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Abstract

Modern multi-agent reinforcement learning frameworks rely on centralized training
and reward shaping to perform well. However, centralized training and dense
rewards are not readily available in the real world. Current multi-agent algorithms
struggle to learn in the alternative setup of decentralized training or sparse rewards.
To address these issues, we propose a self-supervised intrinsic reward ELIGN -
expectation alignment - inspired by the self-organization principle in Zoology.
Similar to how animals collaborate in a decentralized manner with those in their
vicinity, agents trained with expectation alignment learn behaviors that match their
neighbors’ expectations. This allows the agents to learn collaborative behaviors
without any external reward or centralized training. We demonstrate the efficacy
of our approach across 6 tasks in the multi-agent particle and the complex Google
Research football environments, comparing ELIGN to sparse and curiosity-based
intrinsic rewards. When the number of agents increases, ELIGN scales well in all
multi-agent tasks except for one where agents have different capabilities. We show
that agent coordination improves through expectation alignment because agents
learn to divide tasks amongst themselves, break coordination symmetries, and
confuse adversaries. These results identify tasks where expectation alignment is a
more useful strategy than curiosity-driven exploration for multi-agent coordination,
enabling agents to do zero-shot coordination.

1 Introduction

Many real world AI applications can be formulated as multi-agent systems, including autonomous
vehicles (Cao et al., 2012), resource management (Ying & Dayong, 2005), traffic control (Sunehag
et al., 2017), robot swarms (Swamy et al., 2020), and multi-player video games (Berner et al., 2019).
Agents must adapt their behaviors to each other in order to coordinate successfully in these systems.
However, adaptive coordination algorithms are challenging to develop because each agent is not privy
to other agents’ intentions and their future behaviors (Foerster et al., 2017).

These challenges are more acute in decentralized training under partial observability than centralized
training or full observability. In the real world, agents act under partial observability and learn in a
decentralized manner: they do not learn collaborative behaviors with a single centralized algorithm
with a complete knowledge of the environment (Iqbal & Sha, 2019; Liu et al., 2020). Unfortunately,
the most successful multi-agent algorithms train agents with a centralized critic, assuming access to
all agents’ observations and actions (Foerster et al., 2018; Rashid et al., 2018; Sunehag et al., 2017;
Lowe et al., 2017). The most successful multi-agent algorithms for decentralized training and partial
observability assume task-specific reward shaping (Jain et al., 2020; Iqbal & Sha, 2019), which is
expensive to generate. These algorithms struggle to learn with sparse reward structure.

Consider a cooperative navigation task, where N agents aim to simultaneously occupy N goal
locations. A centralized algorithm with full observability is capable of optimally assigning the nearest
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Figure 1: We introduce ELIGN, i.e, expectation alignment, a task-agnostic intrinsic reward to improve
multi-agent systems. Intuitively, ELIGN encourages agents to become more predictable to their
neighbors. An agent (e.g., agent i here) learns to behave in ways that match its neighbors’ (e.g., agent
j’s) predictions of its next observation. Here, agent j expects agent i to move up instead of down,
moving closer to a point of interest above it. Agent i attains (a) a higher reward when its action
(e.g., upward) aligns with this expectation or (b) a lower reward when its action (e.g., downward) is
misaligned.

goal location to each respective agent. However, with partial observability, agents can see only a
handful of goal locations and other agents. They are unaware of others’ observations, actions, and
intentions with decentralized training. We observe that agents simultaneously occupy the same goal;
they fail to collaborate because they do not predict which goal each agent is expected to occupy. To
overcome instances of miscoordination, decentralized algorithms have adapted single-agent curiosity-
based intrinsic rewards (Pathak et al., 2017; Stadie et al., 2015). Multi-agent curiosity-based rewards
incentivize agents to explore novel states (Iqbal & Sha, 2020). Although curiosity helps agents
discover new goal locations, it doesn’t solve the challenge of coordination, such as assigning goals to
each agent. Only a few attempts explore other forms of multi-agent intrinsic rewards (Iqbal & Sha,
2020; Böhmer et al., 2019; Schafer, 2019).

In this work, we propose ELIGN as a novel multi-agent self-supervised intrinsic reward, enabling
decentralized training under partial observability. Intuitively, expectation alignment encourages
agents to elicit behaviors that decrease future uncertainty for their team: it encourages each agent to
choose actions that match their teammates’ expectations. Going back to the cooperative navigation
task, expectation alignment encourages each agent to move to goals others expect it to occupy, like
goals that are either closest to the agent or goals that other agents aren’t moving towards (Figure 1).
We take inspiration from the self-organization principle in Zoology (Couzin, 2007). This principle
hypothesizes that collective animal intelligence emerges because groups synchronize their behaviors
using only their local environment; they do not rely on complete information about other agents and
can coordinate successfully by predicting the dynamics of agents within their field-of-view (Collett
et al., 1998; Theraulaz & Bonabeau, 1995; Ben-Jacob et al., 1994; Buhl et al., 2006). Similarly,
expectation alignment as an intrinsic reward is calculated based on the agent’s local observations and
its approximation of neighboring agents’ expectations. It does not require a centralized controller
nor full observability. ELIGN is task-agnostic and we apply it to both collaborative and competitive
multi-agent tasks.

We demonstrate the efficacy of our approach in the multi-agent particle and Google Research football
environments, two popular benchmarks for multi-agent reinforcement learning (Lowe et al., 2017;
Kurach et al., 2019). We evaluate ELIGN under partial and full observability, with decentralized and
centralized training, and in terms of scalability. We observe that expectation alignment outperforms
sparse and curiosity-based intrinsic rewards (Ndousse et al., 2021; Stadie et al., 2015; Iqbal &
Sha, 2020), especially under partial observability with decentralized training. We additionally test
expectation alignment as a way to perform zero-shot coordination with new agent partners, and
investigate why ELIGN improves coordination. We show that agent coordination improves through
expectation alignment because agents learn to divide tasks amongst themselves and break coordination
symmetries (Hu et al., 2020).
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2 Related Work

Our formulation of expectation alignment, a task-agnostic intrinsic reward for multi-agent training,
draws inspiration from the self-organization principle in Zoology, which posits that synchronized
group behavior is mediated by local behavioral rules (Couzin, 2007) and not by a centralized
controller (Camazine et al., 2020). Group cohesion emerges by predicting and adjusting one’s
behavior to that of near neighbors (Buhl et al., 2006). This principle underlies the coordination found
in multi-cellular organisms (Camazine et al., 2020), the migration of wingless locusts (Collett et al.,
1998), the collective swarms of bacteria (Ben-Jacob et al., 1994), the construction of bridge structures
by ants (Theraulaz & Bonabeau, 1995), and some human navigation behaviors (Couzin, 2007).

Intrinsic motivation for single agents. Although we draw inspiration from Zoology for formaliz-
ing expectation alignment as an intrinsic reward, there is a rich body of work on intrinsic rewards
within the single-agent reinforcement learning community. To incentivize exploration, even when
non-optimal successful trajectories are uncovered first, scholars have argued for the use of intrinsic
motivation (Schmidhuber, 1991). Single-agent intrinsic motivation has focused on exploring previ-
ously unencountered states (Pathak et al., 2017; Burda et al., 2018a), which works particularly well
in discrete domains. In continuous domains, identifying unseen states requires keeping track of an
intractable number of visited states; instead, literature has recommended learning a forward dynamics
model to predict future states and identify novel states using the uncertainty of this model (Achiam &
Sastry, 2017). Other formulations encourage re-visiting states where the dynamics model’s prediction
of future states errs (Stadie et al., 2015; Pathak et al., 2017). Follow up papers have improved how
uncertainty (Kim et al., 2020) and model errors (Burda et al., 2018b; Sekar et al., 2020) are calculated.

