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ABSTRACT 

This thesis presents a new technique for simultaneously transmitting in-

band data and analog voice on a standard telephone voice-grade line. A 

portion of the speech spectrum is replaced with a medium speed digital data 

signal so that both speech and data signals are carried on a telephone chan-

nel to a remote receiver. In this work, a range of frequency components is 

removed from the mid-band region of the human voice spectrum. The modem 

then transmits data in this mid-band range. Processing at the receiving end 

separates the voice and data signals and demodulates the data for use by a 

computer. 

The thesis describes a prototype system and presents experimental data 

gathered from several tests. The thesis also discusses advantages and dis-

advantages of the "data in voice" modulation technique and proposes new 

services which could not be supported with current voiceband modems. 
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Introduction 

1.1 Motivation for Research 

With the ever increasing demand for communication services to the home 

and office, the telecommunication companies have been striving to offer new 

and useful services to the public. 

Telecommunication companies have a large investment with twisted pair 

copper wires connecting each telephone subscriber to the switched public tele-

phone network. With millions of kilometers of copper wiring in the ground 

throughout North America, telecommunication companies have a vested in-

terest in trying to recover as much of that investment as possible before the 

deployment of fiber to the customer location. This return on investment can 

be increased by offering the public more services. These services may include 

data services like Internet access, or telephone functionality services like last 

call return and call forward. With a small charge for each service ( $10), the 

overall return per line is improved. 

If it is possible to offer services that use the same pair of wires currently 

installed in the subscriber premises, then it avoids the costly installation of 

extra pairs of wires. This reduces the amount of time necessary to get the 

new service operating and helps the service become profitable quickly. Some 

services that currently require a second telephone line include ISDN (requires 

two pairs for operation), fax lines and data lines. 

It is also possible that some of the new services would be from one sub-

scriber premise to another. If it is also possible to use in-band data to carry 

data from one customer to another (end to end) without any modification 



of the telephone network, then external services would keep implementation 

costs down by not requiring a telephone network upgrade. 

1.2 Historical Background 

YKi 

5 

Figure 1.1 Bell's Early Equipment Revolution 

On June 2, 1875, while tuning a resonant telegraph at a lab facility in 

New York, Alexander Graham Bell and Thomas Watson stumbled across one 

of the greatest inventions of the 20th century. Through their good fortune, 

they had discovered one of the key pieces necessary for the invention of 

the telephone. Their persistence and hard work over the next few years 

helped launch the world into the telecommunications era. Some of Bell's 

early equipment used to develop the telephone can be seen in Figure 1.1. 

While much of the technology to implement the telephone has changed, the 

basic concept of the telephone has remained constant for the last 100 years. 

1.3 Data on the Phone Network 

The introduction of the home personal computer in the late 70's brought 

a new challenge to the telephone system. No longer would the phone system 

carry only voice, but now, computer data would also be transported on the 

telephone network. With the use of a modulator-demodulator (modem), 

computers are able to send and receive digital data over the phone network. 
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From humble beginnings at 300 bits per second (b/s), two computers can 

now communicate over the public switched telephone network at speeds up 

to 33.6 kb/s.1

Over the years, a large number of computers have been interconnected 

through the use of modems and other similar devices. They have formed 

a network of computers that has become known as the Internet. With a 

modem connection, a user may connect to anywhere in the world through 

the use of the Internet. Home shopping, information services, and on-line 

chat are only a few services available through the data connection. The 

telephone companies not only provide a transmission medium, but also now 

offer information services of their own. 

1.4 Low Speed Data on the Subscriber Loop 

One of the more popular services that telephone companies now offer is 

calling number delivery (CND) services. Calling number delivery has proven 

to be a valuable option for people around the world. The service delivers 

the number and sometimes name of the calling individual to a display panel 

on the telephone. The digital information is delivered between the first and 

second ring of the telephone using a simple FSK modulation technique at 

1200 b/s. A simplified diagram of the data sequence can be seen in Figure 

1.2. 

To deliver more services to the customer, it is desirable to combine the 

calling number delivery service with call waiting. Call waiting is a service that 

notifies you of a second caller. It interrupts the current phone conversation 

and delivers a short beep to notify the user of a second incoming call. By 

combining these services in a new fashion using in-band data, the name 

1USRobotics, along with several other companies, has introduced 56kb/s "X2" tech-

nology. This allows the modem user to obtain download speeds up to 56kb/s while main-

taining a 33.6kb/s upload speed. 
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Figure 1.2 The Delivery of CND Information 

and number of the second caller could be presented to the user without 

interruption of the original call. 

Telephone Companies are also beginning to offer an on-line information 

service known as ADSI (Analog Display Services Interface). ADSI provides 

short information bursts to the telephone display device while the telephone 

is in use. The data is used to update a text display screen on the ADSI 

telephone. The text is used to provide interactive menus and choices to 

the user. Currently, the text service ADSI interrupts the voice channel to 

transmit the text data to the display screen. During this period, no voice 

transmission may take place. As this interruption may last for a couple 

of seconds, this service would be unattractive to individuals who need an 

uninterrupted voice path, such as in a conference call environment. The 

use of in-band data could provide a means to deliver the ADSI data to the 

telephone set without interrupting the voice conversation. 

1.5 In-band Data Applications 

High Speed modems (28.8 or 33.6 kb/s) which can carry both data and 

digitized voice are available on the market today. These modems are com-

monly referred to as DVM or Data and Voice modems. In a typical unit, 

voice is compressed to 9600 b/s using a voice compression algorithm such as 
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Code Excited Linear Predictive Coding (CELP) [1], and is combined with 

a digital data stream of 19.2 kb/s to form a combined transmission rate of 

28.8 kb/s. With these modems, you can transfer digital data back and forth 

while maintaining a continuous voice conversation. 

A problem experienced with this system is the inability to maintain a 

voice conversation with data transmission in a conference call environment. 

The DVMs are meant for point-to-point operation. This excludes simultane-

ous voice and data service among 3 or more sites. If the two services could 

exist together simultaneously in a 3-way (or N-way) conference situation, 

new services would be available to the telephone companies. 

The use of interactive conferencing has begun to grow with the recent 

introduction of many computer based conferencing packages. While holding 

a conversation, both parties are presented with graphics and documents sent 

by the other. With in-band data transmission capability, the graphics can 

be sent without interruption between computers on the same phone line as 

the analog voice conversation is occurring. 

1.6 Thesis Objectives 

This thesis aims to demonstrate the ability to send digital data over the 

telephone line in a portion of the frequency band normally occupied by voice 

without causing perceptually noticeable effects in voice communication. 

The thesis will demonstrate that the human ear does not need the entire 

voice frequency range for proper perception and understanding of the con-

versation. By choosing the data bandwidth, a trade off between the voice 

quality and the data rate will be reached. It will be shown that with limited 

voice degradation, a low to medium data rate can be obtained. 
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1.7 Thesis Organization 

This thesis is organized into 6 chapters. 

Chapter 1 provides background and motivation for the thesis. The ob-

jectives of this research are also stated. 

Chapter 2 introduces the subscriber access loop, transmission bandwidth 

and quantizing noise. 

Chapter 3 describes the techniques which were considered for implemen-

tation of the system using digital processing. Computer simulation was used 

as a tool for evaluation. It discusses the theory of modulation and demodula-

tion of Gaussian Minimum Shift Keying (GMSK). Considerations necessary 

for implementation on digital signal processing (dsp) hardware from Atlanta 

Signal Processors Inc. are also presented. Chapter 3 also presents another 

digital signal processing algorithm known as Multirate digital signal process-

ing. It summarizes the improvements which can be made to the original 

demodulation algorithm. These improvements allow for a better demodula-

tion process which ideally should allow for a better bit error rate. 

Chapter 4 details the system implementation using the combination of a 

personal computer and a digital signal processing board. Protocol handing 

and handshaking methods are also described. 

Chapter 5 presents the results from testing on the system. Bit error rate 

tests in the presence of Gaussian noise in the transmission channel gives an 

indication of the performance of the overall system. Addition of Gaussian 

noise into the handset's microphone also demonstrates the systems tolerance 

to large noise additions in the "sub-band" voice channel. 

Chapter 6 summarizes the overall system performance and the results. 

Future work which can improve various aspects of the system is also dis-

cussed. 



Voice and Data Transmission in the 

Telecommunication Network 

Today's telephone networks consist of several parts including the local 

loop, the voice switch, and the long distance network. A conceptual diagram 

of the telephone network is seen in Figure 2.1. The telephone network has 

traditionally been based on the voice transmission and thus the local loop is 

limited to a bandwidth between 300 Hz and 3400 Hz. The local loops are typ-

ically connected by copper wire to the switch. However, cellular telephones 

have replaced this wire path with a wireless transmission system. The voice 

switch provides the means by which the voice calls are connected between 

local loops. The long distance networks provide the final piece by intercon-

necting the world's switches together allowing most local loops to connect to 

any other local loop in the world. 

Telephone 

Local Loop 

Switch 

Switch Interconnect 

)Other 
Switches 

Figure 2.1 Conceptual Diagram of Telephone Network 

2.1 The Local Loop 

The description of the telephone system begins with the local subscriber 

loop. This basic loop consists of the telephone set (phone) located on the 

premises of the individual, the copper cable running from the phone to the 

central office, and the circuitry located inside the central office [3]. A con-

ceptual diagram of this circuit can be seen in Figure 2.2. 

When the receiver on the telephone is picked-up, current flows in the wires 
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Central Office 
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Detect 
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Analog or 
Digital 

Switching 
Network 

Figure 2.2 Conceptual Diagram of Local Public Subscriber 

Loop 

between the telephone and the central office. A 48 V battery at the central 

office produces a current between 23 and 100 mA. The current is detected at 

the central office, where a dial tone signal is connected. This indicates that 

the switch is ready to receive address signalling. The telephone generates 

either a pulse or dual tone signal to represent each address digit. The switch 

located at the central office decodes the series of tones or pulses and routes 

the call through to its destination. If the destination is not on the same 

switch as the caller, the switch will use its long distance trunks to route the 

call towards the next voice switch nearer to the destination. A ringing or 

busy tone is generated to inform the caller as to the status of the call. If the 

called party answers the telephone, the switch (or switches) completes the 

connection and the voice conversation may begin. 

To save on wiring installation cost, most telephones are wired to the cen-

tral office using only a single pair of wires. Both directions of signals travel 

on the single pair of wires, and a hybrid coupler is used to separate the sig-

nals into a four-wire system (two for the ear piece, two for the microphone). 

The hybrid coupler has been traditionally implemented using transformers. 

By using the transformers with balanced impedances, incoming signals are 
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directed to the receiver section while outgoing signals are directed to the 

transmission line. The hybrid coupler device relies on impedance matching 

with the transmission line to obtain good quality isolation in the two separate 

directions. However, as it is difficult to accurately match the impedance of 

the transmission line, echoes are often a problem. Transmission line theory 

states that a discontinuity in the transmission line (i.e., imperfect impedance 

matching) will result in signal reflection (i.e., echoes)[3]. While echoes on 

short transmission loops return too quickly to be noticed, echoes on long 

distance connections can cause the speaker to become confused. Echoes re-

turning after about 30 ms will make the connection undesirable. On very 

long distance telephone calls, such as transatlantic calls, the telephone com-

pany will put echo cancellation devices on both ends of the transmission line 

to help reduce echoes on the voice call. 

Figure 2.3 Single Transformer Hybrid Coupler 

Figure 2.3 illustrates a simple single transformer implementation of a hy-

brid coupler. The two wires of the transmission line are connected across 

ZL. The impedance ZR represents the impedance of the receiver (earphone) 

section while the impedance ZT represents the impedance of the transmitter 
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(microphone) section. The impedance ZB is an impedance which is adjusted 

to "balance" the hybrid coupler. In order to minimize echoes on the transmis-

sion line, the hybrid coupler must be made to closely match the impedance of 

the transmission line in the frequencies of interest (300 Hz - 4 kHz). Assum-

ing an ideal transformer, the trans-hybrid received signal can be calculated 

from the following equation [3] : 

VR =  ZR(ZB— ZL) 
VT 4ZBZ1,1- ZRZB ZRZL 

(2.1) 

where VR is the voltage drop across the receiver section and VT is the voltage 

drop across the transmitter section. The trans-hybrid received signal reduces 

to zero if the line impedance ZL is equal to ZB in magnitude and phase. Due 

to the variation of the characteristic impedance of the transmission line, it is 

difficult to match to the transmission line over a broad range of frequencies. 

Thus some reflections and echos will be generated on the telelphone line. 

Digital transmission using modems (modulator-demodulator) is suscep-

tible to echoes in the telephone network. Even small echoes can cause de-

modulator lock-up problems and erroneous data if not corrected. Modern 

modems use echo cancellation to reduce echoes in the return path and help 

improve the performance. 

2.2 Digital Transmission of Analog Voiceband Signal 

The telephone transmits an analog signal onto the transmission (or tele-

phone) line and this signal is converted into a digital waveform at the cen-

tral office before continuing in the telephone network. The encoder-decoder 

(codec), illustrated in Figure 2.4, converts the analog voice or data signal to 

companded pulse code modulation (CPCM). 

To introduce digital transmission of voice signals, linear PCM is first 

considered. Linear PCM is a technique where the analog signal is compared 

against quantized levels to determine a level that most closely matches the 

10 



0100 1010 0101 ... 
1011 1000 101 1 ... 

Figure 2.4 Hybrid Coupler, Filters and Voice Codec 

input signal. The input signal is compared at regular intervals, resulting in 

a series of quantized samples indicating the approximate input signal level 

at the given sampling times. The number of different quantizing levels is 

set by selecting the number of bits used to represent the quantized sample. 

For example, if four bits are used to represent the quantized sample, then 

there will be 16 different quantizing levels to compare against the input 

signal level. In linear PCM, these levels are equally spaced. These levels are 

also dependent on a constant multiplier that is used to set the maximum 

absolute value the quantizer will represent. If a four bit quantizer needs to 

swing between ± 2 volts, the multiplier would be 4 Volt as 16 * 4 results in 

the 4 Volt swing. There are 16 levels in 

The quantization process introduces a certain amount of noise and distor-

tion into the output signal. The difference between the actual voltage level 

and the quantized level is known as "quantization noise". 

Figure 2.5 illustrates the resulting quantizing error e(t) that is produced 

in the quantizing process. The error is the difference between the input 

signal x(t) and the output signal i(t). The quantization noise has a white 

spectral density. The worst case error for quantizing will be one half of a 

quantizing interval. The quantizer always gives a result that is in the middle 

of the quantizing interval. For example, if the quantizer has its intervals set 

to integer numbers (1 to 2, 2 to 3, 3 to 4 etc.), then the quantizer will give 

results that are in the middle (1.5, 2.5, 3.5, etc.). Thus, when an analog 

signal is near the edge of the quantizer interval (i.e. 1.99), an error of one 
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Input Signal x(t) 

Quantizer Output x(t) 

Quantizer Error e(t) 

Figure 2.5 Output Signal and Quantizing Error for PCM 

half of the interval will exist for that sample (0.49 in this case). This error on 

each quantizer output will be statistically random in nature and will give the 

white spectral density mentioned previously. Establishing a large number of 

small quantization intervals can minimize this noise. However, as the number 

of levels increases, the number of bits needed to represent the different levels 

must also increase. 

As the quantizing error is related to the quantizer bin sizes, it will not 

decrease as the level of the input signal decreases. Consequently, the signal-

to-noise ratio will decrease as the level of the input signal decreases. 

Figure 2.6 illustrates that as the signal input level of the PCM decreases, 

the SNR of the system will also decrease. The figure uses the signal amplitude 

(A) divided by the quantizer range (Amax) as a reference. A reading of OdB 

would represent a signal that occupies the entire range of the quantizer. 

To reduce the quantizing error for small signals, a small quantizing inter-

val is used. If the quantizing interval is not linear, but allowed to increase in 

proportion to the sample value, a more constant signal to noise ratio (SNR) 

12 
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Figure 2.6 Signal to quantizing noise ratio of 8 bit uniform 

PCM coding 

—10 —5 0 

is generated for the entire effective range of the encoder [1]. With this tech-

nique, a fixed number of bits per sample provides a specified SNR for small 

signals, and an adequate dynamic range for large signals. 

North American telephone systems use a technique known as µ-law (mu-

law) companding. This technique is used to generate the compressed PCM. 

Figure 2.7 is an example of a four bit (sign + three bits) it-law PCM en-

coder. Only the positive half of the companding range is shown for clarity. 

The negative half of the companding range is a mirror image of the positive 

half. Notice that the quantizer levels become larger as the signal amplitude 

increases. Eight bit, µ = 255 PCM is the standard companding formula 

used today in North America. The eight bits are broken into a sign bit, 

three exponent bits, and four mantissa bits. Sixteen segments (eight positive 

segments and eight negative segments), each with 16 steps, are generated. 

Beginning from the middle two segments, each progressive segment contains 

13 



steps that are twice the size of the previous segment. The decoded value for 

µ-law is given by: 

2E(M + 16.5) — 16.5 (2.2) 

where E represents the exponent and M represents the mantissa. The 

resulting number is multiplied by the sign bit and by the base voltage. For 

µ-law, this base voltage is 386013]. 

0111 

Coded input Signal Example input 
/ Signal 

- - - 
0110 ••••••• 

0101 

0100  ...m•••••••• Inmea. 

