~--TotalView

Classic TotalView

Getting Started Guide

Version 2024.3
September, 2024

PERFORCE

ww.perforc

-~ TotalView

© 2024 Perforce Software, Inc. All rights reserved.

© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998-2007 by Etnus LLC. All rights reserved.

© 1996-1998 by Dolphin Interconnect Solutions, Inc.

© 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

ACKNOWLEDGMENTS

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

TotalView by Perforce
http://totalview.io

https://rwkbp.makekb.com/

Getting Started with TotalView Products

The BasiCs . ..o 2
Whatis TotalView o 2
Starting TotalView and Creating a Debugging Session 3

Loading Programs into TotalView for Debugging. 5
Managing Debugging Sessions. 6
Getting Around TotalView 7
TotalView Commands 8
The RoOotWINdoWwo 8
The Process WINAOWo 10
Variable Window and Array Viewer 1

Accessing TotalView Remotely. 16
DebuggingonaRemoteHost 17

Setting Breakpoints and Stepping throughaProgram 18
Action Points (breakpoints) 18
Stepping Through a Program. 19
Examiningand EditingData 21
Divingand Viewing Data 21
Editing Data. 23
Evaluating EXpressions o 23

Working with Multi-Processes

and Multi-Threads 25
Starting a Parallel DebuggingJob 26
Working with and Viewing Processesand Threads 26

Debugging Using the Command Line Interface (CLI) 30

Debugging CUDA Programs 31

Memory Debugging. 32
Viewing Memory Event Information. 33
FindingMemory Leaks e 34
Detecting Memory Corruption 35
Analyzing Memory . .. 36
Finding Dangling Pointers 36
Settingand Using Baselines 37

Contents

Reverse Debugging with ReplayEngine

Getting Started with TotalView

Products

This guide provides an introduction to TotalView®'s basic features to help you get quickly started. Each topic
here is introduced briefly, with links to more detailed discussions for more information.

NOTE: This guide does not discuss all of TotalView's features, but rather focuses on those primary

tools that all programmers need when debugging programs of any complexity and scope.
For a more complete introduction to TotalView, see “About TotalView” in the Classic
TotalView User Guide.

This guide includes:

The Basics on page 2

Accessing TotalView Remotely on page 16

Debugging on a Remote Host on page 17

Setting Breakpoints and Stepping through a Program on page 18
Examining and Editing Data on page 21

Working with Multi-Processes and Multi-Threads on page 25
Debugging Using the Command Line Interface (CLI) on page 30
Debugging CUDA Programs on page 31

Memory Debugging on page 32

Reverse Debugging with ReplayEngine on page 39

Getting Started with TotalView Products The Basics

The Basics

What is TotalView

TotalView is a source- and machine-level debugger for multi-process, multi-threaded programs. Its wide range of
tools provides ways to analyze, organize, and test programs, making it easy to isolate and identify problems in
individual threads and processes in programs of great complexity.

It includes two primary interfaces: the Graphical User Interface (GUI) and the Command Line Interface (CLI) run-
ning within an xterm-like window for typing commands. Generally, the GUI provides tools and displays data in a
way that is easy to work with and understand, and is the recommended way to use TotalView. However, the two
interfaces complement one another and can be used simultaneously, providing the most complete approach to
debugging as well as access to the power of all TotalView's tools.

Shipped Examples

TotalView ships with several examples that illustrate many of its features. These examples are located in your
TotalView installation directory at installdirl t ool wor ks/ t ot al vi ew. version/ platform/ exanpl es/ . You can
load these examples into TotalView at startup and explore how it works.

Documentation

TotalView provides TotalView user and reference guides, as well as MemoryScape and ReplayEngine user guides.
In addition, context-sensitive help launches when you click the Help button while using TotalView (and is also
available directly from the shipped html documentation under “In-Product Help.")

More Information

For more information on the documentation set, conventions used in the documentation, and contact informa-
tion, see the Resources section of the User Guide.

Getting Started with TotalView Products The Basics

Starting TotalView and Creating a Debugging Session

NOTE: TotalView has a new user interface with improved debugging workflows, features, and a mod-
ern look and feel. Existing TotalView users can opt to use the new Ul by selecting the Ul
preference on the Display tab in the Preferences dialog.

For new TotalView users, the new Ul is the default, but you can revert to the Classic TotalView
Ul, if necessary, by changing the Display preference on the Preferences tab. To learn more
about using the new Ul, see the new Ul HTML documentation in the TotalView distribution at
<instal | dir>/total vi ew. <versi on>/ hel p/ ht m / Tot al Vi ew_Hel p, or the online TotalView
documentation set and Getting Started Guide.

NOTE: The most common way to start TotalView is by entering:

totalview program_name

where program_name is the executable of the program you are debugging.

NOTE: To run a program in TotalView, compile it for debugging, usually with the -g command-line
option, depending on your compiler.

https://help.totalview.io/
https://help.totalview.io/
https://help.totalview.io/current/HTML/index.html#page/TotalView/GettingStarted.html#

Getting Started with TotalView Products The Basics

Starting TotalView with no arguments (i.e. just totalview) launches the Start a Debugging Session dialog.

Figure 1 TotalView Sessions Manager: Start a Debugging Session dialog

Start a Debugging Session = RogueWave

What would you like to debug?
[
ia‘ Iy last session: Expression Example

.;-T A new program
|ﬂ!"i

|8 Anew parallel program
|Cﬂ'-']
-

i“? A running program (attach

| -

| A o . +
i‘ A core file or replay recording file

| cor—

i-.

T Waiting for reverse connections..,
1

This dialog is part of the Sessions Manager and is the easiest way to load a program into TotalView. Once you con-
figure a debugging session using this dialog, the settings are saved so you can access them later.

From here, you can:

1. Open a debugging session

Select a type of session:
A new program to launch the Program Session dialog and selecting a program to debug (equiva-
lent to starting TotalView with a program name argument).

A new parallel program
to launch the Parallel Program Session dialog and entering parallel system set-
tings.

A running program (attach)
to launch the Attach a running program(s) dialog and selecting an already-run-
ning process.

A core file or replay recording file

to launch the Core or Replay Recording Session File dialog and selecting an exe-
cutable and associated core file or replay recording session file.

Getting Started with TotalView Products The Basics

My last session
to launch a debugging session using your last session.

2. Manage your debugging sessions

Select Manage Sessions to edit, delete, or view the details of any saved sessions.

RELATED TOPICS

Compiling your program for debugging "Compiling Programs” in the Classic TotalView User
Guide

Loading Programs into TotalView for Debugging

When you select the type of debugging session you want from the Start a Debugging Session dialog, the relevant
screen launches to help you configure your session. For instance, selecting A new program launches the Pro-
gram Session dialog.

Figure 2 Program Session dialog

« TotalView Debugger: Program Session X
m e & Program Session
Session Mame: | 1|]

Program Information

REQUIRED
File Name: || i Erowse”.l

Arguments:

[Debug on Host

xavier.totalviewtech.com (local) A Add Host.

A program path
and name must
be entered in
the Program

Information
section. Help I Previous I Hext | Start Sesslonl Cancel I

Here, you enter a name for your session, the file to debug and any arguments. Use the Debug Options and
Environment tabs (at left) to further configure your session.

