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Abstract Three-dimensional structural modeling is gaining importance for a broad range of quantitative
geoscientific applications. However, existing approaches are still limited by the type of structural data they
are able to use and by their lack of structural meaning. Most techniques heavily rely on spatial data for
modeling folded layers, but are unable to completely use cleavage and lineation information for constraining
the shape of modeled folds. This lack of structural control is generally compensated by expert knowledge
introduced in the form of additional interpretive data such as cross-sections and maps. With this approach,
folds are explicitly designed by the user instead of being derived from data. This makes the resulting
structures subjective and deterministic.
This paper introduces a numerical framework for modeling folds and associated foliations from typical field
data. In this framework, a parametric description of fold geometry is incorporated into the interpolation
algorithm. This way the folded geometry is implicitly derived from observed data, while being controlled
through structural parameters such as fold wavelength, amplitude and tightness. A fold coordinate system is
used to support the numerical description of fold geometry and to modify the behavior of classical structural
interpolators. This fold frame is constructed from fold-related structural elements such as axial foliations,
intersection lineations, and vergence. Poly-deformed terranes are progressively modeled by successively
modeling each folding event going backward through time.
The proposed framework introduces a new modeling paradigm, which enables the building of three-
dimensional geological models of complex poly-deformed terranes. It follows a process based on the
structural geologist approach and is able to produce geomodels that honor both structural data and geologi-
cal knowledge.
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Introduction

Three-dimensional modeling of geological structures is becom-
ing an essential component of quantitative geoscientific research.
For example, it helps to address challenges in sediment bud-
get assessment [Guillocheau et al., 2012], seismic mechanism
and seismic hazard studies [Li et al., 2014, Shaw et al., 2015],
and natural resources characterization [Cox et al., 1991, Mueller
et al., 1988, Vollger et al., 2015]. However, the construction of a
three-dimensional structural model from available observations
remains a challenging task. 3D structural modeling techniques
are essentially data-driven processes honoring spatial observa-
tions [Jessell et al., 2014]. In most cases, these techniques rely
on expert knowledge for overcoming the sparsity and uncertainty
of available observations [Maxelon et al., 2009]. Structural geol-
ogy concepts are generally incorporated in the process through
interpretive elements in the form of maps, cross-sections or con-
trol points [Caumon et al., 2009]. Because these elements cannot
be easily changed and represent the interpretation of the modeler,
they also make this process slow, deterministic, and difficult to
reproduce. Any expert editing is subjective and may introduce
human bias [Bond et al., 2007]. This limits the understanding of
uncertainties, which have to be assessed for a structural model to
fulfill its role [Bond, 2015, Caumon, 2010, Lindsay et al., 2012,
Wellmann and Regenauer-Lieb, 2012]. One way to study uncer-
tainties consist in producing a suite of possible models instead of
a single deterministic one, but this approach is limited by the nec-

essary expert editing of classical structural modeling approaches.
Moreover, structural modeling techniques are generally limited to
stratigraphic contact location and bedding orientation [Calgagno
et al., 2008, Caumon et al., 2013]. Some types of structural
data are often ignored [Maxelon et al., 2009, Jessell et al., 2010,
2014], and part of the knowledge collected in the field is actually
lost in the process of creating a geological model. A significant
challenge is to formalize conceptual information and combine
these with all observations.

While the modeling of faults using implicit approach is rela-
tively developed [Calgagno et al., 2008, Cherpeau et al., 2010a,b,
2012, Cherpeau and Caumon, 2015, Laurent et al., 2013], folds
have received little attention. Only few contributions provide
solutions to locally control fold-related geometries in interpola-
tion methods [Caumon et al., 2013, Hjelle et al., 2013, Mallet,
2004, Maxelon et al., 2009]. This is particularly difficult for
hard rock terranes, where the continuity of stratigraphic layers
and foliations are difficult to establish because of overprinting
deformation events [Forbes et al., 2004, Ramsay, 1962] (Fig. 1).

A variety of structural modeling approaches exists, which com-
bine numerical methods of interpolation [Calgagno et al., 2008,
Chilès et al., 2004, Cowan et al., 2003, Frank et al., 2007, Hillier
et al., 2014, Lajaunie et al., 1997, Mallet, 1992, 2014]. Inter-
polation techniques proceed by geometric smoothing between
data points. They perform well for dense data, but generate mini-
mal surfaces when data are sparse, thus minimizing the curvature
of the produced surfaces. However, folds are precisely charac-
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Figure 1 Interference between multiple fold events. A: photography
of an outcrop in Eldee Creek, Broken Hill block, Australia, showing
complex bedding/cleavage geometry and overprinting relationships. B:
structural analysis reveals at least three successive folding events with
associated foliations. Note that the complexity of the geometry increases
with the age of each deformation event.

terized by specific, non-minimal curvature patterns [Lisle and
Toimil, 2007, Mynatt et al., 2007].

We propose a method of interpolation which is designed to
bridge the gap between data-driven and knowledge-driven meth-
ods, and addresses: (1) A better use of available data, in particular
structural information related to folds. (2) The development of a
time-aware data-driven method that takes into account the whole
folding history. This is achieved by modifying the behavior of
interpolation algorithms and incorporating a fold description in
the interpolation process.

