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ABSTRACT
Multivariate time series forecasting has attracted wide attention
in areas, such as system, traffic, and finance. The difficulty of the
task lies in that traditional methods fail to capture complicated non-
linear dependencies between time steps and between multiple time
series. Recently, recurrent neural network and attention mechanism
have been used to model periodic temporal patterns across multiple
time steps. However, these models fit not well for time series with
dynamic-period patterns or nonperiodic patterns. In this paper, we
propose a dual self-attention network (DSANet) for highly efficient
multivariate time series forecasting, especially for dynamic-period
or nonperiodic series. DSANet completely dispenses with recur-
rence and utilizes two parallel convolutional components, called
global temporal convolution and local temporal convolution, to
capture complex mixtures of global and local temporal patterns.
Moreover, DSANet employs a self-attentionmodule to model depen-
dencies between multiple series. To further improve the robustness,
DSANet also integrates a traditional autoregressive linear model
in parallel to the non-linear neural network. Experiments on real-
world multivariate time series data show that the proposed model
is effective and outperforms baselines.
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1 INTRODUCTION
As multivariate time series are ubiquitous in our daily life, research
on multivariate time series forecasting has been carried out in many
areas, such as sensor networks [11], road occupancy rates forecast-
ing [10], and financial market prediction [16]. However, complex
and non-linear dependencies exist not only between time steps but
also in a variety of variables. Furthermore, the dependencies may
change dynamically with time, which significantly increases the
difficulty of analysis. Therefore, a major challenge of multivariate
time series forecasting is how to capture dynamic dependencies
between time steps and multiple variables.

Advanced statistical methods have been proposed for time series
forecasting, such as vector autoregression (VAR) [4] and Gaussian
process (GP) [11]. However, they usually assume certain distribu-
tion or function form of time series, which makes them unable to
capture complicated underlying non-linear relationships and reflect
reality. In addition, most of them ignore the dependencies between
variables when addressing multivariate time series, which reduces
the accuracy of forecasting. Recently, deep neural networks have
drawn great attention in related domains due to their flexibility
in capturing nonlinearity. In particular, recurrent neural network
(RNN) [12] has been considered as the default starting point for
sequence modeling. However, traditional RNNs have difficulty in
capturing long-range dependencies due to gradient vanishing [3].
As its variants, long short-termmemory (LSTM) [7] and gated recur-
rent unit (GRU) [5], have overcome the limitation. Attention mech-
anism [2] also helps RNN to model temporal patterns, which allows
modeling on dependencies of the input and output by focusing on
the selective parts of the input sequence. Models based on LSTM or
GRU with attention mechanism have been proposed for time series
forecasting and show good performances in exploiting long-term
dependencies and handling non-linear dynamics [10, 13]. However,
due to the unsatisfactory performance, the structure might not be
suitable for those data with dynamic-period patterns or nonperiodic
patterns, which is common in a complex environment.

To enable accurate and robust forecasting for multivariate time
series, we propose a dual self-attention network (DSANet) for highly
efficient multivariate time series forecasting without exogenous
information. In DSANet, we first feed each of the univariate time
series independently into two parallel convolutional components,
called global temporal convolution and local temporal convolution,
to model complex mixtures of global and local temporal patterns.
Next, the learned time series representations from each convolu-
tional component are fed into an individual self-attention module,
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with the aim of learning the dependencies among different series.
To further improve the robustness, an autoregressive linear model
is integrated in parallel to the non-linear attention network of
DSANet. To the best of our knowledge, this is the first work to
apply self-attention mechanism in time series forecasting with the
help of well-designed dual branches architecture. Experiments on
a real-world time series data set demonstrate the accuracy and
robustness of the proposed method.

2 RELATEDWORK
We first consider statistical linear methods for multivariate time
series. Here, the vector autoregression (VAR) [4] model is widely
considered as a baseline method, which generalizes the univariate
autoregressive (AR) model by allowing for more than one evolving
variable. To model non-linear relationships, some variants of the
autoregressive model are used, such as LRidge [8], LSVR [14] and
Gaussian process (GP) [11]. However, they assume certain distri-
bution or function form of time series and fail to capture different
forms of nonlinearity.