Getting Started with TotalView Products The Basics

RELATED TOPICS

Loading programs into TotalView using the “Loading Programs from the Session Manager” in the

Sessions Manager Classic TotalView User Guide

Loading programs into TotalView using the CLI “Loading Programs Using the CLI" in the Classic
TotalView User Guide

Managing Debugging Sessions

In the Sessions Manager, select the Manage Sessions button to launch the Manage Debugging Sessions dialog.

Figure 3 Manage Debugging Sessions

w TotalView Debugger: Manage Debugging Sessions X
Manage Debugging Sessions =RogueWave
|) | 2 | i) | I-O% [J Session Mame: Wave Extended
Sessions | Program | Path Type: Program
Program: wave_extended
Program Path: /nfs/san0iuserfhomeftw/exporisession_wizard/
Rt SaElell) wave_extended /nfs/san0/userhomel| Selected Host: (local)
YWave wave Infsisan0/userhome/| Last Run Time: 03/08/13 17:48:54
Attach
L defautt
o | = | B] =

This dialog displays previously configured debugging sessions. From here, you can edit, duplicate, or delete a ses-

sion, as well as view its configuration. In addition, you can start a debugging session using the green Start
Session button.

You can also access the Sessions Manager via File > Manage Sessions on both the Root and Process windows.

Getting Started with TotalView Products The Basics

Figure 4 Root Window, File > Manage Sessions

New Debugging Sessziaon, .. Ctrl+Shift+H
Debuz Mew Program, ., . Ctrl+H
Debuz Mew Parallel Program,.. Ctirl+Shift+P
Attach to a Funning Program, .. Ctrl+T

Debug Core or Replay Recording File,,., Ctrl+Shift+l

Mansge Sesszions. ..

Preferences, ..

Search Path, .. Ctrl+D
Cloze Ctrl+H
Exit Ctrl+0

RELATED TOPICS

The Sessions Manager
Additional ways to start TotalView

Command line syntax for the totalview
command

Compiling your program for debugging

Loading a program into TotalView using either
the GUI or the CLI

Attaching an existing process

Debugging a core file
Starting a parallel debugging job

Debugging a replay recording session file

“Managing Sessions” in the Classic TotalView User Guide
“Starting TotalView" in the Classic TotalView User Guide

“TotalView Command Syntax” in the Classic TotalView Reference
Guide

“Compiling Programs” in the Classic TotalView User Guide

“Loading Programs from the Sessions Manager” in the Classic
TotalView User Guide

“Attaching to a Running Program” in the Classic TotalView User
Guide

“Debugging a Core File” in the Classic TotalView User Guide

“Starting MPI Programs Using File > Debug New Parallel Pro-
gram” in the Classic TotalView User Guide

“Debugging a Replay Recording Session” in the Classic
TotalView User Guide

Getting Around TotalView

Once you've started TotalView and loaded a program to debug, its two primary windows launch, the Root Window
and the Process Window. These windows are the heart of TotalView and provide access to all its other windows
and features, such as the Variable and Array windows, among many others. Each window contains a set of menus
that provide a wide range of commands specific to that window.

This section does not introduce all of TotalView's windows or commands, but you will find them as you explore the

product and debug your programs.

Getting Started with TotalView Products The Basics

TotalView Commands

Each window has a set of menus, such as File, View, or Tools, with different commands depending on the win-
dow. For instance, the Process Window contains a Tools > Call Graph command to view the call graph, while the
Variable Window's Tools menu provides a Tools > Visualizer command to view array data graphically.

These GUI commands are often equivalent to commands also available through the CLI. For instance, to save a
set of breakpoints to a file, use the Process Window's Action Point > Save As GUI command, or the CLI com-
mand dactions -save filename.

RELATED TOPICS

GUI commands From within TotalView, click the Help button in any
window to launch context-sensitive help on any
command (also viewable as “In Product Help” in the
html version of the documentation).

CLI commands “CLI Commands" in the Classic TotalView Reference Guide

The Root Window

The Root Window launches at TotalView startup, and displays a list of all the programs, processes and threads
under TotalView control.

Getting Started with TotalView Products The Basics

Figure 5 shows the Root Window for an executing multi-threaded multi-process program.

Figure 5 Root Window

Eile Edit Yiew Tools Help
Share Group |Procs | Threads |Menbers] [|Group bus:
—-tx_fork_loop (53} Share group |4 4 pl-4 [Control Group

S.¢local) & Hostname pl-4 [Share Group
Wl Breakpoint : T pl-4 Hostnane
—p- [l Breskpoint 4 4 pd.1. p1-3.2
B 4 pd.1. p1-3.2
Lt_fork_loop .cooGan ’ pd.1, pl-3.2 Bl Funct ion
- (0401 k0 4 1 pd.1, pi-3,2 | | Source Lire
" U 14—+ AolonPomn] P e | [
| 5-Trace Trap(5) 4 3 pd.... | |B Action Point ID
-1 1 1 pl [Stop Reason
|2 1 1 p2 E Process 1D
L3 1 1 p3 B Thread ID
Lq 1 1 pd B Process Held
- W Stopped 4 8 p1-3.1. pd.2. pl-4.3 Thread Held
=.__select_nocancel 4 4 pl-3.1, pd.2 B Replay Mode
| Z-dunknoun line> 4 4 pl-3.1, pd.2
S-Ox7F33dFad01c3 4 4 pl-3.1, pd.z
L Mo Action q 4 pl-3.1...
S taulLH0) 4 4 pl-...
| 1 1 1 pl
[Thread states] t2 _:_ p2
| -3 1 1 p3
I 1 1 pd
=-snore 4 4 pl-4.3
“-tx_fork_loop.cox#edd 4 4 pl-4.3
£ 0:00401b0c 4 p1-4.3
Z-Ho Action 4 4 pl-4.3
S Gl 13400 4 4 pi-4.2
1 1 1 pl
-2 1 1 p2
-3 1 1 p3
g 1 1 rd
Configure 2>| | Move Up| Reset| Move Doun|

This window displays status information and can be used to navigate to any of your programs, processes, or
threads by diving on them. Diving simply means clicking on an object to launch a window with detailed
information.

NOTE: Diving is central in TotalView and provides instant access to a wide range of detailed data by
drilling down into the object, routine, process, thread, etc.

RELATED TOPICS

General GUI features available on "Using and Customizing the TotalView GUI" in the Clas-
most windows sic TotalView User Guide
The Root Window “Using the Root Window" in the Classic TotalView User

Guide

Getting Started with TotalView Products

The Basics

The Process

Window

When you load any program or process into TotalView, the Process Window launches, displaying state about the

current program or process and its threads. It includes some of the typical menu items of any GUI application

(such as File, Edit, and View) and provides access to most of TotalView's features.

It is here that you set breakpoints, step through your program, and manage its threads.

