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Fig. 1. Query and rendering of SmartCues to boost the effectiveness of a bar chart showing global monthly temperature anomalies for
the year 2016 [19]. Each annotation can be called up on demand by performing the corresponding gesture as indicated on the figure.
Note that in (b-i) the original bar chart is greyed out for clarity of overlays.

Abstract— Details-on-demand is a crucial feature in the visual information-seeking process but is often only implemented in highly
constrained settings. The most common solution, hover queries (i.e., tooltips), are fast and expressive but are usually limited to single
mark (e.g., a bar in a bar chart). ‘Queries’ to retrieve details for more complex sets of objects (e.g., comparisons between pairs of
elements, averages across multiple items, trend lines, etc.) are difficult for end-users to invoke explicitly. Further, the output of these
queries require complex annotations and overlays which need to be displayed and dismissed on demand to avoid clutter. In this work
we introduce SmartCues, a library to support details-on-demand through dynamically computed overlays. For end-users, SmartCues
provides multitouch interactions to construct complex queries for a variety of details. For designers, SmartCues offers an interaction
library that can be used out-of-the-box, and can be extended for new charts and detail types. We demonstrate how SmartCues can be
implemented across a wide array of visualization types and, through a lab study, show that end users can effectively use SmartCues.

Index Terms—Graphical overlays, details-on-demand, graph comprehension

1 INTRODUCTION

The use of details-on-demand (DoD) in interactive visual exploration
serves an important role for analysis. Unfortunately, many implemen-
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tations of DoD only provide a narrow set of details for a small set
of demands (i.e., selection targets). Most conventional DoD imple-
mentations use dynamic tooltips that appear when the end-user hovers
over a graphical mark. However, there are many situations in which
it would be useful to expand both the ‘breadth’ and ‘depth’ of DoDs.
For example, when comparing two bars, the end user may ‘demand’
the difference between the two encoded values. On a scatter plot, they
may want the distribution between two intervals as detail. Such details
are desirable because, as Wilkinson observed, “once coordinates are
known and scales calculated, every measurement. . . is a simple affine
transformation for a system that is capable of doing linear algebra in the
head,” but that this is, “obviously not human. . . ” [70]. DoDs can pro-
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vide accurate access to this information without increasing cognitive
load. Critically, DoDs can be presented in a way that does not distract
the end-user from analysis tasks by calling attention away from the
focus area (e.g., selecting from menus, looking at other panels, etc.). To
generalize this idea, we describe SmartCues, an interaction technique
and library for dynamically computing and displaying DoDs.

With increasing complexity, DoD displays become difficult to im-
plement and use. ‘Summoning’ a DoD requires that (a) the end-user
specifies their selection, that (b) they potentially indicate the type of
detail they want (disambiguation), and (c) the detail be displayed appro-
priately. All three pieces are largely trivial in the case of simple DoD.
The end-user hovers over, or clicks on, the shape; the detail information
is constrained to a small set of facts (e.g., the value of the bar); and the
presentation is a simple tooltip or dynamic annotation. Contrast this
to even a slightly more complex task of identifying the mean value for
two bars in a bar chart (Figure 1d). The viewer must now specify the
targets which, if conventionally implemented, would require two clicks.
Either the end-user or the system must identify the specific comparison
the end-user is interested in or display them all (e.g., do they want the
average? the difference? the rank difference?). Finally, the system
must determine the best visual representation of this information (is it
an annotation connecting the two bars with the value in between? is it
a tooltip? is it another visualization? is it an overlaid bar?).

Our solution to this increasingly complex problem is SmartCues.
For the end-user, SmartCues supports sophisticated selections and ‘de-
tail queries’ through the (optional) use of multitouch gestures. Detail
targets/selection can range from: single elements, such as a bar; global
selections, such as all pie segments; and everything in between (e.g.,
two points or a range in scatter plot). For the developer, SmartCues
addresses the complex process of DoD implementation by providing
a clear way to build (i) interactions controls, (ii) detail models, and
(iii) overlay views. SmartCues is intended to work across a wide array
of visualization types, and we have created prototypes for each of the
system components. SmartCues can be utilized for both analytic and
communicative scenarios. Details are presented as data-aware annota-
tions (e.g., text labels and arrows) [31] and by using ‘un-committed’
retinal channels (e.g., color) or additional marks. Collectively, we refer
to such displays as detail overlays.

Figure 1 provides an example of SmartCues. The original visualiza-
tion (a), “On the edge of 1.5°C,” shows the global monthly temperature
anomalies in 2016 referenced to the 1881-1910 baseline [19]. Certain
perceptual tasks–such as determining which month was highest; deter-
mining which month was lower given a pair; or even reading the value
for a specific month–are effectively enabled by this display. However,
as with all visualizations, this one sacrifices both expressiveness and
effectiveness for certain information [47, 73]. Accurately calculating
the difference between bars that are very far away is more difficult.
SmartCues directly supports this by allowing the end-user to simulta-
neously tap the two bars (e.g., Figure 1d). This action will produce
a graphical overlay with the information. SmartCues can be used to
implement many other types of DoD interactions even on this simple
visualization. For example, dragging a line from the y-axis (Figure 1b)
will indicate a request for a ‘threshold detail’ which displays a color
overlay indicating bars exceeding the threshold. Horizontally dragging
across multiple bars (Figure 1i) displays an overlay for the mean. A
diagonal drag (Figure 1g-h) produces a color overlay for rank. Each
detail allows us to ‘recover’ some effectiveness through natural inter-
actions and details display in a salient way. Figure 1c demonstrates
a ‘combined’ SmartCues interaction that includes both selection and
detail query. By clicking/tapping on a bar (the selection) and gesturing
upwards, the end-user is requesting a comparison of all other months
in relation to the selection (e.g., higher or lower). While we have cre-
ated a set of SmartCues for various chart types, the developer/designer
can ultimately decide which to enable, disable, modify, or add. Our
prototype architecture is intended to support this extensibility.

SmartCues offers additional features to support DoD complexity. To
handle many interactions that may become ambiguous in ‘querying’ for
a detail, SmartCues both ranks likely detail targets as well as providing
interaction methods to resolve ambiguity. SmartCues can also de-clutter

displays that contain too many DoD overlays. Either due to multiple
requests or ambiguity, visualizations can become cluttered with too
many details, increasing cognitive load and perceptual tasks (e.g., due
to label overlap, distracting arrows, etc.). SmartCues works to reduce
this clutter by ‘collapsing’ multiple details into alternative views. For
example, the end-user may ask for a comparison detail for temperature
for February and July (Figure 1d) by touching both bars. If they repeat
this for February and August, SmartCues can anticipate that the intent
is to compare February to all other months. Instead of showing two
comparisons, SmartCues can create an overlay that ‘pre-fetches’ all
relevant comparisons and integrates them in a more effective overlay
as in Figure 1e. This process is achieved by considering query patterns
in predicting future demand.

Our key contribution is introducing a framework by which develop-
ers and end-users can have access to complex DoD interactions. We
provide a number of extensible implementations of interaction controls
(‘WIMP’ and ‘natural’ gestures) and detail models (simple data lookups
and statistical functions). By necessity, both interactive controls and
overlays are chart dependent. We demonstrate SmartCues on bar charts,
line charts, and scatter plots. From these implementations, we identify
generalizable techniques and guidelines to adapt SmartCues to new
charts. Through SmartCues, we introduce mechanisms for dealing
with ambiguity and to ‘compress’ multiple overlays dynamically. We
show with a lab-study that SmartCues interactions can be learned and
enhance effectiveness for chart comprehension tasks.

2 RELATED WORK

We situate our work in the context of graph comprehension and review
current implementations of DoD in facilitating those tasks. We also
describe existing annotation systems in the context of DoD.

2.1 Details-on-Demand Interactions
Broadly, graph comprehension includes tasks ranging from simple
value extraction and pattern detection tasks (i.e., visual queries), to
intermediate tasks such as interpolation and finding relationships in data,
and advanced extrapolation tasks [6, 11, 25]. Prior work has shown that
decoding visual information can be complex and inaccurate [14,18,61].
The time taken to interpret a graph is proportional to the number of
unique quantitative relations depicted in the graph [14]. For certain
tasks, accuracy decreases when the distance between two values being
judged increases along the perpendicular axis [18]. Furthermore, while
visual structures are better at expressing relational information, tables
perform better when tasks involve retrieval of specific values [20]. DoD
interactions, in general, address this problem by surfacing data from
underlying tables in context of visualizations [59].

Current approaches to DoD can be broadly classified into two types:
(1) selection based approaches (hover, single- and double-clicks) in
which one or more visual objects (marks) are selected to retrieve at-
tribute level details [5, 12, 58, 62], and (2) zoom based approaches in
which entire visualizations undergo transformation to bring details into
view [13, 24, 27]. Segel and Heer [58] analyzed a large number of
narrative visualizations in which they find hover-style tooltips to be a
common interaction pattern for DoD. Beyond tooltips, details are also
presented using sophisticated HTML pop-ups with added interactiv-
ity [4, 5], are displayed as table views [62], and even rendered using
summary visualizations such as histograms [46, 65]. With SmartCues,
we have endeavored to build the same type of support for exploration
but have focused on using overlays that do not require secondary win-
dows or visualizations. Rather, SmartCues interactions overlay detail
annotations directly onto the original chart.

Zoom-for-detail style interactions take a different approach by load-
ing details dynamically as the end-user ‘magnifies’ the visualization’s
drawing surface. Examples include tap-and-hold interactions for scatter
plots [13], ontology details in a radial visualization [27], and approaches
that re-encode data (e.g., from aggregate to individual marks) during
zoom interactions [24]. The Magic-Lens system offers a (zoom) fo-
cus+context by using a magnifying-glass ‘lens’ to modify the view
under inspection with additional information [64].The challenge for
zoom-based-interactions is that they require reconfiguring the display

and require readers to perform perceptual realignment with the newly
adjusted view, which can be costly [40, 44, 50]. In other words, the
overall context of the visualization is lost, making it harder to perform
subsequent tasks. Additionally, in many domains (e.g., stock price,
sensor data), details, as applied to raw data points, are of little interest,
and detail level tasks commonly refer to some analytic operation over a
subset of raw data [37]. In such cases, details are often presented as an
annotation. For these reasons, we focus on ‘in-context’ details.

2.2 Annotations
While not all annotations are details and not all details can be presented
as annotations, the overlap is significant. In designing SmartCues inter-
actions and overlays, we leverage existing work on annotation creation
and annotation representation. Annotations boost the “natural percep-
tibility profile” of graphics [1, 22, 45]. Existing work on annotations
include both systems [16, 32, 34, 36], and techniques for placement and
representation of annotations [1,2,17]. Work on placement and aesthet-
ics of annotations (e.g., [1]) have demonstrated that the placement of
an annotation is most effective when they coincide with corresponding
graphical properties (e.g., graph shape). This work informs our design.

The space of annotations can be broadly classified into three cate-
gories: (1) annotations for recording and communicating insights (to
self or others), (2) annotations that provide external context, and (3)
annotations that aid graph comprehension (the category most related
to SmartCues). Orthogonally, we can also classify annotations based
on what they ‘bind’ to. The general form can include any notation
on the chart (including ‘scribbles,’ per Wilkinson [70]). The more
specific variant is bound to data (Annotation Guides [70] or Data-
Aware Annotations [31]). Systems such as Sense.us [32] fall into the
communicative-general category by offering free-form drawing and
textual annotations in collaborative (communicative) settings. Contex-
tifier [34] is an external-specific system which automatically generates
annotations that connect a temporal visualization (stock data) with a tex-
tual story (a news article). In this taxonomy, SmartCues annotations are
in the comprehension-aid-specific category. SmartCues are connected
to data and are intended to boost the effectiveness of visualizations.