0011 

0010 

0001 
0000 ,r  

Time 

Figure 2.7 Companded Coding using 4 bit µ-law PCM ap-

plied to a time signal 

With the eight bit code word, an effective dynamic range of 48.4 dB [1] 

is achieved. This dynamic range extends from a signal occupying the entire 

range of the first quantizing level up to the limits of the code word. In 

an eight bit µ-law system, the maximum input signal amplitude would be 

±1.55 V. Figure 2.8 compares the signal-to-quantizing noise of µ-law coding 

with the sine wave signal amplitude. The SNR does not begin to deteriorate 

until the signal level decreases below —50 dBm0.1

1The unit dBm0 is an adjusted measure of signal strength. The abbreviation dBm0 is 
commonly used to indicate what the signal magnitude would be (in dBm) at the central 
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Figure 2.8 Signal-to-quantizing Noise of it-law Coding with 

Sine Wave Inputs 

Quantizer overload will also cause the SNR to decrease. Signal levels 

above three dBmO show a significant reduction in SNR as clipping occurs to 

the signal. 

The work preformed in this thesis occured using the North American 

telephone system standard coding. The standard telephone system uses a 

sampling rate of 8 kHz, an 8-bit code word, and µ-law companding coding. 

The total data throughput of the system is a continuous 64 kb/s. 

Because sampling occurs at 8 kHz, precautions must be taken to avoid 

aliasing. The Nyquist Sampling Theorem [14] states that frequencies above 

half the sampling rate will appear as an alias frequency in the lower baseband 

frequency range. To avoid this problem, an anti-aliasing filter is applied to 

the analog signal prior to sampling. This filter limits the upper frequency 

band of the telephone to approximately 3500 Hz. The frequency range of a 

office. The measurement combines absolute level with the gain or loss between the central 

office and the measurement point[3]. 
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typical telephone circuit illustrated in Figure 2.9 is also limited in the lower 

range to approximately 200 Hz. This lower limit is a result of many causes, 

including the transformer in the hybrid couplers, and the frequency response 

of the microphone in the handset. The microphone unit in the telephone has 

a lower frequency limit governed by the ability of the diaphragm to vibrate 

at low frequencies. A useful bandwidth of approximately 3300 Hz is left for 

audio processing. 
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Figure 2.9 Magnitude Frequency Response of a typical 

Telephone Circuit 

2.3 Digital Switching 

3000 3500 4000 

The purpose of the digital switch is to route the digitized voice samples 

from one local loop port to another. Unlike its analog predecessors that used 

mechanical levers to connect correct local loops together (crossbar switch), 

the digital switch is based on computer memory. Each digitized sample is 

temporarily stored in a memory location until the computer transfers the 

sample to the appropriate digitizing local loop card. The digital switch syn-
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chronizes all the local loop cards (line cards) to provide and receive digitized 

samples at the same time and at the same rate. This synchronization allows 

for orderly flow of digitized samples in and out of the switch's memory. 

2.4 Digital Transmission 

When a telephone call must navigate over more then one digital switch, 

the digital transmission system is used. Digital switches are interconnected 

to others using high-speed digital data lines (or trunks). Typically, many 

calls will be leaving and entering a switch at any given instance. The digital 

samples are multiplexed together and transmitted on a high-speed digital 

data connection. Common channel signalling (CCS) is a protocol that is 

sent between switches to navigated each multiplexed digital signal to the 

correct destination port. As the multiplexed digital data enters the switch, 

one of two things will happen. It will be removed from the multiplexed data 

stream and sent to a local line card, or it will be multiplexed onto another 

digital trunk and sent towards another switch nearer the destination. 

On telephone calls covering vast distances, the telephone company will 

typically use echo cancellers. Echoes are created when analog signals travel-

ling on the telephone line meet the discontinuity of the telephone set. A por-

tion of the original signal is reflected back towards the central office switching 

center. Normally, echoes that return quickly are not noticed by the listener. 

However, on the long distance telephone calls, echoes may return long after 

the person has said something. The echo canceller will subtract a portion of 

a delayed version of the signal to "cancel" the reflected echo. It is interest-

ing to note that if an echo-cancelling device is placed in the local switch, it 

will only benefit the remote caller. The device would cancel echoes from the 

local caller so that the remote caller would not hear them. The local caller 

must rely on the remote Telephone Company having echo-cancelling devices 

in place. 

17 



2.5 Voice and Data Transmission Using Time Division 
Multiplexing (TDM) 

Time division multiplexing is defined as the time interleaving (alternat-

ing) of samples from several sources so that the information from these 

sources can be transmitted serially over a single communication channel [2]. 

Some examples of TDM include Ethernet, AppleTalk, DS-3, SONET, and 

Synchronous TDM-T1. TDM typically uses multiplexing to provide several 

"virtual" data paths within the serial data stream. A simple visual example 

of multiplexing in TDM can be seen in Figure 2.10. 

Ei Voice Sample 

❑ Data Sample 

0 

0 

Time 

Figure 2.10 Example of Simple TDM Multiplexing 

To use TDM to send simultaneous voice and data, the voice must first be 

converted to digital. Depending on available bandwidth, the voice may be 

compressed to conserve bandwidth. The use of high-speed digital modems 

allows the compressed voice to be multiplexed with the digital data and sent 

over the telephone line to another location. The bandwidth requirement of 

the compressed voice can change depending on whether the person is talking 

or silent. A smart implementation of the digital modems will increase data 

throughput in times when the voice is silent. Figure 2.11 illustrates a block 

diagram of this system. 

This method has been commercially developed and proven effective on 
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Figure 2.11 Block Diagram of TDM Point to Point Voice and Data Method 

two-way calls with adequate line quality. Commercial units use a 33.6 kb/s 

modem to send the digital stream. The voice is compressed to a 7.2 kb/s digi-

tal stream leaving up to 26 kb/s available for the data stream and supporting 

handshaking. The handshaking allows the modem to continually adjust for 

voice bandwidth requirements. In times of silence, nearly the entire modem 

bandwidth is available for the data. 

Current manufacturers of the voice and data modems include Zoom tech-

nology (Boston, MA) and Microcom (a subsidiary of Compaq Computers). 

Microcom manufactures a 33.6 kb/s Data/Fax modem called the OfficePorte. 

It supports the AudioSpan2 technology. The AudioSpan or Analog Simulta-

neous Voice and Data (ASVD) is a protocol to support simultaneous voice 

and data across a standard analog switched network telephone connection. 

The protocol was developed to implement the ITT standard V.61 and the ITT 

draft proposal V.34Q. Modems implementing the AudioSpan protocol were 

first available on the market in July of 1996. Zoom Technology also makes 

a similar product called the ComStar XT SVD. It also uses the AudioSpan 

protocol to implement simultaneous voice and data. 

AudioSpan equipped modems were not seen as a possible solution to the 

problem presented in this thesis. They do not allow a conference call en-

vironment to function without the use of a centralized dial-in system. The 

modems are unable to correctly operate in a star (bridge) connected confer-

encing environment as the modems become confused if more than one other 

2AudioSpan is a trademark of Rockwell Semiconductoi Systems 
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modem is connected. It would be necessary to operate a separate dial-in 

conference facility (like that seen in Figure 2.12), where specialized confer-

ence equipment using computer processing would combine data from each of 

the modems and redistribute to each site. The cost involved in construct-

ing and operating the "dial-in" facility makes the use of AudioSpan modems 

unattractive. 

The modems could also be operated in a polling method. Polling is 

when each participant is repetitively queried to see if any data is available. 

While this would eliminate the need for the specialized centralized conference 

equipment, it would introduce the problem of not having simultaneous voice 

conversations. The polled method of modem operation would be unable to 

transmit more than one voice conversation in one direction at a time. This 

also makes the use of the AudioSpan modems unattractive. 

Location #1 

Location #2 

Location #3 

Analog 

Phone 

Conference 

Digital 

Data 

Bridge 

Specialized Conference Equipment 

Figure 2.12 Block Diagram of TDM Conference Call Method 

for Voice and Data 

2.6 Voice and Data Transmission using Frequency Di-

vision Multiplexing (FDM) 

Frequency Division Multiplexing is defined as a technique for transmitting 

multiple messages simultaneously over a wideband channel by first modulat-

ing the message signals into several subcarriers and forming a composite 
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signal that consists of the sum of these modulated subcarriers [21. This 

technique is used in many systems including cellular telephones, AM and 

FM Radio, cable TV, and short wave radio. 

To implement simultaneous voice and data using FDM, the 300 Hz - 

3400 Hz frequency band is divided into sections. One portion of the fre-

quency bands is used for data, while the remaining portion is used for voice. 

Using FDM, the voice can be left in its analog form allowing the use of simple 

bridged conference calls. With the use of multi-point (or polled) modems, 

each site can take turns sending digital information. This way, multiple sites 

may be included in the conferencing environment. No complicated process-

ing or separate dial-in facilities are necessary to send and receive the voice 

channel as the voice remains in its analog form. All participants may talk 

simultaneously and be heard by every other conferencing participant. No 

time sharing of the voice channel is necessary. 

A FDM system would be able to take advantage of the Telephone Com-

pany's existing analog conferencing equipment that is available in most areas 

of North America. For three-way conference calls, participants may use the 

three-way-calling feature available as part of the telephone customer services. 

For larger conference calls, most Telephone Companies offer multi-person, 

operator-controlled conference calls. The voice conferencing equipment is 

generally owned and operated by the Telephone Company and is located on 

the central office premises. 

Figure 2.13 shows a simplified version of the frequency division multi-

plexing configuration for transferring data and voice between multiple sites. 

The analog voice occupies one subset of frequencies while the digital modem 

signal occupies another. 
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Figure 2.13 Block Diagram of FDM Conference Call Method 

for Voice and Data 

2.7 Selecting a Method for In-band Data 

As the previous sections introduced, there are two obvious methods for 

providing in-band data on the telephone transmission medium. The first is 

using Time Division Multiplexing (TDM) and the second is using Frequency 

Division Multiplexing (FDM). While both would provide a solution to the 

problem, FDM was selected as the method to use for continuing the research. 

The decision was made based on several factors including expected hardware 

complexity, expected software complexity, and experience. As a result of this 

decision, the remainder of this thesis will focus on in-band data using FDM. 
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Requirements for FDM Voice and Data 

Transmission 

3.1 Required Frequencies for Voice Transmission 

Initial testing focused on using some of the voice band for data trans-

mission without significantly affecting the quality of the voice. This research 

was guided by the assumption that the human voice is comprised of mostly 

odd harmonics 1. Accordingly, one would say that filtering out the frequency 

areas where the even harmonics dominate and odd harmonics are scarce will 

not significantly reduce the voice quality. Considering this assumption, test-

ing began to determine approximate frequencies where the stopband filters 

should be placed. The bandwidth of the stopband filter and its effect on the 

perceived voice quality was also tested. 

The first step was to digitize some sound and voice samples so that Mat-

lab 2 could be used to run various simulations. A sampling rate of 8 kHz 

and a quantization word length of 8 bits were used to model the transmission 

environment of the telephone system. For simplicity, the experimental sys-

tem used linear pulse code modulation (LPCM) rather than the companded 

(CPCM) coding used in commercial telephony. An analog anti-aliasing filter 

was used on the audio input to eliminate the effects of aliasing. Many "test 

sentences" were recorded to test the different filter configurations using a 

diverse set of audio samples. The test sentences included the author's voice 

iln the course of past research on voice coding, Prof. Dodds noticed that the funda-

mental component of voice frequencies is on the order of 800 Hz and that frequencies in 

the band around 1600 Hz could be removed without a large perceived change in voice 

quality. 
2Matlab is a trademark of Mathworks Inc. 
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while reading a passage from a text book, a male speaker from a French CBC 

radio talking about baseball scores, a female voice from English CBC radio 

talking about the weather forecast, and various audio samples collected from 

the Internet. 

Matlab was used to generate filters with varying widths and center fre-

quencies. Each test sentence was processed using the different filters before 

being recorded onto audio cassette tape. 

To generate the various filters in Matlab, a built-in filter generation func-

tion CHEBY1 was used. The function CHEBY1 generates coefficients for a 

Type 1 Chebyshev FIR (finite impulse response) filter. When the CHEBY1 

function is given the center frequency, number of coefficients, and passband 

ripple, the function returns the computed coefficients of the filter. The co-

efficients can then be used to filter the test sentence using another built-in 

Matlab function (FILTER). 

To help visually illustrate the effect of the passband filtering, a display 

technique known as a "periodogram" was used. This technique uses the Fast 

Fourier Transform (FFT) on progressive segments of the test sentence. By 

using the FFT, you get a "snap-shot" of the frequency components in the 

tested section of the audio sample. Each segment represents a portion of time. 

By plotting the frequency components verses time on a three-dimensional 

graph, a 3-D representation of the test sentence can be seen. 

An example from this process, illustrated in Figure 3.1, shows the result 

of filtering the test sentence "Hello, how are you?". The figure represents the 

spectral composition of the audio sample over a period of time, and shows 

the frequency bands that have been opened up for data transmission. 

The stopband filter was implemented as a cascade of a low pass and 

a high pass filter. These filters are Chebyshev Type I filters [13], whose 

general frequency response is illustrated in Figure 3.2. Chebyshev Type I 
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Figure 3.1 Power Spectrum of Filtered Voice Sample 

(Filter - 2.4kHz Center Freq, 500Hz Bandwidth) 

filters are pole-zero filters that exhibit equiripple behaviour in the pass-band 

and monotonic behaviour in the stopband. 

To remove incoming data from the audio channel before passing it to the 

listener, the audio channel needed to be filtered with a bandstop filter. This 

bandstop filter was similar to the filter used at the transmitter to remove 

part of the audio. By a series of audio listening tests, it was determined 

that a stopband attenuation of —50 dB was adequate to make the sound of 

data signals inaudible. The stopband filter at the voice receiver is required 

to reject data signal power at the frequencies allocated to data transmission. 

At a maximum input of ±2.5V (the limit of the A-D/D-A converters used 

in the experiment), the data signal would be reduced to less than ±0.008V. 

Reduced over 300 times, the sound becomes inaudible. 

To choose the center frequency and filter bandwidth for the experimen-

tal system, a subjective quality of speech test was used. The International 
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Figure 3.2 Frequency response of Chebyshev Type I filter 

Telecommunications Union - Telecommunications Standards Sector (ITU-T) 

provides a recommendation on subjective evaluation of voice over a transmis-

sion system. ITU-T Recommendation P.800 "Methods for Subjective Deter-

mination of Transmission Quality" provides guidelines for the test. When the 

"Absolute Category Rating" is used, each test sentence is compared against 

five subjective levels. These levels (and their corresponding scores) can be 

seen below. 

Table 3.1 Absolute Category Rating Scores 

Quality of Speech Score 

Excellent 

Good 

Fair 

Poor 

Bad 

5 

4 

3 

2 

1 
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After each of the test sentences were filtered using the different filters, 

the team of unbiased observers were asked to rate each test sentence. The 

numerical representations of the ratings were averaged yielding the mean 

listening-quality opinion score, or simply MOS. Since the results would be 

used to choose the "optimum" filter bandwidth and center frequency, the fil-

ter who's test sentences had the highest average MOS score would be chosen. 

Table 3.2 shows the overall results of the test. 

Table 3.2 Quality of Filtered Voice Signal 

Center Frequency 

stopband 1000 1500 Hz 2000 Hz 2500 Hz 

500 Hz 2 4 4.5 4 

1000 Hz 1 3 4 3 

As expected, as the bandwidth of the filter is increased, the voice quality is 

decreased. It becomes a trade-off between voice quality and data bandwidth. 

It can also be noted that a center frequency near 2 kHz produced the best 

results, while a filter bandwidth of 1000 Hz still produced a good voice quality. 

These results did not confirm the original assumption. A filter with a cen-

ter frequency around 1600Hz did not provide the best audio quality. Instead, 

a filter with a center frequency around 2kHz produced better results. 

A final date bitrate of 600b/s was chosen. This would require approxi-

mately 900Hz of bandwidth. The carrier frequency was centered at 2400Hz. 

As the bitrate was a multiple of the carrier frequency, it was easier to imple-

ment the modulator. 

3.2 Filter Requirements for Data Transmission 

Selecting the transmission amplitude of the digital signal required a trade-

off between the complexity of the filters and the noise susceptibility. While 
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a large digital signal would require a higher order filter at the receiver to 

remove a large portion of the digital signal from the voice path, a small 

digital signal would be more susceptible to the effects of telephone line noise. 

The analog-to-digital converter (ADC) of the DSP used eight-bit PCM to 

sample the incoming signal. As discussed previously, the SNR of the PCM 

signal degrades linearly with the decrease in the incoming signal amplitude. 

Figure 2.6 shows this relationship. Consequently, as the amplitude of the 

digital signal is reduced, so is the SNR. The system implemented in this 

thesis used 8-bit linear PCM for simplicity. Because of the differences in 

signal to noise ratios between LPCM and CPCM, a production system would 

require 12 or 13 bit LPCM to give similar performance as 8-bit CPCM. 

To reduce the computational power necessary to implement steep digital 

filters, it is possible to design low order digital filters with very steep roll-off 

at the expense of passband ripple. Steep roll-off filters are necessary to mini-

mize the amount of "wasted" bandwidth in the transition zones between the 

data and the voice. These filters rely on both zeros and poles to give the 

steep frequency response. An IIR filter does not generally have linear phase 

response, but can have a much steeper roll-off when compared to a FIR filter 

of similar complexity. Linear phase is equivalent to constant delay. It is nec-

essary to have near linear phase to minimize the complexity of the receiver. 

