fault uncertainty method with classical uncertainty 

models which consider fixed fault networks, we also 

generated a case B comprised of 950 models obtained by 

perturbing only the stratigraphy of the reference fault 

model. The chosen stratigraphic uncertainty parameters 

were the same as in case A. Results for cases A and B are 

presented in Figure 14. 

The GRV values for case B are close to the GRV values 

of the reference model, the difference between the mean 

GRV estimation being only 0.02%. In case A, the total 

GRV mean is about 1% greater than in the reference  
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Fig. 15. Example of stochastic models (top reservoir surfaces). Top horizon is painted by the depth and contour lines for: (a.) the 

reference model, (b.) a pessimistic scenario, (c.) a medium scenario and (d.) an optimistic scenario. The black lines represent cross-

sections of Figure 16. Black points correspond to horizon data of the top reservoir. Red points correspond to the locations of the 

reference faults at the top reservoir (fault data are not visible because they are below the top reservoir). The difference in GRV esti-

mation may be explained by a deeper top reservoir in the southern part of the studied area for the pessimistic scenario and a higher 

top reservoir in the eastern part for the optimistic scenario. These zones contain few data, leading to a relatively large variability in 

the simulated models. 

 

estimation but 4% greater for unit U1 (volumes in units 

U2 and U3 are correlatively lower).  For all three units, 

the GRV interquartile range is about five times larger in 

case A than in case B. This highlights the large impact of 

uncertainty about fault definition and connectivity on the 

output volumetric uncertainty. 

Top reservoir surfaces of a pessimistic scenario (small 

gross rock volume), a medium scenario (volume similar 

to the reference) and an optimistic scenario (volume 

larger than the reference) are presented in Figure 15 and 

cross-sections of these scenarios are shown in Figure 16. 

Thanks to the prior definition of fault families and the 

fault trace clustering rules, the generated fault networks 

and the associated displacements seem globally con-

sistent and plausible in three dimensions. 

These results show that considering fault geometry and 

connectivity uncertainty may be crucial for assessing 

accumulation uncertainty when only sparse data are 

available. Indeed, whereas the reference model corre-

sponds to a medium scenario both with and without fault 

uncertainty, the low case (P10) and high-case (P90) cov-

er a much larger range when uncertainties about faults 

are accounted for. This confirms that considering signifi-

cantly varying interpretations and scenarios in poorly 

constrained reservoir studies is necessary to appropriate-

ly address uncertainties and to support field appraisal and 

development decisions.  
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Fig. 16. Example of stochastic models (cross-sections). Cross-sections AB (location shown in Figure 15) correspond to: (a.) the 

reference model, (b.) a pessimistic scenario, (c.) a medium scenario and (d.) an optimistic scenario. Some faults may be interpreted 

on all cross-sections owing to the proximity of fault traces (e.g., faults F1 and F3 from family1 and fault F2 from family2). The slip of 

fault F1 is larger for the pessimistic scenario so that the hanging wall is below the water-oil contact. The optimistic scenario seems to 

contain more faults of family2 than other scenarios, which entails the uplift of tilted foot walls. 

 

Conclusions 

The presented work sets the basis for a full stochastic 

structural modelling workflow. The method starts by the 

characterization of faults using hard data, geological 

concepts and physical laws to help determining fault 

parameters that cannot be directly measured. Then, the 

stochastic fault model samples both geometrical and 

topological fault uncertainties. During the next step, one 

or several stratigraphic fields, depending on the number 

of unconformities, are computed and stratigraphic uncer-

tainties are considered by adding a correlated random 

perturbation in both depositional and present-day spaces. 

Consequently, the method generates structural models 

with various fault connections, number of faults, fault 

slips and stratigraphic units without limiting assumptions 

about fault and horizon geometry. This set of models can 

then be used for making predictions such as gross rock 

volumes as presented on a Middle East field case study, 

which enables to better evaluate risks and be more confi-

dent for decision-making in exploration and development 

settings. Such a stochastic approach is most relevant in 

sparse data situations, because of the large uncertainties 

and broad range of possible models that cannot be sam-

pled by geometrical perturbations of a single determinis-

tic model.  

In the presented workflow, the algorithm first generates 

fault surfaces, using fault displacement information at the 

data clustering step. Then, the fault displacement is com-

puted using horizon data. Whereas faults can be seeded 

so as to reproduce interactions, some of the generated 

fault networks are not fully consistent. In particular, no 

check is made during fault simulation to ensure that the 

simulated faults have a globally consistent displacement 

field compatible with horizon data. One solution could 

consist in adding an extra step at the end of a fault object 

simulation to directly simulate a fault displacement field 

according to the fault size. Then, the algorithm could 
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compare the global measured displacement to the current 

simulated displacement field and use this information to: 

(1) nucleate new faults where observed displacement is 

still greater than the simulated one; (2) avoid nucleation 

where no displacement has been observed and (3) stop 

the fault simulation when all displacement is honoured 

given a tolerance threshold. Instead of interpolating a 

stratigraphic field constrained to horizon data, the dis-

placement of geological layers could also be modelled 

accounting for the rock behaviours, e.g. to model drag 

folds, directly in the vicinity of faults (Røe et al. 2010, 

Laurent et al. 2013).  

These improvements would constrain the simulation 

process to obtain more realistic results, in particular for 

the location and slip profile of faults. The geomechanical 

restoration of the simulated models could also be used to 

falsify inconsistent models, as done by section balancing. 

In this study, we have focused on structural uncertainties 

in sparse data contexts and we only assessed the impact 

of these uncertainties in terms of hydrocarbon accumula-

tions. In exploration studies, the proposed workflow 

could be connected with seal integrity studies. In ap-

praisal and development studies, this method also has 

potential to be integrated in the rest of the modelling 

workflow to assess the impact of structural uncertainties 

on reservoir production. This would be relevant also in 

the presence of 3D seismic data, where fault connectivity 

may also be uncertain at the fault segment scale (Julio et 

al. 2014). In all cases, structural uncertainty should be 

considered jointly with other uncertain parameters  such 

as well correlations (Lallier et al. 2012), fault conductivi-

ty, petrophysics and fluid properties.  

In practice, the computational time required for such an 

approach does not allow to consider all possible models 

but only a subset of models. These models should be 

carefully selected and ranked, for instance using reser-

voir simulation proxies. An avenue for further research is 

to increase the level of input information directly in the 

simulation model, for instance by formulating mass bal-

ance computations as stochastic simulation constraints. 

Another avenue is to falsify or update some of the mod-

els by computing their likelihood and solving an inverse 

problem. This can be done by introducing some structur-

al concepts not accounted for during the simulation pro-

cess, as done by Wellman et al. (2014). Confronting the 

stochastic models to other types of data (e.g., reservoir 

production curves) is also interesting to reduce uncertain-

ties. For example, Cherpeau et al. (2012) propose a pa-

rameterization of faults integrated in a stochastic inverse 

method and use dynamic information to infer fault char-

acteristics and reduce fault-related uncertainties. A future 

challenge is therefore to include this full stochastic struc-

tural method in such inverse problem to consider geolog-

ical features all together and not only faults separately.  
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