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ABSTRACT
Online evaluation methods for information retrieval use implicit sig-
nals such as clicks from users to infer preferences between rankers.
A highly sensitive way of inferring these preferences is through in-
terleaved comparisons. Recently, interleaved comparisons methods
that allow for simultaneous evaluation of more than two rankers
have been introduced. These so-called multileaving methods are
even more sensitive than their interleaving counterparts. Probabilis-
tic interleaving—whose main selling point is the potential for reuse
of historical data—has no multileaving counterpart yet. We propose
probabilistic multileave and empirically show that it is highly sen-
sitive and unbiased. An important implication of this result is that
historical interactions with multileaved comparisons can be reused,
allowing for ranker comparisons that need much less user interaction
data. Furthermore, we show that our method, as opposed to earlier
sensitive multileaving methods, scales well when the number of
rankers increases.
Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval
Keywords
Information retrieval; Evaluation; Interleaved comparisons; Multi-
leaved comparisons

1. INTRODUCTION AND RELATED WORK
Search engines are constantly being improved upon. Engineers

may propose changes to a ranker and such changes need be evalu-
ated. Evaluation should not only compare alternative rankers against
the current best ranker, but also against each other as these compar-
isons are important for guiding ranker development efforts. Pair-
wise preferences between rankers can be obtained in several ways.
Traditional offline metrics based on relevance assessments can be
computed [2] in a TREC-style evaluation setting [20].

Besides being expensive and time consuming, assessors’ judg-
ments do not necessarily agree with actual users’ preferences [16].
In contrast, online metrics infer preferences directly from user in-
teractions [12]. Interleaved comparison methods do so while be-
ing one to two orders of magnitude more sensitive than A/B test-
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ing [1, 9, 10, 15]. An interleaving method presents a user with a
ranked result list that contains documents from two rankers and
estimates user preferences by interpreting interactions with the inter-
leaved list. Many variations of interleaving methods exist. Balanced
interleave (BI) [11] randomly selects a ranker to start with and then,
alternatingly, documents that have not been picked are picked from
the two input rankings. BI can result in a preference for a ranker
irrespective of where a user clicks. This bias is corrected in team
draft interleave (TDI) [15]. More recent methods include document
constraints (DC) [4] and optimized interleave (OI) [14]. Recently,
interleaving outcomes were made to agree with A/B tests [19].

Interleaving methods have an important disadvantage: they can
only evaluate two rankers at a time. When the number of rankers
that have to be compared increases, this quickly becomes infeasible.
Schuth et al. [18] have proposed multileaved comparison methods
as a way of directly inferring preferences among a set of rankers.
Instead of requiring rankers to be compared pairwise, their method
allows for a single comparison of multiple rankers at once. Mul-
tileaved comparison methods produce a list that contains results
from multiple rankers and use clicks on this list to infer a ranking
over rankers. Schuth et al. [18] propose extensions of TDI and OI
to team draft multileave (TDM) and optimized multileave (OM),
respectively. Both learn preferences much faster than interleaving
methods. Each has its own merit: TDM learns slightly slower but
results in more accurate preferences while OM initially learns faster
and scales better when the number of compared rankers goes up.

The interleaving and multileaving methods listed so far can only
infer preferences among rankers based on interaction data that is
generated using those very same rankers, thus preventing general-
izations to new and unseen rankers. Probabilistic interleave (PI),
however, is a recent interleaving method that can reuse historical
interaction data collected using other rankers than the ranker being
evaluated to infer preferences between rankers [6, 7]. This allows
for comparisons that are more efficient in terms of how many user
impressions are required for reliable comparisons.

We propose an extension of PI to probabilistic multileave (PM): a
multileaving method that is able to reuse historical interaction data.
An evaluation method is sensitive if it quickly detects differences in
the quality of rankings. That is, if rankers are of different quality,
the evaluation method should detect those differences with the least
number of comparisons. An evaluation method is unbiased if all the
rankers are equal in expectation when clicks are random. That is,
the method should evaluate rankers fairly and only on the basis of
their actual performance. We show experimentally: (1) that PM is at
least as sensitive as TDM (which in turn is more sensitive than OM);
(2) that PM is unbiased; and (3) that PM scales well when the number
rankers that are compared increases. An important implication of our
results is that historical interactions with multileaved comparisons



Algorithm 1 Creating a multileaved list in PM.
1: Input: rankersR, size k.
2: L← [] // initialize interleaved list
3: while True do
4: R′ ←R
5: while |R′| > 0 do
6: Rj ← draw from uniform distribution overR′

7: R′ ←R′ \ {Rj}
8: d← draw fromRj with P (d|Rj) // see (1)
9: L.append(d)

10: if |L| = k then
11: return L
12: forRj ∈ R do
13: Rj .remove(d) // renormalize P (d|Rj)

can be reused, allowing for ranker comparisons that need much less
user interaction data. This, in turn, means that users are exposed
less often to inferior rankers and that more rankers can be compared
with the same number of user interactions.