Figure 6 The Process Window

LA ® ® ®

‘nfsintk-scratch/home/kduthie/bid/totalview /ubunt uj‘ 04-x86.develo p-'debuiger.' srcftests/bld/gee 4.8 64/tx v n

File Edit View Group Process Thread Agtion Pairt Debug Tools Window
oy B 1B I8 * 0 4
Goup ool = Go I-iaJt Kill Restan W<t Step Put RunT-o|Hemrd Back Frev

Ploaesls 11 (15251); be_fork_loop.1 (Miled) =

””IIII“.Ilu“””'Il”I Thread 2 tm}'mfﬁdﬁa}"w]&%] be_fork_loop (At Bl@a‘

pol nt 1 } III.II‘III III IIrII1II III I|I II‘II III [

Stack Trace A Stack Frame
[+] snore_or_leave,. 'FP=TFE051d69F10° | |Function “snore_or_leave": i1
start_thres FP=7¥b051d69Fb0 arg: [|
——clone Ffb051de9fhs Block "3bl
* Stack Trace posix tid
Pane pid:

Registers for the frame:

Krax: Ox7FbO51dBaTo0 (140395263993600)

i Hrde: 0x00000000 (0) i
Function snore_or_leave —toopr 2 17
857 fflush (stdout); i
858 _exit{l);
859 } /* exec_this ¥/
| &80
0_ 861 e 5 3 *
862
463 static int exit_stat; Source Pane
864
65 \Euid *snore_or_leave {(void *arg)
566
e——n ‘long posix_tid = (long) (pthread_self (1) —_—
868 int pid = getpid(}; Dive
&89 i =~
870 #if _RIx Add List
o 871 _ if (iplease =hut up)
872 printf ("New thread starting ... arg=%d, pid=kd| Faldin”,
873 (int) (unsigned longl(arg),
&74 pid,
275 posix_tid,
876 flonn]tthmad_selﬁ!]]' |
J 1 1
e— Act Pomts] Threads] fipoint ﬂ _P.ﬂ _.PE‘J lj l‘.‘Jr

W/tx_fork_loop.cxx#867] tx_fork_loop.cxx#867 £
x .."tx_{‘or'k..lnup,cxxiilﬂil tx_fork_loop.cx=#ill = 1]
veadtx_fork_loop.cxx#1364] tx_fork_loop.cxx#l3l [Disable

Tabbed Area
Delete

| Properties

|

1. Thread ID (TID)/ Kernel ID (KID)

2. Process D (PID)

3. Process status

4. Thread status

5. Process/thread switching

6. Language of routine

7. Line number area

8. Current program counter

9. Context menu

10. Action Points tab displayed

The Process Window is divided into four areas:

m Stack Trace Pane, displaying the call stack.

10

Getting Started with TotalView Products The Basics

m Stack Frame Pane, displaying the current thread's variables.

m Source Pane, displaying your program’s source code or assembly instructions. Note the context
menu that becomes available when you select a line of code in your program.

® Inthe "tabbed area”:

m Action Points Tab, which displays a list of the thread's current action points (TotalView
nomenclature for its powerful set of breakpoints).

m Processes/Ranks Tab, displaying a grid of the processes or ranks within the current control
group.

m Threads Tab, with a list of all active threads in the process.

RELATED TOPICS

The Process Window in general “Using the Process Window" in the Classic TotalView User
Guide

Variable Window and Array Viewer

TotalView provides multiple ways to see and edit your data, The primary window for working with data is the Vari-
able Window. If your variable is an array, you can use the Array Viewer.

The Variable Window

The Variable Window displays details about your variables. To launch the Variable Window, Figure 7, just dive (by
double-clicking) on a local variable (displayed in the Process Window's Stack Frame Pane), or on a global variable
(in the Source Pane).

11

Getting Started with TotalView Products The Basics

Figure 7 Variable Window

cylinder - main - 1,1
File Edit Wiew Tools Window Help
T -] EEIEFTIEEES
Expressian: Fylinder Address: | Oxhfffden
Type: | class Cylinder
Field | Type [value lim)
=- Circle clags Circle (Public hase class)
=N Shape struct Shape (Public hase class)
- IM_area double G171.26245265
- _volume double 104183.851653788
- fivtahle int(void)™ 0x0804a020 (&Cylinder:
- M_Name Fstring[15] "cylinder”
- my_var int[10] (Array)
- 0] int 0X008015a8 (5394152)
- [1] int 0xb 7530 (-1207962320
- [2] int 0x0804526c (134513260
- [3] it 0xbffff1 94 (- 1073745516

The Variable Window is a powerful tool for analyzing your program'’s data. You can control the display and cast
your data in the Expression field, change the variable's address in the Address field, or change the data type in the
Type field. For parallel programs, you can view or update the value of a variable in all of the processes or threads
at once or individually. For variables that contain substructures, use the “+" or “~" icons to view them.

If the displayed variable is a pointer, structure, or array, you can dive on the value. This new dive, called a nested
dive, replaces the information in the Variable Window with information about the selected variable.

12

Getting Started with TotalView Products

The Basics

Figure 8 shows a Variable Window before and after diving into a pointer variable sp with a type of simple*. The
base window displays the value of sp while the nested dive window shows the structure referenced by the

simple* pointer.

Figure 8 Nested Dives

1. 1.
=| zp - main - 1,1 || Base

File Edit Yiew Tools Window Help window
[]| EEIEFIEEEY

Expression: | sp Address: | 0xbfffi00G

Type: | struct simple *

Walue E| Undive all,
Oxhfff070 - > (struct simple) Undive

File Edit Miew Tools Window !E !E?ﬂelp

Redive,
[J == | B | R € Redive all
Expression: |T(sp) Address: | 0xbffi070
Type: | struct simple
Field | Type [walue |
struct simple * Oxbffff090 - = (struct sim}=
T int 0x00000000 (0)
L floatf4] (Array)
float 0
float 1
float 2
float 0
struct embedded_array (Struct)
©- array int[2] (array) Nested
[0 int 000000000 {0 window
L 1] int D<A =11]

Use the undive/redive buttons to move between nested windows and the base window:

m To undive from a nested dive, click the undive arrow button so that the base window's contents

appear. To undive from all dive operations, click the Undive All button.

To redive after undiving, click the redive arrow button. To redive from all your undive operations,
click on the Redive All arrow button.

To retain access to a nested or base window so that both are visible, select the Window >
Duplicate command to duplicate the current Variable Window.

Array Variables:

For an array, the Variable Window includes a Slice field that shows each of the array’s dimensions as a colon. You
can display a section by editing the array specifier. Using the Slice field lets you focus on a subset of the data. For
example, to display items 101 through 125 of a one-dimensional Fortran array, change the Slice field to
(101:125).

You can also enter an expression in the Filter field to limit the display. For example, if you're looking for values
greater than 300, type “> 300"

13

Getting Started with TotalView Products The Basics

In Figure 9, the top window uses a slice to limit the amount of information displayed in a three-dimensional array,
while the bottom window combines a filter with a slice.

Figure 9 Sliced and Filtered Arrays

Al an_array - Jhomesbarrykstests ten_by_tenlinux - 2,1 | A i _
File Edit Miew Tools Window Help
[21 Z] EEEETFIE XSS
Expression: | an_array Address: | 0x05038b20
slice: | (B:10:2,6:10:2,6:10:2) Filter:
Type: | REAL™4(10,10,10)
Field |walue im
(6,6,6) 0.673283
(8,6,6) 0.850935
(10,6,6) -0.0441523
(6,5,6) -0.08654287
(8‘8‘6)_ an_array - Jfhomedbarryl =n_by_tenLinux - 2,1
?6013: File Edit Yiew Tools Window Help |
10,621 i EEIETIETEY
(10,10, Expression: | an_array Address: | 0x05038b20
| 5,68 Slice: | (:10:2,6:10:2,6:10:2) Filter: | > .
Type: | REAL™4(10,10,10)
Field |value i
(6.6.,6) 0.873283
(8.6.6) 0.850935
(8.5.6) 0.826795
(10.8.6) 0.394037
(10.6.8) 0.926785
(6,8,10) 0.5611639
(6,10,10) 0.564521
{8,10,10) 0.8601

14

Getting Started with TotalView Products

The Basics

The Array Viewer

TotalView provides another way to look at the data in a multi-dimensional array. The Variable Window's Tools >
Array Viewer command opens a window that presents a slice of array data in a table format, Figure 10.

