
Classic TotalView User Guide

Version 2024.3
September, 2024

TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft-
ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse
of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

© 2024 Perforce Software, Inc. All rights reserved.
© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998–2007 by Etnus LLC. All rights reserved.
© 1996–1998 by Dolphin Interconnect Solutions, Inc.
© 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/

iii

Contents

About This Guide . 1

Content Organization . 1

Audience. 2

Using the CLI . 2

Resources . 3

Part 1:
Introduction to Debugging with TotalView . 4

About TotalView .

Sessions Manager . 6

GUI and Command Line Interfaces . 7
The GUI . 7
The CLI. 7

Stepping and Breakpoints. 9

Data Display and Visualization . 10
Data Display . 10

Diving in a Variable Window . 11
Viewing a Variable Value across Multiple Processes or Threads. 13
Simplifying Array Display . 13
Viewing a Variable’s Changing Value . 16
Setting Watchpoints . 16

Data Visualization . 17
The Array Visualizer. 17
The Parallel Backtrace View . 18
The Call Tree and Call Graph . 18
The Message Queue Graph . 20

C++ View . 20

Tools for Multi-Threaded and Parallel Applications . 22
Program Using Almost Any Execution Model . 22
View Process and Thread State . 22
Control Program Execution . 23

Using Groups . 24
Synchronizing Execution with Barrier Points . 25

iv

Contents

Batch and Automated Debugging . 26

Remote Display. 27
Debugging on a Remote Host . 27

CUDA Debugger . 28

Memory Debugging . 29

Reverse Debugging. 30

What’s Next. .31

Basic Debugging .

Program Load and Navigation. 33
Load the Program to Debug . 33

The Root and Process Windows . 34
Program Navigation. 36

Stepping and Executing . 38
Simple Stepping . 38
Canceling. .41

Setting Breakpoints (Action Points) . 42
Basic Breakpoints. 42
Evaluation Points . 45
Saving and Reloading Action Points . 47

Examining Data. 49
Viewing Built-in Data . 49

Viewing Variables in the Process Window . 49
Viewing Variables in an Expression List Window . 50

Viewing Compound Variables Using the Variable Window .51
Basic Diving .51
Nested Dives . 53
Rediving and Undiving . 54
Diving in a New Window. 55
Displaying an Element in an Array of Structures . 56

Visualizing Arrays . 59
Launching the Visualizer from an Eval Point . 60
Viewing Options . 62

Moving On . 64

Accessing TotalView Remotely .

Remote Display Supported Platforms . 66

Remote Display Components . 67

v

Contents

Installing the Client . 68
Installing on Linux. 68
Installing on Microsoft Windows. 68
Installing on macOS. 69

Client Session Basics . 70
Working on the Remote Host . 73

Advanced Options . 74

Naming Intermediate Hosts. 76

Submitting a Job to a Batch Queuing System . 77

Setting Up Your Systems and Security. 79

Session Profile Management . 80

Batch Scripts . 82
tv_PBS.csh Script . 82
tv_LoadLeveler.csh Script . 83

Part 2:
Debugging Tools and Tasks. 84

 Starting TotalView .

Compiling Programs . 87
Using File Extensions . 88

Starting TotalView . 89
Starting TotalView . 90
Creating or Loading a Session. 92
Debugging a Program. 92
Debugging a Core File . 92
Debugging with a Replay Recording File . 92
Passing Arguments to the Program Being Debugged . 93
Debugging a Program Running on Another Computer . 93
Debugging an MPI Program . 94
Starting TotalView on a Script . 94

Initializing TotalView . 97

Exiting from TotalView . 99

 Loading and Managing Sessions. .

Setting up Debugging Sessions . 102
Loading Programs from the Sessions Manager . 102

Starting a Debugging Session. 102
Debugging a New Program . 103

vi

Contents

Attaching to a Running Program . 105
Debugging a Core File . 110
Debugging with a Replay Recording File . 112
Launching your Last Session . 113
Waiting for Reverse Connections . 114

Loading Programs Using the CLI . 114

Debugging Options and Environment Setup . 116
Adding a Remote Host . 116
Options: Reverse Debugging, Memory Debugging, and CUDA. 118
Setting Environment Variables and Altering Standard I/O . 120

Environment Variables. 120
Standard I/O . 121

Adding Notes to a Session . 122

Managing Sessions . 124
Editing or Starting New Sessions in a Sessions Window . 126

Other Configuration Options . 127
Handling Signals . 127
Setting Search Paths . 130
Setting Startup Parameters . 132
Setting Preferences . 133

Setting Preferences, Options, and X Resources. 143

 Using and Customizing the GUI .

Using Mouse Buttons . 146

Using the Root Window . 147
Controlling the Display of Processes and Threads . 150

Default View . 151
Changing the Display . 152
Grouping by Status and Source Line . 153
Grouping by All Properties . 154

Using the Old Root Window . 155
Suppressing the Root Window . 156

Using the Process Window . 157

The Source Pane. 161
Unified Source Pane Display . 161

Resizing and Positioning Windows . 163

About Diving into Objects . 164

Saving the Data in a Window . 167

Searching and Navigating Program Elements . 168
Searching for Text . 168

vii

Contents

Looking for Functions and Variables . 169
Finding the Source Code for Functions . 170

Resolving Ambiguous Names. 171
Finding the Source Code for Files. 172
Resetting the Stack Frame . 172

Viewing the Assembler Version of Your Code . 173

Editing Source Text . 176

Stepping through and Executing your Program.

Using Stepping Commands . 178
Stepping into Function Calls . 179
Stepping Over Function Calls . 180
Skipping Function Calls. 181

Executing to a Selected Line . 182

Executing Out of a Function. 183

Continuing with a Specific Signal . 184

Killing (Deleting) Programs. 186
Restarting Programs. 186

Setting the Program Counter. 187

 Setting Action Points .

About Action Points . 189
Action Point Properties . 189
Action Point Status Display . 190
Manipulating Action Points . 191
Print Statements vs. Action Points . 191

Setting Breakpoints and Barriers . 194
Setting Source-Level Breakpoints . 194

Choosing Source Lines . 196
Sliding Breakpoints . 198

Setting Breakpoints at Locations . 201
Pending Breakpoints . 201

Pending Breakpoints on a Function . 202
Pending Breakpoints on a Line Number . 203
Conflicting Breakpoints . 204

Displaying and Controlling Action Points. 205
Disabling Action Points . 205
Deleting Action Points . 206
Enabling Action Points . 206
Suppressing Action Points . 206

viii

Contents

Setting Breakpoints on Classes and Functions. 207
Setting Machine-Level Breakpoints . 209

Setting Breakpoints for Multiple Processes . 211
Setting Breakpoints When Using the fork()/execve() Functions . 213

Debugging Processes That Call the fork() Function . 213
Debugging Processes that Call the execve() Function . 213
Example: Multi-process Breakpoint . 214

Setting Barrier Points . 215
About Barrier Breakpoint States . 215
Setting a Barrier Breakpoint. 216
Creating a Satisfaction Set. 217
Hitting a Barrier Point. 218
Releasing Processes from Barrier Points . 218
Deleting a Barrier Point . 218
Changing Settings and Disabling a Barrier Point . 218

Defining Eval Points and Conditional Breakpoints . 220
Setting Eval Points . 222
Creating a Pending Eval Point . 223
Creating Conditional Breakpoint Examples . 224
Patching Programs. 224

Branching Around Code . 225
Adding a Function Call . 226
Correcting Code . 226

About Interpreted and Compiled Expressions . 226
About Interpreted Expressions . 227
About Compiled Expressions . 227

Allocating Patch Space for Compiled Expressions . 228
Allocating Dynamic Patch Space . 229
Allocating Static Patch Space . 229

Using Watchpoints . 231
Using Watchpoints on Different Architectures. 232
Creating Watchpoints . 233

Displaying Watchpoints . 235
Watching Memory. 235
Triggering Watchpoints . 236

Using Multiple Watchpoints . 236
Copying Previous Data Values . 236

Using Conditional Watchpoints . 236

Saving Action Points to a File . 239

Examining and Editing Data and Program Elements

Changing How Data is Displayed. 241
Displaying STL Variables . 241

ix

Contents

Changing Size and Precision. 244

Displaying Variables . 246
Displaying Program Variables . 247

Controlling the Displayed Information . 249
Seeing Value Changes . 250

Seeing Structure Information . 251
Displaying Variables in the Current Block. 251
Viewing Variables in Different Scopes as Program Executes . 252

Scoping Issues . 253
Freezing Variable Window Data . 253
Locking the Address . 254
Browsing for Variables. 256
Displaying Local Variables and Registers . 258

Interpreting the Status and Control Registers . 259
Dereferencing Variables Automatically . 260
Examining Memory . 261
Displaying Areas of Memory . 262
Displaying Machine Instructions . 263
Rebinding the Variable Window . 264
Closing Variable Windows . 265

Diving in Variable Windows . 266
Displaying an Array of Structure’s Elements . 268
Changing What the Variable Window Displays . 270

Viewing a List of Variables. 272
Entering Variables and Expressions . 272
Seeing Variable Value Changes in the Expression List Window . 274
Entering Expressions into the Expression Column. 275
Using the Expression List with Multi-process/Multi-threaded Programs 277
Reevaluating, Reopening, Rebinding, and Restarting . 277

Reevaluating Contents . 277
Reopening Windows . 277
Rebinding Windows . 278
Restarting a Program . 278

Seeing More Information . 278
Sorting, Reordering, and Editing . 279

Sorting Contents . 279
Reordering Row Display . 279
Editing Expressions . 279
Changing Data Type . 279
Changing an Expression’s Value . 279
About Other Commands . 279

Changing the Values of Variables . 281

x

Contents

Changing a Variable’s Data Type . 283
Displaying C and C++ Data Types . 284
Viewing Pointers to Arrays. 286
Viewing Arrays . 286
Viewing typedef Types . 287
Viewing Structures. 287
Viewing Unions . 288
Casting Using the Built-In Types . 288

Viewing Character Arrays ($string Data Type) . 290
Viewing Wide Character Arrays ($wchar Data Types) . 291
Viewing Areas of Memory ($void Data Type) . 292
Viewing Instructions ($code Data Type) . 292
Viewing Opaque Data . 293

Type-Casting Examples . 293
Displaying Declared Arrays . 293
Displaying Allocated Arrays . 293
Displaying the argv Array . 294

Changing the Address of Variables . 295

Displaying C++ Types . 296

Viewing Classes . 296

C++View . 298

Displaying Fortran Types . 299
Displaying Fortran Common Blocks . 299
Displaying Fortran Module Data . 301
Debugging Fortran 90 Modules. 302
Viewing Fortran 90 User-Defined Types. 303
Viewing Fortran 90 Deferred Shape Array Types. 304
Viewing Fortran 90 Pointer Types . 304
Displaying Fortran Parameters . 305

Displaying Thread Objects. 306

Scoping and Symbol Names . 309
Qualifying Symbol Names. 310

Examining Arrays. .

Examining and Analyzing Arrays . 313
Displaying Array Slices . 313

Using Slices and Strides . 314
Using Slices in the Lookup Variable Command . 316

Array Slices and Array Sections . 316
Viewing Array Data . 317

Expression Field . 318
Type Field . 318

xi

Contents

Slice Definition . 319
Update View Button . 319
Data Format Selection Box . 319

Filtering Array Data Overview . 319
Filtering Array Data . 320
Filtering by Comparison . 320
Filtering for IEEE Values . 321
Filtering a Range of Values. 324
Creating Array Filter Expressions . 325
Using Filter Comparisons . 325

Sorting Array Data . 326
Obtaining Array Statistics . 327

Displaying a Variable in all Processes or Threads. 330
Diving on a “Show Across” Pointer. 331
Editing a “Show Across” Variable . 332

Visualizing Array Data . 333
Visualizing a “Show Across” Variable Window . 333

 Visualizing Programs and Data .

Displaying Call Trees and Call Graphs. 335

Parallel Backtrace View . 338

Array Visualizer . 341
Command Summary . 341
How the Visualizer Works . 342
Viewing Data Types in the Visualizer. 343

Viewing Data . 343
Visualizing Data Manually . 344
Using the Visualizer . 344

Using Dataset Window Commands . 345
Using View Window Commands . 346

Using the Graph Window . 347
Displaying Graph Views . 348

Using the Surface Window . 350
Displaying Surface Views. 351
Manipulating Surface Data . 352

Visualizing Data Programmatically . 354
Launching the Visualizer from the Command Line . 355
Configuring TotalView to Launch the Visualizer . 356

Setting the Visualizer Launch Command . 357
Adapting a Third Party Visualizer. 357

Evaluating Expressions .

Why is There an Expression System? . 361

xii

Contents

Calling Functions: Problems and Issues . 362
Expressions in Eval Points and the Evaluate Window. 363
Using C++ . 364

Using Programming Language Elements . 367
Using C and C++ . 367
Using Fortran . 368

Fortran Statements. 368
Fortran Intrinsics. 369

Using the Evaluate Window . 371
Writing Assembler Code. 373

Using Built-in Variables and Statements . 378
Using TotalView Variables . 378
Using Built-In Statements. 379

Expression Evaluation with ReplayEngine. 382

About Groups, Processes, and Threads .

A Couple of Processes . 384

Threads. 387

Complicated Programming Models . 389

Types of Threads . 391

Organizing Chaos . 394

How TotalView Creates Groups . 398

Simplifying What You’re Debugging. 404

Manipulating Processes and Threads .

Viewing Process and Thread States . 409
Seeing Attached Process States . 411
Seeing Unattached Process States . 411

Displaying a Thread Name . 412
Thread Names in the UI . 412
Thread Properties . 414
Thread Options on dstatus . 415

Using the Toolbar to Select a Target . 416

Stopping Processes and Threads . 417

Using the Processes/Ranks and Threads Tabs . 418
The Processes Tab . 418
The Threads Tab . 420

xiii

Contents

Updating Process Information . 421

Holding and Releasing Processes and Threads . 422

Using Barrier Points . 425
Barrier Point Illustration . 426

Examining Groups . 428

Placing Processes in Groups . 430

Starting Processes and Threads . 431

Creating a Process Without Starting It . 432

Creating a Process by Single-Stepping . 433

Stepping and Setting Breakpoints . 434

Debugging Strategies for Parallel Applications .

General Parallel Debugging Tips . 438
Breakpoints, Stepping, and Program Execution . 438

Setting Breakpoint Behavior . 438
Synchronizing Processes . 438
Using Group Commands . 438
Stepping at Process Level . 439

Viewing Processes, Threads, and Variables . 439
Identifying Process and Thread Execution . 439
Viewing Variable Values . 440

Restarting from within TotalView. 440
Attaching to Processes Tips . 440

MPI Debugging Tips and Tools. 445
MPI Display Tools. 445

MPI Rank Display . 445
Displaying the Message Queue Graph Window . 446
Displaying the Message Queue . 448

MPICH Debugging Tips . 451

IBM PE Debugging Tips . 453

Part 3: Using the CLI . 454

Using the Command Line Interface (CLI) .

About the Tcl and the CLI . 456
About The CLI and TotalView . 456
Using the CLI Interface. 457

Starting the CLI . 458
Startup Example. 459

xiv

Contents

Starting Your Program . 460

About CLI Output. 462
‘more’ Processing . 463

Using Command Arguments . 464

Using Namespaces . 465

About the CLI Prompt . 466

Using Built-in and Group Aliases. 467

How Parallelism Affects Behavior . 468
Types of IDs . 469

Controlling Program Execution. 470
Advancing Program Execution . 470
Using Action Points . 471

Seeing the CLI at Work .

Setting the CLI EXECUTABLE_PATH Variable . 473

Initializing an Array Slice . 475

Printing an Array Slice . 476

Writing an Array Variable to a File . 478

Automatically Setting Breakpoints . 479

Part 4: Advanced Tools and Customization. 482

Setting Up Remote Debugging Sessions .

About Remote Debugging . 485
Platform Issues when Remote Debugging . 485

Automatically Launching a Process on a Remote Server . 487

Troubleshooting Server Autolaunch . 488
Changing the Remote Shell Command . 488
Changing Arguments . 489
Autolaunching Sequence . 489

Starting the TotalView Server Manually . 492

TotalView Server Launch Options and Commands. 495
Server Launch Options . 495

Setting Single-Process Server Launch Options . 495
Setting Bulk Launch Window Options . 496

Customizing Server Launch Commands . 498
Setting the Single-Process Server Launch Command . 498

xv

Contents

Setting the Bulk Server Launch Command . 500

Debugging Over a Serial Line . 503
Starting the TotalView Debugger Server . 503

Reverse Connections .

About Reverse Connections . 506
Reverse Connection Environment Variables . 508

TV_REVERSE_CONNECT_DIR . 508
TV_CONNECT_OPTIONS . 509

Starting a Reverse Connect Session . 510
Listening for Reverse Connections . 511

Reverse Connect Examples . 512
CLI Example . 512
MPI Batch Script Example . 512
MPI Batch Script Example . 513

Troubleshooting Reverse Connections . 515
Stale Files in the Reverse Connect Directory . 515
Directory Permissions . 515
User ID Issues . 515
Reverse Connect Directory Environment Variable . 515

Setting Up MPI Debugging Sessions. .

Debugging MPI Programs . 518
Starting MPI Programs . 518
Starting MPI Programs Using File > Debug New Parallel Program 518

The Parallel Program Session Dialog. 520

MPICH Applications . 523
Starting TotalView on an MPICH Job . 523
Attaching to an MPICH Job . 525
Using MPICH P4 procgroup Files . 526

MPICH2 Applications . 528
Downloading and Configuring MPICH2 . 528
Starting TotalView Debugging on an MPICH2 Hydra Job . 528
Starting TotalView Debugging on an MPICH2 MPD Job. 529

Starting the MPI MPD Job with MPD Process Manager . 529
Starting an MPICH2 MPD Job . 530

Cray MPI Applications. 531

IBM MPI Parallel Environment (PE) Applications . 532
Preparing to Debug a PE Application. 532

Using Switch-Based Communications . 532

xvi

Contents

Performing a Remote Login . 533
Setting Timeouts . 533

Starting TotalView on a PE Program . 533
Setting Breakpoints . 534
Starting Parallel Tasks. 534
Attaching to a PE Job . 534

Attaching from a Node Running poe . 535
Attaching from a Node Not Running poe. 535

Open MPI Applications. 536

QSW RMS Applications . 537
Starting TotalView on an RMS Job. 537
Attaching to an RMS Job . 537

SGI MPI Applications. 538
Starting TotalView on an SGI MPI Job . 538
Attaching to an SGI MPI Job . 538
Using ReplayEngine with SGI MPI . 539

Sun MPI Applications . 540
Attaching to a Sun MPI Job . 540

Starting MPI Issues . 542

Using ReplayEngine with Infiniband MPIs . 544

Setting Up Parallel Debugging Sessions .

Debugging OpenMP Applications . 547
Debugging OpenMP Programs . 547

About TotalView OpenMP Features . 548
About OpenMP Platform Differences . 548

Viewing OpenMP Private and Shared Variables . 549
Viewing OpenMP THREADPRIVATE Common Blocks . 550
Viewing the OpenMP Stack Parent Token Line . 551

Using SLURM. 553

Debugging Cray XT/XE/XK/XC Applications . 554
Starting TotalView on Cray . 554
Support for Cray Abnormal Termination Processing (ATP) . 556
Special Requirements for Using ReplayEngine. 556

Debugging Global Arrays Applications . 557

Debugging Shared Memory (SHMEM) Code . 559

Debugging UPC Programs . 560
Invoking TotalView . 560
Viewing Shared Objects . 560

xvii

Contents

Displaying Pointer to Shared Variables. 562

Debugging CoArray Fortran (CAF) Programs . 564
Invoking TotalView . 564
Viewing CAF Programs . 564
Using CLI with CAF . 565

Controlling fork, vfork, and execve Handling. .

exec_handling and fork_handling Command Options and State Variables 567

Exec Handling. 568

Fork Handling . 569
Example . 569

Group, Process, and Thread Control. .

Defining the GOI, POI, and TOI . 572

Recap on Setting a Breakpoint . 574

Stepping (Part I) . 575
Understanding Group Widths . 576
Understanding Process Width . 576
Understanding Thread Width . 577
Using Run To and duntil Commands . 577

Setting Process and Thread Focus . 579
Understanding Process/Thread Sets . 579
Specifying Arenas . 581
Specifying Processes and Threads . 581

Defining the Thread of Interest (TOI). 581
About Process and Thread Widths . 582

Specifier Examples . 584

Setting Group Focus . 585
Specifying Groups in P/T Sets . 586
About Arena Specifier Combinations. 588
‘All’ Does Not Always Mean ‘All’ . 590
Setting Groups. 591
Using the g Specifier: An Extended Example. 592
Merging Focuses . 595
Naming Incomplete Arenas . 596
Naming Lists with Inconsistent Widths . 596

Stepping (Part II): Examples . 598

Using P/T Set Operators. 600

Creating Custom Groups . 602

xviii

Contents

Scalability in HPC Computing Environments .

Configuring TotalView for Scalability . 605
Process Window’s Process Tab . 605

dlopen Options . 606
dlopen Event Filtering . 606
Handling dlopen Events in Parallel . 606

MRNet . 608
TotalView Infrastructure Models . 608

Using MRNet with TotalView . 610
General Use . 610
Using MRNet on Cray Computers . 615

Checkpointing. .

Fine-Tuning Shared Library Use .

Preloading Shared Libraries . 621

Controlling Which Symbols TotalView Reads . 623
Specifying Which Libraries are Read. 624
Reading Excluded Information . 625

Part 5: Using the CUDA Debugger . 626

About the TotalView CUDA Debugger .

Installing the CUDA SDK Tool Chain . 628

Directive-Based Accelerator Programming Languages . 629

CUDA Debugging Model and Unified Display .

Unified Source Pane and Breakpoint Display on page 634The TotalView CUDA Debugging Model631

Pending and Sliding Breakpoints . 633

Unified Source Pane and Breakpoint Display . 634

CUDA Debugging Tutorial .

Compiling for Debugging . 637
Compiling for Fermi. 637
Compiling for Fermi and Tesla . 637
Compiling for Kepler . 637
Compiling for Pascal . 638
Compiling for Volta . 638

Starting a TotalView CUDA Session . 639

Controlling Execution . 641

xix

Contents

Viewing GPU Threads . 641
CUDA Thread IDs and Coordinate Spaces . 642
Viewing the Kernel’s Grid Identifier . 643

Single-Stepping GPU Code . 643
Halting a Running Application . 644

Displaying CUDA Program Elements. 645
GPU Assembler Display. 645
GPU Variable and Data Display . 645
Managed Memory Variables. 646

About Managed Memory . 646
How TotalView Displays Managed Variables . 647

CUDA Built-In Runtime Variables . 648
Type Casting . 649
PTX Registers . 652

Enabling CUDA MemoryChecker Feature . 653

GPU Core Dump Support . 654

GPU Error Reporting . 655

Displaying Device Information . 657

CUDA Problems and Limitations .

Hangs or Initialization Failures . 660

CUDA and ReplayEngine . 661

CUDA and MRNet . 662

Sample CUDA Program .

Part 6: Appendices . 666

 Glossary. 667

 Open Source Software Notice . 685

 Resources . 686

TotalView Family Differences . 687
TotalView Documentation . 688

Conventions . 690
Contacting Us . 691

Index . 692

 1

About This Guide

Content Organization
This guide describes how to use the TotalView debugger, a source- and machine-level debugger for multi-pro-
cess, multi-threaded programs. It is assumed that you are familiar with programming languages, a UNIX or
Linux operating system, and the processor architecture of the system on which you are running TotalView and
your program.

This user guide combines information for running the TotalView debugger either from within a Graphic User
Interface (GUI), or the Command Line Interface (CLI), run within an xterm-like window for typing commands.

The information here emphasizes the GUI interface, as it is easier to use. Understanding the GUI will also help
you understand the CLI.

Although TotalView doesn’t change much from platform to platform, differences between platforms are
mentioned.

The information in this guide is organized into these parts:

 Part I, Introduction to Debugging with TotalView contains an overview of TotalView features
and an introduction to debugging with TotalView.

 Part II, Debugging Tools and Tasks describes the function and use of TotalView’s primary set of
debugging tools, such as stepping, setting breakpoints, and examining data including arrays.

This part also includes detail on TotalView’s process/thread model and working with multi-process, multi-
threaded programs.

 Part III, Using the CLI discusses the basics of using the Command Line Interface (CLI) for
debugging. CLI commands are not documented in this book but in the Classic TotalView
Reference Guide.

 Part IV, Advanced Tools and Customization provides additional information required for
setting up various MPI and other parallel programming environments, including high
performance computing environments such as MPICH, OpenMP, UPC, and CAF. Setting Up
Remote Debugging Sessions discusses how to get the TotalView Debugger Server (tvdsvr)

2

About This Guide Audience

running and how to reconfigure the way that TotalView launches the tvdsvr. Group, Process, and
Thread Control builds on previous process/thread discussions to provide more detailed
configuration information and ways to work in multi-process, multi-threaded environments.

In most cases, TotalView defaults work fine and you won’t need much of this information.

 Part V, Using the CUDA Debugger describes the CUDA debugger, including a sample application.

Audience
Many of you are sophisticated programmers with knowledge of programming and its methodologies, and almost
all of you have used other debuggers and have developed your own techniques for debugging the programs that
you write.

We know you are an expert in your area, whether it be threading, high-performance computing, or client/server
interactions. So, rather than telling you about what you’re doing, this book tells you about TotalView.

TotalView is a rather easy-to-use product. Nonetheless, we can’t tell you how to use TotalView to solve your prob-
lems because your programs are unique and complex, and we can’t anticipate what you want to do. So, what
you’ll find in this book is a discussion of the kinds of operations you can perform. This book, however, is not just a
description of dialog boxes and what you should click on or type. Instead, it tells you how to control your program,
see a variable’s value, and perform other debugging actions.

Detailed information about dialog boxes and their data fields is in the context-sensitive Help available directly
from the GUI. In addition, an HTML version of this information is shipped with the documentation and is available
on our Web site. If you have purchased TotalView, you can also post this HTML documentation on your intranet.

Using the CLI
To use the Command Line Interface (CLI), you need to be familiar with and have experience debugging programs
with the TotalView GUI. CLI commands are embedded within a Tcl interpreter, so you get better results if you are
also familiar with Tcl. If you don’t know Tcl, you can still use the CLI, but you lose the ability to program actions that
Tcl provides; for example, CLI commands operate on a set of processes and threads. By using Tcl commands, you
can save this set and apply this saved set to other commands.

The following books are excellent sources of Tcl information:

3

About This Guide Resources

 Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley, 1997.

 Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.: Prentice Hall PTR, 1999.

There is also a rich set of resources available on the Web.

The fastest way to gain an appreciation of the actions performed by CLI commands is to scan “CLI Command
Summary” of the Classic TotalView Reference Guide, which contains an overview of CLI commands.

Resources
Appendix C contains information on:

 TotalView family differences, which details the differences among TotalView Enterprise, TotalView
Team, and TotalView Individual

 a complete list of TotalView documentation

 conventions used in the documentation

 contact information

 4

PART I
Introduction to Debugging
with TotalView

This part of the Classic TotalView User Guide introduces TotalView’s basic features and walks through a basic
debugging session. Also included here is how to use the Remote Display Client, which allows you to connect
to TotalView remotely.

 About TotalView on page 5
Introduces some of TotalView’s primary features.

 Basic Debugging on page 32
Presents a basic debugging session with TotalView, illustrating tasks such as setting action points and viewing
data.

 Accessing TotalView Remotely on page 65
Discusses how to start and interact with TotalView when it is executing on another computer.

5

About TotalView

TotalView® for HPC is a powerful tool for debugging, analyzing, and tuning the performance of complex serial,
multi-process, multi-threaded, and network-distributed programs. It supports a broad range of platforms,
environments, and languages.

TotalView is designed to handle most types of High Performance Computing (HPC) parallel applications, and
can be used to debug programs, running processes, or core files.

This chapter introduces TotalView’s primary components and features, including:

 Sessions Manager for managing and loading debugging sessions, Sessions Manager on
page 6

 Graphical User Interface with powerful data visualization capabilities, The GUI on page 7

 Command Line Interface (CLI) for scripting and batch environments, The CLI on page 7

 Stepping commands and specialized breakpoints that provide fine-grained control,
Stepping and Breakpoints on page 9

 Examining complex data sets, Data Display and Visualization on page 10

 Controlling threads and processes, Tools for Multi-Threaded and Parallel Applications on
page 22

 Automatic batch debugging, Batch and Automated Debugging on page 26

 Running TotalView remotely, Remote Display on page 27

 Debugging CUDA code running on the host system and the NVIDIA® GPU, CUDA Debugger
on page 28

 Debugging remote programs, Debugging on a Remote Host on page 27

 Memory debugging capabilities integrated into the debugger, Memory Debugging on
page 29

 Recording and replaying running programs, Reverse Debugging on page 30

6

About TotalView Sessions Manager

Sessions Manager
The Sessions Manager is a GUI interface to manage your debugging sessions. Use the manager to load a new
program, to attach to a program, or to debug a core file. The manager keeps track of your debugging sessions,
enabling you to save, edit or delete any previous session. You can also duplicate a session and then edit its config-
uration to test programs in a variety of ways.

RELATED TOPICS
Managing debugging sessions Managing Sessions on page 124

Loading programs into TotalView
using the Session Manager

Loading Programs from the Sessions Manager on page 102

7

About TotalView GUI and Command Line Interfaces

GUI and Command Line Interfaces
TotalView provides both an easy-to-learn graphical user interface (GUI) and a Command Line Interface (CLI). The
CLI and GUI are well integrated, so you can use them both together, launching the CLI from the GUI and invoking
CLI commands that display data in the GUI. Or you can use either separately without the other. However,
because of the GUI’s powerful data visualization capabilities and ease of use, we recommend using it (along with
the CLI if you wish) for most tasks.

The GUI
The GUI is an easy and quick way to access most of TotalView’s features, allowing you to dive on almost any object
for more information. You can dive on variables, functions, breakpoints, or processes. Data is graphically dis-
played so you can easily analyze problems in array data, memory data, your call tree/graph, or a message queue
graph.