Due to the ability to flexibly model various non-linear relation-
ships, neural networks are often applied to enable non-linear fore-
casting models. For example, recurrent neural network models
using LSTM or GRU are often used to provide non-linear time se-
ries forecasting. To predict more accurately, complex structures
such as recurrent-skip layer (LSTNet-S), temporal attention layer
(LSTNet-A) [10], and a novel temporal pattern attention mecha-
nism (TPA) [13] have been proposed. However, when working on
data with dynamic-period patterns or nonperiodic patterns, their
performance drops significantly.

3 PRELIMINARIES
A time series X (i) = ⟨x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
T ⟩ is a fully observed time-

ordered sequence of measurements, where measurement x (i)T is
recorded at time stamp T . Usually, the time interval between two
consecutive measurements is constant. A multivariate time series
is denoted as X = ⟨X (1),X (2), . . . ,X (D)⟩, where time series in X
are correlated with each other, and measurements XT ∈ RD are
recorded at time stamp T .
Problem Statement: Given a set of multivariate time series X =
⟨X (1),X (2), . . . ,X (D)⟩, where D is the number of univariate time
series and X (D) ∈ RT with T being the length of the input window
size, we aim at predicting in a rolling forecasting fashion. That being
said, we predictXT+h based on the known ⟨X1,X2, . . . ,XT ⟩, where
h is the desirable horizon ahead of the current time stamp. Likewise,
we predict the future value of XT+h+k based on ⟨X1+k ,X2+k , · · · ,
XT+k ⟩, k ∈ R+, with an assumption that the information within the
window is sufficient for prediction and the window size is fixed. We
hence formulate that for the the forecasting target XT+h ∈ RD , the
input matrix at time stampT isX = ⟨X (1),X (2), . . . ,X (D)⟩ ∈ RD×T .

4 METHODOLOGY
Figure 1 presents an overview of our proposed DSANet. DSANet
utilizes two convolutional structures, namely global temporal con-
volution and local temporal convolution, to embed each univariate
series in X into two representation vectors with temporal informa-
tion of different scale. Each vector forms a matrix and then enter

an elaborate self-attention module to capture the dependencies
between multiple series. In the end, the model generates the final
prediction by summing up the output of both self-attentional net-
work and the AR component. The details of the building blocks are
introduced in the following paragraphs.
Global Temporal Convolution: Deep learning methods in previ-
ous work mainly use RNNs to capture temporal patterns. However,
due to the inherently sequential nature, it is difficult for RNNs to
model long sequences and compute in parallel, which ultimately
damages the computing speed and forecasting effect. As convolu-
tional structure has demonstrated its power in capturing features
as well as parallel computing, we use it together with multipleT ×1
filters, called global temporal convolution, to extract time-invariant
patterns of all time steps for univariate time series.

Each filter of global temporal convolutionmodule sweeps through
the input matrix X and produces a vector with size of D × 1, where
the activation function is the ReLU function. Merged by the vectors,
The convolutional structure finally obtains an output matrix HG of
size D × nG , where nG is the number of filters in global temporal
convolution. Note that each row of the matrix can be considered as
a learned representation of a univariate series.
Local Temporal Convolution:Considering that time steps with a
shorter relative distance have a larger impact on each other, DSANet
also utilizes a convolutional structure in parallel to global tempo-
ral convolution, which is called local temporal convolution. While
global temporal convolution captures long-term dependencies be-
tween time steps, local temporal convolution focuses on modeling
local temporal patterns, which can be more helpful for forecasting.

Different from global temporal convolution, the length of filters
used in local temporal convolution is l , where l < T is a hyper-
parameter. The k-th filter of local temporal convolution slides along
the time dimension and produces a matrix ML

k . In order to map
local temporal relations in each univariate time series to a vector
representation, DSANet uses a 1-D max-pooling layer over each
column of the matrix ML

k to capture the most representative fea-
tures. Thus, we obtain an output matrix HL of size D × nL , where
nL is the number of filters in local temporal convolution.
Self-Attention Module: Due to the strong feature-extraction ca-
pability of self-attentional networks, we apply a self-attention mod-
ule inspired by the Transformer [15] to capture the dependencies
between different series. For each learned representation of a uni-
variate series, the self-attention module learns its relationship with
other learned representations including itself. As shown in Figure 1,
the self-attention module is composed of a stack of N identical
layers, and each layer has two sub-layers: a self-attention layer and
a position-wise feed-forward layer.

