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What causes lightning?
High in the sky, the air is very cold. This causes
the moisture in clouds to freeze and form ice 
particles. These tiny bits of ice bump into each
other as they move around in the air, and each
collision creates a small electrical charge. With
time, the cloud's electrical charge begins to
separate. Positive charges (called protons) 
form at the top of the cloud, while negative
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Figure 1. Active Diagramming using texSketch: (a) The reader highlights an important phrase in the text, and system displays hints about key causal
terms in that text. (b) The reader then adds those terms to the diagram view using underline ink annotation. (c) finally the reader connects the cause
and effect terms by drawing a link across them in the text view. The connections are reflected in the diagram view as causal links.

ABSTRACT
Learning from text is a constructive activity in which sentence-
level information is combined by the reader to build coherent
mental models. With increasingly complex texts, forming
a mental model becomes challenging due to a lack of back-
ground knowledge, and limits in working memory and atten-
tion. To address this, we are taught knowledge externalization
strategies such as active reading and diagramming. Unfortu-
nately, paper-and-pencil approaches may not always be appro-
priate, and software solutions create friction through difficult
input modalities, limited workflow support, and barriers be-
tween reading and diagramming. For all but the simplest text,
building coherent diagrams can be tedious and difficult. We
propose Active Diagramming, an approach extending familiar
active reading strategies to the task of diagram construction.
Our prototype, texSketch, combines pen-and-ink interactions
with natural language processing to reduce the cost of produc-
ing diagrams while maintaining the cognitive effort necessary
for comprehension. Our user study finds that readers can
effectively create diagrams without disrupting reading.
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INTRODUCTION
When learning from text, readers develop meaning by merging
sentence-level information into a coherent mental model [31].
For example, imagine reading a simplified explanation of
‘lightning’ (see Figure 1). What connections would you need
to make in order to recall, paraphrase, or apply what you read?
First, you would read about what happens at high altitudes,
where moisture in the cloud freezes to form ice particles (con-
nection 1). You would then find out that the particles collide
against each other to create a charge (connection 2). Build-
ing on your understanding, you would encounter the last step:
the negative charges on the cloud flow towards the positively
charged surfaces on the earth (connection 3)–thereby creating
a zap of lightning. Arriving at such a model requires you to (1)
identify key concepts from raw text, (2) establish connections
between those concepts, (3) make gap-filling inferences (e.g.,
protons on Earth cause charge separation in clouds), and (4)
integrate prior knowledge with the new information that you
are reading [32, 16].

As the complexity of text increases, building these connections
accurately and persistently in the mind can be challenging.
When reading STEM-focused text, learners often encounter
complicated text-structures and difficult vocabulary. The con-
structive process may challenge their working memory, at-
tention, and other resources [19, 37, 59]. Consequently, the
reader may employ a ‘low effort’ approach, one that only uti-
lizes readily available information. For example, a student
may fail to understand that electric charge consists of elec-
trons and protons which separate in the clouds. The result is a
fragmented understanding of the text where the reader misses
essential connections (or builds the wrong ones) [19].

Knowledge externalization strategies such as active reading,
note-taking, and graphical modeling alleviate some of these
difficulties. These strategies allow readers to record their



thought process using persistent and manipulable represen-
tations [34, 20, 16]. For example, readers employing active
reading use annotations to ‘emphasize’ key concepts in text [1].
When taking notes as part of digesting the text, readers can
reorganize the annotated concepts using structures that are
meaningful to them (e.g., lists, outlines, etc.) [46]. Creating
models by diagramming allows the reader to further integrate
concepts into a cohesive mental model [21]. For this reason,
graphical representations are often more effective when com-
pared to simple note-taking [54]. Figure 1c illustrates a simple
causal diagram, where the reader has connected a cause to an
effect by a link (node-link diagram) [3]. Notably, even if the
author provides a diagram, there is learning value in ‘forcing’
the reader to produce the externalization [77].

Existing externalization strategies scaffold different steps in
the comprehension process: selection, organization, and inte-
gration [46, 16]. However, few tools support all from within
the same reading workflow. Use of paper and pen for high-
lighting and simple text marking (selection) is fast and effec-
tive, but organizing and integrating diagrams is not. Mak-
ing a diagram requires iteration, for which paper is ill-suited
(e.g., adding text, moving blocks, adjusting structural lay-
outs). Digital reading tools feature highlighting and annota-
tion support for word– and sentence-level tasks. Unfortunately,
annotations and markup of this type do not help the reader
in building higher level connections. With few exceptions
(e.g., [71]), note-taking tools make the text presentation pri-
mary; drawing, or note-taking surfaces are secondary and
disconnected (e.g., [56]). In contrast, diagramming tools such
as CogSketch [25], emphasize the drawing canvas, limiting
the usefulness of annotations on the text display for diagram
construction. Reading complex text requires multiple read-
ing cycles and seamless switching between different types of
representations–preferably without high switching costs. In
fact, the effort required to map verbal representations into
visual elements can outweigh its benefits [73]. Thus, the
motivating question for our work is: How can we facilitate
externalization across different levels of understanding (con-
cepts, connections, and coherent mental models [33]) without
burdening the reader?