Intrinsic motivation for multiple agents. Most multi-agent intrinsic rewards have been adapted
from single-agent curiosity-based incentives (?Böhmer et al., 2019; Schafer, 2019) and have pri-
marily focused on cooperative tasks. They propose intrinsic rewards to improve either coordination,
collaboration, or deception: These rewards either maximize information conveyed by an agent’s
actions (?Chitnis et al., 2020; Wang et al., 2019), shape the influence of an agent (Jaques et al.,
2019; Foerster et al., 2017), incentivize agents to hide intentions (Strouse et al., 2018), build accurate
models of other agents’ policies (Hernandez-Leal et al., 2019; Jaques et al., 2019), or break extrinsic
rewards for better credit assignment (Du et al., 2019).

Several multi-agent intrinsic rewards (Hernandez-Leal et al., 2019; Jaques et al., 2019), including
ours, rely on the ability to model others’ dynamics in a shared environment. This ability is a key
component to coordination, closely related to Theory of Mind (Tomasello et al., 2005). Our work
can be interpreted as using a Theory of Mind model of others’ behaviors to calculate an intrinsic
motivation loss. Unlike existing Theory of Mind methods that learn a model per collaborator (Roy
et al., 2020), we learn a single dynamics model, allowing our method to scale as the number of
agents increase. Our proposal is related to model-based reinforcement learning (Jaderberg et al.,
2016; Wang et al., 2020a); however, instead of learning a dynamics model for control, we learn a
dynamics model as a source of reward. Our work is closely related to a recently proposed auxiliary
loss on predicting an agent’s own future states (Ndousse et al., 2021). However, there are three
key differences. First, their work predicts ego-agent observations, whereas our work additionally
predicts future observations from the other agents’ point of view. Second, their loss optimizes state
embeddings while ours optimizes agents’ policies. Third, their work focuses on cooperative tasks
whereas ours applies to both cooperative and competitive domains.

Multi-agent reinforcement learning algorithms. Today, the predominant deep multi-agent frame-
work uses actor-critic methods with a centralized critic and decentralized execution (Lowe et al.,
2017; Foerster et al., 2018; Iqbal & Sha, 2019; Liu et al., 2020; Rashid et al., 2018). This framework
allows a critic to access the observations and actions of all agents to ease training. However, there are
several situations where centralized training may not be desirable or possible. Examples include low
bandwidth communication restrictions or human-robot tasks where observations cannot be easily
shared between agents (Ying & Dayong, 2005; Cao et al., 2012; Huang et al., 2015). Decentralized
training is therefore the most practical training paradigm but it suffers from unstable training: the
environment is nonstationary from a single-agent’s perspective (Lowe et al., 2017). Our work uses a
decentralized training framework and tackles the nonstationarity challenge with an intrinsic reward
designed to improve an agent’s ability to model others. We also apply expectation alignment to
centralized training and observe that it still aids cooperative and some competitive tasks.
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3 Background

We formulate our setting as a partially observable Markov game (S,O,A, T , rex, N) (Littman, 1994).
A Markov game for N agents is defined by a state space S describing the possible configurations
of the environment. The observation space for agents is O = (O1, . . . ,ON ) and the action space is
A = (A1, . . . ,AN ). Each agent i observes oi ∈ Oi, a private partial view of the state, and performs
actions ai ∈ Ai. Using the observation, each agent uses a stochastic policy πθi : Oi ×Ai → [0, 1],
where θi parameterizes the policy. The environment changes according to the state transition function
which transitions to the next state using the current state and each agent’s actions, T : S ×A → S.
The team of agents obtains a shared extrinsic reward as a function of the environment state, rex :

S × A → R. The team’s goal is to maximize the total expected return: R =
∑T
t=0 γ

trtex where
0 ≤ γ ≤ 1 is the discount factor, t is the time step, and T is the time horizon. The environment may
also contain adversarial agents who have their own reward structure.

4 Expectation Alignment

To understand expectation alignment intuitively, let’s revisit the cooperative navigation task, where
N agents are rewarded for simultaneously occupying as many goal locations as possible. In Figure 1,
agent i has a dynamics model trained on its past experiences. It predicts how future states will
evolve from the point of view of agent j, who is within i’s view. In this example, j will expect i
to move towards the goal since i is closer to it. ELIGN encourages i to pursue the action that j
expects (Figure 1(a)). In turn, j can now assume that the observed goal location will eventually be
occupied by i and should therefore explore to find another goal. By aligning shared expectations,
agent behaviors become more predictable. Conversely, when neighbors behave opposite to an agent’s
predictions, the agent can infer about the environment outside of its own receptive field (Krause et al.,
2002). For example, in Figure 1 (b), if agent j observes i running away from a goal, this surprising
behavior might indicate the existence of an adversary outside j’s receptive field.

Our training algorithm consists of three interwoven phases of learning a dynamics model, calculating
the ELIGN reward, and optimizing the agent’s policy (Algorithm 1).

4.1 Training the dynamics model

Similar to prior work (Wang et al., 2018; Kidambi et al., 2020), each agent i learns a dynamics model
fθi to predict the next observation ô′i given its current observation and action oi, ai, i.e,

ô′i = fθi(oi, ai).

We use a three-layer Multi-Layer Perceptron with ReLU non-linearities as the dynamics model. We
minimize the mean squared error between its prediction and ground truth next observation o′i.

4.2 Calculating intrinsic reward

The intrinsic reward captures how well agent i aligns to its neighbors’ (e.g., agent j’s) expectations
on its next state. Calculating this reward requires j to accurately predict i’s behavior, simulating a
Theory of Mind (Tomasello et al., 2005). As suggested by the self-organization principle, i must
learn to align to j’s predictions. Ideally, the ELIGN intrinsic reward is calculated as:

rin(oi, ai) = − 1

|N (i)|
∑

j∈N (i)

‖o′i − fθj (oi, ai)‖

where N (i) is the set of neighbors within i’s receptive field, including i itself. The ELIGN reward
is high when the average L2 loss is small, i.e, when i’s actual next observation is close to agent j’s
predicted observation of i for all j in its neighbors. In that case, i has chosen an action that aligns
with j’s expectations of how i should act.

In a decentralized training setup, however, i doesn’t have access to j’s dynamics model fθj , so i
approximates j’s dynamic model with a proxy: its own dynamics model fθi and the knowledge of
agent j’s observation radius. Such an approximation is ecologically valid since we often approximate
others’ behaviors using a second-order cognitive Theory of Mind (Morin, 2006). Additionally, i
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doesn’t have access to j’s entire observation; so, we restrict the future prediction from j’s point
of view by using the portion of j’s observation i can see: oi∩j = oi � oj . Agent i’s decentralized
intrinsic reward then becomes:

rin(oi, ai) = − 1

|N (i)|
∑

j∈N (i)

‖o′i∩j − fθi(oi∩j , ai)‖

We found that the approximation of fθj using fθi works well empirically. Dynamics model losses
for all agents quickly decrease within 5-10 training epochs. we validate its applicability in small-
scale heterogeneous multi-agent tasks where agents have variable capabilities, although we find the
methods perform similarly when more heterogeneous agents are added.

4.3 Policy learning
Algorithm 1 ELIGN: Expectation Alignment

1: Initialize replay buffer D and D′

2: Initialize N agents with random θi: i ∈ [1, N ]
3: while not converged do
4: for b = 1 . . . B do
5: Populate buffer D with episode using

policies (πθ1 , . . . , πθN )
6: end for
7: // TRAIN DYNAMICS MODEL
8: for agent i = 1 . . . N do
9: Sample transitions: {(oi, ai, rex, o

′
i)} ∼

Di

10: Predict ô′i = fθi(oi, ai)
11: Update dynamics θi using o′i.
12: end for
13: // CALCULATE ELIGN REWARD
14: for agent i = 1 . . . N do
15: Sample B transitions:

{(oi, ai, rex, o
′
i)} ∼ Di

16: Compute intrinsic rewards rin(oi, ai)
17: Add {(oi, ai, rex + βrin, o

′
i)} to D′

i
18: end for
19: // POLICY LEARNING
20: Update all θis using transitions from D′

21: end while

Once the ELIGN rewards are calculated, the to-
tal rewards at each step for each agent i is: ri =
rex +βrin(oi, ai) where rex is the extrinsic reward
provided by the environment and β is a hyper-
parameter for weighing the intrinsic reward in
the agent’s overall reward calculation. In prac-
tice, we set β to be 1

|Oi| where |Oi| is the obser-
vation dimension; we find this scale generalizes
well across tasks. Since our contribution is ag-
nostic to any particular multi-agent training algo-
rithm, the team of agents can now be trained using
any multi-agent training algorithm to maximize
returns R =

∑T
t=0 γ

tr.