Our description of folding is based on a fold frame (Section 2),
whose construction relies on observable structural elements (e.g.
axial foliation). Deformation events are modeled successively by
locally characterizing the relative orientation of their structural el-
ements (Section 3). This modeling strategy is implemented in the
framework of discrete implicit interpolation techniques [Caumon
et al., 2013, Collon-Drouaillet et al., 2015, Frank et al., 2007,
Mallet, 2014] through a set of specific numerical constraints (Sec-
tion 4). The principles of this modeling strategy are illustrated on
various examples of increasing complexity (Section 5).

For simplicity, we focus on the deformation of a conformable
stratigraphic sequence, excluding faults, intrusions or unconfor-
mities. These geological features may be handled as proposed
by Calgagno et al. [2008], Caumon et al. [2013], Laurent et al.
[2013] or Røe et al [2014].

Structural description of folded structures

This section presents some basic structural concepts and struc-
tural elements associated with folds. From there, we define a
coordinate system used for parameterizing fold geometry and
guiding fold interpolation.

Structural data and notations

Various structural observations related to folding may be used as
data for building a geological model:
• Stratigraphic observations: They comprise the locations

where a given stratigraphic contact is observed, and the
orientation of bedding. These two observations are not
necessarily recorded at the same locations. For example,
bedding orientation may also be observed inside a given
layer.

• Direct structural element observations: Some of the
fold features can be directly observed, e.g. hinge locations,
fold axis directions or axial surface orientations. These
features can be observed along fold axial surfaces.

• Indirect structural element observations: Observations
of axial surface cleavages, intersection lineations and ver-
gence carry indirect information about fold parameters
(e.g. fold amplitude, tightness, wavelength and location of
the fold hinges).

The following symbols are used to refer to different strati-
graphic and fold features that are considered in this study: D:
deformation event, F: folding event, S: foliation field (generally
a cleavage associated with a fold axial surface), L: intersection
lineation (generally associated with a fold axis).

Each of these features may be indexed by a number that rep-
resents the associated relative deformation event (e.g. S1 for the
axial foliation of D1). Bedding is referred to as S0. When deal-
ing with the relationship between successive folding events, the
current event is denoted Fi, and any previous or later fold are
respectively referred to as Fi -1 and Fi+1.

2



In our framework, foliations are mathematically represented by
scalar fields. Each foliation surface corresponds to an iso-surface
of the corresponding field. Lineations are represented by unit
vector fields where the vectors are locally parallel to the lineation
direction.

The symbol † is used to denote user defined parameters or to
distinguish local observations of a given feature from the result
of its interpolation. For example, observations of bedding are
denoted S†0. The orientations of foliations are represented by
the gradient of the corresponding scalar field, denoted ∇S. For
example, observations of the orientation of a foliation S1 are
denoted ∇S†1.

Fold geometry, structural elements and finite strain

Folds are continuous geological structures describing a curved
geometry of a geological foliation (e.g. bedding, tectonic cleav-
ages). Fold geometry is commonly characterized by: (1) a hinge,
defined as the location of maximal curvature of the deformed fo-
liation; (2) an axial surface, which separates opposed limbs and
contains fold hinges; (3) a fold axis, which is defined by the in-
tersection between the deformed foliation and the axial surface;
(4) a fold movement direction, which is defined as the direction
within the axial surface in which the deformed foliation is sheared
or deviated from its original geometry [Grasemann et al., 2004,
Ramsay, 1962].

The geometry of a fold relates to the local principal finite strain
directions in which the corresponding folding event developed.
These directions are denoted¨X,¨Y, and¨Z, and respectively cor-
respond to the directions of greatest, intermediate, and least elon-
gation. They are denoted with curved arrow as they represent
curvilinear axes. Folds develop with their axial surfaces orthog-
onal to the greatest shortening direction ¨Z. Fold movement di-
rection is generally parallel to the greatest elongation direction
¨X. For cylindrical folds, the fold axis would generally align with
the intermediate direction ¨Y. When folds are non-cylindrical,
the actual fold axis direction may vary and locally deviates from
¨Y. This deviation can become very intense in the case of sheath
folds.

Different structural elements may also form as a result of the fi-
nite strain associated with a folding event Fi: (1) an axial foliation
Si, orthogonal to¨Z and parallel to¨X,¨Y and the axial surfaces of
a fold series; (2) an intersection lineation Li, which results from
the intersection between Si and Si−1, and is parallel to the fold
axis; (3) a stretching lineation Ti, which may develop relatively
parallel to Si in the¨X direction. These structural elements may be
observed in the field and should be used for constraining possible
fold geometries.

Defining a curvilinear fold frame

The principal finite strain directions are intimately related to fold-
ing and provide a consistent framework for describing fold ge-
ometry and structural elements. We use this concept to define a
coordinate system, referred to as fold frame. It consists in three
curvilinear axes, which correspond to each finite strain direction,
¨X, ¨Y, and ¨Z (Fig. 2A). The fold frame locates each spatial posi-
tion with respect to the structure of the fold, and makes it easier
to parameterize the fold geometry, especially when several inter-
fering folding events are considered (Fig. 1). Each axis bears a
coordinate represented by a 3D scalar field, respectively referred
to as x, y and z (Fig. 2B).