The CLI
The Command Line Interface, or CLI, provides an extensive set of commands to enter into a command window.
These commands are embedded in a version of the Tcl command interpreter. You can enter any Tcl statements
from any version of Tcl into a CLI window, and you can also make use of TotalView-specific debugging commands.
These additional commands are native to this version of Tcl, so you can also use Tcl to manipulate your programs.
The result is that you can use the CLI to create your own commands or perform any kind of repetitive operation.
For example, the following code shows how to set a breakpoint at line 1038 using the CLI:
dbreak 1038

When you combine Tcl and TotalView, you can simplify your job. For example, the following code sets a group of
breakpoints:
foreach i {1038 1043 1045} {
 dbreak $i
}

RELATED TOPICS
GUI Basics and Customizations Using and Customizing the GUI on page 145

8

About TotalView GUI and Command Line Interfaces

RELATED TOPICS
Using the CLI Part III, Using the CLI on page 454

CLI commands and reference “CLI Commands” in the Classic TotalView Reference
Guide

9

About TotalView Stepping and Breakpoints

Stepping and Breakpoints
In TotalView, breakpoints are just a type of action point, and there are four types:

 A breakpoint stops execution of processes and threads that reach it.

 An eval point executes a code fragment when it is reached.

 A barrier point synchronizes a set of threads or processes at a location (Synchronizing Execution
with Barrier Points on page 25).

 A watchpoint monitors a location in memory and stops execution when it changes (Setting
Watchpoints on page 16).

You can set action points in your program by selecting the boxed line numbers in the Source Code pane of a Pro-

cess window. A boxed line number indicates that the line generates executable code. A icon appears at the

line number to indicate that a breakpoint is set on the line. Selecting the icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can resume or otherwise control program execution in any of
the following ways:

 Use the single-step commands described in Using Stepping Commands on page 178.

 Use the set program counter command to resume program execution at a specific source line,
machine instruction, or absolute hexadecimal value. See Setting the Program Counter on
page 187.

 Set breakpoints at lines you choose, and let your program execute to that breakpoint. See Setting
Breakpoints and Barriers on page 194.

 Set conditional breakpoints that cause a program to stop after it evaluates a condition that you
define, for example, “stop when a value is less than eight.” See Setting Eval Points on page 222.

RELATED TOPICS
Detailed information on action points Setting Action Points on page 188

Stepping commands Stepping through and Executing your Program on
page 177

10

About TotalView Data Display and Visualization

Data Display and Visualization
TotalView provides comprehensive and flexible tools for developers to explore large and complex data sets. The
TotalView data window supports browsing through complex structures and arrays. Powerful slicing and filtering
helps developers manage arrays of thousands or even millions of elements. Data watchpoints provide answers to
questions about how data is changing. Built-in graphical visualization displays a quick view of complex numerical
data. Type transformations, especially C++ View, help you display data in a meaningful way.

This section includes:

 Data Display on page 10

 Data Visualization on page 17

 C++ View on page 20

Data Display
All variables in your current routine are displayed in the Process Window’s Stack Frame Pane in its upper right
corner, Figure 1. If a variable’s value is simple, it is visible here. If the value is not simple, dive on the variable to get
more information.

NOTE: You can dive on almost any object in TotalView to display more information about that object.
To dive, position the cursor over the item and click the middle mouse button or double-click
the left mouse button.

Some values in the Stack Frame Pane are bold, meaning that you can click on the value and edit it.

RELATED TOPICS
Viewing and editing data Examining and Editing Data and Program Elements

on page 240

Data Visualization Visualizing Programs and Data on page 334

11

About TotalView Data Display and Visualization

This section includes:

 Diving in a Variable Window on page 11

 Viewing a Variable Value across Multiple Processes or Threads on page 13

 Simplifying Array Display on page 13

 Viewing a Variable’s Changing Value on page 16

 Setting Watchpoints on page 16

Diving in a Variable Window

Figure 2 shows two Variable Windows, one created by diving on a structure and the second by diving on an array.

Figure 1, Stack Frame Pane of the Process Window

RELATED TOPICS
Diving in general About Diving into Objects on page 164

Displaying non-scalar variables Displaying Variables on page 246

Editing variables Changing the Values of Variables on page 281 and
Changing a Variable’s Data Type on page 283

12

About TotalView Data Display and Visualization

If the displayed data is not scalar, you can redive on it for more information. When you dive in a Variable Window,
TotalView replaces the window’s contents with the new information, or you can use the View > Dive Thread in
New Window command to open a separate window.

For pointers, diving on the variable dereferences the pointer and displays the data pointed to. In this way, you can
follow linked lists.

Buttons in the upper right corner () support undives and redives. For example, if you’re following a
pointer chain, click the center-left arrow to go back to where you just were. Click the center-right arrow to move
forward.

Figure 2, Diving on a Structure and an Array

RELATED TOPICS
Diving in variable windows Diving in Variable Windows on page 266

Duplicating variable windows The Window > Duplicate command, in the in-product Help

13

About TotalView Data Display and Visualization

Viewing a Variable Value across Multiple Processes or Threads

You can simultaneously see the value of a variable in each process or thread using the View > Show Across >
Thread or View > Show Across > Process commands, Figure 3.

You can export data created by the Show Across command to the Array Visualizer (see The Array Visualizer on
page 17).

Simplifying Array Display

Because arrays frequently have large amounts of data, TotalView provides a variety of ways to simplify their dis-
play, including slicing and filtering, and a special viewer, the Array Viewer.

Slicing and Filtering

The top Variable Window of Figure 4 shows a basic slice operation that displays array elements at positions
named by the slice. In this case, TotalView is displaying elements 6 through 10 in each of the array’s two
dimensions.

The other Variable Window combines a filter with a slice to display data according to some criteria. Here, the filter
shows only elements with a value greater than 300.

Figure 3, Viewing Across Processes

RELATED TOPICS
The View > Show Across... command Displaying a Variable in all Processes or Threads on page 330

Exporting a Show Across view to the Visualizer Visualizing a “Show Across” Variable Window on page 333

14

About TotalView Data Display and Visualization

The Array Viewer

Use the Array Viewer (from the Variable Window’s Tools > Array Viewer command) for another graphical view of
data in a multi-dimensional array, Figure 5. Think of this as viewing a “plane” of two-dimensional data in your
array.

Figure 4, Slicing and Filtering Arrays

RELATED TOPICS
Arrays in general Examining Arrays on page 312

Filtering in arrays Filtering Array Data Overview on page 319

Array slices Displaying Array Slices on page 313

15

About TotalView Data Display and Visualization

The Array Viewer initially displays a slice of data based on values entered in the Variable Window. You can change
the displayed data by modifying the Expression, Type, or Slice controls.

You can also see the shape of the data using the Visualizer, introduced in this chapter in The Array Visualizer on
page 17.

Figure 5, Array Viewer

RELATED TOPICS
The Array Viewer Viewing Array Data on page 317

16

About TotalView Data Display and Visualization

Viewing a Variable’s Changing Value

Variable Windows let you critically examine many aspects of your data. In many cases, however, you may be pri-
marily interested in the variable’s value. For this, use the Expression List Window, Figure 6, to display the values of
many variables at the same time.

This is particularly useful for viewing variable data about scalar variables in your program.

Setting Watchpoints

The watchpoint — another type of action point — is yet another way to look at data. A TotalView watchpoint can
stop execution when a variable’s data changes, no matter the cause. That is, you could change data from within
30 different statements, triggering the watchpoint to stop execution after each of these 30 statements make a
change. Or, if data is being overwritten, you could set a watchpoint at that location in memory and then wait until
TotalView stops execution because of an overwrite.

If you associate an expression with a watchpoint (by selecting the Conditional button in the Watchpoint Proper-
ties dialog box to enter an expression), TotalView evaluates the expression after the watchpoint triggers.

Figure 6, Tools > Expression List Window

RELATED TOPICS
Lists of variables in the Expression List Window Viewing a List of Variables on page 272

TotalView’s comprehensive expression system Evaluating Expressions on page 360

RELATED TOPICS
About watchpoints in general Using Watchpoints on page 231

The Tools > Create Watchpoint command Tools > Create Watchpoint in the in-
product Help

17

About TotalView Data Display and Visualization

Data Visualization
TotalView provides a set of tools to visualize your program activity, including its arrays and MPI message data.
These include:

 The Array Visualizer on page 17

 The Parallel Backtrace View on page 18

 The Call Tree and Call Graph on page 18

 The Message Queue Graph on page 20

The Array Visualizer

The Variable Window’s Tools > Visualize command shows a graphical representation of a multi-dimensional
dataset. For instance, Figure 7 shows a sine wave in the Visualizer.

This helps you to quickly see outliers or other issues with your data.

Figure 7, Visualizing an Array

RELATED TOPICS
The Visualizer Visualizing Programs and Data on page 334

Using the Tools > Visualize and the Tools > Visual-
ize Distribution commands

The Visualizer Window in the in-product Help

18

About TotalView Data Display and Visualization

The Parallel Backtrace View

The Parallel Backtrace View displays the state of every process and thread in a parallel job, allowing you to view
thousands of processes at once, and helping you to identify stray processes.

Access the Parallel Backtrace View from the Tools menu of the Variable Window.

This view groups threads by common stack backtrace frames in a text-based tree. Expand or collapse elements to
drill down and get more information.

The Call Tree and Call Graph

The Call Tree or Call Graph, accessible from the Process Window using the command Tools > Call Graph, pro-
vides a quick view of application state and is especially helpful for locating outliers and bottlenecks.

Figure 8, Parallel Backtrace View

RELATED TOPICS
The Parallel Backtrace View Parallel Backtrace View on page 338

Using the Tools > Parallel Backtrace View
command

Tools > Parallel Backtrace View in the in-
product Help

19

About TotalView Data Display and Visualization

By default, the Call Tree or Call Graph displays the Call Tree representing the backtrace of all the selected pro-
cesses and threads.

For multi-process or multi-threaded programs, a compressed process/thread list (ptlist) next to the arrows indi-
cates which threads have a routine on their call stack. You can dive on a routine in the call tree/graph to create a
group called call_graph that contains all the threads that have the routine you dived on in their call stack.

Figure 9, Tools > Call Graph Dialog Box

RELATED TOPICS
The Call Tree or Call Graph in more detail Displaying Call Trees and Call Graphs on page 335

Using the CLI’s dwhere -group_by option to con-
trol and reduce the backtraces

 dwhere -group_by in the Classic TotalView Reference
Guide

About the ptlist "Compressed List Syntax (ptlist)" in the Classic TotalView
Reference Guide

Using the Tools > Call Graph command Tools > Call Graph in the in-product Help

20

About TotalView Data Display and Visualization

The Message Queue Graph

For MPI programs, use the Process Window’s Message Queue Graph (Tools > Message Queue Graph) to display
your program’s message queue state.

The graph’s Options window (available by clicking on the Options button, above) provides a variety of useful tools,
such as Cycle Detection to generate reports about cycles in your messages, a helpful way to see when messages
are blocking or causing deadlocks. Also useful is its filtering capability, which helps you identify pending send and
receive messages, as well as unexpected messages.

C++ View
Using C++ View, you can format program data in a more useful or meaningful form than its concrete representa-
tion displayed in a running program. This allows you to inspect, aggregate, and check the validity of complex data,
especially data that uses abstractions such as structures, classes, and templates.

Figure 10, A Message Queue Graph

RELATED TOPICS
The Message Queue Graph Displaying the

Message Queue Graph Window on
page 446

Using the Tools > Message Queue
Graph command

Tools > Message Queue Graph in the
in-product Help

21

About TotalView Data Display and Visualization

RELATED TOPICS
More on C++ View Creating Type Transformations” in the

Classic TotalView Reference Guide

22

About TotalView Tools for Multi-Threaded and Parallel Applications

Tools for Multi-Threaded and Parallel
Applications
TotalView is designed to debug multi-process, multi-threaded programs, with a rich feature set to support fine-
grained control over individual or multiple threads and processes. This level of control makes it possible to quickly
resolve problems like deadlocks or race conditions in a complex program that spawns thousands of processes
and threads across a broad network of servers.

When your program creates processes and threads, TotalView can automatically bring them under its control,
whether they are local or remote. If the processes are already running, TotalView can acquire them as well, avoid-
ing the need to run multiple debuggers.

TotalView places a server on each remote processor as it is launched that then communicates with the main
TotalView process. This debugging architecture gives you a central location from which you can manage and
examine all aspects of your program.

This section introduces some of TotalView’s primary tools for working with complex parallel applications, and
includes:

 Program Using Almost Any Execution Model on page 22

 View Process and Thread State on page 22

 Control Program Execution on page 23

Program Using Almost Any Execution Model
TotalView supports the popular parallel execution models MPI and MPICH, OpenMP, ORNL, SGI shared memory
(shmem), Global Arrays, UPC, and CAF.

View Process and Thread State
You can quickly view process and thread state in both the Root Window and the Process Window. (You can also
view the state of all processes and threads in a parallel job using the The Parallel Backtrace View on page 18.)

RELATED TOPICS
MPI debugging sessions Setting Up MPI Debugging Sessions on page 516

Other parallel environments (not MPI) Setting Up Parallel Debugging Sessions on page 546

23

About TotalView Tools for Multi-Threaded and Parallel Applications

The Root Window contains an overview of all processes and threads being debugged, along with their process
state (i.e. stopped, running, at breakpoint, etc.). You can dive on a process or a thread listed in the Root Window
to quickly see detailed information.

Control Program Execution
Commands controlling execution operate on the current focus, or target -- either an individual thread or process,
or a group of threads and processes. You can individually stop, start, step, and examine any thread or process, or
perform these actions on a group.

Figure 11, The Root Window

RELATED TOPICS
More on process and thread state Viewing Process and Thread States on page 409

The Root Window Using the Root Window on page 147

The Process Window Using the Process Window on page 157

24

About TotalView Tools for Multi-Threaded and Parallel Applications

Select the target of your action from the toolbar’s pulldown menu, Figure 12.

You can also synchronize execution across threads or processes using a barrier point, which holds any threads or
processes in a group until each reaches a particular point.

Using Groups

TotalView automatically organizes your processes and threads into groups, allowing you to view, execute and con-
trol any individual thread, process, or group of threads and processes. TotalView defines built-in groups, and you
can define your own custom groups that help support full, asynchronous debugging control over your program.

For example, you can:

 Single step one or a small set of processes rather than all of them

 Use Group > Custom Group to create named groups

 Use Run To or breakpoints to control large groups of processes

 Use Watchpoints to watch for variable changes

For instance, here is the Processes Tab after a group containing 10 processes (in dark blue below) is selected in
the Toolbar’s Group pulldown list. This identifies the processes that will be acted on when you select a command
such as Go or Step.

Figure 12, Selecting a Target from the Toolbar Pulldown

RELATED TOPICS
Selecting a target (also called
focus)

Using the Toolbar to Select a Target on page 416

Setting process and thread focus
using the CLI

Setting Process and Thread Focus on page 579

Setting group focus Setting Group Focus on page 585

Finely controlling focus Defining the GOI, POI, and TOI on page 572

Introduction to barrier points Synchronizing Execution with Barrier Points on page 25

25

About TotalView Tools for Multi-Threaded and Parallel Applications

Synchronizing Execution with Barrier Points

You can synchronize execution of threads and processes either manually using a hold command, or automatically
by setting an action point called a barrier point. These two tools can be used together for fine-grained execution
control. For instance, if a process or thread is held at a barrier point you can manually release it and then run it
without first waiting for all other processes or threads in the group to reach that barrier.

When a process or a thread is held, it ignores any command to resume executing. For example, assume that you
place a hold on a process in a control group that contains three processes. If you select Group > Go, two of the
three processes resume executing. The held process ignores the Go command.

RELATED TOPICS
Groups in TotalView Organizing Chaos on page 394

How TotalView predefines groups How TotalView Creates Groups on page 398

Introduction to setting watchpoints Setting Watchpoints on page 16

Creating custom groups Creating Custom Groups on page 602

RELATED TOPICS
Setting barrier points Setting Breakpoints and Barriers on page 194 and

Using barrier points in a multi-threaded,
multi-process program

Using Barrier Points on page 425

Using the CLI to set barrier points Using Action Points on page 471

Strategies for using barrier points Simplifying What You’re Debugging on page 404
and Breakpoints, Stepping, and Program Execution
on page 438

26

About TotalView Batch and Automated Debugging

Batch and Automated Debugging
You can set up unattended batch debugging sessions using TotalView’s powerful scripting tool tvscript. First,
define a series of events that may occur within the target program. tvscript loads the program under its control,
sets breakpoints as necessary, and runs the program. At each program stop, tvscript logs the data for your
review when the job has completed.

A script file can contain CLI and Tcl commands (Tcl is the basis for TotalView’s CLI).

Here, for example, is how tvscript is invoked on a program:

tvscript \
 -create_actionpoint "method1=>display_backtrace -show_arguments" \
 -create_actionpoint "method2#37=>display_backtrace -show_locals -level 1" \
 -display_specifiers "nowshow_pid,noshow_tid" \
 -maxruntime "00:00:30" \
 filterapp -a 20
You can also execute MPI programs using tvscript. Here is a small example:

tvscript -mpi "Open MP" -tasks 4 \
 -create_actionpoint \
 "hello.c#14=>display_backtrace" \
 ~/tests/MPI_hello
While batch debugging of large-scale MPI applications through tvscript has long been a powerful tool, tvscript
has recently been enhanced and fully certified to handle 1024 process jobs, and 2048 threads per process, or
more than two million running operations.

RELATED TOPICS
About tvscript and batch scripting, including
memory debugging

Batch Scripting and Using the CLI” in Debugging
Memory Problems with MemoryScape

tvscript syntax and command line options Batch Debugging Using tvscript” in the Classic
TotalView Reference Guide

27

About TotalView Remote Display

Remote Display
Using the Remote Display Client, you can easily set up and operate a TotalView debug session that is running on
another system. A licensed copy of TotalView must be installed on the remote machine, but you do not need an
additional license to run the Client.

The Client also provides for submission of jobs to batch queuing systems PBS Pro and Load Leveler.

Debugging on a Remote Host
Using the TotalView Server, you can debug programs located on remote machines. Debugging a remote process
is similar to debugging a native process, although performance depends on the load on the remote host and net-
work latency. TotalView runs and accesses the process tvdsvr on the remote machine.

RELATED TOPICS
Using the Remote Display Client Accessing TotalView Remotely on page 65

RELATED TOPICS
The TotalView Server Setting Up Remote Debugging Sessions on

page 484

The tdvsvr process: “The tvdsvr Command and Its Options” in the
Classic TotalView Reference Guide

28

About TotalView CUDA Debugger

CUDA Debugger
The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA code
that is running on the host system and the NVIDIA® GPU. CUDA support is an extension to the standard version
TotalView, and is capable of debugging 64-bit CUDA programs. Debugging 32-bit CUDA programs is currently not
supported.

Supported major features:

 Debug a CUDA application running directly on GPU hardware

 Set breakpoints, pause execution, and single step in GPU code

 View GPU variables in PTX registers, and in local, parameter, global, or shared memory

 Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

 Debug multiple GPU devices per process

 Support for the CUDA MemoryChecker

 Debug remote, distributed and clustered systems

 All host debugging features are supported, except ReplayEngine. For a list of supported hosts,
please see the TotalView Supported Platforms guide.

RELATED TOPICS
The CUDA debugger Using the CUDA Debugger on page 626

The CLI dcuda command dcuda in the Classic TotalView Reference Guide

29

About TotalView Memory Debugging

Memory Debugging
TotalView has a fully integrated version of the MemoryScape product for debugging memory issues. Memory-
Scape is also available as a standalone product.

MemoryScape can monitor how your program uses malloc() and free() and related functions such as calloc()
and realloc(). For example, the C++ new operator is almost always built on top of the malloc() function. If it is,
MemoryScape can track it.

You must enable memory debugging before you start running your program. Once you have loaded a program to
debug in TotalView, select Debug > Open MemoryScape to launch the primary MemoryScape window.

Figure 13, MemoryScape home window

RELATED TOPICS
MemoryScape has its own user guide Debugging Memory Problems with MemoryScape.

30

About TotalView Reverse Debugging

Reverse Debugging
ReplayEngine records all your program’s activities as it executes within TotalView. After recording information, you
can move forward and backward by function, line, or instruction. You can examine data and state in the past, as if
it were a live process.

Using ReplayEngine eliminates the cycle of starting and restarting so common in debugging and greatly helps in
finding hard-to-reproduce bugs.

NOTE: ReplayEngine is a separately licensed product for Linux-x86-64.

When enabled, ReplayEngine commands are added to the toolbar (at right):

RELATED TOPICS
Reverse debugging is discussed in a
separate user guide

 Reverse Debugging with ReplayEngine

31

About TotalView What’s Next

What’s Next
This chapter has presented TotalView’s primary features and tools, but a single chapter cannot provide a com-
plete picture of everything you can do with TotalView. See the rest of this user guide and other books in the
TotalView documentation for more about TotalView.

If you are a new TotalView user, we recommend reading Getting Started with TotalView Products, which provides
basic information on TotalView’s most commonly used tools.

You may also wish to work through the introductory tutorial in Basic Debugging on page 32.

32

Basic Debugging

This chapter illustrates some basic debugging tasks and is based on the shipped program, wave_extended,
located in the directory installdir/toolworks/totalview.version/platform/examples. This is a simple program
that creates an array and then increments its values to simulate a wave form which can then be viewed using
the Visualizer. The program requires user input to provide the number of times to increment.

NOTE: TotalView has a new user interface with improved debugging workflows, features, and a
modern look and feel. Existing TotalView users can opt to use the new UI by selecting the
UI preference on the Display tab in the Preferences dialog.

For new TotalView users, the new UI is the default, but you can revert to the Classic
TotalView UI, if necessary, by changing the Display preference on the Preferences tab. To
learn more about using the new UI, see the new UI HTML documentation in the TotalView
distribution at <installdir>/totalview.<version>/help/html/TotalView_Help, or the
online TotalView documentation set and Getting Started Guide.

The first steps when debugging programs with TotalView are similar to those using other debuggers:

 Use the -g option to compile the program. (Compiling is not discussed here. Please see
Compiling Programs on page 87.)

 Start the program under TotalView control.

 Start the debugging process, including setting breakpoints and examining your program’s data.

The chapter introduces some of TotalView’s primary tools, as follows:

 Program Load and Navigation on page 33

 Stepping and Executing on page 38

 Setting Breakpoints (Action Points) on page 42

 Examining Data on page 49

 Visualizing Arrays on page 59

https://help.totalview.io/
https://help.totalview.io/current/HTML/index.html#page/TotalView/GettingStarted.html#

33

Basic Debugging Program Load and Navigation

Program Load and Navigation
This section discusses how to load a program and looks at the two primary TotalView windows, the Root and Pro-
cess windows. It also illustrates some of TotalView’s navigation tools.

Load the Program to Debug

NOTE: Before starting TotalView, you must add TotalView to your PATH variable. For information on
installing or configuring TotalView, see the TotalView Installation Guide.

1. Start TotalView.
totalview
The Start a Debugging Session dialog launches.

2. Select A new program to launch the Program Session dialog.

34

Basic Debugging Program Load and Navigation

3. Provide a name for the session in Session Name field. This can be any string.

4. In the File Name field, browse to and select the wave_extended program, located in the directory install-
dir/toolworks/totalview.version/platform/examples. Leave all other fields and options as is. Click Start
Session to load the program into TotalView.

Note that this is the same as entering the program name as an argument when starting TotalView:
totalview wave_extended

(Note that this invocation assumes that your examples directory is known to TotalView or that you are invoking
TotalView from within the examples directory.)

The Root and Process Windows

At startup, TotalView launches its two primary windows, the Root Window and the Process Window. With these
two windows, you can navigate through the various elements of your program.

RELATED TOPICS
Compiling programs for debugging Compiling Programs on page 87

Various ways to start TotalView Starting TotalView on page 89

Loading programs Loading Programs from the Sessions Manager on page 102

35

Basic Debugging Program Load and Navigation

The Root Window

The Root Window (the smaller window above) lists all processes and threads under TotalView control. You can use
the Configure pane, displayed by clicking the button on the bottom right, to specify the specific information you
want to view.

Since the program has been created but not yet executed, there is just a single process and thread listed.

The Process Window

The Process Window displays a wide range of information about the state of a process and its individual threads.

 The Stack Trace pane displays the call stack with any active threads.

 The Stack Frame pane displays information on the current thread’s variables.

 The Source Pane displays source code for the main() function. Note that the pane’s header reports
its focus as being in main():

 Two tabs are visible at the bottom, Action Points, which displays any set action points, and Threads,
which lists all active threads in the process. The Processes/Ranks tab, if enabled, displays processes
within the current control group. The Processes/Ranks tab is disabled by default.

Figure 14, The Root and Process Windows

36

Basic Debugging Program Load and Navigation

Program Navigation
From the Root and Process Windows, you can navigate anywhere in your program. Some examples:

1. Dive on a function

 From the Process Window, in main(), “dive” on the function load_matrix() by double-clicking
on it. (Click on the text, not on the line number, which would instead add an Action Point.)

NOTE: Diving simply means clicking on an object to launch a window with detailed infor-
mation. Diving is integral to using TotalView and provides instant access to
detailed data by drilling down into the object, routine, process, thread, etc.

The focus in the Source Pane shifts to this function. You can change the focus back to main() using
the dive stack icons () at the top right. If you click the left arrow, the focus returns to main() and
the right arrow becomes enabled, allowing you to dive, undo a dive, and then redive.

2. Look up a function

 From the View menu, select Lookup Function, then enter wave:

RELATED TOPICS
The Root Window Using the Root Window on page 147

The Process Window Using the Process Window on page 157

Processes/Ranks tab Using the Processes/Ranks and Threads Tabs on
page 418

37

Basic Debugging Program Load and Navigation

The focus shifts to the function wave(). This function happens to be in the same file, wave_ex-
tended.c, but finding, diving, and other navigation tools operate on any file in a project.

3. Find any program element

 From the Edit menu, select Find.

You can enter any search term, and TotalView returns results from anywhere in your program, includ-
ing from assembler code if it is visible. For instance, a search on “struct” returns several instances:

RELATED TOPICS
Diving on objects About Diving into Objects on page 164

Finding program elements Searching and Navigating Program Elements on page 168

The Lookup Function Looking for Functions and Variables on page 169

38

Basic Debugging Stepping and Executing

Stepping and Executing
The Process Window’s toolbar features buttons that control stepping and execution.

The following sections explore how these work using the wave_extended example.

NOTE: These procedures on stepping and execution can be performed independently of the other
tasks in this chapter, but you must first load the program, as described in Load the Program to
Debug on page 33.

Simple Stepping
Here, we’ll use the commands Step, Run To, and Next, and then note process and thread status.

1. Step

 Select Step. TotalView stops the program just before the first executable statement, the
method load_matrix().

All stepping functions are under the Process, Thread, and Group menus. So for the above, you could
also select Process > Step, or just press the keyboard shortcut s — keyboard shortcuts are all listed
under the above menus, and can considerably speed debugging tasks.

Note the yellow arrow that shows the current location of the Program Counter, or PC, in the selected
stack frame.

The process and thread status are displayed in the status bars above the Stack Trace and Stack Frame
panes:

Figure 15, Toolbar

39

Basic Debugging Stepping and Executing

The Root Window also displays process/thread status. The Process State column displays the state of
the thread:

You can also see that a single Process and Thread have been launched in the Process Window’s Thread
tab at the bottom of the interface. (1.1 indicates one process and one thread.)

A single thread has been spawned, which reports that it is in main().

 Select Step again to step into the function. (Next would step over, or execute the function, as
described in Step 3.)

TotalView goes into the load_matrix() function.

The Source Pane header reports that the program is in load_matrix(), and the PC is at printf().

2. Run To

 Select the set_values() function at line 91, then click Run To in the toolbar.

The program attempts to run to the selected line. Note that the PC does not change, and TotalView
launches a popup:

‘‘‘

40

Basic Debugging Stepping and Executing

Because the method set_values() is called after scanf(), the program is waiting for user input. From
the shell that launched TotalView, enter 5 at the prompt “Please enter number of iterations”, then hit
Return. (You can enter a different number, but a higher value will require you to wait over more itera-
tions during later discussions.)

The PC stops at set_values().

3. Next

 Select Next. The program executes the for loop the number of times you input in the previ-
ous step, and then completes the program by printing “Program is complete.” to the console.
(If you had instead selected Step, the program would have gone into the set_values()
function.)

The Next command simply executes any executable code at the location of the PC. If that is a function,
it fully executes the function. If the PC is instead at a location within a function, it executes that line and
then moves the PC to the next line. For instance, below the PC is setting a variable value. In this case,
Next executes line 71, and then moves the PC to line 72.

(Note that the array building the wave is not visible, as there is no program output. To examine or visu-
alize data, including array data, we’ll use the Variable Window and the Visualizer, discussed in Exam-
ining Data on page 49 and Visualizing Arrays on page 59.)

To just run the program, select Go. This may be useful if you entered a larger number into the console,
so you can avoid iterating through the for loop numerous times.

RELATED TOPICS
Detailed information on
stepping

Stepping through and Executing your Pro-
gram on page 177

Stepping instructions Using Stepping Commands on page 178

41

Basic Debugging Stepping and Executing

Canceling
First, make sure the program has exited, by selecting Kill.

1. Execute until user input is required

 Select Next twice. The “Waiting to reach location” dialog launches.

2. Cancel the operation

 Rather than providing input, in the dialog, select Cancel.

The Stack Trace Pane reports that the process is currently within a system call. The Source Pane dis-
plays assembler code, and its header identifies the library you’re in, rather than the source file. This is
because no debug information is present for system calls, and TotalView always focuses on the stack
frame where your PC is, even if it was not built with debug information.

In the Stack Trace Pane, main is preceded by C, meaning that TotalView has debug information for that
frame, and the language is C.

To execute out of the assembler code so you’re back in your code, use the Out command.

 Select Out several times until the program returns to your code and resumes execution.
When the dialog “Waiting to reach location” launches, enter a number into the console, click
Next, and let the program complete.

RELATED TOPICS
Viewing assembler code Viewing the Assembler Version of Your Code on page 173 and “View >

Assembler > By Address” in the in-product Help

42

Basic Debugging Setting Breakpoints (Action Points)

Setting Breakpoints (Action Points)
In TotalView, a breakpoint is just one type of “action point” of which there are four types:

 Breakpoint - stops execution of the processes or threads that reach it.

 Evaluation Point - executes a code fragment when it is reached. Enables you to set “conditional
breakpoints” and perform conditional execution.

 Process Barrier Point - holds each process when it reaches the barrier point until all processes in
the group have reached the barrier point. Primarily for MPI programs.

 Watchpoint - monitors a location in memory and either stops execution or evaluates an
expression when the value stored in memory is modified.