Through a design probe on diagramming, we found that
(1) readers require a flexible mechanism for switching be-
tween reading and diagramming tasks, (2) drawing is time-
consuming and includes redundant tasks such as copying text
concepts to the diagram view, and (3) diagramming is iterative
and hierarchical, where low-level representations (e.g., small
fragments of the causal diagram) can be merged upwards. On
this basis, we propose Active Diagramming (AD), a gener-
ative learning strategy in which readers construct diagrams
through active reading and information organization tasks. As
the end-user reads and annotates text in our system, texSketch,
the annotations are transformed into diagram elements. Dia-
gram elements can be created, modified, and combined by the
reader through simple pen-and-ink gestures on both the text
and diagram windows. Automated NLP-based tagging offer
‘hints’ to the reader about possible externalization targets in
the text. This tagging can aid—but does not limit—the reader.

TexSketch demonstrates a way of supporting essential com-
prehension tasks. We work to balance the efficiencies of new
interaction techniques and automation with the cognitive ben-
efits of creating the diagram [21, 77]. Both the process of
creation as well as the completed artifact (the diagram) sup-
port comprehension, review, and communicative functions.
Our key contributions include: (1) understanding active di-
agramming as an approach for constructive reading, (2) an
interactive tool to support AD, and (3) an extensible architec-
ture for applications that connect text and visualizations.

RELATED WORK
According to the construction-integration model of text com-
prehension [33], reading happens through multiple levels of
mental representations. Readers first recruit key concepts from
text into working memory. They then formulate sentence-level
‘propositions’ relating those concepts. Finally, the reader in-
tegrates those propositions into a coherent model. To do so,
they execute a number of cognitive operations, including: (1)
search for relevant concepts, (2) delete or combine redundant
concepts, (3) substitute and generalize specific terms with su-
perordinate terms, and (4) correct erroneous connections [12].
As they accumulate more information, these operations be-
come harder for the reader. Readers spread their attentional
resources more thinly. In response, they can recruit additional
resources through increased concentration or through external
aids [20, 34, 36, 63]. When effective, the result is a men-
tal model that captures the complexity of intended meaning.
Prior research has looked at ways to offer external scaffolding.
Broadly, these techniques include: (1) selection, (2) organiza-
tion, and (3) integration aids [46]. Tablet devices with stylus
are particularly effective for active reading [51] and a number
of systems (including our own) focus on this platform.

Selection Aids
Writers create attentional aids for readers through typographi-
cal signals such as titles, section indicators, bold and italicized
text. However, writers cannot anticipate all needs of differ-
ent individuals, and excessive signaling cues may overwhelm
readers [41]. Annotation tools allow readers to create their
own typographical cues to support comprehension [49]. In
active reading, placemarks, anchors, structural, and attentional
cues [45] reduce working memory load, allowing the reader
to better engage in analysis and synthesis. By studying active
reading behavior on pen-and-paper [30], a number of studies
have looked at enhancing the annotation experience by making
them searchable [56, 27, 29], automatically categorized [67],
or more organized [5]. These enhancements make it easier for
readers to ‘reactivate’ previously read information by quickly
searching or scanning through their annotations. In texSketch,
we use similar ink annotation techniques to help readers se-
lect key concepts, and then use those annotations as building
blocks for higher level representations.

Organization Aids
Organizers such as lists, outlines, and blocks are helpful when
aggregating and summarizing related concepts. To support
this, one approach is to have a system automatically process se-
lections to generate an initial organization scheme [56, 64, 11].



With texSketch, we automatically add selected text into sub-
diagrams. There are different places where we can ‘clean up’
the diagrams–either in tight integration with selection (e.g., [6,
71]) or in a ‘post-processing’ step [28]. We opt for the latter.
texSketch adds all selections to diagrams and allows read-
ers to remove redundant annotations at a later stage. This is
similar to GatherReader [28], which supports a flexible work-
flow via deferred action. To determine which sub-diagram to
add the selection to, we use color-coded annotations inspired
by “Linking-by-inking [55].” The system creates hyperlinks
between instances of the same annotation symbols, thereby
combining selection and linking from within the same action.
To link selected text, we use simple ink gestures [9, 50].

Integration Aids
Integration requires combining individual concepts and rela-
tions to synthesize meaning. According to the cognitive theory
of drawing construction, readers may translate verbal text to
visual information by selecting, organizing and then integrat-
ing [72]. Graphical representations such as concept maps, flow
diagrams, and tree diagrams can be used to explicitly depict
the structural and conceptual relationships found in text [60,
3]. By generating diagrams themselves, readers are able to
leverage spatial memory to develop a coherent understand-
ing of the text [26, 16, 17]. However, diagramming tools are
largely stand-alone and disconnected from source informa-
tion [23], making it hard for readers to successfully create
diagrams while reading [73]. In texSketch we address this gap
by directly integrating selection and organization annotations
with diagram construction.

We draw inspiration from sketch-based diagramming tools
to inform the design of ink interactions for texSketch. One
approach uses pre-defined layout conventions. This allows
the reader to add, delete and connect different diagram ele-
ments through ink interactions in constrained layouts [42, 10,
14]. Other approaches focus on automatic transformation from
set expressions, equations, and logic descriptions into Venn
diagrams, geometric representations, and vector representa-
tions [18, 65, 8]. In texSketch we combine both approaches
to automatically transform selection annotations into diagram
elements, and use direct manipulation to visually create rela-
tionships between those elements. We also employ natural
language processing to identify concepts and relations [47,
35]. However, instead of automatically creating diagrams, we
offer visual hints to support diagram construction.