Both centralized and decentralized training al-
gorithms can make use of these rewards. We
primarily use the multi-agent decentralized vari-
ant of the soft-actor critic algorithm in our ex-
periments (Haarnoja et al., 2018; Iqbal & Sha,
2019). Compared to centralized joint-action train-
ing, whose action space grows exponentially in
N agents, our decentralized method has linear
space complexity. Further, decentralized training
can parallelize training time to be less than linear
with respect to N . Although we present results
with one centralized training framework, studying the impact of expectation alignment with all the
centralized critic frameworks is out of scope for this paper.

4.4 Extending expectation alignment to competitive tasks

We extend the ELIGN formulation to competitive tasks where a team of agents compete against
adversaries. In this case, agents are encouraged to misalign with their adversaries’ expectations, i.e,
agents are incentivized to be unpredictable to their adversaries within its receptive field (Nadv(i)):

rin =
1

|Nadv(i)|
∑

k∈Nadv(i)

‖o′i∩k − fθi(oi∩k, ai))‖

5 Experiments

Our experiments explore the utility of using expectation alignment as an intrinsic reward compared
to sparse and curiosity-based intrinsic rewards. We primarily focus on decentralized training under
partial observability. However, we also demonstrate that ELIGN can easily augment centralized
methods and assist in fully observable tasks. We vary the number of agents in the multi-agent particle
tasks to test scalability. We end by investigating how and why ELIGN improves coordination by
designing three evaluation conditions. First, does expectation alignment improve coordination by
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Table 1: We report the mean test episode extrinsic rewards and standard errors of
decentralized training under partial observability in multi-agent particle and Google Research foot-
ball environments. ELIGNself/team outperform SPARSE and both curiosity-based intrinsic rewards.
ELIGNadv achieves the best performance among all competitive tasks except for Physical deception,
where ELIGNteam is the best. These results demonstrate the benefit of using alignment as intrinsic
reward to train better decentralized policies under partial observability.

Cooperative Competitive
Task (Agt# v Adv#) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2) 3v1 w/ keeper (3v2)

SPARSE1 139.07± 13.63 284.42± 12.83 93.60± 8.61 −4.72± 2.4 4.58± 3.27 0.020± 0.001
CURIO2

self 133.93± 7.66 286.22± 9.97 68.80± 7.93 −6.50± 2.18 11.88± 2.88 0.024± 0.004
CURIO3

team 125.42± 11.95 262.28± 22.59 85.31± 11.93 −3.57± 1.75 9.54± 5.04 0.021± 0.002
ELIGNself 155.88± 5.11 292.34± 9.24 69.91± 4.51 −7.58± 2.55 12.84± 4.29 0.003± 0.018
ELIGNteam 141.04± 8.04 311.67± 10.88 101.72± 6.31 −7.69± 2.69 2.96± 4.03 0.022± 0.001
ELIGNadv — — 92.20± 4.23 −2.51± 1.70 19.46± 5.05 0.025± 0.001
HAND-CRAFTED1 75.56± 18.90 228.48± 18.88 94.25± 14.75 −0.77± 0.17 52.14± 3.11 −
1 Lowe et al. (2017); Kurach et al. (2019),2 Stadie et al. (2015),3 Iqbal & Sha (2020)
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Figure 2: We plot the average test occupancy/collision count per step of decentralized algorithms
under partially observable multi-agent particle tasks. On these metrics, ELIGNself and ELIGNadv
perform the best on cooperative and competitive tasks respectively.

breaking symmetries (Hu et al., 2020; Wang et al., 2020b)? Second, does ELIGN enable zero-shot
generalization to new partners? Lastly, is the dynamics model critical in aligning agent behaviors?

5.1 Environments

We evaluate ELIGN across both cooperative and competitive tasks in the multi-agent particle envi-
ronment (Mordatch & Abbeel, 2017; Lowe et al., 2017) and the Google Research football environ-
ment (Kurach et al., 2019).

State and action space The multi-agent particle environment is a two-dimensional world. The
Google Research football environment is a three-dimensional world. Both environments have
continuous state spaces and discrete action spaces. Particle agents observe all agents’ positions and
velocities. They can “stay” or change their velocity in one of the four cardinal directions. Each
football agent controls one player. Players observe the ball, other players’ positions and directions.
They can apply one of ten actions from “top_left”, “top”, “top_right”, “right”, “bottom_right”,
“bottom”, “bottom_left”, “sprint”, and “dribble”.

Observability The original environments assume full observability, where each agent can observe
the position p = (x, y) and velocity v = (∆x,∆y) of all agents; each agent’s observation vector
is thus oi,full = [p1, . . . , pN , v1, . . . , vN ]. We extend these environments to be partially observable,
where agent i observes only the portion within its receptive field; like prior work with partial
observability (Corder et al., 2019), we hide the position and velocity information of any agent j
outside of agent i’s receptive field; i.e, if the Euclidean distance between agent i and j surpasses
a vicinity threshold τ , then pj and vj are 0 in oi,partial. We set τ = 0.5 for partially observable
and ∞ in the original fully observable case, where the world’s width and height are 2.0 in the
multi-agent particle environment and 0.84 : 2.00 in the Google Research football environment. Both
environments also contain objects such as obstacles, goals and a ball; they are similarly hidden if
out of sight. Partial observability is a more ecologically valid training condition since most agents in
real-world tasks can only observe a small portion of their environment at a given time.

5.2 Tasks

Multi-agent particle environment We use the following tasks from the multi-agent particle envi-
ronment (Lowe et al., 2017; Liu et al., 2020). We choose N based on prior work.
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Table 2: We report the mean test episode extrinsic rewards and standard errors as the number of agents
is increased and trained using of decentralized algorithms. When the number of agents increases, one
of ELIGN still performs the best in all tasks except for Heterogenous navigation.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

SPARSE1 459.92± 22.44 616.62± 25.30 166.89± 27.72 −28.75± 7.3 0.75± 1.82
CURIO2

self 458.45± 19.79 702.73± 18.57 146.55± 29.05 −25.35± 6.16 10.52± 5.48
CURIO3

team 497.15± 11.47 695.38± 12.22 84.66± 16.94 −17.21± 8.23 1.40± 2.06
ELIGNself 498.24± 9.77 646.70± 23.25 137.38± 30.00 −9.14± 5.57 9.83± 11.22
ELIGNteam 488.83± 20.82 638.74± 28.93 186.83± 21.92 −20.4± 5.93 2.07± 4.55
ELIGNadv — — 182.61± 17.63 −21.37± 7.02 11.29± 9.02
1 Lowe et al. (2017),2 Stadie et al. (2015),3 Iqbal & Sha (2020)

Cooperative navigation: N agents must cooperate to reach a set of N goal locations. Agents are
collectively rewarded based on the occupancy of any agent on any goal location.

Heterogeneous navigation: N agents must reach N goals but they differ in speeds and sizes. N
2

agents are slow and big, and the other N2 agents are fast and small.

Physical deception: N agents cooperate to reach a single goal location and are rewarded if any one
occupies the goal. However, they are penalized when any of N2 adversaries occupies the goal and
gets rewarded. The adversaries do not know which landmark is the goal and must infer it from the
agents’ behavior. The agents should learn to deceive the adversaries by covering all the landmarks.

Keep-away: There are N landmarks, one of which is the goal and known to N agents. Agents are
rewarded for occupying it and preventing M adversaries from reaching it. Adversaries are rewarded
for pushing the agents away from the goal, but they can only infer which landmark is the goal.

Predator-prey: N slow adversaries chase and capture N fast cooperating agents around a randomly
generated obstacle-filled environment. Each time an adversary catches an agent, the agent is penalized
and the adversary is rewarded.