Figure 2 Curvilinear fold frame. A: The fold frame axes with respect
to fold geometry and fold axis L. B: The curvilinear fold frame coordi-
nates. C: Three local unit direction vectors ex, ey, ez (C1), from which
the orientation of the fold axis L1 (C2) and the deformed feature ∇S0

(C3) can be derived.

The z coordinate corresponds to a distance measured along ¨Z
from a reference axial surface of a fold series. This coordinate is
convenient for describing the variation of the deformed foliation
orientation (Section 2.5).

The y coordinate measures a distance along the intermediate
axis¨Y from a reference point (e.g. the apex of the fold, if appli-
cable). It could appear more intuitive to define this second axis
and coordinate with respect to the fold axis, but the variations of
fold axis orientation for non-cylindrical folds would cause the y
coordinate to grow at a varying rate depending on the local orien-
tation of the fold axis. The intermediate finite strain direction ¨Y
defines a more consistent second spatial coordinate, and provides
an appropriate framework for describing the variation of fold axis
direction in non-cylindrical folds (Section 2.5).

Finally, the x coordinate corresponds to a distance measured
along ¨X from a given reference point. This coordinates is partic-
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ularly useful for non-similar folds because their geometry varies
with respect to x.

Three local direction vectors are implicitly defined by the fold
frame for any location v (Fig. 2C1) and are used to define the
relative orientation of deformed foliations and structural elements
(Section 2.5). 

ex = ∇x /
∥∥∥∇x

∥∥∥
ey = ∇y /

∥∥∥∇y
∥∥∥

ez = ∇z /
∥∥∥∇z

∥∥∥ (1)

Fold frame and structural elements

As already acknowledged by Maxelon et al. [2009], axial folia-
tions are a key element to effectively parameterize folds. They
are relatively consistent and planar over the studied area, at least
for the latest events. In this paper we propose to extend this ap-
proach by using the full set of available structural observations
for building the fold frame and for constraining the fold geometry
parameterization. This process exploits the relative orientation of
the successive structural elements as detailed in Section 3.1.

In practice, various geometrical constraints can be derived
from structural observations, for example Si and Si -1 have to be
orthogonal at the fold hinge, and Li has to be parallel to both Si

and Si -1 at any location.
Defining a fold frame may also be useful for folds without vis-

ible foliations nor lineations as it provides a powerful additional
constraint to guide the interpolation of the geometry of the folds.

Defining vergence and fold rotation angles

The vergence of a given fold is defined anywhere as the relative
orientation between the axial foliation Si and the deformed folia-
tion Si -1. Vergence indicates the direction towards the next fold
closure (Fig. 3). When quantified as an angle αV , this measure
gives an indication of the relative location of a measurement with
respect to the axial surface and the inflexion points of the limbs
of a fold. For simplicity, we introduce a fold limb rotation angle
αL, which is defined as the signed complement of the vergence
angle (Fig. 3D).

αL =

 αV − π/2, if αV > 0
αV + π/2, if αV < 0

(2)

The fold limb rotation angle represents a convenient quantity
for parameterizing deformed foliation orientation with respect
to the fold frame. It presents the properties of: (1) being 0 at
the location of axial surfaces, (2) having an increasing absolute
value from the hinges to the limb inflexion points, (3) reaching a
local minimum or maximum at the location of the limb inflexion
point, and (4) having a sign that corresponds to the orientation
of the limb with respect to the axial surface. Vergence and fold
limb rotation angles can typically be computed from foliation
intersection and parasitic folds (Fig. 3BC).

The fold limb rotation angle αL corresponds to a rotation
around the intersection of Si and Si -1, which is by definition the
intersection lineation and fold axis L. With the exception of cylin-
drical folds, this direction is not parallel to ¨Y . In practice, L can
also be described by rotating ey around ez by an angle αP, which
is referred to as fold axis rotation angle (Fig. 2B2).

Modeling successive folding events

The proposed workflow is similar to how structural geologists
construct cross-sections in poly-deformed terranes. The interfer-
ence patterns that may arise in this situation are typical of the rel-
ative orientation of the successive fold events [Grasemann et al.,
2004, Perrin et al., 1988, Thiessen and Means, 1980]. Figure 1
shows that older foliations have a more complex geometry as
they are folded by later folding events. In Fig. 1, S3 is relatively
straight at the scale of the outcrop, S2 is openly folded around L3
fold axis, S1 is folded around L2 and L3, and S0 around L1, L2
and L3.

When studying this kind of complexly folded structures, it is
convenient to analyze the angular relationship between succes-
sive structural elements to progressively unravel the structural
complexity. We propose to apply a similar sequential approach
to structural modeling of complex fold structures.

A fold interpolator based on structural elements

This section defines a fold interpolator Fi that infers the geometry
of a deformed foliation Si -1 from a set of observations and fold
parameters. Fi works in four steps: (1) building a fold frame
based on observations of structural elements; (2) expressing fold
angles αP and αL as a function of fold frame; (3) inferring ∇Si -1
everywhere in space; (4) interpolating Si -1 while taking account
of S†i -1 and inferred ∇Si -1.