Human-driven annotation creation systems such as
Click2Annotate [16] and ChartAccent [52] motivate our de-
sign of selection and rendering. The designer’s task of creating an
annotation is similar to the end-users use of DoD (in that similar
types of selection and rendering are needed). Click2Annotation takes
a semi-automatic approach to instantiate textual “fact” templates
(dimension oriented facts, data item-oriented facts, and compound
facts) based on end-user selection [16]. While the interaction metaphor
is similar to our own, annotations are not overlaid on the graph and are
meant for insight externalization and capture. Annotations become
“guides” when they are driven by data [70], and the system that is
closest to ours in annotation guides is [39]. In Graphical Overlays,
Kong and Agrawala present an automated approach to generating
annotation guides (reference structures, highlights, numerical data
labels, summary statistics, and descriptive text). When ‘correct,’
automated annotations [36, 39] can be informative. However, they
may also introduce clutter and noise. DoD approaches, such as ours,
are inherently end-user driven in that the annotations are dynamically
invoked based on end-user comprehension needs.

2.3 Direct Manipulation Querying Techniques
Direct manipulation (DM) techniques are a natural way of interacting
with visual information [60]. They minimize the distance between
the intent and execution of the intent, particularly in a visualization
context [21,42]. In SmartCues, we take a DM approach to constructing
annotation queries. Sadana and Stasko present a set of interactions
(selection, zoom, filters) to execute data-centric and view-driven tasks
on scatterplots [54]. TouchWave, a system closest to ours, demonstrates
multi-touch interactions on stacked graphs to improve legibility and
effectiveness of “comparison” tasks between different layers of the
stacked graph [8]. In contrast, TableLens fuses symbolic and graphical
representations, allowing users to switch between visual patterns and
textual details using various “flick” gestures [51].

Other work has focused on extending the capabilities of DM tech-
niques [30, 33], and at developing gestural frameworks for DM query-
ing [49, 71]. Heer et al. present a generalized selection technique that
allows users to interactively expand query parameters through query
relaxation [30]. In SmartCues, we take a similar “query-by-example”
approach to expand the scope of annotation queries. Additionally, for
queries with a similar “signature,” we take a mixed-initiative-like ap-
proach to allow readers to directly select the desired query operator
when confidence in the correct detail is low [33]. While our underlying
framework is not restricted to touch gestures, our current implementa-
tion uses multi-touch gestures for DM. We are motivated by past work
comparing traditional desktop interfaces and FLUID (touch) interfaces,
which found that gestural interactions were better suited for problem-
solving tasks focused on data [21]. In designing SmartCues, we have
incorporated work on eliciting natural gestures [71] and data-aware
gestural query specification [49].

3 DESIGN CONSIDERATIONS

SmartCues is composed of three main components that correspond to
end-user-facing interactions (interaction controls), internal detail model
(functions that calculate what to display), and overlay views (what is
displayed). For each, we define a set of guidelines that motivate our
design of SmartCues and inform future additions.

Interaction Controls: While many of the interactions described
in SmartCues can be implemented through mouse-driven interactions,
these are not always the most effective. For the most narrow types
of DoD (e.g., a single numerical lookup on a single target), a basic
mouse hover may be sufficient to drive a tooltip display. However, with
multiple selections and more complex detail options, a standard ‘WIMP’
display may not be effective [42]. Gestural and multi-touch interfaces
can support these more sophisticated DoD queries by allowing for
multiple simultaneous selections and detail request with few motions.
However, gestural interfaces benefit from a correspondence of the
gesture to the associated action or selection [42, 71]. That is, gestures
should be as natural (D1) as possible. Because gestures are potentially
ambiguous [57] and can map to multiple possible detail requests, we
prefer interactions that minimize (interaction) ambiguity (D2).

Detail Model: The use of gestures, as well as our desire to support a
broad array of detail types, complicates the design of our internal detail
model. While not all details need be as quickly accessible as mouse-
hover based tooltips, ease and rapidity of access is often expected in
modern interfaces. A very specific query ‘language’ may result in
high precision, but may not be satisfactory in other dimensions such
as learnability and cognitive load [29] or access speed. The notion of
fast access provides us with the guideline of reducing time-to-detail
(D3). An alternative to a formal language, which we adopt, is to model
the problem as a search task. A simpler, but more ambiguous, detail
‘language’ can provide the desired simplicity and speed. However, as
with interactions, our goal is to minimize (detail) ambiguity (D4).

SmartCues was conceived to support access to a wide array of data-
driven details (i.e., those that can be looked up from a table or deter-
mined through mathematical, logical or statistical operations on that
data). For example, for a bar chart showing sugar quantities for cereal,
an end-user may expect that clicking or hovering over the Cheerios bar
will display a textual annotation with sugar amount. If the end-user
clicks on both Chex and Cheerios simultaneously, they may reasonably
expect that the annotation would be the difference in sugar amounts.
SmartCues, does support a broader definition of details, but these may
counter our naturalness guideline (D1). For example, clicking on Chee-
rios’ sugar bar may display the amount of protein, and clicking on the
two bars may display the difference between protein amounts. How-
ever, our belief that as these details deviate from what is expressed [47],
they become hard for the end-user to anticipate. Put another way, we
focus on DoD overlays that boost effectiveness, not expressiveness
(D5). Though again, we emphasize that alternative DoD views are
possible (e.g., a side panel rather than an overlay), and may be useful if
end-users expect such details.

Overlay View: There are a variety of ways details can be produced
for display. We restrict ourselves to forms that can be presented in the
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vide accurate access to this information without increasing cognitive
load. Critically, DoDs can be presented in a way that does not distract
the end-user from analysis tasks by calling attention away from the
focus area (e.g., selecting from menus, looking at other panels, etc.). To
generalize this idea, we describe SmartCues, an interaction technique
and library for dynamically computing and displaying DoDs.

With increasing complexity, DoD displays become difficult to im-
plement and use. ‘Summoning’ a DoD requires that (a) the end-user
specifies their selection, that (b) they potentially indicate the type of
detail they want (disambiguation), and (c) the detail be displayed appro-
priately. All three pieces are largely trivial in the case of simple DoD.
The end-user hovers over, or clicks on, the shape; the detail information
is constrained to a small set of facts (e.g., the value of the bar); and the
presentation is a simple tooltip or dynamic annotation. Contrast this
to even a slightly more complex task of identifying the mean value for
two bars in a bar chart (Figure 1d). The viewer must now specify the
targets which, if conventionally implemented, would require two clicks.
Either the end-user or the system must identify the specific comparison
the end-user is interested in or display them all (e.g., do they want the
average? the difference? the rank difference?). Finally, the system
must determine the best visual representation of this information (is it
an annotation connecting the two bars with the value in between? is it
a tooltip? is it another visualization? is it an overlaid bar?).

Our solution to this increasingly complex problem is SmartCues.
For the end-user, SmartCues supports sophisticated selections and ‘de-
tail queries’ through the (optional) use of multitouch gestures. Detail
targets/selection can range from: single elements, such as a bar; global
selections, such as all pie segments; and everything in between (e.g.,
two points or a range in scatter plot). For the developer, SmartCues
addresses the complex process of DoD implementation by providing
a clear way to build (i) interactions controls, (ii) detail models, and
(iii) overlay views. SmartCues is intended to work across a wide array
of visualization types, and we have created prototypes for each of the
system components. SmartCues can be utilized for both analytic and
communicative scenarios. Details are presented as data-aware annota-
tions (e.g., text labels and arrows) [31] and by using ‘un-committed’
retinal channels (e.g., color) or additional marks. Collectively, we refer
to such displays as detail overlays.

Figure 1 provides an example of SmartCues. The original visualiza-
tion (a), “On the edge of 1.5°C,” shows the global monthly temperature
anomalies in 2016 referenced to the 1881-1910 baseline [19]. Certain
perceptual tasks–such as determining which month was highest; deter-
mining which month was lower given a pair; or even reading the value
for a specific month–are effectively enabled by this display. However,
as with all visualizations, this one sacrifices both expressiveness and
effectiveness for certain information [47, 73]. Accurately calculating
the difference between bars that are very far away is more difficult.
SmartCues directly supports this by allowing the end-user to simulta-
neously tap the two bars (e.g., Figure 1d). This action will produce
a graphical overlay with the information. SmartCues can be used to
implement many other types of DoD interactions even on this simple
visualization. For example, dragging a line from the y-axis (Figure 1b)
will indicate a request for a ‘threshold detail’ which displays a color
overlay indicating bars exceeding the threshold. Horizontally dragging
across multiple bars (Figure 1i) displays an overlay for the mean. A
diagonal drag (Figure 1g-h) produces a color overlay for rank. Each
detail allows us to ‘recover’ some effectiveness through natural inter-
actions and details display in a salient way. Figure 1c demonstrates
a ‘combined’ SmartCues interaction that includes both selection and
detail query. By clicking/tapping on a bar (the selection) and gesturing
upwards, the end-user is requesting a comparison of all other months
in relation to the selection (e.g., higher or lower). While we have cre-
ated a set of SmartCues for various chart types, the developer/designer
can ultimately decide which to enable, disable, modify, or add. Our
prototype architecture is intended to support this extensibility.

SmartCues offers additional features to support DoD complexity. To
handle many interactions that may become ambiguous in ‘querying’ for
a detail, SmartCues both ranks likely detail targets as well as providing
interaction methods to resolve ambiguity. SmartCues can also de-clutter

displays that contain too many DoD overlays. Either due to multiple
requests or ambiguity, visualizations can become cluttered with too
many details, increasing cognitive load and perceptual tasks (e.g., due
to label overlap, distracting arrows, etc.). SmartCues works to reduce
this clutter by ‘collapsing’ multiple details into alternative views. For
example, the end-user may ask for a comparison detail for temperature
for February and July (Figure 1d) by touching both bars. If they repeat
this for February and August, SmartCues can anticipate that the intent
is to compare February to all other months. Instead of showing two
comparisons, SmartCues can create an overlay that ‘pre-fetches’ all
relevant comparisons and integrates them in a more effective overlay
as in Figure 1e. This process is achieved by considering query patterns
in predicting future demand.

Our key contribution is introducing a framework by which develop-
ers and end-users can have access to complex DoD interactions. We
provide a number of extensible implementations of interaction controls
(‘WIMP’ and ‘natural’ gestures) and detail models (simple data lookups
and statistical functions). By necessity, both interactive controls and
overlays are chart dependent. We demonstrate SmartCues on bar charts,
line charts, and scatter plots. From these implementations, we identify
generalizable techniques and guidelines to adapt SmartCues to new
charts. Through SmartCues, we introduce mechanisms for dealing
with ambiguity and to ‘compress’ multiple overlays dynamically. We
show with a lab-study that SmartCues interactions can be learned and
enhance effectiveness for chart comprehension tasks.

2 RELATED WORK

We situate our work in the context of graph comprehension and review
current implementations of DoD in facilitating those tasks. We also
describe existing annotation systems in the context of DoD.

2.1 Details-on-Demand Interactions
Broadly, graph comprehension includes tasks ranging from simple
value extraction and pattern detection tasks (i.e., visual queries), to
intermediate tasks such as interpolation and finding relationships in data,
and advanced extrapolation tasks [6, 11, 25]. Prior work has shown that
decoding visual information can be complex and inaccurate [14,18,61].
The time taken to interpret a graph is proportional to the number of
unique quantitative relations depicted in the graph [14]. For certain
tasks, accuracy decreases when the distance between two values being
judged increases along the perpendicular axis [18]. Furthermore, while
visual structures are better at expressing relational information, tables
perform better when tasks involve retrieval of specific values [20]. DoD
interactions, in general, address this problem by surfacing data from
underlying tables in context of visualizations [59].

Current approaches to DoD can be broadly classified into two types:
(1) selection based approaches (hover, single- and double-clicks) in
which one or more visual objects (marks) are selected to retrieve at-
tribute level details [5, 12, 58, 62], and (2) zoom based approaches in
which entire visualizations undergo transformation to bring details into
view [13, 24, 27]. Segel and Heer [58] analyzed a large number of
narrative visualizations in which they find hover-style tooltips to be a
common interaction pattern for DoD. Beyond tooltips, details are also
presented using sophisticated HTML pop-ups with added interactiv-
ity [4, 5], are displayed as table views [62], and even rendered using
summary visualizations such as histograms [46, 65]. With SmartCues,
we have endeavored to build the same type of support for exploration
but have focused on using overlays that do not require secondary win-
dows or visualizations. Rather, SmartCues interactions overlay detail
annotations directly onto the original chart.