Google Research football We use the Academy 3vs1 with Keeper competitive task from the Google
Research football environment (Kurach et al., 2019). In this task, three agents try to score from the
edge of the penalty box, one on each side, and the other at the center. This task is initialized with the
centered agent having the ball and facing the defender. There is an adversary who plays the keeper.

5.3 Training and evaluation

We train all algorithms with 5 random seeds. All the hyperparameters used in the training can be
found in the Appendix. For the Multi-agent particle environment, each experiment uses one Tesla
K40 GPU to train until convergence, i.e. the best evaluation episode reward hasn’t changed for
100 epochs. Each epoch equates to 4K episodes of 25 timesteps. We evaluate the algorithms by
running 1K test episodes of 25 timesteps and mainly report the mean average test episode reward
and standard error across the random seeds. We also evaluate on task-specific metrics, including
agent-goal occupancy/agent-adversary collision count, and agent-goal/agent-adversary distance. For
Google Research football, each experiment trains for 5M timesteps. We evaluate on and report the
mean average episode rewards and the standard errors across the seeds.

5.4 Baselines

All algorithms are trained using the same agent architecture and optimization algorithm. They vary
in task-specific extrinsic rewards and intrinsic rewards. We use two versions of the soft actor-critic
algorithm Haarnoja et al. (2018): a decentralized one that trains each agent individually without access
to other agents’ observations and actions (ie. the original soft-actor critic algorithm) and a centralized
one with a critic that has access to other agents’ observations and actions (Iqbal & Sha, 2019). Note,
our intrinsic reward can also be added to non-actor-critic methods, such as COMA (Foerster et al.,
2018) and VDN (Sunehag et al., 2017). We leave this to future work to avoid conflating the effects of
expectation alignment with COMA’s counterfactual reasoning and VDN’s value decomposition.

We use SPARSE (Lowe et al., 2017; Kurach et al., 2019), CURIOself (Stadie et al., 2015),
CURIOteam (Iqbal & Sha, 2020), and variations of our ELIGN rewards. SPARSE rewards agents
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only when they reach a goal state. CURIOteam is a curiosity-based multi-agent intrinsic reward which
maximizes the average L2 loss (instead of minimizing it in ELIGN). It rewards agents for exploring
novel states (Iqbal & Sha, 2020). CURIOself also maximizes the L2 loss but only using agent i’s
own observation (Stadie et al., 2015). We experiment with three variants of ELIGN: ELIGNself,
incentivizing alignment to one’s own expectation ELIGNteam incentivizing agents to align to their
team, and ELIGNadv incentivizing misalignment to adversaries’ expectations. Note that ELIGNself is
similar to the auxiliary loss in Ndousse et al. (2021) but we use it for policy optimization, rather than
for training a state encoder. We also add hand-crafted dense rewards to provide oracle performance
for all tasks.

5.5 Results in partially observable environments with decentralized training

ELIGN outperforms baselines across cooperative and competitive tasks in the multi-agent
particle environment. Table 1 demonstrates that both ELIGNself and ELIGNteam outperform all
SPARSE and CURIOself/team baseline rewards in cooperative tasks. While not all ELIGN variants
surpass the baselines in competitive tasks, we find that ELIGNteam achieves the highest reward in
Physical deception, and ELIGNadv performs the best in Predator-prey and Keep-away. Similarly,
Figure 2 shows that ELIGNself achieves the highest per-step occupancy count in both cooperative
tasks, and ELIGNadv does the best in all competitive tasks.

ELIGN outperforms baselines in the complex Google Research football environment. As shown
in Table 1, ELIGNadv achieves the best mean average episode reward in the competitive Academy
3vs1 with keeper task. Collectively, these results provide empirical evidence that the self-organizing
principle improves coordination under partial information, a setting that is most realistic to real world
multi-agent systems.

In competitive tasks, agents benefit more from being misaligned to adversaries than being
aligned to their team members. Among the four competitive tasks in the multi-agent particle and
football environments, we find that ELIGNadv outperforms all SPARSE and CURIOself/team baselines and
other variants of ELIGN in Predator-prey, Keep-away and Academy 3vs1 with keeper. This suggests
that being misaligned to adversaries, ie taking surprising actions that conflict with the adversary’s
expectations, might be a more useful strategy in multi-agent competitive tasks.
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Figure 3: ELIGNteam achieves
consistent gains compared
against SPARSE when the num-
ber of agents increases in the
Cooperative navigation task.

When the number of agents increases, ELIGN scales well in all
multi-agent particle tasks except for Heterogenous navigation.
Table 2 shows that our ELIGN intrinsic reward still largely achieves
the best performance when more agents are added to cooperative and
competitive tasks. The only exception is the Heterogenous naviga-
tion task, where both ELIGNself and ELIGNteam outperform SPARSE
but not CURIOself/team. We hypothesize that it is more difficult for
agents to predict their neighbors’ future states accurately when there
are more agents with different sizes and speeds, and errors in dynam-
ics prediction could lead to misleading alignment signals. Further,
we see a consistent increase in ELIGNteam’s performance compared
against SPARSE even when the number of agents scales to ten in
Cooperative navigation (Figure 3).

5.6 Results with full observability and centralized ELIGN

We further test the utility of decentralized ELIGN in fully observable environments and centralized
ELIGN under partial observability. We find that decentralized expectation alignment helps in
fully observable Cooperative navigation, Heterogenous navigation, and Predator-prey, tasks where
expectation alignment has been observed in nature. Similarly, centralized ELIGN also improves
agents’ performance compared against SPARSE and CURIOself/team rewards in the same tasks with
partial observability. These results can be found in Tables 3 and 4 in the Appendix. As full
observability and centralized training are our main focus, we leave it to future work to investigate
why expectation alignment benefits these tasks but not others.

5.7 Investigating how the ELIGN reward helps
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Figure 5: We plot the test occupancy/collision count per step of decentralized algorithms in symmetry-
breaking settings under partial observability. ELIGNself performs the best in both cooperative tasks.
ELIGNteam and ELIGNadv are the best strategies in Physical deception and Predator-prey.

Figure 6: Test performance decreases with dynamics model loss (R2 = 0.242), implying that ELIGN
requires an accurate dynamics model.

Coop navigation (5v0) Predator-prey (4v4) Keep-away (4v4)

Agent

Adversary

Landmark 

Goal 

Figure 4: We visualize the symmetry-breaking setups in three
example tasks. More details can be found in the Appendix.

We further investigate how expecta-
tion alignment improves coordination
through three evaluation setups.

ELIGN helps agents divide sub-
tasks. A core challenge in multi-
agent collaboration is efficient task di-
vision (Wang et al., 2020b). Here, we
test whether expectation alignment im-
proves sub-task allocation. We initial-
ize agents in states without an optimal
sub-task allocation, necessitating symmetry-breaking (Hu et al., 2020). Figure 4 illustrates the
symmetry-breaking setups: in cooperative navigation, when agents are initialized equidistant to all
the goal locations, there isn’t an optimal allocation of agents to goals. We find that ELIGNself achieves
the best performance in both cooperative tasks, while ELIGNteam and ELIGNadv are the best strategies
in Physical deception and Predator-prey respectively (Figure 5). Upon a qualitative evaluation
of Cooperative navigation, we observe that agents with expectation alignment are able to predict
which goals will be covered by their collaborators and move towards their allocated one. Without
expectation alignment, agents move towards the same goal.

ELIGN helps agents generalize to new partners. Another core challenge in multi-agent collabora-
tion is zero-shot coordination, where agents are tested to collaborate with new partners they haven’t
been trained with. We study whether expectation alignment enables better zero-shot coordination.
New partners are sampled from other training runs with different seeds and the team is evaluated using
the same metrics as before. We observe that ELIGN strategies enable better performance than SPARSE
on average, and one of ELIGNself,team,adv performs the best in Heterogenous navigation, Physical
deception and Keep away. (Figure 7). These results suggest that ELIGN results in better zero-shot
coordination with new partners sampled from separate training runs.