Building a fold frame

The process for building a fold frame may vary depending on the
structural style and available data. Here we describe a general
strategy that would cover most cases.

A foliation field Si is first interpolated including all relevant
data (S†i , ∇S†i , L†i ). If a folding event that would affect Si is
defined, i.e. Fi+1, we use Fi+1 as an additional constraint. Si is
taken as the z coordinate of the fold frame. The coordinates y
is then interpolated with the constraints for y to be orthogonal
to z, and ey to align at best on L†i . The coordinate x is finally
interpolated orthogonal to both y and z.

Fold rotation angles interpolation

The fold plunge and limb rotation angles, αP and αL, are defined
as functions of the local fold coordinates. They can be interpo-
lated from observed foliation and lineation data, and stored as
scalar fields. When a particular fold model is considered, it be-
comes possible to express αP and αL with an analytic function of
the fold coordinates (e.g. Section 3.3).

Ideally, analytic fold profiles should be fitted to data or used
as a basis for data interpolation. Typical parameters for analytic
fold profiles would be the fold wavelength λ, a range of fold rota-
tion angle [αLmin, αLmax], a hinge shape factor p. This modeling
process should also consider that the values of αP and αL might
be affected by overprinting folding event, for example by super-
imposing different analytic fold profiles. Combination of profiles
is also a way to represent parasitic folds.

Inferring deformed foliation orientation

At any location v, the orientation of the fold axis Li and de-
formed foliation ∇Si -1 are defined with respect to the local fold
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Figure 3 Fold limb rotation and vergence. A: Schematic of an antiform in cross-section with axial foliation and parasitic folds. Vergence symbols
(�) represent the direction towards the next antiform in each limb of the fold. Vergence angle is computed either: (B) from an intersection of S1

and S0 foliations, or (C) from the asymmetry of parasitic folds. D: Definition of fold limb rotation angle (αL) with respect to vergence angle (αV ).

frame direction vectors (ex, ey, ez) with the following two rota-
tions (Fig. 2C):
• Fold axis rotation R1: rotates the whole frame around ez

by a fold axis rotation angle αP, yielding:

Li = R1 · ey (3)

• Fold limb rotation R2: rotates the whole frame around Li

by a fold limb rotation angle αL (Fig. 3D), yielding:

∇Si -1 = R2 · R1 · ez = R · ez (4)

For cylindrical folds, Li is constant in space, and can be repre-
sented by a global fold axis vector or rotation angle.

Deformed foliation interpolation

The final stage of the fold interpolator algorithm consists in inter-
polating Si -1, while taking S†i -1 and inferred ∇Si -1 into account.
This is achieved by implementing fold related constraints in clas-
sical interpolation schemes [Frank et al., 2007, Hillier et al.,
2014, Lajaunie et al., 1997]. Fold constraints control the ori-
entation of ∇Si -1 with respect to fold axis, axial surface and fold
limb directions. They also specify how ∇Si -1 must vary in space.
As an example, Section 4 derives these constraints for discrete
implicit schemes.

Backward modeling of successive fold events

Understanding the relationship between successive folding events
provides a guideline to unravel poly-deformed geometry. The
latest deformation event is modeled first, assuming that its associ-
ated foliation field Sn should not have been affected by any later
deformation and should then be relatively consistent and smooth
through the studied area. This assumption makes it relevant to in-
terpolate Sn with classical interpolation tools [Frank et al., 2007,
Hillier et al., 2014, Lajaunie et al., 1997]. Once the foliation field
Sn is built, it is combined with some user-defined fold parameters
to build a complete description of the folding event (Section 3.3).
Fn is then applied to model Sn−1. This process is progressively re-
peated to model the geometry of older features until the bedding
is finally generated (Fig. 4).

Simplified fold interpolator for similar folds

Dip isogons [Ramsay and Huber, 1987] correspond to lines of
equal αL. For similar folds, the dip isogons are parallel to the
axial surfaces. Therefore, αL is constant for each iso-surface
of zi and can be expressed as a function of z only. This allows
simplifications of the fold frame. Typically, x does not bring any
information and is not explicitly represented. Instead of using
Eq.(1), ex is expressed as a cross product of ey and ez:

ex = ez × ey (5)

We propose the following periodic function α̃L(z) as an exam-
ple of possible parameterization of αL, λ being the wavelength
of the fold with respect to z, | · | the absolute value and 〈·〉 the
fractional part operator:

α̃L(z) = 4

∣∣∣∣∣∣ 1
2
−

〈
z
λ
−

1
4

〉 ∣∣∣∣∣∣ − 1 (6)

The shape of the fold hinge is another important characteristic
for describing the geometry of a fold [Jessell et al., 2014]. It is
represented by the fold hinge shape parameter p (Fig. 5). For a
same inter-limb angle, the curvature of the fold may be concen-
trated close to the hinge (p � 1), evenly distributed between the
hinge and the limb (p = 1), or spread towards the limbs (p < 1).
This is implemented with the following equation, where αLmax
is the fold limb rotation angle at the inflexion point of the limb:

α̂L(z) = αLmax Sign
(
α̃L(z)

) p
√∣∣∣ α̃L(z)

∣∣∣ (7)

Structural fold constraints for discrete implicit
scheme

In this section, we use our parameterization of fold structures to
derive constraints that can be used in the framework of discrete
implicit modeling.