Previous studies have looked at layout configurations for
active reading tools. Design options include side-by-side
views [71], white space expansion [78], and multiple con-
nected displays [15]. In texSketch, we opted for a side-by-side
layout for text and diagrams as it allows easy coordination and
navigation between different pieces of text and the diagram.
Inspired by past work, we use stylus-based ink gestures to
trigger different actions and thereby maintain consistent in-
teractions across the text and diagram view [7, 39, 70]. The
diagrams in texSketch are rendered using a sketchy (hand-
drawn) style. In contrast to high-fidelity graphics which come
off as ‘finished,’ this approach has been shown to promote
user engagement and direct manipulation [75].

A DESIGN PROBE FOR ACTIVE DIAGRAMMING
We conducted a probe study to explore features that might aid
AD and to better model the scaffolding behaviors and needs
of readers. To probe reading behavior when coupled with
diagramming, we designed the study as an A-B-A design [13].
That is, readers first made diagrams using pen and paper (A),
followed by use of a digital prototype with baseline features
implemented (B), and finally returned to the paper condition
(A). Feedback was collected at each stage for analysis. This
allowed us to understand how end-users might produce dia-
grams on pen and paper, elicit new feature requirements for
the digital tool, and finally allow participants to reflect on the
differences between tool and paper to provide comparative
feedback and additional feature suggestions. The baseline pro-
totype (as distinct from the full texSketch) implemented just
the ink-and-link feature (supports adding nodes to the diagram
by underlining, and linking with a pen stroke). It was designed
to function similarly to basic digital note-taking software with
support for text selection and extraction, and space next to the
main text for notes and diagrams (e.g., [22, 44]).

Procedure
We recruited five participants (three graduate students, and
two industry practitioners). All had prior experience using
visual note taking with pen and paper (e.g., one participant
reflected on the challenges in making symbolic logic diagrams
in a philosophy course using a look-up table for symbol map-
ping). Each individual session lasted a total of 60 minutes
with four AD tasks, and $15 compensation. Each participant
worked with two texts on paper and two with the baseline pro-
totype. In order, the topics were: What causes rain? (paper),
What causes lightning? (baseline), How do engines make cars
move? (baseline), What causes coral bleaching? (paper). The
topics were at a high school level (by Flesch-Kincaid score),
with an estimated one minute reading time.

At the start of the session, the study coordinator provided a
brief overview of AD and drawing causal diagrams. Once
participants indicated familiarity, they proceeded with the first
pen and paper task. Participants received a letter-size handout
(landscape layout) with the text explanation on one half of
the paper, and a blank surface for drawing on the other. We
instructed participants to engage in AD as if they were creating
a diagrammed explanation of the text in preparation for a test.
Participants had access to colored pens and highlighters for
drawing, and were asked to indicate where in the text the
corresponding nodes came from. The digital prototype was
deployed using Microsoft Surface Book in tablet mode, 13.5-
inch, 3,000 x 2,000 Display. For the tool stage (B), participants
were given a guided tutorial of the ink-and-link feature. At
the end of the study, participants provided feedback through
a semi-structured interview [52]. The sessions were video
recorded for analysis.

Findings and Design Considerations
We analyzed 20 diagrams (5 participants × 4 diagrams), inter-
view notes, and video recordings. Videos were coded for dif-
ferent AD activities including reading, adding a node, adding
a link, editing, and making a new diagram. At a high level,
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Figure 2. An overview of the text comprehension model. Raw text is recruited into short-term memory (STM) to form individual propositions, and later
combined with earlier propositions from long-term memory (LTM).

we found three critical concerns for supporting better AD:
diagram representations, speed, and comprehension process.

Diagram Representation: While participants understood
causal diagram notation, most diagrams (paper and prototype)
were limited to simpler proposition-level representations. For
example, they might draw two separate causal relations and
never integrate them:

cold air −→ ice particles (1)

positive and negative charge −→ lightning (2)

In most cases, the diagrams were organized one below the
other in the order they occurred in the text (similar to a vi-
sual list). This aligns with Mayer’s selection-organization-
integration model for active reading [46], except we only
saw three instances in which participants made connections
across propositions. In these cases, manipulation was effortful,
requiring participants to either make long connecting lines
across immutable diagrams or redrawing based on updated
understanding. To support the production of more integrated
diagrams, we propose that AD systems allow the reader to
easily connect new elements to their diagram or refine their
diagram as they go. More concretely, tools should encourage
readers to establish connections between what they are cur-
rently focused on reading and what is already visualized
(Design Guideline 1). Additionally, AD tools should pro-
vide integration affordances for easily manipulating and
combining diagrams (D2).

Speed: In the paper condition, we observed that participants
took between 5-10 minutes for each text–much longer than the
expected one minute. A driver of this was the ten second aver-
age time to create a node in the diagram. Furthermore, nodes

were imprecise and long (average of 4 words). With the proto-
type, node creation time was reduced to 1-2 seconds. However,
arranging nodes and links was still hard. Participants had to
determine where to position nodes across multiple smaller dia-
grams. On average, participants took 5 minutes to complete
a diagram using the prototype. In order to maintain attention
on reading, AD tools should assist readers in quickly and
precisely creating and arranging diagram elements (D3).