Zoom-for-detail style interactions take a different approach by load-
ing details dynamically as the end-user ‘magnifies’ the visualization’s
drawing surface. Examples include tap-and-hold interactions for scatter
plots [13], ontology details in a radial visualization [27], and approaches
that re-encode data (e.g., from aggregate to individual marks) during
zoom interactions [24]. The Magic-Lens system offers a (zoom) fo-
cus+context by using a magnifying-glass ‘lens’ to modify the view
under inspection with additional information [64].The challenge for
zoom-based-interactions is that they require reconfiguring the display

and require readers to perform perceptual realignment with the newly
adjusted view, which can be costly [40, 44, 50]. In other words, the
overall context of the visualization is lost, making it harder to perform
subsequent tasks. Additionally, in many domains (e.g., stock price,
sensor data), details, as applied to raw data points, are of little interest,
and detail level tasks commonly refer to some analytic operation over a
subset of raw data [37]. In such cases, details are often presented as an
annotation. For these reasons, we focus on ‘in-context’ details.

2.2 Annotations
While not all annotations are details and not all details can be presented
as annotations, the overlap is significant. In designing SmartCues inter-
actions and overlays, we leverage existing work on annotation creation
and annotation representation. Annotations boost the “natural percep-
tibility profile” of graphics [1, 22, 45]. Existing work on annotations
include both systems [16, 32, 34, 36], and techniques for placement and
representation of annotations [1,2,17]. Work on placement and aesthet-
ics of annotations (e.g., [1]) have demonstrated that the placement of
an annotation is most effective when they coincide with corresponding
graphical properties (e.g., graph shape). This work informs our design.

The space of annotations can be broadly classified into three cate-
gories: (1) annotations for recording and communicating insights (to
self or others), (2) annotations that provide external context, and (3)
annotations that aid graph comprehension (the category most related
to SmartCues). Orthogonally, we can also classify annotations based
on what they ‘bind’ to. The general form can include any notation
on the chart (including ‘scribbles,’ per Wilkinson [70]). The more
specific variant is bound to data (Annotation Guides [70] or Data-
Aware Annotations [31]). Systems such as Sense.us [32] fall into the
communicative-general category by offering free-form drawing and
textual annotations in collaborative (communicative) settings. Contex-
tifier [34] is an external-specific system which automatically generates
annotations that connect a temporal visualization (stock data) with a tex-
tual story (a news article). In this taxonomy, SmartCues annotations are
in the comprehension-aid-specific category. SmartCues are connected
to data and are intended to boost the effectiveness of visualizations.

Human-driven annotation creation systems such as
Click2Annotate [16] and ChartAccent [52] motivate our de-
sign of selection and rendering. The designer’s task of creating an
annotation is similar to the end-users use of DoD (in that similar
types of selection and rendering are needed). Click2Annotation takes
a semi-automatic approach to instantiate textual “fact” templates
(dimension oriented facts, data item-oriented facts, and compound
facts) based on end-user selection [16]. While the interaction metaphor
is similar to our own, annotations are not overlaid on the graph and are
meant for insight externalization and capture. Annotations become
“guides” when they are driven by data [70], and the system that is
closest to ours in annotation guides is [39]. In Graphical Overlays,
Kong and Agrawala present an automated approach to generating
annotation guides (reference structures, highlights, numerical data
labels, summary statistics, and descriptive text). When ‘correct,’
automated annotations [36, 39] can be informative. However, they
may also introduce clutter and noise. DoD approaches, such as ours,
are inherently end-user driven in that the annotations are dynamically
invoked based on end-user comprehension needs.

2.3 Direct Manipulation Querying Techniques
Direct manipulation (DM) techniques are a natural way of interacting
with visual information [60]. They minimize the distance between
the intent and execution of the intent, particularly in a visualization
context [21,42]. In SmartCues, we take a DM approach to constructing
annotation queries. Sadana and Stasko present a set of interactions
(selection, zoom, filters) to execute data-centric and view-driven tasks
on scatterplots [54]. TouchWave, a system closest to ours, demonstrates
multi-touch interactions on stacked graphs to improve legibility and
effectiveness of “comparison” tasks between different layers of the
stacked graph [8]. In contrast, TableLens fuses symbolic and graphical
representations, allowing users to switch between visual patterns and
textual details using various “flick” gestures [51].

Other work has focused on extending the capabilities of DM tech-
niques [30, 33], and at developing gestural frameworks for DM query-
ing [49, 71]. Heer et al. present a generalized selection technique that
allows users to interactively expand query parameters through query
relaxation [30]. In SmartCues, we take a similar “query-by-example”
approach to expand the scope of annotation queries. Additionally, for
queries with a similar “signature,” we take a mixed-initiative-like ap-
proach to allow readers to directly select the desired query operator
when confidence in the correct detail is low [33]. While our underlying
framework is not restricted to touch gestures, our current implementa-
tion uses multi-touch gestures for DM. We are motivated by past work
comparing traditional desktop interfaces and FLUID (touch) interfaces,
which found that gestural interactions were better suited for problem-
solving tasks focused on data [21]. In designing SmartCues, we have
incorporated work on eliciting natural gestures [71] and data-aware
gestural query specification [49].

3 DESIGN CONSIDERATIONS

SmartCues is composed of three main components that correspond to
end-user-facing interactions (interaction controls), internal detail model
(functions that calculate what to display), and overlay views (what is
displayed). For each, we define a set of guidelines that motivate our
design of SmartCues and inform future additions.

Interaction Controls: While many of the interactions described
in SmartCues can be implemented through mouse-driven interactions,
these are not always the most effective. For the most narrow types
of DoD (e.g., a single numerical lookup on a single target), a basic
mouse hover may be sufficient to drive a tooltip display. However, with
multiple selections and more complex detail options, a standard ‘WIMP’
display may not be effective [42]. Gestural and multi-touch interfaces
can support these more sophisticated DoD queries by allowing for
multiple simultaneous selections and detail request with few motions.
However, gestural interfaces benefit from a correspondence of the
gesture to the associated action or selection [42, 71]. That is, gestures
should be as natural (D1) as possible. Because gestures are potentially
ambiguous [57] and can map to multiple possible detail requests, we
prefer interactions that minimize (interaction) ambiguity (D2).

Detail Model: The use of gestures, as well as our desire to support a
broad array of detail types, complicates the design of our internal detail
model. While not all details need be as quickly accessible as mouse-
hover based tooltips, ease and rapidity of access is often expected in
modern interfaces. A very specific query ‘language’ may result in
high precision, but may not be satisfactory in other dimensions such
as learnability and cognitive load [29] or access speed. The notion of
fast access provides us with the guideline of reducing time-to-detail
(D3). An alternative to a formal language, which we adopt, is to model
the problem as a search task. A simpler, but more ambiguous, detail
‘language’ can provide the desired simplicity and speed. However, as
with interactions, our goal is to minimize (detail) ambiguity (D4).

SmartCues was conceived to support access to a wide array of data-
driven details (i.e., those that can be looked up from a table or deter-
mined through mathematical, logical or statistical operations on that
data). For example, for a bar chart showing sugar quantities for cereal,
an end-user may expect that clicking or hovering over the Cheerios bar
will display a textual annotation with sugar amount. If the end-user
clicks on both Chex and Cheerios simultaneously, they may reasonably
expect that the annotation would be the difference in sugar amounts.
SmartCues, does support a broader definition of details, but these may
counter our naturalness guideline (D1). For example, clicking on Chee-
rios’ sugar bar may display the amount of protein, and clicking on the
two bars may display the difference between protein amounts. How-
ever, our belief that as these details deviate from what is expressed [47],
they become hard for the end-user to anticipate. Put another way, we
focus on DoD overlays that boost effectiveness, not expressiveness
(D5). Though again, we emphasize that alternative DoD views are
possible (e.g., a side panel rather than an overlay), and may be useful if
end-users expect such details.

Overlay View: There are a variety of ways details can be produced
for display. We restrict ourselves to forms that can be presented in the



600  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

Visually Encoded Marks

Axes and Legends

Plane

Touch

Swipe

Textual Overlays

Value Value 1
Value 2

Visually Encoded Overlays

Gestures

Form and Aesthetic Guides

a

Multi-touch

WHATISDETAIL
V
({Entities},{Variables}*)

X

Y

e
x1

e
y1

e
x2

e
y2

e
xn

e
yn

Single-target Details

Multi-target Details

Global level Details

Interaction Controlsb

Detail Modelc

Overlay Viewsd

Fig. 2. Overview of SmartCues architecture. (a) Multi-touch gestures allow direct-manipulation interactions with (b) chart controls. (c) Interactions
correspond to detail model selection and detail computation. (d) Results (details) are rendered as overlay views.

context of the original visualizations. Consistent with our guideline
D3, we prefer for details to be presented rapidly without significant
cognitive overhead. Presenting a secondary visualization (e.g., in an-
other window) can increase this cost [35, 69]. Other interactions (e.g.,
reconfiguration, transformation, filter, etc. [72]) may similarly require
a high cognitive overhead to process the new or adjusted view [41, 50]

Rather we adopt the techniques used by others to present details
through data-driven annotations [31] and graphical overlays. Both
textual and graphical (e.g., trend lines) annotations can be produced
by SmartCues. The specific implementation is visualization dependent
(e.g., a difference between two pie segments or two bars is represented
differently). This approach requires defining a way of presenting de-
tails that is uncluttered but with a clear connection to the selection
(D6) and that does not collide with retinal variables (e.g., color) that
are already dedicated to encoding values (D7). Finally, even though
SmartCues ranks details by those most likely to be correct, mistakes
need to be resolved. To deal with the inherent ambiguity of the ‘query,’
it is necessary to define mechanisms for displaying different details
simultaneously or interactively resolving (display) ambiguity (D8).

4 SMARTCUES ARCHITECTURE

Building on our design guidelines, here we describe each of the three
main components of SmartCues (Figure 2).

4.1 SmartCues Detail Model

Before describing the interaction model and graphical overlay, it is
worth considering the internal details model of SmartCues. This repre-
sentation will dictate both how the end-user will query for details and
how the details will be displayed.

As shown in Figure 2c, data—bound to a two-dimensional graph—
can be characterized by its dependent variable x, the independent vari-
able y, and data entities (data rows) [9, 66]. Detail queries naturally
correspond to these three components. Our analysis of existing DoD
implementations and data-aware annotations showed that detail types
can be mapped to Bertin’s “reading levels [9] as well as Ren et al.’s
data item, set, and series categories [52]. Elementary level details,
such as value look-ups, correspond to a single data entity. Intermediate
level details either map to a pair of data entities (e.g., relationship or
comparison type details) or may be computed over a series of entities
that are subset by independent and dependent variables (e.g., threshold,
distribution, etc.). Global level details such as minima, maxima, or
mean take all of the data entities into consideration. Therefore, at
the lowest level, detail queries can be modeled as functions that take
two arguments: data entities and variable values. Or more formally:
WhatIsDetailv({Entities},{Variables}∗). Because SmartCues details
are ‘data-aware,’ the entities argument is required, but variables are
optional. The return value of DoD functions are varied. They can range

from ordinal (e.g., what is the rank?) to boolean masks (e.g., which
bars are larger than 5?) to vectors (e.g., what is the linear correlation?).

This formalization allows us to express detail queries across all read-
ing levels. For example, WHATISBARVALUE({bari

v}) is an elementary
question that retrieves the value, v, for entity corresponding to bar i
in a bar chart. The question WHATISDIFFERENCE({bari

v,bar j
v}) is

an intermediate question that determines the numerical difference be-
tween the values encoded by two bars, i and j. The threshold query
WHICHISLARGER({bar0

v , . . . ,barn
v},k) takes an additional parame-

ter k and finds all entities whose value, v, is larger than k. Finally,
WHATISMAX({bar0

v , . . . ,barn
v}) is a global question that produces the

maximum v over all the bars in a bar chart. By specifying detail queries
in terms of entities and variables, we also constraint that details be
computed over what is already encoded (D5).