Discrete implicit approach

A discrete implicit approach represents geological surfaces as a
piecewise linear scalar field ϕ, which is defined by a discrete vol-
umetric mesh [Caumon et al., 2013, Frank et al., 2007, Mallet,
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Figure 4 Iterative fold modeling process for a type-3 interference pattern [Ramsay and Huber, 1987]. A: Complex geometry of S0, modeled with a
few data points (S0 and S1). B: Structural interpretation, basis for the modeling showing the overprinting of two folding events. C: S2 modeled from
a general trend with a classical interpolation process and definition of F2 axial surfaces (black lines) as isosurfaces of S2 (imposing a wavelength of
2). D: fold rotation angle αL2 modeled as a periodic function of S2 with αL2max of 70◦. E: S1 interpolation based on S†1 and F2. F: Definition of F1

axial surfaces (black lines) from S1. G: fold rotation angle αL1 modeled as a periodic function of S1 with αL1max of 85◦. H: S0 interpolation based on
S†0 and F1.

6



Figure 5 Effect of the fold hinge shape parameter p on the shape of
the folds. The figure shows an antiform with an αLmax of 60◦ and an
axial surface dipping 30◦ to the left.

2002, Moyen et al., 2004]. The scalar field is linearly interpolated
from the nodal values ϕc of each mesh element. The gradient of
the scalar field ∇ϕ is constant in each element. Within tetrahedral
elements, ϕ and ∇ϕ are defined as functions of Cartesian coordi-
nates, x̄, ȳ, and z̄, by two matrices M and T, which depend on the
geometry of the tetrahedron (A):

ϕ
(
x̄, ȳ, z̄

)
=

[
1, x̄, ȳ, z̄

]
·M · ϕc (8)

∇ϕ
(
x̄, ȳ, z̄

)
= T · ϕc (9)

The interpolation process finds optimal nodal values with re-
spect to two conditions:
• Data boundary conditions: each observation of either the

value of the scalar field or its gradient generates new linear
equations by applying Eq.(8) and (9).

• A regularization term: it enforces the interpolation by
smoothing the scalar field between the data boundary con-
ditions. This is implemented by the so-called constant
gradient constraint or roughness, which minimizes the gra-
dient variation between neighbor elements [Frank et al.,
2007].

These different constraints generate a system of linear equations,
which is solved with a Least Squares approach yielding the corner
values ϕc as a solution [Frank et al., 2007].

The constant gradient constraint tends to progressively atten-
uate the orientation variations away from data. This has two
consequences on the interpolation:
• Limiting the development of folds: this is because folds

are actually introducing orientation variations, which
should be used and propagated by the interpolator. In
contrast, they tend to be erased by the constant gradient
constraint.

• Promoting parallel fold shape: they are the type of fold that
best spreads the orientation variations, yielding the lowest
possible curvature. Therefore parallel folds are promoted
by constant gradient constraint.

These observations call for the development of another type of
regularization term to complement the capabilities of the constant
gradient constraint.

Structural fold constraints

In addition to the above classical constraints, we propose a se-
ries of fold related constraints. Each constraint is defined with
respect to the local fold frame direction vectors (ex, ey, ez) and
fold rotation angles (αP, αL).

Gradient orientation constraints

The orientation of ∇ϕ has to honor two constraints:
• Fold axis constraint: by definition, ∇ϕ is orthogonal to the

fold axis Li:
Lt

i · T · ϕc = 0 (10)

• Fold limb rotation constraint: the fold rotation R (Eq. 4)
constrains the orientation of ∇ϕ along the axial surface
and in the limbs of the fold. This is added to the system in
the form of:

ez
t · Rt · T · ϕc = 0 (11)

Gradient norm and variation constraints

We propose to use the local fold frame direction vectors (ez, ex, ey)
for controlling which component of ∇ϕ may vary. These equa-
tions consider two adjacent tetrahedra, whose variables are re-
spectively indexed 0 and 1:

ex0
t · R0

t · T0 · ϕc0 − ex1
t · R1

t · T1 · ϕc1 = 0 (parallel) (12)
ex0

t · T0 · ϕc0 − ex1
t · T1 · ϕc1 = 0 (similar) (13)

When considering parallel folds, the variation of thickness has
to be minimized in the direction orthogonal to the folded foliation,
i.e. the projection of ∇ϕ onto R· ex should be constant (Eq. 12).
For similar folds, only the apparent thickness in the direction ex
is preserved.

A constraint for controlling the norm of the gradient ||∇ϕ|| is
also introduced. This may help to improve the quality of interpo-
lated ϕ when the fold frame is particularly curved, for example
when refolding occurs.

ex
t · Rt· T · ϕc = 1/hp (parallel fold) (14)

ex
t · T · ϕc = 1/hs (similar fold) (15)

hp and hs denote the local expected thickness of a unit layer
for parallel fold and similar fold respectively.