This section uses the wave_extended example to set a basic breakpoint as well as an evaluation point, called an
“eval point.”

NOTE: These procedures on working with action points can be performed independently of the other
sections in this chapter (which starts at Basic Debugging on page 32), but you must first load
the program as described in Load the Program to Debug on page 33.

Basic Breakpoints
1. Set a breakpoint

 Click a line number. for instance, select line 91, the call to set_values(). TotalView displays a

 sign, both in the Source Pane at line 91 and in the Action Points tab where all action
points in a program are listed.

RELATED TOPICS
Action points overview About Action Points on page 189

Process barrier point Setting Breakpoints and Barriers on page 194

Watchpoint Using Watchpoints on page 231

Action Points Tab in the Process Window Action Points Tab” in the in-product Help

43

Basic Debugging Setting Breakpoints (Action Points)

NOTE: A breakpoint can be set if the line number is boxed in the Source Pane:

2. Delete/disable/enable a breakpoint

 To delete the breakpoint, click the Stop icon in the Source Pane, and then re-add it by clicking
again. You can also select it in the Action Points tab, right-click for a context menu, and select
Delete.

 To disable a breakpoint, click its icon in the Action Points tab. The icon dims to show it is
disabled:

Click it again to re-enable it. Again, you can also disable or re-enable a breakpoint using the context
menu.

3. Run the program

 Click the Go button in the toolbar.

All panes in the Process Window report that the thread is running, or that it must be stopped for frame
display. At this point, the program is waiting for user input.

 Enter a number into the console, then click Go again.

The program halts execution at the breakpoint.

4. Set a breakpoint in assembler code

You can also set a breakpoint in assembler code to view specific memory allocation.

 Select View > Source As > Both to view both source and assembler code.

 Set a breakpoint in some assembler code, such as the instruction immediately following the
existing breakpoint.

The Source Pane and Action Points tab display two breakpoints, one in source code and one in assem-
bler code.

44

Basic Debugging Setting Breakpoints (Action Points)

5. Set a breakpoint at a particular location

In a complex program, it may be easier to set a breakpoint using the At Location dialog, which allows you
to specify where you want the breakpoint without having to first find the source line in the Source Pane.
Using this dialog, you can set breakpoints on all methods of a class or all virtual functions, a useful tool for
C++ programs.

NOTE: This dialog acts like a toggle, meaning that it sets a breakpoint if none exists at
the specified location, or deletes an existing breakpoint at that location.

 Select Action Point> At Location and then enter wave to set a breakpoint at the function
wave().

The breakpoint is set and added to the Action Points tab. If a breakpoint already exists at that location, this
action toggles the setting to delete the breakpoint.

45

Basic Debugging Setting Breakpoints (Action Points)

Evaluation Points
You can define an action point identified with a code fragment to be executed. This is called an eval point. This
allows you to test potential fixes for your program, set the values of your program’s variables, or stop a process
based on some condition. You can also send data to the Visualizer to produce an animated display of changes to
your program’s data, discussed in Visualizing Arrays on page 59.

At each eval point, the code in the eval point is executed before the code on that line. One common use of an eval
point is to include a goto statement that transfers control to a line number in your program, so you can test pro-
gram patches.

1. Delete any breakpoints

Before setting an eval point, delete all other breakpoints you have set while working through this chapter.

 Select Action Points > Delete All.

2. Set an eval point

 Set a breakpoint on line 85 at the printf() function.

 Open the Action Point Properties dialog by right-clicking on the Stop icon and selecting
Properties.

RELATED TOPICS
Action points properties About Action Points on page 189 and “Action Point

Properties” in the in-product Help.

Enabling/disabling action points Displaying and Controlling Action Points on
page 205

Suppressing action points Suppressing Action Points on page 206

Breakpoints in assembler code Setting Machine-Level Breakpoints on page 209

46

Basic Debugging Setting Breakpoints (Action Points)

The Action Point Properties dialog box sets and controls an action point. Using this dialog, you can also
change an action point’s type to breakpoint, barrier point, or eval point, and define the behavior of threads
and processes when execution reaches this action point.

3. Add an expression

 Select the Evaluate button, to display an Expression box. In the box, enter:
 count = 5;
 goto 88;

 Click OK to close the dialog. This code will be executed before the printf() statement, and
then will jump to line 88 where the for loop begins. This sets the count to 5 and avoids having
to enter user input. (Code entered here is specific to TotalView debugging only, and is not
persisted to your actual source code.)

Note that the Stop icon becomes an Eval icon, both in the Source Pane and in the Action Points tab:

4. Execute the program to observe eval point behavior

47

Basic Debugging Setting Breakpoints (Action Points)

 Click Go. If no other breakpoints were planted in your code, the program simply executes and
prints “Program is complete.”

Saving and Reloading Action Points
You can save a set of action points to load into your program at a later time.

1. Save Action Points

 Select Action Point > Save All to save your action points to a file in the same directory as
your program. When you save action points, TotalView creates a file named
program_name.TVD.v4breakpoints, where program_name is the name of your program.

No dialog launches, but a file is created titled wave_extended.TVD.v4breakpoints.

 Select Action Point > Save As, if you wish to name the file yourself and select a directory for
its location.

A dialog launches where you can enter a custom name and browse to a location.

2. Load Saved Action Points

RELATED TOPICS
Evaluation points in general Defining Eval Points and Conditional Breakpoints on

page 220

Writing expressions in eval points Expressions in Eval Points and the Evaluate Window on
page 363

Action Point Properties dialog box About Action Points on page 189 and “Action Point Properties”
in the in-product Help.

48

Basic Debugging Setting Breakpoints (Action Points)

You can either explicitly load saved action points into a program when it is launched, or you can define a
preference to load them automatically.

To manually load saved action points:

 After loading your program into TotalView, select Action Point > Load All to load these saved
actions points into your program.

To automatically load saved action points:

 Select File > Preferences to launch the Preferences window, and then select the Action
Points tab.

 Click the Load Action Points File Automatically button, then click OK.

If you close and then reload the program, your actions points are automatically loaded as well.

(Several other options exist to customize action points behavior. These are not discussed here. Please
see the Related Topics table below.)

RELATED TOPICS
The CLI command dbreak “dbreak” in the Classic TotalView Reference Guide

The Action Point Properties dialog box About Action Points on page 189 and “Action Point
Properties” in the in-product Help.

The Action Point > At Location
command

Setting Breakpoints at Locations on page 201

Setting Action Points preferences Setting Preferences on page 133 and “Action Points
Page” in the in-product Help

49

Basic Debugging Examining Data

Examining Data
Examining data is, of course, a primary focus of any debugging process. TotalView provides multiple tools to
examine, display, and edit data.

This section discusses viewing built-in data in the Process Window and Expression List Window, and then using
the Variable Window to look at compound data.

NOTE: These procedures on examining data can be performed independently of the tasks in other
sections in this chapter, but you must first load the program (Load the Program to Debug on
page 33). In addition, the discussion assumes an existing eval point has been set as described
in Evaluation Points on page 45.

Viewing Built-in Data
For primitive, built-in types, you can quickly view data values from within the Process Window and can also add
them to another window, the Expression List Window.

Viewing Variables in the Process Window

First, we’ll add a breakpoint so the program will stop execution and we can view data.

1. Set a breakpoint

 Add a breakpoint at line 88, the beginning of the for loop in the load_matrix() function.

At this point, you should have two action points: the breakpoint just added, and the eval point added in the
section Evaluation Points on page 45.

 Click Go. The program should stop on the breakpoint you just added.

Now let’s view some data.

2. View variables in the Stack Frame pane

50

Basic Debugging Examining Data

The Stack Frame pane lists function parameters, local variables, and registers. Scalar values are displayed
directly, while aggregate types are identified with just type information.

In the Stack Frame pane, note the value of the local variables i and count: i is 1, and count is 5.

3. View variables in a tool tip

 In the Source Pane, hover over the variable i to view a tool tip that displays its value:

Viewing Variables in an Expression List Window

The Expression List window is a powerful tool that can list any variable in your program, along with its current or
previous value and other information. This helps you to monitor variables as your program executes. For scalar
variables, this is a particularly easy, compact way to view changing values.

1. Create an Expression List

 In the Stack Frame pane, right-click on the variable i, and select Add to Expression List. Then
do the same for the variable count. The Expression List Window launches, displaying these
two variables and their values.

2. View the updated values

 Click Go. When the breakpoint is hit, the value of i increments to 2, and this changed value is
highlighted in yellow in the Expression List window:

51

Basic Debugging Examining Data

 If you continue to hit Go, you can view the value of i increment to 5 before the program
completes.

3. Add additional columns to see more data

 Right-click on the column header and select Type and Last Value. These two columns are
added to the table:

Viewing Compound Variables Using the Variable Window
For nonscalar variables, such as structures, classes, arrays, common blocks, or data types, you can dive on the
variable to get more detail. This launches the Variable Window.

(For an overview on diving, see About Diving into Objects on page 164.)

This section includes:

 Basic Diving on page 51

 Nested Dives on page 53

 Rediving and Undiving on page 54

 Diving in a New Window on page 55

 Displaying an Element in an Array of Structures on page 56

Basic Diving

First, delete any breakpoints you had entered previously except the eval point set in Evaluation Points on
page 45. (Retaining this eval point simply allows the program to run without user input.)

1. Set a breakpoint

 Add a breakpoint at line 77, at the completion of the set_values() method.

RELATED TOPICS
Viewing variables in the Process Window Displaying Variables on page 246

Viewing variables in the Expression List Window Viewing a List of Variables on page 272

52

Basic Debugging Examining Data

 Click Go. The program runs until the breakpoint.

2. Dive on a variable

 Dive on the variable values in the Stack Frame pane (by double-clicking on values or by right-
clicking and selecting Dive).

The values variable is a struct of type wave_value_t, created to hold a copy of the variables that create
the wave, as well as other data.

The Variable Window launches.

Elements of a Variable Window

The basic elements of the Variable Window include:

 A set of toolbar icons that provide navigation and customizations:

Thread ID () icon to identify the current thread (in a single-threaded program, this is always
1.1, meaning process 1, thread 1).

Collapse/expand () icons to expand or collapse the contents of a compound type in nested win-
dows.

Up/down () icons to control the level of information about your data. If you select the up arrow,
more information about your data is displayed.

53

Basic Debugging Examining Data

Redive/Undive buttons, discussed in Rediving and Undiving on page 54.

 The editable fields Expression, Address, and Type. You can add an expression or change the
address and type for your variable here. Then select Edit > Reset Defaults when you are fin-
ished. (This is beyond the scope of this chapter. See the Related Topics table for more
information.)

Nested Dives

Since values is a compound type, you can dive again to get more detail about its components. This is called a
nested dive.

1. Dive on an array

 Dive on the array wave_value_t in the Value column, by double-clicking it:

RELATED TOPICS
Diving on objects About Diving into Objects on page 164 and

The View > Dive command View > Dive” in the Process Window in the in-product Help

More on the Variable Window Diving in Variable Windows on page 266

Editing data in the Variable Window Changing What the Variable Window Displays on page 270

54

Basic Debugging Examining Data

This replaces the existing display with the array’s contents. Note the +(plus) sign on the left side of the
Field column. For nonscalar types, you can click the plus sign to see the type’s components:

2. Run the program and observe changing variable values

 Click Go so that the program runs and again stops at the breakpoint. Note that the variables
current_time and value have both changed:

Rediving and Undiving
Note the arrow icons on the top right of the Variable Window. These are the Undive/Redive and Undive all/
Redive all buttons. Using these buttons, you can navigate up and down into your dive.

RELATED TOPICS
More on nested dives Diving in Variable Windows on page 266

55

Basic Debugging Examining Data

Click the Undive button, for instance, to return to the previous window.

Diving in a New Window

If you wish to have more than one dive level visible at the same time rather than having a dive replace the existing
window’s data, you can create a duplicate window.

1. Undive

 Click the Undive arrow to return to the initial Variable Window.

2. Launch a new window

 Right-click on the array and select Dive in New Window. Another window launches. Now,
you can see both the original window and the new, nested dive.

3. Duplicate a window

Alternatively you can create a duplicate of a window.

 Select the command Window > Duplicate to duplicate the active Variable Window and then
dive to the desired level in a new window.

56

Basic Debugging Examining Data

Displaying an Element in an Array of Structures

You can display an element in an array of structures as if it were a simple array using the View > Dive In All
command.

Consider our values struct defined like this:
struct wave_value_t
{
 int x;
 int y;
 double current_time;
 double value;
};
We can select an element within that structure and view it as an array, allowing us to easily see the values of any
individual element as they change throughout program execution.

1. Dive in All on a variable

 In the nested Variable Window, select the double value.

57

Basic Debugging Examining Data

 Right-click and select Dive In All. TotalView displays all of the value elements of the values
array as if they were a single array.

2. Add the value to the Expression List

Remember that you can also view the scalar type value in an Expression List window.

 In the window just launched, right-click again on value and select Add to Expression List.
The Expression List window launches listing value:

3. Click Go to run your program. You can now view your variable values changing in three windows:

58

Basic Debugging Examining Data

RELATED TOPICS
Displaying an array of any element Displaying an Array of Structure’s Elements on page 268

More on the View > Dive in All command View > Dive in All” in the in-product Help

59

Basic Debugging Visualizing Arrays

Visualizing Arrays
The Visualizer is a special tool to graphically visualize array data. This is a powerful and easy way to view your pro-
gram’s data during debugging and is useful in discovering anomalies in data value range, numerical spikes, and
NaNs.

NOTE: These procedures on visualizing arrays can be performed independently of the other tasks
discussed in this chapter, but you must first load the program (Load the Program to Debug on
page 33). In addition, the discussion assumes an existing eval point has been set, as described
in Evaluation Points on page 45.

You can launch the Visualizer either directly from the GUI or from within an eval point.

From the GUI

Select an array in a Variable Window, and then select Tools > Visualizer.

From within an eval point

Invoke the Visualizer using the $visualize command, with this syntax:
$visualize (array [, slice_string])
Launching from an eval point also provides the ability to stop program execution if desired.

This discussion uses the $visualize command in an eval point to launch the Visualizer to view the waves array.
This array increments the value of XSIZE and YSIZE to create a visual wave.

Set Up

 Delete any breakpoints previously set except the eval point set at line 85 to suppress user input
(Evaluation Points on page 45).

60

Basic Debugging Visualizing Arrays

 Edit that eval point to provide a higher count, for instance, 20. This will allow amore interesting wave
to build as the values are incremented. (Right-click on its Eval icon, select Properties, and then edit
the count value:

Launching the Visualizer from an Eval Point
1. Add an eval point

 Click on line 63 at the function wave() to add a breakpoint, as the comments suggest.

 Right-click on the breakpoint icon and select Properties to launch the Action Point Proper-
ties dialog.

 Click the Evaluate button to open the Expression field. Enter the following code:
 $visualize(waves,"[::4][::4]");
 $stop;

When the eval point is hit, this code will launch a single Visualizer window that will display every fourth ele-
ment in the major dimension (the X axis), and then program execution will stop. To display the entire array,
you could just write:
$visualize(waves); // entire array
(Note that the code comments suggest launching two Visualizer windows. For purposes of this discussion,
we’ll add just one.)

61

Basic Debugging Visualizing Arrays

 Click OK. The Eval Point icon appears:

2. Run the program and view the data

At this point, the program should have no regular breakpoints and two eval points:

 Click Go.

The program runs to the eval point at wave() and then stops. The Visualizer launches, reflecting the
array’s initial values:

Above are the Visualizer’s two windows: the top window is the Dataset window listing all datasets available
to visualize (only one dataset has been loaded into the Visualizer at this point); the bottom is the View win-
dow where the graphical display appears.

3. Complete the program

 Click Go several more times (the program will complete once you have clicked Go as many
times as the value for the variable count in the eval point).

You can watch the wave build, for example:

62

Basic Debugging Visualizing Arrays

4. Run the program without stopping execution

An eval point does not have to stop execution. To let the program run without interruption, just remove the
$stop command from the Expression field in the Action Point Properties dialog, then click Go.

Viewing Options
The Visualizer shows either a Graph view (2-D plot) or Surface view (3-D plot) of your data. (If the array is one-
dimensional, only the Graph view is available. The Graph view is not discussed here.)

By default, it shows a Surface view for most two-dimensional data, and that is what it shows for the waves array.

The Surface view displays two-dimensional datasets as a surface in two or three dimensions. The dataset’s array
indices map to the first two dimensions (X and Y axes) of the display, and the values map to the height (Z axis).

You can further refine the Surface view using the View window’s options. Select File > Options from the View win-
dow to launch the Options dialog.

RELATED TOPICS
The Array Visualizer Array Visualizer on page 341

More ways to use view arrays Examining Arrays on page 312

63

Basic Debugging Visualizing Arrays

Possible options are:

 surface: Displays the array as a three-dimensional surface (the default is to display it as a grid).

 XY: Reorients the view’s XY axes. The Z axis is perpendicular to the display.

 Auto Reduce: Speeds visualization by averaging neighboring elements in the original dataset.

For example, click surface, then click OK. The view changes from a grid to a 3-D:

The Visualizer has many more options with various other viewing modes and tools. See the Related Topics below
for references to further discussions.

This completes this tutorial on basic debugging.

RELATED TOPICS
More on the Visualizer Array Visualizer on page 341

Visualizer options Using the Graph Window on page 347 and Using the
Surface Window on page 350

The Array Viewer (another way of looking at arrays) Viewing Array Data on page 317

Displaying slices of arrays Displaying Array Slices on page 313

Filtering array data Filtering Array Data Overview on page 319

64

Basic Debugging Moving On

Moving On
 For an overview on TotalView’s features, see About TotalView on page 5.

 To learn about parallel debugging tasks, see Manipulating Processes and Threads on page 407.

 For detailed information on TotalView’s debugging tools and features, see Debugging Tools and
Tasks on page 84.

65

Accessing TotalView Remotely

Using the TotalView Remote Display client, you can start and then view TotalView as it executes on another
system, so that TotalView need not be installed on your local machine.

 Remote Display Supported Platforms on page 66

 Remote Display Components on page 67

 Installing the Client on page 68

 Client Session Basics on page 70

 Advanced Options on page 74

 Naming Intermediate Hosts on page 76

 Submitting a Job to a Batch Queuing System on page 77

 Setting Up Your Systems and Security on page 79

 Session Profile Management on page 80

 Batch Scripts on page 82

66

Accessing TotalView Remotely Remote Display Supported Platforms

Remote Display Supported Platforms
Remote Display is currently bundled into all TotalView releases.

Supported platforms include:

 Linux x86-64

 Microsoft Windows

 Apple macOS Intel

No license is needed to run the Client, but TotalView running on any supported operating system must be a
licensed version of TotalView 8.6 or greater.

67

Accessing TotalView Remotely Remote Display Components

Remote Display Components
TotalView Remote Display has three components:

 The Client is a window running on a Remote Display supported platform (See Remote Display
Supported Platforms on page 66).

 The Server is invisible, managing the movement of information between the Viewer, the remote
host, and the Client. The Server can run on all systems that TotalView supports. For example, you
can run the Client on a Windows system and set up a Viewer environment on an IBM RS/6000
machine.

 The Viewer is a window that appears on the Client system. All interactions between this window and
the system running TotalView are handled by the Server.

Figure 16 shows how these components interact.

In this figure, the two large boxes represent the computer upon which you execute the Client and the remote sys-
tem upon which TotalView runs. Notice where the Client, Viewer, and Server are located. The small box labeled
External SSH Host is the gateway machine inside your network. The Client may be either inside our outside your
firewall. This figure also shows that the Server is created by TotalView or MemoryScape as it is contained within
these programs and is created after the Client sends a message to TotalView or MemoryScape.

TotalView and the X Window system must be installed on the remote server machine containing the rgb and font
files in order for the remote display server to start correctly. The bastion nodes (if any) between the remote client
machine and remote server machine do not require TotalView or X Window file access.

Figure 16, Remote Display Components

68

Accessing TotalView Remotely Installing the Client

Installing the Client
Before installing the Client, TotalView must already be installed.

The files used to install the client are in these locations:

 Remote Display Client files for each supported platform are in the remote_display subdirectory in
your TotalView installation directory.

 Alternatively, request a Remote Display Client from TotalView’s download page at https://
totalview.io/downloads.

Because Remote Display is built into TotalView, you do not need to have a separate license for it. Remote Display
works with your product’s license. If you have received an evaluation license, you can use Remote Display on
another system.

Installing on Linux
The Linux Client installer is RDC_installer_<release_number>-linux-x86-64.run.

Linux Requirements:

 The xterm application must be installed on both the RDC client and RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm, twm
and mwm. You can override the window manager in use by providing the executable name of your
window manager on the RDC's Advanced Options dialog.

Installing on Microsoft Windows

Before installing the Client, TotalView must already be installed on your Linux or UNIX system. The Windows Client
installer is RDC_Installer.<release_number>-win.exe.

Windows Requirements:

 The xterm application must be installed on the RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm, twm
and mwm. You can override the window manager in use by providing the executable name of your
window manager on the RDC's Advanced Options dialog.

https://totalview.io/downloads
https://totalview.io/downloads

69

Accessing TotalView Remotely Installing the Client

Installing on macOS
The macOS installer is RDC_installer_<release_number>-macos.dmg.

macOS Requirements:

 The xterm application must be installed on both the RDC client and RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm, twm
and mwm. You can override the window manager in use by providing the executable name of your
window manager on the RDC's Advanced Options dialog.

 Catalina (macOS 10.14) and newer users must install the free Real VNC viewer from https://
www.realvnc.com/en/connect/download/viewer/macos/.

https://www.realvnc.com/en/connect/download/viewer/macos/
https://www.realvnc.com/en/connect/download/viewer/macos/

70

Accessing TotalView Remotely Client Session Basics

Client Session Basics
The TotalView Remote Display Client is simple to use. Just enter the required information, and the Client does the
rest.

On Linux, invoke the Client with the following:
remote_display_client.sh

On Windows, either click the desktop icon or use the TVT Remote Display item in the start menu to launch the
remote display dialog. On macOS, run the TVRemoteDisplayClient application from the Applications area.

The Client window displays similarly on Linux, Windows, or macOS.

Here are the basic steps:

1. Enter the Remote Host

 Remote Host: The name of the machine upon which TotalView will execute. While the Client
can execute only on specified systems (see Remote Display Supported Platforms), the
remote system can be any system upon which you are licensed to run TotalView.

 User Name dropdown: Your user name, a public key file, or other ssh options.

Figure 17, Remote Display Client Window

71

Accessing TotalView Remotely Client Session Basics

2. (Optional) As needed, enter hosts in access order...(depending on your network).

If the Client system cannot directly access the remote host, specify the path. For more information, see Nam-
ing Intermediate Hosts on page 76.

3. Enter settings for the debug session on the Remote Host

Settings required to start TotalView on the remote host. (The TotalView and MemoryScape tabs are identical.)

 Path to TotalView on the Remote Host: The directory on the remote host in which
TotalView resides, using either an absolute or relative path. “Relative” means relative to your
home directory.

 (Optional) Your Executable: Either a complete or relative pathname to the program being
debugged. If you leave this empty, TotalView begins executing as if you had just typed
totalview on the remote host.

 Other options:

You can add any command-line options for TotalView or your program.

TotalView options are described in the “TotalView Debugger Command Syntax” chapter of the Classic
TotalView Reference Guide.

For arguments to your program, enter them in the same way as you would using the -a command-line
option.

Additional options include:

 Advanced Options: Press the Advanced Options button to customize client/server interaction and
server execution, Advanced Options on page 74.

 Submit job to batch queueing system: You can submit jobs to the PBS Pro and LoadLeveler
batch queuing systems, Submitting a Job to a Batch Queuing System on page 77.

Launching the Remote Session

Next, press the Launch Debug Session button, which launches a password dialog box.

72

Accessing TotalView Remotely Client Session Basics

Depending on how you have connected, you may be prompted twice for your password: first when Remote Dis-
play is searching ports on a remote system and another when accessing the remote host. You can often simplify
logging in by using a public key file.

After entering the remote host password, a window opens on the local Client system containing TotalView as well
as an xterm running on the remote host where you can enter operating system and other commands. If you do
not add an executable name, TotalView displays its File > New Debugging Session dialog box. If you do enter a
name, TotalView displays its Process > Startup Parameters dialog box.

Closing the Remote Session

To close the session:

 From the Client, terminate the Viewer and Server by pressing the End Debug Session button. (The
Launch Debug Session button changes to this button after you launch the session.)

 Click Close on the Viewer’s window to remove the Viewer Window. This does not end the
debugging session, so then select the Client’s End Debug Session button. Using these two steps to
end the session may be useful when many windows are running on your desktop, and the Viewer
has obscured the Client.

Closing all Remote Sessions and the Client

To close all remote connections and shut down the Client window, select File > Exit.

Figure 18, Asking for Password

73

Accessing TotalView Remotely Client Session Basics

Working on the Remote Host
After launching a remote session, the Client starts the Remote Display Server on the remote host where it creates
a virtual window. The Server then sends the virtual window to the Viewer window running on your system. The
Viewer is just another window running on the Client’s system. You can interact with the Viewer window in the
same way you interact with any window that runs directly on your system.

Behind the scenes, your interactions are sent to the Server, and the Server interacts with the virtual window run-
ning on the remote host. Changes made by this interaction are sent to the Viewer on your system. Performance
depends on the load on the remote host and network latency.

If you are running the Client on a Windows system, these are the icons available:

From left to right, the commands associated with these icons are:

 Connection options

 Connection information

 Full Screen - this does not change the size of the Viewer window

 Request screen refresh

 Send Ctrl-Alt-Del

 Send Ctrl-Esc

 Send Ctrl key press and release

 Send Alt key press and release

 Disconnect

Figure 19, Remote Display Client commands on Windows

74

Accessing TotalView Remotely Advanced Options

Advanced Options
The Advanced Options window in Figure 20 is used to customize Remote Display Client and Server interaction
and to direct the Server and Remote Display Viewer execution.

Options are:

 Commands: Enter commands to execute before TotalView begins. For example, you can set an
environment variable or change a directory location.

 Font Path: Specify the remote host’s font path, needed by the Remote Display Server. Remote
Display checks the obvious places for the font path, but on some architectures, the paths are not
obvious.

Figure 20, Advanced Options Window

75

Accessing TotalView Remotely Advanced Options

 Color Location: Specify the location of the rgb.txt file needed by the Remote Display Server.
Remote Display checks the obvious places for the location, but on some architectures, its location
is not obvious. Providing the correct location may improve the startup time.

 VNC Viewer: Select the VNC viewer to use for application display.

 Remote Display Viewer Window Size: The default size of the Remote Display Viewer is
dynamically computed, taking into account the size of the device on which the Remote Display
Client is running. You can override this by selecting a custom size, which will be saved with the
profile.

 Display Number: Specify a display number for Remote Display to use when the Client and Server
connect. The Remote Display Client determines a free display number when connecting to the
Server, requiring two password entries in some instances. Specifying the display number overrides
the Remote Display Client determining a free number, and collisions may occur.

 ssh Port Number: On most systems, ssh uses port 22 when connecting, but in rare instances
another port is used. This field allows you to override the default.

 Window Manager: Specify the name of the window manager. The path of the window manager
you provide must be named in your PATH environment variable. The Server looks for (in order) the
following window managers on the remote host: icewm, fvwm, twm, and mwm. Specifying a
window manager may improve the startup time.

The buttons at the bottom are:

 Cancel: Closes the window without saving changes.

 Apply: Saves the changes with the profile, leaving the window open.

 OK: Closes the window and saves the changes with the profile.

 Reset: Reverts back to the previously saved values.

76

Accessing TotalView Remotely Naming Intermediate Hosts

Naming Intermediate Hosts
If the Client system does not have direct access to the remote host, you must specify the path, or paths, along
with how you will access the host. You can enter multiple hosts; the order in which you enter them determines

the order Remote Display uses to reach your remote host. Use the arrow buttons on the left () to change the
order.

 Host: The route the Client should take to access the remote host. For instance, this can be a
network path or an IP address. If your network has a gateway machine, you would name it here in
addition to other systems in the path to the remote host.

 Access By/Access Value: The most common access method is by a user name, the default. If this is
incorrect for your environment, use the dropdown menu to select the correct method:

 User Name, i.e. the name you enter into a shell command such as ssh to log in to the host
machine. Enter this in the Access Value field.

 Public Key File, the file that contains access information, entered into the Access Value field.

 Other SSH Options, the ssh arguments needed to access the intermediate host. These are
the same arguments you normally add to the ssh command.

 Commands: Commands (in a comma-separated list) to execute when connected to the remote
host, before connecting to the next host.

Figure 21, Access By Options

77

Accessing TotalView Remotely Submitting a Job to a Batch Queuing System

Submitting a Job to a Batch Queuing System
TotalView Remote Display can submit jobs to the PBS Pro and LoadLeveler batch queuing systems.

1. Select a batch system from the Submit job to Batch Queuing System dropdown list, either PBS Pro or
LoadLeveler.

The default values are qsub for PBS Pro and llsubmit for LoadLeveler.

The Script to Run field is populated with the default scripts for either system: tv_PBS.csh for PBS Pro and
tv_LoadLeveler.csh for LoadLeveler. These scripts were installed with TotalView, but can of course be
changed if your system requires it. For more information, see Batch Scripts on page 82.

2. (Optional) Select additional PBS or LoadLeveler options in the Additional Options field.

Figure 22, Remote Display Window: Showing Batch Options

78

Accessing TotalView Remotely Submitting a Job to a Batch Queuing System

Any other required command-line options to either PBS or LoadLeveler. Options entered override those in the
batch script.

3. Launch by pressing the Launch Debug Session button.

Behind the scenes, a job is submitted that will launch the Server and the Viewer when it reaches the head
of the batch queue.

79

Accessing TotalView Remotely Setting Up Your Systems and Security

Setting Up Your Systems and Security
In order to maintain a secure environment, Remote Display uses SSH. The Remote Display Server, which runs on
the remote host, allows only RFB (Remote Frame Buffer) connections from and to the remote host. No incoming
access to the Server is allowed, and the Server can connect back to the Viewer only over an established SSH con-
nection. In addition, only one Viewer connection is allowed to the Server.

As Remote Display connects to systems, a password is required. If you are allowed to use keyless ssh, you can
simplify the connection process. Check with your system administrator to confirm that this kind of connection is
allowed and the ssh documentation for how to generate and store key information.