Accuracy of the dynamics model affects ELIGN. We investigate the accuracy of the dynamics
model in calculating useful intrinsic rewards. Since ELIGN uses a dynamics model to calculate

9



SPARSE

curio sel
f

curio tea
m

el
ig

n sel
f

el
ig

n tea
m

0.00

0.25

0.50

O
cc

up
an

cy
C

ou
nt

Coop nav (5v0) ↑

SPARSE

curio sel
f

curio tea
m

el
ig

n sel
f

el
ig

n tea
m

0.00

0.25

0.50

O
cc

up
an

cy
C

ou
nt

Hetero nav (6v0) ↑

SPARSE

curio sel
f

curio tea
m

el
ig

n sel
f

el
ig

n tea
m

el
ig

n adv
0

1

O
cc

up
an

cy
C

ou
nt

Phy decep (4v2) ↑

SPARSE

curio sel
f

curio tea
m

el
ig

n sel
f

el
ig

n tea
m

el
ig

n adv
0.00

0.05

0.10

C
ol

lis
io

n
C

ou
nt

Predator-prey (4v4) ↓

SPARSE

curio sel
f

curio tea
m

el
ig

n sel
f

el
ig

n tea
m

el
ig

n adv
0.0

0.2

O
cc

up
an

cy
C

ou
nt

Keep-away (4v4) ↑
Test Occupancy (↑)/Collision (↓) Count Per Step in Zero-shot Coordination under Partial Observability

Figure 7: We plot the test occupancy/collision count per step of decentralized algorithms in zero-shot
evaluation with new partners. We find that one of ELIGNself,team,adv achieves the best performance in
Heterogenous navigation, Physical deception and Keep away.

rewards, we test whether an inaccurate model misleads agents towards unaligned behaviors. We train
agents on noisy dynamics models by adding Gaussian noise ε ∼ N (0, σ) to the predictions made by
the dynamics model. We run experiments with multiple σ values to study how performance changes as
the dynamics model becomes more noisy: σ ∈ [0.5, 1.0, 2.0]. Our experiments cover one cooperative
and one competitive task. Figure 6 plots the final dynamics loss against the reward change from the
noiseless run. As the dynamics model degrades, we observe that the task performance also drops.
This study identifies the importance of an accurate dynamics model, suggesting that expectation
alignment should used in environments where an accurate dynamics model can be learned.

6 Discussion

Limitations and future work. While curiosity has proven useful for exploration in single-agent
tasks, we find that expectation alignment—which mathematically encourages agents to be more
predictable instead of finding novelty—outperforms curiosity in numerous multi-agent tasks. We
hypothesize that our results arise because today’s multi-agent task state space requires significantly
less exploration than those used for single-agent (e.g. Atari games). Our findings are limited to the
multi-agent particle and Google Research football environments, which have a smaller action space
than most ecologically valid scenarios.

Language, motion, and human gesture are all combinatorially vast; in such action spaces, expectation
alignment might develop social dynamics that hinder non-optimal multi-agent behaviors. Similarly,
photorealistic environments have a larger state space, where teams perform common household
activities (e.g., cooking, cleaning, etc.) or drive together in crowded cities (Srivastava et al., 2021).
Future work should develop new multi-agent environments that demand exploration complexity and
where both curiosity and expectation alignment would be necessary for collaboration. For example, in
a search and rescue task where a single agent is unable to carry the injured, curiosity would encourage
“search” while ELIGN would speed up “rescue”. In the end, we envision that both these forms of
rewards would be necessary for successful collaboration. However, choosing when to encourage
curiosity versus expectation alignment is an open research problem.

Additionally, enabling stable multi-agent training without centralized training could open up future
opportunities for legible (Dragan et al., 2013) agents in human environments. Agents with inter-
pretable actions can induce more faithful human mental models, improving human-AI interaction;
however, predictability does not imply legibility. Future work could explore the role of legibility in
designing intrinsic rewards.

Future work should also explore the use of expectation alignment in massive collaboration settings
with hundreds of agents. Drawing on Zoology research Couzin (2007) expectation alignment should
scale in such settings if agents align their behaviors only to their nearest neighbors and not to the
entire cohort.

Conclusion. Inspired by the self-organizing principle in Zoology, we introduce ELIGN, i.e, expecta-
tion alignment, a simple, task-agnostic, and self-supervised intrinsic reward for multi-agent systems.
ELIGN rewards agents when they act predictably to their teammates and unpredictably to their
adversaries. ELIGN improves multi-agent performance across six cooperative and competitive tasks
in the multi-agent particle and Google Research football environments, especially for decentralized
training under partial observability. It also scales well, helps agents break symmetries, and generalize
to new partners.
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A Appendix

A.1 Code

We upload our code for training and evaluating agents with and without expectation alignment in
both the multi-agent particle and Google Research football environments here: https://github.
com/StanfordVL/alignment.

A.2 Symmetry-breaking initializations

We create a symmetry-breaking version of each task for evaluation by initializing the environment in
the following ways:

Cooperative Navigation and Heterogenous Navigation: All agents are initialized at the origin (i.e.
center of the world), and target landmarks are placed randomly on a circle perimeter with the
maximum radius (i.e. world radius - the greatest landmark size) so that each agent is equidistant from
each target landmark.
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Figure 8: Learning curves of test occupancy/collision in all five tasks in the multi-agent particle
environment. On average, it takes the best ELIGN variant 65 epochs to reach the maximum score of
the best CURIO method at 100 epochs, which means ELIGN requires on average 35% fewer samples
than CURIO.

Figure 9: Learning curves of test episode rewards in all five tasks in the multi-agent particle
environment.

Physical Deception: Both agents and adversaries start at the origin. All the landmarks, including the
goal, are randomly initialized on a circle perimeter.

Predator-prey: The collaborative agents are initialized at the center while the adversaries are placed
randomly on a circle perimeter. All the landmarks are randomly initialized in the world.

Keep-away: All the cooperative agents are placed at the origin. Adversaries and landmarks, including
the goal, are randomly initialized on a circle perimeter. In this task setup, we do not initialize the
adversaries at the center because they are awarded for colliding with the cooperative agents.

A.3 Learning curves

Compared to the best baseline’s highest performance at the 100th epoch, we find that it only takes
the best ELIGN variant 31 (Coop nav), 74 (Hetero nav), 30 (Physical dec), 97 (Predator-prey) and
92 (Keep-away) epochs respectively in the five multi-agent particle tasks (8). This means that on
average the best ELIGN variant requires 35± 32 fewer training steps to reach the same performance
as curiosity or spare methods.

A.4 Assets and licenses

We use four assets in total, two of which are existing multi-agent reinforcement learning environments,
and the other two are libraries for training reinforcement learning algorithms.

We conduct our evaluation on the multi-agent particle (Lowe et al., 2017) and Google Research
football (Kurach et al., 2019) environments, which are under the MIT license and Apache-2.0 license
respectively.

We adapt the tianshou (Weng et al., 2021) and rllib (part of the ray package) (Liang et al.) libraries to
our experiments, and they are under the MIT license and Apache-2.0 license respectively.