Without near linear phase, receiver compensation of the received signal must 

be done before using a non-coherent demodulator. This compensation would 

then require more processing time and possibly a larger processor. The lack 

of linear phase was deemed a necessary trade off in order to obtain a fil-

ter with the desirable frequency response that would operate on the digital 

signal processor in real time. A non-coherent demodulator is used as it is 

generally less complex then coherent demodulation. It does not require the 

demodulator to recover the incoming signal phase. It also introduces a slight 

(about 3 or 4dB) degradation on the overall system performance. 
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By placing the poles of the IIR filter very close to the unit circle, a low 

order filter with a steep roll-off is realized. However, as the poles are placed 

closer to the unit circle, the impulse response begins to have large oscillations 

that last for many samples. While this has little effect on a sinusoidal input, 

it does have a large effect on noise impulses that enter the system. The 

multiplication that occurs in the digital filter can end up overflowing the 

DSP's math registers as the values oscillate to large extremes. The DSP 

then clips the multiplication values to the DSP's minimum and maximum 

values. Consequently, clipping noise is introduced into the filter stream. Of 

course, this noise is unwanted and will only degrade the response of the filter. 

Figures 3.3, 3.4, and 3.5 show the differences between an IIR filter with 

the poles near the unit circle and one with the poles not near the unit circle. 

The left side graphs of Figures 3.3, 3.4, and 3.5 had the poles placed at 

0.6 L ± 45° with zeros at ±1. The right side graphs had the poles placed 

at 0.98 L ± 45° with the zeros also placed at ±1. The figures on the left 

show the dampered response of an IIR filter with the poles not near the unity 

circle. While this frequency response is not very useful, it does show how the 

impulse response dies out very quickly. On the right side is an IIR filter with 

poles very close to the unity circle. The frequency response shows a graph 

with a large amount of rejection outside the passband. Figure 3.5 shows 

the trade off as the impulse response oscillates much longer and is larger in 

amplitude. 

Also of importance is the finite precision of the digital signal processor. 

As the digital filter's coefficient values approach unity, the precision of calcu-

lations needed to maintain the filter response within 5% of the planned filter 

response is increased. As the DSP has fixed precision in its multiplication 

registers, the filter response will differ significantly from the planned filter 

response as the coefficients approach unity. When filters are designed with 

very steep roll-off characteristics, the internal memory elements of the filter 
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Figure 3.3 Pole-Zero Plot of IIR Filter Coefficients 
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Figure 3.4 Magnitude Frequency Response of IIR Filters 
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Figure 3.5 Impulse Response of IIR Filters 

that contain the intermediate filter calculations can fluctuate very dramat-

ically. It is the precision of these internal memory elements that typically 

limit the values that can be used as the digital filter coefficients. 

The Matlab simulation routines were written to closely mimic the oper-

ation of the digital signal processor. The Matlab mathematical operations 

were performed in the same order as the dsp program. Memory elements 

were given the same precision so that the simulation could test for any ex-

pected element overflow. The routines were written to help estimate the 

processor's abilities to perform all the necessary calculations in real time. It 

was soon determined that if FIR filters were used, the processor would not be 

able to complete the filter operations in real time. When FIR and IIR filters 

are compared, the use of the IIR filter results in a 90% saving in DSP in-

structions. However, the trade off also resulted in unwanted non-linear phase 

response and long impulse response times. This introduced more unwanted 
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noise into the system which affected the systems performance. While the 

simulations determined that the simultaneous voice and inband data con-

cept was practical using IIR filters, its performance in real world conditions 

was yet unknown. 

3.3 Data Modulation 

The previous section described the filtering of a stopband section in the 

telephone's available bandwidth. A modulation scheme is next used to in-

sert data into the frequency band filtered by the DSP. For good performance 

from the system, the modulation scheme must produce a spectrum which 

rolls off sharply and requires a minimum of band-limiting before transmis-

sion. This band-limiting (filtering) usually takes place after the modulation 

module and before the final output stage. Care must also be taken to in-

clude the capabilities and limitations of the digital signal processor before 

deciding on the final modulation scheme. To minimize processor load, the 

modulation technique chosen should permit non-coherent demodulation tech-

niques. Coherent demodulation requires a digital phase locked loop which 

would require too many instruction cycles from the digital signal processor. 

The modulation methods which can be non-coherently demodulated include 

on-off keying (00K), frequency shift keying (FSK), minimum shift keying 

(MSK), Gaussian minimum shift keying (GMSK) and differential modulation 

schemes such as differential quadrature phase shift keying (DQPSK). 

FSK has, at best, a null to null bandwidth of 1.5 Hz/bit/s [2]. This 

applies to the special case of FSK when the modulation index is set to 0.5 and 

the phase is kept continuous. The special case is referred to as MSK. A 600 

b/s data stream modulated using MSK would require 900 Hz of bandwidth. 

Typically, GMSK has a null to null bandwidth of 1.25 Hz/bit/s [2]. Thus 

a 600 b/s data stream modulated using GMSK would only need 750 Hz of 

bandwidth. While the numbers quoted refer to ideal modulation schemes, 
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practical systems will add a buffer zone on either side of the modulated signal 

to accommodate non-ideal bandstop filters. 

GMSK has a narrower 3dB corner frequency than MSK and a sharper 

roll-off in the frequency domain. This compact spectrum allows the data 

transmit filter to be eliminated without significant interference in the voice 

signal spectrum. 

GMSK uses a baseband Gaussian filter for the data. The use of the 

Gaussian filter on the baseband data is computationally easier than using a 

bandpass channel filter on the data after it has been modulated. The number 

of coefficients in the baseband filter will be significantly less than the number 

needed in the bandpass channel filter. As a result, the baseband filter will 

require fewer dsp instructions to operate. 

The Gaussian filter has the following impulse response. 

27raT 
ht 

1 —t2 
ex- 

' 
(t) =   p( 

2a2T2 )
(3.1) 

The parameter a is related to the 3-dB bandwidth (Bb) and the symbol 

period (T) of the filter. It is defined as 
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The Gaussian filters have a smooth transfer function and also a smooth 

impulse response. This in contrast to Nyquist filters [14] which have impulse 

response zero crossings at time intervals equal to the symbol rate and a trans-

fer function which is truncated in the frequency domain. Figure 3.6 compares 

the impulse responses of the Gaussian and Nyquist filters. The Nyquist fil-

ter's impulse response can be seen crossing the zero threshold at adjacent 

symbol times while the Gaussian filter still has substantial amplitude at the 

adjacent symbol times peaks. 

In digital FIR filter design, Nyquist filters are generated from formulas 
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Figure 3.6 Impulse responses of Nyquist and Gaussian Fil-

ters 

based on modified sin(wct)/(coct) functions where w, is the ideal low-pass 

cutoff frequency. Theoretically, the Nyquist formula would return an infinite 

number of coefficients, truncating the number of coefficients as necessary 

in order to have a manageable number. With the Nyquist design formula 

sin(wet)/(wet) response, truncation is usually performed as the coefficient 

values approach the quantization size of the digital processor's registers. 

It should be noted that the Gaussian pulse shaping filter does not satisfy 

the Nyquist criterion for zero inter-symbol interference (ISI). Inter-symbol 

interference is caused when energy from an adjacent symbol effects the cur-

rent symbol. If a filter does not have an impulse response that goes to zero 

at the time of adjacent symbol peaks, it will create inter-symbol interference 

and degradation in the system performance. The degradation is a measure of 

the necessary increase in Eb/No to maintain the same bit error rate (BER) in 

the system for a given noise level. Eb/No is a ratio of signal energy per bit to 

34 



in-band noise spectral density. Figure 3.7 [5], shows the expected degradation 

in the Gaussian system when compared with an ideal coherently demodu-

lated antipodal (binary) system, such as MSK or binary phase shift keying 

(BPSK). The degradation is plotted against the normalized bandwidth of 

the Gaussian filter (BbTs). 
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Figure 3.7 BER performance degradation of GMSK refer-

enced to ideal antipodal system 

From Figure 3.7 we can conclude that the degradation in performance as 

a result of the Gaussian filter is smaller than 1 dB for values of BbT, greater 

that 0.22. A value of 0.5 was deemed sufficient as it provided a large amount 

of out of band roll off while resulting in less than a 0.25 dB implementation 

loss. 

A GMSK system may be created by first filtering the base band signal 

using a Gaussian low pass filter, and then modulating with a FM modulator 

with a modulation index of 0.5 [5]. Thus the filtered baseband signal is 
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modulated using a MSK modulation method. 

The length of the digital FIR filter needed to accurately model a Gaussian 

low pass filter can be several symbols long. When the difference between the 

sampling frequency and the data rate is large, there are a large number of 

samples in each symbol period. Each sample is represented by a tap in the 

filter delay line. For each tap in the FIR filter, the processor must perform 

a multiply and add during each sampling period. As the number of taps 

grow, the processor reaches a point where it can not complete the necessary 

instructions in one cycle time (sample period). This makes it difficult to 

generate GMSK using a baseband FIR filter due to the limitation of processor 

power. It was necessary to use an approximation to GMSK that did not 

require the same number of DSP instructions. The GMSK approximation 

must maintain a continuous phase and a constant amplitude envelope in 

order for the demodulation process to use a non-coherent algorithm. The 

continuous phase helps shape the transmit spectrum while the non-coherent 

demodulation will help simplify the demodulation process at the receiver. 

The GMSK approximation method chosen was based on the sinusoidal 

table look up method. The approximation does not have the ISI normally 

produced by GMSK. Each baseband symbol starts at the limits (either 1 or 

—1) and no localized DC drift or symbol offset is present. Normal GMSK 

does tend to have small fluctuations in the localized DC average of the mod-

ulated signal. Because the approximate algorithm does rely on a series of 

mathematical additions, there should not be any DC offset present as it 

could slowly sum toward infinity. 

Approximate Gaussian low pass filtering of the baseband data is the first 

step in generating GMSK. Depending on the values of the current and pre-

vious data bits, four waveforms are generated, as seen in Figure 3.8. Each 

waveform is labelled by an ordered pair of numbers which represent the cur-

rent and previous input data bit [dk _i, dk]. These four waveforms are calcu-
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lated at the program start up time and stored in a look-up table. They are 

stepped though one sample at a time, at a sampling rate of 16 kHz and with 

a resolution of 8 bits per sample. The result of the first table lookup is a 

baseband signal which now has smooth transitions between the bits, instead 

of the abrupt changes of the previous square-wave baseband signal. 

The amplitude output of the first look-up table is in the range of —1 to 

1. The continuous time equivalent filtered baseband waveforms can be given 

by: 

m(t) = cos(—ir) if (dk-ii dk) = (0,0) (3.3) 

m(t) = cos(3) if (dk-1, dk) = (0, 1) (3.4) 

m(t) = cos(— 7) if(dk-i, dk) = (1, 0) (3.5) 

m(t) = cos(—ir) if(dk-i,dk) = (1,1) (3.6) 

where dk _1 and 

sample period. 

1.5 

dk are the current and previous data bits, and Ts is the 

1 
[1,1] 

0.5 [0,1] 

0 

-0.5 1,0] 

1 
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Figure 3.8 Four Possible Amplitude Waveforms for GMSK 

Approximation 
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The next step is to perform MSK modulation on the signal. The modu-

lation index h is set to 0.5 and the approximate baseband signal is used to 

modulate the carrier to generate the GMSK approximation. 

The MSK can be generated using the equation [15]: 

s(t) = Ac COS (C4) ct D f f rn(A)dA) (3.7) 

where m(t) is the amplitude signal generated by the Gaussian filter and 

D1 ft co m(a)d.\ is the phase offset 9(t). The equation can be rewritten as: 

s(t) = Ac cos(wct + 9(t)) (3.8) 

In discrete time systems, integration is calculated by a running sum. The 

expression D f ft.m(A)dA is equivalent to D1 Et c„, m(t) with the exception 

of a constant multiplier. This means that a single unit delay element, shown 

as z-1, along with an addition unit can be used to generate the running sum. 

The difference between the value of wct at any two sampling times will 

be constant as both At and we are constants. Also, because the difference 

between Df Et co m(t) at any two adjacent sampling times can be calculated 

from the incoming baseband signal, it is easier to calculate A (wct) + z9(t). 

The running sum of this expression will then generate wct+O(t). This running 

sum is shown in Figure 3.9 as a .z-1 block and an addition unit. To generate 

the term A(wct) + AO(t), a second look-up table is used. Knowing that the 

maximum and minimum frequency output of the VCO is generated when 

m(t) is equal to ±1, and knowing that a simple linear frequency relationship 

exists between the value of m(t) and the frequency of the VCO output, a 

second look-up table can be generated to translate the current value of m(t) 

to the appropriate value of A(wct) + AO(t). 

The running sum of the output of the second look-up table is now used 

to generate the final output. By calculating the cosine of the running sum, 
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the approximation to GMSK is generated. To decrease the processing time 

necessary for calculating the cosine function, a third look-up table is used to 

calculate an approximation for the cosine value. The cosine look-up table is 

calculated in one degree increments at program start-up. 

Previous Bit MEM 

Gaussian 
Waveform 
Look-up 
Table 

m(t) 

clock ) 

Amplitude 
to Phase 

Look-up 

tiekt+AO(t) 
• (,) 

okt+B(t) 
• 

Figure 3.9 Generation of GMSK Approximation 

Cos(x) 

Power spectral densities were generated using Matlab to compare the 

spectrums of GMSK (BT=0.3), MSK (BT=oo), and the approximation to 

GMSK. In Figure 3.10, we can see that both GMSK and its approximation 

roll off faster that MSK. Figure 3.10 shows a GMSK response where the 

bandwidth of the Gaussian low pass filter had been set to 0.3 of the data 

bandwidth. It should be noted that the bandwidth of the GMSK Gaussian 

filter may be reduced to roll the frequency spectrum off faster at the expense 

of increased ISI. 

3.4 Data Demodulation 

The digital demodulation of GMSK uses a delay and multiply technique 

[121 to recover the original digital signal from the sampled stream as illus-

trated in Figure 3.11. This technique is also known as differential decoding. 

The key component of the non-coherent demodulator is the —70 delay ele-

ment. 

When continuous phase is used to generate MSK, the simplified MSK 

transmitted signal s(t) from Eq. 3.7 can be represented at the receiver by 
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r(t): 

r(t) = cos[(w, f (Sce)t + 9] (3.9) 

where 8w represents the frequency deviation, and 9 represents the phase 

offset. In a binary MSK system, the frequency of the signal is either co, — Sw 

or we + bco depending on whether a 0 or 1 was sent. Thus the two states of 

transmitting logic 1 or 0 are represented in the transmitted frequency wc±Sw 

For differential detection, the received signal is delayed by Q* 4 seconds 

and the resulting delayed signal r(t —7-) is multiplied by r(t) to produce p(t). 

The delayed input signal r(t — T) is represented by: 

r(t — ) = cos[(w ± w) (t — 7) + 9] (3.10) 

where T is the signal delay. 

The multiplier output p(t), as seen in Figure 3.11, is then the product of 

Eq. 3.9 and Eq. 3.10 which results in: 

p(t) = r (t)r (t — T) (3.11) 

p(t) = cos[(w ± w)t + 9] cos[(w ± co) (t — r) + 9] (3.12) 

P(t) = 1
cos[2(we f (5w)t — 5w)r + 20] + cos[(wc f bw)7] (3.13) 

When r is chosen such that W cr = 7r/2, and when the remaining signal is 

filtered using a low pass filter to remove the double carrier frequency com-

ponent, the signal can be simplified to 

q(t) = cos(7r/2 ± bun-) = f sin(burr) (3.14) 

The signal q(t) can then be demodulated using a zero crossing detector. 

When q(t) is a positive voltage, it represents a logic 1. When q(t) is a negative 

voltage, it represents a logic 0. Timing signals must be reconstructed on the 

receiving end as differential-detection non-coherent demodulation provides 

no clocking information. As phase locked loops are difficult to implement on 
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a digital signal processor, other timing recovery techniques are used. This is 

described in Chapter 4. 

Input 

r(t) 

—it12 

p(t) 
LPF 

q(t) 
Slicer Decision 

Figure 3.11 GMSK Non-Coherent Demodulator 

Out 

As stated above, a delay element of length T is used to create a --r/2 

phase shift in the input signal with respect to the carrier frequency wc. The 

required delay, however, may or may not be an exact integer multiple of the 

sampling period. For this reason, we need to use a one-zero digital filter [4], 

as seen in Figure 3.12, to generate the appropriate delay. 

of: 

X (n) Y (n) 

Figure 3.12 One Zero Phase Delay Filter 

The response of the phase delay filter is given by: 

y(n) = x(n) + 16x( —1) (3.15) 

This equation is used to generate an FIR filter with a frequency response 

(w) = 1 + f3eiw (3.16) 

The purpose of this filter is to introduce a precise group delay r to the 

received signal where r is defined as: 

—0(w) 
T = = group delay (3.17) 

cho 
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Appendix A describes the development of the one zero phase delay filter 

and how it can be used to develop a group delay of —7r/2. 

After plotting the frequency and phase responses of Eq. 3.16, the resulting 

responses are shown in Figures 3.13 and 3.14. The coefficients are chosen so 

the phase response at the carrier frequency is equal to —90° or —7r/2 radians 

(as seen in Figure 3.14). 
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Figure 3.13 Magnitude Frequency Response of Single Zero Delay Filter 

By proper coefficient scaling, a gain of approximately one for the fre-

quency range of the filter can be achieved. Figure 3.13 shows that in our 

signal transmission band (h=2400Hz , BW=900Hz), the gain of the single 

zero delay filter changes by less than 8%, (or 0.6dB). This will introduce 

amplitude differences in the transmission band and cause the introduction of 

amplitude modulation noise into the system. 