Requirements for the Client to connect to the remote host:

 If you use an LM_LICENSE_FILE environment variable to identify where your license is located,
ensure that this variable is read in on the remote host. This is performed automatically if the
variable’s definition is contained within one of the files read by the shell when Remote Display logs
in.

 ssh must be available on all non-Windows systems being accessed.

 X Windows must be available on the remote system.

80

Accessing TotalView Remotely Session Profile Management

Session Profile Management
The Client saves your information into a profile based on the name entered in the remote host area. You can
restore these settings by clicking on the profile’s name in the Session Profiles area.

Figure 23 shows two saved profiles.

When you select a profile, the Client populates the right window with that profile’s values.

If you edit the data in a text field, the Client automatically updates the profile information. If this is not what you
want, click the Create icon to display a dialog box into which you can enter a new session profile name. The Client
writes this existing data into a new profile instead of saving it to the original profile.

Saving a Profile

To save a profile, click the save button () or select File > Profile > Save, then provide a profile name in the Pro-
file Name popup.

This command saves the profile information currently displayed in the Client window to a name you provide, plac-
ing it in the Session Profiles area. You do not need to save changes to the current profile as the Client
automatically saves them.

Figure 23, Session Profiles

81

Accessing TotalView Remotely Session Profile Management

Deleting a Profile

To delete a profile, click the delete button () or select File > Profile > Delete. This command deletes the cur-
rently selected profile and requires a confirmation.

Sharing Profiles

To import a profile, click the import button () or select File > Profile > Import, and then browse to the profile
to import. After you import a file, it remains in your Client profile until you delete it.

To export a profile, click the export button () or select File > Profile > Export, browse to a directory where you
want to export it, and then name the profile.

82

Accessing TotalView Remotely Batch Scripts

Batch Scripts
The actions that occur when you select PBS Pro or LoadLeveler within the Submit job to Batch Queueing Sys-
tem are defined in two files: tv_PBS.csh and tv_LoadLever.csh. If the actions defined in these scripts are not
correct for your environment, you can either change one of these scripts or add a new script, which is the recom-
mended procedure.

Place the script you create into installation_dir/totalview_version/batch. For example, you could place a new
script file called Run_Large.csh into the installation_dir/toolworks/totalview.8.6.0/batch directory.

tv_PBS.csh Script
Here are the contents of the tv_PBS.csh script file:
#!/bin/csh -f

Script to submit using PBS

These are passed to batch scheduler::

account to be charged
##PBS -A VEN012

pass users environment to the job
##PBS -V

name of the job
#PBS -N TotalView

input and output are combined to standard
##PBS -o PBSPro_out.txt
##PBS -e PBSPro_err.txt

##PBS -l feature=xt3

#PBS -l walltime=1:00:00,nodes=2:ppn=1

Do not remove the following:
TV_COMMAND
exit
#
end of execution script

83

Accessing TotalView Remotely Batch Scripts

You can uncomment or change any line and add commands to this script. The only lines you cannot change are:
TV_COMMAND
exit

tv_LoadLeveler.csh Script
Here are the contents of the tv_Loadleveler.csh script file:
#! /bin/csh -f
@ job_type = bluegene
#@ output = tv.out.$(jobid).$(stepid)
#@ error = tv.job.err.$(jobid).$(stepid)
#@ queue
TV_COMMAND

You can uncomment or change any line and add commands to this script. The only line you cannot change is:
TV_COMMAND

 84

PART II
Debugging Tools and Tasks

This part introduces basic tools and features for debugging your programs using TotalView, including:

 Starting TotalView
If you just enter totalview in a shell, the Sessions Manager launches where you can configure your debug-
ging session. But you can also bypass the manager and launch TotalView directly. This chapter details the multi-
ple options you have for starting TotalView.

 Loading and Managing Sessions
You can set up a debugging session in several ways, depending on your platform. This chapter discusses com-
mon setup scenarios and configurations.

 Using and Customizing the GUI
The TotalView GUI provides an extensive set of tools for viewing, navigating, and customization. This chapter dis-
cusses features specific to TotalView’s interface.

 Stepping through and Executing your Program
TotalView provides a wide set of tools for stepping through your program, using either the Process and Group
menus, toolbar commands, or the CLI.

 Setting Action Points
Action points control how your programs execute and what happens when your program reaches statements
that you define as important. Action points also let you monitor changes to a variable’s value.

 Examining and Editing Data and Program Elements
This chapter discusses how to examine the value stored in a variable.

 Examining Arrays

85

Displaying information in arrays presents special problems. This chapter tells how TotalView solves these problems.

 Visualizing Programs and Data
Some TotalView commands and tools are only useful if you’re using the GUI. Here you will find information on the
Call Graph and Visualizer.

 Evaluating Expressions
Many TotalView operations such as displaying variables are actually operating upon expressions. Here’s where you’ll
find details of what TotalView does. This information is not just for advanced users.

 About Groups, Processes, and Threads
This chapter is the first of a three-chapter look at the TotalView process/thread model and how to manipulate
threads and processes while debugging your multi-threaded applications. This chapter contains concept informa-
tion on threads and processes in general. Manipulating Processes and Threads describes TotalView’s hands-on
tools for organizing and viewing thread and process activity and data, while Group, Process, and Thread Control
includes advanced configuration and customization, useful for finely controlling execution in very complex applica-
tions.

 Manipulating Processes and Threads
The second (of three) chapter focusing on threads and processes, with an emphasis on hands-on tasks and tools to
control the view, execution, and focus of a single or group of threads and processes.

 Debugging Strategies for Parallel Applications
Because debugging parallel applications can be so complex, this chapter offers a few strategies that can help
streamline the task.

86

 Starting TotalView

Before starting TotalView and loading a program to debug, first compile your program for debugging.

When you are ready to start debugging, you have many options for starting TotalView.

This chapter discusses:

 Compiling Programs on page 87

 Starting TotalView on page 89

 Exiting from TotalView on page 99

87

Starting TotalView Compiling Programs

Compiling Programs
The first step in getting a program ready for debugging is to add your compiler’s -g debugging command-line
option. This option tells your compiler to generate symbol table debugging information; for example:
cc -g -o executable source_program
You can also debug programs that you did not compile using the -g option, or programs for which you do not
have source code. For more information, see

The following table presents some general considerations. “Compilers and Platforms in the Classic TotalView Refer-
ence Guide contains additional considerations.

Compiler Option or
Library What It Does When to Use It

Debugging symbols option
(usually -g)

Generates debugging information in the symbol
table.

Before debugging any program
with TotalView.

Optimization option
(usually -O)

Rearranges code to optimize your program’s
execution.

Some compilers won’t let you use the -O option
and the -g option at the same time.

Even if your compiler lets you use the -O option,
don’t use it when debugging your program, since
strange results often occur.

After you finish debugging your
program.

multi-process programming
library (usually dbfork)

Linking with dbfork defines TotalView-specific
symbols that direct the debugger to follow fork()
and vfork() system calls.

In some cases, you need to use the -lpthread
option.

For more information about dbfork, see “Linking
with the dbfork Library” contained in the “Compil-
ers and Platforms” chapter of the Classic
TotalView Reference Guide.

Before debugging a multi-pro-
cess program that explicitly calls
fork() or vfork() and for which
you want TotalView to always
attach to the child processes.

See Debugging Processes That
Call the fork() Function on
page 213.

RELATED TOPICS
Compilers and platforms "Compilers and Platforms" in the Classic TotalView Reference Guide

The dbfork library "Linking with the dbfork Library" in the Classic TotalView Reference Guide

88

Starting TotalView Compiling Programs

Using File Extensions
When opening a file, TotalView uses the file's extension to determine the programming language used. If you are
using an unusual extension, you can manually associate your extension with a programming language by setting
the TV::suffixes variable in a startup file. For more information, see the “TotalView Variables” chapter in the Classic
TotalView Reference Guide.

Note that your installation may have its own guidelines for compiling programs.

Controlling TotalView’s behavior for fork,
vfork and execve handling

Controlling fork, vfork, and execve Handling on page 566

Assembler code Viewing the Assembler Version of Your Code on page 173

RELATED TOPICS

89

Starting TotalView Starting TotalView

Starting TotalView
TotalView can debug programs that run in many different computing environments using many different parallel
processing modes and systems. This section looks at few of the ways you can start TotalView. See the “TotalView
Command Syntax” chapter in the Classic TotalView Reference Guide for more detailed information.

NOTE: Starting TotalView with no arguments (just entering totalview in your shell) launches the
Sessions Manager’s Start a Debugging Session dialog, Starting a Debugging Session on page 102.

In most cases, the command for starting TotalView looks like the following:
totalview [executable [core-files | recording-file]] [options]

where executable is the name of the executable file to debug, core-files is the name of one or more core files to
examine, and recording-file is the name of a ReplayEngine recording to load.

Your environment may require you to start TotalView in another way. For example, if you are debugging an MPI
program, you must invoke TotalView on mpirun. For details, see Setting Up Parallel Debugging Sessions on
page 546.

Note that you can use the GUI and the CLI at the same time. Use the Tools > Command Line command to dis-
play the CLI’s window.

NOTE: Your installation may have its own procedures and guidelines for running TotalView.

The following examples show different ways that you might begin debugging a program:

CLI: totalviewcli [executable [core-files | recording-file]] [options]

90

Starting TotalView Starting TotalView

Starting TotalView
totalview Starts TotalView without loading a program or core file. Instead, TotalView launches the Ses-

sions Manager’s Start a Debugging Session dialog where you can choose the type of session
you plan to debug.

91

Starting TotalView Starting TotalView

When you select your type of session, the relevant dialog launches. For instance, if you select A
new program, the Program Session dialog launches.

Notice the Debug Options tab in the sidebar. Selecting this launches a dialog that enables re-
verse debugging with ReplayEngine and memory debugging with MemoryScape.

On the CLI, enter:

Starting on Mac OS X

If you installed TotalView on a Macintosh using the application bundle, you can click on the To-
talView icon. If you’ve installed the .dmg version, you can start TotalView from an xterm by typ-
ing:

installdir/TotalView.app/totalview

where installdir is where TotalView is installed.

If TotalView was installed on your system without procmod permission, you will not be able to
debug programs. If TotalView detects this problem, it displays a dialog box with information on
how to fix it.

CLI: totalviewcli
dload executable

92

Starting TotalView Starting TotalView

Creating or Loading a Session
totalview -load_session session_name

Creates a process based on the session values. Sessions that attach to an existing process can-
not be loaded this way; use the -pid command line option instead

Debugging a Program
totalview executable

Starts TotalView and loads the executable program.

If you installed TotalView on a Macintosh using the application bundle, you can drag your pro-
gram’s executable to the TotalView icon on your desktop.

If you type an executable name, TotalView remembers that name and many of its arguments.

Debugging a Core File
totalview executable corefiles

Starts TotalView and loads the executable program and one or more associated core-files.

The core-files argument represents one or more core files associated with this executable.
You can use wild cards in the core file names.

Debugging with a Replay Recording File
totalview executable recording-file

Starts TotalView and loads the executable program and an associated recording-file. The re-
cording file was saved in a previous debugging session that used the Replay feature, and re-
stores the state of that debugging session, including all Replay information.

CLI: totalviewcli
 dsession -load session_name

CLI: totalviewcli executable

CLI: dattach -c core-files -e executable

CLI: dattach -c recording-file -e executable

93

Starting TotalView Starting TotalView

Passing Arguments to the Program Being Debugged
totalview executable -a args

Starts TotalView and passes all the arguments following the -a option to the executable pro-
gram. When using the -a option, it must be the last TotalView option on the command line.

If you don’t use the -a option and you want to add arguments after TotalView loads your pro-
gram, add them either using either the File > Debug New Program dialog box or use the
Process > Startup command.

totalview -args executable args
Similar to above, but uses the command line option -args to specify that the executable pro-
gram and arguments follow.

Debugging a Program Running on Another Computer
totalview executable -remote hostname_or_address[:port]

Starts TotalView on your local host and the tvdsvr command (which implements and controls
debugging on remote machines) on a remote host. After TotalView begins executing, it loads
the program specified by executable for remote debugging. You can specify a host name or a
TCP/IP address. If you need to, you can also enter the TCP/IP port number.

If TotalView fails to automatically load a remote executable, you may need to disable auto-
launching for this connection and manually start the tvdsvr. (Autolaunching is the process of
automatically launching tvdsvr processes.) To disable autolaunching, add the host-
name:portnumber suffix to the name entered in the Debug on Host field of the File > De-
bug New Program dialog box. As always, the portnumber is the TCP/IP port number on
which TotalView server is communicating with TotalView. See Starting the TotalView Server
Manually on page 492 for more information.

NOTE: TotalView Individual does not allow remote debugging.

CLI: totalviewcli executable -a args

CLI: dset ARGS_DEFAULT {value}

CLI: totalviewcli -args executable args

CLI: totalviewcli executable
-r hostname_or_address[:port]

94

Starting TotalView Starting TotalView

Debugging an MPI Program
The exact details for starting the debugger on an MPI program vary greatly from system to system, so consult with
your local system documentation for details. The following are generic examples that may or may not work on
your specific system.

totalview
Method 1: In many cases, you can start an MPI program in much the same way as you would
start any other program. However, you need to select A New Parallel program from the
Start a Debugging Session dialog box, and enter the MPI version and other information on
the parallel program to debug.

totalview -args mpirun mpirun-args
Method 2: Invokes TotalView on the MPI starter program mpirun. The mpirun-args are the
arguments to pass to the MPI starter program, such as the number of processes, number of
nodes, the name of the MPI application program to debug, and arguments for the application.
For example:
totalview -args mpirun -np 4 ./myMPIprog myDataFile

mpirun -np count -tv executable
Method 3: The MPI mpirun command starts the TotalView executable pointed to by the TO-
TALVIEW environment variable. TotalView then starts your program. This program runs using
count processes.

Starting TotalView on a Script
It is sometimes convenient to start TotalView on a shell script. For example, a typical use case
might be a script that calls into a shared library, and you need to debug the shared library code;
another case is a shell script that sets environment variables, then execs the application to de-
bug.

Anywhere in the examples above that an executable can be specified, an interpreter script
can be specified instead. The underlying interpreter, which must be a valid executable object
file for the platform, is debugged, not the script itself.

On Unix, an interpreter script starts with a line that is similar to the following:

#! interpreter [interpreter-arg]

Where:

#! are the first two characters in the file.
interpreter is the path to an executable object file or some other interpreter
script.
interpreter-arg is an optional argument to pass to the interpreter.

When the interpreter script is executed, the interpreter is invoked by the system as follows:

95

Starting TotalView Starting TotalView

interpreter [interpreter-arg] script [script-args]

Here's a simple example:

% cat myscript.sh
#! /bin/sh -x
echo "$@"
% ./myscript.sh a b c
+ echo a b c
a b c
%

In the example above, the following command was executed:

/bin/sh -x ./myscript.sh a b c

Whenever TotalView is processing an executable file, it first checks to see if the file is an inter-
preter script. If the file starts with #!, it is treated as an interpreter script. The path to the inter-
preter is extracted from the script and used as the executable object file to debug. If the
interpreter file is itself an interpreter script, TotalView repeats the procedure (up to 40 times)
until it encounters an interpreter file that is not an interpreter script. If the procedure fails to
find a valid executable object file for the platform, loading the script into the debugger will fail.

In most cases, the interpreter for the script does not directly contain the code you want to de-
bug, and instead dynamically loads or executes the code to debug. TotalView contains several
configuration settings that make it easier to plant breakpoints and stop in your code, as de-
scribed by the Related Topics below. There are three common cases, where the interpreter
script:

— Dynamically loads a shared library and calls into the code to debug (see the
entries below regarding dynamic library handling and creating pending
breakpoints)

— Execs the program containing the code to debug (relevant to exec handling)
— Runs the program containing the code to debug (relevant to fork handling)

.

RELATED TOPICS
Debugging parallel programs such as MPI,
UPC, or CAF, including invoking TotalView
on mpirun

Setting Up Parallel Debugging Sessions on page 546

Remote debugging Setting Up Remote Debugging Sessions on page 484, and
“TotalView Debugger Server (tvdsvr) Command Syntax” in the
Classic TotalView Reference Guide.

96

Starting TotalView Starting TotalView

The totalview command “TotalView Command Syntax” in the Classic TotalView Refer-
ence Guide

Separating debug information from an exe-
cutable using a gnu_debuglink file.

“Using gnu_debuglink Files” in the Compilers and Platforms
chapter of the Classic TotalView Reference Guide

Configuring dynamic library handling “Debugging Your Program’s Dynamically Loaded Libraries” in
the Classic TotalView Reference Guide.

Creating a pending breakpoint Pending Breakpoints on page 201

Configuring exec handling Exec Handling on page 568

Configuring fork handling Fork Handling on page 569

RELATED TOPICS

97

Starting TotalView Initializing TotalView

Initializing TotalView
When TotalView begins executing, it reads initialization and startup information from a number of files. The two
most common are initialization files that you create and preference files that TotalView creates.

NOTE: It is sometimes desirable to bypass defaults that have been set in either a global or a private
initialization file. To bypass the default execution of startup scripts, you can specify -
no_startup_scripts on the TotalView startup command line.

An initialization file stores CLI functions, set variables, and execute actions that TotalView interprets when it begins
executing. This file, which you must name tvdrc, resides in the .totalview subdirectory contained in your home
directory. TotalView creates this directory for you the first time it executes.

TotalView can read more than one initialization file. You can place these files in your installation directory, the
.totalview subdirectory, the directory in which you invoke TotalView, or the directory in which the program
resides. If an initialization file is present in one or all of these places, TotalView reads and executes each. Only the
initialization file in your .totalview directory has the name tvdrc. The other initialization files have the name
.tvdrc. That is, a dot precedes the file name.

NOTE: Before Version 6.0, you placed your personal .tvdrc file in your home directory. If you do not
move this file to the .totalview directory, TotalView will still find it. However, if you also have a
tvdrc file in the .totalview directory, TotalView ignores the .tvdrc file in your home directory.

TotalView automatically writes your preferences file to your .totalview subdirectory. Its name is preferences6.tvd.
Do not modify this file as TotalView overwrites it when it saves your preferences.

If you add the -s filename option to either the totalview or totalviewcli shell command, TotalView executes the
CLI commands contained in filename. This startup file executes after a tvdrc file executes. The -s option lets you,
for example, initialize the debugging state of your program, run the program you’re debugging until it reaches
some point where you’re ready to begin debugging, and even create a shell command that starts the CLI.

98

Starting TotalView Initializing TotalView

Figure 24 shows the order in which TotalView executes initialization and startup files.

The .Xdefaults file, which is actually read by the server when you start X Windows, is only used by the GUI. The
CLI ignores it.

The tvdinit.tvd file resides in the TotalView lib directory. It contains startup macros that TotalView requires. Do
not edit this file. Instead, if you want to globally set a variable or define or run a CLI macro, create a file named
.tvdrc and place it in the TotalView lib directory.

As part of the initialization process, TotalView exports three environment variables into your environment: LM_LI-
CENSE_FILE, TVROOT, and either SHLIB_PATH or LD_LIBRARY_PATH.

If you have saved an action point file to the same subdirectory as your program, TotalView automatically reads the
information in this file when it loads your program.

You can also invoke scripts by naming them in the TV::process_load_callbacks list. For information on using this
variable, see the “Variables” chapter of the Classic TotalView Reference Guide.

If you are debugging multi-process programs that run on more than one computer, TotalView caches library
information in the .totalview subdirectory. If you want to move this cache to another location, set TV::library_-
cache_directory to this location. TotalView can share the files in this cache directory among users.

Figure 24, Startup and Initialization Sequence

RELATED TOPICS
The TV::process_load_callbacks variable "TotalView Variables" in the Classic TotalView Reference

Guide

Saving action points Saving Action Points to a File on page 239

preferences6.tvd.Xdefaults

global tvdinit.tvd

global .tvdrc

-e and -s tvdrc

a local .tvdrc

command options

executable.tvd

99

Starting TotalView Exiting from TotalView

Exiting from TotalView
To exit from TotalView, select File > Exit. You can select this command in the Root, Process, and Variable Win-
dows. After selecting this command, TotalView displays the dialog box shown in Figure 25.

Select Yes to exit. As TotalView exits, it kills all programs and processes that it started. However, programs and
processes that TotalView did not start continue to execute.

NOTE: If you have a CLI window open, TotalView also closes this window. Similarly, if you type exit in
the CLI, the CLI closes GUI windows. If you type exit in the CLI and you have a GUI window
open, TotalView still displays this dialog box.

Note that if both the CLI and the GUI are open, and you want to exit only from the CLI, type Ctrl+D.

Figure 25, File > Exit Dialog Box

CLI: exit

100

 Loading and Managing Sessions

This chapter discusses how to set up a TotalView session, based on some of the most-used setup commands
and procedures.

There are two primary ways to load programs into TotalView for debugging: the GUI via the Sessions Manager
(Loading Programs from the Sessions Manager) or the CLI (Loading Programs Using the CLI) using its vari-
ous commands. Both support all debugging session types.

For information on setting up remote debugging, see Setting Up Remote Debugging Sessions on page 484.

For information on setting up parallel debugging sessions, see Setting Up MPI Debugging Sessions on
page 516 and Setting Up Parallel Debugging Sessions on page 546.

This chapter discusses:

Setting up Debugging Sessions

 Loading Programs from the Sessions Manager on page 102

 Starting a Debugging Session on page 102

 Debugging a New Program on page 103

 Attaching to a Running Program on page 105

 Debugging a Core File on page 110

 Debugging with a Replay Recording File on page 112

 Launching your Last Session on page 113

 Loading Programs Using the CLI on page 114

NOTE: Setting up parallel debugging sessions is not discussed in this chapter.
Rather, see Setting Up MPI Debugging Sessions.

Additional Session Setup Options

 Adding a Remote Host on page 116

 Options: Reverse Debugging, Memory Debugging, and CUDA on page 118

 Setting Environment Variables and Altering Standard I/O on page 120

Managing Debug Sessions

 Managing Sessions on page 124

Other Configuration Options

 Handling Signals on page 127

 Setting Search Paths on page 130

 Setting Startup Parameters on page 132

 Setting Preferences on page 133

Setting up Debugging Sessions
The easiest way to set up a new debugging session is to use the Sessions Manager, which provides an easy-to-use
interface for configuring sessions and loading programs into TotalView. Alternatively, you can use the CLI.

Loading Programs from the Sessions Manager on page 102

Loading Programs Using the CLI on page 114

Loading Programs from the Sessions Manager
TotalView can debug programs on local and remote hosts, and programs that you access over networks and
serial lines. The File menu of both the Root and Process windows contains a series of debug options to load local
and remote programs, core files, and processes that are already running.

Each of these debug options launches the Sessions Manager where you can configure a new debug session or
launch a previous session.

From this menu, you can also select Manage Sessions to edit or delete previously saved debug sessions.

NOTE: Your license limits the number of programs you can load. For example, TotalView Individual
limits you to 16 processes or threads.

Starting a Debugging Session

Access the main page of the Sessions Manager either directly from your shell by just entering
totalview

or by selecting File > New Debugging Session in the Root and Process windows.

Figure 26, Debugging options from the File Menu

The Start a Debugging Session dialog of the Sessions Manager can configure various types of debugging sessions,
depending on your selection. These are:

 Debugging a New Program on page 103

 Debugging a parallel application in Starting MPI Programs Using File > Debug New Parallel
Program on page 518

 Attaching to a Running Program on page 105

 Debugging a Core File on page 110

 Debugging with a Replay Recording File on page 112

 Launching your Last Session on page 113

 Waiting for Reverse Connections on page 114

Debugging a New Program

To configure a new debugging session, either:

 Select A new program to launch the Program Session dialog, or

Figure 27, Start a Debugging Session dialog box

 Select File > Debug New Program from the Root or Process windows, if TotalView is already
running.

The Program Session dialog launches.

1. Enter a session name in the Session Name text box.

NOTE: Note that any previously entered sessions of the same type are available from
the Session Name dropdown box. Once selected, you can change any session
properties and start your debug session. See Editing or Starting New Sessions in
a Sessions Window on page 126.

2. Enter the name of your program in the File Name box or press Browse to browse to and select the file.
You can enter a full or relative path name. If you have previously entered programs here, they will appear in
a drop-down list.

If you enter a file name, TotalView searches for it in the list of directories named using the File > Search Path
command or listed in your PATH environment variable.

3. (Optional) Add any custom configurations or options:

 Remote debugging: Select or add a remote host, if the program is to be executed on a
remote computer. See Adding a Remote Host on page 116.

Figure 28, Program Session dialog

CLI: dset EXECUTABLE_PATH

 Program arguments: Enter any program arguments into the Arguments field.

Because you are loading the program from within TotalView, you will not have entered the command-
line arguments that the program needs. For detail, see Program Arguments in the In-Product Help.

 Debugging Options: See Options: Reverse Debugging, Memory Debugging, and CUDA on
page 118.

 Environment variables or standard I/O: See Setting Environment Variables and Altering
Standard I/O on page 120

 Notes: You can add any notes to the session by selecting the Note icon (). See Adding
Notes to a Session on page 122.

4. Click Start Session. The Start Session button is enabled once all required information is entered.

Attaching to a Running Program

If a program you’re testing is hung or looping (or misbehaving in some other way), you can attach to it while it is
running. You can attach to single and multi-process programs, and these programs can be running remotely.

To open the Attach window, select either

 A running program (attach) on the Start a Debugging Session dialog, or

 File > Attach to a Running Program from the Root or Process window if TotalView is already
running.

A list of processes running on the selected host displays in the Attach to running program(s) dialog.

In the displayed list, processes to which TotalView is already attached are shown in gray text, while the processes
displayed in black text are not currently running under TotalView control.

1. Enter a name for this session in the Session Name field.

NOTE: Any previously entered sessions of the same type are available from the Session
Name dropdown box. Once selected, you can change any session properties and
start your debug session. See Editing or Starting New Sessions in a Sessions Win-
dow on page 126.

2. Click on the program’s name under the Program column, and press Start Session.

While you must link programs that use fork() and execve() with the TotalView dbfork library so that TotalView can
automatically attach to them when your program creates them, programs that you attach to need not be linked
with this library.

NOTE: You cannot attach to processes running on another host if you are using TotalView Individual.

Figure 29, Attaching to an existing process

CLI: dattach executable pid

Adding a New User

You can enter a user name to see the processes owned by that user. If you wish to attach to a process owned by
someone else, you need the proper permissions.

1. Click the icon to launch the Add username dialog.

2. Enter a known username, then click OK.

If the username is not recognized, the system returns an error; otherwise, the user is added to the User
drop-down and selected as the current user.

The selected user’s processes are displayed. Attach to another user’s processes just by clicking the process
and selecting Start Session.

If you do not have permissions to attach to the process, an error is returned.

Searching for Processes

You can search for any process using the search box (). If found, the process will display in
the Processes pane.

Attach Options

On the Debug Options tab, two options exist:

 Enabling ReplayEngine, which is an option available to all other debugging sessions (See Options:
Reverse Debugging, Memory Debugging, and CUDA on page 118)

 Placing the processes to which you are attaching into a control group under the Attach Options
area.

If you have selected a group in previous TotalView sessions and the group exists in the dropdown, it is
selected for you. Otherwise, the default is to create a new group to contain all processes attached to in this
session.

Attaching Errors

If TotalView returns an error while attempting to attach to a process, it is usually because you do not have permis-
sion to attach to that process. For example, the process could not be allocated:

RELATED TOPICS
Attached process states Seeing Attached Process States on page 411

Starting TotalView Starting TotalView on page 89

Using the Root Window Using the Root Window on page 147

File > Attach to a Running Program Process > Detach in the in-product Help

Or you don’t own the process:

Detaching from Processes

You can either detach from a group of processes or detach from one process.

Use the Group > Detach command to remove attached processes within a control group. As TotalView executes
this command, it eliminates all of the state information related to these processes. If TotalView didn’t start a pro-
cess, it continues executing in its normal run-time environment.

To detach from processes that TotalView did not create:

1. (Optional) After opening a Process Window on the process, select the Thread > Continuation Signal com-
mand to display the following dialog box.

The examples at the end of TV::thread discussion show setting a signal.

Choose the signal that TotalView sends to the process when it detaches from the process. For example, to
detach from a process and leave it stopped, set the continuation signal to SIGSTOP.

2. Select OK.

3. Select the Process > Detach command.

When you detach from a process, TotalView removes all breakpoints that you have set in it.

Debugging a Core File

If a process encounters a serious error and dumps a core file, you can load the file to examine it.

To debug a core file, select either

 A core file or replay recording file on the Start a Debugging Session dialog, or

 File > Debug Core or Replay Recording from the Root or Process window if TotalView is already
running.

The “Core or Replay Recording File Session” dialog launches. Enter a name for the session and the program and
core file’s name.

NOTE: Any previously entered sessions of the same type are available from the Session Name drop-
down box. Once selected, you can change any session properties and start your debug
session. See Editing or Starting New Sessions in a Sessions Window on page 126.

CLI: ddetach

RELATED TOPICS
The Process > Detach command in detail Process > Detach in the in-product Help

The CLI ddetach command ddetach in the Classic TotalView Reference Guide

The continuation signal Thread > Continuation Signal in the in-product Help

If the program and core file reside on another system, enter that system’s name in the Debug on Host area (see
Adding a Remote Host on page 116 for details).

If your operating system can create multi-threaded core files (and most can), TotalView can examine the thread in
which the problem occurred. It can also show you information about other threads in your program.

When TotalView launches, the Process Window displays the core file, with the Stack Trace, Stack Frame, and
Source Panes showing the state of the process when it dumped core. The title bar of the Process Window names
the signal that caused the core dump. The right arrow in the line number area of the Source Pane indicates the
value of the program counter (PC) when the process encountered the error.

You can examine the state of all variables at the time the error occurred. See Examining and Editing Data and
Program Elements on page 240.

If you start a process while you’re examining a core file, TotalView stops using the core file and switches to this
new process.

Figure 30, Open a Core File

RELATED TOPICS
Debugging a Core File The File > Debug Core File dialog in the

in-product Help

The CLI dattach command’s -c core-files option dattach in the Classic TotalView Reference
Guide

Debugging with a Replay Recording File

Previously saved Replay recording files can be loaded to further debug applications. These recording files contain
the state of a previous debugging session, including all Replay information.

To debug with a replay recording file, select either

 A core file or replay recording file on the Start a Debugging Session dialog, or

 File > Debug Core or Replay Recording File from the Root or Process window if TotalView is
already running.

The Core or Replay Recording File Session dialog launches. Enter a name for the session, the program, and
replay recording file's name.

