A Study of the Impact of Reduced Inertia in Power Systems
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Inertia in power systems plays an important role in maintaining the stability and reliability of the system by counteracting changes in frequency. However, the traditional sources of synchronous generation are being displaced by renewable resources, which often have no inherent inertia. This paper investigates the impact of reduced system inertia on several aspects of the dynamic stability of power systems, such as angular stability, primary frequency response, and oscillatory modes. This study is performed on a large-scale 2000 bus synthetic Texas model by selectively replacing synchronous generators with inverter-based generation resources. This paper also compares the analysis results obtained by the above-mentioned inertia-reduction approach of renewable integration with another approach in which the inertia constant of all synchronous generators is decreased. This paper demonstrates that only reducing the inertia of all synchronous generators in a system does not provide an accurate analysis of the challenges associated with the reduced system inertia caused by renewable integration.
Description
Keywords
Distributed, Renewable, and Mobile Resources, frequency response, small-signal stability analysis, system inertia, transient stability analysis
Citation
Extent
8 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.