
Classic TotalView  
Getting Started Guide

Version 2024.3
September, 2024



TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse 
of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION.  THE DOCUMENTATION 
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, 
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT, 
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION. 

The Documentation is subject to change at any time without notice. 

ACKNOWLEDGMENTS

© 2024 Perforce Software, Inc. All rights reserved.
© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998–2007 by Etnus LLC. All rights reserved.
© 1996–1998 by Dolphin Interconnect Solutions, Inc.
© 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any 
products or services by the trademark holder. Contact Perforce Software, Inc., for further details. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in 
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce 
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use 
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/


iii

Contents

Getting Started with TotalView Products

The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
What is TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Starting TotalView and Creating a Debugging Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Loading Programs into TotalView for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Managing Debugging Sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Getting Around TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
TotalView Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
The Root Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
The Process Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Variable Window and Array Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Accessing TotalView Remotely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Debugging on a Remote Host  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Setting Breakpoints and Stepping through a Program . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Action Points (breakpoints)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Stepping Through a Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Examining and Editing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Diving and Viewing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Editing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Evaluating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Working with Multi-Processes 
and Multi-Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Starting a Parallel Debugging Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Working with and Viewing Processes and Threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Debugging Using the Command Line Interface (CLI)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Debugging CUDA Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Memory Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Viewing Memory Event Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Finding Memory Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Detecting Memory Corruption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Analyzing Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Finding Dangling Pointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Setting and Using Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



iv

Contents 

Reverse Debugging with ReplayEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



1

Getting Started with TotalView 
Products

This guide provides an introduction to TotalView®’s basic features to help you get quickly started. Each topic 
here is introduced briefly, with links to more detailed discussions for more information.

NOTE: This guide does not discuss all of TotalView’s features, but rather focuses on those primary 
tools that all programmers need when debugging programs of any complexity and scope. 
For a more complete introduction to TotalView, see “About TotalView” in the Classic 
TotalView User Guide.

This guide includes:

 The Basics on page 2

 Accessing TotalView Remotely on page 16

 Debugging on a Remote Host on page 17

 Setting Breakpoints and Stepping through a Program on page 18

 Examining and Editing Data on page 21

 Working with Multi-Processes and Multi-Threads on page 25

 Debugging Using the Command Line Interface (CLI) on page 30

 Debugging CUDA Programs on page 31

 Memory Debugging on page 32

 Reverse Debugging with ReplayEngine on page 39



2

Getting Started with TotalView Products        The Basics

The Basics

What is TotalView
TotalView is a source- and machine-level debugger for multi-process, multi-threaded programs. Its wide range of 
tools provides ways to analyze, organize, and test programs, making it easy to isolate and identify problems in 
individual threads and processes in programs of great complexity.

It includes two primary interfaces: the Graphical User Interface (GUI) and the Command Line Interface (CLI) run-
ning within an xterm-like window for typing commands. Generally, the GUI provides tools and displays data in a 
way that is easy to work with and understand, and is the recommended way to use TotalView. However, the two 
interfaces complement one another and can be used simultaneously, providing the most complete approach to 
debugging as well as access to the power of all TotalView’s tools. 

Shipped Examples

TotalView ships with several examples that illustrate many of its features. These examples are located in your 
TotalView installation directory at installdir/toolworks/totalview.version/platform/examples/. You can 
load these examples into TotalView at startup and explore how it works.

Documentation

TotalView provides TotalView user and reference guides, as well as MemoryScape and ReplayEngine user guides. 
In addition, context-sensitive help launches when you click the Help button while using TotalView (and is also 
available directly from the shipped html documentation under “In-Product Help.”)

More Information

For more information on the documentation set, conventions used in the documentation, and contact informa-
tion, see the Resources section of the User Guide.



3

Getting Started with TotalView Products        The Basics

Starting TotalView and Creating a Debugging Session

NOTE: TotalView has a new user interface with improved debugging workflows, features, and a mod-
ern look and feel. Existing TotalView users can opt to use the new UI by selecting the UI 
preference on the Display tab in the Preferences dialog.  

For new TotalView users, the new UI is the default, but you can revert to the Classic TotalView 
UI, if necessary, by changing the Display preference on the Preferences tab. To learn more 
about using the new UI, see the new UI HTML documentation in the TotalView distribution at 
<installdir>/totalview.<version>/help/html/TotalView_Help, or the online TotalView 
documentation set and Getting Started Guide.

NOTE: The most common way to start TotalView is by entering:

totalview program_name

where program_name is the executable of the program you are debugging. 

NOTE: To run a program in TotalView, compile it for debugging, usually with the -g command-line 
option, depending on your compiler.

https://help.totalview.io/
https://help.totalview.io/
https://help.totalview.io/current/HTML/index.html#page/TotalView/GettingStarted.html#


4

Getting Started with TotalView Products        The Basics

Starting TotalView with no arguments (i.e. just totalview) launches the Start a Debugging Session dialog. 