If the program and replay recording file reside on another system, enter that system's name in the Debug on
Host area (see Adding a Remote Host on page 116 for details).

Figure 31, Open a Replay Recording File

When TotalView launches, the Process Window displays the replay recording file, with the Stack Trace, Stack
Frame, and Source Panes showing the state of the process when the replay session was saved. The title bar of the
Process Window displays “Recording File”. The right arrow in the line number area of the Source Pane indicates
the value of the program counter (PC) when the process was saved.

You can examine the state of all variables at the time the replay recording file was saved. See Examining and Edit-
ing Data and Program Elements on page 240.

Launching your Last Session

The initial window of the Sessions Manager displays your most recent session so you can quickly continue a
debugging session where you left off.

RELATED TOPICS
Debugging with a Replay recording file The File > Debug Core or Replay

Recording File dialog in the in-product
Help

The CLI dattach command’s -c recording-file option dattach in the Classic TotalView Reference
Guide

If you click on My last session, TotalView immediately launches based on your last session’s settings, and displays
the Process Window.

If you do wish to edit any properties of your last session, just select the Manage Sessions button to instead
launch the Manage Debugging Sessions page.

Waiting for Reverse Connections

Using the Reverse Connect feature, you can run the TotalView UI on a front-end node to debug a job executing on
compute nodes. For more information, see Reverse Connections.

Loading Programs Using the CLI
When using the CLI, you can load programs in a number of ways. Here are a few examples.

Load a session dsession -load session_name

If the preference "Show the Startup Parameters dialog on startup" is selected, this command
launches the Sessions Manager so you can edit session properties; otherwise, it loads the ses-
sion directly into Totalview and launches the Process and Root windows.

Figure 32, Start a Debugging Session

Start a new process
dload -e executable

Open a core file
dattach -c core-files -e executable

If TotalView is not yet running, you can also provide the core file as a startup argument, like so:

totalview executable core-files [options]
Open a replay recording session file

dattach -c recording-file -e executable

If TotalView is not yet running, you can also provide the replay recording session file as a startup
argument, like so:

totalview executable recording-file [options]
Load a program using its process ID

dattach executable pid

Load a program on a remote computer
dload executable -r hostname

You can type the computer’s name (for example, gandalf.roguewave.com) or an IP address.

Load a poe program
dload -mpi POE -np 2 -nodes \

-starter_args "hfile=~/my_hosts"

RELATED TOPICS
CLI commands "CLI Commands" in the Classic TotalView Refer-

ence Guide

Using the CLI Using the CLI on page 454

Debugging Options and Environment Setup
A debugging session can be customized in a variety of ways. This section discusses

 Adding a Remote Host on page 116

 Options: Reverse Debugging, Memory Debugging, and CUDA on page 118

 Setting Environment Variables and Altering Standard I/O on page 120

 Adding Notes to a Session on page 122

Adding a Remote Host
To debug a program running on a remote computer, enter the computer name in the Debug on Host area, or
select it from the dropdown if already entered.

To enter a new host, select the Add host button and enter its name or IP address in the displayed dialog box.

Figure 33, Debug on Host area

You can add multiple hosts separated by a space. Alternatively, add the IP address. For example:
server1 server2 server3
or
10.5.6.123 10.5.7.124
If TotalView cannot connect to the host, it displays an error dialog.

To modify the launch string or to view the default string TotalView will use to launch the remote debug session,

select the Advanced button () to open the Remote Server Launch Command field.

Figure 34, Add Host dialog

Figure 35, Add Host Failure popup

Figure 36, Remote server launch command

You can edit this string and then click Save as preference to have TotalView save it to your preferences. Once
saved, you can view or edit it at File > Preferences > Launch Strings tab.

Note that if you hover your cursor inside the text field, a popup displays the substitutions used in the launch
string.

If TotalView supports your program’s parallel process runtime library (for example, MPI, UPC, or CAF), it automatically con-
nects to remote hosts. For more information, see Setting Up Parallel Debugging Sessions on page 546.

Options: Reverse Debugging, Memory Debugging, and CUDA
You can choose to enable various additional debugging features for a given session. Select the Debug Options
tab to launch options.

Depending on the type of debug session, different options are available:

 The New Program and New Parallel Program windows offer reverse debugging, memory
debugging, and CUDA debugging options:

Figure 37, Remote server launch command substitutions

RELATED TOPICS
Editing the server launch command Customizing Server Launch Commands on page 498

TotalView command line options “Command-Line Options” in the Classic TotalView Reference
Guide

The tvdsr command "The TotalView Debugger Server Command Syntax" in the
Classic TotalView Reference Guide

Remote debugging Setting Up Remote Debugging Sessions on page 484

 Reverse Debugging. Record all program state while running and then roll back your pro-
gram to any point.

The Enable ReplayEngine check box is visible only on Linux-x86-64 platforms. If you do not have a
license for ReplayEngine, enabling the check box has no effect, and TotalView displays an error mes-
sage when your program begins executing. Selecting this check box tells TotalView that it should
instrument your code so that you can move back to previously executed lines.

 Memory Debugging. Track dynamic memory allocations. Catch common errors, leaks, and
show reports.

Enabling memory debugging here is the same as enabling it within MemoryScape or using the Process
Window’s Debug> Enable Memory Debugging command.

The Enable memory debugging and Suppress memory error notifications check boxes perform
the same functions as the Enable memory debugging and On memory event, halt execution
checkboxes do within the Advanced Options on MemoryScape’s Memory Debugging Options page.
This is the equivalent of the basic Low setting.

 CUDA Debugging. Detect global memory addressing violations and misaligned memory
accesses for CUDA-based programs.

 The Attach to a Running Program window supports only ReplayEngine and a special Attach
option. For more information, see Attaching to a Running Program on page 105.

Figure 38, Debug Options for Reverse, Memory or CUDA debugging

Setting Environment Variables and Altering Standard I/O
When loading the program from within TotalView, you can add any necessary environment variables or alter stan-
dard I/O using the Environment tab.

Environment Variables

Enter environment variables in the field in the Program Environment area.

RELATED TOPICS
Reverse Debugging “Understanding ReplayEngine” in the ReplayEngine User Guide

Memory Debugging More on MemoryScape in Debugging Memory Problems with
MemoryScape

CUDA Debugging Part V, Using the CUDA Debugger on page 626

Attach options Attach Options on page 108

Figure 39, Setting Environment Variables and Altering Standard I/O

Either separate each argument with a space, or place each one on a separate line. If an argument contains
spaces, enclose the entire argument in double-quotation marks.

At startup, TotalView reads in your environment variables to ensure that your program has access to them when
the program begins executing. Use the Program Environment area to add additional environment variables or to
override values of existing variables.

NOTE: TotalView does not display the variables that were passed to it when you started your debug-
ging session. Instead, this field displays only the variables you added using this command.

The format for specifying an environment variable is name=value. For example, the following definition creates
an environment variable named DISPLAY whose value is enterprise:0.0:
DISPLAY=enterprise:0.0

You can also enter this information using the Process Window’s Process > Startup Parameters command.

Standard I/O

Use the controls in the Input Processing and Standard and Error Output Processing to alter standard input, out-
put, and error. In all cases, name the file to which TotalView will write or from which TotalView will read
information. Other controls append output to an existing file if one exists instead of overwriting it or merge stan-
dard out and standard error to the same stream.

Figure 40, Setting environment variables

RELATED TOPICS
Environment options in the File >
Debug New Program dialog

"Environment Variables" in the in-product Help

You can also enter this information using the Process Window’s Process > Startup Parameters command.

Adding Notes to a Session
On any of the Sessions Manager dialogs for configuring debugging sessions, you can add a note by selecting the

Note icon (). This opens a simple text field where you can enter your note.

Once added, your note is saved and viewable in the Manage Sessions dialog under Comments.

Figure 41, Resetting Standard I/O

RELATED TOPICS
The standard I/O in the File >
Debug New Program dialog

"Standard I/O" in the in-product Help

Figure 42, Adding a note to a session

To edit your note, or any other option for this session, click the Edit button () to launch the relevant session
window.

Figure 43, Viewing notes saved in a session

Managing Sessions
TotalView saves the settings for each of your previously-entered debugging sessions, available in the Manage
Debugging Sessions window of the Sessions Manager. Here, you can edit, duplicate or delete sessions as well as
start a session and create new sessions.

NOTE: You can also edit and create new sessions from any Sessions Window. See Editing or Starting
New Sessions in a Sessions Window on page 126

Access the Manage Debugging Sessions window, either from the Start a Debugging Session window of the Ses-
sions Manager or from File -> Manage Sessions if TotalView is already running.

The Manage Debugging Sessions window launches. The left pane lists all sessions you have created. When you
select a session in the left pane, the right pane displays data about that session.

Figure 44, Accessing the Manage Sessions page

If you have many sessions, you can search by keyword in the search box (). When found,

TotalView immediately launches the session.

You can edit, delete and duplicate sessions using the icons in the left toolbar.

Figure 45, Manage Debugging Sessions main page

Icon Action

Creates a new debugging session, launching the Start a Debugging Ses-
sion window of the Sessions Manager.

Duplicates a session, naming it "<Session Name> Copy". You can
rename and then edit this session.

Edits a session, launching the appropriate window to change the ses-
sion’s configuration, either New Program, Parallel Program, Running
Program or Core File.

Deletes the session.

Editing or Starting New Sessions in a Sessions Window
In addition to editing a session using the Manage Debugging Sessions Window (Managing Sessions on
page 124), you can also edit or even create a new session directly from any sessions window.

The Session Name field on each sessions window contains a dropdown that lists all previously created sessions
of that type. For instance, from the Program Session window, you can access any session created in another Pro-
gram Session:

Similarly, the Attach to a running program dialog displays any previous attach sessions:

If you select a previous session, you can edit any field’s values, even the Session Name to create an entirely new
session. Then just click Start Session to launch that new debugging session.

Figure 46, Sessions Name dropdown of a Program Session window

Figure 47, Sessions Name dropdown of an Attach Session window

Other Configuration Options

Handling Signals
If your program contains a signal handler routine, you may need to adjust the way TotalView handles signals. The
following table shows how TotalView handles UNIX signals by default:

NOTE: TotalView uses the SIGTRAP and SIGSTOP signals internally. If a process receives either of
these signals, TotalView neither stops the process with an error nor passes the signal back to
your program. You cannot alter the way TotalView uses these signals.

On some systems, hardware registers affect how TotalView and your program handle signals such as SIGFPE. For
more information, see Interpreting the Status and Control Registers on page 259 and the “Architectures” chap-
ter in the Classic TotalView Reference Guide.

NOTE: On an SGI computer, setting the TRAP_FPE environment variable to any value indicates that
your program traps underflow errors. If you set this variable, however, you also need to use
the controls in the File > Signals Dialog Box to indicate what TotalView should do with SIGFPE
errors. (In most cases, you set SIGFPE to Resend.)

Signals Passed Back to Your Program Signals Treated as Errors

SIGHUP SIGIO SIGILL SIGPIPE

SIGINT SIGIO SIGTRAP SIGTERM

SIGQUIT SIGPROF SIGIOT SIGTSTP

SIGKILL SIGWINCH SIGEMT SIGTTIN

SIGALRM SIGLOST SIGFPE SIGTTOU

SIGURG SIGUSR1 SIGBUS SIGXCPU

SIGCONT SIGUSR2 SIGSEGV SIGXFSZ

SIGCHLD SIGSYS

You can change the signal handling mode using the File > Signals command, Figure 48.

The signal names and numbers that TotalView displays are platform-specific. That is, what you see in this box
depends on the computer and operating system in which your program is executing.

You can change the default way in which TotalView handles a signal by setting the TV::signal_handling_mode
variable in a .tvdrc startup file. For more information, see “Command-Line Options” in the Classic TotalView Refer-
ence Guide.

When your program receives a signal, TotalView stops all related processes. If you don’t want this behavior, clear
the Stop control group on error signal check box on the Options Page of the File > Preferences Dialog Box.

When your program encounters an error signal, TotalView opens or raises the Process Window. Clearing the
Open process window on error signal check box, also found on the Options Page in the File > Preferences
Dialog Box, tells TotalView not to open or raise windows.

If processes in a multi-process program encounter an error, TotalView only opens a Process Window for the first
process that encounters an error. (If it did it for all of them, TotalView would quickly fill up your screen with Pro-
cess Windows.)

Figure 48, File > Signals Dialog Box

CLI: dset TV::signal_handling_mode

CLI: dset TV::warn_step_throw

CLI: dset TV::GUI::pop_on_error

If you select the Open process window at breakpoint check box on the File > Preferences Action Points Page,
TotalView opens or raises the Process Window when your program reaches a breakpoint.

Make your changes by selecting one of the radio buttons described in the following table.

NOTE: Do not use Ignore for fatal signals such as SIGSEGV and SIGBUS. If you do, TotalView can get
caught in a signal/resignal loop with your program; the signal immediately reoccurs because
the failing instruction repeatedly re-executes.

CLI: dset TV::GUI::pop_at_breakpoint

Button Description

Error Stops the process, places it in the error state, and displays an error in the
title bar of the Process Window. If you have also selected the Stop control

group on error signal check box, TotalView also stops all related processes.
Select this button for severe error conditions, such as SIGSEGV and SIGBUS.

Stop Stops the process and places it in the stopped state. Select this button if
you want TotalView to handle this signal as it would a SIGSTOP signal.

Resend Sends the signal back to the process. This setting lets you test your pro-
gram’s signal handling routines. TotalView sets the SIGKILL and SIGHUP
signals to Resend since most programs have handlers to handle program
termination.

Ignore Discards the signal and continues the process. The process does not know that
something raised a signal.

RELATED TOPICS
Thread continuation signal command Thread > Continuation Signal in the in-product Help

The TV::signal_handling_mode vari-
able in a .tvdrc startup file

“Command-Line Options” in the Classic TotalView Reference
Guide

TotalView preferences The File > Preferences dialog in the in-product Help and
Setting Preferences on page 133

Setting Search Paths
If your source code, executable, and object files reside in different directories, set search paths for these directo-
ries with the File > Search Path command. You do not need to use this command if these directories are already
named in your environment’s PATH variable.

These search paths apply to all processes that you’re debugging.

TotalView searches the following directories in order:

1. The current working directory (.) and the directories you specify with the File > Search Path command, in
the exact order entered.

2. The directory name hint. This is the directory that is within the debugging information generated by your
compiler.

3. If you entered a full path name for the executable when you started TotalView, TotalView searches this
directory.

CLI: dset EXECUTABLE_PATH

Figure 49, File > Search Path Dialog Box

4. If your executable is a symbolic link, TotalView looks in the directory in which your executable actually
resides for the new file.

Since you can have multiple levels of symbolic links, TotalView continues following links until it finds the actual
file. After it finds the current executable, it looks in its directory for your file. If the file isn’t there, TotalView
backs up the chain of links until either it finds the file or determines that the file can’t be found.

5. The directories specified in your PATH environment variable.

6. The src directory within your TotalView installation directory.

The simplest way to enter a search path is select the EXECUTABLE_PATH tab, then type an entry or press Insert
and use the displayed dialog box to find the directory.

When you enter directories into this dialog box, you must enter them in the order you want them searched, and
you must enter each on its own line. You can enter directories in the following ways:

 Type path names directly.

 Cut and paste directory information.

 Click the Insert button to display the Select Directory dialog box that lets you browse through the
file system, interactively selecting directories, as shown in Figure 50.

The current working directory (.) in the File > Search Path Dialog Box is the first directory listed in the window.
TotalView interprets relative path names as being relative to the current working directory.

If you remove the current working directory from this list, TotalView reinserts it at the top of the list.

Figure 50, Select Directory Dialog Box

After you change this list of directories, TotalView again searches for the source file of the routine being displayed
in the Process Window.

You can also specify search directories using the EXECUTABLE_PATH environment variable.

TotalView search path is not usually passed to other processes. For example, it does not affect the PATH of a
starter process such as poe. Suppose that “.” is in your TotalView path, but it is not in your PATH environment vari-
able. In addition, the executable named prog_name is listed in your PWD environment variable. In this case, the
following command works:
totalview prog_name

However, the following command does not:
totalview poe -a prog_name

You will find a complete description of how to use this dialog box in the help.

Setting Startup Parameters
After you load a program, you may want to change a program’s command-line arguments and environment vari-
ables or change the way standard input, output, and error behave. Do this using the Process > Startup
Parameters command. The displayed dialog box is nearly identical to that displayed when you use the File >
Debug New Program command, differing only in that it has an Apply button to save your entered parameters,
rather than a Start Session button.

For information on other options you can edit here, see Options: Reverse Debugging, Memory Debugging, and
CUDA on page 118 and Setting Environment Variables and Altering Standard I/O on page 120.

If you are using the CLI, you can set default command line arguments by setting the ARGS_DEFAULT variable.

Also, the drun and drerun commands let you reset stdin, stdout, and stderr.

RELATED TOPICS
Starting TotalView Starting TotalView on page 89

The EXECUTABLE_PATH environment
variable

The EXECUTABLE_PATH variable in "TotalView Variables" in
the Classic TotalView Reference Guide

RELATED TOPICS
The ARGS_DEFAULT variable " TotalView Variables" in the Classic TotalView Reference Guide

and dset ARGS_DEFAULT {value} on page 93

The drun command drun n the Classic TotalView Reference Guide

The drerun command drerun in the Classic TotalView Reference Guide and Restarting
Programs on page 186

Setting Preferences
The File > Preferences command tailors many TotalView behaviors. This section contains an overview of these
preferences. See File > Preferences in the in-product Help for more information.

Some settings, such as the prefixes and suffixes examined before loading dynamic libraries, can differ between
operating systems. If they can differ, TotalView can store a unique value for each. TotalView does this transpar-
ently, which means that you only see an operating system’s values when you are running TotalView on that
operating system. For example, if you set a server launch string on an SGI computer, it does not affect the value
stored for other systems. Generally, this occurs for server launch strings and dynamic library paths.

Every preference has a variable that you can set using the CLI. These variables are described in the”Variables”
chapter of the Classic TotalView Reference Guide.

The rest of this section is an overview of these preferences.

Options

This page contains check boxes that are either general in nature or that influence different parts of the system.

Figure 51, File > Preferences Dialog Box: Options Page

Action Points

The commands on this page indicate whether TotalView should stop anything else when it encounters an action
point, the scope of the action point, automatic saving and loading of action points, and if TotalView should open
a Process Window for the process encountering a breakpoint.

Figure 52, File > Preferences Dialog Box: Action Points Page

Launch Strings

This page sets the launch string that TotalView uses when it launches the tvdsvr remote debugging server, the
Visualizer, and a source code editor. The initial values are the defaults

Figure 53, File > Preferences Dialog Box: Launch Strings Page

Bulk Launch

This page configures the TotalView bulk launch system which launches groups of processes simultaneously.

Figure 54, File > Preferences Dialog Box: Bulk Launch Page

Dynamic Libraries

When debugging large programs, you can sometimes increase performance by loading and processing debug-
ging symbols. This page controls which symbols are added to TotalView when it loads a dynamic library, and how
many of a library’s symbols are read in.

Figure 55, File > Preferences Dialog Box: Dynamic Libraries Page

138

Loading and Managing Sessions Other Configuration Options

Parallel

The options on this page control whether TotalView stops or continues executing when a process creates a
thread or goes parallel. By stopping your program, you can set breakpoints and examine code before execution
begins.

Figure 56, File > Preferences Dialog Box: Parallel Page

Display

This page specifies which user interface to use and which fonts are used in the classic user interface and how
code is displayed.

Figure 57, File > Preferences Dialog Box: Display Page

Formatting

This page controls how TotalView displays your program’s variables.

Figure 58, File > Preferences Dialog Box: Formatting Page

Pointer Dive

The options on this page control how TotalView dereferences pointers and casts pointers to arrays.

Figure 59, File > Preferences Dialog Box: Pointer Dive Page

142

Loading and Managing Sessions Other Configuration Options

ReplayEngine

This page controls how ReplayEngine handles recorded history.

The Maximum history size option sets the size in megabytes for ReplayEngine’s history buffer. The default value,
Unlimited, means ReplayEngine will use as much memory as is available to save recorded history. You can enter a
new value into the text field or select from a drop-down list, as seen in Figure 61.

Figure 60, File > Preferences Dialog Box: ReplayEngine

143

Loading and Managing Sessions Other Configuration Options

The second option on the ReplayEngine preference page defines the tool’s behavior when the history buffer is
full. By default, the oldest history will be discarded so that recording can continue. You can change that so that
the recording process will simply stop when the buffer is full.

Setting Preferences, Options, and X Resources

In most cases, preferences are the best way to set many features and characteristics. In some cases, you need
have more control. When these situations occur, you can the preferences and other TotalView attributes using
variables and command-line options.

Older versions of TotalView did not have a preference system. Instead, you needed to set values in your .Xde-
faults file or using a command-line option. For example, setting totalview*autoLoadBreakpoints to true
automatically loads an executable’s breakpoint file when it loads an executable. Because you can also set this
option as a preference and set it using the CLI dset command, this X resource has been deprecated.

NOTE: Deprecated means that while the feature still exists in the current release, there’s no guaran-
tee that it will continue to work at a later time. We have deprecated all “totalview” X default
options. TotalView still fully supports Visualizer resources. Information on these Visualizer set-
tings is in the document TotalView XResources.pdf, downloadable from the TotalView website
at https://help.totalview.io/.

Figure 61, File > Preferences Dialog Box: ReplayEngine History Option

https://help.totalview.io/

144

Loading and Managing Sessions Other Configuration Options

Similarly, documentation for earlier releases told you how to use a command-line option to tell TotalView to auto-
matically load breakpoints, and there were two different command-line options to perform this action. While
these methods still work, they are also deprecated.

In some cases, you might set a state for one session or you might override one of your preferences. (A preference
indicates a behavior that you want to occur in all of your TotalView sessions.) This is the function of the command-
line options described in “TotalView Command Syntax” in the Classic TotalView Reference Guide.

For example, you can use the -bg command-line option to set the background color for debugger windows in the
session just being invoked. TotalView does not remember changes to its default behavior that you make using
command-line options. You have to set them again when you start a new session.

RELATED TOPICS
Setting preferences in TotalView Setting Preferences on page 133

TotalView variables "TotalView Variables" in the Classic TotalView Reference
Guide

145

 Using and Customizing the GUI

This chapter contains information about using the TotalView GUI, including:

 Using Mouse Buttons on page 146

 Using the Root Window on page 147

 Using the Process Window on page 157

 The Source Pane on page 161

 About Diving into Objects on page 164

 Saving the Data in a Window on page 167

 Searching and Navigating Program Elements on page 168

 Viewing the Assembler Version of Your Code on page 173

 Editing Source Text on page 176

146

Using and Customizing the GUI Using Mouse Buttons

Using Mouse Buttons
The buttons on your three-button mouse work like this:

In most cases, a single-click selects an object while and a double-click dives on the object. However, if the field is
editable, TotalView enters edit mode, so you can alter the selected item's value.

In some areas, such as the Stack Trace Pane, selecting a line performs an action. In this pane, TotalView dives on
the selected routine. (In this case, diving means that TotalView finds the selected routine and shows it in the
Source Pane.)

In the line number area of the Source Pane, a left mouse click sets a breakpoint at that line, displaying a
icon instead of a line number.

Selecting the icon a second time deletes the breakpoint. If you change any of the breakpoint’s properties

or if you’ve created an eval point (indicated by an icon), selecting the icon disables it. For more information
on breakpoints and eval points, see Setting Action Points on page 188.

Button Action Purpose How to Use It

Left Select Selects or edits object. Scrolls in
windows and panes.

Move the cursor over the object and click.

Middle Paste Writes information previously
copied or cut into the clipboard.

Move the cursor to the insertion point and click. Not
all windows support pasting.

Dive Displays more information or
replaces window contents.

Move the cursor over an object, then click.

Right Con-
text
menu

Displays a menu with commonly
used commands.

Move the cursor over an object and click.

Most windows and panes have context menus; dia-
log boxes do not have context menus.

147

Using and Customizing the GUI Using the Root Window

Using the Root Window
The Root Window appears when you start TotalView.

 If you type a program name immediately after the totalview command, TotalView also opens a
Process Window with the program’s source code.

 If you do not enter a program name when starting TotalView, TotalView displays its File > New
Debugging Session dialog box. Use this dialog box to select the type of debug session you wish to
configure.

The Root Window displays a list of aggregated processes and threads — instead of displaying one line per each
process or thread, it groups them by common properties that you can configure. This provides a considerable
performance boost when scaling to thousands — or more — threads or processes. The status of processes and
threads is highlighted by colored icons for easy identification.

NOTE: To display the Root Window from versions prior to TotalView 8.15.0, see Using the Old Root
Window. The old Root Window, however, does not perform as well for high-scale programs.
See Scalability in HPC Computing Environments on page 604.

Figure 62 shows the Root Window for an executing multi-threaded, multi-process program.

148

Using and Customizing the GUI Using the Root Window

The Root Window groups threads and processes under common properties. The initial default view groups the
display by control group, process state, function, and thread ID. You can regroup and reduce the display in a num-
ber of ways, based on either process or thread properties, as described in Table 1.

Figure 62, Root Window

Table 1: Process and Thread Properties

Process Property Level Description

Control Group Process Control group of the processes in your job. Processes in the same
job are placed in the same control group by default. If there is only
one control group in the debug session, this property is omitted
from the display.

Share Group Process Share group of the processes within a control group. Processes that
are running the same main executable are placed in the same share
group by default.

149

Using and Customizing the GUI Using the Root Window

The various properties here are either process or thread-level, which determines the kind of ptlist displayed in
the Members column: the members of process-level properties are processes, and the members of thread-level
properties are threads.

Hostname Process The hostname or IP address where the process is running.

Process State Process The process execution state, e.g., Nonexistent, Running, Stopped,
Breakpoint, Watchpoint, etc. The process execution state derives
from the execution state of the threads it contains.

Thread State Thread The thread execution state, e.g., Running, Stopped, Breakpoint,
Watchpoint, etc.

Function Thread The function name of the location of the stopped thread. Displays
the function name or "<unknown address>" if the thread is running
or the function name is not known.

Source Line Thread The function name of the location of the stopped thread. Displays
the source file name and line number or "<unknown line>" if the
thread is running or the source line is not known.

PC Thread The PC of the location of the stopped thread. Displays the program
counter value or "<unknown address>" if the thread is running.

Action Point ID Thread The action point (breakpoint or watchpoint) ID of the location of the
stopped thread. Displays "Break (ID)", where ID is the action point ID
or "none" if the thread is not stopped at an action point.

Stop Reason Thread If stopped, the reason, for example due to a breakpoint or barrier
point.

Process ID Process The debugger process ID (dpid) of the process. Displays dpid.

Thread ID Thread The dpid and debugger thread ID (dtid) of the thread. Displays dpid
dtid.

Process Held Process Indicates that a process is being held at a barrierpoint.

Thread Held Thread Indicates that a thread is being held at a barrierpoint.

Replay Mode Process Indicates that the process is in record mode.

System TID Thread The user thread ID (user TID) if it exists. Otherwise, the system ker-
nel ID (Kernel TID).

User_TID/Kernel_TID Thread User thread ID / Kernel thread ID

Thread Name Thread The name of the thread, if set. If unset, “unnamed” is displayed.

Table 1: Process and Thread Properties

Process Property Level Description

150

Using and Customizing the GUI Using the Root Window

You can also use the CLI’s dstatus command’s -group_by switch for additional reduction options.

Controlling the Display of Processes and Threads
The Root Window's layout enables you to modify the grouping parameters while viewing the results.

Figure 63 illustrates a 17-process MPI job comprised of a single MPI starter process, e.g., mpiexec (p1), and 16
MPI processes (0-15). At the highest level, processes are grouped by Process State, then by Function. The indi-
vidual groupings are then sorted in ascending order (Members) by the process ID.

 Configure: Show or hide the configuration panel on the right using the Configure button or the
View > Show Configure Panel menu item.

RELATED TOPICS
The CLI’s dstatus command’s -group_by switch dstatus in the Reference Guide

Figure 63, Root Window and Process/Thread Display

151

Using and Customizing the GUI Using the Root Window

 Move Up and Move Down: By default, the properties are displayed in a hierarchical manner, such
that the property at the top of the Configuration Panel forms the highest level grouping, the next
property forms the second level of grouping subordinate to the first, and so on. Use Move Up and
Move Down to control where to display a property in the hierarchy.

 Reset: The selected groupings and their relative order are automatically saved across TotalView
sessions. To revert to the default order, press Reset.

 Nested Attributes: Instead of the default hierarchical display, the properties can be "flattened"
into a single line in which each property is separated by a colon, using the View > Nested
Attribute menu item. This menu item toggles between the hierarchical and flat display modes.

 Show MPI Rank: For MPI jobs, TotalView shows by default the rank in MPI_COMM_WORLD of MPI
processes in the compressed ptlist in the Members column. Non-MPI processes are shown using
the "pdpid" where dpid is the debugger process ID of the process. Use the View > Show MPI Rank
menu item to toggle between displaying MPI processes using the MPI rank or "pdpid" notation.

 Expand/Collapse All: Minimize or fully expand the entire tree with View > Expand All and View >
Collapse All.

 Copy/Select All: To copy data to an external program, use the clipboard: Select one or more rows
using your computer’s keyboard shortcuts, or select Edit > Select All, and copy to the clipboard
using Edit > Copy.

Default View

By default, the Root Window displays Control Group, Process State, Function and Thread ID in a hierarchical or
"nested" manner.

Figure 64 shows a 32-process, 32-thread MPI job, each process containing one thread, which is a single-threaded
MPI starter process (e.g., mpiexec).

152

Using and Customizing the GUI Using the Root Window

Since there is only one control group in the debug session, the control group has been omitted, and the Process
state becomes the top-level property, in this case displaying two process states.

 Breakpoint: The first grouping lists the MPI starter process in Breakpoint process state, stopped
in function MPIR_Breakpoint, and one thread with thread ID 1.1. The Procs column shows the
number of processes, and the Threads column shows the number of threads displayed in the
Members column. The Members column shows the dpid the process and dpid.dtid of the threads,
displayed as a compressed process/thread list ptlist.

 Stopped: This grouping displays all processes in a Stopped process state, of which there are 32,
the MPI job size. The membership shows 0-31, which means MPI ranks 0 to 31, inclusive.

Changing the Display

To change the view, select the Configure << button and select or de-select properties. Figure 65 shows a config-
uration where just the Source Line property is selected.

Figure 64, Root Window: Default View

153

Using and Customizing the GUI Using the Root Window

.