Comprehension process: We observed two different ap-
proaches for interleaving diagramming and reading. The most
common was to create diagrams after reading each sentence
(Figure 2). However, this can be disruptive to reading. One
participant noted: “[my] goal was to make the diagram rather
than to really understand the material.” In a second approach,
participants read through the entire text while highlighting
key sentences before creating the diagram. One participant
mentioned regret at not using this approach: “I am unsure if
doing it at the low level I did was effective. . . should have had
higher level nodes. . . I created sentence level nodes.” Based on
these findings, we propose a three-step process for AD: read
(select), then draw (organize), then connect (integrate) [46].
While it may be necessary to switch between tasks, too much
switching may be inefficient. Cognitive, informational, and
working memory limits may be different between readers and
so the optimal timing of the context switch may be different
as well. We also note that the ‘Reading ahead’ strategy al-
lows readers to anticipate which nodes they might draw and
where. Depending on the length and structure of the article,
the iteration may happen after reading a paragraph, page, or
even article levels but preferably, not each sentence. Tools for
AD should offer flexibility in switching between these three
different steps, but also guide the reader in taking these
steps in order and sustaining attention on each (D4).
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Figure 3. Active Diagramming using texSketch: (a) selection and organization using ink gestures, (b) re-reading using integrated diagram, and (c)
reviewing by reconnecting nodes from memory.

ACTIVE DIAGRAMMING WITH TEXSKETCH
Driven by probe, we implemented texSketch (Figure 3). texS-
ketch’s interface is divided into two main regions: a text view
on the left, and a diagram view on the right. The text view
supports direct ink annotations using the pen and highlighter
tools which are accessed from the bottom toolbar. The toolbar
also contains page-navigation options for multi-page text. The
diagram view is a zoomable, scrollable canvas with support
for touch interactions over diagram elements. Readers can di-
rectly draw on the canvas, and interact with diagram elements
through direct manipulation gestures (touch and pen-based
near-touch interactions). The diagram toolbar has a menu at
the top for selecting the diagram type, deleting the diagram,
selection tools, undo, print, and review. To better understand
how texSketch supports AD, we follow Tanya, a high school
student reading about the mechanism behind lightning.

Set-up
Tanya opens texSketch on her tablet device. Although she can
load a PDF document directly, in this case the lesson about
lightning is already in the list of available topics. Selecting the
lesson takes her to the main interface with the lightning text
loaded in the text view. Because Tanya’s goal is to understand
the causal phenomenon, she taps on the ‘causal’ diagram
option in the diagram type drop-down menu. texSketch adds
an empty causal diagram to the canvas (a rectangle area) which
is assigned a unique color. Because texSketch allows readers
to add multiple diagrams to the canvas, we use color-gestalt to
match the color of the pen tool with the color of the current
active diagram (aligned with design guideline D1).

Pre-reading and Highlighting
Tanya selects the highlighter tool from the bottom toolbar
and begins reading the text. As she reads, she highlights
important sentences that contain key concepts about lightning
formation. Using a text understanding model, texSketch
provides hints about key causal terms in the highlighted text
by adding a dashed underline on those terms (D3). Tanya is
free to ignore these on-demand hints or explicitly ask for
them by highlighting a text region. This design encourages
the two-pass reading approach suggested by participants as
potentially better. The NLP features are also motivated by our
probe study. We found that readers are not always succinct in
their underlining behavior. This may be for a good reason–the
reader may remember a particular concept (e.g., a noun such
as ‘sun’) in the context of adjectives and verbs (e.g., the
hot sun glows ). However, this may also be a characteristic

of underlining behavior in which the reader marks the text
as a way of keeping place in their reading. A consequence is
that nodes that should be combined in the diagram can’t be.
For example, if the text also has, ‘the clouds cover the sun ’
it may be difficult to integrate the two sun nodes (‘hot sun
glows’ and ‘sun’) as they are semantically different. While
we do not want to prevent the reader from creating structures
that are meaningful to them, the (subtle) hints that texSketch
provides may lead to precise diagrams.

Active Diagramming
After highlighting a portion of the text about ice particle for-
mation, Tanya decides to model the causal relationships in that
portion of the text using AD. texSketch offers Tanya the flexi-
bility to interleave reading and diagramming activities based



on her preferences and abilities–whether this is at the level of a
single sentence, a paragraph, or even the entire document (D4).
In AD, Tanya engages in analytical (thorough) reading while
also constructing causal diagrams. Her workflow involves
selection, organization, and integration features.

Selection: Tanya rereads the previously highlighted text, pay-
ing close attention to potential causal phrases in each sentence.
Using the pen tool, Tanya selects individual causes and effects
to add to the diagram by making an underline annotation. As
she underlines the phrase “air is very cold,” texSketch auto-
matically adds it to the diagram as a causal node (i.e., text
with a bounding rectangle box: air is very cold ). Similarly,
Tanya adds the phrase “moisture in clouds” as a cause which
results in the effect “ice particles.” If the phrase spans across
multiple lines, Tanya can underline across multiple lines of
text, and texSketch automatically combines those words into a
single node by identifying punctuation marks such as hyphen
or period. When this is not desired, Tanya can split the phrase
into two nodes by drawing a vertical split annotation (‘|’) in
the text or on node (D2). Throughout this selection process,
the NLP-based hints provided by texSketch assist Tanya in
choosing the right causal concepts to diagram (D3).