This dialog is part of the Sessions Manager and is the easiest way to load a program into TotalView. Once you con-
figure a debugging session using this dialog, the settings are saved so you can access them later.

From here, you can:

1. Open a debugging session 

Select a type of session:
A new program to launch the Program Session dialog and selecting a program to debug (equiva-

lent to starting TotalView with a program name argument).
A new parallel program 

to launch the Parallel Program Session dialog and entering parallel system set-
tings.

A running program (attach)
to launch the Attach a running program(s) dialog and selecting an already-run-
ning process.

A core file or replay recording file 

to launch the Core or Replay Recording Session File dialog and selecting an exe-
cutable and associated core file or replay recording session file.

Figure 1 TotalView Sessions Manager: Start a Debugging Session dialog



5

Getting Started with TotalView Products        The Basics

My last session 
to launch a debugging session using your last session. 

2. Manage your debugging sessions 

Select Manage Sessions to edit, delete, or view the details of any saved sessions.

Loading Programs into TotalView for Debugging

When you select the type of debugging session you want from the Start a Debugging Session dialog, the relevant 
screen launches to help you configure your session. For instance, selecting A new program launches the Pro-
gram Session dialog.

Here, you enter a name for your session, the file to debug and any arguments. Use the Debug Options and 
Environment tabs (at left) to further configure your session.

RELATED TOPICS
Compiling your program for debugging  “Compiling Programs” in the Classic TotalView User 

Guide

Figure 2 Program Session dialog



6

Getting Started with TotalView Products        The Basics

Managing Debugging Sessions

In the Sessions Manager, select the Manage Sessions button to launch the Manage Debugging Sessions dialog.

This dialog displays previously configured debugging sessions. From here, you can edit, duplicate, or delete a ses-
sion, as well as view its configuration. In addition, you can start a debugging session using the green Start 
Session button.

You can also access the Sessions Manager via File > Manage Sessions on both the Root and Process windows.

RELATED TOPICS
Loading programs into TotalView using the 
Sessions Manager

“Loading Programs from the Session Manager” in the 
Classic TotalView User Guide

Loading programs into TotalView using the CLI “Loading Programs Using the CLI” in the Classic 
TotalView User Guide

Figure 3 Manage Debugging Sessions



7

Getting Started with TotalView Products        The Basics

Getting Around TotalView
Once you’ve started TotalView and loaded a program to debug, its two primary windows launch, the Root Window 
and the Process Window. These windows are the heart of TotalView and provide access to all its other windows 
and features, such as the Variable and Array windows, among many others. Each window contains a set of menus 
that provide a wide range of commands specific to that window.

This section does not introduce all of TotalView’s windows or commands, but you will find them as you explore the 
product and debug your programs.

Figure 4 Root Window, File > Manage Sessions

RELATED TOPICS
The Sessions Manager “Managing Sessions” in the Classic TotalView User Guide

Additional ways to start TotalView “Starting TotalView” in the Classic TotalView User Guide

Command line syntax for the totalview 
command

“TotalView Command Syntax” in the Classic TotalView Reference 
Guide

Compiling your program for debugging  “Compiling Programs” in the Classic TotalView User Guide

Loading a program into TotalView using either 
the GUI or the CLI

“Loading Programs from the Sessions Manager” in the Classic 
TotalView User Guide

Attaching an existing process “Attaching to a Running Program” in the Classic TotalView User 
Guide

Debugging a core file “Debugging a Core File” in the Classic TotalView User Guide

Starting a parallel debugging job “Starting MPI Programs Using File > Debug New Parallel Pro-
gram” in the Classic TotalView User Guide

Debugging a replay recording session file “Debugging a Replay Recording Session” in the Classic 
TotalView User Guide



8

Getting Started with TotalView Products        The Basics

TotalView Commands

Each window has a set of menus, such as File, View, or Tools, with different commands depending on the win-
dow. For instance, the Process Window contains a Tools > Call Graph command to view the call graph, while the 
Variable Window’s Tools menu provides a Tools > Visualizer command to view array data graphically.

These GUI commands are often equivalent to commands also available through the CLI. For instance, to save a 
set of breakpoints to a file, use the Process Window’s Action Point > Save As GUI command, or the CLI com-
mand dactions -save filename.

The Root Window

The Root Window launches at TotalView startup, and displays a list of all the programs, processes and threads 
under TotalView control. 

RELATED TOPICS
GUI commands From within TotalView, click the Help button in any 

window to launch context-sensitive help on any 
command (also viewable as “In Product Help” in the 
html version of the documentation).

CLI commands “CLI Commands” in the Classic TotalView Reference Guide 



9

Getting Started with TotalView Products        The Basics

Figure 5 shows the Root Window for an executing multi-threaded multi-process program.

This window displays status information and can be used to navigate to any of your programs, processes, or 
threads by diving on them. Diving simply means clicking on an object to launch a window with detailed 
information.