In this example, we've de-selected Process State, Function, and Thread ID and selected Source Line in order to
group by Source Line instead.

Because Source Line is a thread property, the Members column now displays only threads. Here are the three
lines:

 Line 1 is the mpirun process used to launch the tx_basic_mpi mpi program.

 Line 2 displays all the threads at Line 100 in the source file tx_basic_mpi.c. The membership is 0.1,
which means thread (dtid) 1 in MPI rank 0.

 Line 3 displays all the threads that are at line 112 inside that same file, representing the remaining
30 threads.

Note that even though the Control Group is selected, it has no grouping effect most of the time and is relevant
only for debugging multiple jobs at once (which is uncommon), in which case the window would display a sepa-
rate top-level control-group grouping for each job.

Grouping by Status and Source Line

If you select Thread State, leaving Source Line also selected, you can group by both properties, as in Figure 66.

Figure 65, Root Window: Configure Pane, Group by Source Line

154

Using and Customizing the GUI Using the Root Window

Again, there are two groupings in the list: the first is the mpirun process. Note that the second grouping is now
multi-line:

 The first line of the second grouping displays a single thread, showing both that its status is at
Breakpoint and that it is at line 100 in tx_basic_mpi.c.

 The second line displays 31 threads, all at a different Breakpoint at line 112 in tx_basic_mpi.c.

Grouping by All Properties

For illustration purposes, Figure 67 shows the Root Window configured to group by all properties in their default
order. This figure also describes each of the groupings in this window.

Figure 66, Root Window: Grouped by Status and Source Line

155

Using and Customizing the GUI Using the Root Window

When you dive on a line in this window, its source is displayed in a Process Window.

Using the Old Root Window
If debugger scalability is not a concern and you prefer the Root Window prior to version TotalView 8.15, you can
reinstate it. Note, however, that the old Root Window is deprecated and may not be supported in future versions.

To start TotalView using the old Root Window, pass TotalView the -oldroot command option:
totalview -oldroot

Figure 67, Root Window Grouping by All Properties

RELATED TOPICS
The dattach command The dattach command in the Classic TotalView Reference Guide

Displaying manager threads The View > Display Manager Threads command in the in-product Help

Displaying exited threads The View > Display Exited Threads command in the in-product Help

156

Using and Customizing the GUI Using the Root Window

To always use the old Root Window by default, set the state variable -TV::GUI::old_root_window to true for
use when initializing TotalView:
dset TV::GUI::old_root_window true

Suppressing the Root Window
To suppress opening the Root Window entirely when TotalView starts — whether the current or old Root Window
— use the --norootwin option:
totalview -norootwin
Note that you can open the Root Window at any time from the Process Window using the Window > Root menu
item. The Root Window can also be closed at any time without quitting TotalView, if another window is open in the
same debugging session.

RELATED TOPICS
Using the Root Window from previ-
ous TotalView versions

The oldroot command line option in the Classic TotalView Reference
Guide

157

Using and Customizing the GUI Using the Process Window

Using the Process Window
The Process Window contains panes that display the code for the process or thread that you’re debugging, as well
as other related information. In the middle is the Source Pane. (The contents of these panes are discussed later in
this section.

158

Using and Customizing the GUI Using the Process Window

As you examine the Process Window, notice the following:

Figure 68, A Process Window

159

Using and Customizing the GUI Using the Process Window

 The thread ID shown in the Root Window and in the process’s Threads Tab with the Tabs Pane is
the logical thread ID (TID) assigned by TotalView and the system-assigned thread ID (SYSTID). On
systems where the TID and SYSTID values are the same, TotalView displays only the TID value.

In other windows, TotalView uses the pid.tid value to identify a process’s threads.

The Threads Tab shows the threads that currently exist in a process. When you select a different thread in
this list, TotalView updates the Stack Trace, Stack Frame, and Source Pane to show the information for that
thread. When you dive on a different thread in the thread list, TotalView finds or opens a new window that
displays information for that thread.

 The Stack Trace Pane shows the call stack of routines that the selected thread is executing. You
can move up and down the call stack by clicking on the routine’s name (stack frame). When you
select a different stack frame, TotalView updates the Stack Frame and Source Pane with the
information about the routine you just selected.

 The Stack Frame Pane displays all a routine’s parameters, its local variables, and the registers for
the selected stack frame.

 The information displayed in the Stack Trace and Stack Frame Panes reflects the state of a process
when it was last stopped. Consequently, the information is not up-to-date while a thread is running.

 The left margin of the Source Pane displays line numbers and action point icons.

You can place a breakpoint at any line whose line number is contained within a box indicating that this is
executable code. You can also click on a line without a breakpoint box to create a sliding or pending break-
point. (See Sliding Breakpoints and Pending Breakpoints).
The Source Pane display unifies source-line breakpoint boxes across all image files within the share group
that contain the source file. For example, the source-line breakpoint boxes will be unified for all instances of
a source file or header file that is compiled into multiple shared libraries used by the process.

When you place a breakpoint on a line, TotalView places a icon over the line number. An arrow over
the line number shows the current location of the program counter (PC) in the selected stack frame.

Each thread has its own unique program counter (PC). When you stop a multi-process or multi-threaded pro-
gram, the routine displayed in the Stack Trace Pane for a thread depends on the thread’s PC. Because
threads execute asynchronously, threads are stopped at different places. (When your thread hits a break-
point, the default is to stop all the other threads in the process as well.)

 The tabbed area at the bottom contains a set of tabs whose information you can hide or display as
needed. In addition, the P+, P-, Px, T+, and T- buttons within this area allow you to change the
Process Window’s context by moving to another process or thread.

160

Using and Customizing the GUI Using the Process Window

The Action Points Tab with the Tabs Pane shows the list of breakpoints, eval points, and watchpoints for the
process.

The Threads Tab shows each thread and information about the thread. Selecting a process switches the con-
text to that thread.

The Processes/Ranks tab, if present, displays a grid of all of your program's processes. The grid’s elements
show process status and indicate the selected group. Selecting a process switches the context to the first
thread in that process.

The Processes/Ranks Tab was displayed by default in previous versions of TotalView, but now it is off by
default. This is because it can significantly affect performance, particularly for large, massively parallel appli-
cations. The tab can be turned back on with the command line switch -processgrid and/or by setting
TV::GUI::process_grid_wanted to true in the .tvdrc file. If you enable this tab in the .tvdrc file, you can
disable it for a particular session with the -noprocessgrid command line switch.

RELATED TOPICS
More on using the Process Window The “Process Window” in the in-product Help

More on the Processes/Ranks tab The topic Using the Processes/Ranks and Threads Tabs in
this user guide.

161

Using and Customizing the GUI The Source Pane

The Source Pane
The Source Pane located in the center of the Process Window displays the source code for source or header files
that are compiled into the image files (e.g., executable or shared libraries) loaded into the process. The arrow in
the left margin of the Source Pane indicates the location of the PC for that stack frame.

Unified Source Pane Display
The Source Pane provides a unified view of source-line breakpoint boxes across all image files containing the
source file, useful for programs in which the same source file or header file is compiled into multiple image files
(e.g., executable and shared library files) used by the process.

To see how this works, remember that breakpoint boxes appear on lines where TotalView has identified execut-
able code, i.e., source code lines where the compiler has generated one or more line number symbols in the
debug information. A gray box denotes that there is exactly one line number symbol for that source line, while a
black box denotes multiple line number symbols for that line.

For example, consider debugging a program that launches CUDA code running on a Graphics Processing Unit
(GPU). When the host program is first loaded into TotalView, the CUDA threads have not yet launched, so the
debugger has no symbol table information yet.

Figure 70 shows the Source Pane before and after a CUDA kernel launch. Before the CUDA threads exist (the left
pane), lines 126, 130, 132, and 133 have no boxed lines, meaning that TotalView can find no line number symbols
associated with those lines. Additionally, line 134 has a gray line, meaning that TotalView has identified one line
number symbol associated with the host (CPU code).

Figure 69, The Source Pane

162

Using and Customizing the GUI The Source Pane

Once the program is running and the CUDA threads have started (the right pane), lines 126, 132, and 133 have
gray lines, so now TotalView has been able to identify line number symbols at those locations. This is also true of
line 130 which is obscured in the right pane by the PC icon. Further, line 134 has turned from gray to black, denot-
ing that TotalView has found additional line number symbols, in this case one from the host (CPU) code and one
from the CUDA (GPU) code.

Figure 70, Unified Source Pane

RELATED TOPICS
Setting breakpoints in CUDA code Unified Source Pane and Breakpoint Display on page 634

Dynamically loading shared libraries using
the ddlopen command

ddlopen in the TotalView Reference Guide

More on setting breakpoints Setting Breakpoints and Barriers on page 194

163

Using and Customizing the GUI Resizing and Positioning Windows

Resizing and Positioning Windows
You can resize most TotalView windows and dialog boxes. While TotalView tries to do the right thing, you can push
things to the point where shrinking doesn’t work very well. Figure 71 shows a before-and-after look in which a
dialog box was made too small.

Many programmers like to have their windows always appear in the same position in each session. The following
two commands can help:

 Window > Memorize: Tells TotalView to remember the position of the current window. The next
time you bring up this window, it’ll be in this position.

 Window > Memorize All: Tells TotalView to remember the positions of most windows. The next
time you bring up any of the windows displayed when you used this command, it will be in the
same position.

Most modern window managers such as KDE or Gnome do an excellent job managing window position. If you are
using an older window manager such as twm or mwm, you may want to select the Force window positions
(disables window manager placement modes) check box option located on the Options Page of the File >
Preferences Dialog Box. This tells TotalView to manage a window’s position and size. If it isn’t selected, TotalView
only manages a window’s size.

Figure 71, Resizing (and Its Consequences)

164

Using and Customizing the GUI About Diving into Objects

About Diving into Objects
Diving is integral to the TotalView GUI and provides a quick and easy way to get more information about variables,
processes, threads, functions, and other program elements.

To dive on an element, just click your middle mouse button on it to launch another window with more
information.

NOTE: In some cases, single-clicking performs a dive. For example, single-clicking on a function name
in the Stack Trace Pane dives into the function. In other cases, double-clicking does the same
thing.

Diving on processes and threads in the Root Window is the quickest way to launch a Process Window with more
information. Diving on variables in the Process Window launches a Variable Window.

In the Process Window’s Source Pane, if a global variable or function can be dived on, a red dotted box appears
when your cursor hovers over it, Figure 72.

NOTE: If you prefer that the cursor remain an arrow when hovering over an element you can dive on,
specify the option -nohand_cursor when starting TotalView, or set this permanently in .tvdrc as
“TV::GUI::hand_cursor_enabled {false}”.

The following table describes typical diving operations:

Figure 72, Diving on an object in the Source Pane

Items you dive on: Information Displayed:

Process or thread When you dive on a thread in the Root Window, TotalView finds or opens a
Process Window for that process. If it doesn’t find a matching window,
TotalView replaces the contents of an existing window and shows you the
selected process.

Variable The variable displays in a Variable Window.

165

Using and Customizing the GUI About Diving into Objects

NOTE: Diving on a struct or class member that is out of scope does not work.

TotalView tries to reuse windows. For example, if you dive on a variable and that variable is already displayed in a
window, TotalView pops the window to the top of the display. If you want the information to appear in a separate
window, use the View > Dive in New Window command.

Expression List Variable Same as diving on a variable in the Source Pane: the variable displays in a
Variable Window.

Routine in the Stack Trace
Pane

The stack frame and source code for the routine appear in a Process
Window.

Array element, structure ele-
ment, or referenced memory
area

The contents of the element or memory area replace the contents that
were in the Variable Window. This is known as a nested dive.

Pointer TotalView dereferences the pointer and shows the result in a separate
Variable Window. Given the nature of pointers, you may need to cast the
result into the logical data type.

Subroutine The source code for the routine replaces the current contents of the
Source Pane. When this occurs, TotalView places a right angle bracket (>)
in the process’s title. Every time it dives, it adds another angle bracket, Fig-
ure 73.

A routine must be compiled with source-line information (usually, with the
-g option) for you to dive into it and see source code. If the subroutine
wasn’t compiled with this information, TotalView displays the routine’s
assembler code.

Variable Window TotalView replaces the contents of the Variable Window with information
about the variable or element.

Expression List Window TotalView displays information about the variable in a separate Variable
Window.

Figure 73, Nested Dive

Items you dive on: Information Displayed:

166

Using and Customizing the GUI About Diving into Objects

NOTE: Diving on a process or a thread might not create a new window if TotalView determines that it
can reuse a Process Window. If you really want to see information in two windows, use the
Process Window Window > Duplicate command.

When you dive into functions in the Process Window, or when you are chasing pointers or following structure ele-
ments in the Variable Window, you can move back and forth between your selections by using the forward and
backward buttons. The boxed area of the following figure shows the location of these two controls.

For additional information about displaying variable contents, see Diving in Variable Windows on page 266.

You can also use the following additional windowing commands:

 Window > Duplicate: (Variable and Expression List Windows) Creates a duplicate copy of the
current Variable Window.

 File > Close: Closes an open window.

 File > Close Relatives: Closes windows that are related to the current window. The current window
isn’t closed.

 File > Close Similar: Closes the current window and all windows similar to it.

Figure 74, Backward and Forward Buttons

167

Using and Customizing the GUI Saving the Data in a Window

Saving the Data in a Window
You can write an ASCII equivalent to most pages and panes by using the File > Save Pane command. This com-
mand can also pipe data to UNIX shell commands.

If the window or pane contains a lot of data, use the Restrict Output option to limit the information TotalView
writes or sends. For example, you might not want to write a 100 x 100 x 10,000 array to disk. If this option is
checked (the default), TotalView sends only the number of lines indicated in the Max rows to save box.

When piping information, TotalView sends the entered information to /bin/sh. This means that you can enter a
series of shell commands. For example, the following is a command that ignores the top five lines of output, com-
pares the current ASCII text to an existing file, and writes the differences to another file:
| tail +5 | diff - file > file.diff

Figure 75, File > Save Pane Dialog Box

168

Using and Customizing the GUI Searching and Navigating Program Elements

Searching and Navigating Program Elements
TotalView provides several ways for you to navigate and find information in your source file.

Topics in this section are:

 Searching for Text on page 168

 Looking for Functions and Variables on page 169

 Finding the Source Code for Functions on page 170

 Finding the Source Code for Files on page 172

 Resetting the Stack Frame on page 172

Searching for Text
You can search for text strings in most windows using the Edit > Find command, which launches the find dialog
box.

Controls in this dialog box let you:

 Perform case-sensitive searches.

 Wrap searches back to the beginning of the file.

 Keep the dialog box displayed.

 Search down or up.

After you have found a string, you can find another instance of it by using the Edit > Find Again command.

Figure 76, Edit > Find Dialog Box

169

Using and Customizing the GUI Searching and Navigating Program Elements

If you searched for the same string previously, you can select it from the pulldown list on the right side of the Find
text box.

Looking for Functions and Variables
Having TotalView locate a variable or a function is usually easier than scrolling through your sources to look for it.
Do this with the View > Lookup Function and View > Lookup Variable commands. Here is the dialog set to look

for variables:

If TotalView doesn’t find the name and it can find something similar, it displays a dialog box that contains the
names of functions that might match.

If the one you want is listed, click on its name and then choose OK to display it in the Source Pane.

Figure 77, View > Lookup Variable Dialog Box

CLI: dprint variable

Figure 78, Ambiguous Function Dialog Box

170

Using and Customizing the GUI Searching and Navigating Program Elements

Finding the Source Code for Functions
Use the File > Open Source command to search for a function’s declaration.

After locating your function, TotalView displays it in the Source Pane. If you didn’t compile the function using the -
g command-line option, TotalView displays disassembled machine code.

When you want to return to the previous contents of the Source Pane, use the Backward button located in the
upper-right corner of the Source Pane and just below the Stack Frame Pane. In Figure 80, a rectangle surrounds
this button.

You can also use the View > Reset command to discard the dive stack so that the Source Pane is displaying the
PC it displayed when you last stopped execution.

Another method of locating a function’s source code is to dive into a source statement in the Source Pane that
shows the function being called. After diving, you see the source.

CLI: dlist function-name

Figure 79, View > Lookup Function Dialog Box

Figure 80, Undive/Dive Controls

171

Using and Customizing the GUI Searching and Navigating Program Elements

Resolving Ambiguous Names

Sometimes the function name you specify is ambiguous. For example, you might have specified the name of:

 A static function, and your program contains different versions of it.

 A member function in a C++ program, and multiple classes have a member function with that
name.

 An overloaded function or a template function.

The following figure shows the dialog box that TotalView displays when it encounters an ambiguous function
name. You can resolve the ambiguity by clicking the function name.

If the name being displayed isn’t enough to identify which name you need to select, select the Show full path
names check box to display additional information.

Figure 81, Ambiguous Function Dialog Box

RELATED TOPICS
Using C++ in TotalView Using C++ on page 364

172

Using and Customizing the GUI Searching and Navigating Program Elements

Finding the Source Code for Files
You can display a file’s source code by selecting the View > Lookup Function command and entering the file
name in the dialog box shown in Figure 82

If a header file contains source lines that produce executable code, you can display the file’s code by typing the
file name here.

Resetting the Stack Frame
After moving around your source code to look at what’s happening in different places, you can return to the exe-
cuting line of code for the current stack frame by selecting the View > Reset command. This command places
the PC arrow on the screen.

This command is also useful when you want to undo the effect of scrolling, or when you move to different loca-
tions using, for example, the View > Lookup Function command.

If the program hasn’t started running, the View > Reset command displays the first executable line in your main
program. This is useful when you are looking at your source code and want to get back to the first statement that
your program executes.

Figure 82, View > Lookup Function Dialog Box

173

Using and Customizing the GUI Viewing the Assembler Version of Your Code

Viewing the Assembler Version of Your Code
You can display your program in source or assembler using these commands:

Source code (Default)
Select the View > Source As > Source command.

Assembler code Select the View > Source As > Assembler command.

Both Source and assembler
Select the View > Source As > Both command.

The Source Pane divides into two parts. The left pane contains the program’s source code and
the right contains the assembler version. You can set breakpoints in either of these panes. Set-
ting an action point at the first instruction after a source statement is the same as setting it at
that source statement.

The following commands display your assembler code by using symbolic or absolute addresses:

NOTE: You can also display assembler instructions in a Variable Window. For more information, see
Displaying Machine Instructions on page 263.

The following three figures illustrate the different ways TotalView can display assembler code. In Figure 83, the
second column (the one to the right of the line numbers) shows the absolute address location. The fourth col-
umn shows references using absolute addresses.

Command Display

View > Assembler > By Address Absolute addresses for locations and refer-
ences (default)

View > Assembler > Symbolically Symbolic addresses (function names and off-
sets) for locations and references

174

Using and Customizing the GUI Viewing the Assembler Version of Your Code

Figure 84 displays information symbolically. The second column shows locations using functions and offsets.

Figure 85 displays the split Source Pane, with the program’s source code on the left and assembler version on the
right. In this example, the assembler is shown symbolically (by selecting View > Assembler > Symbolically).

Figure 83, Address Only (Absolute Addresses)

Figure 84, Assembly Only (Symbolic Addresses)

175

Using and Customizing the GUI Viewing the Assembler Version of Your Code

NOTE: When TotalView displays instructions, the arguments are almost always in the following order:
“source,destination”. On Linux-x86 (32-bit) and Linux x86-64 platforms, this can be confusing
as the order indicated in AMD and Intel technical literature indicates that the order is usually
“destination,source”. The order in which TotalView displays this information conforms to the
GNU assembler. This ordering is usually an issue only when you are examining a core dump.

Figure 85, Both Source and Assembler (Symbolic Addresses)

RELATED TOPICS
Machine instructions Displaying Machine Instructions on page 263

Memory with an unknown data type Viewing Areas of Memory ($void Data Type) on page 292

Viewing the contents of a location as
machine instruction

Viewing Instructions ($code Data Type) on page 292

176

Using and Customizing the GUI Editing Source Text

Editing Source Text
Use the File > Edit Source command to examine the current routine in a text editor. TotalView uses an editor
launch string to determine how to start your editor. TotalView expands this string into a command that TotalView
sends to the sh shell.

The default editor is vi. However, TotalView uses the editor named in an EDITOR environment variable, or the edi-
tor you name in the Source Code Editor field of the File > Preferences Launch Strings Page. The online Help for
this page contains information on setting this preference.

177

Stepping through and Executing
your Program

This chapter discusses stepping and program execution, including these sections:

 Using Stepping Commands on page 178

 Executing to a Selected Line on page 182

 Executing Out of a Function on page 183

 Continuing with a Specific Signal on page 184

 Killing (Deleting) Programs on page 186

 Restarting Programs on page 186

 Setting the Program Counter on page 187

178

Stepping through and Executing your Program Using Stepping Commands

Using Stepping Commands
While different programs have different requirements, the most common stepping mode is to set group focus to
Control and the target to Process or Group. You can now select stepping commands from the Process or Group
menus or use commands in the toolbar.

Figure 86 illustrates stepping commands.

The arrow indicates that the PC is at line 15. The four stepping commands do the following:

 Next executes line 15. After stepping, the PC is at line 16.

 Step moves into the sub2() function. The PC is at line 21.

 Run To executes all lines until the PC reaches the selected line, which is line 23.

 Out executes all statements within sub1() and exits from the function. The PC is at line 9. If you
now execute a Step command, TotalView steps into sub3().

Remember the following things about single-stepping commands:

CLI: dfocus g
dfocus p

Figure 86, Stepping Illustrated

179

Stepping through and Executing your Program Using Stepping Commands

 To cancel a single-step command, select Group > Halt or Process > Halt.

 If your program reaches a breakpoint while stepping over a function, TotalView cancels the
operation and your program stops at the breakpoint.

 If you enter a source-line stepping command and the primary thread is executing in a function that
has no source-line information, TotalView performs an assembler-level stepping command.

 When TotalView steps through your code, it steps one line at a time. This means that if you have
more than one statement on a line, a step instruction executes all of the instructions on that line.

 To modify the way source-level single stepping works, use the dskip command to create and
manage single-stepper “skip” rules. You can add rules that match a function, all functions in a
source file, or a specific function in a specific source file.

Stepping into Function Calls
The stepping commands execute one line in your program. If you are using the CLI, you can use a numeric argu-
ment that indicates how many source lines TotalView steps. For example, here’s the CLI instruction for stepping
three lines:
dstep 3

If the source line or instruction contains a function call, TotalView steps into it. If TotalView can’t find the source
code and the function was compiled with -g, it displays the function’s machine instructions.

However, if a skip rule has been defined for a function call using the dskip command, it can change this stepping
behavior by:

 Causing the step into commands to step over a call to a function that contains source-line
information.

 Causing the step command to step through a function while ignoring any source-line information.
This applies to both step into and step over commands.

CLI: dhalt

RELATED TOPICS
The dfocus command The dfocus command in "CLI Commands" in the Classic

TotalView Reference Guide

Detailed discussion on stepping Stepping (Part I) on page 575, with examples in Stepping
(Part II): Examples on page 598

The dskip command The command in "CLI Commands" in the Classic TotalView
Reference Guide

180

Stepping through and Executing your Program Using Stepping Commands

You might not realize that your program is calling a function. For example, if you overloaded an operator, you’ll
step into the code that defines the overloaded operator.

NOTE: If the function being stepped into wasn’t compiled with the -g command-line option, TotalView
always steps over the function.

The GUI has eight Step commands and eight Step Instruction commands. These commands are located on the
Group, Process, and Thread pulldowns. The difference between them is the focus.

Stepping Over Function Calls
When you step over a function, TotalView stops execution when the primary thread returns from the function and
reaches the source line or instruction after the function call.

The GUI has eight Next commands that execute a single source line while stepping over functions, and eight
Next Instruction commands that execute a single machine instruction while stepping over functions. These
commands are on the Group, Process, and Thread menus.

If the PC is in assembler code—this can happen, for example, if you halt your program while it’s executing in a
library—a Next operation executes the next instruction. If you want to execute out of the assembler code so
you’re back in your code, select the Out command. You might need to select Out a couple of times until you’re
back to where you want to be.

CLI: dfocus ... dstep
dfocus ... dstepi

RELATED TOPICS
The dstep command dstep in "CLI Commands" in the Classic TotalView Reference

Guide

The dstepi command dstepi in "CLI Commands" in the Classic TotalView Reference
Guide

Detailed discussion on skip-
ping function calls

Skipping Function Calls on page 181

CLI: dfocus ... dnext
dfocus ... dnexti

181

Stepping through and Executing your Program Using Stepping Commands

Skipping Function Calls
You can define skip rules that allow you to identify functions that you are not interested in debugging. The
TotalView dskip command allows you to create and manage single-stepper skip rules that modify the way source-
level single stepping works.

You can add rules that match a function, all functions in a source file, or a specific function in a specific source file.
Functions can be matched by the function name or a regular expression (Tcl “regexp”). Files can be matched by
the file name or a glob pattern (Tcl “string match”).

TotalView implements two skip rule variants, over and through, as follows:

1. A matching and enabled skip over rule changes the behavior of all source-level step-into operations, such
as the dstep command or the Step button or menu items in the graphical user interface.

A skip over rule tells TotalView to not step into the function, but instead step over the function. Skip over is
most useful to avoid stepping into library functions, such as C++ STL code.

2. A matching and enabled skip through rule changes the behavior of all source-level single-stepping opera-
tions, such as the dstep and dnext commands or the Step and Next buttons or menu items in the
graphical user interface.

A skip through rule tells TotalView to ignore any source-line information for the function, so that single step-
ping does not stop at source lines within the function. However, if the function being skipped through calls
another function, that call is handled according to original single-stepping operation. Skip through is most
useful for callback or thunk functions.

RELATED TOPICS
The dnext command dnext in "CLI Commands" in the Classic TotalView Reference

Guide

The dnexti command dnexti in "CLI Commands" in the Classic TotalView Reference
Guide

RELATED TOPICS
The dskip command dskip in "CLI Commands" in the Classic TotalView Reference

Guide

The dnext command dnext in "CLI Commands" in the Classic TotalView Reference
Guide

The dstep command dstep in "CLI Commands" in the Classic TotalView Reference
Guide

182

Stepping through and Executing your Program Executing to a Selected Line

Executing to a Selected Line
If you don’t need to stop execution every time execution reaches a specific line, you can tell TotalView to run your
program to a selected line or machine instruction. After selecting the line on which you want the program to stop,
invoke one of the eight Run To commands defined within the GUI. These commands are on the Group, Process,
and Thread menus.

Executing to a selected line is discussed in greater depth in Group, Process, and Thread Control on page 571.

If your program reaches a breakpoint while running to a selected line, TotalView stops at that breakpoint.

If your program calls recursive functions, you can select a nested stack frame in the Stack Trace Pane. When you
do this, TotalView determines where to stop execution by looking at the following:

 The frame pointer (FP) of the selected stack frame.

 The selected source line or instruction.

CLI: dfocus ... duntil

CLI: dup and ddown

RELATED TOPICS
Detailed discussion on stepping
and setting breakpoints

Stepping and Setting Breakpoints on page 434

The duntil command duntil in "CLI Commands" in the Classic TotalView Reference
Guide

The dup command dup in "CLI Commands" in the Classic TotalView Reference
Guide

The ddowncommand ddown in "CLI Commands" in the Classic TotalView Refer-
ence Guide

183

Stepping through and Executing your Program Executing Out of a Function

Executing Out of a Function
You can step your program out of a function by using the Out commands. The eight Out commands in the GUI
are located on the Group, Process, and Thread menus.

If the source line that is the goal of the Out operation has more than one statement, TotalView will stop execution
just after the routine from which it just emerged. For example, suppose that the following is your source line:
routine1; routine2;

Suppose you step into routine1, then use an Out command. While the PC arrow in the Source Pane still points to
this same source line, the actual PC is just after routine1. This means that if you use a step command, you will
step into routine2.

The PC arrow does not move when the source line only has one statement on it. The internal PC does, of course,
change.

You can also return out of several functions at once, by selecting the routine in the Stack Trace Pane that you want
to go to, and then selecting an Out command.

If your program calls recursive functions, you can select a nested stack frame in the Stack Trace Pane to indicate
which instance you are running out of.

CLI: dfocus ... dout

RELATED TOPICS
The dout command dout in "CLI Commands" in the Classic TotalView Reference

Guide

184

Stepping through and Executing your Program Continuing with a Specific Signal

Continuing with a Specific Signal
Letting your program continue after sending it a signal is useful when your program contains a signal handler. To
set this up:

1. Select the Process Window’s Thread > Continuation Signal command.

2. Select the signal to be sent to the thread and then select OK.

The continuation signal is set for the thread contained in the current Process Window. If the operating sys-
tem can deliver multi-threaded signals, you can set a separate continuation signal for each thread. If it can’t,
this command clears continuation signals set for other threads in the process.

3. Continue execution of your program with commands such as Process > Go, Step, Next, or Detach.

TotalView continues the threads and sends the specified signals to your process.

NOTE: To clear the continuation signal, select signal 0 from this dialog box.

Figure 87, Thread > Continuation Signal Dialog Box

185

Stepping through and Executing your Program Continuing with a Specific Signal

You can change the way TotalView handles a signal by setting the TV::signal_handling_mode variable in a .tvdrc
startup file. For more information, see Handling Signals on page 127

RELATED TOPICS
The TV::signal_handling_mode
command

The TV::signal_handling_mode variable in "TotalView
Variables" in the Classic TotalView Reference Guide

Default settings for signals and how to
change them

Handling Signals on page 127

186

Stepping through and Executing your Program Killing (Deleting) Programs

Killing (Deleting) Programs
To kill (or delete) all the processes in a control group, use the Group > Kill command. The next time you start the
program, for example, by using the Process > Go command, TotalView creates and starts a fresh master process.

Restarting Programs
You can use the Group > Restart command to restart a program that is running or one that is stopped but hasn’t
exited.

If the process is part of a multi-process program, TotalView deletes all related processes, restarts the master pro-
cess, and runs the newly created program.

The Group > Restart command is equivalent to the Group > Kill command followed by the Process > Go
command.

CLI: dfocus g dkill

CLI: drerun

187

Stepping through and Executing your Program Setting the Program Counter

Setting the Program Counter
TotalView lets you resume execution at a different statement than the one at which it stopped execution by reset-
ting the value of the program counter (PC). For example, you might want to skip over some code, execute some
code again after changing certain variables, or restart a thread that is in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an error state. Although the PC symbol
in the line number area points to the source statement that caused the error, the PC actually points to the failed
machine instruction in the source statement. You need to explicitly reset the PC to the correct instruction. (You
can verify the actual location of the PC before and after resetting it by displaying it in the Stack Frame Pane, or dis-
playing both source and assembler code in the Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source line or a selected instruction. When you
set the PC to a selected line, the PC points to the memory location where the statement begins. For most situa-
tions, setting the PC to a selected line of source code is all you need to do.