3.5 The Requirement For Up-Sampling 

Implementation of the system in software presented some additional prob-

lems. The sampling rate of the A-D/D-A was 8 kHz while the carrier fre-
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Figure 3.14 Phase Frequency Response of Single Zero Delay Filter 

quency of the GMSK signal was in the range of 1600 Hz to 2400 Hz. When 

the received data signal reached frequencies above 2 kHz, the system did not 

function as desired. Equation 3.13 shows that a signal at twice the carrier 

frequency exists after multiplication. With a carrier frequency over 2 kHz, 

the double frequency content is aliased down into the low frequency range. 

This makes it very difficult to filter the double frequency signal. The simple 

solution would be to increase the sampling rate of the system. However, in 

order to maintain real time processing capabilities, the voice processing had 

to be maintained at a sampling rate of 8 kHz. Any increase in sampling rates 

above 8 kHz would not allow time for the DSP to finish the filter calculations 

required for each input sample. 

To solve this problem, the filtered data input signal (i.e. no voice signal) 

was up-sampled using interpolation before multiplication took place. The 

interpolation formula (3.18) was used to convert the 8 kHz input signal up to 

the 16 kHz sampled signal that was used for multiplication. The differential 

detector demodulator then ran at a sampling frequency of 16 kHz while the 
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voice bandpass filters ran at 8 kHz. 

The interpolation formula is developed in Appendix B and can be sim-

plified to 

x(n 1) = 5x (n) + x(n - 2) — -15.x(n - 3) 

or in the Z-transform domain: 

1 
z-lX(z) = 3 -X(z) + -2X(z) -  3z-3X(z) 

x[n-3] 

x[n] 
- p = sampled value 

q = interpolated value 

p0 qt p. C12 
p2 time 

Figure 3.15 Interpolation of the Sampling Frequency from 

8 kHz to 16 kHz 

(3.18) 

(3.19) 

As seen in Figure 3.15, input values with even powers of Z come from the 

input A-D, while those with odd powers are generated by interpolation. The 

quadratic interpolation depends on the current value as well as the second 

and third previous values. 

Because the differential detector is running at a clock speed equal to 

twice the sampling rate, it will process two data samples per sampling inter-

val. Thus, when a new sample is received, the second newest sample can be 

calculated using the newest, third newest, and fourth newest sample. The 

fourth newest sample will be the interpolated value from the previous sam-

pling period. It is the newest and second newest (interpolated) values that 

are then used in the differential detector. 

This solution provides a good estimate of the missing value between sam-

ples. This second order approximation is fast to calculate and provides an-
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swers which are adequate for the demodulation scheme used. This inter-

polation calculation helps set the ground work for multirate digital signal 

processing. The technique can often be used to reduce the workload on the 

DSP by performing baseband functions at a lower sampling frequency. 

3.6 Multirate Digital Signal Processing 

As with all technology in our ever changing world, as time goes on, tech-

nology evolves to new and better levels of design. New techniques are dis-

covered to do things better and faster. Such was the case with this project. 

While multirate digital signal processing has been around for quite a few 

years, its use has been rather limited. While its use can have a dramatic 

impact on processor time and resources, it has quietly been gathering mo-

mentum and acceptance in the DSP world. 

The key obstacle in this project was the lack of processor power to com-

plete the entire computer algorithm in real time. Instead, short cuts were 

taken, compromising performance for real time operation. This chapter will 

demonstrate the power of multirate digital signal processing and its ability 

to cut operation cycles and boost the performance from the TMS320C31. 

The first key component of miltirate DSP is the half-band filter. The 

half-band filter is truly a unique component with a lot of potential. The 

concept of the half-band filter is quite simple. If the digital signal of interest 

occupies a position in only one half of the frequency band, then it is possible 

to filter the other half of the frequency band and then reduce the sampling 

frequency. This deliberately uses the effects of signal aliasing to help move 

the interesting signal to a lower sampling frequency. Figure 3.16 shows the 

progression from the original signal to the final signal shown in Figure 3.18. 

Figure 3.16 begins the sequence by showing the frequency spectrum of 

the original incoming signal. The half-sampling frequency is given by 7r. 

46 



A 
PSD 

  freq 
7C 

Figure 3.16 Original Signal Frequency Response 

Filter 

PSD 

It

Figure 3.17 Frequency Response of Signal With Filtering 

freq 

47 



A 
PSD 

  freq 

Figure 3.18 Frequency Response of Signal After Downsampling 

The second Figure (3.17) shows the signal after a highpass filter is used to 

remove the frequency component between DC and one-quarter of the sam-

pling frequency. Figure 3.18 completes the sequence by showing the result of 

lowering the sampling frequency by one-half. The signal is now reversed in 

frequency as a result of the frequency aliasing which took place during the 

downsampling. This frequency reversal is usually not a problem for modu-

lation schemes which modulate around a common carrier. The demodulated 

signal will only have to be complemented to get the correct result. Inciden-

tally, the downsampling algorithm is extremely simple, as we simply throw 

away every other sample. 

The actual make-up of the half band filter is what really sets it apart from 

"normal" lattice style digital filters. The block diagram of a two-path signal 

stage half-band filter can be seen in Figure 3.19. The two-path filter uses 

two simple filter elements Po(Z-2) and PI(Z-2). It also uses a single delay 

element Z-1. On exit from the half-band filter, the signal is downsampled 

to lower the sampling rate by a factor of two. 
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Figure 3.19 Block Diagram of Two Path Half-Band Filter 

Each simple filter block Ps(Z-2) has a transfer function given by: 

1 + aZ2
Z2 + a 

(3.20) 

which when drawn in a schematic diagram can be shown as Figure 3.20 

in(n) 
z -2 

-2 

out(n) 

Figure 3.20 Block Diagram Of All-Pass Filter Structure 

This structure results in an all pass filter with near linear phase response. 

With the insertion of the Z-1 delay element in one of the paths, the phase 

shift between the two paths is near 0° in the pass band and near 180° in the 

filter band. 

When combined with the other simple filter block and the unit delay 

element, the transfer function of the half-band filter is given by: 

H(Z) =
1 + a0Z2 ± 1 1 + aiZ2 
Z2 + ao Z Z2 +a1

(3.21) 
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After multiplication, this equation is represented by: 

H(Z) 
= a0Z5 f ce1Z4 + (1+ aoai)Z3 ± (1 + aocti)Z2 + a1Z + ao (3.22) 

Z(Z2 + ao)(Z2 + al) 

The transfer function exhibits 5 poles and 5 zeros when the values of 

the a's are chosen carefully. The a's must be chosen so that the equation 

remains stable. The function only requires 2 multiplications. This great 

response returned by this filter with only 2 multiplications allows for near 

linear phase filters with minimal computational processing. 

The half-band filters will filter out either the upper or lower band of 

frequencies. The ± are to be set accordingly to which half of the band is of 

interest to the particular application. 

The process can be made even more efficient if we take advantage of a 

relationship between resampling filters and resampling ratios known as the 

Noble Identity. To quote the expert in the field[6], 

"This relationship states that a filter formed as a ratio of ratio-

nal polynomials in ZM followed by an M-to-1 downsampler main-

tains the same input-output relationship when the two operations 

are commuted subject to changing the polynomial indeterminate 

from ZM to Z1" . 

In its simplest form, this means that we may put the downsampling before 

the filter providing we replace each ZM with Z'. The obvious advantage to 

this is that we now perform all our filtering at a lower sampling rate, and thus, 

require much less processing power to perform the same overall operation as 

before. 

Figure 3.21 shows a step by step progression from the original half-band 

filter structure to the modified half-band filter. In the transition from Fig-
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ure 3.22 to Figure 3.23, the two downsampling units and the unit delay are 

replaced with a simple commutator. It is obvious that the downsampling 

unit is operated by simply throwing away every second sample. With the 

delay, each half section would receive every second sample, offset by one. 

Pog 

2:1 

Pig-

Figure 3.21 Original Structure of Half-Band Filter 

P (Z -1) 
2:1 

-1 

2:1 

Figure 3.22 Half-Band Filter After Carrying Downsampling Through 

Po(Z -1) 

P (Z ) 

Figure 3.23 Half-Band Filter After Replacing Delay Element 

The final result of this rearranging results in a filter structure which 

is extremely "instruction" efficient in generating the half-band filter. The 

process only takes one multiplication and 2 additions per input sample. 
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A typical frequency response from a half-band filter can be seen in Fig-

ure 3.24. The values of the filter in this example are set to ao = 0.153978 

and al = 0.60945. 
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Figure 3.24 Typical Response of a Halfband Filter 

The band limited signal of interest in this project is the in-band data 

which has a bandwidth of approximately 900 Hz centered around 2400 Hz. 

The sampling frequency of the system was 8000 Hz which put the 7r sampling 

frequency at 4000 Hz. The original system with its complicated demodulation 

scheme required approximately 2000 instructions per input sample to filter 
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and demodulate the GMSK data signal. 

In order to lower the instruction count, our data signal would have its 

sampling frequency lowered several times in order to take advantage of the 

multirate processing techniques. Figure 3.25 shows the progression of the 

input signal through the half-band filters and towards the demodulator. 
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Sampler 
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Down 
Sampler 

E 

2kHz 

Figure 3.25 System Block Diagram for Half-Band Filters. 

The letters in between each block can be used to compare the output of 

each block with the expected frequency response plots in Figure 3.26. 

Our original signal enters the system at letter 'A'. The first half-band 

section filters off the signal between 0 Hz and 2 kHz. The sampling frequency 

is reduced by half after the letter 'IT. The sampling frequency is now at 

4 kHz and the data signal now resides around 1.6 kHz. The signal has been 

frequency reversed by the effects of the downsampling. The signal continues 

through another half-band filter and sampling stage. At letter 'E' the signal 

has gone through another frequency reversal and is an exact copy of the 

original data signal, now centered at 400 Hz. 

The sampling frequency at the output of the filtering is 2 kHz. The de-

modulation can now be accomplished without putting a large burden on the 

DSP. Because the demodulation of each bit is now spread across 4 sampling 

periods (8 kHz to 2 kHz sampling rate change), the demodulation scheme can 

be more complicated, and it can include some algorithms to help eliminate 

noise. This may include narrower bandpass filters. If the same demodulation 

scheme is used, the effective instructions per sampling period will change 

from the original 2000 to 800 instructions/sample. 
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4. Implementation 

4.1 The Elf Plug-In Card 

The Elf card is a high speed multimedia DSP processor manufactured 

by Atlanta Signal Processors Inc.(ASPI), of Atlanta, Georgia, USA. The 

Elf card offers programmable solutions that can implement a wide variety of 

signal processing algorithms. The Elf DSP card includes a Texas Instruments 

TMS320C31 floating point DSP, 1 Mbyte of random access memory (RAM), 

and a telephone line RJ-11 interface. It uses a Crystal Semiconductor CS4215 

stereo high-quality 16-bit A-D/D-A which can run at a speed between 5.5 

kHz and 48 kHz. The A-D/D-A uses a delta-sigma modulation technique 

and can provide an 80 dB signal-to-noise ratio for large signals (this will be 

less for small signals). 
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Figure 4.1 Elf Plug-In Card 
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The Elf card plugs into a 16-bit AT (ISA) bus expansion slot on a host 

Intel compatible PC. Communications with the host computer is provided 

by both an internal UART interface (COM port) located on the Elf board, 

and several high speed DMA data exchange registers which are accessible by 

the ISA bus. 

A large portion of the TMS320C31's high performance is due to internal 

bus structure and parallelism. The separate program, data, and DMA buses 

allow for parallel program fetches, data accesses, and DMA accesses. The 

DMA controller is supported with both an address and data bus allowing 

it to perform direct memory addressing and is able to move data blocks in 

parallel with those occurring on the data and program buses. 

RJ-11 Jack 

Daughter Board 

Socket 
TMS320C31 Analog Interface 

EPROM Host Interface 

UART 

DRAM MIDI Interface 

256k Words 
ISA Bus Interface 

To PC's ISA Bus 

UART 

Figure 4.2 Elf Card Architecture 

Figure 4.2 is a block diagram of the general architecture of the Elf card. 

The host interface consists of several port addressable registers for use by 

the DMA and debugging software. The on-card EPROM is programmed to 

monitor for loading, debugging, and running of Elf applications. The Elf 

card provides a convenient daughter board socket for easy attachment of 

extra peripherals. 
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The TMS320C31 DSP is clocked at 33 MHz and is capable of 33 million 

floating point operations per second. 

4.2 Telephone Functions 

The Elf card provides the necessary interface circuitry for a phone line 

connection. The hybrid coupler and DC loop circuitry of the telephone sta-

tion set are provided by the circuitry on the card. The microphone and 

earphone connections are provided through the use of a mini-DIN stereo 

headphone connector as seen in Figure 4.3. The connections to a standard 

telephone handset RJ-12 connector is also seen in Figure 4.3. 

To Handset 

To TMS320C31 

Mic 
Ground 

Headphone 

Ground \ 
Headphone 

Figure 4.3 Connection of Handset to Elf 

By using the telephone handset, a look and feel of a real telephone can 

be maintained. The underlying circuitry is however quite different from that 

found in a normal telephone. Figure 4.4 gives a block diagram overview of 

the Elf "telephone". The immediate difference recognized between the Elf 

telephone and a standard residential telephone is the internal use of digital 

signals. Standard telephones leave all signals in their analog form. The 

other major difference is the lack of a phone cradle and dialing pad. These 

components have been replaced with "on-screen" equivalents. The number 

to be dialed is read from the computer keyboard while the phone is taken 

off-hook and returned on-hook by key strokes from the computer's keyboard. 

The experimental system supported two way voice communications, but 
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Figure 4.4 Block Diagram of TMS320C31 Telephone 

only one way data transmission. The system also only allowed for origination 

of phone calls from one end. This setup was deemed sufficient to test the 

concept of the entire system. 

4.3 The Receiver 

The receiver was implemented in two parts. One high level control pro-

gram operated on the PC, while another ran at a lower level on the Elf card. 

The Elf card is responsible for filtering the incoming signal from the 

telephone line and splitting it into the voice and data channels. It handles 

the demodulation of the incoming data signal and sends the demodulated 

data to the host PC. It also returns the outgoing voice to the telephone 

network. When the telephone is on-hook, the Elf card also monitors the line 

for a ringing signal, and alerts the host if the phone was ringing. 

The PC displays the incoming data and interprets the user's keyboard 

inputs. It sends control signals to the Elf board instructing it on which 

action to take. 

4.3.1 The Receiving PC 

Upon boot-up, the host PC program clears the screen and provides the 

user with a window-based environment seen in Figure 4.5. It initializes the 

data link between the host and the Elf card by setting up the COM port to 
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9600 b/s, and turning on the TMS320C31 ring detector. The program then 

enters a loop waiting for the phone to ring. This software loop is shown in 

Figure 4.6. 

Pi - Answer Phone 
P2 - Rang Up Phone F3 - I,. F4 - _a 
F12 - Quit 

'TATUS 

VATTING FOR CALL 

INCOMIN T 

Dean Zarburg 
April 2/ 96 
Access 600 

Figure 4.5 Receiving PC's User Interface 

If a ring indication is passed to the host PC from the TMS320C31, the 

user is alerted to the presence of a ring. It then waits for the user to answer 

the phone by pressing F1 on the keyboard. 

When the user answers the phone, the control character 0x07 is sent by 

the PC to the Elf card to tell it to answer the phone. Each character is sent 

using the internal COM port. The host monitors a control bit called the 

CTS (Clear To Send) and waits for it to go high. If it does, the phone is 

considered to be off-hook. If it does not go high after a certain amount of 

time, an error message is displayed indicating that no serial port activity can 

be detected. 

With an ofd hook indication, the program goes into a loop in which it waits 

for either keyboard input, or characters from the Elf card. The characters 

from the Elf card are displayed in the text window exactly as transmitted. 

The only keyboard inputs accepted by the program are keys corresponding 

to hang-up, clear screen, or quit. 

If the key for hang up is pressed, the program sends a 0x09 to the Elf 

59 



Display Screen 

Was a 
Key Pressed? 

Is There a 
Character in 
the Buffer? 

Yes 

Yes 

Draw Character 

To Screen 

Was Key 
"Answer 
Phone"? 

Yes 

Answer Phone 

V

Was Key 
"Hang Up"? 

Yes 

Hang Up 

Was Key 
"Quit" 

Yes 
V 

End Program 

Figure 4.6 Software Flow Diagram for Receiving PC 

60 



card, indicating that it wants to hang up the phone. The phone is put 

on-hook, and the program resets to initial conditions and waits for another 

phone call. If the key for quit is pressed, the system exits back to the DOS 

prompt. 

4.3.2 The Receiving Elf Card 

The role of the program on the Elf card in the receiver is considerably 

more complex then the program running on the PC. It's complexity requires 

that the TMS320C31 DSP run at close to the maximum load. 

A simplified software flow diagram is shown in Figure 4.7. Each block 

can be broken into many smaller pieces for examination. The demodulation 

process will be covered later. 

After initialization of the data exchange registers, the Elf board begins 

by waiting for the PC to raise the RTS (Request To Send) flag on the COM 

port. This indicates the PC wishes to go off-hook. The Elf card complies by 

raising its CTS flag and taking the phone interface off-hook. It initializes its 

A-D/D-A chip for 8 kHz sampling, and clears all interrupt flags. 

The Elf card enters into a continuous loop executed once every sample 

period. The loop sits and waits until the A-D raises its flag indicating that 

a sample is ready in the buffer. The sample is read in and the calculations 

begin. 