Organization: After adding nodes to the diagram view, Tanya
can organize them as a diagram by creating directional edges
from causes to effects. To do this, she first draws a line an-
notation between the words “air is very cold” and “ice par-
ticles” in the text view. But, she can also do this from the
diagram view (D4). Based on the direction of the line, texS-
ketch interprets the node at the starting position as the cause
and the end point as the effect. In the diagram view, the
nodes are automatically connected by a directional arrow (i.e.,
air is very cold −→ ice particles ). To reduce clutter, texS-

ketch converts the hand-drawn links on the text view into a
dotted line. A system setting also allows Tanya to decide if the
line should persist or fade out. However, faded links become
visible when she is hovering over the connecting text with her
stylus (D1). Further, to reduce burden on the reader, texSketch
automatically updates the diagram layout (D3). Diagrams
are oriented left-to-right, but readers can change to a vertical
layout using the menu toolbar.

In addition to organizing nodes into causal diagrams, texS-
ketch allows Tanya to create separate (sub) diagrams for each
reading cycle. When reading the text about earth’s positive
charge, Tanya wishes to separate out these causal relationships
from the ones about clouds. To accommodate this, texSketch
supports a variant of the selection (underline) ink gesture. To
select a node into a new sub-diagram (instead of the current
active diagram), Tanya draws an L-shaped underline annota-
tion around the text (e.g., “mountain or pole”). This creates
a new sub diagram, which is assigned a unique background
color, and the node is added to that diagram. The color of
the pen tool also changes to the diagram color to indicate
that subsequent selections will be organized within the new
diagram. Then, to accommodate for complex text structures,
Tanya can switch between existing diagrams. To do this, she
selects the text by drawing a second variant of the underline
gesture, one with a diagonal stroke ending. A context menu

appears that lets her change the target diagram for that text
selection using a set of color-coded labels corresponding to
the diagrams currently on the canvas. In this manner, Tanya
continues to read the entire text across multiple reading cycles.
In each reading cycle, she creates and organizes the causal
relationships into one or more sub-diagrams.

Integration: At this stage, Tanya integrates the various dia-
gram pieces into a causal model for lightning. That is, she
constructs an understanding by connecting propositional rep-
resentations into an integrated mental model of the text. In
the diagram view, she combines the sub-diagrams for earth
and cloud by drawing a connecting line between the nodes
for ‘Protons’ and ‘Electrons.’ Drawing a line between two
nodes across different causal diagrams will directly append
the second diagram (node at line ending) to the first diagram
(D2). To combine nodes, Tanya can draw a line with a loop
at the end (e.g., combining the two nodes ‘negative charges’
and ‘electrons’) to signal co-reference. NLP techniques are
not always accurate, so the loop gesture allows the reader to
control the integration process. In science text it is common to
interchangeably use general terms (e.g., ‘algae’) with specific
instances (e.g., ‘zooxanthella’). The loop annotation allows
readers to merge such generalizations at the diagram level.

For complex explanations, Tanya can also create nested causal
relationships. This is useful when she has abstracted a causal
mechanism as a simple edge. For example, A causes B (i.e.,
A −→ B ), but the link ‘−→’ is actually an abstraction of

a more complex mechanism represented in a sub-diagram D.
She can integrate the secondary diagram by drawing a new
line from it to the link. This combines the two diagrams by
nesting the diagram D at the position of the link. Throughout
the diagramming process, Tanya can delete any node or link
by marking an ‘×’ annotation over it with the pen (similar
to scribble erasure). In this manner texSketch supports the fi-
nal step of the selection-organization-integration workflow.
Tanya’s final diagram is shown in Figure 3b.

Rereading and Reviewing
In addition to potential learning benefits from AD, these dia-
grams serve as rich artifacts for rereading and reviewing. With
its tight integration between text and diagram elements, texS-
ketch offers interactive assistance for these tasks. When Tanya
revisits her diagram to prepare for an exam, the diagram serves
as a visual table-of-contents. She can hover over a diagram
node (using near-touch pen-tracking interaction) to retrieve
additional details from the text. texSketch highlights the cor-
responding text in the text view. Because the causal diagram
forms a ‘skeletal’ network structure underlying the text, Tanya
can use her stylus to trace through causal structures. As she
hovers over a node in the diagram, texSketch highlights both
the source text and conceptually neighboring text (based on
the network neighbors of the node in the node-link diagram).
For multi-page text, the diagram elements corresponding to
that page are highlighted as she moves between pages. These
interactions support rereading by allowing Tanya to switch
between summary (the diagram) and detail views (the text).

To develop a deeper understanding of the text or to self-test
her understanding, Tanya can enable the review mode from the
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diagram toolbar. For causal diagrams, the review mode will
hide the text view and remove the links between nodes (see
Figure 3 c). She can then attempt to redraw the edges from
memory. texSketch provides visual feedback when she makes
erroneous connections. texSketch was designed to support
future extensions for review functions (e.g., blanking nodes,
offering distractors, implementing spaced learning, etc.).