To set the PC to a selected line:

1. If you need to set the PC to a location somewhere in a line of source code, select the View > Source As >
Both command.

TotalView responds by displaying assembler code.

2. Select the source line or instruction in the Source Pane.

TotalView highlights the line.

3. Select the Thread > Set PC command.

TotalView asks for confirmation, resets the PC, and moves the PC symbol to the selected line.

When you select a line and ask TotalView to set the PC to that line, TotalView attempts to force the thread to con-
tinue execution at that statement in the currently selected stack frame. If the currently selected stack frame is not
the top stack frame, TotalView asks if it can unwind the stack:
This frame is buried. Should we attempt to unwind the stack?
If you select Yes, TotalView discards deeper stack frames (that is, all stack frames that are more deeply nested
than the selected stack frame) and resets the machine registers to their values for the selected frame. If you
select No, TotalView sets the PC to the selected line, but it leaves the stack and registers in their current state.
Since you can’t assume that the stack and registers have the right values, selecting No is almost always the wrong
thing to do.

188

 Setting Action Points

In TotalView, breakpoints are called "action points." TotalView has four kinds of action points:

 A breakpoint stops execution of processes and threads that reach it.

 A barrier point synchronizes a set of threads or processes at a location.

 An eval point executes a code fragment when it is reached.

 A watchpoint monitors a location in memory and stops execution when it changes.

This chapter contains the following sections:

 About Action Points on page 189

 Setting Breakpoints and Barriers on page 194

 Defining Eval Points and Conditional Breakpoints on page 220

 Using Watchpoints on page 231

 Saving Action Points to a File on page 239

189

Setting Action Points About Action Points

About Action Points
Actions points specify an action to perform when a thread or process reaches a source line or machine instruc-
tion in your program. TotalView provides four types of action points:

 Breakpoints

When a thread encounters a breakpoint, it stops at the breakpoint. Other threads in the process also stop.
You can indicate that you want other related processes to stop, as well. Breakpoints are the simplest kind of
action point.

 Barrier points

Barrier points are similar to simple breakpoints, differing in that you use them to synchronize a group of pro-
cesses or threads. A barrier point holds each thread or process that reaches it until all threads or processes
reach it. Barrier points work together with the TotalView hold-and-release feature. TotalView supports thread
barrier and process barrier points.

 Eval points

An eval point is a breakpoint that has a code fragment associated with it. When a thread or process encoun-
ters an eval point, it executes this code. You can use eval points in a variety of ways, including conditional
breakpoints, thread-specific breakpoints, countdown breakpoints, and patching code fragments into and
out of your program.

 Watchpoints

A watchpoint tells TotalView to either stop the thread so that you can interact with your program (uncondi-
tional watchpoint), or evaluate an expression (conditional watchpoint).

The different kinds of action points that you can use are shown in Figure 88 on page 190.

Action Point Properties

All action points share the following common properties.

 You can independently enable or disable action points. A disabled action isn’t deleted; however,
when your program reaches a disabled action point, TotalView ignores it.

 You can share action points across multiple processes or set them in individual processes.

 Action points apply to the process. In a multi-threaded process, the action point applies to all of the
threads associated with the process.

190

Setting Action Points About Action Points

 TotalView assigns unique ID numbers to each action point. These IDs appear in several places,
including the Root Window, the Action Points Tab of the Process Window, and the Action Point >
Properties dialog.

Action Point Status Display

In the Process Window, each action point is identified by a symbol:

The icon is displayed when you create a breakpoint on an assembler statement.

For information on pending breakpoints, see Pending Breakpoints on page 201.

When your program halts because it encounters an action point, TotalView reports status in several locations. In
the Root Window, the Process State is displayed with Breakpoint as well as the letters ap followed by a number if
the Action Point ID checkbox is enabled in the Configure pane. This is the same number as in the Action Points

Figure 88, Action Point Symbols

CLI: dactions -- shows information about action points

All action points display as “@” when you use the dlist command to
display your source code. Use thedactions command to see what
type of action point is set.

191

Setting Action Points About Action Points

tab within the Process Window. In the Process Window, the status lines above the Source Pane also let you know
that the thread is at a breakpoint. Finally, TotalView places a yellow arrow over the action point’s icon in the Action
Point tab. For example:

For templated code, an ellipsis (...) is displayed after the address, indicating that additional addresses are associ-
ated with the breakpoint.

Manipulating Action Points
When working with action points, you can use your mouse to quickly manipulate breakpoints. In the line number

area of the Source Pane, a left mouse click sets a breakpoint at that line, displaying a icon instead of a line
number.

Selecting the icon a second time deletes the breakpoint. If you change any of the breakpoint’s properties

or if you’ve created an eval point (indicated by an icon), selecting the icon disables it.

Print Statements vs. Action Points
Print statements are common in debugging, in which you insert printf() or PRINT statements in your code and
then inspect the output. However, using print statements requires that you recompile your program; further, the
output may be difficult to navigate as it is likely to be out of order when running multi-process, multi-threaded
programs.

You can still use printf() statements if you wish — but more effectively and without recompiling your program.
Simply add a breakpoint that prints information, using the Action Point Properties, dialog, Figure 90, which adds
any code you want to a breakpoint.

Figure 89, Action Points Tab

RELATED TOPICS
Modifying action point properties The Action Point > Properties dialog box in the in-product Help

Using action points with the CLI Using Action Points on page 471

192

Setting Action Points About Action Points

NOTE: In this discussion, the term "breakpoint" is often used interchangeably with the broader
TotalView-specific term "action point."

A breakpoint with associated code is an eval point. When your program reaches an eval point, TotalView executes
the code. For instance, in the above case, TotalView prints the value of i.

Eval points do exactly what you tell them to do. Note that, in Figure 90, TotalView allows your program to con-
tinue to execute because you didn’t tell it to stop. In other words, you don’t have to stop program execution just
to observe print statement output.

Figure 90, Action Point Properties Dialog Box

193

Setting Action Points About Action Points

Figure 91 shows two eval points that do stop execution.

The eval point in the background uses programming language statements and a built-in debugger function to
stop a loop every 100 iterations. It also prints the value of i. In contrast, the eval point in the foreground just stops
the program every 100 times a statement is executed.

These are just a few ways that action points can define print statements. More examples can be seen throughout
this chapter.

Figure 91, Setting Conditions

194

Setting Action Points Setting Breakpoints and Barriers

Setting Breakpoints and Barriers
TotalView has several options for setting breakpoints, including:

 Source-level breakpoints

 Breakpoints that are shared among all processes in multi-process programs

 Assembler-level breakpoints

You can also control whether TotalView stops all processes in the control group when a single member reaches a
breakpoint.

Topics in this section are:

 Setting Source-Level Breakpoints on page 194

 Setting Breakpoints at Locations on page 201

 Pending Breakpoints on page 201

 Displaying and Controlling Action Points on page 205

 Setting Machine-Level Breakpoints on page 209

 Setting Breakpoints for Multiple Processes on page 211

 Setting Breakpoints When Using the fork()/execve() Functions on page 213

 Setting Barrier Points on page 215

Setting Source-Level Breakpoints
Typically, you set and clear breakpoints before you start a process. To set a source-level breakpoint, select a line
number in the Process Window.

Source Pane Line Number Indicators

A boxed line number in the Source Pane indicates that the line is associated with executable code:

 A gray box denotes that the compiler generated exactly one line number symbol for the source
line.

195

Setting Action Points Setting Breakpoints and Barriers

 A black box denotes that the compiler generated more than one line number symbol for the
source line. The line number symbols might be within a single image file, for example on a "for"
loop statement. Or, the line number symbols might be spread across multiple image files if the
source file was compiled into the executable, shared libraries, and/or CUDA code.

 No box indicates that the compiler did not generate any line number symbols for the source line.
However, you can still set a sliding or pending breakpoint at the line, which is useful if you know that
code for that line will be dynamically loaded at runtime, for example, in a dynamically loaded
shared library or a CUDA kernel launch.

For example, Figure 92 illustrates that source lines 611 and 616 both have a single line number symbol,
while line 612 has multiple line number symbols. Lines with no box indicate that no executable code exists
at those source lines yet (although you can set a sliding or pending breakpoint at those lines, discussed in
Pending Breakpoints on page 201 and Sliding Breakpoints on page 198).

To set a breakpoint in several ways, either:

 Click the line number, or

 Right-click on the line number to access the context menu, and choose Set Breakpoint. (Choosing
Set Barrier creates a barrier point, discussed in Setting Barrier Points on page 215.), or

 Select the source line text (not the source line number) and select the menu item Action Point >
Set Breakpoint.

You can also set a breakpoint while a process is running by selecting a boxed line number in the Source Pane.

A icon in both the Source Pane and the Action Points tab reports that a breakpoint has been set immedi-
ately before the source statement.

Figure 92, Possible breakpoint locations in the Source Pane

196

Setting Action Points Setting Breakpoints and Barriers

When you set a breakpoint or barrierpoint, it is defined by a breakpoint expression, also called a breakpoint specifi-
cation, displayed in the Action Points tab for that breakpoint, or entered into the CLI (if created using the CLI). For
more information, see dbreak in the TotalView Reference Guide.

Choosing Source Lines

If you’re using C++ templates, TotalView sets a breakpoint in all instantiations of that template. If this isn’t what
you want, clear the button and then select the Addresses button in the Action Point Properties Dialog Box. You
can now clear locations where the action point shouldn’t be set.

Initially, addresses are either enabled or disabled, but you can change their state by clicking the checkbox in the
first column. The checkbox in the columns bar enables or disables all the addresses. This dialog supports select-
ing multiple separate items (Ctrl-Click) or a range of items (Shift-Click or click and drag). Once the desired subset is
selected, right-click one of the selected items and choose Enable Selection or Disable Selection from the context
menu.

Figure 93, Breakpoints are identified by stop icons

Figure 94, Action Point and Addresses Dialog Boxes

197

Setting Action Points Setting Breakpoints and Barriers

Filtering

In complex programs that use many shared libraries, the number of addresses can become very large, so the
Addresses dialog has several mechanisms to manage the data. The search box filters the currently displayed data
based on one or more space-separated strings or phrases (enclosed in quotes). Remember that data not cur-
rently displayed is not included in the filtering. It may be helpful to click the Detailed Information checkbox, which
displays much more complete symbol table information, giving you more possibilities for filtering.

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between
ascending and descending order. If entry values in a column are the same, the values of the column to the right
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new
location.

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have
been assigned.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

198

Setting Action Points Setting Breakpoints and Barriers

Similarly, in a multi-process program, you might not want to set the breakpoint in all processes. If this is the case,
select the Process button.

Sliding Breakpoints

If you try to set a breakpoint in the Source Pane at a location with no boxed line, i.e., if there are no line number
symbols for that source code line yet, TotalView automatically “slides” the breakpoint to the next line number in
the source file that does have a line number symbol.

For example, in Figure 96, a breakpoint was set at line 46 and slid to line 48 where there was a line number sym-
bol. The Source Pane then displays a hollow stop icon indicating that it slid, along with a stop icon at the slid
location.

Figure 95, Setting Breakpoints on Multiple Similar Addresses and on Processes

199

Setting Action Points Setting Breakpoints and Barriers

NOTE: The Action Points tab always displays the full breakpoint expression (in brackets). It also dis-
plays the "best" source file and line number it can currently find. TotalView does not change
the original breakpoint expression, in the event that dynamically loaded code would be a bet-
ter match later.

The Action Points tab displays the full breakpoint expression in square brackets, abbreviating by-line breakpoints
to save space in the display. Following the breakpoint expression, it also displays the "best" source file and line
number it can currently find.

The breakpoint expression—pointing to line 46—is displayed in the Actions Points tab as well as the location of
the actual breakpoint at line 48. Retaining the original expression supports the situation in which a library that is
dynamically loaded does have line number symbols at that location. As the program runs and dynamically loads
code, TotalView reevaluates the breakpoint expressions, factoring in any new line number symbols it finds. If bet-
ter-matching line number information is found, the address blocks in the breakpoint are updated to add the
addresses of the new line number symbols, and possibly disable or invalidate old address blocks. This ensures
that the breakpoint triggers for the most relevant source line.

If TotalView cannot find a line number symbol following the line specified in the breakpoint expression, it creates
a pending breakpoint. For example, this could occur when setting a breakpoint at the end of a source file. See
Pending Breakpoints on page 201 for information.

Dynamic Code Loading Example

To see how this works, consider a program that will load code at runtime, such as when debugging CUDA code
running on a GPU.

Figure 97 illustrates a breakpoint set at line 91 that has slid to line 134:

Figure 96, Sliding breakpoint

200

Setting Action Points Setting Breakpoints and Barriers

Once the program is running and the CUDA code is loaded, TotalView recalculates the breakpoint expression and
is able to plant a breakpoint at line 91 in the CUDA code, which is an exact match for the breakpoint expression:

If you focus on the CUDA thread, then view the breakpoint address information (by selecting the breakpoint, right-
clicking and selecting Properties, then clicking the Addresses button), the Action Point Addresses dialog reports
that line 134 is not mapped to a breakpoint location, since it’s in the host thread; TotalView disabled the address
block at line 134 in the host code because line 91 was a better match for the breakpoint expression:

Figure 97, Sliding breakpoints when dynamically loading code

201

Setting Action Points Setting Breakpoints and Barriers

Setting Breakpoints at Locations
You can set or delete a breakpoint at a specific function or source-line number without having to first find the
function or source line in the Source Pane. Do this by entering a line number or function name in the Action
Point > At Location dialog.

TotalView sets a breakpoint at the location. If you enter a function name, TotalView sets the breakpoint at the
function’s first executable line. In either case, if a breakpoint already exists at a location, TotalView deletes it.

This dialog also allows the creation of a pending breakpoint. See Pending Breakpoints on page 201.

For detailed information about the kinds of information you can enter in this dialog box, see dbreak in the Classic
TotalView Reference Guide.

Pending Breakpoints
TotalView supports pending breakpoints, useful when setting a breakpoint on code contained in a library that has
not yet been loaded into memory.

A pending action point is a breakpoint, barrierpoint, or eval point created with a breakpoint expression that does
not yet correspond to any executable code. For example, a common use case is to create a pending function
breakpoint with a breakpoint expression that matches the name of a function that will be loaded at runtime via
dlopen(), CUDA kernel launch, or anything that dynamically loads executable code.

All four types of breakpoints can be pending (this includes line, function, methods in a class, and virtual function
breakpoints). Further, a breakpoint may transition between pending to non-pending as image files are loaded,
breakpoint expressions are reevaluated, address blocks are added, and invalid address blocks are nullified.

Figure 98, Action Point > At Location Dialog Box

CLI: dbreak sets a breakpoint
ddelete deletes a breakpoint

202

Setting Action Points Setting Breakpoints and Barriers

Pending Breakpoints on a Function

When creating a breakpoint on a function using the Action Point > At Location dialog box, you are prompted at
various points to choose whether to set the breakpoint as pending.

Directly, in the At Location dialog

To immediately set a pending breakpoint, click Create a pending breakpoint directly in the At Location dialog.
This is useful if you are sure that the function name you are entering is correct (even if TotalView can’t find it)
because it will be dynamically loaded at runtime.

In the Ambiguous function dialog

If you type a function name for which TotalView has no information into the Named field, it assumes that you have
either mistyped the function name or that the code containing the function has not yet been loaded into mem-
ory. If you don’t check the Create a pending breakpoint box, and the entered name is similar to that of an
existing function, TotalView launches its Ambiguous Function dialog, displaying existing functions that are the
nearest match to the function in the breakpoint expression.

203

Setting Action Points Setting Breakpoints and Barriers

.

Choose either to create a pending breakpoint or to use one of the provided matches.

Pending breakpoint prompt

If the name you entered was not similar to any existing function, TotalView prompts to set a pending breakpoint.

Pending Breakpoints on a Line Number

Because TotalView “slides” a line number breakpoint to the next valid location (see Sliding Breakpoints), explicitly
setting a line number pending breakpoint is rarely necessary. If, however, you know that there will be code at that
spot, you can explicitly set a pending breakpoint in only these ways:

Figure 99, Ambiguous Function Dialog Box

Figure 100, Pending breakpoint prompt

204

Setting Action Points Setting Breakpoints and Barriers

 By creating a line number breakpoint at a line near the end of a source file where the following lines
have no line number symbols, but where you expect there to be dynamically loaded code at
runtime. For example, here is a breakpoint set at line 177 just before the end of a file:

 In the At Location dialog box, type the file name and line number of a source file that has not been
loaded yet. For example, dynaloaded.c#42 where dynaloaded.c is compiled into a dynamically
loaded shared library. TotalView posts a dialog box to confirm, unless "Create a pending
breakpoint" is selected.

Conflicting Breakpoints

TotalView can place only one action point on an address. Because the breakpoints you specify are actually expres-
sions, the locations to which these expressions evaluate can overlap or even be the same. Sometimes, and this
most often occurs with pending breakpoints in dynamically loaded libraries, TotalView cannot predict when action
points will overlap. If they do, TotalView enables only one of the action points and disables all others that evaluate
to the same address. The action point that TotalView enables is that with the lowest actionpoint ID. The other
overlapping action points are marked as "conflicted" in the Action Points pane and dactions output.

205

Setting Action Points Setting Breakpoints and Barriers

Displaying and Controlling Action Points
The Action Point > Properties Dialog Box sets and controls an action point. Controls in this dialog box also let
you change an action point’s type to breakpoint, barrier point, or eval point. You can also define what happens to
other threads and processes when execution reaches this action point.

The following sections explain how you can control action points by using the Process Window and the Action
Point > Properties Dialog Box.

Disabling Action Points

TotalView can retain an action point’s definition and ignore it while your program is executing. That is, disabling an
action point deactivates it without removing it.

You can disable an action point by:

 Clearing Enable action point in the Action Point > Properties Dialog Box.

 Selecting the or symbol in the Action Points Tab.

 Using the context (right-click) menu.

Figure 101, Action Point > Properties Dialog Box

CLI: dset SHARE_ACTION_POINT
dset STOP_ALL
ddisable action-point

CLI: ddisable action-point

206

Setting Action Points Setting Breakpoints and Barriers

 Clicking on the Action Points > Disable command.

Deleting Action Points

You can permanently remove an action point by selecting the or symbol or selecting the Delete
button in the Action Point > Properties Dialog Box.

To delete all breakpoints and barrier points, use the Action Point > Delete All command.

If you make a significant change to the action point, TotalView disables it rather than deleting it when you click the
symbol.

Enabling Action Points

You can activate a previously disabled action point by selecting a dimmed , , or symbol in the
Source or Action Points tab, or by selecting Enable action point in the Action Point > Properties Dialog Box.

Suppressing Action Points

You can tell TotalView to ignore action points by using the Action Point > Suppress All command.

The command ddisable -a is the closest CLI command to the GUI Suppress All feature. However, ddisable -a
does not actually put TotalView into suppressed action point mode and you can still set and manipulate action
points. Be aware that the ddisable -a command in the CLI operates only on the current focus. See the Classic
TotalView Reference Guide for more discussion.

When you suppress action points, you disable them. After you suppress an action point, TotalView changes the
symbol it uses within the Source Pane’s line number area. In all cases, the icon's color is lighter. Selecting Sup-
press All in the Action Point menu places TotalView in a suppressed action point mode such that no action points
are enabled in any process within the entire debugging session. While in this mode, you are unable to create new
action points or enable any that are currently disabled.

You can make previously suppressed action points active and allow the creation of new ones by again selecting
the Action Point > Suppress All command, which functions as a toggle.

CLI: ddelete

CLI: denable

CLI: ddisable -a

CLI: denable -a

207

Setting Action Points Setting Breakpoints and Barriers

The command denable -a is the closest CLI command to turning off Suppress All from within the GUI. However,
the denable -a feature in the CLI operates only on the current focus. See the Classic TotalView Reference Guide for
more discussion.

Setting Breakpoints on Classes and Functions
The Action Point > At Location dialog box lets you set breakpoints on all functions within a class or on a virtual
function. The All Methods in Class and All Virtual Functions and Overrides sets a breakpoint that covers mul-
tiple source lines and functions. That is, the breakpoint has multiple address blocks covering all of the locations
matching the breakpoint expression.

TotalView tells you that the action point is set on a virtual function or a class in the Action Points tab. If you dive on
the action point in this tab, TotalView brings up its Ambiguous Line dialog box so that you can select which source
line it should display. You may want to select the Show full path names check box if you can’t tell which you want
from the function’s signature.

If a function name is overloaded, the debugger sets a breakpoint on each of these functions.

If you want the breakpoint to stop in only some functions, use the Action Point Properties dialog, accessed either
by right-clicking on the breakpoint and clicking Properties or by selecting the Action Point > Properties com-
mand, and then clicking Addresses to open the Action Point Addresses dialog.

Figure 102, Action Point > At Location Dialog Box

208

Setting Action Points Setting Breakpoints and Barriers

You can now enable or disable individual address blocks within the breakpoint. Initially, addresses are either
enabled or disabled, but you can change their state by clicking the checkbox in the first column. The checkbox in
the columns bar enables or disables all the addresses. This dialog supports selecting multiple separate items
(Ctrl-Click) or a range of items (Shift-Click or click and drag). Once the desired subset is selected, right-click one of
the selected items and choose Enable Selection or Disable Selection from the context menu.

Filtering

In complex programs that use many shared libraries, the number of addresses can become very large, so the
Addresses dialog has several mechanisms to manage the data. The search box filters the currently displayed data
based on one or more space-separated strings or phrases (enclosed in quotes). Remember that data not cur-
rently displayed is not included in the filtering. It may be helpful to click the Detailed Information checkbox, which
displays much more complete symbol table information, giving you more possibilities for filtering.

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between
ascending and descending order. If entry values in a column are the same, the values of the column to the right
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Figure 103, Action Point and Addresses Dialog Boxes

209

Setting Action Points Setting Breakpoints and Barriers

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new
location.

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have
been assigned.

Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code. You can now select an instruction.

TotalView replaces some line numbers with a dotted box ()—this indicates the line is the beginning of a
machine instruction. If a line has a line number, this is the line number that appears in the Source Pane. Since
instruction sets on some platforms support variable-length instructions, you might see a different number of

lines associated with a single line contained in the dotted box. The icon appears, indicating that the break-
point occurs before the instruction executes.

If you set a breakpoint on the first instruction after a source statement, however, TotalView assumes that you are
creating a source-level breakpoint, not an assembler-level breakpoint.

If you set machine-level breakpoints on one or more instructions generated from a single source line, and then

display source code in the Source Pane, TotalView displays an icon (Figure 88 on page 190) on the line
number. To see the actual breakpoint, you must redisplay assembler instructions.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

Figure 104, Breakpoint at Assembler Instruction

210

Setting Action Points Setting Breakpoints and Barriers

When a process reaches a breakpoint, TotalView does the following:

 Suspends the process.

 Displays the PC arrow icon () over the stop sign to indicate that the PC is at the breakpoint.

 Displays At Breakpoint in the Process Window title bar and other windows.

 Updates the Stack Trace and Stack Frame Panes and all Variable windows.

Figure 105, PC Arrow Over a Stop Icon

RELATED TOPICS
Displaying assembler code Viewing the Assembler Version of Your Code on page 173

Barrier points Setting Breakpoints and Barriers on page 194

211

Setting Action Points Setting Breakpoints and Barriers

Setting Breakpoints for Multiple Processes
In all programs, including multi-process programs, you can set breakpoints in parent and child processes before
you start the program and while the program is executing. Do this using the Action Point > Properties Dialog
Box.

This dialog box provides the following controls for setting breakpoints:

 When Hit, Stop

When your thread hits a breakpoint, TotalView can also stop the thread’s control group or the process in
which it is running.

 Plant in share group

When checked, TotalView enables the breakpoint in all members of this thread’s share group at the same
time. When unchecked, you must individually enable and disable breakpoints in each member of the share
group.

The Processes button specifies which process in a multi-process program will have enabled breakpoints. If Plant
in share group is selected, this button is disabled since a breakpoint will be set in all of the processes.

Figure 106, Action Point > Properties Dialog Box

CLI: dset STOP_ALL
dbreak -p | -g | -t

CLI: dset SHARE_ACTION_POINT

212

Setting Action Points Setting Breakpoints and Barriers

You can preset many of the properties in this dialog box by selecting the File > Preferences command. Use the
Action Points page to set action point preferences.

You can find additional information about this dialog box in the online Help.

If you select the Evaluate button in the Action Point > Properties Dialog Box, you can add an expression to the
action point. This expression is attached to control and share group members.

If you’re trying to synchronize your program’s threads, you need to set a barrier point.

Figure 107, File > Preferences: Action Points Page

RELATED TOPICS
Using various programming languages
in expressions

Using Programming Language Elements on page 367

Barrier points Setting Breakpoints and Barriers on page 194 and Setting Bar-
rier Points on page 215

Action Point > Properties dialog box Action Point > Properties dialog box in the in-product Help

213

Setting Action Points Setting Breakpoints and Barriers

Setting Breakpoints When Using the fork()/execve() Functions

NOTE: If you are using ReplayEngine, note that it does not follow fork() or vfork() system calls. For
more information on ReplayEngine, see Reverse Debugging with ReplayEngine.

Debugging Processes That Call the fork() Function

NOTE: You can control how TotalView handles system calls to fork(). See Fork Handling on page 569.

By default, TotalView places breakpoints in all processes in a share group. (For information on share groups, see
Organizing Chaos on page 394.) When any process in the share group reaches a breakpoint, TotalView stops all
processes in the control group. This means that TotalView stops the control group that contains the share group.
This control can contain more than one share group.

To override these defaults:

1. Dive into the line number to display the Action Point > Properties Dialog Box.

2. Clear the Plant in share group check box and make sure that the Group radio button is selected.

Debugging Processes that Call the execve() Function

NOTE: You can control how TotalView handles system calls to execve(). See Exec Handling on page 568.

Shared breakpoints are not set in children that have different executables.

To set the breakpoints for children that call the execve() function:

1. Set the breakpoints and breakpoint options in the parent and the children that do not call the execve()
function.

2. Start the multi-process program by displaying the Group > Go command.

When the first child calls the execve() function, TotalView displays the following message:

CLI: dset SHARE_ACTION_POINT false

214

Setting Action Points Setting Breakpoints and Barriers

Process name has exec’d name.
Do you want to stop it now?

3. Answer Yes.

TotalView opens a Process Window for the process. (If you answer No, you won’t have an opportunity to set
breakpoints.)

4. Set breakpoints for the process.

After you set breakpoints for the first child using this executable, TotalView won’t prompt when other chil-
dren call the execve() function. This means that if you do not want to share breakpoints in children that use
the same executable, dive into the breakpoints and set the breakpoint options.

5. Select the Group > Go command.

Example: Multi-process Breakpoint

The following program excerpt illustrates the places where you can set breakpoints in a multi-process program:
1 pid = fork();
2 if (pid == -1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

The following table describes what happens when you set a breakpoint at different places:

CLI: G

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes.

3 Stops the parent process if the fork() function failed.

5 Stops the child process.

7 Stops the parent process.

215

Setting Action Points Setting Breakpoints and Barriers

Setting Barrier Points
A barrier breakpoint is similar to a simple breakpoint, differing only in that it holds processes and threads that
reach the barrier point. Other processes and threads continue to run. TotalView holds these processes or
threads until all processes or threads defined in the barrier point reach this same place. When the last one
reaches a barrier point, TotalView releases all the held processes or threads, but they do not continue executing
until you explicitly restart execution. In this way, barrier points let you synchronize your program’s execution.

Topics in this section are:

 About Barrier Breakpoint States on page 215

 Setting a Barrier Breakpoint on page 216

 Creating a Satisfaction Set on page 217

 Hitting a Barrier Point on page 218

 Releasing Processes from Barrier Points on page 218

 Deleting a Barrier Point on page 218

 Changing Settings and Disabling a Barrier Point on page 218

About Barrier Breakpoint States

Processes and threads at a barrier point are held or stopped, as follows:

RELATED TOPICS
Share groups and TotalView’s default design
for organizing multiple processes into groups

Organizing Chaos on page 394

Controlling TotalView’s behavior for fork, vfork
and execve handling

Controlling fork, vfork, and execve Handling on
page 566

The dbfork library Compiling Programs on page 87, and "Linking with the
dbfork Library" in the Classic TotalView Reference Guide

CLI: dbarrier

RELATED TOPICS
How to hold and release threads and
processes

Holding and Releasing Processes and Threads on page 422

216

Setting Action Points Setting Breakpoints and Barriers

Held A held process or thread cannot execute until all the processes or threads in its group are at
the barrier, or until you manually release it. The various go and step commands from the
Group, Process, and Thread menus cannot start held processes.

Stopped When all processes in the group reach a barrier point, TotalView automatically releases them.
They remain stopped at the barrier point until you tell them to resume executing.

You can manually release held processes and threads with the Hold and Release commands found in the Group,
Process, and Thread menus. When you manually release a process, the go and step commands become available
again.

You can reuse the Hold command to again toggle the hold state of the process or thread. See Holding and
Releasing Processes and Threads on page 422 for more information.

When a process or thread is held, TotalView displays Stopped next to the relevant process or thread in the Pro-
cess State column of the Root Window.

Setting a Barrier Breakpoint

You can set a barrier breakpoint by using the Action Point > Set Barrier command or from the Action Point >
Properties Dialog Box. As an alternative, you can right-click on the line. From the displayed context menu, you
can select the Set Barrier command.

CLI: dfocus ... dhold
dfocus ... dunhold

Figure 108, Action Point > Properties Dialog Box

217

Setting Action Points Setting Breakpoints and Barriers

You most often use barrier points to synchronize a set of threads. When a thread reaches a barrier, it stops, just
as it does for a breakpoint. The difference is that TotalView prevents—that is, holds—each thread reaching the
barrier from responding to resume commands (for example, step, next, or go) until all threads in the affected set
arrive at the barrier. When all threads reach the barrier, TotalView considers the barrier to be satisfied and
releases all of the threads being held there. They are just released; they are not continued. That is, they are left
stopped at the barrier. If you continue the process, those threads also run.

If you stop a process and then continue it, the held threads, including the ones waiting at an unsatisfied barrier,
do not run. Only unheld threads run.

