A Tensor-based eLSTM Model to Predict Stock Price Using Financial News
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Stock market prediction has attracted much attention from both academia and business. Both traditional finance and behavioral finance believe that market information affects stock movements. Typically, market information consists of fundamentals and news information. To study how information shapes stock markets, common strategies are to concatenate various information into one compound vector. However, such concatenating ignores the interlinks between fundamentals and news information. In addition, the fundamental data are continuous values sampled at fixed time intervals, while news information occurred randomly. Such heterogeneity leads to miss valuable information partially or twist the feature spaces. In this article, we propose a tensor-based event-LSTM (eLSTM) to solve these two challenges. In particular, we model the market information space with tensors instead of concatenated vectors and balance the heterogeneity of different data types with event-driven mechanism in LSTM. Experiments performed on an entire year data of China Securities markets demonstrate the supreme of the proposed approach over the state-of-the-art algorithms including AZfinText, eMAQT, and TeSIA.
Description
Keywords
Machine Learning and Network Analytics in Finance, Decision Analytics, Mobile Services, and Service Science, LSTM, Event-driven, Tensor, Media-awre, Stock movements
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.