SYSTEM ARCHITECTURE
At a high level (see Figure 4), texSketch combines ink an-
notations with associated text content to create diagram el-
ements (i.e., Text +Annotation −→ Glyph). When the end-
user makes an annotation, the annotation processing module
corresponding to the current diagram type (Fig. 4a) fetches
the diagram ‘operation’ to be executed from a look-up table.
It then calls the text processing module (4b) to retrieve the
text inputs for that operation. Finally, the diagram generator
module (4c) executes the diagram operation and outputs a
SVG specification which is rendered on the canvas by (4d)
SVG rendering module. We implemented texSketch as a web-
based server-client application. The server is implemented
using Node.js and is responsible for tasks such as text analysis
and storage. The client, written using HTML and JavaScript,
renders annotations and diagrams as SVG elements. While
complete details of our implementation are beyond the scope
of this paper, we describe the main components of texSketch.

Annotation Processing
The main function of this module is to identify the annotation
made by the end-user and retrieve the corresponding diagram
operation. It consists of a stroke recognizer and a look-up
table with unique annotation labels that map to specific dia-
gram operations. The design space for annotation mapping
includes stroke patterns (e.g., [69]) as well pen specific at-
tributes (pen type, stroke color, thickness, etc.). The diagram
operation is defined as a function that takes in one or more
predicates and outputs a diagram specification. For example,
for causal diagrams, the underline annotation maps to the op-
eration ADDNODE(nodetext). The stroke recognizer module
is implemented using the NDollar recognizer [4]. It holds the
training data as a collection of labeled annotations for each
annotation stroke. Each data-item is represented as an array
of points in the x− y coordinate space and may optionally

include pen specific attributes. Lastly, this module handles
‘cleanup’ operations such as tidying hand drawn annotations,
deleting stray annotations, and fading annotations.

Text Processing
This module retrieves the predicate values for the matched
diagram operation by processing the annotated text. It con-
sists of a text extraction sub-component and an optional NLP
sub-component. For simple selections, the text extraction
component finds the text that is closest to the annotation by
calculating the x− y distance, annotation span, and position
of annotation corresponding to the text (above, below, on,
etc). During extraction, it also considers annotation history
to determine if the text is part of a multi-line selection. For
more complex annotations such as linking two annotated texts,
deleting annotated text, etc., texSketch identifies predicates by
factoring in other parameters such as distance and overlap to
other annotations and diagram elements.

Depending on the diagram operation and end-user needs, this
module may also parse and tag the text by applying natural
language processing. For example, the extracted text may be
transformed by separating words based on punctuation. Spe-
cific to causal diagrams, we use a causal relation extractor
to identify the causal terms within the highlighted text (im-
plemented using SpaCy [2]). To extract causal relations, we
first perform dependency parsing and coreference resolution
using the NeuralCoref model [24]. Then, we apply a set of
causal rules over the dependency tree (specified in [68]). We
found that for scientific text, this was better at extracting cause
and effect relations when compared to other approaches such
as semantic role labeling. Phrases that may correspond to
diagram elements can be subtly underlined in the text view.

Diagram Generator
Once the operation has been identified and the predicates
determined (e.g., ADDNODE(sun)), this module implements
the operation by creating, modifying, or deleting diagram
elements. The output is an SVG specification that can be
rendered onto the diagram view. This module also handles
how different diagram elements are visually arranged. In
our causal diagram implementation, we use mermaid.js [48],
a markdown specification and SVG generator to create the
nodes and edges. The generated SVG is rendered by the SVG
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rendering module. To provide for a hand-drawn appearance
of diagrams, we use rough.js [66], to render sketchy lines.
The generated diagram elements, along with the annotation
and corresponding text are retained as JSON objects (which
texSketch uses for rereading and reviewing operations).

EVALUATION
To evaluate texSketch, we aimed to determine whether readers
are able to create causal diagrams from text using our AD
approach. Specifically we wanted to gather feedback on (1)
the experience of Active Diagramming while reading, (2) its
effectiveness at producing coherent causal diagrams, (3) and
overall usability of texSketch. We conducted an in-lab user
study with the same tasks from our initial probe study. For this
study, we recruited 12 participants who were graduate students
or working professionals with prior experience in visual note
taking. Each session lasted 75 minutes, and participants were
compensated with $20 for their time.

At the start of each session, participants were given a brief
overview of AD and how to create causal diagrams. The study
coordinator offered a guided tutorial of texSketch using a new
topic: “Why do fireflies light up?”. Once participants indi-
cated familiarity, they proceeded to practice AD on their own
using the topics for engines, and rain presented in random
order. During this phase, participants could request assistance
when needed. They then proceeded to work on the test tasks on
lightning, and coral-bleaching presented in random order. Af-
ter each topic in the test set, participants filled out a cognitive
load survey (CLS) [38] to measure their subjective cognitive
load during that task. At the end of the study, they filled out
a usability questionnaire [43]. The study concluded with a
semi-structured retrospective interview to gather feedback on
their experience with texSketch. We captured all diagrams
created along with texSketch log data for further analysis.

Findings
Active Diagramming during Reading: Based on our obser-
vations and participant feedback, encouraging the two-pass
approach was effective. All but one participant (P11) began
with highlighting actions, then added nodes, and then linked
nodes (see Figure 5b). Further, most participants read and
highlighted text in a single reading-cycle before proceeding
to engage in closer reading and diagramming. Participants
agreed that highlighting first provided them with the “context”
for diagramming. P4 reported that they tended to highlight a
lot while reading, and texSketch’s two-pass approach helped
them “reduce things down.” In the second pass, participants
found focused reading over highlighted text to create diagrams
to be engaging and fun. In most instances, we saw that partic-
ipants would underline concepts, and at a later time go back
delete unnecessary concepts as they made causal links. Ac-
cording to P6: “It was parked there and it really helped. I
was able to track whether or not my thoughts made sense with
what ever else that came up later.” We also observed that par-
ticipants used the organization step in AD as a way of refining
their initial propositions. For example, participants would first
select “rise in water temperature and sunlight exposure” as
a single node, and later break it down into two nodes when
forming causal connections.

