ELIGN: Expectation Alignment as a Multi-agent Intrinsic Reward

Zixian Ma, Rose Wang, Li Fei-Fei, Michael Bernstein, Ranjay Krishna Stanford University University of Washington zixianma@cs.stanford.edu

Many real world applications are multi-agent systems.

Many SOTA multi-agent algorithms make these assumptions.

Full observability

Many SOTA multi-agent algorithms make these assumptions.

Many SOTA multi-agent algorithms make these assumptions.

Full observability and centralized algorithms are not ecologically valid.

Full observability and centralized algorithms are not ecologically valid.

Multi-agent performance struggles without prior assumptions.

Multi-agent performance struggles without prior assumptions.

Partial observability

Decentralized algorithm

One approach is designing task-specific dense rewards

Iqbal and Sha. "Actor-attention-critic for multi-agent reinforcement learning." International conference on machine learning. PMLR, 2019.

One approach is designing task-specific dense rewards, but it's expensive.

Another is adding curiosity-based intrinsic rewards that encourage exploration

Another is adding curiosity-based intrinsic rewards that encourage exploration, but exploration doesn't solve coordination.

Self-organization: individual animals coordinate by *aligning* their behaviors within a local context.

Emergent alignment in fish

We introduce ELIGN - Expectation Alignment - as a multi-agent intrinsic reward.

Cooperative navigation

Cooperative navigation

Goal

Bob

Receptive field

Alice's current state

Bob's prediction of Alice's next state

Alice's current state

Alice's next state

(a) Aligned → high reward

Alice's current state Alice's next state Bob expects Alice to move up (a) Aligned \rightarrow high reward (b) Misaligned \rightarrow low reward

Ideal form:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \|o_i' - f_{\theta_j}(o_i, a_i)\|$$

Ideal form:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \|o_i' - f_{\theta_j}(o_i, a_i)\|$$

Decentralized ELIGNteam:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \|o'_{i \cap j} - f_{\theta_i}(o_{i \cap j}, a_i)\|$$

Ideal form:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \|o'_i - f_{\theta_j}(o_i, a_i)\|$$

Decentralized ELIGN team:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} ||o'_{i \cap j} - f_{\theta_i}(o_{i \cap j}, a_i)||$$

ELIGNadv:
$$r_{\text{in}(o_i, a_i)} = +\frac{1}{|\mathcal{N}_{\text{adv}}(i)|} \sum_{k \in \mathcal{N}_{i} \in (i)} ||o'_{i \cap k} - f_{\theta_i}(o_{i \cap k}, a_i))||$$

Ideal form:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \|o'_i - f_{\theta_i}(o_i, a_i)\|$$

Decentralized ELIGN team:
$$r_{\text{in}}(o_i, a_i) = -\frac{1}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} ||o'_{i \cap j} - f_{\theta_i}(o_{i \cap j}, a_i)||$$

ELIGNadv:
$$r_{\text{in}(o_i,a_i)} = +\frac{1}{|\mathcal{N}_{\text{adv}}(i)|} \sum_{k \in \mathcal{N}_{\text{ol}}(i)} ||o'_{i \cap k} - f_{\theta_i}(o_{i \cap k}, a_i))||$$

ELIGNself:
$$r_{\text{in}(o_i,a_i)} = -\|o_i' - f_{\theta_i}(o_i,a_i)\|$$

We include these two environments in our experiments.

Multi-agent particle environment (MAP)

- 2D
- Continuous states
- 5 actions

Google research football

- 3D
- Continuous states
- 10 actions

Lowe et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." Advances in neural information processing systems. 2017. Kurach et a. "Google research football: A novel reinforcement learning environment." In Proceedings of the AAAI Conference on Artificial Intelligence 2020

We train and evaluate our method across cooperative and competitive tasks.

Cooperative

- Cooperative navigation
- Heterogeneous navigation

Cooperative Navigation

Competitive

- Keep-away
- Physical deception
- Predator-prey
- Academy 3vs1 with keeper (football)

Predator-prey

We follow these training setups.