Synthetic examples of fold interpolation

Three synthetic cases are presented. The first example illustrates
the process of modeling successive fold events. The second ex-
ample demonstrates the possibility to fill a gap of information
in a fold series and interpolate structural information. The last
example simulates the process of creating a three-dimensional
model of refolded layers from field observations.

Modeling fold interference

Figure 4 shows a cross-section where an upright fold F2 over-
prints a recumbent fold F1. This represents a type-3 interference
pattern as described by Ramsay and Huber [1987].

This complex structure is obtained by progressively modeling
the effect of each fold event, starting with F2. S2 is modeled with
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a constant orientation through the model. Eq. (7) is then applied
to compute αL2 as a function of s2, with λ equals 2 and αL2max
set at 70◦, which generates relatively open to tight folds. F2 is
then used to interpolate S1. The process is repeated for modeling
S0 with respect to F1, using a αL1max of 85◦ and a wavelength of
2.

Structurally-controlled fold series interpolation

Figure 6 illustrates the interpolation of an irregularly sampled
fold series. This example considers two outcrops with dense data
sampling separated by an area lacking observations. Classical
interpolation smooths the stratigraphy and fills the gap with a
very large synform (Fig. 6A), which is inconsistent with the reg-
ular wavelength observed in the dataset. With our approach, this
dataset may be interpreted as a consistent series of folds. The fold
limb rotation angle is computed following Eq.(7). Different sim-
ulations are produced with varying wavelength λ, inflexion point
angle αLmax and hinge shape parameter p (Fig. 6B-E). This il-
lustrates how different fold geometries honoring observation data
can be simulated using our parameterization.

Complex synthetic case study

Our last experiment simulates the construction of a complex struc-
tural model from field data. We use a synthetic example as it
makes it possible to work in a controlled environment and to
compare final results with a reference model.

Synthetic reference model and data extraction

The reference model has been created with a history-based ap-
proach [Jessell and Valenta, 1996]. It represents a series of 11
stratigraphic layers, with varying thickness as shown by the strati-
graphic column (Fig. 9A). The model is 1 by 1 kilometers large
and 500 meters high. A topography representing a valley cutting
through a plateau has been simulated, with elevations varying
between 20 and 200 meters (Fig. 7A). Two folding events are
considered:
• F1: large scale reclined folds (wavelength: 608m, ampli-

tude: 435m, fold axis: N000E/45◦).
• F2: upright open folds (wavelength: 400m, amplitude:

30m, fold axis: parallel to L1).
The two folding events overprint in a type-3 interference pattern
[Ramsay and Huber, 1987].

Three outcropping regions have been delineated covering 30%
of the modeled area. Data have been extracted from this reference
model by picking the orientation of corresponding surfaces or by
intersecting them with the topographic surface (Fig. 7). Four
kinds of data are generated:
• Contacts lines between stratigraphic layers.
• Form lines of S0, S1 and S2.
• Orientation of S0, S1 and S2.
• Intersection lineations for F1 and F2.

The chosen sampling of orientation data produces values that are
representative of a certain radius around the picked point and
has inherent inaccuracy in the way it locates the measurements.
This emulates the way orientation data are collected in the field,
with location uncertainty and orientation upscaling. This process
ensures that generated data carry the same kind of uncertainty as
those collected in the field.

Sequential fold modeling process

We apply the modeling process presented in Section 3. The fol-
lowing features are successively modeled:
• S2 (Fig. 8A): interpolated from S2 orientation measure-

ments and form lines. One of the orientation control points
is attributed a value of 0 and a gradient norm of 1 to make
the interpolation solution unique.

• αL2 (Fig. 8B): modeled from the geometrical characteris-
tics of F2 with respect to S2 with the following parameters:
[αLmin, αLmax] = [−25,+25], λ = 390, p = 1.

• S1 (Fig. 8C): interpolated from S1 orientation measure-
ments and form lines with constraints derived from F2.
Fold constraints that are used correspond to a fold axis
constraint Eq.(10), a fold limb rotation constraint Eq.(11)
and similar fold regularization Eq.(13). Two additional
value data points are introduced in the northern and south-
ern borders of the model to help the interpolated values
to stretch in the whole model and limit problems of gra-
dient norm diffusion due to the limited number of value
constraints [Laurent, 2016]. In addition, a similar fold gra-
dient norm constraint Eq.(15) appears to be necessary to
obtain good results.

• αL1 (Fig. 8D): derived from S0 measurement and interpo-
lated S1, similarly as in stage 2, with the following param-
eters: [αLmin, αLmax] = [−80,+80], λ = 100, p = 5.

• S0 (Fig. 9C): finally interpolated from S0 measurements
and form lines, with constraints derived from F1.

Structural analysis of resulting models

The quality of the result is qualitatively evaluated by comparing
with the reference model and the result obtained with constraints
used in classical interpolator (bedding contours and orientations,
and a fold axis direction) (Fig. 9). With this example, classical
interpolation honors bedding information and roughly captures
the central F1 fold. But several aspects appear to be very different
from the reference model:
• The style of the modeled fold is not correct: the fold ob-

tained corresponds to a parallel fold, and shows no hinge
thickening apart from where it is directly constrained by
the data, whereas F1 are similar folds with thickened
hinges and attenuated limbs in the reference model.