The A-D sends the sample to the Elf using a 32 bit buffer. The top 16 bits 

of the buffer represents the incoming phone line channel (referred to as the 

right channel), while the lower 16 bits represents the incoming microphone 

channel (referred to as the left channel). A conversion from 16 bit words 

to 32 bit words is necessary to continue calculations with the 32 bit DSP 

processor. Table 4.1 shows how the four 16-bit data bytes are packed into 

the incoming and outgoing data words. 
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Table 4.1 Byte Packing of 32-bit A-D/D-A Word

32 bit word 

Upper 16 Bits Lower 16 Bits 

From A-D phone line microphone 

To D-A phone line headphone 

The right channel is recovered by right shifting the data down 16 times. 

This preserves the sign bit which is extended into the data bits as necessary. 

The left channel is recovered by first left shifting the buffer 16 times to remove 

the upper 16 bits, and then right shifting 16 times to sign extend bringing 

the sample back to its original value. While it would be easier if we could 

simply mask off the top 16 bits, the DSP has no instruction for converting a 

16 bit signed integer into a 32 bit signed integer. It was therefore necessary 

to use the shifting method to get the correct 32 bit signed result. 

With the "phone line in" and "handset microphone" samples separated, 

they are converted from integers into floating point numbers to allow the 

processor more range in its calculations. Normally, with 32 bit accumulators 

and only 16 bit input numbers there is no need to convert to floating point 

numbers. The 32 bit accumulators would allow enough room to calculate our 

filter equations. However, since the choice was made to use short IIR filter 

lengths, the coefficients were large when compared to the input values. Thus, 

large changes in the value of the accumulator while calculating the filtered 

data meant that we needed more then 32 bits to represent the intermediate 

values. The choice was made to use floating point math as the processor was 

able to perform all floating point operations in the same amount of time as 

the fixed point math operations. 

Each channel is first sent through a notch filter. This removes the dig-

ital data signal preventing it from reaching the ears of the users. A copy 

of the "phone line in" sample is also filtered with a band-pass filter to re-
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move the users voices. This filtered sample is then passed on to the digital 

demodulation section. 

The physical sampling occurs at a rate of 8 kHz. To up-sample to the 

desired rate of 16 kHz, an intermediate sample is calculated using the inter-

polation equation: 

x (n — 1) = 3x (n) + x (n — 2) — 231x(n — 3) (4.1) 

As a result, for every sampling period, there are two samples to process. The 

demodulation routine is then used twice to sequentially process each sample 

separately. 

After the data signal is run through the demodulator, it is compared to a 

threshold to give a resulting digital signal of either 0 or 1. The TMS320C31 

program is expecting to see a serial digital data stream consisting of data 

bytes which are 8 bits long, have a start bit equal to 1 at the beginning, and 

a stop bit equal to 1 at the end. This UART data stream totalled 10 bits in 

length and was made to mimic the operation of a computer's UART. 

Following the flow chart for the UART seen in Figure 4.8, the program 

checks for a value of 1. If a 1 occurs, the program marks this as a possible 

start bit. It sets a timer for half of a bit period, and then continues on. When 

the timer reaches zero, the program checks again to see if a value of 1 is read 

from the demodulator. If it is, then this data is considered a start bit and 

that 8 bits of data will follow. The timer is reset to one bit period and the 

program samples the demodulator data every time the timer reaches zero. 

After 8 bits are read, the program again checks to see if a 1 is received. If a 

one is received, the data byte is considered to be complete and is sent to the 

host PC through the COM port for display on the screen. 

If an error occurs at either the start or stop bit, then the byte is considered 

to be garbage, and the Elf discards the data. It resets its timers and starts 

looking for another start bit. Errors that would be detected would include a 
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start bit that was not equivalent to one, a stop bit that was not equivalent 

to a one, and a stop bit which was longer than one bit time. 

Before returning to wait for another sample from the A-D, the sample 

from the microphone and the sample from the phone line are converted back 

into integers and then packed into a 32 bit word. This word is sent to 

the D-A for transmission. The original phone line sample minus the digital 

data is sent to the handset's ear speaker, while the voice from the handset's 

microphone is transmitted back down the phone line. 

This cycle continually repeats itself until a Hang Up signal is received 

from the host PC. With this, the Elf board hangs up the phone line, shuts 

down the A-D/D-A, and resets for another phone call. 

4.4 The Transmitter 

The transmitter was also implemented in two parts. One part on the PC, 

and the other on a Elf card. The PC is responsible for generating a user 

display and interface for the user, while the Elf card is responsible for the 

filtering of the telephone line signals, generation of the digital modem, and 

for generating DTMF tones as necessary. 

4.4.1 The Transmitting PC 

A simplified flow diagram of the software implemented on the transmit-

ting PC is given in Figure 4.9. The PC on the transmitter side provides the 

user with a text based interface to input his digital data. Upon start-up, the 

program clears the screen and provides a window-based text environment 

like that seen in Figure 4.10. The program then waits for the user to push 

the Dial button. When pushed, the user is prompted to enter the telephone 

number which is to be dialled. 
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Once the phone number is entered, the program uses the COM port to 

send the number to the Elf card. The character OxF1 is sent first followed 

by the number of digits. The digits of the phone number are sent next, left 

to right, followed by the end character OxFO. 

Handshaking is used for all COM traffic to the Elf card. As seen in 

Figure 4.11, the host PC begins a transfer by raising its RTS (Ready to 

Send) flag. If the Elf responds by raising its CTS (Clear to Send) flag, then 

the PC may transmit its byte. Upon finishing, the PC lowers it's RTS flag 

and waits for the Elf to lower its CTS flag. If the Elf does not raise or lower 

its CTS flag within a certain amount of time, the PC alerts the user to a 

possible COM port error. 

RTS 

CTS 

Data /X X X X X X \ 

Figure 4.11 Handshaking between the PC and Elf card 

Having dialled the phone, the program goes into a loop where it waits for 

input from the user on the keyboard. If a printable character is pushed, the 

key is passed to the Elf card for transmission. 

Other options available to the user include Hang Up, Send File, and 

Quit. 

The Send File redirects characters from a file to the Elf allowing you to 

pre-record typed messages to send to the other user. 
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The Hang Up option resets the Elf card, hangs up the phone, and begins 

again waiting for the user to enter a telephone number. 

The Quit option sends the user back to the DOS prompt. 

4.4.2 DTMF Generation In The Transmitting Elf Card 

The flow diagram labelled Figure 4.12 gives a simplified view of the trans-

mitting Elf board software sequence. After initialization, the Elf card waits 

for the PC to send it a phone number to dial. It checks the transmitted 

number for the correct start and end characters and also ensures that the 

numbers transmitted are between 0 and 9. 

Once the phone number has been correctly received, the Elf card initial-

izes its A-D/D-A and dials the phone number. 

The dual tone multi-frequency (DTMF) tones necessary for dialling are 

generated using a simple sine addition. A single tone can be generated by 

using: 
7f

y[i] = sin(2 (4.2) 
fsdi) 

where i is incremented by one each sample period, and f, is the sampling 

frequency. Since DTMF is made up of two separate frequencies, the output 

will simply be an addition of two sinusoids yout[i] = yi[i] + y2[i]. By com-

bining two frequencies fd, and fd, , and then scaling to a useful amplitude, 

the DTMF signal can be generated. The DSP could generate each sinusoid 

using its built in sin function as the DSP would not be burdened by other 

calculations or modulation at that time. 

The DTMF tones necessary for the transmission of each digit can be seen 

in Figure 4.2. Frequencies also exist for the four keys labelled A, B, C, and 

D. Although these keys are rarely found on telephone sets, frequencies for 

them are defined. The two tones necessary to generate the DTMF for each 

digit are the two which intersect on the number in question. 
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Table 4.2 DTMF Frequency Allocation 

hi (Hz) 

fd2 Hz) 

1209 1336 1477 1633 

697 1 2 3 A 

770 4 5 6 B 

852 7 8 9 C 

941 * 0 # D 

The Elf program uses a look-up table to determine which frequencies 

are needed to generate the DTMF signal for the given input digit. As the 

sampling frequency of the Elf board and the frequencies for DTMF are known 

in advance, the look-up table becomes a series of constants, one for each digit 

of the phone dial pad. 

After the DTMF calculation, the sample is passed to the A-D/D-A for 

transmission down the phone line. After sending the phone number, the Elf 

card enters the main modulation loop which is executed once every sampling 

period. 

4.4.3 GMSK Data Transmission With The Elf Card 

The DSP program monitors the COM port for any transmissions from 

the PC. Handshaking, as seen in Figure 4.11, is used to prevent overflow of 

the COM port buffer. 

On receiving a byte of data from the PC, the program loads the byte into 

its transmission buffer. A timer is set up to shift each bit out of the buffer, 

once every bit period. 

The modem signal is generated by taking the cosine of a running sum 

phase offset. By adding a constant phase to the sum at each sample period, 

a sine wave with a constant frequency is generated. The advantage to this 
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technique is the sinusoidal output remains continuous and free from the high 

frequency components associated with discontinuous modulation techniques. 

At each bit period, a new bit is shifted into the modulator. Depending 

on the value of the previous and current bit, four phase offset waveforms as 

shown in Figure 3.8 are used. If no change in the bits occurs (i.e., 0 0), 

then the phase offset remains constant and the resulting frequency also re-

mains constant. If however, the bits are in transition (i.e., 1 -+ 0), then the 

phase offset changes from one to another gradually over the course of the bit 

period, and as the frequency follows the phase offset change, it also changes. 

Look-up tables, generated using the formulas seen in equation 3.6, are 

used to generate all of the waveforms. The first step is to determine from 

the previous two data bits which transition the modulator is in and use the 

appropriate row in the first look-up table. The position within the first table 

is governed by the bit period timer. The table is configured to cover exactly 

one bit period. This table will return a value between -1 and 1 with each 

extreme representing one of the two carrier frequencies of a simple MSK 

modulation system. But instead of instantly changing from one frequency to 

the next, a more gradual system is used. 

This value is next changed into a phase offset using the second look-up 

table. This phase offset is added to the current running offset sum and is 

wrapped if it exceeds 360°. The final step is to use the third look-up table 

to take the cosine of the running sum. This answer is scaled and combined 

with the out-going voice. 

After transmitting the voice and data down the phone line and the incom-

ing voice to the ear, the program does one final check to see if the user wants 

to hang up the phone. When the user wants to hang up, the PC sends five 

"0xF2" characters to the Elf card. If the Elf card receives these characters, 

the Elf card hangs up the phone, disables the A-D/D-A, and resets itself to 
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wait for another telephone number. 
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Performance Results and Discussion 

5.1 Bit Error Rate (BER) with Added Gaussian Noise 

Bit Error Rate testing was done using two subscriber telephone lines each 

approximately 400 meters in length. Each line is connected to the local ex-

change switch and each is capable of supporting normal telephone operations. 

As seen in Figure 5.1, a Gaussian noise generator was used to add noise di-

rectly to the telephone wire. The line driver provided line balancing and 

impedance matching in order to minimize the effects of echoes resulting from 

discontinuities of the line impedance. A differential line receiver converted 

the balanced signal back to unbalanced where it could be fed into the spec-

trum analyzer. While exact values of No and Eb could not be measured by 

this method, their ratio Eb/AT„ could be determined. Since the ratio Eb/No 

becomes a subtraction of the logs of each, the ratio can be measured on the 

spectrum analyzer. By using the spectrum analyzer to measure the noise 

floor before the modem is turned on, and by measuring the combined signal 

after, the ratio can be measured. 

PC 
Feedback Serial Link 

PC 

A 

Phone Line Central Phone Line 
ELF Card Office ELF Card 

Gaussian 
Noise 

Balanced 
Line 

Line Spectrum 

Source Driver Receiver Analyzer 

Figure 5.1 BER Test Configuration 
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In order to compare results from this system with those from theory, the 

ratio of Eb/No was used. By using the energy per bit sent as a reference, 

systems with different modulation schemes can be compared. For a given 

error rate, the ratio can be used to calculate the necessary signal power (Eb) 

given the channel noise power spectral density (No). The Gaussian noise 

generator was used to add noise to the line. The noise was considered to 

have a uniform spectral density (white) in the frequency band of the pass 

band. The transmitter generated a GMSK signal of constant amplitude. 

Therefore, as the noise amplitude was changed, the error rate was measured, 

and the Pe vs. Eb/No[2] curve could be generated. 

In evaluating the performance of the experimental system, non-coherent 

FSK was used as a reference. The approximation to GMSK which is used by 

the transmitter has an expected bit error rate pattern similar to non-coherent 

FSK [2]. 

An experiment would begin after the transmitting Elf card established 

a data connection with the receiving Elf card. DTMF tones, generated by 

the transmitting Elf card was used to send signalling information to the 

telephone company's central office, while a ring detector on the receiving 

Elf card alerted the program to an incoming call. After transmission data 

lock-up, the transmitting PC and Elf card began to send a series of ran-

dom characters. The characters were uniformly distributed between 0 and 

255. The generation of the random character was done by the PC while the 

GMSK approximation modulation was done by the Elf card. The Elf card 

also added a set level of Gaussian noise. The generated noise signal and the 

modulated signal were then combined and sent onto the telephone network. 

The receiving Elf card demodulated the incoming signal. The demodulated 

characters were sent to the receiving PC through a series of data transfers. 

The receiving PC then completed the loop by passing the received character 

back the transmitting PC through a connecting serial link. The transmitting 
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PC was able to compare the received character with the original transmitted 

character and determine if an error occurred. The generated results included 

number of bits sent and number of errors. When combined with the exter-

nally measured Eb/No, the Pe vs. Eb/No curve could be determined. 

Figure 5.2 shows the results of 17 days of testing. The tabulation of 

the raw data from the tests can be found in Appendix C. For reference, the 

probability of error curve for non-coherent FSK is shown. 

10' 

10 2

Approx. GMSK 

10$

Non-Coherent FSK 

5 10 15 
Eb/No 

Figure 5.2 BER Test Results 

20 25 

Some sources of implementation loss in the system include the non-

coherent demodulator, and non-equalization of the data channel. The prob-

ability of error curve for the GMSK approximation is compared against that 

of non-coherently demodulated FSK. However, the GMSK approximation 

may not be particularly suited for non-coherent demodulation due to the 

introduction of phase non-lineararity. This situation is only made worst by 

the introduction of a non-ideal transmission channel. It may have then been 

optimistic to expect the system to meet ideal standards. 

76 



The largest effects on the probability of error curve occurred as the noise 

signal was reduced. This could most likely be explained as a LPCM prob-

lem. As was discussed earlier, the Elf system used a 16 bit LPCM codec to 

capture samples from the telephone line. As was also explained earlier, the 

LPCM signal to noise ratio decreases nearly linearly as the input amplitude 

is reduced. Thus, for small levels of added noise in the GMSK approximation 

system, a significant part of the overall noise in the system would be added 

by the LPCM codec, and not by the gaussian noise generator. 

5.2 BER with Gaussian Noise Added to the Micro-

phone 

In order to determine how the system will operate with large voice inputs, 

the system was again tested using the Gaussian noise generator to add noise 

at the microphone input. The rms voltage of the noise was varied up to a 

maximum of 1.5V. At levels above this, the peak noise voltage frequently 

exceeds the ±2.5V range of the input quantizer. 
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Line 
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Figure 5.3 BER Test with Microphone Noise 
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Figure 5.3 shows the set up used to test for microphone noise tolerance. 

The generated noise was gradually increased from zero to 1.5V rms, a point 

where saturation of the A-D/D-A becomes extreme. At this case, the audio 

channel of the system was unusable. Despite the excessive noise in the audio 

channel, no effects were measured in the data channel. The BER stayed 
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roughly constant regardless of the noise power in the noise channel. The 

input bandstop filter prevented the noise from entering the frequency band 

occupied by the data channel. 

5.3 Subjective Sound Quality Assessment 

Because the quality of received voice is not easy to quantify, it was de-

cided to use subjective evaluation. Both male and female voices were filtered 

through the system. The voices were both high and low pitched. Differ-

ent speaking accents were used to demonstrate the systems ability to handle 

speakers of different linguistic backgrounds. 

A panel of eight unbiased observers were asked to listen to the many voices 

and rate the overall system in terms of its ability to generate good quality 

sound. The observers were asked to use a normal telephone connection as 

their base of comparison in order to draw their conclusions. 

The results from the observations were all about the same. The con-

clusions drawn from the panel were that while the voice quality was not as 

good as the telephone company's original signal, the voice quality was good 

enough to be used for short periods of time in a normal conversation. They 

agreed that the voice was acceptable for time periods up to ten seconds or 

so. They also concluded that any time period longer than that would make 

the listener strain too hard to understand the total conversation. 
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6. Conclusions 

Research was performed on simultaneous voice and inband data over tele-

phone wires. The system was constructed using a TMS320C31 ELF digital 

signal processing card placed in an Intel compatible personal computer. The 

system delivered a 600 b/s digital data service while maintaining a fully 

working voice channel. 

Bit error rate tests were performed with varying amounts of Gaussian 

noise added. As expected, the BER increased as more noise was injected onto 

the phone line. Results compared the performance of approximate GMSK 

transmission against the ideal response of non-coherent FSK transmission. 

While the system appears to have close to a 8 dB implementation loss at 

high Eb /No values, the results are still very encouraging. In systems where 

the designer has control over the entire system, an implementation loss of 

3-6dB over the ideal is common. 

Part of the implementation loss can be blamed on the codecs located in 

the central office. They have a less than ideal frequency response and are 

not optimized for data traffic. The sampling and reconstruction done by 

the codecs add noise and can create a none constant amplitude envelope on 

signals with frequencies near 4 kHz. Modern modems use a series of frequency 

tests in order to determine several characteristics of the line, including the 

frequency response. With the help of digital signal processing, the modems 

are able to compensate for the irregularities in the frequency response of the 

line. As no such testing was performed by the ELF DSP software, similar 

compensation was not done. 