A key detail about our specification is that functions may not have a
unique signature for any particular graph type. For example, WHATIS-
THEMEDIAN, WHATISTHEMODE, WHATISTHEMEAN, can all op-
erate on the same selection and will return the same value type. If the
request were made through a programming interface, there would be
no ambiguity as the function names are all different. Similarly, if the
interface had an option for specifying which detail the end-user wanted
(e.g., through a menu or drop down box), there would be no ambiguity.
However, to satisfy our design guidelines–in particular D3 (reducing
time-to-detail)–we provide access to our detail signatures through a
‘fuzzy’ search engine pattern. That is, details can be requested with
underspecified ‘queries.’ For example, WHATIS*(bari

v), will find all
detail functions that take one selection as input. This simplifies the task
of picking the right function but also introduces ambiguity.

SmartCues attempts to address this in a number of ways (to satisfy
D4). By default, SmartCues allows end-users to choose from a list
of detail functions that match the query signature (Figure 3g). In
addition, we use past selection, and history of detail queries to rank all
the matching detail functions. For example, if a query matches prior
query signature SmartCues automatically presents that detail based on
utility. In other cases, the list is ranked by frequency. Additionally, as
discussed in the next section, we can also reduce ambiguity by selecting
a good query language.

4.2 SmartCues Interaction Controls

Recall that for our end-users we would like to identify a set of natural
interactions (D1) that are simultaneously low-ambiguity (D2) and help
maintain fast access to details (D3). Complex menus or additional
panels with faceted views can eliminate ambiguity but fail to satisfy
our other two objectives.

Rather, we have opted to implement touch-based interactions (Fig-
ure 2a) as our ‘query language’ of choice. Our goal is to produce a set
of interactions that can be translated into a query applied to the details
database (Figure 3). Ideally, such a language would support the selec-
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Fig. 3. Gestures and corresponding query expressions for a bar chart.

tion of the data entities, variables/parameters, and the detail function
itself. A gesture-based technique can be effective for this purpose as it
allows for direct interaction with the chart. The components that define
our details model (data entities and variables) directly map to elements
of graph composition (Figure 2b). Data entities are visually encoded as
‘marks’ on a two dimensional plane, while independent and dependent
variables are represented as axes or legends. Collectively these form
the interaction controls (widgets) for SmartCues and can be generalized
across all chart types.

To guide the design of our gestures we utilized principles of natu-
ral scan paths and anchoring (or gaze fixation) from the graph com-
prehension literature [28, 63, 66]. According to the task anchoring
framework [66], graph readers anchor on marks and axes values when
extracting different classes of information. For example, to locate a
point on a line graph, readers anchor on the x-axis value followed by
projection onto the line. Relationship comparison involves pairwise
entity anchoring. In SmartCues we align our gestures to analogous
visual ‘anchor’ points. The single ‘touch’ (tap) gesture, the most basic
of gestures, is used for selecting marks or axes anchor points (Figure 3a-
b). This gesture alone covers a variety of DoD tasks across different
reading levels. For example, touching on a single bar generates a query
WhatIsDetail({bari}). Similarly tapping on the y-axis value (k) on
a bar chart generate a query WhatIsDetail({bar0

v , . . . ,barn
v},k). By

design, when the ‘entities’ parameter is not specified by gestures, the
query defaults it to all marks on the chart. This both simplifies gesture
selections and maintains that queries be data-aware.

To support tasks that involve pairs of marks or range of values,
SmartCues also supports simultaneous multi-tap gestures (Figure 3c-d).
Tapping on a pair of bars fires a query WhatIsDetail({bari,bar j}).
Similarly selecting two values on the y-axis generates the query
WhatIsDetail({bar0

v , . . . ,barn
v},y1,y2). While it is desirable to limit

gestures to single and multi-touch, to account for ambiguity, we extend
gestures for certain DoD functions as well. Particularly for statistical
DoDs such as mean and regression, the query involves all entities and
no variables. A simple tap gesture anywhere on the plane would be
highly ambiguous. For this reason, we also supports simple ‘swipe’

gestures to reduce ambiguity of detail type (Figure 3e-f). Prior work
on gesture elicitation [71] has shown that directional swipe gestures
are favored when they correspond to graph semantics (e.g., diagonal
downward gesture for downward trends). In SmartCues, directional
swipe gestures closely align with visual features of the graph and its
corresponding overlays. Tapping on the bar chart and sliding to the
right, for example, represents the query for ‘mean.’ Similarly swiping
diagonally upwards or downwards translates to ranking queries.

Directional swipe gestures may also be combined with anchor selec-
tion when appropriate. For example, tapping on a bar (Figure 3e) and
then brushing upwards indicates a request for threshold information rel-
ative to the tapped-on-bar. The tap indicates the selection, which would
ordinarily be interpreted as a request for details on that bar. However,
the upward motion indicates that it is a threshold constraint.

In some situations, a single gesture is unnatural or may be overly
complex. For example, we may want to compare the difference between
bari and all other bars in a bar chart. However, there may not be a single
natural gesture for this (i.e., what should the end-user select and how
should they move their hand?). A more natural solution is to repeatedly
use the WHATISDIFFERENCE({bari

v,bar j
v}) gesture (i.e., tapping on

bars i, which is fixed, and j which is varied). This achieves the end-
users goal but is inefficient. Instead, SmartCues is designed to observe
the sequence of queries and infer a higher-level detail request that
would ‘encapsulate’ repeated queries. Figure 1d-f illustrates this. After
consecutive queries of the same sort , SmartCues will generalize the
query from WHATISDIFFERENCE to WHATISDIFFERENCETOALL.
A future extension may be to use generalized selection [30] where
repeated tapping or long press expands a selection or detail query.

We have developed a gestural query language consisting of simple
tap and swipe gestures (Figure 2a). Because the design of our interac-
tions correspond to anchoring strategies for graph comprehension, the
tap gestures carry the same meaning regardless of the chart-type. This
makes it easier to implement and use SmartCues on new chart types.
However, the directional swipe gestures are chart specific. Notably,
the same gesture may mean different things on different charts. For
example, a diagonal move from the bottom-left to top-right on a bar
chart is a request for rank ordering. The same gesture on a scatter plot
is a request for a regression line. While the two share a gesture, the
semantics in the context of a chart type is either apparent or can be
easily learned. We validated, and modified, our initial gesture set based
on feedback from an elicitation protocol (described in Sec. 6.2).

4.3 Overlay Views
A final step in the SmartCues framework is determining the best way
to present the details (if the gesture is the query, and details are the
documents, then the overlay is the search engine result page). For
simple queries (e.g., elementary DoDs) we might imagine placing
textual annotations near the element the end-user tapped on (similarly to
a hover tooltip). As long as the label was near the target or connected by
an arrow or some other mark, Gestalt heuristics would lead to a correct
association between detail and mark (proximity or connectedness).
However, any details that involve more than one target or that have a
complex ‘return value’ (e.g., parameters for a regression model) will
most likely require different overlay that are specific to chart types.
In SmartCues, we have implemented DoD rendering as data-aware
overlays. This is consistent with the different grammar-of-graphics
style formalism and allow us to layer multiple detail views in the same
chart (note that overlays fade).

To inform the design of our overlays, we did a qualitative analysis
of existing charts (98 collected from news and visualization sites) and
annotation literature [52]. For our analysis, we selected only those
visualizations that annotated details about what is already encoded
in the visualization. For each annotation, we decomposed (reverse-
engineered) it into the data-type of the detail that is annotated, and the
function and visualization components that computed (or produced)
the annotation. From this, we determined that there are three distinct
‘types’ of detail overlays (Figure 2d). The first, as discussed above,
are textual annotations and cater to single-valued details. The second
type are visually encoded annotations and are used to display multi-
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context of the original visualizations. Consistent with our guideline
D3, we prefer for details to be presented rapidly without significant
cognitive overhead. Presenting a secondary visualization (e.g., in an-
other window) can increase this cost [35, 69]. Other interactions (e.g.,
reconfiguration, transformation, filter, etc. [72]) may similarly require
a high cognitive overhead to process the new or adjusted view [41, 50]

Rather we adopt the techniques used by others to present details
through data-driven annotations [31] and graphical overlays. Both
textual and graphical (e.g., trend lines) annotations can be produced
by SmartCues. The specific implementation is visualization dependent
(e.g., a difference between two pie segments or two bars is represented
differently). This approach requires defining a way of presenting de-
tails that is uncluttered but with a clear connection to the selection
(D6) and that does not collide with retinal variables (e.g., color) that
are already dedicated to encoding values (D7). Finally, even though
SmartCues ranks details by those most likely to be correct, mistakes
need to be resolved. To deal with the inherent ambiguity of the ‘query,’
it is necessary to define mechanisms for displaying different details
simultaneously or interactively resolving (display) ambiguity (D8).

4 SMARTCUES ARCHITECTURE

Building on our design guidelines, here we describe each of the three
main components of SmartCues (Figure 2).

4.1 SmartCues Detail Model

Before describing the interaction model and graphical overlay, it is
worth considering the internal details model of SmartCues. This repre-
sentation will dictate both how the end-user will query for details and
how the details will be displayed.

As shown in Figure 2c, data—bound to a two-dimensional graph—
can be characterized by its dependent variable x, the independent vari-
able y, and data entities (data rows) [9, 66]. Detail queries naturally
correspond to these three components. Our analysis of existing DoD
implementations and data-aware annotations showed that detail types
can be mapped to Bertin’s “reading levels [9] as well as Ren et al.’s
data item, set, and series categories [52]. Elementary level details,
such as value look-ups, correspond to a single data entity. Intermediate
level details either map to a pair of data entities (e.g., relationship or
comparison type details) or may be computed over a series of entities
that are subset by independent and dependent variables (e.g., threshold,
distribution, etc.). Global level details such as minima, maxima, or
mean take all of the data entities into consideration. Therefore, at
the lowest level, detail queries can be modeled as functions that take
two arguments: data entities and variable values. Or more formally:
WhatIsDetailv({Entities},{Variables}∗). Because SmartCues details
are ‘data-aware,’ the entities argument is required, but variables are
optional. The return value of DoD functions are varied. They can range

from ordinal (e.g., what is the rank?) to boolean masks (e.g., which
bars are larger than 5?) to vectors (e.g., what is the linear correlation?).

This formalization allows us to express detail queries across all read-
ing levels. For example, WHATISBARVALUE({bari

v}) is an elementary
question that retrieves the value, v, for entity corresponding to bar i
in a bar chart. The question WHATISDIFFERENCE({bari

v,bar j
v}) is

an intermediate question that determines the numerical difference be-
tween the values encoded by two bars, i and j. The threshold query
WHICHISLARGER({bar0

v , . . . ,barn
v},k) takes an additional parame-

ter k and finds all entities whose value, v, is larger than k. Finally,
WHATISMAX({bar0

v , . . . ,barn
v}) is a global question that produces the

maximum v over all the bars in a bar chart. By specifying detail queries
in terms of entities and variables, we also constraint that details be
computed over what is already encoded (D5).

A key detail about our specification is that functions may not have a
unique signature for any particular graph type. For example, WHATIS-
THEMEDIAN, WHATISTHEMODE, WHATISTHEMEAN, can all op-
erate on the same selection and will return the same value type. If the
request were made through a programming interface, there would be
no ambiguity as the function names are all different. Similarly, if the
interface had an option for specifying which detail the end-user wanted
(e.g., through a menu or drop down box), there would be no ambiguity.
However, to satisfy our design guidelines–in particular D3 (reducing
time-to-detail)–we provide access to our detail signatures through a
‘fuzzy’ search engine pattern. That is, details can be requested with
underspecified ‘queries.’ For example, WHATIS*(bari

v), will find all
detail functions that take one selection as input. This simplifies the task
of picking the right function but also introduces ambiguity.

SmartCues attempts to address this in a number of ways (to satisfy
D4). By default, SmartCues allows end-users to choose from a list
of detail functions that match the query signature (Figure 3g). In
addition, we use past selection, and history of detail queries to rank all
the matching detail functions. For example, if a query matches prior
query signature SmartCues automatically presents that detail based on
utility. In other cases, the list is ranked by frequency. Additionally, as
discussed in the next section, we can also reduce ambiguity by selecting
a good query language.