Participants appreciated that it was fast and effortless to edit
and iterate over their diagrams while reading (P3: “I really like
the deleting. . . I think its just if I make a mistake its not a big
deal I can just delete. . . ”). This validates texSketch’s support
for draft versus craft approaches [58] in which readers do not
have to consider revising as effort wasted. From the log data,
we can see that deletion tended to occur later in the AD process.
P10 self reported a reading disorder with a tendency to jump
back and forth across text. They found that texSketch and
the AD process helped them work backwards to where they



need to be. They would start selecting from the bottom of the
paragraph (the eventual effect) and then backtrack by asking
“What caused this?” On average participants took 6.3 minutes
(SD = 2.9 minutes) to complete the lightning task, and 6.8
minutes (SD = 2.7 minutes) for corals. P1 was excluded from
these summary statistics as an outlier, spending 20 minutes
exploring the symbiotic relationship between corals and algae.

The CLS questionnaire uses a ten-point rating scale to measure
(1) intrinsic load (IL) which corresponds to difficulty of the
reading material, (2) extraneous load (EL) from the tool and
reading intervention, and (3) germane load (GL) referring
to students’ self-perceived learning. Based on our analysis
of the CLS responses, participants reported a high intrinsic
load (lightning: mean = 5.22, SD = 3.1, corals: mean = 5.13,
SD = 2.2) and a low extraneous load (lightning: mean =
0.61, SD = 1.2, corals: mean = 0.66, SD = 1.5) while using
texSketch (see Figure 5c). Further, their rated self-perceived
learning was high (lightning: mean = 6.98, SD = 2.2, corals:
mean = 7.15, SD = 1.9).

Diagram Coherence: To evaluate coherence of diagrams,
we rated each diagram against a rubric. For each diagram,
we awarded a single point each for every correct node and
link. The diagrams matched, on average, 83% (Lightning)
and 90% (Coral) of the correct nodes, and 78% (Lightning)
and 93%(Coral) of the correct links. Participants were able to
successfully integrate sub-diagrams in texSketch in contrast
to the fragmented diagrams produced in the probe study. All
but one participant (P5) created a single connected diagram
for each text. Additionally, many participants created larger
causal diagrams with an average of 9.8 (Lightning) and 7.5
(Coral) nodes. Because the study version of texSketch did
not support direct labeling of links, participants devised a
workaround by creating additional nodes as link explanations
(e.g., cloud moisture −→ freezes −→ ice ). This feature
can be better supported in texSketch using alternative gestures
and graphical annotations on nodes.

User Experience: All participants reported that texSketch
was fun to use and they were able to quickly learn the ink
gestures implemented. Multiple participants commented that
they wished they had texSketch while in high school. By
reflecting on their own note-taking experiences they clearly
saw benefits to having an integrated reading, organizing and
diagramming tool for learning (P11: “Drawing relationships
literally over the text is to build on the potential on digital text
that others tools haven’t done yet. . . ,” and P2:“Visio makes
me stressed out. . . you wouldn’t use it casually”. Based on the
seven-point scale usability questionnaire, participants rated
texSketch to be easy to use (mean = 6.0, SD = 0.9), and said
they could easily recover from mistakes (mean = 5.75, SD =
0.86). They also rated it highly on learnability (mean = 6.25,
SD = 0.86), but felt it could be improved to meet additional
needs such as adding portions of images to the diagram or
adding custom gestures (mean = 4.3, SD = 1.15).

Participants had mixed opinions about the NLP features. This
may be due to the simplicity of the text used for the study.
However, we found that most participants were using the NLP-
based annotations without realizing it. In most of the diagrams,

the text within each node was more concise when compared
to the probe study and more often corresponded to the ‘hinted’
recommendation. Two participants suggested an automated
paraphrasing feature (e.g., “air is very cold” to “cold air”). We
believe that more targeted evaluations in a classroom setting
would further validate our features (and suggest additional
extensions). However, the results of our study demonstrate the
effectiveness of texSketch and AD for creating consolidated,
diagrammatic representations that support readers.

SCALING TEXSKETCH FOR OTHER DIAGRAM TYPES
Educational science texts are often causal in nature [62], and
are also hard to understand [59]. Hence, thus far, we have
focused our use case for AD on creating causal diagrams
while working with science texts. However, we designed
texSketch’s architecture to support other types of structured di-
agrams as well as unstructured visual note-taking (i.e., sketch-
noting [53]). We briefly describe how we extended texSketch
to concept-maps and general visual note-taking.

Concept Maps: Concept maps are similar in structure to causal
diagrams (i.e., nodes connected by edges) with the exception
that edges are not directional, and concepts can be organized
in a hierarchy. In our implementation, readers can select
topic level concepts by using an ellipse annotation, and sub-
concepts using underline annotation. Concepts can be linked
by drawing a connecting line between them. We use mer-
maid.js [48] to generate concept maps, and SpaCy’s [2] entity
extraction features to support NLP-based concept selection.
However, this can be replaced with more advanced topic mod-
eling libraries in the future.