• F2 are not visible which causes the limbs of the F1 fold to
be much smoother than in the reference model.

• The style of F1 hinges is very different from the reference
model. They are wide and open in the interpolated model,
whereas they are narrow and acute in the reference one.

• There is only one axial surface of F1 causing the limbs
to continue straight without folding again. This results in
very different stratigraphy in the South-West and North-
West part of the model, where the stratigraphy is not re-
peated as in the reference model.

The model obtained with the proposed method (Fig. 9C) ap-
pears to be much closer to the reference model. Overall, the
obtained geometries are more satisfactory when comparing the
structural elements of the folds. They honor the principal charac-
teristics of the reference model:
• Several F1 folds are visible, which makes the resulting

stratigraphy much closer from the reference model in the
South-West and North-West parts.

• F1 are close to similar folds, showing hinge thickening,
limb attenuation and tight hinges.
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Figure 6 Comparison between classical interpolation and fold interpolation. The same data points (circles and arrows) are considered in each
interpolation. There is a gap in available data, where the interpolation behavior of each interpolator is observed. A: classical interpolation obtained
with a constant gradient regularization term. B-E: proposed method of fold interpolation with different fold parameter values.

• F2 refolding F1 are visible, with undulating stratigraphy in
F1 limbs.

Some differences can still be observed. Mainly, the southern and
northern F1 hinges are slightly shifted as compared to the ref-
erence model, which causes the stratigraphy to be different in
this regions. This is interpreted as an effect of small variations
of S1 gradient norm on the southern and northern borders of the
model, which are related to difficulties in interpolating S1. How-
ever, these disparities are located in areas that are not controlled
by any data, and thus seem very acceptable.

Quantitative analysis of resulting models

The quality of the result obtained with a classical interpolation
and the proposed fold interpolation method are quantified by mea-
suring the difference in stratigraphic value and orientation with
respect to the reference model (Fig. 10).

Both interpolation methods generate relatively low errors of
stratigraphic value and orientation in the regions with high data
density (i.e. outcrops). For the model interpolated with the clas-
sical method, the error rapidly increases when going away from
the well constrained areas (Fig. 10AC).

The proposed method interpolates stratigraphic values that are
closer to the reference model (Fig. 10B). Important variations
are still observed, in particular in the NW and SE corners of
the model, which is mainly due to (1) a limited conditioning
of this stratigraphic areas, and (2) problems of diffusion when
interpolating S1 (Section 5.3.2). The differences of orientation
are concentrated in the F1 hinges. The location and the shape of
the hinges are not correctly accounted for (Fig. 10D).

Discussion and perspectives

Case studies presented in this paper demonstrate how our ap-
proach improves the capability of structural interpolator to gener-
ate realistic and structurally-controlled stratigraphy, that honors
all available structural constraints. Jessell et al. [2014] highlight
two limitations of current implicit modeling schemes: (1) they

are incapable of interpolating or extrapolating a fold series with a
continuous structural style (Fig. 6A); (2) the shape of fold hinges
they produce is not controlled and may yield inconsistent geome-
tries. These two caveats are addressed by our approach. We are
able to interpolate and extrapolate while honoring assumptions
about the continuity of the structural style (Fig. 6B-E), and about
the shape of the fold hinges (Fig. 5).

This process needs a practical way to infer fold parameters
from field observations. Here, they have been manually deter-
mined by comparing the inferred orientation of interpolated folia-
tions to the dataset. This trial and error process was sufficient for
proving the concept of our approach, but would be a limitation for
complex applications. Early attempts have shown encouraging
results in using statistical approaches to derive parameters such
as wavelength and fold directions. Unfortunately, the difficulty
of this task increases with the complexity of the folds and the
number of folding events. We think the fold frame introduced in
Section 2.3 provides an appropriate structure to carry out such
statistical analysis, but this needs to be further developed in future
work. Such a tool would have to consider the uncertainties that
are related to the determination of fold parameters, for example
by using a probabilistic approach. In this contribution, only the
parameterization of fold rotation angle for similar folds has been
presented. A general method to compute it for any type of fold
also needs to be investigated.

There is still a gap between the requirements of the fold mod-
eling process (Section 3) and the proposed fold constraints (Sec-
tion 4.2). Here, we focused on the way a fold event would deform
the axial surface of an earlier fold. The effect of F on fold axis
and rotation angles also need to be better characterized.

The interpolation schemes that are used represent another point
of discussion. The discrete implicit method is able to balance
the contribution of each constraint when assembling its linear
system. The result may be very sensitive to the relative weight
of the different constraints. This is beneficial because it allows
for the relative weights to be adapted to different structural styles
and data confidence. Ideal relative weights may be difficult to
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Figure 7 Synthetic data generated from the reference model used in
this study (Fig. 9A). A: Stratigraphic column, topography and strati-
graphic outcrop map. B: Structural data gathering foliation orientation
measurements, form lines and intersection lineations.

find and would depend on the quantity and quality of available
data.