Figure 10 Array Viewer

| RdArray Viewer; int 4D

array[i][Ikl 1]

kiR[=Ed

Help

‘ File

Expression.lim}Dfarray

oty array slice:

Type: Iint[E][T][Q][H]

Row

Dimension

Starn Index

Enul Incex

| strice |

1K1

Column

11

r
f

Selsct an index for the other dimensions:

i
10

1

1] Update Yiew

T

Gl 4

EImE

e

T

Farmat: Automatic I

;

Slice: [0:0A][0-0:A][0:8:1][0:1 0:1]

[1]:0

|1

|2

|2

|4

k]:0

|
1
2
3
4
5
3
7

0x00000000
000000002
000000014
0x0000001e
0x00000028
0x00000032
0x0000003c
M=NNNNNN4A

[
(10
(20}
(30}
40
50
(&)
(70

000000001
00000000k
000000015
00000001
0x00000029
000000033
000000034
M==NOANANA 7

i
(11
(21)
(3L)
(41
(51
{6l)
71y

0x00000002
00000000
000000016
000000020
000000022
0x00000034
00000003
M=NOANNNAR

(2) |0x00000003
(12} |0x0000000d
(22) |0x00000017
(32) |0x00000021
(42) |0x0000002h
(52} 000000035
(62) |00000003%
(72 [MNNNNNN43

(3)

(13)
(23)
(33)
43)
£3)
{63)
P73

000000
Oz000ar
Oe0000r
Oz0000(
O=0000r0
Q00000
Ox=000010
M==NNNN7

.

-1

4

When the Array Viewer opens, the initial slice of displayed data depends on the values entered into the Variable
Window. You can change the displayed data by modifying the Expression, Type, or Slice controls. For example, you
can cast the array to another array expression, modify the type to cast the array to a different array type, or con-
trol how the slice is viewed.

RELATED TOPICS

The Variable Window

Arrays

“Displaying Variables" in the Classic TotalView User Guide

“Diving in Variable Windows" in the Classic TotalView User Guide

“Changing How Data is Displayed” in the Classic TotalView User Guide

“Examining Arrays” in the Classic TotalView User Guide

15

Getting Started with TotalView Products Accessing TotalView Remotely

Accessing TotalView Remotely

Using the Remote Display Client, you can start and run both TotalView and MemoryScape on a remote machine
so you do not need to have them installed on your own machine. A licensed copy of TotalView must be installed
on the remote machine, but you do not need an additional license to run the Client.

Platforms on which you can run a Client include:
m Linux x86 (32-bit) and Linux x86-64
m Microsoft Windows 7, Vista, and XP

m Apple Mac OS X Intel

Clients for all supported systems are available for download on the TotalView web site’s Remote Display Client
page.

RELATED TOPICS

Remote Display Client “Accessing TotalView Remotely” in the Classic TotalView User
Guide

16

https://totalview.io/products/totalview#tab-panel-791
https://totalview.io/products/totalview#tab-panel-791

Getting Started with TotalView Products Debugging on a Remote Host

Debugging on a Remote Host

Using the TotalView Server, you can debug programs located on remote machines. Debugging a remote process
is basically the same as debugging a native process, although performance depends on the load on the remote
host and network latency. In addition, TotalView runs and accesses the process tvdsvr on the remote machine.

RELATED TOPICS

The TotalView Server “Setting Up Remote Debugging Sessions” in the Classic TotalView User
Guide

The tdvsvr process “The tvdsvr Command and Its Options” in the Classic TotalView Refer-
ence Guide

17

Getting Started with TotalView Products Setting Breakpoints and Stepping through a Program

Setting Breakpoints and Stepping through a
Program

Action Points (breakpoints)
An action point is TotalView's much more powerful version of a breakpoint. Here are the four types:
m Breakpoint - stops execution of the processes or threads that reach it.

m Process Barrier Point - holds each process when it reaches the barrier point until all processes in
the group have reached the barrier point. Primarily for MPI programs.

m Fvaluation Point - executes a code fragment when it is reached. Enables you to set “conditional
breakpoints” and perform conditional execution.

m Watchpoint - monitors a location in memory and either stops execution or evaluates an expression
when the value stored in memory is modified.

Set action points in the Process Window with a single left-click on the line number. TotalView displays a sign.

Figure 11 Breakpoint Set At a Line

1026, / /
1027 /* Spin a second thread, if desired; then both threads will call the forke
1028

1029 woid fork wrapper (int fork count)

1030 {

pthread_t my ptid = pthread_self();

1032 pthread_t new_tid;

1033 pthread_attr_t attr;

1034 int whoops;

View all action points in the Process Window's Action Points tab.

Figure 12 Action Points Tab
Action Points] Th[eads] P-| P+| Px| T-| T+

[.../tx_fork_loop.cxx#567] tx_fork_loop.cxx#567 walt_a_while+0xZ1...

[.../tx_fork loop.cxx#681] tx_fork_loop.cxx#681 snore+0xd3
[.../tx_fork_loop.cxx#1066] tx_fork_loop.cxx#1l066 fork_wrapper+0xZf
[.../tx_fork_loop.cxx#1074] tx_fork_loop.cxx#1074 fork_wrapper+0x39

When your program halts on an action point, TotalView reports this status in various ways, including in the Root
Window, the Process Window's Source Pane, and through a yellow arrow (see above figure) on the Action Points
tab.

18

Getting Started with TotalView Products Setting Breakpoints and Stepping through a Program

Once you have created an action point, you can save, reload, suppress, and redefine its characteristics in a num-
ber of ways. You can set action points on all functions within a class or on a virtual function, and finely control how
action points work in multi-threaded multi process programs.

RELATED TOPICS

How action points work "About Action Points” in the Classic TotalView User Guide

Setting action points “Setting Action Points” in the Classic TotalView User
Guide

The CLI command dactions to display, save, dactions in the Classic TotalView Reference Guide

and reload action points

The role of barrier points in multi-threaded “Using Barrier Points” in the Classic TotalView User

processes Guide

Stepping Through a Program

To start and step through your program, the easiest way is to use the buttons on the Process Window's toolbar:

Figure 13 Process Window Toolbar

o conroy <> BBET WP | S G @

Go Halt Kill Restart| Mext Step Out Run To

XEEREREX

Eecord GoBack Prev UnStep Caller BackTo

m To start and stop your program:

m Set a breakpoint, then select Go in the toolbar. Your program starts executing. Execution
stops just before the line that contains a breakpoint or when you click Halt.

m Select Next. TotalView starts your program, and then stops it immediately before the first
statement in your main() function.

m To stop a running program, select the toolbar's Halt button. To restart a program, select the
toolbar's Restart button.

m To step through your program, use the Step and Next buttons. Both tell your program to execute
the current line, but when a line has a function call

m Step goes into the function

m Next completely executes the function

19

Getting Started with TotalView Products Setting Breakpoints and Stepping through a Program

If you want to get to a line without individually stepping each line in between, select the line (not the line num-
ber) to highlight it, then click the Run To button. Alternatively you can use the dskip command to define rules
to skip over or through specific functions or files. You can add rules that match a function, all functions in a
source file, or a specific function in a specific source file.

m To step out of a function:

If you stepped into a function and want to pop out to the statement that called it, click the Out button.