The non-ideal nature of the delay and multiply demodulator has also 
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added a large part of the implementation loss. When an error is made in the 

first or last bit, the timing recovery information for the entire word may be 

lost. This error may cause the loss of 8 bits of data. As a result, the error 

rate of the system is heavily swayed by the correct detection of the start and 

stop bits. 

The bit error rate was also examined when noise was added to the hand-

set's microphone. This noise emulated someone speaking into the micro-

phone. Depending on the noise amplitude, voice from a whisper to a scream 

was emulated. The results indicated that the system had an exceptional im-

munity to microphone noise. The system performed so well that no bit error 

rate difference could be detected between the full load noise case and the 

no-noise case. The filters on the input from the microphone filtered the noise 

signal well and let practically no noise escape into the demodulator circuit. 

If we impose an acceptance error rate of 1 error in 1000000 (1 *10-6), the 

Eb/No ratio must exceed 23dB in order to meet the requirement. Keeping 

this in mind, the telephone companies have a quantizing noise ratio ranging 

between 32 and 38 dB. Using this number and the modem signal power, one 

can conclude that the system will operate within acceptable error rates on 

virtually all telephone connections. 

6.1 Potential System Improvements 

The largest factor governing the quality of the digital receiver was the 

processing power of the TMS320C31 ELF board. Lack of sufficient process-

ing power to implement a fully featured digital receiver meant that certain 

corners had to be cut in order to get the system to operate in real time. 

As this project neared completion, a new ELF TMS320C31 board was in-

troduced to the market with twice the clock rate of the board used in this 

project. With the faster clock rate, several improvements to the demodulator 

could be accomplished. 
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By the use of the delay and multiply digital receiver, the receiver could 

implement the system in real time. It was, however, quite susceptible to line 

noise. By only sampling at 8kHz and interpolating up to 16kHz, it became 

apparent that each sample was very sensitive in the demodulation process. 

The 2.4 kHz GMSK carrier meant that each cycle would only be sampled 3 

to 4 times. Adding noise to these few samples will make the interpolation 

perform very poorly. The use of a Fast Fourier transform method of demod-

ulation would provide better noise immunity. The FFT would average the 

noise spike out allowing for a cleaner signal to be passed onto the decoder. 

The addition of an automatic gain control may have also helped the sys-

tem. While the ideal telephone circuit has a fiat frequency response in the 

voice band, this is rarely true for real circuits . The different amount of 

attenuation between the two extremes of the modulating signal can have a 

negative effect on the demodulator. The addition of a hard-limiter would 

help eliminate the amplitude modulation effects on the incoming signal. 

A more professional looking front end screen display could be developed. 

The text based system used was for testing and small demonstration purposes 

only. The system could be run in a Microsoft Windows environment and use 

one of the many commercial desktop conferencing packages already available. 

The system would only have to imitate the responses of a modem in order 

to work seamlessly with the desktop software. 

6.2 Future Work 

In order to have proper desktop conferencing, the system will have to be 

made bi-directional. While this would not be a problem for a higher speed 

digital signal processor, one would have to develop error correcting codes and 

handshaking protocols. 

The modulation method used could be changed to one that has a higher 
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bit rate to bandwidth ratio. By using a method that gets 4 bps/Hz 1 , a very 

usable data rate of 2400b/s could be obtained. As expected, as the bps/Hz 

increase, so must the processing power necessary to demodulate the signal. 

It is unknown what processor speed would be necessary to implement such 

a design. 

1A modulation scheme known as 256 level QAM has a spectral efficiency of 

= 4bits I secl H z. The commercial modems running at speeds of 28.8kb/s employ tech-

niques similar to this. 
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A. Calculation of Phase Delay Filter 

Coefficients 
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X (n) 

13 

Figure A.1 One Zero Phase Delay Filter 

Y (n) 

The response of the phase delay filter is given by: 

y(n) = x(n) + Ox(n — 1) 

The corresponding transfer function in the frequency domain is: 

Y(z) = X(z) + #z-1X(z) 

The transfer function F(z) of the filter is then given by: 

Y(z) 
F(z) =   — (1+ 13z 

' 
-1) 

' X (z) 

Evaluating F(z) at z = Ow to obtain the frequency response leaves: 

(A.1) 

(A.2) 

(A.3) 

(w) = F(&") =1 + (A.4) 

By dividing Eq. A.4 into its real R(w) and imaginary 1(w) parts, a polar 

expression A(w)ei0(''') is obtained with A(w), 0(w), R(w), and 1-(w) all being 

real functions of w. Solving for A(w) and 0(w), we get: 

and 

Given 

A(w) =1 (co) I= ER(w)2 + I(w)211 (A.5) 

0(w) = arctan(I(w)/R(w)) (A.6) 

Cs' = cos w — j sin w (A.7) 
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we can substitute Eq. A.7 into Eq. A.4 to obtain 

(w) = 1 + [3 cos w — j sin w (A.8) 

Combining Eq. A.6 and Eq. A.8 results in 

ck(w) 
—,8 sin w 

(arctan 
1 + )3 cos w

) (A.9) 

The purpose of this filter is to introduce a precise group delay r to the 

received signal where r is defined as 

-COP) 
T = = group delay (A.10) 

dw 

Substituting Eq. A.9 into Eq.A.10 yields 

0(0 + cos co) 
7= 

1+2/3COSW+132 

(A.11) 

By solving Eq. A.11 for with w set to we, a value for /3 is found which 

will introduce a —7r/2 phase delay with respect to the carrier frequency. 

By combining Eq. A.5 and Eq. A.8 we obtain the amplitude response 

A(w) of the filter 

A(w) = ,\/(1 + )6 cos w)2 + (0 sin w)2 (A.12) 

= Jl + 213 cos w + '32 cost w + #2 sine w (A.13) 

= 1/1 + 2/3 cos w + /32 (A.14) 

If we plot the frequency and phase responses of eq. A.14, we get the 

responses shown in Figures A.2 and A.3. The coefficients are chosen so the 

phase response at the carrier frequency is equal to —90° or — pi/2 radians. 

By scaling the two IIR coefficients (a and /3), a DC gain of 1 can be achieved. 
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Figure A.2 Magnitude Frequency Response of Single Zero Delay Filter 
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Figure A.3 Phase Frequency Response of Single Zero Delay Filter 
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For small w, the Eq. A.14 simplifies to 

A(w) V1+2/3+,82 (A.15) 

For coefficient scaling, a gain product is added. 

A(w) ,--:::G* Nil+ 20+,32 (A.16) 

By proper coefficient scaling, a gain of approximately one for the effective 

frequency range of the filter can be achieved. Figure A.2 shows that in our 

signal transmission band (1950 Hz - 2850 Hz), the gain of the single zero 

delay filter changes by less than 7%, (or 0.6dB). This gain difference in the 

passband will introduce amplitude modulation effects into the system. 
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B. Quadratic Equation for Interpolation 

90 



The quadratic interpolation formula is used to generate a second order 

approximation for interpolation. It has the advantage of being quick to 

calculate, saving previous DSP processing time. 

To solve for the interpolation formula, we begin with the basic quadratic 

equation x = at2 + bt + c. A series of simultaneous equations can then be 

used to represent the system. First, let xo, x1, x2, and x3 represent the output 

values of the system. The value xo would represent the output at time = 0 

and x3 at time = 3. As there will be four unknowns in the equation (a, b, 

c and x1), we will need four equations. The first four equations generated 

from the basic quadratic equation with time equal to 0, 1, 2, and 3, can be 

written as follows 

x3 = c (B.1) 

x2 = a+b+c (B.2) 

xi = 4a+2b+c (B.3) 

xo = 9a + 3b + c (B.4) 

Solving for a: 

Solving for b: 

xo = 

xo = 

b = 

x2 = a + b+ x3

a = x2 — b — x3

(B.5) 

(B.6) 

9(x2 — b— x3) + 3b + c (B.7) 

9x2 —9b —9x3 +3b + x3 (B.8) 
9x2 8x3

xo + (B.9) 
6 6 6 
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Thus, solving for xi: 

4x0 12x2 8x3 2x0 18x2 16x3
xi = 

6 6 6 6 6 6 
- + - + + x3 (B.10) 

With simplification and substitution of x(n - k) = xk, x1 equates to 

(n - 1) = x(n) + x n - 2 -3x(n - 3) (B.11) 

or in the Z-transform domain: 

z-lX(z) = 3X(z)+ z-2X(z) -
3

z-3X(z) (B.12) 
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C. Tabulated Results from BER Tests 
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Table C.1 Test Results - August 12 to 27, 1996 

Eb/No Bits Sent Errors BER 

15 1.522 * 105 63893 4.2 *10-1

17 2.245 * 105 40200 1.79 * 10-1

25 1.058 * 106 9934 9.39 *10-3

32 5.586 * 105 307 5.50 *10-4

34 9.804 * 105 150 1.53 * 10-4

38 2.059 *107 20 9.71 *10-7

38 2.22 *106 44 1.98 *10-5

Table C.2 Test Results - August 28 to 30, 1996 

Eb/No Bits Sent Errors BER 

20 2.903 * 105 25114 8.65 * 10-2

22 2.645 * 105 8765 3.31 * 10-2

25 2.258 * 105 2078 9.20 *10-3

28 2.072 * 106 3600 1.74 *10-3

30 4.889 * 105 144 2.95 *10-4

30 1.407* 106 895 6.36 *10-4

32 4.644 * 105 115 2.48 * 10-4

34 2.846 * 106 245 8.61 *10-5

38 2.077 * 107 32 1.54 * 10-6
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Table C.3 Co 

Eb/No Bits Sent Errors BER 

15 1.522 * 105 63893 4.2 * 10-1

17 2.245 *105 40200 1.79 *10-1

20 2.903 * 105 25114 8.65 * 10-2

22 2.645 * 105 8765 3.31 * 10-2

25 1.284 * 106 12012 9.36 *10-3

28 2.072* 106 3600 1.74 *10-3

30 1.896 * 106 1039 5.48 *10-4

32 1.023 * 106 422 4.13 *10-4

34 3.826 * 106 395 1.03 *10-4

38 6.19 * 107 72 1.16 *10-6
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D. ELF Board GMSK Demod C Source Code 
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/* 

  msk_rx.c  

Receive data from the serial port using sinusoidal 

preshaped MSK, or GMSK with LPF bandwidth set to about 

0.5 . 

Read and write to the A/D,D/A without the use 

of the spox SIG_IO functions 

March 27/96 

/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#define OFF 1 

#define ON 0 

#define SCALE_FACTOR 2 

#define SCALE_FACTOR2 1 

#define BACKGROUND 

/* #define FOREGROUND */ 

#define FREQ1 /* fc = 2400Hz */ 

#define FREQ_COUNT 28 

#define HALF_FREQ_COUNT 15 

#define HYSTOR 15 

#define TMS320 
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/*prototypes */ 

void INITIALIZE_ANALOG(void); 

float FILTERIIR(float *, float *, float, int); 

void PHONE_HOOK(int); 

void DELAY(void); 

smain 

void smain(argc, argv) 

int argc; 

char *argv[]; 

{ 

register int 

register int 

int 

float 

volatile unsigned 

*/ 

status; 

i ; 

temp, mic, temp2, temp5; 

temp3, temp4; 

*serial_data_rx, 

*serial_data_tx; /* addresses of ADAC */ 

volatile unsigned *uart_data; /* address of PC uart data reg */ 

volatile unsigned *uart_flag; /* address of PC uart flag reg */ 

volatile unsigned *uart_modem; /* address of PC uart modem reg */ 

volatile unsigned *uart_interrupt; /* address of PC uart int. reg */ 

volatile unsigned *uart_status; /* address of PC uart status reg */ 

volatile unsigned *c31_control; /* address of C31 control register */ 

volatile unsigned *c31_data; /* address of C31 data exch. reg */ 

float outputL, outputR;/* Voice output */ 

float inL, inR; /* voice input */ 

volatile unsigned *flag_ptr; /* ADAC serial flag register */ 
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float delay1[32], /* delay elements for filtering */ 

delay2[32], 

delay3[32], 

delay4[32]; /* filter delay elements */ 

float sine_lookup[360];/* sine table */ 

unsigned a,b; /* temp variables */ 

int c,d; 

float e,f1,f2; 

unsigned adaptive = 0; 

int parity; /* parity bit */ 

int counts; /* determine which bit we are on */ 

int count2; /* determine which sample we are on*/ 

int data_byte; /* byte we are currently receiving */ 

int data_bit; 

int delayed_modem_out[FREQ_COUNT+1]; 

float phase_lookup[360] ; /* voltage to phase look-up */ 

float past_in[3] = {0, 0, 0}; /* past input samples */ 

float modem_in[4] = {0,0,0,0};/* used to convert modem */ 

/* signal from 8kHz to 16kHz*/ 

float modem_multiply; /* */ 

float modem_out[2] = {0, 0}; /* */ 

float dc; /* */ 

int min modem; /* current minimum of modem_out */ 

int max modem; /* current maximum of modem_out */ 

float coeffl = 3.6055; /* coefficents for one-pole phase */ 

float coeff2 = 1 ; /* delay filter needed for */ 

float coeff3 =4.6055 ;/* GMSK demodulation */ 

#ifdef FREQ1 
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float bpf_coeff0 = { 0.00189579, 

1.19802, 0.981091, 1, 1.64423, 

1.11188, 0.931084, 1, 1.40706, 

0.91496, 0.854986, 1, 1.33253, 

0.588231, 0.798492, 1, -0.899243, 

0.253182, 0.836531, 1, -0.385451, 

0.0439949, 0.916374, 1, -0.248527, 

-0.0424509, 0.976320, -1, 0.00000 

/* BW = 850Hz Center = 2.4k */ 

float notch_coeff0 = { 0.106254, 

1.43445, 0.725281, 1, 1.36394, 

1.44868, 0.908635, 1, 1.30033, 

1.45004, 0.978395, 1, 1.11387, 

-0.645596, 0.585120, 1, 0.725765, 

0.275408, -0.241055, 1, 0.262529, 

-0.428033, 0.866431, 1, -0.144518, 

-0.340391, 0.968871, 1, -0.0303619 

I; /* BW = 1000Hz Center = 2.4K */ 

/* float 1pf_coeff0 = { 0.00868928, 

-1.11745, 0.324257, 1, -1.88692, 

-1.8478 , 0.93397 , 1, -1.86194, 

-1.76684, 0.860033, 1, -1.78515, 

-1.60991, 0.726727, 1, -1.51588, 

-1.37094, 0.530293, 1, 0.147904 

}; */ 
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/* LPF Fc = 750, -40dB @ 900, Fs=16k */ 

float 1pf_coeff0 = { 0.00898657, 

-1.62385, 0.662665, 1, -1.97441, 

-1.95419, 0.970979, 1, -1.96448, 

-1.76771, 0.795468, 1, -1.92131, 

-1.86212, 0.882019, 1, -1.44015 

};*/ 

/* LPF Fc = 300, -35dB 0 350, Fs=16k *1 

/* float 1pf_coeff0 = { 0.0637, 

-1.54679, 0.603607, 1, -1.96763, 

-1.94602, 0.968630, 1, -1.95510, 

-1.86580, 0.892899, 1, -1.90082, 

-1.73084, 0.769770, 1, -1.31621 

};*/ 

/* LPF Fc = 350, -35dB @ 450, Fs = 16k *1 

float 1pf_coeff0 { 0.022632, 

-1.893066, 0.9130249, 1, -1.935356, 

-1.716187, 0.7408142, 1, -1.650861 

}; 

#endif 

1* address of ADAC serial registers*/ 

flag_ptr = (volatile unsigned *) 0x808040; 

serial_data_rx = (volatile unsigned *) 0x80804C; 

serial_data_tx = (volatile unsigned *) 0x808048; 

uart_data = (volatile unsigned *) 0xA00000; 

uart_flag = (volatile unsigned *) 0xA00005; 
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uart_modem = (volatile unsigned *) 0xA00004; 

uart_interrupt = (volatile unsigned *) OxA00001; 

uart status = (volatile unsigned *) OxA00006; 

c31_control = (volatile unsigned *) 0x900002; 

c31_data = (volatile unsigned *) 0x900000; 

asm(" AND 0, IE "); 

asm(" LDI 0, IF "); 

asm(" OR 2000h, ST "); 

*uart_interrupt = Ox0; 

UART_init(12, 0x0003, 0); 

BEGIN: 

temp 

*uart_modem 

/* turn off serial ports int 

/* clear interrupts */ 

/* turn on interrupts */ 

/* com port no interrupt */ 

/* 9600 baud, 1 stop bit */ 

= *serial_data rx ; /* clear sample from ADAC 

= 1; /* set CTS low 

for (i=0; i<(FREQ_COUNT+1); i++) /* zero elements of 

/* delayed_modem out */ 

delayed_modem_out[i] = 0; 

} 

for (i=0; i<32; i++) /* zero filter delay elements 

{ 

delayl[i] = 0; 

delay2[i] = 0; 

delay3[i] = 0; 

delay4[i] = 0; 
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#ifdef BACKGROUND 

a = 0; 

while (!a) 

{ 

a = (*uart_status & Ox010); /* check CTS bit 

/* wait for host PC to send 

/* a byte indicating to pick up phone */ 

*uart_modem = 3; /* raise RTS 

b = 0; 

while(!b) 