NOTE: Diving is central in TotalView and provides instant access to a wide range of detailed data by 
drilling down into the object, routine, process, thread, etc. 

Figure 5 Root Window

RELATED TOPICS
General GUI features available on 
most windows

”Using and Customizing the TotalView GUI” in the Clas-
sic TotalView User Guide

The Root Window “Using the Root Window” in the Classic TotalView User 
Guide



10

Getting Started with TotalView Products        The Basics

The Process Window

When you load any program or process into TotalView, the Process Window launches, displaying state about the 
current program or process and its threads. It includes some of the typical menu items of any GUI application 
(such as File, Edit, and View) and provides access to most of TotalView’s features.

It is here that you set breakpoints, step through your program, and manage its threads.

The Process Window is divided into four areas:

 Stack Trace Pane, displaying the call stack.

Figure 6 The Process Window



11

Getting Started with TotalView Products        The Basics

 Stack Frame Pane, displaying the current thread’s variables.

 Source Pane, displaying your program’s source code or assembly instructions. Note the context 
menu that becomes available when you select a line of code in your program.

 In the “tabbed area”:

 Action Points Tab, which displays a list of the thread’s current action points (TotalView 
nomenclature for its powerful set of breakpoints).

 Processes/Ranks Tab, displaying a grid of the processes or ranks within the current control 
group.

 Threads Tab, with a list of all active threads in the process.

Variable Window and Array Viewer

TotalView provides multiple ways to see and edit your data, The primary window for working with data is the Vari-
able Window. If your variable is an array, you can use the Array Viewer.

The Variable Window

The Variable Window displays details about your variables. To launch the Variable Window, Figure 7, just dive (by 
double-clicking) on a local variable (displayed in the Process Window’s Stack Frame Pane), or on a global variable 
(in the Source Pane).

RELATED TOPICS
The Process Window in general “Using the Process Window” in the Classic TotalView User 

Guide



12

Getting Started with TotalView Products        The Basics

The Variable Window is a powerful tool for analyzing your program’s data. You can control the display and cast 
your data in the Expression field, change the variable’s address in the Address field, or change the data type in the 
Type field. For parallel programs, you can view or update the value of a variable in all of the processes or threads 
at once or individually. For variables that contain substructures, use the “+” or “–” icons to view them.

If the displayed variable is a pointer, structure, or array, you can dive on the value. This new dive, called a nested 
dive, replaces the information in the Variable Window with information about the selected variable. 

Figure 7 Variable Window



13

Getting Started with TotalView Products        The Basics

Figure 8 shows a Variable Window before and after diving into a pointer variable sp with a type of simple*. The 
base window displays the value of sp while the nested dive window shows the structure referenced by the 
simple* pointer. 

Use the undive/redive buttons to move between nested windows and the base window:

 To undive from a nested dive, click the undive arrow button so that the base window’s contents 
appear. To undive from all dive operations, click the Undive All button.

 To redive after undiving, click the redive arrow button. To redive from all your undive operations, 
click on the Redive All arrow button.

 To retain access to a nested or base window so that both are visible, select the Window > 
Duplicate command to duplicate the current Variable Window.

Array Variables:

For an array, the Variable Window includes a Slice field that shows each of the array’s dimensions as a colon. You 
can display a section by editing the array specifier. Using the Slice field lets you focus on a subset of the data. For 
example, to display items 101 through 125 of a one-dimensional Fortran array, change the Slice field to 
(101:125). 

You can also enter an expression in the Filter field to limit the display. For example, if you’re looking for values 
greater than 300, type “> 300”. 

Figure 8 Nested Dives



14

Getting Started with TotalView Products        The Basics

In Figure 9, the top window uses a slice to limit the amount of information displayed in a three-dimensional array, 
while the bottom window combines a filter with a slice.

Figure 9 Sliced and Filtered Arrays



15

Getting Started with TotalView Products        The Basics

The Array Viewer

TotalView provides another way to look at the data in a multi-dimensional array. The Variable Window’s Tools > 
Array Viewer command opens a window that presents a slice of array data in a table format, Figure 10. 

When the Array Viewer opens, the initial slice of displayed data depends on the values entered into the Variable 
Window. You can change the displayed data by modifying the Expression, Type, or Slice controls. For example, you 
can cast the array to another array expression, modify the type to cast the array to a different array type, or con-
trol how the slice is viewed. 

Figure 10 Array Viewer

RELATED TOPICS
The Variable Window “Displaying Variables” in the Classic TotalView User Guide

“Diving in Variable Windows” in the Classic TotalView User Guide

“Changing How Data is Displayed” in the Classic TotalView User Guide

Arrays “Examining Arrays” in the Classic TotalView User Guide



16

Getting Started with TotalView Products        Accessing TotalView Remotely

Accessing TotalView Remotely
Using the Remote Display Client, you can start and run both TotalView and MemoryScape on a remote machine 
so you do not need to have them installed on your own machine. A licensed copy of TotalView must be installed 
on the remote machine, but you do not need an additional license to run the Client.