RELATED TOPICS

Basic stepping commands “Using Stepping Commands” in the Classic TotalView User
Guide
Stepping in multi-process or “Stepping Part I” and “Part II" in the Classic TotalView User Guide

multi-threaded programs

Using CLI commands to step “Execution Control Commands” in the TotalView
Reference Guide

20

Getting Started with TotalView Products Examining and Editing Data

Examining and Editing Data

Diving and Viewing Data

Diving is integral to the TotalView GUI and provides a quick, intuitive, and effective way to get more information
about various program elements. Diving is usually performed by just double-clicking on an element and generally
launches a window with more information. You can dive on variables of course, but also on processes and
threads, the call stack, functions, and source code.

To dive on a variable, just double-click on it or highlight it and select View > Dive to launch a Variable Window, Fig-
ure 14.

Figure 14 Diving on a variable in the Stack Frame

Stack Trace | Stack Frame
FP=bf3a8408 |4 ||Function "main":
arge? 000000001 (1)
Oxbf3aBdad —» Oxbflaaded -» "/hom

FP=bf 328475
FP=bf328480

L_L-

0 > (nods_t)

node - main - 3.1

File Edit View Tools Window Help
Ei_ 14 S FE [KE»H| I
0 Expressiont | node Address? | Oxbf3a83F8 N
Tupe: | node_t. * B4
Fbotot Wim LLie iE|

slon b 7PFFbC) -3 (node_t.)

ades

Local variables are visible in the Stack Frame as in Figure 14, while global variables are available in the Source
Pane.

In the Source Pane, if a global variable or function can be dived on, a red dotted box appears when your cursor
hovers over it, Figure 15.

Figure 15 Diving on an object in the Source Pane

457 £+ Betup and parse the command line */

458 init_globals(});

450 opal_cmd_line_create (&cmd_line, cmd line init};

480 nea base cmd_line setup (Scmd_line); o ——— — —

451 if {ORTE SUGGESS T= (rc = opal cmd Livis [cmd_line_init: (opal_cmed_line_init_ti7ap]
462 argc, argwl))

For example, the Stack Frame Pane in the Process Window contains the current call stack. When you dive on a
routine, TotalView shows the routine in the Source Pane and its variables in the Stack Frame Pane.

21

Getting Started with TotalView Products Examining and Editing Data

Figure 16 Diving on a routine

Process 1 (10833): fork, \unngnux (At Breakpoint 1) EEEE=EEEE
Thread 1.1 (10833 ed
Stack Trace Stack Frama
wait_a while. Fp=bfffeaad |[X|[Function "wait_a while
snore, Fp=bfffeaed timeout I]thffeadl] -* (str
forker, Fp=bfffebbd Block “$h2"
[E++] fork wra:per. FP=bfffebdd resplt: 0x00000000 (0)
[TF1) main, & FP=bfffecOd
" __libe_skact_main, FP=bfffecds Regisfkers for the frame
'y
feas: 0x00000000 (ll)
fecx: 0x00000000
edx: 0x00000000
ehix: 0x401d7dd4d 107567459!]
¥ T wor-r e g T e PE LT
|Languaga | Name | | Frame Pointer ‘ Local Variables ‘ ‘ Register Values ‘
[Click to refocus source pane] l Click to modify; Dive for variable window]

TotalView provides several other ways to see more detail about any aspect of your program:

m Displaying the call graph:
Use Tools > Call Graph to launch a dynamic diagram that shows all the currently active routines. Click
Update to recreate this display in a running program

m Viewing the state of every process and thread:

Use Tools > Parallel Backtrace View to view the status of thousands of processes from a single window.

m Viewing your array data graphically:

Use the Variable Window's Tools > Visualize to view array data as a graph or in the Visualizer, a versatile,
stand-alone program that can be launched directly from within TotalView or separately via the command

line.

All objects you can dive on “Diving into Objects” in the Classic TotalView User Guide

Diving in a Variable Window “Diving in Variable Windows" in the Classic TotalView User Guide

The View > Dive In All command “Displaying an Array of Structure's Elements” in the Classic
TotalView User Guide

Displaying your call graph “Displaying Call Graphs” in the Classic TotalView User Guide

Displaying STL variables “Displaying STL Variables” in the Classic TotalView User Guide

Displaying assembler code “Viewing the Assembler Version of Your Code” in the Classic
TotalView User Guide

Viewing processes and threads "Displaying a Variable in all Processes or Threads” in the Classic

TotalView User Guide

22

Getting Started with TotalView Products Examining and Editing Data

Editing Data

You can edit a wide range of data while debugging your programs, such as variable type, value, and address, as
well as source code. For instance, use the File > Edit Source command to examine the current routine in a text
editor.

NOTE: If you edit source code while testing, be aware that these changes are within TotalView only
and are not persisted to your actual files.

RELATED TOPICS

General editing capabilities in dialog boxes “Editing Text" in the Classic TotalView User Guide

Changing a variable's value or data type “Changing a Variable's Data Type” in the Classic
TotalView User Guide

Evaluating Expressions

Expressions are used throughout TotalView. For instance. when you add code to an evaluation point (an action
point that executes a code fragment), you enter it into the Expression Window. Your program’s expressions are
listed in the Expression List Window where you can add, edit, and control expressions.

Use the Evaluate Window (Tools > Evaluate) to evaluate expressions in the context of a particular process, in C,
Fortran, or assembler.

23

Getting Started with TotalView Products Examining and Editing Data

Figure 17 shows a sample expression in an Evaluate Window. Note that C has been selected for the language,
and the expression simply assigns the value of my_var1-3 back to my_var1.

Figure 17 Tools > Evaluate Dialog Box

Expression:

static int i, my_varl, my_varz, end_it;
my_varl =3 ; my_varZ = 5; end_it = 1100;
far (i = 0; i = end_it; i++)

my_varl = my_varl + my_varZ +i;

}
my_varl = my_varl - 24]

Group: Language:
Thread 1.1 fl c

=

B

Result:

Dx00094e89 (BO9923)

B Gl

Evaluate isid Close Help

RELATED TOPICS

Interpreted and compiled expressions

Evaluating expressions

The Expression List Window

Operations you can perform in the
Expression List Window

“About Interpreted and Compiled Expressions” in the Classic
TotalView User Guide

“Evaluating Expressions” in the Classic TotalView User Guide

“Entering Expressions into the Expression Column”in the Clas-
sic TotalView User Guide

“Sorting, Reordering, and Editing” in the TotalView User Guide

24

Getting Started with TotalView Products Working with Multi-Processes and Multi-Threads

Working with Multi-Processes
and Multi-Threads

TotalView's real strength is in debugging multi-process, multi-threaded programs, many of which are tremen-

dously complex.

Here's a brief rundown of TotalView's primary features that support this kind of complicated parallel computing:

Organizing your processes and threads into groups, making it possible to debug programs running
thousands of processes and threads across hundreds of computers.

Placing a server on each remote processor as it is launched that then communicates with the main
TotalView process. This debugging architecture gives you a central location from which you can
manage and examine all aspects of your program.

Automatically bringing any threads or processes spawned by your program under TotalView's
control, avoiding the need to run multiple debuggers.

Allowing you to focus on, run, set breakpoints on, and display individual processes, threads, or
groups.

For example, to act on a particular process, select it from the toolbar’s target pulldown menu, Figure 18. This
defines the focus, so when you select the command Go or Step, TotalView knows what to act on.