Visual Note-taking: texSketch supports unconstrained note
taking by combining text with visual elements (see Figure 6).
Readers can direct copy portions of the text into the diagram
view by using the highlighter tool. In addition we offer
three glyph (diagram element) alternatives that were com-
mon in examples of visual notes we collected: (1) plain text
labels/annotations, (2) iconic representation from a clip-art cat-
alog, and (3) user-drawn glyphs. Readers can cycle between
representations by repeatedly underlining the text (Figure 6):
When underlining the text for the first time, texSketch adds
that text as-is onto the diagram view (e.g., sun ). A second
underline will switch the representation to an icon correspond-
ing to the text if one is available (e.g., ☼). To search for
icons based on annotated text, we integrated with the Noun
Project [57]. A third underline will allow the reader to define
or draw their own glyph (future annotations of that word will
use the custom glyph). Readers can draw on the diagram view,
and freely arrange the text and diagram elements to support
their creative note taking process.

Other diagram types can be readily added using our extensible
architecture. For example, texSketch can support timeline
visualizations by ordering event ‘nodes’ in a linear structure
by using NLP features that detects events (e.g., [40]). Further,
in many domains, learners benefit from visuospatial thinking
(e.g., [76]), and texSketch can facilitate learning by adding do-
main specific annotation conventions, diagram templates, and
representations (e.g., genetic structure diagrams for biology,
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or molecular structure in chemistry). When reading history,
philosophy, and law, learners synthesize knowledge from mul-
tiple documents. In these cases, texSketch could support visual
comparison of different arguments, and assist in counterfactual
analysis. In the data visualization community, there is ongo-
ing work to facilitate active reading for data visualization [74,
61]. The approaches have readers trace and annotate insights
over different chart objects. In cases where visualizations are
supplemented by text descriptions (e.g., news articles, scrol-
lytelling visualizations, etc.), texSketch could support rich
pen-and-ink interactions between text and chart views or even
allow readers to generate chart elements while reading.

DISCUSSION
Text remains the primary medium for knowledge acquisition,
and readers have to internalize complex structural relationships
from linear text representations. With Active Diagramming,
we have demonstrated an approach to comprehension that
builds on well established active reading techniques by adding
graphical representations to organize knowledge. This ap-
proach facilitates the externalization of mental models through
diagramming. Based on our evaluation and participants’ feed-
back, it is evident that the act of creation helps readers develop
conceptual understanding that is critical to problem-solving,
future forecasting, and learning transfer.

Our current prototype primarily supports underline type an-
notations and diagram structures. However, active reading
involves a wider range of strategies. Different strategies may
be appropriate based on preferred learning style or context
(grade level, domain, type of material, pedagogy versus an-
dragogy contexts, etc.). We believe our approach is scalable
for different low and intermediate level representations. For
example, instead of highlighting and annotating over raw text,
readers could use pen and touch interaction to gather infor-
mation into list structures (e.g., LiquidText [71]). Alternately,
readers can use margin braces and glyph-type annotations to
directly organize information over raw text, and then build di-

agrams based on those annotations. However, the right type of
design requires additional study. Further, our current workflow
requires users to set their learning intent by selecting a type
of diagram prior to AD (i.e., goal directed learning [72]). To
support multiple learning goals, future work can explore ways
to easily switch between different diagram types. There is
also significant opportunity to integrate other kinds of NLP ap-
proaches into texSketch. The specific types will depend on the
kinds of diagrams created. Beyond support for individual read-
ers, there are ‘collaborative’ active reading approaches where
a community works to understand the material. We are inter-
ested in how texSketch can improve the learning experience
for groups through social note-taking tools (e.g., nb [79]).

In our current evaluation, we emphasized effective diagram
construction and did not focus on measuring learning out-
comes. However, one of the most likely targets for texSketch
is to support learning in classroom settings. We are currently
working with instructors and middle-school students to de-
ploy texSketch in the classroom to assess learning objectives
and intervention strategies. Further, while we have struck a
balance between different types of cognitive loads (the pri-
mary comprehension task and secondary construction tasks),
other options may be more suitable for specific learning con-
texts. For example, an adult graduate student reading a paper
may want more automation because they are building from
significant prior knowledge and no longer benefit from con-
structing a diagram from scratch. An adult learner may make
use of a much larger gestural language to build more complex
diagrams. We have created texSketch with this possibility
in mind, and additional research can help identify variants
adapted for different kinds of learning.

CONCLUSION
Based on models for science text comprehension, we present
an end-to-end workflow for knowledge externalization called
Active Diagramming. Through a probe study, we identified
key features needed to support active diagramming. The result
is texSketch, a pen-and-ink system for building diagrams dur-
ing reading. With texSketch, we focus on helping the reader
convert annotations they make in text into integrated mental
models. The iterative process of select-organize-integrate lets
readers take text-level annotations into connected propositions
and then combine them. NLP-based features on key terms
help focus the reader’s attention. Our interactions implement
a consistent gesture language and allow readers flexibility in
switching between text and diagram representations as they
read. Our approach demonstrates a balance between providing
readers with opportunities to learn through active diagram-
ming while reducing non-desirable and distracting difficulties.
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