A.5 Societal impacts

While developing new intrinsic rewards to improve decentralized multi-agent training can help develop
and deploy agents in a variety of applications, we foresee no immediate societal consequences of
this work. However, our experiments thus far have not studied the possible degradation of behaviors
when agents align to malicious teammates. We have also not tested how emergent properties promote
better or worse human collaborators.
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Table 3: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards in fully observable environments.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Full observability
SPARSE1 154.00± 10.51 274.75± 19.74 82.97± 12.23 −10.48± 4.20 4.95± 2.96
CURIOself 154.71± 8.00 268.85± 15.61 100.66± 15.14 −8.74± 4.62 −2.00± 1.24
ELIGNself 161.70± 4.52 280.16± 17.12 87.50± 15.40 −5.60± 2.60 0.40± 1.92

1 Lowe et al. (2017)

Table 4: We report the mean test episode extrinsic rewards and standard errors of centralized methods
with different intrinsic rewards under partial and full observability.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Partial observability

SPARSE1 113.25± 8.10 178.62± 9.62 117.45± 10.63 −1.96± 1.45 35.79± 14.93
CURIO2

self 128.77± 7.70 190.30± 7.73 111.08± 10.09 −1.63± 1.27 13.94± 12.56
CURIO3

team 114.13± 11.84 189.80± 11.81 114.32± 5.46 −3.04± 1.09 6.01± 3.36
ELIGNself 137.14± 3.63 169.58± 14.99 93.27± 3.70 −0.41± 0.28 22.77± 9.91
ELIGNteam 119.10± 10.89 210.81± 9.70 96.49± 6.46 −0.92± 0.72 24.94± 12.58
ELIGNadv — — 102.37± 6.98 −0.13± 0.03 8.70± 4.44

1 Lowe et al. (2017),2 Stadie et al. (2015),3 Iqbal & Sha (2020)

A.6 Additional tables

We include 20 tables of additional results that quantify the agents’ performance under fully observable
environments, with centralized training, and beyond extrinsic reward.

Table 3 reports the test episode rewards of decentralized methods under the fully observable multi-
agent particle environment.

Table 4 reports the test episode rewards of centralized methods under partial observability.

Table 5 and 6 report two sets of metrics of decentralized methods trained with different intrinsic
rewards in both partially and fully observable settings. Table 5 reports the average number of
agent-target occupancies per step (or, we can understand it as: on average, the total number of goals
occupied by the agents at any given timestep throughout an episode) and agent-adversary collisions
in Predator-prey. Higher scores are better for the occupancy metric, and lower scores are better
for collision. Table 6 reports the average minimum agent-to-target distance and agent-to-adversary
distance. Agent-to-target distances measure the closest distance an agent achieves to the target
location; lower scores are better on this metric. Agent-to-adversary distances measure the closest
distance an adversary gets to a good agent; higher scores are better on this metric. Note that these
distance-based metrics are not included in the reward functions, and should mainly be used to make
comparisons in the case where primary metrics (i.e, reward and occupancy/collision count) have the
same values.

Table 7 and 8 report the same metrics as 5 and 6 respectively, but in scaled environments with more
agents.

Tables 9, 10 and 11 report the test episode reward and additional metrics of decentralized algorithms
in the symmetry-breaking experiments conducted under “Investigating how alignment reward helps”.
Table 12, 13 and 14 report the same set of metrics but from experiments conducted in scaled and
symmetry-breaking environments.

Table 15 reports the test mean episode rewards of centralized algorithms with different intrinsic
rewards under full observability. Table 16 and 17 show the other two sets of metrics (i.e, occu-
pancy/collision count and agent-target/agent-adversary distance) of centralized algorithms. Table 18,
19, and 20 contain the same metrics as 15, 16 and 17 respectively, but in scaled environments.

Finally, Tables 21 and 22 report the test episode reward values and secondary distance-based metrics
for the zero-shot generalization experiments conducted under “Investigating how ELIGN reward
helps”. These experiments measure how well agents trained on different seeds generalized to new
partners trained on other seeds.
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Table 5: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards under partial and full observability. Higher scores are better
for the occupancy metric (↑), and lower scores are better for the collision metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

SPARSE 0.46± 0.05 0.57± 0.01 0.98± 0.07 0.02± 0.01 0.07± 0.02
CURIOself 0.43± 0.03 0.60± 0.01 0.99± 0.03 0.02± 0.01 0.14± 0.02
CURIOteam 0.42± 0.05 0.59± 0.01 0.95± 0.01 0.02± 0.01 0.10± 0.03
ELIGNself 0.52± 0.03 0.61± 0.01 0.95± 0.02 0.03± 0.01 0.10± 0.02
ELIGNteam 0.44± 0.04 0.58± 0.02 0.99± 0.07 0.03± 0.01 0.07± 0.02
ELIGNadv — — 1.00± 0.06 0.01± 0.01 0.15± 0.03

Full observability
SPARSE 0.46± 0.11 0.57± 0.01 0.88± 0.09 0.03± 0.01 0.06± 0.02
CURIOself 0.50± 0.07 0.59± 0.02 1.09± 0.13 0.03± 0.01 0.02± 0.00
ELIGNself 0.48± 0.11 0.58± 0.02 0.83± 0.10 0.02± 0.01 0.04± 0.01

Table 6: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of decentralized methods with different intrinsic rewards under partial and full
observability. Lower scores are better for agt-target (↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

SPARSE 0.30± 0.02 0.23± 0.00 0.26± 0.01 1.45± 0.11 1.41± 0.07
CURIOself 0.32± 0.02 0.25± 0.01 0.25± 0.00 1.36± 0.06 1.14± 0.09
CURIOteam 0.31± 0.01 0.25± 0.01 0.26± 0.00 1.48± 0.13 1.31± 0.10
ELIGNself 0.33± 0.03 0.25± 0.01 0.26± 0.00 1.39± 0.12 1.26± 0.09
ELIGNteam 0.33± 0.02 0.23± 0.01 0.25± 0.01 1.38± 0.13 1.38± 0.09
ELIGNadv — — 0.25± 0.01 1.54± 0.08 1.14± 0.09

Full observability
SPARSE 0.32± 0.09 0.23± 0.00 0.26± 0.01 1.23± 0.12 1.27± 0.09
CURIOself 0.28± 0.04 0.22± 0.01 0.23± 0.01 1.37± 0.15 1.53± 0.03
ELIGNself 0.30± 0.07 0.23± 0.01 0.27± 0.01 1.40± 0.13 1.41± 0.10

A.7 Model architecture and hyperparameters

Table 23 presents the model architecture and hyperparameters used to train the algorithms in the
multi-agent particle and Google Research football environments.
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Table 7: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in scaled environments under partial and full observability.
Higher scores are better for the occupancy metric (↑), and lower scores are better for the collision
metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

SPARSE 0.50± 0.04 0.46± 0.08 1.20± 0.10 0.11± 0.02 0.08± 0.02
CURIOself 0.48± 0.03 0.63± 0.01 1.20± 0.08 0.07± 0.02 0.15± 0.06
CURIOteam 0.53± 0.03 0.60± 0.02 1.20± 0.09 0.05± 0.02 0.06± 0.01
ELIGNself 0.49± 0.03 0.67± 0.00 1.30± 0.23 0.04± 0.02 0.14± 0.08
ELIGNteam 0.56± 0.04 0.56± 0.00 1.21± 0.09 0.08± 0.02 0.10± 0.02
ELIGNadv — — 1.23± 0.10 0.08± 0.02 0.16± 0.07

Full observability SPARSE 0.52± 0.11 0.46± 0.08 0.99± 0.09 0.21± 0.01 0.03± 0.00
CURIOself 0.39± 0.13 0.56± 0.01 0.86± 0.04 0.16± 0.03 0.04± 0.00
ELIGNself 0.55± 0.11 0.56± 0.00 1.04± 0.07 0.15± 0.03 0.06± 0.02

Table 8: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of decentralized methods with different intrinsic rewards in scaled environments
under partial and full observability. Lower scores are better for agt-target (↓), and higher scores are
better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

SPARSE 0.22± 0.01 0.27± 0.05 0.23± 0.02 2.03± 0.15 2.97± 0.17
CURIOself 0.30± 0.02 0.21± 0.01 0.24± 0.01 2.18± 0.13 2.70± 0.25
CURIOteam 0.23± 0.02 0.22± 0.01 0.23± 0.02 2.29± 0.12 3.14± 0.08
ELIGNself 0.29± 0.03 0.19± 0.00 0.24± 0.02 2.39± 0.11 2.97± 0.30
ELIGNteam 0.23± 0.04 0.21± 0.00 0.23± 0.01 2.16± 0.12 2.88± 0.19
ELIGNadv — — 0.22± 0.01 2.12± 0.16 2.66± 0.23