In general, an attention function can be described as mapping a
query and a set of key-value pairs to an output, where the query,
keys, values, and the output are all vectors. The output is computed
as a weighted sum of the values, where the weight for each position
is computed as the inner product between the query and keys at
every other position in time series. In the self-attention module
following the global temporal convolution, a set of queries, keys, and
values are packed together into matricesQG ,KG , andVG , obtained
by applying projections to the input HG .
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Figure 1: Dual Self-Attention Network (DSANet)

Mathematically, the scaled dot product self-attention computa-
tion can be expressed as

ZG = softmax

(
QG (KG )

T√
dk

)
VG , (1)

where dk is the dimension of keys. A multi-head attention is uti-
lized to allow the model to jointly deal with information from dif-
ferent representation subspaces at different position. The resulting
weighted representations are concatenated and linearly projected
to obtain the final representation ZGO .

The position-wise feed-forward layer consists of two linear trans-
formations with a ReLU activation in between, which can be ex-
pressed as

FG = ReLU(ZGOW1 + b1)W2 + b2. (2)

While the linear transformation is the same across different
positions, they use different parameters. Followed by layer nor-
malization [1], residual connections around each of the sub-layers
make training easier and improve generalization.

We have a similar procedure for the self-attention module fol-
lowing the local temporal convolution, where we input HL into the
module and finally get the output FL .
Autoregressive Component:Due to the nonlinearity of both con-
volutional and self-attention components, the scale of neural net-
work output is not sensitive to that of input. To address the draw-
back, we consider the final prediction of DSANet as a mixture of
a linear component and a non-linear component. Apart from the
non-linear component introduced above, the classical AR model
[6] is taken as the linear component. The forecasting of the AR
component is expressed as X̂L

T+h ∈ RD .
Generation of Prediction: In the forecasting stage, we first use a
dense layer to combine the outputs of two self-attention modules
and get the self-attention based prediction X̂D

T+h ∈ RD . The final
prediction of DSANet X̂T+h is then obtained by summing the self-
attention based prediction X̂D

T+h and the AR prediction X̂L
T+h .

5 EXPERIMENTS
Data Sets: We use a large time series data set provided by a gas
station service company. The data set contains the daily revenue
of five gas stations ranging from Dec.1, 2015 to Dec.1, 2018. The
stations are geographically close, which means a complex mix of
revenue promotion andmutual exclusion exists between them. Thus
we consider the five time series of each gas station as a multivariate

time series. Data visualization analysis is performed to ensure that
the data set does not contain distinct repetitive patterns.

In our experiments, the data set is chronologically split into
training (60%), validation (20%) and test (20%) sets. In each set, we
further segment the data into multiple cases using sliding windows,
which means in each segment, we use a multivariate time series of
T length as the input data to the models and use the measurements
of the time stamp T + h as the ground truth data.
Comparison Methods: In our comparative evaluations, we con-
sider 8 baselines: VAR, LRidge, LSVR, GP, GRU, LSTNet-S, LSTNet-A,
TPA. All the methods are covered in Section 2.
Experimental Settings: All neural network models are optimized
by performing mini-batch stochastic gradient descent (SGD) with
the Adam optimizer [9], and the loss is calculated by the mean
square error (MSE). We conduct a grid search over all tunable
hyperparameters on the validation set for each method. Specifically,
for LRidge and LSVR, the regularization coefficient λ is chosen from
{2−10, 2−8, · · · , 28, 210}. For GP, the RBF kernel bandwidth σ and the
noise level α are chosen from {2−10, 2−8, · · · , 28, 210}. For all neural
network models, the hidden dimension size of recurrent layers and
convolutional layers are chosen from {32, 50, 100}. For LSTNet-S,
we conduct a grid search over {20, 50, 100} for recurrent-skip layers.
For DSANet, the length of filters used in local temporal convolution
is chosen from {3, 5, 7}. We perform dropout and the rate is set as
0.1.
ImplementationDetails:Allmethods are implemented in Python
3.6, where the deep learning methods are implemented using Py-
Torch 1.0. A computer with Intel i7-8700 CPU, GTX1060 GPU, 6
cores, 32 GB RAM is used to conduct all experiments.
Main Results: Tomeasure the effectiveness of various methods for
multivariate time series forecasting, we use root relative squared
error (RRSE), mean absolute error (MAE) and empirical correlation
coefficient (CORR) as evaluation metrics. A lower value is better
for RRSE and MAE while a higher value is better for CORR. We
set the problem parameter window = {32, 64, 128} and horizon =
{3, 6, 12, 24}, respectively, which means the window length is set
from 32 to 128 days and the horizon is set from 3 to 24 days over
the dataset. Due to space limitation, we report on results only based
on RRSE and MAE withwindow = 32. More experimental results
and code are available online1.