2. METHOD
In this section we derive probabilistic multileave (PM), a multi-

leaving version of probabilistic interleaving (PI). Extending PI to
multiple rankers is non-trivial due to three challenges. First, the
interleaving method, which combines multiple rankings to one list,
must be extended to accommodate more than two rankers in a prob-
abilistic way; see Section 2.1. Secondly, we need to represent the
outcomes of a multileaved comparison such that it allows for more
than two rankers. Lastly, we need to extend the marginalization
over all assignments1 to the multileave setting without increasing
the number of possible assignments beyond what we can reasonably
handle.

2.1 Constructing multileaved lists
Probabilistic interleaving [6] constructs interleaved lists in a way

similar to TDI. For each rank in the interleaved list a coin is flipped
to decide which ranker assigns the next document. Instead of picking
the top document from that ranking, like in TDI, the document is
drawn from a softmax distribution. After a document has been
chosen it is removed from all rankings it occurs in and all softmax
distributions are renormalized. An extension of this approach to
the setting with r rankers can be found in Algorithm 1. As in
TDM, and unlike PI, we choose to introduce the notion of rounds on
line 5: in each round all rankers are chosen at random to contribute
a document. This way we increase the change of the multileaved
list to include documents from the top of each ranker that is to
be compared while ensuring non-zero probability for all possible
multileavings.

Documents d are drawn from rankerRj with probability

P (d|Rj) =

1
rj(d)τ∑

d′∈D
1

rj(d′)τ
, (1)

where rj(d) denotes the rank of the document in rankerRj . When
documents are removed fromRj , as is done on line 13, this changes
the distribution. The softmax decay is controlled by τ which we set
to 3, following PI [6].

2.2 Inferring preferences
Once the multileaved list has been created, shown to a user, and

once the user has clicked on zero or more documents, these clicks
can be interpreted as preferences for rankers.

1Following TDM and PI, documents in a multileaved list are as-
signed to a rankers’ teams in order to distribute credit from clicks.

Algorithm 2 Inferring preferences in PM.
1: Input: multileaved list L, rankersR, clicks C.
2: A← {} // assignment tree keeps track of outcome and probabilities
3: A′ ← {〈o← [0, ..., 0], p← 0〉}// init assignment tree, |o| = |R|
4: for d ∈ L do
5: A← A′, A′ ← {} // next layer in assignment tree
6: forRj ∈ R do
7: pj ← P (d|Rj) // see (1)
8: Rj .remove(d) // renormalize P (d|Rj)

9: for 〈o, p〉 ∈ A do
10: forRj ∈ R do
11: if random() > 1

|R| · n
1

|L| then
12: continue // sample, skip branch
13: p′ ← p+ log(

pj
2
) // log probability of assigning d to Rj

14: o′ ← o // copy outcome vector from parent
15: if d ∈ C then
16: o′j ← o′j + 1 // click on d, increment outcome for Rj

17: A′ ← A′ ∪ {〈o′, p′〉} // append to next layer
18: o← [0, ..., 0] // init outcome, |o| = |R|
19: for 〈o′, p′〉 ∈ A′ do
20: o← o+ o′ · ep

′
// aggregate outcome vector o weighted with ep

′

21: return o

Hofmann et al. [6] proposes an unbiased estimator of the ex-
pected outcome of a comparison outcome over many such query
impressions as

E[o(C,A)] ≈ 1

|Q|
∑
q∈Q

o(cq, aq). (2)

Here, Q denotes a given set of queries, with clicks cq and as-
signments aq . In the PI implementation, o(c, a) ∈ {−1, 0, 1} is
used to denote the outcome of a comparison, which we change to
oj(c, a) ∈ N to denote the outcome (credit) for a single rankerRj .
This outcome simply counts how many clicked documents were
assigned to this ranker, as in TDI or TDM. Changing the outcome
notation leads us to also compute the expected outcome per ranker
Rj as

E[oj(C,A)] ≈
1

|Q|
∑
q∈Q

oj(cq, aq). (3)

The PI algorithm then proposes a marginalization over all possible
assignments. The intuition behind why this is a good idea for both
PI and PM is that through a single interaction with users, inferences
can be performed as if theR rankers were multileaved many more
times. This allows for highly sensitive comparisons.

We follow the marginalization of PI closely, and marginalize over
all possible assignments as

E[oj(C,A)] ≈
1

|Q|
∑
q∈Q

∑
aq∈Ãq

oj(cq, aq) · P (aq|Lq, q). (4)

In this equation, P (aq|lq, q) denotes the probability of an assign-
ment aq occurring given the interleaved list Lq for query q. We
borrow this probability directly from the PI implementation.