Platforms on which you can run a Client include: 

 Linux x86 (32-bit) and Linux x86-64

 Microsoft Windows 7, Vista, and XP

 Apple Mac OS X Intel 

Clients for all supported systems are available for download on the TotalView web site’s Remote Display Client 
page.

RELATED TOPICS
Remote Display Client “Accessing TotalView Remotely” in the Classic TotalView User 

Guide

https://totalview.io/products/totalview#tab-panel-791
https://totalview.io/products/totalview#tab-panel-791


17

Getting Started with TotalView Products        Debugging on a Remote Host

Debugging on a Remote Host
Using the TotalView Server, you can debug programs located on remote machines. Debugging a remote process 
is basically the same as debugging a native process, although performance depends on the load on the remote 
host and network latency. In addition, TotalView runs and accesses the process tvdsvr on the remote machine.

RELATED TOPICS
The TotalView Server “Setting Up Remote Debugging Sessions” in the Classic TotalView User 

Guide

The tdvsvr process “The tvdsvr Command and Its Options” in the Classic TotalView Refer-
ence Guide



18

Getting Started with TotalView Products        Setting Breakpoints and Stepping through a Program

Setting Breakpoints and Stepping through a 
Program

Action Points (breakpoints)
An action point is TotalView’s much more powerful version of a breakpoint. Here are the four types:

 Breakpoint - stops execution of the processes or threads that reach it. 

 Process Barrier Point - holds each process when it reaches the barrier point until all processes in 
the group have reached the barrier point. Primarily for MPI programs.

 Evaluation Point - executes a code fragment when it is reached. Enables you to set “conditional 
breakpoints” and perform conditional execution.

 Watchpoint - monitors a location in memory and either stops execution or evaluates an expression 
when the value stored in memory is modified.

Set action points in the Process Window with a single left-click on the line number. TotalView displays a  sign.

View all action points in the Process Window’s Action Points tab.

When your program halts on an action point, TotalView reports this status in various ways, including in the Root 
Window, the Process Window’s Source Pane, and through a yellow arrow (see above figure) on the Action Points 
tab.

Figure 11 Breakpoint Set At a Line

Figure 12 Action Points Tab



19

Getting Started with TotalView Products        Setting Breakpoints and Stepping through a Program

Once you have created an action point, you can save, reload, suppress, and redefine its characteristics in a num-
ber of ways. You can set action points on all functions within a class or on a virtual function, and finely control how 
action points work in multi-threaded multi process programs.

Stepping Through a Program
To start and step through your program, the easiest way is to use the buttons on the Process Window’s toolbar:

 To start and stop your program:

 Set a breakpoint, then select Go in the toolbar. Your program starts executing. Execution 
stops just before the line that contains a breakpoint or when you click Halt.

 Select Next. TotalView starts your program, and then stops it immediately before the first 
statement in your main() function.

 To stop a running program, select the toolbar’s Halt button. To restart a program, select the 
toolbar’s Restart button.

 To step through your program, use the Step and Next buttons. Both tell your program to execute 
the current line, but when a line has a function call

 Step goes into the function

 Next completely executes the function 

RELATED TOPICS
How action points work “About Action Points” in the Classic TotalView User Guide

Setting action points  “Setting Action Points” in the Classic TotalView User 
Guide

The CLI command dactions to display, save, 
and reload action points

 dactions in the Classic TotalView Reference Guide

The role of barrier points in multi-threaded 
processes

“Using Barrier Points” in the Classic TotalView User 
Guide

Figure 13 Process Window Toolbar



20

Getting Started with TotalView Products        Setting Breakpoints and Stepping through a Program

If you want to get to a line without individually stepping each line in between, select the line (not the line num-
ber) to highlight it, then click the Run To button. Alternatively you can use the dskip command to define rules 
to skip over or through specific functions or files. You can add rules that match a function, all functions in a 
source file, or a specific function in a specific source file.

 To step out of a function:

If you stepped into a function and want to pop out to the statement that called it, click the Out button.

RELATED TOPICS
Basic stepping commands “Using Stepping Commands” in the Classic TotalView User 

Guide

Stepping in multi-process or 
multi-threaded programs 

“Stepping Part I” and “Part II” in the Classic TotalView User Guide

Using CLI commands to step “Execution Control Commands” in the TotalView 
Reference Guide



21

Getting Started with TotalView Products        Examining and Editing Data

Examining and Editing Data

Diving and Viewing Data
Diving is integral to the TotalView GUI and provides a quick, intuitive, and effective way to get more information 
about various program elements. Diving is usually performed by just double-clicking on an element and generally 
launches a window with more information. You can dive on variables of course, but also on processes and 
threads, the call stack, functions, and source code.