Figure 18 Selecting a Target from the Toolbar Pulldown

Group {Control? ! [b " . ib 5 "J‘;’ Q

Group (Share)
Group thorkers)
Group {Lockstep}
Process 1

Process (Horkers:
Proceszs {Lockstep}
Thread 1,1

RELATED TOPICS

Threading and multi-process applications "Debugging Multi-process and Multi-threaded
in general Programs” in the Classic TotalView User Guide

25

Getting Started with TotalView Products Working with Multi-Processes and Multi-Threads

RELATED TOPICS

How TotalView organizes processes and threads ~ "About Threads, Processes, and Groups” in the Clas-
into groups sic TotalView User Guide

Tips on parallel debugging “Debugging Strategies for Parallel Applications” in
the Classic TotalView User Guide

Starting a Parallel Debugging Job

TotalView supports the popular parallel execution models MPI and MPICH, OpenMP, ORNL SGI shared memory
(shmem), Global Arrays, and UPC.

You can start a parallel debugging job either from the GUI or directly from a shell, depending on your environ-
ment, parallel program, and preferences.

RELATED TOPICS

Starting a parallel job in the GUI “Starting MPI Programs Using File > Debug New
Parallel Program” in the Classic TotalView User Guide

Starting a parallel job from the command line One example is “Starting TotalView on an MPICH
Job" in the Classic TotalView User Guide
Supported MPIs The TotalView Platforms Guide

Working with and Viewing Processes and Threads

You can view the status of any or all your processes and threads in a variety of ways.

The Root Window contains an overview of all processes and threads being debugged. Just dive on a process or a
thread for detailed information.

26

Getting Started with TotalView Products

Working with Multi-Processes and Multi-Threads

Figure 19 Processes and Threads in the Root Window

TotalView for HPC 2020X.0.146

Eile Edit Wiew Tools

Help

[

Process State

|Procs |Threads i

Group by:

b OxT 16544 b 2740

- H Mixed 1 1 H Control Group
g-unknown address: 1 1 O Share Group
31 1 1 O Hostname
_ b Q7 16544 b2 740 1 1 B Process State
Z-snore_or_leave 1 2 O Thread State
B-3.2 1 i H Function
L L OuTB544352700 1 1 O Source Line
1 1 O FrC
O 7 fB5430h5 1700 1 1 O Action Foint ID
=-H Breakpoint 2 2 O Stop Reason
2-forker 2 2 O Process ID
1 1 HE Thread IT
1 1 O Process Held
2.1 i 1 O Thread Held
b Q7 16544 b2 740 1 1 O Replay Mode

F System TID
O User_TIDVKernel_TID
O Thread Mame |

The Process Window's Processes tab (when the process grid is enabled) and Threads tab display information
about all threads and processes, color-coded to define state.

Figure 20 shows a tab with processes in three different states:

Figure 20 The Processes Tab

Action Points Prgoesses:] Th[eads]

Py P | T T

=0

The orange cells represent processes that are at a breakpoint, blue is a stopped process (usually due to another
process or thread hitting a breakpoint), and green denotes that all threads in the process are running or can run.

27

Getting Started with TotalView Products Working with Multi-Processes and Multi-Threads

If you select a group using the Process Window's group selector pulldown menu, TotalView dims the blocks for
processes not in the group, Figure 21.

Figure 21 The Processes Tab: Showing Group Selection

Action Points] Prgcesses] Th[eads] il ﬂl m Ll H

; ; ; | ;
18 21 24 27

To switch between running processes, click on a box representing a process to switch to that context.

Similarly, clicking on a thread in the Threads tab changes the context to that thread.

Viewing the value of a variable in each process or thread:

It is often useful to simultaneously see the value of a variable in each process or thread. Use View > Show Across
> Thread or View > Show Across > Process to display the variable either across processes or threads, Figure 22.

Figure 22 Viewing Across Processes

source - main - 1,1
File Edit Miew Tools Window Help |
[1 Z] EEIEFIEXEY
Expression: source Address: | Multiple
Slice: Filter:
Type: | int
Process [walue i
mismatchLinus<.0 0x000000071 (1)
mismatchLinus<1 0x00000000 (0)
mismatchLinus.2 0x00000000 (0)
mismatchLinus<.3 0x00000000 (0)
mismatchLinu<4 0x00000000 (0)
mismatchLinus<.5 0x00000000 (0)
mismatchLinus<.6 0x00000000 (0)
mismatchLinus<.7 0x00000000 (0)

28

Getting Started with TotalView Products Working with Multi-Processes and Multi-Threads

If you are debugging an MPI program, use the Tools > Message Queue Graph Window graphically to display the
program’s message queues.

Figure 23 A Message Queue Graph

| Options | Update | Close | Help |

You can click on the boxed numbers to place the associated process into a Process Window, or click on a red
number next to an arrow to display more information about that message queue.

RELATED TOPICS

Manipulating processes and threads in various ways “Manipulating Processes and Threads” in the Classic

TotalView User Guide

29

Getting Started with TotalView Products Debugging Using the Command Line Interface (CLI)

Debugging Using the Command Line
Interface (CLI)

The Command Line Interface (CLI) is a command-line debugger integrated with TotalView. You can use it and
never use the TotalView GUI, or you can use it and the GUI simultaneously, which is the assumed approach in
much of the documentation.

The CLI is embedded in a Tcl interpreter, so you can also create debugging functions that exactly meet your
needs. You can then use these functions in the same way you use TotalView's built-in CLI commands. You will
most often use the CLI when you need to debug programs using very slow communication lines or when you
need to create debugging functions that are unique to your program.

Start the CLI from the GUI using Tools > Command Line in the Root or Process Windows, or directly from a shell
prompt by typing totalviewcli. Figure 24 shows the CLI window debugging part of a program.

Figure 24 CLI xterm Window

dl, <> =
a1 > denormziiy = 00000001
dl, <> =
826> 40 continue
dl,<> dlist -n 6

808 do 40 i =1, 50O

a1 denormziiy = 00000001
826> 40 continue

83 do 42 i = 500, 1000

a4 denormstiy = " BO00000L

1 {4656} Breakpoint [arraysLINUK]

1.1 {4B56/4656) Breakpoint PC=0x08048fa8, [arrays,F#821
dl,<> duwhere
>0 HATN_ PC=0:08048f a8, FP=0xbfffdaal [arrays,F#82]

1 main PC=0:08049092, FP=0xbfffdact [/nfs/fz/udhomesbarryk/Examp
leProga/arraysL INUK]

2 __libc_start_main PC=0x400B5647, FP=0xbfffdb08 [, sysdeps/generic/libo-sta
rt,c#123]
dl, <> dup

1 main PC=0:08049092, FP=0xbfffdact [/nfs/fsiudhomesbarryk/Exampl
eProgsiarraysLINUX]

dL.<

In the Classic TotalView User Guide, CLI commands are frequently provided alongside GUI procedures, always
within a gray box to be easily recognizable, for example:.

CLI: dactions -save filename

The command above saves your action points to a file, and is the equivalent of using the Action Point > Save All
command. The Classic TotalView Reference Guide details all the CLI commands.

RELATED TOPICS

Using the CLI Part Ill, “"Using the CLI" in the Classic TotalView User Guide

Details of CLI commands “CLI Commands” in the Classic TotalView Reference Guide

30

Getting Started with TotalView Products Debugging CUDA Programs

Debugging CUDA Programs

The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA code
that is running on the hosts host system and the NVIDIA® GPU. CUDA support is an extension to the standard
version TotalView, and is capable of debugging 64-bit CUDA programs. Debugging 32-bit CUDA programs is cur-
rently not supported.