4.2 SmartCues Interaction Controls

Recall that for our end-users we would like to identify a set of natural
interactions (D1) that are simultaneously low-ambiguity (D2) and help
maintain fast access to details (D3). Complex menus or additional
panels with faceted views can eliminate ambiguity but fail to satisfy
our other two objectives.

Rather, we have opted to implement touch-based interactions (Fig-
ure 2a) as our ‘query language’ of choice. Our goal is to produce a set
of interactions that can be translated into a query applied to the details
database (Figure 3). Ideally, such a language would support the selec-
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Fig. 3. Gestures and corresponding query expressions for a bar chart.

tion of the data entities, variables/parameters, and the detail function
itself. A gesture-based technique can be effective for this purpose as it
allows for direct interaction with the chart. The components that define
our details model (data entities and variables) directly map to elements
of graph composition (Figure 2b). Data entities are visually encoded as
‘marks’ on a two dimensional plane, while independent and dependent
variables are represented as axes or legends. Collectively these form
the interaction controls (widgets) for SmartCues and can be generalized
across all chart types.

To guide the design of our gestures we utilized principles of natu-
ral scan paths and anchoring (or gaze fixation) from the graph com-
prehension literature [28, 63, 66]. According to the task anchoring
framework [66], graph readers anchor on marks and axes values when
extracting different classes of information. For example, to locate a
point on a line graph, readers anchor on the x-axis value followed by
projection onto the line. Relationship comparison involves pairwise
entity anchoring. In SmartCues we align our gestures to analogous
visual ‘anchor’ points. The single ‘touch’ (tap) gesture, the most basic
of gestures, is used for selecting marks or axes anchor points (Figure 3a-
b). This gesture alone covers a variety of DoD tasks across different
reading levels. For example, touching on a single bar generates a query
WhatIsDetail({bari}). Similarly tapping on the y-axis value (k) on
a bar chart generate a query WhatIsDetail({bar0

v , . . . ,barn
v},k). By

design, when the ‘entities’ parameter is not specified by gestures, the
query defaults it to all marks on the chart. This both simplifies gesture
selections and maintains that queries be data-aware.

To support tasks that involve pairs of marks or range of values,
SmartCues also supports simultaneous multi-tap gestures (Figure 3c-d).
Tapping on a pair of bars fires a query WhatIsDetail({bari,bar j}).
Similarly selecting two values on the y-axis generates the query
WhatIsDetail({bar0

v , . . . ,barn
v},y1,y2). While it is desirable to limit

gestures to single and multi-touch, to account for ambiguity, we extend
gestures for certain DoD functions as well. Particularly for statistical
DoDs such as mean and regression, the query involves all entities and
no variables. A simple tap gesture anywhere on the plane would be
highly ambiguous. For this reason, we also supports simple ‘swipe’

gestures to reduce ambiguity of detail type (Figure 3e-f). Prior work
on gesture elicitation [71] has shown that directional swipe gestures
are favored when they correspond to graph semantics (e.g., diagonal
downward gesture for downward trends). In SmartCues, directional
swipe gestures closely align with visual features of the graph and its
corresponding overlays. Tapping on the bar chart and sliding to the
right, for example, represents the query for ‘mean.’ Similarly swiping
diagonally upwards or downwards translates to ranking queries.

Directional swipe gestures may also be combined with anchor selec-
tion when appropriate. For example, tapping on a bar (Figure 3e) and
then brushing upwards indicates a request for threshold information rel-
ative to the tapped-on-bar. The tap indicates the selection, which would
ordinarily be interpreted as a request for details on that bar. However,
the upward motion indicates that it is a threshold constraint.

In some situations, a single gesture is unnatural or may be overly
complex. For example, we may want to compare the difference between
bari and all other bars in a bar chart. However, there may not be a single
natural gesture for this (i.e., what should the end-user select and how
should they move their hand?). A more natural solution is to repeatedly
use the WHATISDIFFERENCE({bari

v,bar j
v}) gesture (i.e., tapping on

bars i, which is fixed, and j which is varied). This achieves the end-
users goal but is inefficient. Instead, SmartCues is designed to observe
the sequence of queries and infer a higher-level detail request that
would ‘encapsulate’ repeated queries. Figure 1d-f illustrates this. After
consecutive queries of the same sort , SmartCues will generalize the
query from WHATISDIFFERENCE to WHATISDIFFERENCETOALL.
A future extension may be to use generalized selection [30] where
repeated tapping or long press expands a selection or detail query.

We have developed a gestural query language consisting of simple
tap and swipe gestures (Figure 2a). Because the design of our interac-
tions correspond to anchoring strategies for graph comprehension, the
tap gestures carry the same meaning regardless of the chart-type. This
makes it easier to implement and use SmartCues on new chart types.
However, the directional swipe gestures are chart specific. Notably,
the same gesture may mean different things on different charts. For
example, a diagonal move from the bottom-left to top-right on a bar
chart is a request for rank ordering. The same gesture on a scatter plot
is a request for a regression line. While the two share a gesture, the
semantics in the context of a chart type is either apparent or can be
easily learned. We validated, and modified, our initial gesture set based
on feedback from an elicitation protocol (described in Sec. 6.2).

4.3 Overlay Views
A final step in the SmartCues framework is determining the best way
to present the details (if the gesture is the query, and details are the
documents, then the overlay is the search engine result page). For
simple queries (e.g., elementary DoDs) we might imagine placing
textual annotations near the element the end-user tapped on (similarly to
a hover tooltip). As long as the label was near the target or connected by
an arrow or some other mark, Gestalt heuristics would lead to a correct
association between detail and mark (proximity or connectedness).
However, any details that involve more than one target or that have a
complex ‘return value’ (e.g., parameters for a regression model) will
most likely require different overlay that are specific to chart types.
In SmartCues, we have implemented DoD rendering as data-aware
overlays. This is consistent with the different grammar-of-graphics
style formalism and allow us to layer multiple detail views in the same
chart (note that overlays fade).

To inform the design of our overlays, we did a qualitative analysis
of existing charts (98 collected from news and visualization sites) and
annotation literature [52]. For our analysis, we selected only those
visualizations that annotated details about what is already encoded
in the visualization. For each annotation, we decomposed (reverse-
engineered) it into the data-type of the detail that is annotated, and the
function and visualization components that computed (or produced)
the annotation. From this, we determined that there are three distinct
‘types’ of detail overlays (Figure 2d). The first, as discussed above,
are textual annotations and cater to single-valued details. The second
type are visually encoded annotations and are used to display multi-
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Fig. 4. Overview of the SmartCues library: (a) The touch wrapper binds
gestures to charts, and generates detail queries. (b) Core DoD generator
module routes the query to the right detail model and (c) charting sub-
modules executes the queries and generate DoD overlays.

valued details (e.g., all outliers on a scatter plot, all bars above the mean
threshold, etc.). Here, textual annotations alone cannot effectively
show the details. To make the information visually perceptible, they
are often encoded as modifications to the original mark itself through
unused retinal variables (changes in shape, color, etc.). For example, in
Figure 1g, textually annotating the rank of each bar is not as effective
(for some tasks) as using an overlaid gradient scale (encoding the
rank). Labels and gradients can be used, when appropriate, to double-
encode the rank information. In this example, the overlay leverages the
unbound color property of the marks to allow comparison of adjacent
marks. It is possible that color or all other visual attributes are used up
by the visualization. In such cases, alternatives include encoding the
labels, placing additional glyphs, or interactivity. SmartCues overlays
are intended to take into account what else is being displayed and how.

The third class of annotations, what we refer to as ‘multi-layered
annotations’ refer to overlays that are connected at the data level. For
example, a scatter plot that shows an annotation for moving average and
also displays the difference between individual points and the average
value. This is an example of static multi-layer overlay, but other ex-
amples use interactivity to reveal subsequent overlays (e.g., differently
colored outliers on a scatter plot, whose values are retrieved through
tooltips). To fulfill our design guideline D8, we encode complex multi-
valued details into higher level annotations, and allow end-users to
interactively drill-down to individual details (e.g., Figure 1 e-f).

5 UTILIZING THE SMARTCUES LIBRARY

We implemented SmartCues as a reusable Web-based library. Our
implementation offers a collection of detail models, interactions, and
overlay views for a set of standard chart types (bar chart, scatter plot,
and line chart). More critically, it is possible to adapt and extend this li-
brary for other chart types or additional DoDs. Here we briefly describe
key implementation details. Complete documentation is available on
our demo site at www.smartcues.info.

Figure 4 illustrates the key components of the SmartCues library.
The detail models and overlay views are implemented within the
core DoD generator library (d3.annotator.js) using D3 [10]. The
interaction controls are built as a standalone multi-touch library
(d3.annotator.touches.js). This separation allows for extensibility for
other interaction modalities. Execution flows as follows: The touch
wrapper (a) captures a valid gesture and invokes the corresponding
chart’s query request builder by passing gesture attributes (data marks

and variable values). The resulting request is (b) sent to the routing
module of the DoD generator library. Based on the chart type, query
specification, and a set of decision rules (multi-layer overlay, history,
query generalization support, etc.), the routing module invokes the
correct function within the (c) charting sub-module. The results of
this function is passed on to the corresponding overlay, which finally
renders the computed detail.

5.1 Touch Wrapper
In SmartCues, touch interactions are implemented using the ham-
mer.js [56] and gestrec [43, 67] multi-touch libraries. Given a D3
chart (SVG), this module adds interaction controls to different chart
components (marks, axes, plane). When a gesture is invoked, the query
builder–a sub-module that handles all gesture events–translates gestures
and targets into DoD queries. As shown in Figure 4a, each chart type
implements its own interaction controls and query builder sub-modules.
The library also offers configuration support in which consumers (end-
users or developers) can enable/disable certain DoD queries based on
domain context. While a visualization designer can choose to manually
add gestures to a visualization, our module reduces the implementa-
tion cost from several hundred lines of code to around four lines. As
an example, the code to implement all of the touch annotations for a
standard (D3) bar chart is:

var barAnnotator = d3.annotator.touches(’bar’)
.attr("label", <x-axis property>)
.attr("value", <y-axis property>);

<chart-svg>.call(barAnnotator);

5.2 Core DoD Generator
This module handles all of the DoD computation, generation and ren-
dering of overlay views. It consists of three main sub-modules: (1)
the query router, (2) a history module, and (3) a collection of chart
sub-modules, one per chart type. Each chart sub-module implements
a collection of detail models and overlay generation logic. The detail
models and overlay views are decoupled so that multiple detail models
can invoke the same overlays. When a DoD overlay is requested, the
query router performs a predicate match against all detail models for
the chart. Additionally, the routing algorithm considers history data
and also determines if the query extends an already rendered overlay
(drill-down). If a single detail model is matched, the function is directly
invoked. If there is a conflict, the router returns a set of potential DoD
models which are presented to the end-user through a pop-up widget.
The end user can choose which model to apply. Once the details are
computed, the overlay module parses the underlying SVG structure to
determine the placement and rendering of overlays.

Our library allows for customization of both the detail models and
overlays. For detail models, developers can pass in custom functions as
predicates, set overlays to manual or auto-clear modes, and configure
all of the CSS-style attributes of the overlay including color, thickness,
font-size etc. Further, they can extend SmartCues to new chart types by
providing detail models and overlay views. Here our core library offers
support with placement of overlays and routing gestures.

5.3 Chart-Specific SmartCues
Our library implements annotations and gestures for commonly used
chart types including bar charts, scatter plots, and line graphs. These
can be used out-of-the-box. Here we describe scenarios to illustrate
how SmartCues can support different graph comprehension tasks.