- We use the decentralized Soft Actor-Critic for policy optimization.
- We train all algorithms across 5 random seeds
 - until convergence* in MAP;
 - o for 5M timesteps in the Google football environment.

^{*}the best test episode reward remains the same for 100 epochs (i.e. 400K episodes of 25 timesteps)

We evaluate our method against three baselines on both test episode reward and task-specific metrics.

- We evaluate ELIGN against three baseline rewards:
 - SPARSE
 - SPARSE + CURIOsity intrinsic rewards
 - CURIOself and CURIOteam
- Our evaluation metrics include:
 - o average episode reward across 1K test episodes of 25 timesteps
 - o task-specific metrics
 - agent-goal occupancy
 - agent-adversary collision count in the Predator-prey task
- We report the mean value of each metric and its standard error across 5 random seeds.

Results in partially observable environments with decentralized training

In cooperative tasks, ELIGNself,team outperform SPARSE and both curiosity-based intrinsic rewards on test episode rewards.

Task	Cooperative nav. 3v0	Heterogenous nav. 4v0	
SPARSE ¹	139.07 ± 13.63	284.42 ± 12.83	
CURIOself ²	133.93 ± 7.66	286.22 ± 9.97	
CURIOteam³	125.42 ± 11.95	262.28 ± 22.59	
ELIGNself	155.88 ± 5.11	292.34 ± 9.24	
ELIGNteam	141.04 ± 8.04	311.67 ± 10.88	

¹Lowe et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." Advances in neural information processing systems. 2017.

²Stadie et al. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models. CoRR 2015.

³Iqbal and Sha. Coordinated exploration via intrinsic rewards for multi-agent reinforcement learning. 2019.

In competitive tasks, ELIGNadv achieves the best performance except for Physical deception, where ELIGNteam is the best.

Task	Phy decep. 2v1	Predator-prey 2v2	Keep-away 2v2	Football 3v1 w/ keeper
SPARSE ¹	93.60 ± 8.61	-4.72 ± 2.4	4.58 ± 3.27	0.020 ± 0.001
CURIOself ²	68.80 ± 7.93	-6.50 ± 2.18	11.88 ± 2.88	0.024 ± 0.004
CURIOteam³	85.31 ± 11.93	-3.57 ± 1.75	9.54 ± 5.04	0.021 ± 0.002
ELIGNself	69.91 ± 4.51	-7.58 ± 2.55	12.84 ± 4.29	0.003 ± 0.018
ELIGNteam	101.72 ± 6.31	-7.69 ± 2.69	2.96 ± 4.03	0.022 ± 0.001
ELIGNadv	92.20 ± 4.23	-2.51 ± 1.70	19.46 ± 5.05	0.025 ± 0.001

¹Lowe et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." Advances in neural information processing systems. 2017.

²Stadie et al. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models. CoRR 2015.

³Iqbal and Sha. Coordinated exploration via intrinsic rewards for multi-agent reinforcement learning. 2019.

On task-specific metrics, **ELIGNself** and **ELIGNadv** perform the best in cooperative and competitive tasks respectively.

Cooperative

Competitive

ELIGNteam scales well even when the number of agents increases to 10 in Cooperative navigation.

Investigating how Expectation Alignment helps

We initialize agents in states without an optimal sub-task allocation, necessitating symmetry-breaking.

Expectation alignment helps agents divide tasks.

With SPARSE only, agents cluster and cover few goals.

With ELIGN, agents spread out to cover more goals.

Conclusions

- Inspired by the self-organizing principle in Zoology, we formulate Expectation
 Alignment ELIGN as an multi-agent intrinsic reward.
- ELIGN rewards agents when they act predictably to their teammates and unpredictably to their adversaries.
- ELIGN improves multi-agent performance across cooperative and competitive tasks in the MAP and Google football environments.
- It also scales well, and helps agents break symmetries.

ELIGN: Expectation Alignment as a Multi-agent Intrinsic Reward

ELIGN is a simple, task-agnostic, and self-supervised multi-agent intrinsic reward, and it can be added to any multi-agent algorithm.

For more details, please refer to our paper from the QR code.

Code: https://github.com/StanfordVL/alignment

Contact: zixianma@cs.stanford.edu.