Full observability SPARSE 0.23± 0.06 0.27± 0.05 0.21± 0.02 1.64± 0.02 3.28± 0.02
CURIOself 0.33± 0.09 0.21± 0.01 0.22± 0.01 1.81± 0.12 3.24± 0.08
ELIGNself 0.20± 0.04 0.21± 0.00 0.21± 0.01 1.82± 0.10 2.97± 0.17

Table 9: We report the mean test episode extrinsic rewards and standard errors of decentralized meth-
ods with different intrinsic rewards in symmetry-breaking settings under partial and full observability.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Partial observability

SPARSE 97.45± 10.49 184.18± 7.63 59.39± 21.10 −1.89± 1.69 3.85± 4.25
CURIOself 85.23± 10.88 184.07± 9.99 54.17± 27.40 −2.86± 1.19 19.57± 4.92
CURIOteam 81.50± 15.78 141.78± 20.04 41.12± 13.37 −2.80± 1.91 10.21± 6.34
ELIGNself 110.29± 9.67 176.98± 6.38 98.90± 17.71 −4.00± 2.14 9.47± 3.99
ELIGNteam 92.41± 10.70 187.42± 11.29 74.06± 21.58 −2.00± 1.39 3.32± 3.04
ELIGNadv — — 87.55± 15.35 −1.40± 1.25 13.77± 3.58

Full observability
SPARSE 150.42± 15.18 250.41± 14.23 69.06± 14.06 −7.62± 3.50 3.50± 4.00
CURIOself 149.48± 9.42 241.69± 19.58 52.69± 17.97 −10.40± 6.33 −1.10± 0.59
ELIGNself 152.08± 6.68 275.69± 7.49 75.79± 24.54 −4.44± 2.05 0.96± 3.14

Table 10: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in symmetry-breaking settings under partial and full observ-
ability. Higher scores are better for the occupancy metric (↑), and lower scores are better for the
collision metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

SPARSE 0.26± 0.04 0.27± 0.02 0.67± 0.09 0.02± 0.01 0.04± 0.03
CURIOself 0.22± 0.01 0.28± 0.04 0.61± 0.06 0.02± 0.01 0.15± 0.04
CURIOteam 0.26± 0.06 0.29± 0.02 0.65± 0.05 0.01± 0.01 0.08± 0.04
ELIGNself 0.29± 0.05 0.32± 0.03 0.62± 0.02 0.02± 0.01 0.08± 0.03
ELIGNteam 0.27± 0.04 0.27± 0.02 0.72± 0.10 0.02± 0.01 0.05± 0.04
ELIGNadv — — 0.68± 0.07 0.00± 0.00 0.14± 0.04

Full observability
SPARSE 0.45± 0.12 0.54± 0.01 0.89± 0.11 0.03± 0.01 0.05± 0.02
CURIOself 0.48± 0.08 0.54± 0.01 1.13± 0.14 0.04± 0.02 0.00± 0.00
ELIGNself 0.46± 0.11 0.54± 0.01 0.86± 0.12 0.02± 0.01 0.02± 0.02
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Table 11: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of decentralized methods with different intrinsic rewards in symmetry-breaking
settings under partial and full observability. Lower scores are better for agt-target (↓), and higher
scores are better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

SPARSE 0.53± 0.02 0.57± 0.02 0.35± 0.03 1.49± 0.14 1.57± 0.15
CURIOself 0.57± 0.04 0.55± 0.04 0.37± 0.02 1.29± 0.06 1.07± 0.17
CURIOteam 0.53± 0.03 0.55± 0.03 0.35± 0.02 1.49± 0.13 1.37± 0.18
ELIGNself 0.68± 0.05 0.52± 0.03 0.34± 0.01 1.39± 0.13 1.26± 0.18
ELIGNteam 0.55± 0.05 0.56± 0.02 0.31± 0.02 1.41± 0.10 1.53± 0.17
ELIGNadv — — 0.33± 0.04 1.61± 0.08 1.08± 0.15

Full observability
SPARSE 0.45± 0.12 0.29± 0.00 0.25± 0.01 1.28± 0.15 1.30± 0.15
CURIOself 0.33± 0.06 0.30± 0.01 0.22± 0.01 1.47± 0.17 1.71± 0.05
ELIGNself 0.46± 0.11 0.30± 0.00 0.25± 0.02 1.49± 0.16 1.53± 0.16

Table 12: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards in scaled and symmetry-breaking settings.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

SPARSE 328.24± 24.17 405.08± 21.53 172.87± 32.43 −35.40± 8.63 1.37± 3.48
CURIOself 295.48± 20.54 436.17± 26.30 202.39± 26.06 −11.19± 3.65 9.24± 8.49
CURIOteam 316.33± 14.44 422.71± 13.24 229.50± 28.29 −11.56± 6.37 −1.29± 1.58
ELIGNself 357.40± 19.52 412.39± 12.63 129.07± 51.08 −7.34± 5.12 11.97± 13.30
ELIGNteam 354.14± 19.53 417.94± 22.29 184.21± 23.16 −19.37± 6.44 4.05± 5.78
ELIGNadv — — 148.69± 31.79 −23.42± 8.32 18.71± 14.78

Full observability SPARSE 466.17± 28.16 471.19± 16.23 233.61± 25.44 −39.24± 6.63 −5.10± 0.26
CURIOself 509.91± 14.10 606.07± 7.55 256.13± 41.13 −38.66± 13.38 −6.58± 1.29
ELIGNself 520.25± 9.68 510.18± 25.71 222.31± 15.39 −30.56± 9.87 −4.27± 2.53

Table 13: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in scaled and symmetry-breaking settings. under partial and
full observability. Higher scores are better for the occupancy metric (↑), and lower scores are better
for the collision metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

SPARSE 0.37± 0.05 0.38± 0.03 0.75± 0.04 0.13± 0.03 0.04± 0.02
CURIOself 0.29± 0.03 0.43± 0.02 0.66± 0.06 0.05± 0.02 0.12± 0.08
CURIOteam 0.32± 0.02 0.34± 0.01 0.78± 0.07 0.05± 0.02 0.02± 0.01
ELIGNself 0.29± 0.03 0.39± 0.02 0.96± 0.20 0.04± 0.03 0.11± 0.10
ELIGNteam 0.37± 0.03 0.40± 0.03 0.72± 0.03 0.07± 0.03 0.06± 0.03
ELIGNadv — — 0.63± 0.09 0.07± 0.03 0.15± 0.10

Full observability SPARSE 0.52± 0.11 0.43± 0.09 0.86± 0.07 0.19± 0.02 0.00± 0.00
CURIOself 0.39± 0.14 0.54± 0.00 0.81± 0.06 0.14± 0.04 0.00± 0.00
ELIGNself 0.55± 0.11 0.55± 0.00 0.94± 0.08 0.12± 0.03 0.02± 0.01

Table 14: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) dis-
tances and standard errors of decentralized methods with different intrinsic rewards in scaled and
symmetry-breaking settings under partial and full observability. Lower scores are better for agt-target
(↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

SPARSE 0.36± 0.01 0.42± 0.02 0.35± 0.01 2.04± 0.18 3.10± 0.29
CURIOself 0.50± 0.04 0.37± 0.02 0.38± 0.03 2.35± 0.12 2.70± 0.35
CURIOteam 0.43± 0.03 0.45± 0.01 0.35± 0.02 2.39± 0.15 3.37± 0.19
ELIGNself 0.52± 0.05 0.41± 0.02 0.37± 0.04 2.52± 0.15 3.22± 0.42
ELIGNteam 0.42± 0.03 0.41± 0.02 0.37± 0.01 2.25± 0.15 3.00± 0.33
ELIGNadv — — 0.41± 0.05 2.27± 0.16 2.62± 0.30

Full observability SPARSE 0.29± 0.07 0.37± 0.06 0.26± 0.01 1.81± 0.04 3.69± 0.05
CURIOself 0.42± 0.11 0.29± 0.00 0.26± 0.02 2.02± 0.16 3.63± 0.12
ELIGNself 0.26± 0.05 0.29± 0.00 0.27± 0.01 2.10± 0.12 3.24± 0.26