5.3.1 Scenario 1: On the edge of 1.5°C
Figure 1 compares temperature anomalies for the year 2016, drawing
attention to the fact that some months are close to or have exceeded the
1.5° C warming threshold—agreed to by COP 21 negotiators in Paris
(Climate Central [19]). Starting with an unannotated visualization,
the reader first queries for all months that exceeded the warming
threshold by performing a ‘tap’ gesture at 1.5°label on the y-axis. In
response, the core DoD generator renders a SmartCues at that threshold
(a horizontal line parallel to the x-axis), and also highlights all bars
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Fig. 5. Example SmartCues showing both interaction controls and overlay views for different chart types. These, and other interactive examples can
be accessed from our demo site at www.smartcues.info. Note that the original charts are greyed out for clarity of overlays.

that exceeded that value, in this case February is highlighted (Fig 1b).
Next, the reader sees that the temperature increase is not linear with the
current ordering of bars. She performs a diagonal swipe-up gesture to
get the ranks of all bars (Figure 1g). The overlay color encodes each
bar on a gradient scale. From here, the reader confirms that July has the
lowest rise in temperature by tapping on the bar (Figure 1h). Further, the
reader wishes to compare the highest and lowest months. She brings
up the ‘diff’ overlay by simultaneously placing two fingers on February
and July. This query renders the horse-shoe like overlay connecting
the two bars (Figure 1d). Using our query-by-example interaction, she
queries for the difference between February and all other months
(Figure 1e). This tells her that there is only a marginal difference
between February and March (Figure 1f). Finally, she queries for
the mean temperature rise by performing a horizontal swipe gesture
across all bars (Figure 1i). The corresponding annotation also shows
that six of the twelve months are above the mean value of 1.25. In
this manner, the reader is able to explore several facts about this chart,
quickly and accurately, using SmartCues.

5.3.2 Scenario 2: NFL Field-goal vs. kick distance

In this visualization, data about field goal percentage is plotted against
attempted kick distance for the past fourteen NFL seasons, on a scatter
plot (FiveThirtyEight [48]). Here, the reader is interested in comparing
kick distances against goal percentage. She first spots that 2013 has
the highest field goal percentage. As shown in Figure 5a, she ‘taps’
on the point to see the exact kick distance and field goal percentage.
She then uses multi-touch gestures to get the difference between 2013

and 2008 which has the second highest goal percentage (Figure 5b).
The resulting DoD consists of a line connector between 2008 and 2013
and a label showing the x and y values. Lastly, in this chart there
is no apparent spatial ordering of points which makes it difficult for
her to compare changes between consecutive years. To solve this
perceptual issue, the reader performs a zig-zag swipe gesture to bring
up a line annotation that connects all years in a sequential order, and
then taps on a line segment connecting two years to know the change
between the those years (Figure 5c).

5.3.3 Scenario 3: Historic Snowfall in New York

In this third scenario, historic snowfall data for the month of March is
plotted on a scatter plot for the city of New York (FiveThirtyEight [23]).
Unlike the previous scatter plot in which we examined the relationship
between different data points on the plot, in this scenario we look at
‘distribution’ of points at different levels of snowfall. Starting with an
unannotated chart, the reader first wishes to know how many years
saw a snowfall above 20 inches. She does this by ‘touching’ on the the
y-axis values 20 and 40 (the highest on the scale). This renders a DoD
overlay that contains that range along with a label showing the exact
count (Figure 5d). Next she wishes to retrieve summary statistics
across all observations. To do this, she performs a horizontal swipe
gesture across the chart. The resulting overlay displays median and IQR
for the chart along with outliers encoded in a different color (Figure 5e).
Lastly, she can examine the relationship between year and amount of
snowfall using linear regression. Here she performs a diagonal swipe
gesture which overlays the scatter plot with regression line. Further,
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Fig. 4. Overview of the SmartCues library: (a) The touch wrapper binds
gestures to charts, and generates detail queries. (b) Core DoD generator
module routes the query to the right detail model and (c) charting sub-
modules executes the queries and generate DoD overlays.

valued details (e.g., all outliers on a scatter plot, all bars above the mean
threshold, etc.). Here, textual annotations alone cannot effectively
show the details. To make the information visually perceptible, they
are often encoded as modifications to the original mark itself through
unused retinal variables (changes in shape, color, etc.). For example, in
Figure 1g, textually annotating the rank of each bar is not as effective
(for some tasks) as using an overlaid gradient scale (encoding the
rank). Labels and gradients can be used, when appropriate, to double-
encode the rank information. In this example, the overlay leverages the
unbound color property of the marks to allow comparison of adjacent
marks. It is possible that color or all other visual attributes are used up
by the visualization. In such cases, alternatives include encoding the
labels, placing additional glyphs, or interactivity. SmartCues overlays
are intended to take into account what else is being displayed and how.

The third class of annotations, what we refer to as ‘multi-layered
annotations’ refer to overlays that are connected at the data level. For
example, a scatter plot that shows an annotation for moving average and
also displays the difference between individual points and the average
value. This is an example of static multi-layer overlay, but other ex-
amples use interactivity to reveal subsequent overlays (e.g., differently
colored outliers on a scatter plot, whose values are retrieved through
tooltips). To fulfill our design guideline D8, we encode complex multi-
valued details into higher level annotations, and allow end-users to
interactively drill-down to individual details (e.g., Figure 1 e-f).

5 UTILIZING THE SMARTCUES LIBRARY

We implemented SmartCues as a reusable Web-based library. Our
implementation offers a collection of detail models, interactions, and
overlay views for a set of standard chart types (bar chart, scatter plot,
and line chart). More critically, it is possible to adapt and extend this li-
brary for other chart types or additional DoDs. Here we briefly describe
key implementation details. Complete documentation is available on
our demo site at www.smartcues.info.

Figure 4 illustrates the key components of the SmartCues library.
The detail models and overlay views are implemented within the
core DoD generator library (d3.annotator.js) using D3 [10]. The
interaction controls are built as a standalone multi-touch library
(d3.annotator.touches.js). This separation allows for extensibility for
other interaction modalities. Execution flows as follows: The touch
wrapper (a) captures a valid gesture and invokes the corresponding
chart’s query request builder by passing gesture attributes (data marks

and variable values). The resulting request is (b) sent to the routing
module of the DoD generator library. Based on the chart type, query
specification, and a set of decision rules (multi-layer overlay, history,
query generalization support, etc.), the routing module invokes the
correct function within the (c) charting sub-module. The results of
this function is passed on to the corresponding overlay, which finally
renders the computed detail.

5.1 Touch Wrapper
In SmartCues, touch interactions are implemented using the ham-
mer.js [56] and gestrec [43, 67] multi-touch libraries. Given a D3
chart (SVG), this module adds interaction controls to different chart
components (marks, axes, plane). When a gesture is invoked, the query
builder–a sub-module that handles all gesture events–translates gestures
and targets into DoD queries. As shown in Figure 4a, each chart type
implements its own interaction controls and query builder sub-modules.
The library also offers configuration support in which consumers (end-
users or developers) can enable/disable certain DoD queries based on
domain context. While a visualization designer can choose to manually
add gestures to a visualization, our module reduces the implementa-
tion cost from several hundred lines of code to around four lines. As
an example, the code to implement all of the touch annotations for a
standard (D3) bar chart is:

var barAnnotator = d3.annotator.touches(’bar’)
.attr("label", <x-axis property>)
.attr("value", <y-axis property>);

<chart-svg>.call(barAnnotator);

5.2 Core DoD Generator
This module handles all of the DoD computation, generation and ren-
dering of overlay views. It consists of three main sub-modules: (1)
the query router, (2) a history module, and (3) a collection of chart
sub-modules, one per chart type. Each chart sub-module implements
a collection of detail models and overlay generation logic. The detail
models and overlay views are decoupled so that multiple detail models
can invoke the same overlays. When a DoD overlay is requested, the
query router performs a predicate match against all detail models for
the chart. Additionally, the routing algorithm considers history data
and also determines if the query extends an already rendered overlay
(drill-down). If a single detail model is matched, the function is directly
invoked. If there is a conflict, the router returns a set of potential DoD
models which are presented to the end-user through a pop-up widget.
The end user can choose which model to apply. Once the details are
computed, the overlay module parses the underlying SVG structure to
determine the placement and rendering of overlays.

Our library allows for customization of both the detail models and
overlays. For detail models, developers can pass in custom functions as
predicates, set overlays to manual or auto-clear modes, and configure
all of the CSS-style attributes of the overlay including color, thickness,
font-size etc. Further, they can extend SmartCues to new chart types by
providing detail models and overlay views. Here our core library offers
support with placement of overlays and routing gestures.

5.3 Chart-Specific SmartCues
Our library implements annotations and gestures for commonly used
chart types including bar charts, scatter plots, and line graphs. These
can be used out-of-the-box. Here we describe scenarios to illustrate
how SmartCues can support different graph comprehension tasks.

5.3.1 Scenario 1: On the edge of 1.5°C
Figure 1 compares temperature anomalies for the year 2016, drawing
attention to the fact that some months are close to or have exceeded the
1.5° C warming threshold—agreed to by COP 21 negotiators in Paris
(Climate Central [19]). Starting with an unannotated visualization,
the reader first queries for all months that exceeded the warming
threshold by performing a ‘tap’ gesture at 1.5°label on the y-axis. In
response, the core DoD generator renders a SmartCues at that threshold
(a horizontal line parallel to the x-axis), and also highlights all bars
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Fig. 5. Example SmartCues showing both interaction controls and overlay views for different chart types. These, and other interactive examples can
be accessed from our demo site at www.smartcues.info. Note that the original charts are greyed out for clarity of overlays.

that exceeded that value, in this case February is highlighted (Fig 1b).
Next, the reader sees that the temperature increase is not linear with the
current ordering of bars. She performs a diagonal swipe-up gesture to
get the ranks of all bars (Figure 1g). The overlay color encodes each
bar on a gradient scale. From here, the reader confirms that July has the
lowest rise in temperature by tapping on the bar (Figure 1h). Further, the
reader wishes to compare the highest and lowest months. She brings
up the ‘diff’ overlay by simultaneously placing two fingers on February
and July. This query renders the horse-shoe like overlay connecting
the two bars (Figure 1d). Using our query-by-example interaction, she
queries for the difference between February and all other months
(Figure 1e). This tells her that there is only a marginal difference
between February and March (Figure 1f). Finally, she queries for
the mean temperature rise by performing a horizontal swipe gesture
across all bars (Figure 1i). The corresponding annotation also shows
that six of the twelve months are above the mean value of 1.25. In
this manner, the reader is able to explore several facts about this chart,
quickly and accurately, using SmartCues.

5.3.2 Scenario 2: NFL Field-goal vs. kick distance

In this visualization, data about field goal percentage is plotted against
attempted kick distance for the past fourteen NFL seasons, on a scatter
plot (FiveThirtyEight [48]). Here, the reader is interested in comparing
kick distances against goal percentage. She first spots that 2013 has
the highest field goal percentage. As shown in Figure 5a, she ‘taps’
on the point to see the exact kick distance and field goal percentage.
She then uses multi-touch gestures to get the difference between 2013

and 2008 which has the second highest goal percentage (Figure 5b).
The resulting DoD consists of a line connector between 2008 and 2013
and a label showing the x and y values. Lastly, in this chart there
is no apparent spatial ordering of points which makes it difficult for
her to compare changes between consecutive years. To solve this
perceptual issue, the reader performs a zig-zag swipe gesture to bring
up a line annotation that connects all years in a sequential order, and
then taps on a line segment connecting two years to know the change
between the those years (Figure 5c).

5.3.3 Scenario 3: Historic Snowfall in New York

In this third scenario, historic snowfall data for the month of March is
plotted on a scatter plot for the city of New York (FiveThirtyEight [23]).
Unlike the previous scatter plot in which we examined the relationship
between different data points on the plot, in this scenario we look at
‘distribution’ of points at different levels of snowfall. Starting with an
unannotated chart, the reader first wishes to know how many years
saw a snowfall above 20 inches. She does this by ‘touching’ on the the
y-axis values 20 and 40 (the highest on the scale). This renders a DoD
overlay that contains that range along with a label showing the exact
count (Figure 5d). Next she wishes to retrieve summary statistics
across all observations. To do this, she performs a horizontal swipe
gesture across the chart. The resulting overlay displays median and IQR
for the chart along with outliers encoded in a different color (Figure 5e).
Lastly, she can examine the relationship between year and amount of
snowfall using linear regression. Here she performs a diagonal swipe
gesture which overlays the scatter plot with regression line. Further,
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she can then predict snowfall for any year by tapping on that year on
the x-axis (Figure 5f). This gesture renders a label with the predicted
value from the regression equation.