Supported major features:
m Debug CUDA application running directly on GPU hardware
m Set breakpoints, pause execution, and single step in GPU code
m View GPU variables in PTX registers, local, parameter, global, or shared memory
m Access runtime variables, such as threadldx, blockldx, blockDim, etc.
m Debug multiple GPU devices per process
m Support for the CUDA MemoryChecker
m Debug remote, distributed and clustered systems

m All host debugging features are supported, except for ReplayEngine

RELATED TOPICS

Using the CUDA debugger “About the CUDA Debugger” in the Classic TotalView User
Guide
The CLI dcuda command dcuda in the Classic TotalView Reference Guide

31

Getting Started with TotalView Products Memory Debugging

Memory Debugging

TotalView has a fully integrated version of the MemoryScape product for debugging memory issues. Memory-
Scape is also available as a standalone product.

MemoryScape can monitor how your program uses malloc() and free() and related functions such as calloc()
and realloc(). You must enable memory debugging before you start running your program. Here are three ways
to enable memory debugging:

m From the New Program Window, select Enable Memory Debugging.
m From the Process Window, select Debug > Enable Memory Debugging.

m Onthe command line, type memscape (which launches MemoryScape without TotalView)

Once you have loaded a program to debug in TotalView, select Debug > Open MemoryScape to launch the pri-
mary MemoryScape window.

Figure 25 MemoryScape home window

MemoryScape 3.2.2-1

February 7. 2012 | Memory Debugging Session

Add Prograns :m nory Debugging Guide R
Add new progran Analyze your memory debugging data

Add pa‘ralle]_._ progran

Attach to running prost || Memory debugging data is available for analysis. Select & report to view memory

Add core file : debugging data,

Add memory debugeing £i

] Leak detection source report

Generate Reports Heap zraphical report

Hyfé_ip S‘ta_t__us Reports Heap status source report % |
Leak Tetection Reports

Menory Usaze Reports _Process Status and Control =
Corrupted Memory Report) [=

Compare Memory Usage £

Other Tasks H"'
Export Memory Data 1eper

Pl el i ich

Because MemoryScape monitors calls to the malloc API, you can even debug programs that use their own mem-
ory management libraries. The only requirement is that these libraries eventually use the API. In most cases, you
don't need to recompile or relink your program to use MemoryScape.

32

Getting Started with TotalView Products Memory Debugging

RELATED TOPICS

Using MemoryScape Use of MemoryScape is explained in a separate document, Debugging
Memory Problems with MemoryScape, however this section introduces a
few key features.

Viewing Memory Event Information

After you enable memory debugging, MemoryScape stops your program and raises an event flag if a memory
problem occurs. If you are working within TotalView, TotalView also displays an event window, Figure 26. You can
see the detailed information about the event either in the TotalView event window or by clicking on the Memory-
Scape event flag.

The details include the backtrace — that is, a list of stack frames — that existed when your program caused the
memory error. Clicking on a stack frame shows the corresponding source code. The other tabs let you further
explore where the memory block was allocated and deallocated. You can also see the contents of the block in the
Block Details tab.

Figure 26 Memory Event Details

-

Process 1 (21099): free_doubleLinux - 1
Program attempted to free an already freed block

Event Location I.ﬁ.llocation Location | Deallocation Location | Elock Details |

Eackirace

[} |Functi0n |Line# |Source Information | i
TW_HE&P_notify_breakpoint_here 50tv_heap_hreakpoint.c
TW_HEA&P_notify_tv 581 tv_heap_target.c
TY_HEAP _notify_event 640tv_heap_target.c
find_and_tag_and_claim_alloc_rec 1766 malloc_interposers.c
free_hody 3436 malloc_interposers.c
TW_HEA&P_free_interposer 3547 malloc_interposers.c
free 172 malloc_wrappers_dlopen.c

| 3Blfree_double_free.c
__lihc_start_main lihc.s0.6 Fi
Source | fhomedbarrykiAests/free_double_free.c
36 &l

37 | printf (“free { %p) again [incorrect usagen”, 5;

I Yiew in Block Properties window Help |

33

Getting Started with TotalView Products Memory Debugging

RELATED TOPICS

MemoryScape error notification “Event and Error Notification” in Debugging Memory Problems
with MemoryScape

Halting execution at a memory error “Halt Execution on Memory Event or Error” in Debugging
Memory Problems with MemoryScape

Finding Memory Leaks

After you enable memory debugging, start your program. If you are working within TotalView, be sure to select
Debug > Open MemoryScape to access MemoryScape's features.

Whenever you stop execution, you can ask for a report of your program'’s leaks.

Figure 27 Leak Detection Source Reports

Hesp Status = | Me

Lo Leak Detection Source Report
sx;gu n'."L?.o'.y Cata I Enatis Fitaring

Leak Dataction
EBackracs Report

L myClass i myClassa HLMOKE

Ling 12 S00KE
Othar Reporis Categories

Hidp Status Reports Eaock 510 sz
Mamory Usaga Reports Block 5.9 ez

OdifedTa0 e
OEEL000H Ot
[T IR ENE

2ili
085718 ||ﬁ§]
Source

Momemary ks TppTy Class At

(i
Compare Momory Usage

Crthvar
Marsage Fillers

P _ -

RO foriing i=0; k<size; be<)
fost g = Moad |;

When you click on a leak in the top part of the window, MemoryScape places the backtrace associated with the
leak in the bottom part. When you click on a stack frame in this backtrace, MemoryScape displays the line within
your program that allocated the memory.

RELATED TOPICS

Finding memory leaks “Finding Memory Leaks" in Debugging Memory Problems with
MemoryScape

Memory leak reports “MemoryScape Information” in Debugging Memory Problems with
MemoryScape

34

Getting Started with TotalView Products Memory Debugging

Detecting Memory Corruption
You can detect memory block overrun and underrun errors with either guard blocks or Red Zones.
Guard Blocks:
Use guard blocks to detect writing beyond the limits of a memory block. To turn them on, either
m Select Medium from Basic Memory Debugging Options, or

m Select Guard allocated memory from Advanced Memory Debugging Options.

With guards on, MemoryScape adds a small segment of memory before and after each block that you allocate.
You can find corrupted memory blocks in two ways:

m When the program frees the memory, the guards are checked for corruption. If a corrupted guard is
found, MemoryScape stops program execution and raises an event flag. Click on the event flag to
see the event details.

m Select Corrupted Memory Report from the Memory Reports page.

Red Zones:

Use Red Zones to find both read and write memory access violations, notifying you immediately if your program
oversteps the bounds of your allocated block.

To turn them on, either
m Select High from Basic Memory Debugging Options, or

m Select Use Red Zones to find memory access violations from Advanced Memory Debugging
Options.

With Red Zones on, a page of memory is placed either before or after your allocated block, and if your program
tries to read or write in this zone, MemoryScape stops program execution and raises an event flag. Click on the
event flag to see the event details.

The default is to check for overruns, but you can check for underruns using Advanced Options controls.