In the discrete implicit approach, the mesh plays an impor-
tant role in terms of feature resolution and of computation time.
Larger wavelength folds could probably be modeled using a
coarser mesh than tighter folds. It would be interesting to adapt
the mesh with respect to the modeled fold event. The modeled
features are also more likely to present a high curvature close to
the fold hinges than in the limb. The mesh could then be adapted
to the position in the axial surface field of the current fold. Unfor-
tunately, discrete linear approaches also suffer from limitations
related to the underlying mesh as illustrated in Laurent [2016].

In this contribution, the fold axis direction is represented by an
angle αP of rotation of ¨Y axis. Alternatively, a 3D vector field
interpolated from the fold axis orientation data could be used.
This is not the approach we are promoting here as the process
of interpolating a direction field needs to be further developed.
The description we are using is however compatible with this
representation of the fold axis field. The fold axis could also
be represented as the gradient of a scalar field, but we advocate
that this option would introduce undesired limitations because
the curl of such a vector field would be 0, which is not the case
of typical fold axis direction field we would like to model.

Conclusion

Two principal contributions to geological modeling and structural
geology are presented in this paper:
• A theoretical and numerical framework for modeling su-

perimposed folding events.
• A series of constraints for discrete implicit modeling

schemes dedicated to fold geometry modeling.
Further developments remain necessary to make this technique
fully applicable in the context of a real case study. However, this
paper represents a step towards a better integration of geologi-
cal knowledge and structural parameters into the interpolation
schemes. The complex synthetic case study presented in Sec-
tion 5.3 proves this approach useful for building structural mod-
els from field data, but would now have to be tested on a real case
study.

The main development perspectives of this method are the ex-
tension of the fold parameterization to other types of folds and the
implementation of a robust and efficient method for deriving fold
parameters from observation data. This would give the opportu-
nity to develop new kinds of uncertainty studies. Existing litera-
ture focuses on the geological uncertainty related to measurement
data [Lindsay et al., 2012, Wellmann and Regenauer-Lieb, 2012],
which is investigated by perturbing the measurements within un-
certainty ranges. Others studies have defined parametric objects
to produce stochastic model of faults [Cherpeau et al., 2010a,b,
2012, Cherpeau and Caumon, 2015, Laurent et al., 2013]. With
our approach, it also becomes possible to produce stochastic fold
models by altering or randomly drawing the structural parameters
of folds, which would give interesting insights into the contribu-
tion of geological structures to the global uncertainty. It would
also give better guarantees that models generated during coupled
geological and geophysical inversion are actually geologically
likely, especially in the context of hard rock terranes.
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Figure 8 Successive stages of the proposed modeling process. Interpolated foliation fields and fold rotation angle are painted on the topographic
surface, within and between the outcrop areas (thick lines): S2 (A), αL2 (B), S1 (C), αL1 (D). Visible sharp features of interpolated S1 and αL1 are the
effect of the topography. Relevant symbols from Fig. 7B are shown to represent the data used for each stage.
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Figure 9 Complex synthetic case study. A: Reference model gen-
erated with a history-based approach [Jessell and Valenta, 1996]. B:
Result of modeling with classical interpolation constraints (stratigraphy,
bedding orientation and F1 fold axis). C: Result obtained with the pro-
posed approach.
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Discrete linear tetrahedral support

The proposed modeling is implemented in the framework of dis-
crete implicit modeling [Frank et al., 2007], where an interpo-
lated scalar field ϕ is mathematically represented by a piece-wise
linear field based on a tetrahedron mesh. In this mesh, ϕ is lin-
early interpolated from the four nodal values of each tetrahedral
element.

We considering a tetrahedron, whose corners are indexed from
0 to 3, with corner positions denoted (x̄i, ȳi, z̄i) and nodal values
are stored in the ϕc vector. The scalar field is expressed as a linear
function of x̄,ȳ, and z̄:

ϕ
(
x̄, ȳ, z̄

)
= [1, x̄, ȳ, z̄] · [a0, a1, a2, a3]t (16)

After Frank et al. [2007], the coefficient ai are solution of the
following equation:

1 x̄0 ȳ0 z̄0

1 x̄1 ȳ1 z̄1

1 x̄2 ȳ2 z̄2

1 x̄3 ȳ3 z̄3


·


a0

a1

a2

a3


=


ϕc0

ϕc1

ϕc2

ϕc3


(17)

This system can be solved for non-degenerated tetrahedron by in-
verting the left matrix, which defines the M matrix for Section 4.1
and the linear interpolation:

M =


1 x̄0 ȳ0 z̄0

1 x̄1 ȳ1 z̄1

1 x̄2 ȳ2 z̄2

1 x̄3 ȳ3 z̄3



−1

(18)
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ϕ
(
x̄, ȳ, z̄

)
= [1, x̄, ȳ, z̄] ·M · ϕc (19)

Based on Frank et al. [2007], a linear relation can also be
written to define the constant gradient of a scalar field inside a
given tetrahedron. This matrix referred to as T in this paper is
defined as:

T =


(x̄1 − x̄0) (ȳ1 − ȳ0) (z̄1 − z̄0)
(x̄2 − x̄0) (ȳ2 − ȳ0) (z̄2 − z̄0)
(x̄3 − x̄0) (ȳ3 − ȳ0) (z̄3 − z̄0)


−1

·


−1 1 0 0
−1 0 1 0
−1 0 0 1


(20)
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