{ 

b = *uart_flag & Ox01 ; /* check data ready flag */ 

} /* wait for data in buffer */ 

inL = *uart_data; /* clear buffer, lower RTS and */ 

*uart_modem = 1; /* get ready to start */ 

#endif 

PHONE_HOOK(OFF); /* take phone off-hook */ 

for (i=0; i<10; i++) 

{ 

DELAY(); 

} 

INITIALIZE_ANALOG(); 

DELAY(); 

DELAY(); 
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DELAY(); 

asm(" PUSH RO "); 

asm(" PUSH R1 "); 

asm(" PUSH ARO "); 

asm(" PUSH AR1 "); 

asm(" TRAP 4 "); 

asm(" POP AR1 "); 

asm(" POP ARO "); 

asm(" POP R1 ")• 

asm(" POP RO "); 

i = 0; 

e = 0; 

c = 0; 

dc = 200; 

fl = e + HYSTOR ; 

f2 = e - HYSTOR ; 

while(1) 

{ 

while( (*flag_ptr & Ox01) == 0 ); 

/* wait for data on serial port coming from A/D */ 

temp = *serial_data_rx ; /* get ADAC word from serial port 

mic = temp; 

temp = temp >> 16; /* upper 16 bits is left channel 

inL = (float) temp

mic = mic << 16; /* get rid of top 16 bits 
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mic = mic >> 16; /* sign extend 

inR = (float) mic ; /* lower 16 bits is right channel 

/* preform IIR filtering on the two channels */ 

outputR = FILTERIIR(notch_coeff, delayl, inL, 6); 

outputL = FILTERIIR(notch_coeff, delay4, inR, 6); 

/* outputL = inR ; */ 

modem_in[3] = modem_in[1]; /* oldest sample 

modem_in[2] = modem_in[0]; /* next oldest 

modem_in[0] = FILTERIIR(bpf_coeff, delay2, inL, 6) - dc; 

modem_in[1] = (modem_in[0] * 0.3333333) + 

modem_in[2] -

(modem_in[3] * 0.3333333) ; 

/* quadratric interpulation */ 

if (adaptive) 

{ 

temp5 = ( (int) modem_out[0] ) >> 2; 

if (temp5 > max_modem) { max_modem = temp5; } 

if (temp5 < min_modem) { min_modem = temp5; } 

c++; 

if (c > 32000) 

{ 

c=0; 

max_modem = -32000; 

min_modem = 32000; 
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else if (c == 18000) 

{ 

*c31_data = ( ((int)(e*0.25)) & OxOFFFF) I Ox20000 ; 

} 

else if (c == 12000) 

{ 

*c31_data = (max_modem & OxOFFFF) 1 0x10000 ; 

} 

else if (c == 6000) 

{ 

*c31 data = min_modem & OxOFFFF; 

} 

for (i=1; i>(-1); 

{ 

/* one-pole delay filter to create a phase delay 

modem_multiply = modem_in[i] * 

(modem_in[i+2] * coeffl / coeff3) 

+ (modem_in[i+1] * coeff2 / coeff3) ); 

/* LPF to recover FSK baseband signal */ 

modem_out[i] = 

FILTERIIR(lpf_coeff, delay3, modem_multiply, 1); 

/* decision logic 0 or 1 

/* This decision contains 
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/* hysteresis. The data bit only*/ 

/* changes if the threshold 

/* values are reached 

/* 

+--+--- fl = e + HYSTOR 

I I 

I i 

f2 = e - HYSTOR 

*/ 

*/ 

*/ 

if ( modem_out[i] < f2 ) 

{ 

status = status & OxOE; /* data bit = 0 

data_bit = 0; 

} 

else if ( modem_out[i] > f1 ) 

/* data bit 

status = status I Ox01; 

data_bit = 0x0200; 

} 

= 1 

/* else data bit stays as is 

if ( (status & 0x07) /* !start bit AND data_bit 

/* AND !possible_start 

status = 5; /* set 'possible start' bit 

count2 = HALF_FREQ_COUNT ; /* wait 1/2 bit to check 

} /* start bit again 

if (count2 > FREQ_COUNT-1) 

/* if count2 > FREQ_COUNT 

*/ 

*/ 

*/ 

*/ 
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status = status 1 0x08; 

} 

else 

{ 

status = status & 0x07; 

set count2 flag 

/* unset count2 flag */ 

if ( (status & OxOE) == OxOC ) /* if !start bit AND 

{ /* possible start AND count2 

if (status & Ox01) /* if 'data bit' = 1 

/* */ 

counts = 0; /* then we have a valid */ 

count2 = 0; /* 'start bit' */ 

data_byte = 0; /* */ 

parity = 0; /* set 'parity bit' low */ 

status = 2; /* set 'start bit' flag */ 

} /* lower 'possible start' flag */ 

else /* and lower 'count2' flag 

{ /* else mis-trigger */ 

status = 0; /* lower all flag bits */ 

} 

if ( (status & Ox0A) == 0x0A) /* if count2 > FREQ_COUNT 

{ /* AND start_bit 

data_byte = data_byte >> 1; /* We have data, shift down 

data_byte = data_byte I data_bit; 

countl++; /* increment bit count 

count2 = 0; /* reset bit length counter 

*/ 
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if ( counts == 10 ) /* have we received byte? 

{ 

if ( data_byte & 0x200 ) 

{ /* if valid stop bit 

*uart_data = data_byte & OxFF; 

*/ 

} /* send byte to PC dos level */ 

/* wait till the end bit passes */ 

/* so we don't retrigger on it */ 

count2 = FREQ_COUNT - HALF_FREQ_COUNT ; 

} 

if ( counts > 10 ) 

{ 

status = 0; /* lower all flag bits 

} 

count2++; 

/* output voice loudness */ 

/* temp = (int) (outputR * SCALE_FACTOR2) 

*/ 

temp = (int) (modem_out[0] * 0.95) ; 

if (temp > 32255 ) { temp = 32255; } 

if (temp < -32255) { temp = -32255; } 

/* -32255 < temp < 32255 */ 

temp = temp & 0x0FFFF; /* only 16 bit channel 

*/ 

mic = (int) (outputL * 0.2); 

if (mic > 32355 ) { mic = 32255; }/* -32255 < mic < 32255 */ 
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if (mic < -32255) mic =-32255; }/* 16 bit ADAC 

mic = mic << 16; 

/*  

/* I to phone line I to ear I */ 

*serial_data_tx = (temp I mic); /* I "mic" 

/*   */ 

I "temp" 

if (*uart_flag & Ox01) /* if the PC sends us a "9" 

{ /* on the serial port, then */ 

b = *uart_data; /* hang up the phone */ 

b = b & OxOFF; 

if ( b == 0x09) 

{ 

PHONE_HOOK(ON); 

goto BEGIN ; 

} 

else if ( b == Ox10) { e=e-100;}/*threshold fine tuning */ 

else if ( b == Ox11) e=e+100;} 

else if ( b == 0x14) adaptive = (adaptive - Ox001) ;} 

else if ( b == 0x12) 

/* fine tuning for delay filter */ 

dc = dc - 25; 

1 

else if ( b == 0x13) 

{ 

dc = dc + 25; 

} 
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if ( e > 32000) { e = 32000; 

if ( e < -32000) e =-32000; 

fl = e + HYSTOR ; 

f2 = e - HYSTOR ; 

asm(" PUSH RO "); 

asm(" PUSH R1 "); 

asm(" PUSH ARO "); 

asm(" PUSH AR1 "); 

asm(" TRAP 4 "); 

asm(" POP AR1 "); 

asm(" POP ARO "); 

asm(" POP Ri "); 

asm(" POP RO "); 

/* end if */ 

end while(1) */ 

} 

AHHHHHHHHHHhhhhhhhI I I I I I I I I  */ 

void INITIALIZE_ANALOG(void) /* Initialize Analog A/D and D/A port 

{ 

/* > ANALOG CONTROL WORD #1 

I I I I I 
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0 0 0 010 0 0 0 010010 0 0 0 0 0 0 0 0 

\___/ 1 \_/ \_/ 1 I 

  I I I I I reserved______) 

DFR / I I MCK 

001 - 16kHz Stereo I 01 - internal XTAL 1 

000 - 8 kHz 1 

with DF 

MCK=01 00 - 16bit linear 

01 - 8 bit mu law 

10 - 8 bit A law 

> ANALOG CONTROL WORD #2 

0000000000000000 reserved 

 > ANALOG CONTROL WORD #3 0x400010F0 

1 1 I I I 1 I 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 

I I I   t i l l   1 1_1 1 1 1   I I   I I I 

I I rest I I ovrl L. Channel 1 R. Channel 

I left out I I resv I input gain I input Gain 

I attenuation I right out I Monitor Path 

I I attenuation Input Attenuation 

LE 1 Select 

I 1 - line out extern 0 - line in 

enable speaker 1 - phone and mic 

HE 1 - headphone and phone out enable 

*/ 

asm(" TRAP 0 u); /* Call GET_CONFIG 

/* returns addr of MRSS in AR2 */ 
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asm(" LDI *+AR2(1), R4"); /* R4=addr of ANALOG_INIT func */ 

asm(" LDI 0004h , R5 "); /* top 1/2 of Analog cntrl word 1 */ 

asm(" LDI 1200h , R6 u); /* bottom 1/2 */ 

asm(" LSH 16,R5 /* roll upper half */ 

asm(" 

asm(" 

ADDI3 R5, R6, RO"); 

AND Oh, R1 11);

/* result in RO 

/* Analog control word #2 

*/ 

*/ 

asm(" LDI 8003h , R5 "); /* top 1/2 of Analog cntrl word 3 */ 

asm(" LDI 10F0h , R6 "); /* bottom 1/2 */ 

asm(" LSH 16,R5 "); /* roll upper half */ 

asm(" 

asm(" 

ADDI3 R5, R6, R2"); 

LDI 0 , R3 1);

/* result in R2 */ 

/* disable serial port interrupts */ 

asm(" PUSH AR3 1);

asm(" CALLU R4 1); /* call MRSS ANALOG_INIT func */ 

asm(" TRAP 5 
"); 

/* Wait for register to be sent */ 

asm(" TRAP 7 1); /* Turn interrupts off */ 

asm(" POP AR3 1);

/* 

void PHONE_HOOK(int i) 

{ 

asm(" LDI *-FP(2), RO "); /* get integer "i" off stack 

asm(" TRAP 3 "); /* on or off-hook accord to i 

asm(" OR 2000h, ST "); 

} 
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float FILTERIIR(float *coeff_addr, float *delay_addr, float input, int stages) 

/* 

A0i + Ali z(-1) + A2i z(-2) 

H(z)= K I I 

I I 1 + Bli z(-1) + B2i z(-2) } 

in <> 

-B2i A2i 

I I 

  next section 

coeff variable goes [ K, B11, B12, Al2, All, B21, B22, A22, A21, . ] 

*/ 

asm(" LDI *-FP(3), ARO "); /* address of delay elements */ 

asm(" LDI *-FP(2), AR1 "); /* address of coefficients */ 

asm(" LDF *-FP(4), R3 "); /* input sample */ 

asm(" MPYF R3, *AR1++, R3 "); /* R3 = (in * K) */ 

asm(" MPYF *ARO, *AR1++, RO "); /* RO = x[z-1] * Bli */ 

asm(" LDI *-FP(5), RC "); /* load repeat counter */ 

asm(" RPTB ENDFLT "); /* block repeat */ 

asm(" MPYF *+ARO, *AR1++, R1 "); /* R1 = x[z-2] * B2i */ 

asm("I I SUBF RO, R3 "); /* R3 = R3 - RO */ 

asm(" MPYF *+ARO, *AR1++, RO "); /* RO = x[z-2] * A2i */ 
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asm("I I SUBF-R1, R3, R2 "); /* R2 = R3 - R2 

asm(" LDF *ARO++, R3 "); /* R3 = x[z-1] 

asm(" STF R2, *-ARO "); /* update new [z-1] temp 
asm("I l STF R3, *ARO "); /* shift old [z-1] to new [z-2] 

asm(" MPYF *ARO++, *AR1++, RO "); /* RO = x[z-1]*A1i 

asm("I I ADDF RO, R2 "); /* R2 = R2 + x[z-1]*A2i 

asm("ENDFLT MPYF *ARO, *AR1++, RO"); /* RO = next B1i*x[z-1] 

asm("I I ADDF R2, RO, R3 "); /* R3 has stage output 

asm(" LDF R3 ,R0 "); 

/*

} 

void DELAY(void) 

{ 

unsigned i; 

for (i=0;i<60000;i++) 

{ 

asm(" NOP "); 

asm(" NOP 1);

asm(" NOP u);

} 

} 

/* wait and do nothing */ 

*/ 
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E. ELF Board GMSK Modulator C Source 

Code 
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/* 

  msk_tx.c  

Transmit data from the serial port using sinusoidal 

preshaped MSK, or GMSK with LPF bandwidth set to about 

0.5 . 

Read and write to the A/D,D/A without the use 

of the spox SIG_IO functions 

March 26/96 

V3.0 July 9 / 96 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#define off 1 

#define on 0 

#define SCALE_FACTOR 2 

#define SCALE_FACTOR2 0.25 

#define SAMPLE_FREQ 16000 

#define ONECYCLE 28 

#define BAND_WIDTH 600 

#define FREQUENCY1 2250 

#define MODEM_AMPLITUDE 750 

/*#define MODEM_AMPLITUDE 0 */ 

#define BIG_PRIME 2147483647 
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/*prototypes */ 

void 

float 

void 

void 

void 

void 

ANALOG_INIT(void); 

FILTERIIR(float *, float *, float, int); 

PHONE_HOOK(int); 

delay(void); 

DIAL_PHONE(int); 

GET_PHONENUMBER(int *) 

/*   smain */ 

void main(int argc, char *argv[]) 

{ 

int 

int 

int 

register 

float 

register 

float 

float 

volatile 

volatile 

volatile 

volatile 

volatile 

volatile 

int 

int 

unsigned 

unsigned 

i, status, in; 

int_phase; /* rounded current phase of modem 

modem_count=0; /* counter for 300Hz modem signal 

temp, mic; 

phase=0; 

pc_serial_data; /* 

outputL, outputR;/* 

inL, inR; /* 

*flag_ptr; /* 

*serial_data_rx, 

*serial_data_tx; /* 

unsigned *uart_data; 

unsigned *uart_flag; 

unsigned *uart_modem; 

unsigned *uart_interrupt; 

/* 

/* 

/* 

/* 

current data word register 

Voice and data output 

voice input 

ADAC serial flag register 

address 

address 

address 

address 

address 

of 

of 

of 

of 

of 

ADAC */ 

PC uart data register */ 

PC uart flag register */ 

PC uart modem register*/ 

PC uart int. register */ 
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float 

float 

int 

int 

int 

int 

unsigned 

int 

float 

int 

int 

float 

float 

float 

unsigned 

/* float 

volatile unsigned 

volatile unsigned 

volatile unsigned 

float 

*uart_status; 

*data_ex_reg; 

*ex_status_reg; 

delay1[24], 

/* address 

/* address 

/* address 

of PC uart status reg. 

of Data exchange reg. 

of exchange status reg. 

delay2[24]; /* filter delay elements */ 

sine_lookup[360];/* sine table 

noise_amplitude; /* user def. White noise amplitude */ 

current bit = 0; /* bit of data currently sending */ 

previous bit = 0;/* last state 

hang_up_count = 0; 

parity; /* partiy bit 

a,b; 

c,d; 

msk[4][ONECYCLE] 

shift_count; /* # of bits shifted out 

phone_number[12] = {7,6,6,8,8,2,1,1}; 

phase_lookup[360] ; 

bit_amplitude; 

noise, noise2; 

signal_on = 1; 

*/ 

*/ 

*/ 

notch_coeff[] = { 0.418455, 

-0.705841, 0.16486, 1, -1.45052, 

-1.49359 , 0.863056, 1, -1.38197, 

-1.51534 , 0.976271, 1, -1.21189, 

-0.734349, 0.96589 , 1, -1.00872, 

-0.524041, 0.789581, 1, -0.902578 

}; */ 

/* BW=850Hz Center=2.4kHz Trans=200Hz elliptic */ 

*/ 
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float notch_coeff0 = { 0.410044, 

-1.34719, 0.630340, 1, -1.47343, 

-1.50188, 0.913784, 1, -1.42857, 

-1.48718, 0.94337, 1, -1.30367, 

-0.712273, 0.94169, 1, -1.09657, 

-0.607374, 0.871343, 1, -0.921930, 

-0.308051, 0.435529, 1, -0.845701 

1; 

/* address of ADAC serial registers */ 

flag_ptr = (volatile unsigned *) 0x808040; 

serial_data_rx = (volatile unsigned *) 0x80804C; 

serial_data_tx = (volatile unsigned *) 0x808048; 

/* address of UART interface registers */ 

uart_data = (volatile unsigned *) 0xA00000; 

uart_f lag = (volatile unsigned *) OxA00005; 

uart_modem = (volatile unsigned *) 0xA00004; 

uart_interrupt = (volatile unsigned *) 0xA00001; 

uart_status = (volatile unsigned *) 0xA00006; 

/* address of data exchange registers */ 

data_ex_reg = (volatile unsigned *) 0x900000; 

ex_status_reg = (volatile unsigned *) 0x900002; 

for (i=0;i<360;i++) /* generate voltage to phase lookup 

{ 

phase_lookup[i] = 

( (i*BAND_WIDTH/720) + FREQUENCY1 ) * 360 / SAMPLE_FREQ; 

for (i=0;i<360;i++) /* generate sine look-up table 
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{ 

sine_lookup[i] = (sin(i*2*3.141592654/360)); 