RELATED TOPICS

Locating corrupted memory “Viewing Corrupted Memory” in Debugging Memory Problems with
MemoryScape
Guard blocks and Red Zones “Using Guard Blocks and Red Zones" in Debugging Memory

Problems with MemoryScape

35

Getting Started with TotalView Products Memory Debugging

Analyzing Memory

To analyze how your program is using memory, select the Heap Graphical Report on the Memory Reports Page to
see the memory your program is using, Figure 28.

Figure 28 Heap Status Graphical Report

\ 8 nw | Hes - | M y | Carrupted Memory | Memary Comparisons
June 12, 2008 Heap Status Graphical Report
Save Dala Ciptions
w ’7|7 Detect Leaks [~ Enahle Filtering ‘ Leaked Block i - ' ’ H

Heap Status Reports
Source Report
Backtrace Report

Process 2 (32736): fiterapp i

1
I
|U><DBS1 0008 - Ox0633ecad (155.06KE)

Other Reports Categories
Leak Detection Reports

tdemory Usage Reporis
Corrupted kemory Report
Compare kMemory Usage

Memory block:
Type Allocated
Filtered Mo

Size a1z

Start Address 0x083187h0
Heap Information | Backtrace/Source | Memory Content End Address 0x083183af

—Cwverall Totals—— |- Selected Blogk—— (|- Related Backirace ID 2
Allocator C

Craner C
Point of allocation:
File main.cxx
Method main
Line 21
Guard Blocks:
Fre-guar
size i bytes
U pattemn Ox77TITITT
Fost-gueary
size 3 bytes
pattern 0x33999939

Other Tasks
hanage Filters

Process Selection

Heap

D allocated
ECarupted Guard Bl
Deallocated
Guard Blocks

0=x0E319938
0x0E319960

- Post-guard
-Filtered Mo

When you select a block in the top area, MemoryScape displays information about the selected block in the lower
area. In addition, and perhaps more importantly, it displays how many other allocations are associated with the
same backtrace and the amount of memory allocated from the same place. Other reports within the Heap Status
Reports Page let you display the backtrace and source line associated with an allocation.

RELATED TOPICS

The heap graphical report “Graphically Viewing the Heap” in Debugging Memory Problems
with MemoryScape

Finding Dangling Pointers

With memory debugging turned on in TotalView, you can identify a dangling pointer (points into deallocated
memory) through additional information in the Variable Windows and the Stack Frame Pane, Figure 29.

36

Getting Started with TotalView Products Memory Debugging

Figure 29 Dangling Pointers

addr - main - 1,1
File Edit Miew Tools Window Help |
Nl 4 EEIETFIEXEY
Expression: | addr Address: | 0xbffi1 44
Type: | int *
Yalue i

0x0804a008 (Dangling) - 0x00000000 (0)

mizaddr - main - 1,1

File Edit Miew Tools Window

Help |

[| EEIEFIEXEY

Expression: | misaddr Address: | 0xbffi140

Type: | int *

Walue

i

0x0804a01c (Dangling Interior) -= 0x00000000 (0

N NI PR S L S Y 2 W,

RELATED TOPICS

Fixing dangling pointers

Using the command dheap -is_dangling

“Fixing Dangling Pointer Problems” in Debugging
Memory Problems with MemoryScape

“Checking for Dangling Pointers:

“dheap -is_dangling” in Debugging Memory Prob-
lems with MemoryScape

Setting and Using Baselines

Use the Debug > Heap Baseline > Set Heap Baseline command in the Process Window to have MemoryScape
mark the current memory state. After your program has been executing, use the Debug > Heap Baseline >
Heap Change Summary command to see what has happened to memory since you created the baseline.

Figure 30 Heap Change Summary Window

e ey tawe sy |

Al i Since B

Toggle the "Mew Allacations" or "MNew Leaks" buttons to see detailed backtraces
Total Bytes Total Count

71 Mew allocations | 221.07KB 315
7| New Leaks | 7167KB 377

&Y Updiate Reset Baseline Help |

Pressing the New Allocations or New Leaks button displays more information.

37

Getting Started with TotalView Products Memory Debugging

Some reports within MemoryScape also have Relative to baseline buttons that allow you to limit the display to
allocations and leaks occurring only since you set the baseline.

RELATED TOPICS

Setting a heap baseline "Debug > Heap Baseline >Set Heap Baseline,” available directly from the
Help button within the TotalView interface, and also provided in the
shipped documentation “In-Product Help.”

38

Getting Started with TotalView Products Reverse Debugging with ReplayEngine

Reverse Debugging with ReplayEngine

ReplayEngine is a separately licensed product for Linux-x86 (32-bit) and Linux-x86-64 that records all your pro-
gram's activities as it executes within TotalView. After recording information, you can move forward and backward
within these previously executed instructions.

To enable ReplayEngine, select Enable reverse debugging with Replay Engine on the Debug Options tab after
choosing either:

m File > Debug New Program to launch the Program Session dialog
m File > Debug New Parallel Program to launch the Parallel Program Session dialog

m File > Attach to Running Program to launch the Attach to a Running Program dialog

Figure 31 Enabling using File > Debug New Program

am FROGRA & Program Session

DEBUG ;
A RS Feverse Debugging

Step and debug in reverse from any poind during execution.

% EHVIRONHENT I'k Enable reverse debugging with ReplayEngine

For a new program, ReplayEngine begins recording instructions as soon as you start program execution. For a
running process you have attached to, ReplayEngine starts recording the next time you restart the process.

You can also enable ReplayEngine by selecting the Record button in the Process window's toolbar or by using the
TotalView -replay command-line option:

dl oad -repl a?/ program pat h
dattach -replay program path

The ReplayEngine commands are on the toolbar, Figure 32

Figure 32 Tool Bar with ReplayEngine Buttons

PINE I 5933 @ W 4 8 =

Go Halt Kill Restart |Mext Step Out Fun To|Record GoBack Frev UnStep Caller BackTo Live Sa

When replaying instructions, your program'’s state is displayed as it was when that instruction was executed. The
displayed information is read-only. For example, you cannot change the value of variables.

Existing execution commands work when replaying instructions. For example, you can use the Step or Out com-
mands to move forward in the program'’s history.

39

Getting Started with TotalView Products Reverse Debugging with ReplayEngine

Only when you reach the statement that would have executed outside of “replay mode” is the program put back
into “record mode.” For example, suppose you are at line 100 and you select line 25 and press the BackTo but-
ton. If you use commands that move forward in replay mode such as Step, you will switch from replay mode to
record mode when get you back to line 100.

Because you can see previously executed instructions, you can quickly locate where a problem began to occur.

RELATED TOPICS

Reverse debugging Reverse debugging is discussed in a separate user guide,
Reverse Debugging with ReplayEngine

40

	Contents
	The Basics
	What is TotalView
	Starting TotalView and Creating a Debugging Session
	Getting Around TotalView

	Accessing TotalView Remotely
	Debugging on a Remote Host
	Setting Breakpoints and Stepping through a Program
	Action Points (breakpoints)
	Stepping Through a Program

	Examining and Editing Data
	Diving and Viewing Data
	Editing Data
	Evaluating Expressions

	Working with Multi-Processes and Multi-Threads
	Starting a Parallel Debugging Job
	Working with and Viewing Processes and Threads

	Debugging Using the Command Line Interface (CLI)
	Debugging CUDA Programs
	Memory Debugging
	Viewing Memory Event Information
	Finding Memory Leaks
	Detecting Memory Corruption
	Analyzing Memory
	Finding Dangling Pointers
	Setting and Using Baselines

	Reverse Debugging with ReplayEngine