To dive on a variable, just double-click on it or highlight it and select View > Dive to launch a Variable Window, Fig-
ure 14.

Local variables are visible in the Stack Frame as in Figure 14, while global variables are available in the Source 
Pane.

In the Source Pane, if a global variable or function can be dived on, a red dotted box appears when your cursor 
hovers over it, Figure 15.

For example, the Stack Frame Pane in the Process Window contains the current call stack. When you dive on a 
routine, TotalView shows the routine in the Source Pane and its variables in the Stack Frame Pane.

Figure 14 Diving on a variable in the Stack Frame

Figure 15 Diving on an object in the Source Pane



22

Getting Started with TotalView Products        Examining and Editing Data

TotalView provides several other ways to see more detail about any aspect of your program:

 Displaying the call graph: 

Use Tools > Call Graph to launch a dynamic diagram that shows all the currently active routines. Click 
Update to recreate this display in a running program

 Viewing the state of every process and thread:

Use Tools > Parallel Backtrace View to view the status of thousands of processes from a single window.

 Viewing your array data graphically: 

Use the Variable Window’s Tools > Visualize to view array data as a graph or in the Visualizer, a versatile, 
stand-alone program that can be launched directly from within TotalView or separately via the command 
line.

Figure 16 Diving on a routine

RELATED TOPICS
All objects you can dive on “Diving into Objects” in the Classic TotalView User Guide

Diving in a Variable Window “Diving in Variable Windows” in the Classic TotalView User Guide

The View > Dive In All command  “Displaying an Array of Structure’s Elements” in the Classic 
TotalView User Guide

Displaying your call graph “Displaying Call Graphs” in the Classic TotalView User Guide

Displaying STL variables “Displaying STL Variables” in the Classic TotalView User Guide

Displaying assembler code  “Viewing the Assembler Version of Your Code” in the Classic 
TotalView User Guide

Viewing processes and threads ”Displaying a Variable in all Processes or Threads” in the Classic 
TotalView User Guide



23

Getting Started with TotalView Products        Examining and Editing Data

Editing Data
You can edit a wide range of data while debugging your programs, such as variable type, value, and address, as 
well as source code. For instance, use the File > Edit Source command to examine the current routine in a text 
editor. 

NOTE: If you edit source code while testing, be aware that these changes are within TotalView only 
and are not persisted to your actual files. 

Evaluating Expressions
Expressions are used throughout TotalView. For instance. when you add code to an evaluation point (an action 
point that executes a code fragment), you enter it into the Expression Window. Your program’s expressions are 
listed in the Expression List Window where you can add, edit, and control expressions. 

Use the Evaluate Window (Tools > Evaluate) to evaluate expressions in the context of a particular process, in C, 
Fortran, or assembler.

RELATED TOPICS
General editing capabilities in dialog boxes “Editing Text” in the Classic TotalView User Guide

Changing a variable’s value or data type  “Changing a Variable’s Data Type” in the Classic 
TotalView User Guide



24

Getting Started with TotalView Products        Examining and Editing Data

Figure 17 shows a sample expression in an Evaluate Window. Note that C has been selected for the language, 
and the expression simply assigns the value of my_var1-3 back to my_var1.

Figure 17 Tools > Evaluate Dialog Box

RELATED TOPICS
Interpreted and compiled expressions  “About Interpreted and Compiled Expressions” in the Classic 

TotalView User Guide

Evaluating expressions  “Evaluating Expressions” in the Classic TotalView User Guide

The Expression List Window “Entering Expressions into the Expression Column” in the Clas-
sic TotalView User Guide

Operations you can perform in the 
Expression List Window 

“Sorting, Reordering, and Editing” in the TotalView User Guide



25

Getting Started with TotalView Products        Working with Multi-Processes and Multi-Threads

Working with Multi-Processes 
and Multi-Threads
TotalView’s real strength is in debugging multi-process, multi-threaded programs, many of which are tremen-
dously complex. 

Here’s a brief rundown of TotalView’s primary features that support this kind of complicated parallel computing: 

 Organizing your processes and threads into groups, making it possible to debug programs running 
thousands of processes and threads across hundreds of computers.

 Placing a server on each remote processor as it is launched that then communicates with the main 
TotalView process. This debugging architecture gives you a central location from which you can 
manage and examine all aspects of your program.

 Automatically bringing any threads or processes spawned by your program under TotalView’s 
control, avoiding the need to run multiple debuggers.

 Allowing you to focus on, run, set breakpoints on, and display individual processes, threads, or 
groups.

For example, to act on a particular process, select it from the toolbar’s target pulldown menu, Figure 18. This 
defines the focus, so when you select the command Go or Step, TotalView knows what to act on.