5.3.4 Scenario 4: High school graduates enrolled in college
In this last example, we demonstrate DoDs for a line chart showing
percentage of high school graduates enrolled in college across different
years (FiveThirtyEight [15]). Here the reader, who is aware of the 2008
recession, is curious to know the rise in college enrollment compared
to previous year (i.e., 2007). To do this, she simultaneously taps on
the two x-axis value. The resulting overlay consists of perpendicular
lines from the x-axis which intersect at the corresponding points on the
line chart, and also a label showing the actual change between the two
years (Figure 5g). Next she wishes to know the same detail for 1996-
1997. In response, SmartCues infers query expansion, and generates
change overlays across consecutive years (Figure 5h). The overlays are
color coded to show rise or fall in enrollment, with darker gradients
for steeper changes. The reader ‘taps’ on the overlay at 1996-1997 to
see the actual change data. Finally, she wants to know in which years
the enrollment rates were greater than 65 percent? She taps on the
label for 65% along the y-axis which generates a threshold overlay,
highlighting years above that value (Figure 5i).

6 EVALUATION

To evaluate SmartCues, we implemented our library on standard chart
types including bar chart, scatter plot, and line graph. From an initial
pilot we found that because annotations were always ‘right’ (in that they
simply reflected the data), correct recall of the gesture was predictive
of successfully completing the task. Hence, we focus on two questions:
(1) Can end-users easily learn the direct manipulation gestures for
different chart types? and (2) Are they able to invoke the right set of
annotations to answer chart comprehension tasks?

6.1 Procedure
We conducted our study with 19 participants, a majority of whom
were graduate students, and had prior experience working with charts.
Twelve participants reported that they engaged with visualizations in
the week prior to the study, and six within the past month. Each session
lasted 45-60 minutes and participants were paid $15 for their time.
The study was conducted in a lab setting using one of two full-HD
multi-touch devices (HP’s Sprout, and Microsoft’s Surface Book).

After completing a pre-test questionnaire, participants received a
guided tutorial of the system using a simple, artificial dataset about
students. The study coordinator first explained the interaction controls
available for each chart type and demonstrated each gesture. Partici-
pants were required to practice this gesture on a different machine and
successfully complete a set of practice questions. All tasks–training
and test–required that the participants interactively query for different
annotations similar to the ones illustrated in Figures 1 and 5.

For bar charts, we used a Coffee Sales dataset consisting of sales
data for 20 states across the US (also binned into Central, West, East,
and South). Example tasks include: “How many states sold more
than 40,000 units of coffee?” and “What is the difference in sales
between West and all other regions?” For scatter plots, we used an
emotion classification dataset (for distribution-related tasks), and a
Cricket Chirp-Temperature dataset (for comparison tasks). The speech
Emotion Classification consisted of 132 observations plotted by time
vs. predicted excitation. The Cricket dataset included 14 observations
plotting chirps made at different temperatures. Scatter plot questions
included: “At what time interval was the speaker most excited?” and
“What is the difference in number of chirps between 57°and 64°?” For
line graph tasks, we used another Sales dataset plotting percentage
profit across all months (12 data points). Tasks for line graph included:
“For the month with the highest drop in profit, by what percentage did
the profit decrease from previous month?” The tasks were distributed
such that we covered all detail models across chart types, and consisted
of ten tasks for bar charts, five for scatter plots, and five for line graphs.

We used more tasks for bar charts to test the large number of DoD
features implemented in SmartCues for that chart type.

In addition to the actual responses for each task (collected on paper),
we logged the gestures they performed using SmartCues. Finally, all
participants filled out a post-test usability questionnaire to report their
experience with SmartCues, and provide any open-ended feedback.

6.2 Gesture Elicitation
In addition to evaluating SmartCues broadly, we also tested our gesture
choices (to validate our naturalness criteria, D1). The pre-test question-
naire had participants come up with their own gestures for a set of chart
comprehension tasks (mean, rank, difference, etc.). Participants were
given paper forms in which each task was accompanied by an outline
of the corresponding chart type. We first briefed them about different
chart components (i.e., marks, axes, and plane). They were then asked
to imagine multi-touch interactions for those tasks, and represent them
on the chart outline by drawing circles for touch-points, and arrows
to indicate motion. As an example, we showed them how they could
find the mean on a bar chart by tapping on the left end (circle) of the
chart, and by swiping right (right-pointing-arrow from circle). The
results from the post-test questionnaire, and our analysis of the pre-test
responses, showed that the gestures implemented in SmartCues are
identical (16%), or similar (79%), to how participants envisioned them
to be. We determined similarity qualitatively based on gesture targets
(marks, axes values, and plane) and also type of gesture uses (tap vs.
swipe). Gestures were considered different if they corresponded to
different interaction controls, and similar if the targets were same as
ours but type or direction of gestures were different.

6.3 Results
To measure performance, we analyzed the logs for the set of (times-
tamped) gestures performed. We awarded credit for the correct gesture
usage, and for any alternate gestures that produced the same result.
For example, in Task 11: “How may observations have a predicted
excitation above 70% ?”, participants opted for repeating the y-interval
gesture three times (70–80, 80–90, 90–100) on the scatter plot, instead
of directly invoking the y-range query. This may be due to the fact that
selecting range was harder (size of touch target) when compared to
pointing at intervals. As shown in Fig 6, a majority of participants were
able to invoke the correct gestures within a reasonable amount of time.
The average time across all tasks and participants was 20.31 seconds
(sd=12.12 seconds). For Task 9: “How many products have higher
sales when compared to Chamomile?” several participants failed to
invoke the ‘swipe-up’ gesture on the bar of a bar chart. One explanation
for this could be that the gesture has the constraint selection (the bar’s
value) encoded within the gesture itself, which may make it less intu-
itive. An alternative may be to first tap on the bar and then swipe. For
Task 14, which was a multi-layer annotation interaction, the captured
data was noisy because they were triggered on top of overlay.

On a 7-point Likert-type scale (1- strongly disagree to 7- strongly
agree), participants rated system along the following attributes: ease-of-
use (µ=5.57, sd=0.76), learnability (µ=5.63, sd=1.11), intuitiveness of
task-gesture mapping (µ=5.84, sd=1.14), and ease of understanding the
annotations (µ=6.31, sd=0.74). In providing general feedback about
SmartCues, a participant mentioned “[I like]the fact that I could play
with the graphs to get information really fast and that I could easily
switch contexts for multiple insights. . . ,” and “[I like] the simplicity of
system and speed of getting results.” One participant requested support
for more complex statistical functions, and a few others expressed
the need for better gesture recognition for small touch targets (“In a
scatter plot, I noticed the labels were quite close to each other. So I
guess unintentionally, a person may press some other label”). Lastly
we also observed that few participants did not engage both hands
while interacting with the system, as one participant expressed “its
hard to hold onto 2 distant bars to get the difference between them.”
We plan to incorporate this feedback in our future iterations through
autocomplete-like cues for gestures, and also to look at improving
multi-touch affordances of different visualizations.
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Fig. 6. Results from log data: (Top) Total number of participants who
used the correct gestures for each task [n = 19]. (Bottom): Time taken
for each task across all participants.

7 DISCUSSION

7.1 Assumptions and Limitations
Our implementation of SmartCues formulates DoD as a search process.
As with any search logic, the more ‘complete’ the query, the more
precise, and unambiguous the response. In our implementation we
favor simple touch and swipe gestures that align with visual anchoring
processes that are natural to graph comprehension (D1). We trade-
off ambiguity (D3) and time-to-detail (D3) for simplicity. While a
more complex gestural language may reduce ambiguity, it will likely
increase learning cost and may not generalize as well across chart types.
We found that ambiguity is low for single and multi-target details as
the visual encodings afford specific comparisons and selection targets.
However, global-level queries, which do not target specific on-screen
marks can lead to ambiguity. Our architecture supports extensions
including probabilistic approaches to ambiguity resolutions [57], or
alternate query modalities such as natural language (e.g. [26]).

As with with any gesture based system, learnability and discov-
erability pose limitations to SmartCues query language. While the
results from our study showed that readers were able to invoke the right
gestures post-training, in-the-wild deployment will require additional
scaffolding. Specifically, learnability requires that (1) readers develop
cognitive mapping between gestures and actions, and (2) are able to per-
form the gestures with ease [7]. Our gestures are limited to simple touch
and swipe, but developing gesture-query mapping can be a challenge.
Our design of overlays which closely correspond to gesture targets
(D6) could help in establishing such mappings. A possible solution is
to use interactive hints (e.g., [38]) and display available gesture icons
similar to [3] in order to improve discoverability. Lastly, our current
implementation focuses on overlays that yield an effectiveness boost
(D5). We do not directly consider how our design plays with visual
transformations or other communication-type annotations. However,
because our annotations are data-driven, we believe the library can
be extended to handle visual transformations and collision with other
annotation types. We plan to explore these options in future iterations.
By making our library available, we hope to gain additional insights on
real-world deployment and use.

7.2 Guidelines for Extending SmartCues
In addition to the general design considerations for SmartCues, here
were offer guidelines for extension to novel chart types.

7.2.1 Scope of DoD Queries
Not all SmartCues detail types or gestures need to be enabled for any
specific chart or system. Visualizations are selected such that that they
convey a specific set of insights to readers (comparison, distribution,
relationship, composition, etc). Broadly, those insights define the scope
for SmartCues. From the reader’s perspective, a simplified view of
graph comprehension process is that it consists of insight acquisitions—
the extraction of expressed facts from the visualization. While typically
a ‘visual querying’ process, not all insights can be extracted accurately
and quickly by the reader (i.e., effectiveness criteria). When selecting
detail models, visualization designers should prioritize those details
that have low degree of effectiveness. For example, a ’rank’ query
in an already sorted bar chart may not boost effectiveness. Further,
use of SmartCues can lower transformation cost from sort and filter
type transformations. Designers should prioritize details that reduce
transformation cost. For example, using distribution details overlaid on
scatter plots may avoids chart transformation to histograms.

7.2.2 Specification of Detail Models
When defining parameters for detail models, only those parameters that
need to be specified by the reader should be included. To allow for
simple gestures, other parameters should be assigned a default value.
This minimizes time-to-detail without requiring complex queries. For
global level queries, detail specifications should be aligned such that
the gestures closely comply with all conflicting details (e.g., horizontal
swipe gesture for mean, median, and mode). For domain specific
visualizations, details can include specific computation that are also
visually calculable. For example, a scatter plot of height vs. weight can
return the BMI in addition to the specific height, weight values. When
detail models align with tasks that a visualization affords, it becomes
more intuitive for end users to query.

7.2.3 Integration with other gesture operations
One application for SmartCues is to promote reader engagement with
otherwise static visualizations through ‘active reading’ [68]. However,
visualization systems commonly require added interactivity such as fil-
tering, brushing and linking, and other view transformation. When such
interactions are also implemented using touch gestures (e.g., [53, 55])
they may collide with SmartCues’s query language. One recommenda-
tion is to implement SmartCues interactions in a special mode that can
be controlled by the reader. This is desirable as SmartCues interactions
and overlays are designed to avoid context switches such as view trans-
formations. A second alternative is to explore analogous gestures such
as long press instead of tap, pan-start and end instead of two-finger
touch, and other naturalistic behavior such as ‘clutching [55]’ the cor-
ner of the tablet device to distinguish other gestures from SmartCues
queries. A third option, is to further integrate the existing gestures into
SmartCues by using our widget menu to handle conflicts.

8 CONCLUSION

Visualizations cannot support all information tasks equally well, partly
due to the perceptual and cognitive limitations of the human reader.
SmartCues is our solution to boost the effectiveness of visual inferential
tasks by making explicit what is ‘hinted’ at in the visual encoding.
SmartCues are queried using simple touch gestures that closely align
with visual scanning processes, and are presented in situ to provide
quick access to a variety of insights. We demonstrate the approach
through a lab study and illustrate how detail models, interaction, and
overlays can be added to other chart types. By supporting both broader
and deeper notion details, SmartCues provide a new way to satisfy the
final step of the mantra: “overview first, zoom and filter, then details
on demand” [59].
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she can then predict snowfall for any year by tapping on that year on
the x-axis (Figure 5f). This gesture renders a label with the predicted
value from the regression equation.