Table 15: We report the mean test episode extrinsic rewards and standard errors of centralized
methods with different intrinsic rewards under full observability.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Full observability
SPARSE 106.02± 20.95 123.17± 18.77 130.90± 6.59 −1.90± 1.61 12.49± 9.83
CURIOself 86.52± 16.02 108.84± 6.89 107.84± 13.67 −1.69± 0.60 23.70± 12.95
ELIGNself 120.47± 12.26 134.30± 5.84 105.74± 9.72 −2.37± 1.39 22.92± 7.00
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Table 16: The average test occupancy/collision count per step and standard errors of centralized
methods with different intrinsic rewards under partial and full observability. Higher scores are better
for the occupancy metric (↑), and lower scores are better for the collision metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

SPARSE 0.29± 0.10 0.50± 0.03 0.94± 0.06 0.00± 0.00 0.36± 0.12
CURIOself 0.28± 0.09 0.47± 0.03 0.94± 0.03 0.01± 0.00 0.17± 0.10
CURIOteam 0.33± 0.10 0.47± 0.04 0.92± 0.01 0.01± 0.00 0.08± 0.03
ELIGNself 0.21± 0.10 0.50± 0.01 0.92± 0.02 0.00± 0.00 0.25± 0.08
ELIGNteam 0.23± 0.09 0.55± 0.02 0.90± 0.07 0.01± 0.00 0.24± 0.11
ELIGNadv — — 0.94± 0.04 0.00± 0.00 0.10± 0.05

Full observability
SPARSE 0.34± 0.10 0.33± 0.07 0.88± 0.04 0.01± 0.00 0.26± 0.11
CURIOself 0.30± 0.07 0.32± 0.05 0.82± 0.02 0.01± 0.01 0.33± 0.16
ELIGNself 0.30± 0.11 0.40± 0.04 0.88± 0.05 0.01± 0.01 0.30± 0.07

Table 17: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of centralized methods with different intrinsic rewards under partial and full
observability. Lower scores are better for agt-target (↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

SPARSE 0.42± 0.05 0.29± 0.02 0.27± 0.01 1.54± 0.02 1.38± 0.13
CURIOself 0.42± 0.05 0.29± 0.01 0.27± 0.01 1.46± 0.05 1.40± 0.13
CURIOteam 0.41± 0.06 0.29± 0.02 0.28± 0.01 1.49± 0.04 1.43± 0.14
ELIGNself 0.50± 0.07 0.29± 0.01 0.27± 0.01 1.60± 0.04 1.26± 0.12
ELIGNteam 0.45± 0.05 0.27± 0.01 0.28± 0.01 1.52± 0.04 1.35± 0.14
ELIGNadv — — 0.28± 0.01 1.55± 0.03 1.45± 0.10

Full observability
SPARSE 0.38± 0.07 0.34± 0.04 0.25± 0.00 1.59± 0.06 1.43± 0.09
CURIOself 0.36± 0.05 0.32± 0.02 0.25± 0.01 1.53± 0.09 1.08± 0.15
ELIGNself 0.43± 0.08 0.30± 0.02 0.25± 0.00 1.51± 0.08 1.18± 0.15

Table 18: We report the mean test episode extrinsic rewards and standard errors of centralized
methods with different intrinsic rewards in scaled environments.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

SPARSE 100.63± 19.36 346.16± 18.95 −38.99± 16.18 −17.33± 4.29 −2.50± 2.64
ELIGNself 112.15± 19.69 375.21± 26.10 13.71± 29.53 −20.12± 1.42 −4.68± 1.21
ELIGNteam 97.93± 25.23 372.41± 44.28 60.07± 13.26 −27.87± 0.99 1.72± 3.79
ELIGNadv — — 21.67± 48.17 −17.68± 5.59 −4.92± 1.81

Full observability SPARSE 50.60± 13.10 153.76± 19.81 97.32± 17.95 −38.25± 5.06 −3.39± 2.77
ELIGNself 186.55± 53.15 127.97± 13.02 103.46± 28.91 −23.29± 5.00 −4.90± 0.67

Table 19: The average test occupancy/collision count per step and standard errors of centralized
methods with different intrinsic rewards in scaled environments under partial and full observability.
Higher scores are better for the occupancy metric (↑), and lower scores are better for the collision
metric (↓).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

SPARSE 0.11± 0.02 0.29± 0.06 0.56± 0.05 0.06± 0.02 0.07± 0.02
ELIGNself 0.23± 0.09 0.33± 0.04 0.56± 0.06 0.08± 0.00 0.05± 0.00
ELIGNteam 0.27± 0.10 0.33± 0.05 0.50± 0.08 0.09± 0.00 0.09± 0.03
ELIGNadv — — 0.60± 0.09 0.05± 0.02 0.05± 0.01

Full observability SPARSE 0.10± 0.04 0.16± 0.04 0.50± 0.03 0.12± 0.01 0.06± 0.01
ELIGNself 0.16± 0.09 0.11± 0.00 0.55± 0.02 0.10± 0.02 0.04± 0.01

Table 20: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of centralized methods with different intrinsic rewards in scaled environments
under partial and full observability. Lower scores are better for agt-target (↓), and higher scores are
better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

SPARSE 0.33± 0.01 0.29± 0.02 0.34± 0.02 2.27± 0.08 3.12± 0.18
ELIGNself 0.32± 0.04 0.28± 0.01 0.36± 0.02 2.32± 0.09 3.25± 0.05
ELIGNteam 0.30± 0.04 0.28± 0.01 0.37± 0.03 2.29± 0.08 3.01± 0.20
ELIGNadv — — 0.33± 0.04 2.44± 0.08 3.23± 0.13

Full observability SPARSE 0.37± 0.03 0.37± 0.02 0.29± 0.02 1.98± 0.07 3.13± 0.17
ELIGNself 0.36± 0.04 0.39± 0.00 0.27± 0.01 1.98± 0.08 3.25± 0.12
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Table 21: We sample agents from different decentralized training runs and evaluate their zero-shot
performance in scaled environments under partial observability. We report the mean test episode
extrinsic rewards and standard errors of decentralized methods with different intrinsic rewards.

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

SPARSE 434.68± 6.42 561.16± 31.63 128.64± 17.31 −32.12± 3.63 −2.80± 2.91
ELIGNself 471.07± 5.00 676.01± 16.53 248.16± 6.62 −16.77± 2.25 −5.03± 1.06
ELIGNteam 511.97± 6.95 699.56± 11.64 190.06± 29.10 −19.40± 2.86 −3.10± 3.09
ELIGNadv — — 228.53± 25.03 −31.03± 3.13 27.24± 4.48

Table 22: We sample agents from different decentralized training runs and evaluate their zero-shot
performance in scaled environments under partial observability. We report the average test agent-
to-target (agt-target) and agent-to-adversary (agt-adv) distances and standard errors of decentralized
methods with different intrinsic rewards. Lower scores are better for agt-target (↓), and higher scores
are better for agt-adv (↑).

Cooperative Competitive
Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

SPARSE 0.22± 0.00 0.23± 0.00 0.23± 0.00 1.93± 0.00 3.16± 0.01
ELIGNself 0.19± 0.00 0.20± 0.00 0.17± 0.00 2.33± 0.00 3.31± 0.01
ELIGNteam 0.43± 0.01 0.19± 0.00 0.24± 0.00 2.04± 0.01 3.15± 0.01
ELIGNadv — — 0.21± 0.00 2.11± 0.01 2.31± 0.01

Table 23: Model and training hyperparameters
Parameter Multi-agent particle Google Research football

SAC actor model architecture FC layers [128,128] FC layers [256,256]
SAC critic model architecture FC layers [128,128] FC layers [256,256]
World model architecture FC layers [128,128] FC layers [128,128]
Replay buffer size 1,000,000 1,000,000
Batch size 1,024 256
Actor learning rate 0.001 0.0003
Critic learning rate 0.001 0.0003
Discount factor gamma 0.95 0.99
SAC soft update coefficient 0.01 0.005
SAC policy entropy regularization coefficient 0.1 1.0 (initial)
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