} 

for (i=0;i<ONECYCLE;i++) /* generate sinusoidal pulse shaping 

{ /* for GMSK approximation waveforms */ 

msk[0][i] = 1 ; /* 0 -> 0 */ 

msk[1][i] = cos(3.1415927*i/ONECYCLE); /* 0 -> 1 */ 

msk[2][i] = -cos(3.1415927*i/ONECYCLE); /* 1 -> 0 */ 

msk[3][i] = -1 ; /* 1 -> 1 */ 

} 

temp = *serial_data_rx ; 

pc_serial_data = 0; 

*flag_ptr = Ox00; 

*/ 

asm(" AND 0, IE ");/* turn off serial ports int 

asm(" LDI 0, IF "); /* clear interrupts */ 

asm(" OR 2000h, ST "); /* turn on interrupts */ 

UART_init(12, 0x0003, 0); /* 9600 baud, 1 stop bit */ 

*uart interrupt = Ox0; 

*uart_modem = Ox01; 

BEGIN: /* let's begin */ 

hang_up_count = 0; 

/* Get phone number from User 

GET_PHONENUMBER(tiphone_number[0]); 

PHONE_HOOK(off); 

for (i=0;i<10;i++) 

*/ 

/* take phone off-hook 
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{ 

delay(); 

} 

ANALOG_INIT(); 

delay(); 

delay(); 

/* begin ADAC processing 

for (i=0; i < phone_number[0]; i++) 

{ 

asm(" PUSH RO "); 

asm(" PUSH R1 "); 

asm(" PUSH ARO "); 

asm(" PUSH AR1 "); 

asm(" TRAP 4 "); 

asm(" POP AR1 "); 

asm(" POP ARO "); 

asm(" POP R1 "); /* Dial phone, 1 digit at a time 

asm(" POP RO "); 

DIAL_PHONE(phone_number[i+1]); 

} 

asm(" PUSH RO "); 

asm(" PUSH R1 "); 

asm(" PUSH ARO "); 

asm(" PUSH AR1 "); 

asm(" TRAP 4 "); 

asm(" POP AR1 "); 

asm(" POP ARO "); 

asm(" POP R1 "); 
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asm(" POP RO "); 

i=0; 

noise_amplitude = 0; 

while(1) 

{ 

while( (*flag_ptr & Ox01) == 0 ); 

/* wait for data on serial port*/ 

temp = *serial_data_rx 

mic = temp; 

temp = temp >> 16; /* upper 16 bits is left channel 

inL = (float) temp ; /* convert to floating point 

mic = mic << 16; /* get rid of top 16 bits 

mic = mic >> 16; /* sign extend 

inR = (float) mic ; /* lower 16 bits is right channel 

/* 

/* preform IIR filtering on the 

/* two channels to notch out the 

/* modem carrier 

outputR = FILTERIIR(&notch_coeff[0], &delay1[0], inL, 5); 

outputL = FILTERIIR(&notch_coeff[0], &delay2[0], inR, 5); 

temp = (int) (outputR * SCALE_FACTOR) ; 

/* convert back to integer */ 

if (temp > 32255 ) /* preform hard limiting to 

/* ensure a 16 bit channel */ 

get ADAC word from serial port */ 

*/ 

*/ 
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temp = 32255; 

} 

if (temp < -32255) 

{ 

temp = -32255; 

} /* -32255 < temp < 32255 

temp = temp & OxOFFFF; /* only 16 bit channel 

a = (*uart_status & Ox010); 

/* UART CTS bit raised when 

/* the host PC wants to send 

b = (*uart_flag & Ox01); /* UART Data Ready flag 

if ( a && (!b) ) 

{ 

*/ 

/* if CTS and no data in buffer */ 

*uart_modem = 3; /* raise RTS line(ready 2 receive)*/ 

} 

if (b) /* if there is data in the buffer */ 

{ 

pc_serial_data = *uart_data; 

/* get 8 bits of data from the */ 

/* serial port */ 

pc_serial_data = pc_serial_data & OxFF ; 

if ( pc_serial_data == OxF2) 

{ /* If the special character OxF2 */ 

/* is sent, add 1 to hang_up_count*/ 

hang_up_count++; 

} 
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else 

hang_up_count = 0; 

1 

parity = 0; 

/* otherwise, reset hang_up_count */ 

pc_serial_data = pc_serial_data << 1; 

pc_serial_data = pc_serial_data 1 0x400 ; 

/* shift serial data up one and */ 

/* begin with a 'start' bit */ 

/* add 'end' bit */ 

modem_count = 0; 

current_bit = 1; 

previous_bit = 0; 

shift_count = 0; 

if (modem_count > (ONECYCLE - 1) ) 

/ Send bits out telephone modem */ 

/* one bit at a time. Shift them */ 

/* out every time we pass */ 

/* ONECYCLE time */ 

/* Also calculate parity bit */ 

pc_serial_data = pc_serial_data >> 1; 

previous_bit = current_bit; 

current_bit = pc_serial_data & Ox01; 

parity = parity + current_bit; 

shift_count++; /* increment # of bits shifted 
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modem count = 0; 

/* reset clock for modem counting */ 

/* if ( shift_count == 8 

{ 

pc_serial_data = (int) (parity % 2) ; 

pc_serial_data = pc_serial_data << 1; 

} 

*/ 

if ( shift_count > 12 ) 

{ /* lower RTS (ready for next char)*/ 

*uart_modem = 1; 

} 

} 

/* add phase to create a sine */ 

/* wave at the frequency */ 

/* necessary depending on the */ 

/* current bit transmitting */ 

modem_count++; 

c = current bit + (previous_bit * 2) ; 

/* calculate which transition we 

/* are in (0->0,0->1,1->0,1->0) 

*/ 

*/ 

bit_amplitude = msk[c][modem_count]; 

/* GMSK amplitude at given time */ 

d = (int) ((bit_amplitude * 178) + 180); 

/* scale to integer between 0-360 */ 

phase = phase + phase_lookup[d]; 

/* phase to add depending on */ 

/* given amplitude */ 
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if ( phase > 359 ) 

/* sine lookup table only goes 

phase = phase - 360;/* to 360 deg 

} 

int_phase = (int) phase; 

/* introduce noise using a */ 

/* pseudo-Random number generator 

/* At 16kHz,it repeats every 34hr 

/* It's amplitude is determined */ 

/* by the value passed to it */ 

/* from DOS through the data */ 

/* exchange register */ 

in = *ex_status reg; 

in = in & Ox02; 

if (in) 

{ 

in = (int) *data_ex_reg; 

in = in << 16; 

in = in >> 16; 

if (in == Ox01) 

{ 

signal_on = signal_on Ox01 ; 

} 

else 

{ 

noise_amplitude = (float) in ; 

/* noise_amplitude = noise * noise * 2 ;*/ 

} 
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noise = ((float)rand() / BIG_PRIME) - 0.5; 

noise = noise * noise_amplitude ; 

/* noise = cos(2 * 3.141593 * noise ) * noise_amplitude; 

noise2 = log( BIG_PRIME / (float)rand() 

noise2 = sqrt(noise_amplitude * noise2); 

noise = noise * noise2 ; 

*/ 

if (signal_on) 

{ 

outputL = (outputL * SCALE_FACTOR2) + 

noise + 

(sine_lookup[int_phase] * MODEM_AMPLITUDE); 

/* add modem signal to voice */ 

/* signal, scale voice amplitude */ 

else 

{ 

outputL = (outputL * SCALE_FACTOR2) + noise ; 

} 

/* for test purposes, turn off */ 

/* the carrier and only add noise */ 

mic = (int) outputL ; /* convert to integer 

if ( mic > 32255 ) 

{ 

mic = 32255; 

} 
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if ( mic < -32255 ) 

{ 

mic = -32255; 

} 

/* -32255 < mic < 32255 

/* 16 bit ADAC */ 

/* */ 

/*   L   R   */ 

mic = mic << 16; /* I to phone line I to ear 1 

"mic" I "temp" I */ 

/*   */ 

/* 

*serial_data_tx = temp I mic; 

output voice and data signals */ 

/* to DAC */ 

if (hang_up_count > 4) /* if user sent hang up code 

{ 

PHONE_HOOK(on); 

asm(" 

asm(" 

asm(" 

asm(" 

asm(" 

asm(" 

asm(" 

asm(" 

asm(" TRAP 2"); 

*uart_modem = 1; 

goto BEGIN

} 

LDI 7F3Fh , R5 "), /* top 1/2 of Analog word 

LDI 10F0h , R6 " /* bottom 1/2 

LSH 16,R5 "); /* roll upper half 

ADDI3 R5, R6, RO "); /* result in RO 

LDI OFFFFh , R5 "); /* top 1/2 of bit mask 

LDI OFFFFh , R6 "); /* bottom 1/2 

LSH 16,R5 "); /* roll upper half 

ADDI3 R5, R6, R1 "); /* result in R1 

/* hang up, mute volume 

/* and restart 

*/ 

*/ 
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} 

AHHHHHHHHHIWAhhhhi l l I I I I I I 

void ANALOG_INIT(void) * Initialize Analog A/D and D/A port */ 

{ 

/* analog control word 1 

1 1 

0 0 0110 0 0 0 010010 0 0 0 0 0 0 0 0 

\___/ I \_/ \_/ I 

  1 1 I  reserved 

DFR / I I MCK 

001 - 16kHz Stereo I 01 - internal XTAL 1 

000 - 8 kHz 

with DF 

MCK=01 00 - 16bit linear 

01 - 8 bit mu law 

10 - 8 bit A law 

analog control word 2 

0000000000000000 reserved 

analog control word 3 Ox400010F0 

I I I I I I I I I 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 

I I I   1 1 1 1   I 1_1 1 1 1   I I   I I I 
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I I I rest I I ovrl L. Channel I R. Channel 

I I left out I I resv I input gain I input Gain 

I I attenuation I right out I Monitor Path 

I I 
I

attenuation Input Attenuation 

I LE I Select 

I 1 - line out extern 0 - line in 

I enable speaker 1 - phone and mic 

HE 1 - headphone and phone out enable 

*/ 

asm(" TRAP 0 "); /* Call GET_CONFIG 

/* returns addr of MRSS in AR2 */ 

asm(" LDI *+AR2(1) , R4 "); /* R4=addr of Analog_Init function*/ 

asm(" LDI 000Ch , R5 "); /* top 1/2 of Analog word #1 */ 

asm(" LDI 1200h , R6 "); /* bottom 1/2 */ 

asm(" LSH 16,R5 "); /* roll upper half */ 

asm(" ADDI3 R5, R6, RO "), /* result in RO */ 

asm(" AND Oh, R1 /* Analog control word #2 

asm(" LDI 8008h , R5 "); /* top 1/2 of Analog word #3 

asm(" LDI 10E0h , R6 "); /* bottom 1/2 

asm(" LSH 16,R5 "); /* roll upper half 

asm(" ADDI3 R5, R6, R2 " /* result in R2 

asm(" LDI 0 , R3 "); /* disable serial port interrupt 
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asm(" PUSH AR3 "); 

asm(" CALLU R4 "); 

asm(" TRAP 5 "); 

asm(" TRAP 7 "); 

asm(" POP AR3 "),

/* call MRSS ANALOG_INIT function */ 

void PHONE_HOOK(int i) 

{ 

asm(" LDI *-FP(2), RO 

asm(" TRAP 3 "); 

asm(" OR 2000h, ST "); 

/* get integer "i" off stack 

/* on or off-hook accord to i 

/* */ 

float FILTERIIR(float *coeff_addr, float *delay_addr, float input, int stages) 

/* 

I I I #stages - 1 

filter coeff. delay elements input sample 

{ BOi + Bli z(-1) + B2i z(-2) 

H(z)= K I I 

I I { 1 + Ali z(-1) + A2i z(-2) } 
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0   next section 

coeff variable goes [ K, All, A21, B21, B11, A21, A22, B22, B12, .. 

asm(" LDI *-FP(3), ARO "); /* addr of delay element */ 

asm(" LDI *-FP(2), AR1 "); /* addr of coefficients */ 

asm(" LDF *-FP(4), R3 "); /* input sample */ 

asm(" MPYF R3, *AR1++, R3 "); /* R3 = (in * K) */ 

asm(" MPYF *ARO, *AR1++, RO "); /* RO = x[z-1] * Bli */ 

asm(" LDI *-FP(5), RC "); /* load repeat counter */ 

asm(" RPTB ENDFLT "); /* block repeat */ 

asm(" MPYF *+ARO, *AR1++, R1 "); /* R1 = x[z-2] * B2i */ 

asm("I I SUBF RO, R3 "); /* R3 = R3 - RO */ 

asm(" MPYF *+ARO, *AR1++, RO "); /* RO = x[z-2] * A2i */ 

asm("I l SUBF R1, R3, R2 "); /* R2 = R3 - R2 */ 

asm(" LDF *ARO++, R3 "); /* R3 = x[z-1] */ 

asm(" STF R2, *-ARO "); /* update new [z-1] temp */ 

asm("I l STF RS, *ARO "); /* shift old [z-1] to new [z-2] */ 
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asm(" MPYF *ARO++, *AR1++, RO "); /* RO = x[z-1] * Ali 

asm("I I ADDF RO, R2 "); /* R2 = R2 + (x[z-1] * A2i) 

asm("ENDFLT MPYF *ARO,*AR1++, RO"); /* RO = next Bli * x[2-1] 

asm("I I ADDF R2, RO, R3 "); /* R3 has stage output 

asm(" LDF R3 ,R0 "); 

/* 

void delay(void) 

int i; 

for (i=0;i<60000;i++) 

asm(" NOP '); 

asm(" NOP 1);

asm(" NOP u);

} 

/*

/* wait and do nothing */ 

void DIAL_PHONE(int number) 

{ 

/* generate dual tone multi- */ 

/* frequency for dialing the */ 

/* phone An integer 0-9 is sent */ 

/* to the procedure and the tone */ 

/* is sent to the DAC */ 

int i,j, int_out, k int_outl; 

float out; 

volatile unsigned *flag_ptrl; 
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volatile unsigned *serial_data_rxl, 

*serial_data_tx1; /* address of ADAC*/ 

/* freq hi (Hz) 

I 1209 1336 1477 1633 

697 1 1 2 3 

freq lo (Hz) 770 I 4 5 6 B 

852 1 7 8 9 C 

941 I * 0 # D *1 

/* normalized frequencies */ 

float dial_freq_lo[4] = 

{ 0.0436, 0.04813, 0.05325, 0.05881 ; 

float dial_freq_hi[4] = 

{ 0.07556, 0.0835, 0.0923, 0.10206 }; 

int number_conversion[2][10] 

{ { 3,0,0,0,1,1,1,2,2,2 }, 

{ 1,0,1,2,0,1,2,0,1,2 }; 

flag_ptrl = (volatile unsigned *) 0x808040; 

serial_data_rx1 = (volatile unsigned *) 0x80804C; 

serial_data_tx1 = (volatile unsigned *) 0x808048; 

for (j=0; j<3000; j++) 

{ 

while( (*flag_ptrl & Ox01) == 0); 

i = *serial_data_rx1; 

*serial_data_tx1 10; 

} 
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for (j=0; j<3000; j++) 

{ 

while( (*flag_ptrl & Ox01) == 0); 

} 

/*

i = *serial_data_rx1; 

k = number_conversion[0][number]; /* choose the 2 frequencies that */ 

1 = number_conversion[1][number]; /* go with the digit dialed 

out = sin(2*3.141*j*dial_freq_lo[k])+sin(2*3.141*j*dial_freq_hi[1]); 

out = out * 5000; /* generate sinusiodal waveform 

int_outl = (int) out; 

int_out = int_outi I (int_out1 << 16); 

*serial_data_tx1 = int_out ; 

} 

*/ 

*/ 

/* convert to int and sent to DAC*/ 

void GET_PHONENUMBER(int *phone_num) 

{ 

int size,in, stat = 0; 

int a,b,c,d; 

volatile unsigned *uart_data; 

volatile unsigned *uart_flag; 

volatile unsigned *uart_modem; 

volatile unsigned *uart_status; 

/* address 

/* address 

/* address 

/* address 

*/ 

of PC uart data register 

of PC uart flag register 

*/ 

*/ 

of PC uart modem register*/ 

of PC uart status reg */ 
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uart_data 

uart_f lag 

uart_modem 

uart_status 

c=0; d=0; 

= (volatile unsigned *) OxA00000; 

= (volatile unsigned *) OxA00005; 

= (volatile unsigned *) OxA00004; 

= (volatile unsigned *) OxA00006; 

in = *uart_data; 

while (c == 0) 

a = (*uart_status & Ox010); /* UART CTS bit 

/* raised when host wants to send */ 

b = (*uart_f lag & Ox01); /* UART Data Ready flag 

if ( (a>0) && (b==0) ) 

/* if CTS and no data in buffer / 

*uart_modem = 3; /* raise RTS line(ready 2 receive)*/ 

} 

if (b) 

{ 

in = *uart_data; /* get digit from serial port */ 

in = in & OxOFF; 

phone_num[d] = in; /* add it to phone number list 

*uart_modem = 1; 

if ( stat == 1) 

/* if confirmed phone number start*/ 

d++; /* then add 1 number of digits */ 

if (d>12) /* if we already have 12 numbers */ 

*/ 

/* if there is data in the buffer */ 
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{ 

c = 1; /* then end getting digits */ 

} 

} 

if (in == OxF1) 

{ 

stat = 1; 

/* OxF1 is the code for begin 

/* phone number transfer 

*/ 

*/ 

} 

if ( (d>0) && (in == OxFO) ) 

{ /* OxFO is the code for end */ 

c = 1; /* phone number transfer */ 

} 
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