A major difference with PI, however, is that we can no longer
consider all possible assignments A as there are generally too many
of them, namely |R||L|, which, even with a small amount of rankers,
is prohibitively large. Instead, we limit the number of assignments
by taking an, in expectation, random and uniform sample from
them. We denote the sample as Ã, and control the size n ≈ |Ã| by,

deciding with probability 1
|R| · n

1
|L| whether we consider a branch

of assignments in a tree of assignments not. This sampling happens



on line 11 in Algorithm 2 which lists our method for inferring
preferences in PM. The algorithm builds a tree of assignments by
considering assigning each document d ∈ L (line 4) to all possible
rankers Rj ∈ R (line 10) with the probability mentioned before
(line 11). The algorithm keeps track of the outcome for each ranker
for each assignment branch (line 16). It also tracks the probability
of each such assignment (line 13). Once the outcomes oj(cq, aq)
have been computed for all assignments aq ∈ A′, we aggregate
them weighted with their assigned probabilities on line 20 into a
single outcome. From this outcome we construct the preference
matrix P̂ij just as is done in TDM.

Note that in our implementation, just as in PI, we use log proba-
bilities and sums to avoid buffer underflow. Also following PI, as
an optmization, we only actually compute assignments and proba-
bilities up to the lowest clicks.

3. EXPERIMENTS
Our implementation of probabilistic multileaving, PM, is evalu-

ated experimentally for sensitivity, bias, and scalability using the
experimental setup detailed below.

The methodology used to evaluate the different interleaving and
multileaving methods is borrowed from [18]. Several features (i.e.,
BM25, LMIR.JM, Sitemap, PageRank, HITS, and TF.IDF) from
the NP2003 and NP2004 dataset [13] are used as different rankers.
These rankers can then be evaluated against each other using the
aforementioned interleaving and multileaving methods. Evaluation
is done by simulating users interacting with the interleaving and
multileaving methods. In this setup, described by Hofmann [5],
clicks are produced based on a cascade click model (CCM) [3] with
four instantiations.

P (click = 1|R) P (stop = 1|R)
Relevance R R = 0 R = 1 R = 0 R = 1

perfect 0.0 1.0 0.0 0.0
navigational 0.05 0.95 0.2 0.9
informational 0.4 0.9 0.1 0.5

random 0.5 0.5 0.0 0.0

Queries are sampled from training data, clicks are generated based
on relevance labels for each query. We use 1000 queries per run.
Results are averaged over 25 repetitions over 5 folds for 2 datasets.
We sample |R| = 5 features as rankers for each run.

Ground truth NDCG [8] is computed for each ranker on held
out test data. Then, just as in [18], a matrix P is defined using the
difference in expected NDCG between the separate rankers:

Pij = 0.5(NDCG(Ri)−NDCG(Rj)) + 0.5. (5)

Any interleaving or multileaving method tries to estimate this matrix
P . Interleaving methods do this by iterating over all pairs of rankers
i, j ∈ R, while multileaving methods compare all rankers R at
once. To measure performance, we follow [18] and use a binary
error metric to evaluate the correctness of this estimated matrix P̂ :

Ebin =

∑
i,j∈R∧i6=j sgn(P̂ij − 0.5) 6= sgn(Pij − 0.5)

|R| · (|R| − 1)
.

After every simulated query this error can be computed for each
interleaving and multileaving method.2 We test significance with a
two tailed student-t test.

To evaluate the sensitivity of PM, it is compared to TDM and PI.
A multileaving method should be more sensitive than an interleaving

2All code is open source and available at https://bitbucket.
org/ilps/lerot [17].
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Figure 1: The binary error Ebin is plotted against the number
of queries on which the error was evaluated for interleaving
and multileaving methods. Clicks are generated by a perfect,
navigational, and informational instantiations of CCM [3].
method as it can compare more than two rankers at the same time.
For this evaluation, we use the perfect, navigational, and informa-
tional instantiations. It is hypothesized that multileaving will need
fewer impressions to converge than interleaving.

To assess the bias of all of the interleaving and multileaving
methods mentioned above, we observe the error under a random
clicking user. The error, in this case, is not based on ground truth
NDCG matrix Pij as in (5) but instead on a ground truth Pij = 0.5
for all pairs of rankers i, j.

Lastly, we look into scaling up the number of rankers. The
experiments listed above are all run using |R| = 5 rankers; we also
investigate what happens when |R| = 20 for the navigational click
model and with the sample size of PM fixed to n = 104.

4. RESULTS AND ANALYSIS
In Figure 1 we see that for impressions from all three click models,

TDM performs similar to PM with a large number of samples n,
although TDM performs slightly (but not significantly) better in the
long run for the (unrealistic) perfect click model. The multileaving
methods both perform much better than PI, as expected since the
latter can only compare two rankers at a time.3

The binary error for both probabilistic multileaving quickly goes
down to almost zero. Performance after 500 queries for the same
experiments is found in Table 1 where we also perform statistical
significance testing. In the table we see that PM always has a

3The bump for PI in the first few query impressions, that is mostly
visible under informational feedback, is due to the fact that it takes
a while for PI to have preferences for all pairs of rankers.

https://bitbucket.org/ilps/lerot
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01
and M for p < 0.05, whereas H and O are their inverses.

perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 102) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 103) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 104) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 105) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-
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Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no
preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n ≥ 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 104) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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