Table 1 summarizes the evaluation results of all the methods on
the test set. Each row in Table 1 compares the results of all methods
1https://github.com/bighuang624/DSANet
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Table 1: Evaluation Results of Multivariate Time Series Forecasting

Methods

window-horizon Metrics VAR LRidge LSVR GP GRU LSTNet-S LSTNet-A TPA DSANet

32-3 RRSE 0.9401 0.8114 0.8934 1.0564 0.8297 0.8222 0.8120 0.8441 0.7817
MAE 0.4914 0.4302 0.4687 0.5676 0.4311 0.4214 0.4220 0.4348 0.4074

32-6 RRSE 0.9170 0.8094 0.9144 1.0677 0.8524 0.8544 0.8718 0.8482 0.7713
MAE 0.4743 0.4374 0.4778 0.5616 0.4380 0.4371 0.4465 0.4336 0.4102

32-12 RRSE 0.9335 0.9132 0.9600 1.0878 0.8938 0.8753 0.9033 0.8887 0.8297
MAE 0.4746 0.4619 0.4956 0.5580 0.4536 0.4524 0.4529 0.4487 0.4367

32-24 RRSE 1.0188 0.9789 1.0178 1.1280 0.9457 0.9941 0.9814 0.9310 0.9277
MAE 0.4988 0.4811 0.5174 0.5611 0.4807 0.4916 0.4921 0.4499 0.4422

in a particular metric with a specific window-horizon pair, and each
column shows the results of a specific method in all cases. Boldface
indicates the best result of each row in a particular metric.

From Table 1, a common phenomenon is that when the horizon
increases, both RRSE and MAE of the same method increase on
the whole, which shows that the larger the horizon, the harder
the forecasting task. Note that GRU, LSTNet-S, LSTNet-A, TPA
and DSANet often achieve a better performance in comparison to
others, which shows that due to the ability to learn complicated
non-linear dependencies between time steps and between multiple
time series, deep learning methods can solve complex forecasting
tasks better than traditional methods. However, it is observed that
compared to other methods, DSANet achieves better results in
all cases, indicating that taking advantage of the well-designed
architecture, DSANet is more robust to deal with multivariate time
series with dynamic-period patterns or nonperiodic patterns.
Ablation Study: To justify the efficiency of our architecture de-
sign, a careful ablation study is conducted. Specifically, we remove
each of the global temporal convolution branch, the local tempo-
ral convolution branch, and the AR component one at a time in
our DSANet model, and each new model is named DSAwoGlobal,
DSAwoLocal, and DSAwoAR. The test results measured using RRSE
and MAE withwindow = 32 are shown in Figure 2, from which sev-
eral observations are worth highlighting: (1) The best result on each
window-horizon pair is obtained by complete DSANet, showing all
components have contributed to the effectiveness and robustness
of the whole model; (2) The performance of DSAwoAR significantly
drops, showing that the AR component plays a crucial role. The
reason is that AR is generally robust to the scale changing in data
according to [10]; (3) DSAwoGlobal and DSAwoLocal also suffer
from performance loss but less than removing the AR component.
This is because features learned by the two branches coincide. In
other words, when one branch is removed, some of the lost features
can be obtained from the other branch.

6 CONCLUSION
We present a novel deep learning framework, dual self-attention
network (DSANet), for the task of multivariate time series forecast-
ing, especially for those data with dynamic-period or nonperiodic
patterns. Experiments on a large real-world dataset show promising
results.
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Figure 2: Ablation Test Results of DSANet
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