Figure 18 Selecting a Target from the Toolbar Pulldown

RELATED TOPICS
Threading and multi-process applications 
in general 

“Debugging Multi-process and Multi-threaded 
Programs” in the Classic TotalView User Guide



26

Getting Started with TotalView Products        Working with Multi-Processes and Multi-Threads

Starting a Parallel Debugging Job
TotalView supports the popular parallel execution models MPI and MPICH, OpenMP, ORNL SGI shared memory 
(shmem), Global Arrays, and UPC. 

You can start a parallel debugging job either from the GUI or directly from a shell, depending on your environ-
ment, parallel program, and preferences.

Working with and Viewing Processes and Threads
You can view the status of any or all your processes and threads in a variety of ways. 

The Root Window contains an overview of all processes and threads being debugged. Just dive on a process or a 
thread for detailed information.

How TotalView organizes processes and threads 
into groups 

“About Threads, Processes, and Groups” in the Clas-
sic TotalView User Guide

Tips on parallel debugging “Debugging Strategies for Parallel Applications” in 
the Classic TotalView User Guide

RELATED TOPICS
Starting a parallel job in the GUI “Starting MPI Programs Using File > Debug New 

Parallel Program” in the Classic TotalView User Guide

Starting a parallel job from the command line One example is “Starting TotalView on an MPICH 
Job” in the Classic TotalView User Guide

Supported MPIs  The TotalView Platforms Guide

RELATED TOPICS



27

Getting Started with TotalView Products        Working with Multi-Processes and Multi-Threads

 

The Process Window’s Processes tab (when the process grid is enabled) and Threads tab display information 
about all threads and processes, color-coded to define state.

Figure 20 shows a tab with processes in three different states:

The orange cells represent processes that are at a breakpoint, blue is a stopped process (usually due to another 
process or thread hitting a breakpoint), and green denotes that all threads in the process are running or can run.

Figure 19 Processes and Threads in the Root Window

Figure 20 The Processes Tab



28

Getting Started with TotalView Products        Working with Multi-Processes and Multi-Threads

If you select a group using the Process Window’s group selector pulldown menu, TotalView dims the blocks for 
processes not in the group, Figure 21.

To switch between running processes, click on a box representing a process to switch to that context. 

Similarly, clicking on a thread in the Threads tab changes the context to that thread.

Viewing the value of a variable in each process or thread:

It is often useful to simultaneously see the value of a variable in each process or thread. Use View > Show Across 
> Thread or View > Show Across > Process to display the variable either across processes or threads, Figure 22.

Figure 21 The Processes Tab: Showing Group Selection

Figure 22 Viewing Across Processes



29

Getting Started with TotalView Products        Working with Multi-Processes and Multi-Threads

If you are debugging an MPI program, use the Tools > Message Queue Graph Window graphically to display the 
program’s message queues.

You can click on the boxed numbers to place the associated process into a Process Window, or click on a red 
number next to an arrow to display more information about that message queue.

Figure 23 A Message Queue Graph

RELATED TOPICS
Manipulating processes and threads in various ways  “Manipulating Processes and Threads” in the Classic 

TotalView User Guide



30

Getting Started with TotalView Products        Debugging Using the Command Line Interface (CLI)

Debugging Using the Command Line 
Interface (CLI)
The Command Line Interface (CLI) is a command-line debugger integrated with TotalView. You can use it and 
never use the TotalView GUI, or you can use it and the GUI simultaneously, which is the assumed approach in 
much of the documentation. 

The CLI is embedded in a Tcl interpreter, so you can also create debugging functions that exactly meet your 
needs. You can then use these functions in the same way you use TotalView’s built-in CLI commands. You will 
most often use the CLI when you need to debug programs using very slow communication lines or when you 
need to create debugging functions that are unique to your program.

Start the CLI from the GUI using Tools > Command Line in the Root or Process Windows, or directly from a shell 
prompt by typing totalviewcli. Figure 24 shows the CLI window debugging part of a program. 

In the Classic TotalView User Guide, CLI commands are frequently provided alongside GUI procedures, always 
within a gray box to be easily recognizable, for example:.

The command above saves your action points to a file, and is the equivalent of using the Action Point > Save All 
command. The Classic TotalView Reference Guide details all the CLI commands.

Figure 24 CLI xterm Window

CLI: dactions -save filename

RELATED TOPICS
Using the CLI Part III, “Using the CLI” in the Classic TotalView User Guide

Details of CLI commands “CLI Commands” in the Classic TotalView Reference Guide



31

Getting Started with TotalView Products        Debugging CUDA Programs

Debugging CUDA Programs
The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA code 
that is running on the hosts host system and the NVIDIA® GPU. CUDA support is an extension to the standard 
version TotalView, and is capable of debugging 64-bit CUDA programs. Debugging 32-bit CUDA programs is cur-
rently not supported.