5.3.4 Scenario 4: High school graduates enrolled in college
In this last example, we demonstrate DoDs for a line chart showing
percentage of high school graduates enrolled in college across different
years (FiveThirtyEight [15]). Here the reader, who is aware of the 2008
recession, is curious to know the rise in college enrollment compared
to previous year (i.e., 2007). To do this, she simultaneously taps on
the two x-axis value. The resulting overlay consists of perpendicular
lines from the x-axis which intersect at the corresponding points on the
line chart, and also a label showing the actual change between the two
years (Figure 5g). Next she wishes to know the same detail for 1996-
1997. In response, SmartCues infers query expansion, and generates
change overlays across consecutive years (Figure 5h). The overlays are
color coded to show rise or fall in enrollment, with darker gradients
for steeper changes. The reader ‘taps’ on the overlay at 1996-1997 to
see the actual change data. Finally, she wants to know in which years
the enrollment rates were greater than 65 percent? She taps on the
label for 65% along the y-axis which generates a threshold overlay,
highlighting years above that value (Figure 5i).

6 EVALUATION

To evaluate SmartCues, we implemented our library on standard chart
types including bar chart, scatter plot, and line graph. From an initial
pilot we found that because annotations were always ‘right’ (in that they
simply reflected the data), correct recall of the gesture was predictive
of successfully completing the task. Hence, we focus on two questions:
(1) Can end-users easily learn the direct manipulation gestures for
different chart types? and (2) Are they able to invoke the right set of
annotations to answer chart comprehension tasks?

6.1 Procedure
We conducted our study with 19 participants, a majority of whom
were graduate students, and had prior experience working with charts.
Twelve participants reported that they engaged with visualizations in
the week prior to the study, and six within the past month. Each session
lasted 45-60 minutes and participants were paid $15 for their time.
The study was conducted in a lab setting using one of two full-HD
multi-touch devices (HP’s Sprout, and Microsoft’s Surface Book).

After completing a pre-test questionnaire, participants received a
guided tutorial of the system using a simple, artificial dataset about
students. The study coordinator first explained the interaction controls
available for each chart type and demonstrated each gesture. Partici-
pants were required to practice this gesture on a different machine and
successfully complete a set of practice questions. All tasks–training
and test–required that the participants interactively query for different
annotations similar to the ones illustrated in Figures 1 and 5.

For bar charts, we used a Coffee Sales dataset consisting of sales
data for 20 states across the US (also binned into Central, West, East,
and South). Example tasks include: “How many states sold more
than 40,000 units of coffee?” and “What is the difference in sales
between West and all other regions?” For scatter plots, we used an
emotion classification dataset (for distribution-related tasks), and a
Cricket Chirp-Temperature dataset (for comparison tasks). The speech
Emotion Classification consisted of 132 observations plotted by time
vs. predicted excitation. The Cricket dataset included 14 observations
plotting chirps made at different temperatures. Scatter plot questions
included: “At what time interval was the speaker most excited?” and
“What is the difference in number of chirps between 57°and 64°?” For
line graph tasks, we used another Sales dataset plotting percentage
profit across all months (12 data points). Tasks for line graph included:
“For the month with the highest drop in profit, by what percentage did
the profit decrease from previous month?” The tasks were distributed
such that we covered all detail models across chart types, and consisted
of ten tasks for bar charts, five for scatter plots, and five for line graphs.

We used more tasks for bar charts to test the large number of DoD
features implemented in SmartCues for that chart type.

In addition to the actual responses for each task (collected on paper),
we logged the gestures they performed using SmartCues. Finally, all
participants filled out a post-test usability questionnaire to report their
experience with SmartCues, and provide any open-ended feedback.

6.2 Gesture Elicitation
In addition to evaluating SmartCues broadly, we also tested our gesture
choices (to validate our naturalness criteria, D1). The pre-test question-
naire had participants come up with their own gestures for a set of chart
comprehension tasks (mean, rank, difference, etc.). Participants were
given paper forms in which each task was accompanied by an outline
of the corresponding chart type. We first briefed them about different
chart components (i.e., marks, axes, and plane). They were then asked
to imagine multi-touch interactions for those tasks, and represent them
on the chart outline by drawing circles for touch-points, and arrows
to indicate motion. As an example, we showed them how they could
find the mean on a bar chart by tapping on the left end (circle) of the
chart, and by swiping right (right-pointing-arrow from circle). The
results from the post-test questionnaire, and our analysis of the pre-test
responses, showed that the gestures implemented in SmartCues are
identical (16%), or similar (79%), to how participants envisioned them
to be. We determined similarity qualitatively based on gesture targets
(marks, axes values, and plane) and also type of gesture uses (tap vs.
swipe). Gestures were considered different if they corresponded to
different interaction controls, and similar if the targets were same as
ours but type or direction of gestures were different.

6.3 Results
To measure performance, we analyzed the logs for the set of (times-
tamped) gestures performed. We awarded credit for the correct gesture
usage, and for any alternate gestures that produced the same result.
For example, in Task 11: “How may observations have a predicted
excitation above 70% ?”, participants opted for repeating the y-interval
gesture three times (70–80, 80–90, 90–100) on the scatter plot, instead
of directly invoking the y-range query. This may be due to the fact that
selecting range was harder (size of touch target) when compared to
pointing at intervals. As shown in Fig 6, a majority of participants were
able to invoke the correct gestures within a reasonable amount of time.
The average time across all tasks and participants was 20.31 seconds
(sd=12.12 seconds). For Task 9: “How many products have higher
sales when compared to Chamomile?” several participants failed to
invoke the ‘swipe-up’ gesture on the bar of a bar chart. One explanation
for this could be that the gesture has the constraint selection (the bar’s
value) encoded within the gesture itself, which may make it less intu-
itive. An alternative may be to first tap on the bar and then swipe. For
Task 14, which was a multi-layer annotation interaction, the captured
data was noisy because they were triggered on top of overlay.

On a 7-point Likert-type scale (1- strongly disagree to 7- strongly
agree), participants rated system along the following attributes: ease-of-
use (µ=5.57, sd=0.76), learnability (µ=5.63, sd=1.11), intuitiveness of
task-gesture mapping (µ=5.84, sd=1.14), and ease of understanding the
annotations (µ=6.31, sd=0.74). In providing general feedback about
SmartCues, a participant mentioned “[I like]the fact that I could play
with the graphs to get information really fast and that I could easily
switch contexts for multiple insights. . . ,” and “[I like] the simplicity of
system and speed of getting results.” One participant requested support
for more complex statistical functions, and a few others expressed
the need for better gesture recognition for small touch targets (“In a
scatter plot, I noticed the labels were quite close to each other. So I
guess unintentionally, a person may press some other label”). Lastly
we also observed that few participants did not engage both hands
while interacting with the system, as one participant expressed “its
hard to hold onto 2 distant bars to get the difference between them.”
We plan to incorporate this feedback in our future iterations through
autocomplete-like cues for gestures, and also to look at improving
multi-touch affordances of different visualizations.
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Fig. 6. Results from log data: (Top) Total number of participants who
used the correct gestures for each task [n = 19]. (Bottom): Time taken
for each task across all participants.

7 DISCUSSION

7.1 Assumptions and Limitations
Our implementation of SmartCues formulates DoD as a search process.
As with any search logic, the more ‘complete’ the query, the more
precise, and unambiguous the response. In our implementation we
favor simple touch and swipe gestures that align with visual anchoring
processes that are natural to graph comprehension (D1). We trade-
off ambiguity (D3) and time-to-detail (D3) for simplicity. While a
more complex gestural language may reduce ambiguity, it will likely
increase learning cost and may not generalize as well across chart types.
We found that ambiguity is low for single and multi-target details as
the visual encodings afford specific comparisons and selection targets.
However, global-level queries, which do not target specific on-screen
marks can lead to ambiguity. Our architecture supports extensions
including probabilistic approaches to ambiguity resolutions [57], or
alternate query modalities such as natural language (e.g. [26]).

As with with any gesture based system, learnability and discov-
erability pose limitations to SmartCues query language. While the
results from our study showed that readers were able to invoke the right
gestures post-training, in-the-wild deployment will require additional
scaffolding. Specifically, learnability requires that (1) readers develop
cognitive mapping between gestures and actions, and (2) are able to per-
form the gestures with ease [7]. Our gestures are limited to simple touch
and swipe, but developing gesture-query mapping can be a challenge.
Our design of overlays which closely correspond to gesture targets
(D6) could help in establishing such mappings. A possible solution is
to use interactive hints (e.g., [38]) and display available gesture icons
similar to [3] in order to improve discoverability. Lastly, our current
implementation focuses on overlays that yield an effectiveness boost
(D5). We do not directly consider how our design plays with visual
transformations or other communication-type annotations. However,
because our annotations are data-driven, we believe the library can
be extended to handle visual transformations and collision with other
annotation types. We plan to explore these options in future iterations.
By making our library available, we hope to gain additional insights on
real-world deployment and use.

7.2 Guidelines for Extending SmartCues
In addition to the general design considerations for SmartCues, here
were offer guidelines for extension to novel chart types.

7.2.1 Scope of DoD Queries
Not all SmartCues detail types or gestures need to be enabled for any
specific chart or system. Visualizations are selected such that that they
convey a specific set of insights to readers (comparison, distribution,
relationship, composition, etc). Broadly, those insights define the scope
for SmartCues. From the reader’s perspective, a simplified view of
graph comprehension process is that it consists of insight acquisitions—
the extraction of expressed facts from the visualization. While typically
a ‘visual querying’ process, not all insights can be extracted accurately
and quickly by the reader (i.e., effectiveness criteria). When selecting
detail models, visualization designers should prioritize those details
that have low degree of effectiveness. For example, a ’rank’ query
in an already sorted bar chart may not boost effectiveness. Further,
use of SmartCues can lower transformation cost from sort and filter
type transformations. Designers should prioritize details that reduce
transformation cost. For example, using distribution details overlaid on
scatter plots may avoids chart transformation to histograms.

7.2.2 Specification of Detail Models
When defining parameters for detail models, only those parameters that
need to be specified by the reader should be included. To allow for
simple gestures, other parameters should be assigned a default value.
This minimizes time-to-detail without requiring complex queries. For
global level queries, detail specifications should be aligned such that
the gestures closely comply with all conflicting details (e.g., horizontal
swipe gesture for mean, median, and mode). For domain specific
visualizations, details can include specific computation that are also
visually calculable. For example, a scatter plot of height vs. weight can
return the BMI in addition to the specific height, weight values. When
detail models align with tasks that a visualization affords, it becomes
more intuitive for end users to query.

7.2.3 Integration with other gesture operations
One application for SmartCues is to promote reader engagement with
otherwise static visualizations through ‘active reading’ [68]. However,
visualization systems commonly require added interactivity such as fil-
tering, brushing and linking, and other view transformation. When such
interactions are also implemented using touch gestures (e.g., [53, 55])
they may collide with SmartCues’s query language. One recommenda-
tion is to implement SmartCues interactions in a special mode that can
be controlled by the reader. This is desirable as SmartCues interactions
and overlays are designed to avoid context switches such as view trans-
formations. A second alternative is to explore analogous gestures such
as long press instead of tap, pan-start and end instead of two-finger
touch, and other naturalistic behavior such as ‘clutching [55]’ the cor-
ner of the tablet device to distinguish other gestures from SmartCues
queries. A third option, is to further integrate the existing gestures into
SmartCues by using our widget menu to handle conflicts.

8 CONCLUSION

Visualizations cannot support all information tasks equally well, partly
due to the perceptual and cognitive limitations of the human reader.
SmartCues is our solution to boost the effectiveness of visual inferential
tasks by making explicit what is ‘hinted’ at in the visual encoding.
SmartCues are queried using simple touch gestures that closely align
with visual scanning processes, and are presented in situ to provide
quick access to a variety of insights. We demonstrate the approach
through a lab study and illustrate how detail models, interaction, and
overlays can be added to other chart types. By supporting both broader
and deeper notion details, SmartCues provide a new way to satisfy the
final step of the mantra: “overview first, zoom and filter, then details
on demand” [59].
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