Supported major features:

 Debug CUDA application running directly on GPU hardware

 Set breakpoints, pause execution, and single step in GPU code

 View GPU variables in PTX registers, local, parameter, global, or shared memory

 Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

 Debug multiple GPU devices per process

 Support for the CUDA MemoryChecker

 Debug remote, distributed and clustered systems

 All host debugging features are supported, except for ReplayEngine

RELATED TOPICS
Using the CUDA debugger “About the CUDA Debugger” in the Classic TotalView User 

Guide

The CLI dcuda command  dcuda in the Classic TotalView Reference Guide



32

Getting Started with TotalView Products        Memory Debugging

Memory Debugging 
TotalView has a fully integrated version of the MemoryScape product for debugging memory issues. Memory-
Scape is also available as a standalone product. 

MemoryScape can monitor how your program uses malloc() and free() and related functions such as calloc() 
and realloc(). You must enable memory debugging before you start running your program. Here are three ways 
to enable memory debugging:

 From the New Program Window, select Enable Memory Debugging.

 From the Process Window, select Debug > Enable Memory Debugging.

 On the command line, type memscape (which launches MemoryScape without TotalView)

Once you have loaded a program to debug in TotalView, select Debug > Open MemoryScape to launch the pri-
mary MemoryScape window. 

Because MemoryScape monitors calls to the malloc API, you can even debug programs that use their own mem-
ory management libraries. The only requirement is that these libraries eventually use the API. In most cases, you 
don’t need to recompile or relink your program to use MemoryScape.

Figure 25 MemoryScape home window



33

Getting Started with TotalView Products        Memory Debugging

Viewing Memory Event Information
After you enable memory debugging, MemoryScape stops your program and raises an event flag if a memory 
problem occurs. If you are working within TotalView, TotalView also displays an event window, Figure 26. You can 
see the detailed information about the event either in the TotalView event window or by clicking on the Memory-
Scape event flag.

The details include the backtrace — that is, a list of stack frames — that existed when your program caused the 
memory error. Clicking on a stack frame shows the corresponding source code. The other tabs let you further 
explore where the memory block was allocated and deallocated. You can also see the contents of the block in the 
Block Details tab.

RELATED TOPICS
Using MemoryScape Use of MemoryScape is explained in a separate document, Debugging 

Memory Problems with MemoryScape, however this section introduces a 
few key features.

Figure 26 Memory Event Details



34

Getting Started with TotalView Products        Memory Debugging

Finding Memory Leaks
After you enable memory debugging, start your program. If you are working within TotalView, be sure to select 
Debug > Open MemoryScape to access MemoryScape’s features.

Whenever you stop execution, you can ask for a report of your program’s leaks.

When you click on a leak in the top part of the window, MemoryScape places the backtrace associated with the 
leak in the bottom part. When you click on a stack frame in this backtrace, MemoryScape displays the line within 
your program that allocated the memory.

RELATED TOPICS
MemoryScape error notification “Event and Error Notification” in Debugging Memory Problems 

with MemoryScape

Halting execution at a memory error “Halt Execution on Memory Event or Error” in Debugging 
Memory Problems with MemoryScape

Figure 27 Leak Detection Source Reports

RELATED TOPICS
Finding memory leaks “Finding Memory Leaks” in Debugging Memory Problems with 

MemoryScape

Memory leak reports  “MemoryScape Information” in Debugging Memory Problems with 
MemoryScape



35

Getting Started with TotalView Products        Memory Debugging

Detecting Memory Corruption
You can detect memory block overrun and underrun errors with either guard blocks or Red Zones.

Guard Blocks:

Use guard blocks to detect writing beyond the limits of a memory block. To turn them on, either

 Select Medium from Basic Memory Debugging Options, or 

 Select Guard allocated memory from Advanced Memory Debugging Options. 

With guards on, MemoryScape adds a small segment of memory before and after each block that you allocate. 
You can find corrupted memory blocks in two ways:

 When the program frees the memory, the guards are checked for corruption. If a corrupted guard is 
found, MemoryScape stops program execution and raises an event flag. Click on the event flag to 
see the event details.

 Select Corrupted Memory Report from the Memory Reports page.

Red Zones:

Use Red Zones to find both read and write memory access violations, notifying you immediately if your program 
oversteps the bounds of your allocated block. 

To turn them on, either

 Select High from Basic Memory Debugging Options, or

 Select Use Red Zones to find memory access violations from Advanced Memory Debugging 
Options. 

With Red Zones on, a page of memory is placed either before or after your allocated block, and if your program 
tries to read or write in this zone, MemoryScape stops program execution and raises an event flag. Click on the 
event flag to see the event details.

The default is to check for overruns, but you can check for underruns using Advanced Options controls. 

RELATED TOPICS
Locating corrupted memory “Viewing Corrupted Memory” in Debugging Memory Problems with 

MemoryScape

Guard blocks and Red Zones  “Using Guard Blocks and Red Zones” in Debugging Memory 
Problems with MemoryScape



36

Getting Started with TotalView Products        Memory Debugging

Analyzing Memory
To analyze how your program is using memory, select the Heap Graphical Report on the Memory Reports Page to 
see the memory your program is using, Figure 28.

When you select a block in the top area, MemoryScape displays information about the selected block in the lower 
area. In addition, and perhaps more importantly, it displays how many other allocations are associated with the 
same backtrace and the amount of memory allocated from the same place. Other reports within the Heap Status 
Reports Page let you display the backtrace and source line associated with an allocation.

Finding Dangling Pointers
With memory debugging turned on in TotalView, you can identify a dangling pointer (points into deallocated 
memory) through additional information in the Variable Windows and the Stack Frame Pane, Figure 29.

Figure 28 Heap Status Graphical Report

RELATED TOPICS
The heap graphical report “Graphically Viewing the Heap” in Debugging Memory Problems 

with MemoryScape



37

Getting Started with TotalView Products        Memory Debugging

Setting and Using Baselines
Use the Debug > Heap Baseline > Set Heap Baseline command in the Process Window to have MemoryScape 
mark the current memory state. After your program has been executing, use the Debug > Heap Baseline > 
Heap Change Summary command to see what has happened to memory since you created the baseline.

Pressing the New Allocations or New Leaks button displays more information. 

Figure 29 Dangling Pointers

RELATED TOPICS
Fixing dangling pointers “Fixing Dangling Pointer Problems” in Debugging 

Memory Problems with MemoryScape

Using the command dheap -is_dangling “Checking for Dangling Pointers: 
“dheap -is_dangling” in Debugging Memory Prob-
lems with MemoryScape

Figure 30 Heap Change Summary Window



38

Getting Started with TotalView Products        Memory Debugging

Some reports within MemoryScape also have Relative to baseline buttons that allow you to limit the display to 
allocations and leaks occurring only since you set the baseline.

RELATED TOPICS
Setting a heap baseline ”Debug > Heap Baseline >Set Heap Baseline,” available directly from the 

Help button within the TotalView interface, and also provided in the 
shipped documentation “In-Product Help.”



39

Getting Started with TotalView Products        Reverse Debugging with ReplayEngine

Reverse Debugging with ReplayEngine
ReplayEngine is a separately licensed product for Linux-x86 (32-bit) and Linux-x86-64 that records all your pro-
gram’s activities as it executes within TotalView. After recording information, you can move forward and backward 
within these previously executed instructions. 

To enable ReplayEngine, select Enable reverse debugging with Replay Engine on the Debug Options tab after 
choosing either:

 File > Debug New Program to launch the Program Session dialog

 File > Debug New Parallel Program to launch the Parallel Program Session dialog

 File > Attach to Running Program to launch the Attach to a Running Program dialog

For a new program, ReplayEngine begins recording instructions as soon as you start program execution. For a 
running process you have attached to, ReplayEngine starts recording the next time you restart the process.

You can also enable ReplayEngine by selecting the Record button in the Process window’s toolbar or by using the 
TotalView -replay command-line option:
dload -replay program-path
dattach -replay program-path

The ReplayEngine commands are on the toolbar, Figure 32

When replaying instructions, your program’s state is displayed as it was when that instruction was executed. The 
displayed information is read-only. For example, you cannot change the value of variables.

Existing execution commands work when replaying instructions. For example, you can use the Step or Out com-
mands to move forward in the program’s history.

Figure 31 Enabling using File > Debug New Program

Figure 32 Tool Bar with ReplayEngine Buttons



40

Getting Started with TotalView Products        Reverse Debugging with ReplayEngine

Only when you reach the statement that would have executed outside of “replay mode” is the program put back 
into “record mode.” For example, suppose you are at line 100 and you select line 25 and press the BackTo but-
ton. If you use commands that move forward in replay mode such as Step, you will switch from replay mode to 
record mode when get you back to line 100.

Because you can see previously executed instructions, you can quickly locate where a problem began to occur.

RELATED TOPICS
Reverse debugging  Reverse debugging is discussed in a separate user guide, 

Reverse Debugging with ReplayEngine


	Contents
	The Basics
	What is TotalView
	Starting TotalView and Creating a Debugging Session
	Getting Around TotalView

	Accessing TotalView Remotely
	Debugging on a Remote Host
	Setting Breakpoints and Stepping through a Program
	Action Points (breakpoints)
	Stepping Through a Program

	Examining and Editing Data
	Diving and Viewing Data
	Editing Data
	Evaluating Expressions

	Working with Multi-Processes and Multi-Threads
	Starting a Parallel Debugging Job
	Working with and Viewing Processes and Threads

	Debugging Using the Command Line Interface (CLI)
	Debugging CUDA Programs
	Memory Debugging
	Viewing Memory Event Information
	Finding Memory Leaks
	Detecting Memory Corruption
	Analyzing Memory
	Finding Dangling Pointers
	Setting and Using Baselines

	Reverse Debugging with ReplayEngine