The When Hit, Stop radio buttons indicate what other threads TotalView stops when execution reaches the
breakpoint, as follows:

After all processes or threads reach the barrier, TotalView releases all held threads. Released means that these
threads and processes can now run.

The When Done, Stop radio buttons tell TotalView what else it should stop, as follows:

Creating a Satisfaction Set

For even more control over what TotalView stops, you can select a satisfaction set. This setting tells TotalView which
processes or threads must be held before it can release the group. That is, the barrier is satisfied when TotalView
has held all of the indicated processes or threads. The choices from the drop-down menu for the Satisfaction
group are Control, Share, and Workers. The default setting, Control, affects all the processes controlled by

Scope What TotalView does:

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

CLI: dbarrier -stop_when_hit

Scope What TotalView does:

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

CLI: dbarrier -stop_when_done

218

Setting Action Points Setting Breakpoints and Barriers

TotalView. The Share setting affects all the processes that share the same image as the current executable where
the barrier point is set. For multi-threaded programs, to hold the threads at the barrier point, use the Workers
setting, which holds at the thread level. Control and Share settings hold at the process level.

When you set a barrier point, TotalView places it in every process in the share group.

Hitting a Barrier Point

If you run one of the processes or threads in a group and it hits a barrier point, the Root Window displays
Stopped in the Process State column for that process’s or thread’s entry, and the main Process Window displays
Held in the title bar.

If you create a barrier and all the process’s threads are already at that location, TotalView won’t hold any of them.
However, if you create a barrier and all of the processes and threads are not at that location, TotalView holds any
thread that is already there.

Releasing Processes from Barrier Points

TotalView automatically releases processes and threads from a barrier point when they hit that barrier point and
all other processes or threads in the group are already held at it.

Deleting a Barrier Point

You can delete a barrier point in the following ways:

 Use the Action Point > Properties Dialog Box.

 Click the icon in the line number area.

Changing Settings and Disabling a Barrier Point

Setting a barrier point at the current PC for a stopped process or thread holds the process there. If, however, all
other processes or threads affected by the barrier point are at the same PC, TotalView doesn’t hold them. Instead,
TotalView treats the barrier point as if it were an ordinary breakpoint.

CLI: dstatus

CLI: ddelete

219

Setting Action Points Setting Breakpoints and Barriers

TotalView releases all processes and threads that are held and which have threads at the barrier point when you
disable the barrier point. You can disable the barrier point in the Action Point > Properties Dialog Box by select-
ing Enable action point at the bottom of the dialog box.

CLI: ddisable

220

Setting Action Points Defining Eval Points and Conditional Breakpoints

Defining Eval Points and
Conditional Breakpoints
TotalView supports eval points. These are action points at which you have added a code fragment that TotalView
executes. You can write the code fragment in C, Fortran, or assembler.

NOTE: Assembler support is currently available on the IBM AIX operating systems. You can enable or
disable TotalView’s ability to compile eval points.

NOTE: When running on many AIX systems, you can improve the performance of compiled expres-
sions by using the -aix_use_fast_trap command when starting TotalView. For more
information, see the TotalView Release Notes, available from the Rogue Wave web site. Search
for “fast trap.”

Topics in this section are:

 Setting Eval Points on page 222

 Creating a Pending Eval Point on page 223

 Creating Conditional Breakpoint Examples on page 224

 Patching Programs on page 224

 About Interpreted and Compiled Expressions on page 226

 Allocating Patch Space for Compiled Expressions on page 228

You can do the following when you use eval points:

 Include instructions that stop a process and its relatives. If the code fragment can make a decision
whether to stop execution, it is called a conditional breakpoint.

 Test potential fixes for your program.

 Set the values of your program’s variables.

 Automatically send data to the Visualizer. This can produce animated displays of the changes in
your program’s data.

221

Setting Action Points Defining Eval Points and Conditional Breakpoints

You can set an eval point at any source line that generates executable code (marked with a box surrounding a line
number) or a line that contains assembler-level instructions. This means that if you can set a breakpoint, you can
set an eval point.

At each eval point, TotalView or your program executes the code contained in the eval point before your program
executes the code on that line. Although your program can then go on to execute this source line or instruction, it
can do the following instead:

 Include a goto in C or Fortran that transfers control to a line number in your program. This lets you
test program patches.

 Execute a TotalView function. These functions can stop execution and create barriers and
countdown breakpoints. For more information on these statements, see Using Built-in Variables
and Statements on page 378.

TotalView evaluates code fragments in the context of the target program. This means that you can refer to pro-
gram variables and branch to places in your program.

NOTE: If you call a function from an eval point and there’s a breakpoint within that function,
TotalView will stop execution at that point. Similarly, if there’s an eval point in the function,
TotalView also evaluates that eval point.

Eval points only modify the processes being debugged—they do not modify your source program or create a per-
manent patch in the executable. If you save a program’s action points, however, TotalView reapplies the eval point
whenever you start a debugging session for that program.

NOTE: You should stop a process before setting an eval point in it. This ensures that the eval point is
set in a stable context.

RELATED TOPICS
Saving eval points Saving Action Points to a File on page 239

Writing code for an expression Using Programming Language Elements on page 367

TotalView’s expression system Evaluating Expressions on page 360

Using built-in TotalView statements to con-
trol execution

Using Built-In Statements on page 379

222

Setting Action Points Defining Eval Points and Conditional Breakpoints

Setting Eval Points
To create an eval point:

1. Display the Action Point > Properties dialog either by right-clicking a icon and selecting Properties
or by selecting a line and then selecting the Action Points menu, then Properties.

2. Select the Evaluate button.

3. Select the button for the language in which you plan to write the fragment.

4. Type the code fragment. For information on supported C, Fortran, and assembler language constructs, see
Using Programming Language Elements on page 367.

5. For multi-process programs, decide whether to share the eval point among all processes in the program’s
share group. By default, TotalView selects the Plant in share group check box for multi-process programs,
but you can override this by clearing this setting.

6. Select the OK button to confirm your changes.

If the code fragment has an error, TotalView displays an error message. Otherwise, it processes the code,
closes the dialog box, and places an icon on the line number in the Source Pane.

The variables that you refer to in your eval point can either have a global scope or be local to the block of the line
that contains the eval point. If you declare a variable in the eval point, its scope is the block that contains the eval
point unless, for example, you declare it in some other scope or declare it to be a static variable.

CLI: dbreak -e
dbarrier -e

223

Setting Action Points Defining Eval Points and Conditional Breakpoints

Creating a Pending Eval Point
You can create a pending eval point at a location in your code that hasn’t yet been loaded, for instance, when your
program will dynamically load libraries at runtime. Setting a pending eval point is, essentially, allowing its expres-
sion to fail compilation when it is created. For example, it may reference a local variable in the code that will not
be defined in the symbol table until the code is loaded and TotalView reads the debug symbols. When your pro-
gram loads new code at an eval point location, TotalView will attempt to compile the expression. If the eval point
expression still fails to compile, the eval point is handled like a breakpoint.

To create a pending eval point, click “Create a pending EVAL point” on the Action Points Properties dialog.

A pending eval point is one in which:

 The underlying breakpoint is pending. In this case, TotalView is unlikely to be able to compile the
expression (since the breakpoint is not yet instantiated), so it creates a pending eval point.

 A pending eval point has been explicitly created. Explicitly creating a pending eval point is useful
when an eval point is intended to be set in dynamically loaded code (such as CUDA GPU code), and
so the breakpoint slides to the host code before runtime.

Figure 109, Action Point Properties > Create Eval Point

CLI: dbreak -pending -e {expr}
dbarrier -pending -e {expr}

224

Setting Action Points Defining Eval Points and Conditional Breakpoints

Note that the "Create a pending EVAL point" flag sticks to the eval point for the duration of the debug session. The
flag is not saved with the eval point when TotalView saves action points; however, when restoring the action
points, TotalView will set the flag if the underlying breakpoint needed to slide or was pending.

Creating Conditional Breakpoint Examples
The following are examples that show how you can create conditional breakpoints:

 The following example defines a breakpoint that is reached whenever the counter variable is
greater than 20 but less than 25:
if (counter > 20 && counter < 25) $stop;

 The following example defines a breakpoint that stops execution every tenth time that TotalView
executes the $count function
$count 10

 The following example defines a breakpoint with a more complex expression:
$count my_var * 2
When the my_var variable equals 4, the process stops the eighth time it executes the $count function. After
the process stops, TotalView reevaluates the expression. If my_var equals 5, the process stops again after
the process executes the $count function ten more times.

The TotalView internal counter is a static variable, which means that TotalView remembers its value every time it
executes the eval point. Suppose you create an eval point within a loop that executes 120 times and the eval
point contains $count 100. Also assume that the loop is within a subroutine. As expected, TotalView stops execu-
tion the 100th time the eval point executes. When you resume execution, the remaining 20 iterations occur.

The next time the subroutine executes, TotalView stops execution after 80 iterations because it will have counted
the 20 iterations from the last time the subroutine executed.

There is good reason for this behavior. Suppose you have a function that is called from lots of different places
from within your program. Because TotalView remembers every time a statement executes, you could, for exam-
ple, stop execution every 100 times the function is called. In other words, while $count is most often used within
loops, you can use it outside of them as well.

For descriptions of the $stop, $count, and variations on $count, see Using Built-in Variables and Statements on
page 378.

Patching Programs
Eval points let you patch your programs and route around code that you want replaced, supporting:

225

Setting Action Points Defining Eval Points and Conditional Breakpoints

 Branching around code that you don’t want your program to execute.

 Adding new statements.

In many cases, correcting an error means that you will do both operations: use a goto to branch around incorrect
lines and add corrections.

For example, suppose you need to change several statements. Just add these to an action point, then add a goto
(C) or GOTO (Fortran) statement that jumps over the code you no longer want executed. For example, the eval
point in Figure 110 executes three statements and then skips to line 656.

Branching Around Code

The following example contains a logic error where the program dereferences a null pointer:
1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

The error occurs because the routine that calls this function assumes that the value of error_ptr can be 0. The
check_for_error() function, however, assumes that error_ptr isn’t null, which means that line 3 can dereference
a null pointer.

Figure 110, Patching Using an Eval Point

226

Setting Action Points Defining Eval Points and Conditional Breakpoints

You can correct this error by setting an eval point on line 3 and entering:
if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 isn’t executed. Note that you are not naming a label used in your program.
Instead, you are naming one of the line numbers generated by TotalView.

Adding a Function Call

The example in the previous section routed around the problem. If all you wanted to do was monitor the value of
the global_error variable, you can add a printf() function call that displays its value. For example, the following
might be the eval point to add to line 4:
printf ("global_error is %d\n", global_error);

TotalView executes this code fragment before the code on line 4; that is, this line executes before global_error is
set to 0.

Correcting Code

The following example contains a coding error: the function returns the maximum value instead of the minimum
value:
1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }

Correct this error by adding the following code to an eval point at line 4:
if (a < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the code in the eval point.

About Interpreted and Compiled Expressions
On all platforms, TotalView can interpret your eval points. On IBM AIX platforms, TotalView can also compile them.
Compiling the expressions in eval points is not the default so you must explicitly request it.

With compiled eval points, performance will be significantly better, particularly if your program is using multi-pro-
cessors. This is because interpreted eval points are single-threaded through the TotalView process. In contrast,
compiled eval points execute on each processor.

227

Setting Action Points Defining Eval Points and Conditional Breakpoints

The TV::compile_expressions CLI variable enables or disables compiled expressions. See “Operating Systems” in
the Classic TotalView Reference Guide for information about how TotalView handles expressions on specific
platforms.

NOTE: Using any of the following functions forces TotalView to interpret the eval point rather than
compile it: $clid, $duid, $nid, $processduid, $systid, $tid, $pid, and $visualize.

About Interpreted Expressions

Interpreted expressions are interpreted by TotalView. Interpreted expressions run slower, possibly much slower,
than compiled expressions. With multi-process programs, interpreted expressions run even more slowly because
processes may need to wait for TotalView to execute the expression.

When you debug remote programs, interpreted expressions always run slower because the TotalView process on
the host, not the TotalView server (tvdsvr) on the client, interprets the expression. For example, an interpreted
expression could require that 100 remote processes wait for the TotalView process on the host machine to evalu-
ate one interpreted expression. In contrast, if TotalView compiles the expression, it evaluates them on each
remote process.

NOTE: Whenever a thread hits an interpreted eval point, TotalView stops execution. This means that
TotalView creates a new set of lockstep groups. Consequently, if goal threads contain inter-
preted patches, the results are unpredictable.

About Compiled Expressions

TotalView compiles, links, and patches expressions into the target process. Because the target thread executes
this code, eval points and conditional breakpoints execute very quickly. (Conditional watchpoints are always inter-
preted.) Also, this code doesn’t communicate with the TotalView host process until it needs to.

228

Setting Action Points Defining Eval Points and Conditional Breakpoints

If the expression executes a $stop function, TotalView stops executing the compiled expression. At this time, you
can single-step through it and continue executing the expression as you would the rest of your code.

If you plan to use many compiled expressions or your expressions are long, you may need to think about allocat-
ing patch space. For more information, see he section Allocating Patch Space for Compiled Expressions on
page 228.

Allocating Patch Space for Compiled Expressions
TotalView must either allocate or find space in your program to hold the code that it generates for compiled
expressions. Since this patch space is part of your program’s address space, the location, size, and allocation
scheme that TotalView uses might conflict with your program. As a result, you may need to change how TotalView
allocates this space.

You can choose one of the following patch space allocation schemes:

Figure 111, Stopped Execution of Compiled Expressions

RELATED TOPICS
The TV::compile_expressions variable TV::compile_expressions in "TotalView Variables"

in the Classic TotalView Reference Guide

229

Setting Action Points Defining Eval Points and Conditional Breakpoints

 Dynamic patch space allocation: Tells TotalView to dynamically find the space for your
expression’s code.

 Static patch space allocation: Tells TotalView to use a statically allocated area of memory.

Allocating Dynamic Patch Space

Dynamic patch space allocation means that TotalView dynamically allocates patch space for code fragments. If you
do not specify the size and location for this space, TotalView allocates 1 MB. TotalView creates this space using
system calls.

TotalView allocates memory for read, write, and execute access in the addresses shown in the following table:

NOTE: You can allocate dynamic patch space only for the computers listed in this table.

If the default address range conflicts with your program, or you would like to change the size of the dynamically
allocated patch space, you can change the following:

 Patch space base address by using the -patch_area_base command-line option.

 Patch space length by using the -patch_area_length command-line option.

Allocating Static Patch Space

TotalView can statically allocate patch space if you add a specially named array to your program. When TotalView
needs to use patch space, it uses the space created for this array.

Platform Address Range

IBM AIX (-q32) 0xEFF00000 - 0xEFFFFFFF

IBM AIX (-q64) 0x07f0000000000000 - 0x07ffffffffffffff

RELATED TOPICS
TheTV::comline_patch_area_base variable TV::comline_patch_area_base in "TotalView

Variables" in the Classic TotalView Reference
Guide

The TV::comline_patch_area_length variable TV::comline_patch_area_length in "TotalView
Variables" in the Classic TotalView Reference
Guide

230

Setting Action Points Defining Eval Points and Conditional Breakpoints

You can include, for example, a 1 MB statically allocated patch space in your program by adding the TVDB_-
patch_base_address data object in a C module. Because this object must be 8-byte aligned, declare it as an array
of doubles; for example:
 /* 1 megabyte == size TV expects */
#define PATCH_LEN 0x100000
double TVDB_patch_base_address [PATCH_LEN / sizeof(double)]

If you need to use a static patch space size that differs from the 1 MB default, you must use assembler language.
The following shows sample assembler code for IBM AIX-Power:
.csect .data{RW}, 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZETVDB_patch_end_address:

To use the static patch space assembler code:

1. Use an ASCII editor and place the assembler code into a file named tvdb_patch_space.s.

2. Replace the PATCH_SIZE tag with the decimal number of bytes you want. This value must be a multiple of 8.

3. Assemble the file into an object file by using a command such as:

cc -c tvdb_patch_space.s

4. Link the resulting tvdb_patch_space.o into your program.

231

Setting Action Points Using Watchpoints

Using Watchpoints
TotalView lets you monitor the changes that occur to memory locations by creating a special type of action point
called a watchpoint. You most often use watchpoints to find a statement in your program that is writing to places
to which it shouldn’t be writing. This can occur, for example, when processes share memory and more than one
process writes to the same location. It can also occur when your program writes off the end of an array or when
your program has a dangling pointer.

Topics in this section are:

 Using Watchpoints on Different Architectures on page 232

 Creating Watchpoints on page 233

 Watching Memory on page 235

 Triggering Watchpoints on page 236

 Using Conditional Watchpoints on page 236

TotalView watchpoints are called modify watchpoints because TotalView only triggers a watchpoint when your pro-
gram modifies a memory location. If a program writes a value into a location that is the same as what is already
stored, TotalView doesn’t trigger the watchpoint because the location’s value did not change.

For example, if location 0x10000 has a value of 0 and your program writes a value of 0 to this location, TotalView
doesn’t trigger the watchpoint, even though your program wrote data to the memory location. See Triggering
Watchpoints on page 236 for more details on when watchpoints trigger.

You can also create conditional watchpoints. A conditional watchpoint is similar to a conditional breakpoint in that
TotalView evaluates the expression when the value in the watched memory location changes. You can use condi-
tional watchpoints for a number of purposes. For example, you can use one to test whether a value changes its
sign—that is, it becomes positive or negative—or whether a value moves above or below some threshold value.

RELATED TOPICS
Breakpoints and barrier points Setting Breakpoints and Barriers on page 194

Defining eval points and conditional
breakpoints

Defining Eval Points and Conditional Breakpoints on
page 220

232

Setting Action Points Using Watchpoints

Using Watchpoints on Different Architectures
The number of watchpoints, and their size and alignment restrictions, differ from platform to platform. This is
because TotalView relies on the operating system and its hardware to implement watchpoints.

Watchpoint support depends on the target platform where your application is running, not on the host platform
where TotalView is running. For example, if you are running TotalView on host platform "H" (where watchpoints
are not supported), and debugging a program on target platform "T" (where watchpoints are supported), you can
create a watchpoint in a process running on "T", but not in a process running on "H".

NOTE: Watchpoints are not available on the following target platforms: Mac OS X, and Linux-Power.

The following list describes constraints that exist on each platform:

Computer Constraints

IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX 4.3R) or later systems running
64-bit chips. These are Power3 and Power4 systems. (AIX 4.3R is available as APAR
IY06844.) A watchpoint cannot be longer than 8 bytes, and you must align it within
an 8-byte boundary. If your watchpoint is less than 8 bytes and it doesn’t span an 8-
byte boundary, TotalView figures out what to do.

You can create compiled conditional watchpoints when you use this system. When
watchpoints are compiled, they are evaluated by the process rather than having to
be evaluated in TotalView where all evaluations are single-threaded and must be
sent from separately executing processes. Only systems having fast traps can have
compiled watchpoints.

Linux x86-64 (AMD and
Intel)

You can create up to four watchpoints and each must be 1, 2, 4, or 8 bytes in length,
and a memory address must be aligned for the byte length. For example, you must
align a 4-byte watchpoint on a 4-byte address boundary.

233

Setting Action Points Using Watchpoints

Typically, a debugging session doesn’t use many watchpoints. In most cases, you are only monitoring one mem-
ory location at a time. Consequently, restrictions on the number of values you can watch seldom cause problems.

Creating Watchpoints
Watchpoints are created by using either the Action Points> Create Watchpoint command in the Process Win-
dow or the Tools > Create Watchpoint Dialog Box. (If your platform doesn’t support watchpoints, TotalView dims
this menu item.) Here are some things you should know:

 You can also set watchpoints by right-clicking within the Process and Variable Windows and then
select Create Watchpoint from the context menu.

 You can select an expression within the Source and Stack Frame panes and then use a context
menu or select the Action Points > Create Watchpoint command. If you invoke either of these
commands and TotalView cannot determine where to set the expression, it displays a dialog box
into which you type the variable’s name.

Linux-PowerLE On Linux-PowerLE platforms (but not Linux-Power big-endian platforms) TotalView
uses the Linux kernel's ptrace() PowerPC hardware debug extension to plant
watchpoints. The ptrace() interface implements a “hardware breakpoint” abstrac-
tion that reflects the capabilities of PowerPC BookE and server processors. If
supported at all, the number of watchpoints varies by processor type. Typically, the
PowerPC supports at least 1 watchpoint up to 8 bytes long. Systems with the DAWR
feature support a watchpoint up to 512 bytes long. The watchpoint triggers if the
referenced data address is greater than or equal to the watched address and less
than the watched address plus length. Alignment constraints may apply. For exam-
ple, the watched length may be required to be a power of 2, and the watched
address may need to be aligned to that power of 2; that is,
(address % length) == 0.

Linux ARM64 TotalView supports watchpoints for ARMv8 processors using the hardware’s debug
watchpoint registers. You can typically create up to four watchpoints (although some
processors may have different limits, allowing from 2 to 16 watchpoints, or none at
all). Each must be 1, 2, 4, or 8 bytes in length, and the watched memory address
must be aligned for the byte length. Watchpoints cannot overlap.

Solaris SPARC and Solaris
x86

TotalView supports watchpoints on Solaris 7 or later operating systems. These oper-
ating systems let you create hundreds of watchpoints, and there are no alignment
or size constraints. However, watchpoints can’t overlap.

Computer Constraints

234

Setting Action Points Using Watchpoints

 If you select the Tools > Create Watchpoint command and a compound variable such an array or
structure is being displayed, TotalView sets the watchpoint on the first element. However, if you
select an element before invoking this command, TotalView sets the watchpoint on that element.

If you set a watchpoint on a stack variable, TotalView reports that you’re trying to set a watchpoint on “non-global”
memory. For example, the variable is on the stack or in a block and the variable will no longer exist when the stack
is popped or control leaves the block. In either of these cases, it is likely that your program will overwrite the
memory and the watchpoint will no longer be meaningful. See Watching Memory on page 235 for more
information.

After you select a Create Watchpoint command, TotalView displays its Watchpoint Properties dialog box.

Controls in this dialog box create unconditional and conditional watchpoints. When you set a watchpoint, you are
setting it on the complete contents of the information being displayed in the Variable Window. For example, if the
Variable Window displays an array, you can set a watchpoint only on the entire array (or as many bytes as
TotalView can watch.) If you only want to watch one array element, dive on the element and then set the watch-
point. Similarly, if the Variable Window displays a structure and you only want to watch one element, dive on the
element before you set the watchpoint.

Figure 112, Tools > Watchpoint Dialog Boxes

235

Setting Action Points Using Watchpoints

Displaying Watchpoints

The watchpoint entry, indicated by UDWP (Unconditional Data Watchpoint) and CDWP (Conditional Data Watch-
point), displays the action point ID, the amount of memory being watched, and the location being watched.

If you select a watchpoint, TotalView toggles the enabled/disabled state of the watchpoint.

Watching Memory
A watchpoint tracks a memory location—it does not track a variable. This means that a watchpoint might not per-
form as you would expect it to when watching stack or automatic variables. For example, suppose that you want
to watch a variable in a subroutine. When control exits from the subroutine, the memory allocated on the stack
for this subroutine is deallocated. At this time, TotalView is watching unallocated stack memory. When the stack
memory is reallocated to a new stack frame, TotalView is still watching this same position. This means that
TotalView triggers the watchpoint when something changes this newly allocated memory.

Also, if your program reinvokes a subroutine, it usually executes in a different stack location. TotalView cannot
monitor changes to the variable because it is at a different memory location.

All of this means that in most circumstances, you shouldn’t place a watchpoint on a stack variable. If you need to
watch a stack variable, you will need to create and delete the watchpoint each time your program invokes the
subroutine.

This doesn’t mean you can’t place a watchpoint on a stack or heap variable. It just means that what happens is
undefined after this memory is released. For example, after you enter a routine, you can be assured that memory
locations are always tracked accurately until the memory is released.

NOTE: In some circumstances, a subroutine may be called from the same location. This means that
its local variables might be in the same location. So, you might want to try.

If you place a watchpoint on a global or static variable that is always accessed by reference (that is, the value of a
variable is always accessed using a pointer to the variable), you can set a watchpoint on it because the memory
locations used by the variable are not changing.

RELATED TOPICS
The Tools > Create Watchpoint command Tools > Create Watchpoint in the in-product Help

236

Setting Action Points Using Watchpoints

Triggering Watchpoints
When a watchpoint triggers, the thread’s program counter (PC) points to the instruction following the instruction
that caused the watchpoint to trigger. If the memory store instruction is the last instruction in a source statement,
the PC points to the source line following the statement that triggered the watchpoint. (Breakpoints and watch-
points work differently. A breakpoint stops before an instruction executes. In contrast, a watchpoint stops after an
instruction executes.)

Using Multiple Watchpoints

If a program modifies more than one byte with one program instruction or statement, which is normally the case
when storing a word, TotalView triggers the watchpoint with the lowest memory location in the modified region.
Although the program might be modifying locations monitored by other watchpoints, TotalView only triggers the
watchpoint for the lowest memory location. This can occur when your watchpoints are monitoring adjacent mem-
ory locations and a single store instruction modifies these locations.

For example, suppose that you have two 1-byte watchpoints, one on location 0x10000 and the other on location
0x10001. Also suppose that your program uses a single instruction to store a 2-byte value at locations 0x10000
and 0x10001. If the 2-byte storage operation modifies both bytes, the watchpoint for location 0x10000 triggers.
The watchpoint for location 0x10001 does not trigger.

Here’s a second example. Suppose that you have a 4-byte integer that uses storage locations 0x10000 through
0x10003, and you set a watchpoint on this integer. If a process modifies location 0x10002, TotalView triggers the
watchpoint. Now suppose that you’re watching two adjacent 4-byte integers that are stored in locations 0x10000
through 0x10007. If a process writes to locations 0x10003 and 0x10004 (that is, one byte in each), TotalView trig-
gers the watchpoint associated with location 0x10003. The watchpoint associated with location 0x10004 does
not trigger.

Copying Previous Data Values

TotalView keeps an internal copy of data in the watched memory locations for each process that shares the
watchpoint. If you create watchpoints that cover a large area of memory or if your program has a large number of
processes, you increase TotalView’s virtual memory requirements. Furthermore, TotalView refetches data for each
memory location whenever it continues the process or thread. This can affect performance.

Using Conditional Watchpoints
If you associate an expression with a watchpoint (by selecting the Conditional button in the Watchpoint Proper-
ties dialog box entering an expression), TotalView evaluates the expression after the watchpoint triggers. The
programming statements that you can use are identical to those used when you create an eval point, except that
you can’t call functions from a watchpoint expression.

237

Setting Action Points Using Watchpoints

The variables used in watchpoint expressions must be global. This is because the watchpoint can be triggered
from any procedure or scope in your program.

NOTE: Fortran does not have global variables. Consequently, you can’t directly refer to your pro-
gram’s variables.

TotalView has two variables that are used exclusively with conditional watchpoint expressions:

$oldval The value of the memory locations before a change is made.

$newval The value of the memory locations after a change is made.

The following is an expression that uses these values:
if (iValue != 42 && iValue != 44) {
 iNewValue = $newval; iOldValue = $oldval; $stop;}

When the value of the iValue global variable is neither 42 nor 44, TotalView stores the new and old memory val-
ues in the iNewValue and iOldValue variables. These variables are defined in the program. (Storing the old and
new values is a convenient way of letting you monitor the changes made by your program.)

The following condition triggers a watchpoint when a memory location’s value becomes negative:
if ($oldval >= 0 && $newval < 0) $stop

And, here is a condition that triggers a watchpoint when the sign of the value in the memory location changes:
if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval field in the Watchpoint Properties
Dialog Box.

For more information on writing expressions, see Using Programming Language Elements on page 367.

If a watchpoint has the same length as the $oldval or $newval data type, the value of these variables is apparent.
However, if the data type is shorter than the length of the watch region, TotalView searches for the first changed
location in the watched region and uses that location for the $oldval and $newval variables. (It aligns data in the
watched region based on the size of the data’s type. For example, if the data type is a 4-byte integer and byte 7 in
the watched region changes, TotalView uses bytes 4 through 7 of the watchpoint when it assigns values to these
variables.)

For example, suppose you’re watching an array of 1000 integers called must_be_positive, and you want to trig-
ger a watchpoint as soon as one element becomes negative. You declare the type for $oldval and $newval to be
int and use the following condition:
if ($newval < 0) $stop;

238

Setting Action Points Using Watchpoints

When your program writes a new value to the array, TotalView triggers the watchpoint, sets the values of $oldval
and $newval, and evaluates the expression. When $newval is negative, the $stop statement halts the process.

This can be a very powerful technique for range-checking all the values your program writes into an array.
(Because of byte length restrictions, you can only use this technique on Solaris.)

NOTE: On all platforms except for IBM AIX, TotalView always interprets conditional watchpoints; it
never compiles them. Because interpreted watchpoints are single-threaded in TotalView, every
process or thread that writes to the watched location must wait for other instances of the
watchpoint to finish executing. This can adversely affect performance.

239

Setting Action Points Saving Action Points to a File

Saving Action Points to a File
You can save a program’s action points to a file. TotalView then uses this information to reset these points when
you restart the program. When you save action points, TotalView creates a file named pro-
gram_name.TVD.v4breakpoints, where program_name is the name of your program.

NOTE: TotalView does not save watchpoints because memory addresses can change radically every
time you restart TotalView and your program.

Use the Action Point > Save All command to save your action points to a file. TotalView places the action points
file in the same directory as your program. In contrast, the Action Point > Save As command lets you name the
file to which TotalView saves this information.

If you’re using a preference to automatically save breakpoints, TotalView automatically saves action points to a file.
Alternatively, starting TotalView with the -sb option (see “TotalView Command Syntax” in the Classic TotalView Refer-
ence Guide) also tells TotalView to save your breakpoints.

At any time, you can restore saved action points if you use the Action Points > Load All command. After invoking
this command, TotalView displays a File Explorer Window that you can use to navigate to or name the saved file.

You control automatic saving and loading by setting preferences. (See File > Preferences in the online Help for
more information.)

CLI: dactions -save filename

CLI: dactions -load filename

CLI: dset TV::auto_save_breakpoints

RELATED TOPICS
The TV::auto_save_breakponts variable TV::auto_save_breakponts in "TotalView Vari-

ables" in the Classic TotalView Reference Guide

The TV::auto_load_breakpoints variable TV::auto_load_breakpoints in "TotalView Vari-
ables" in the Classic TotalView Reference Guide

240

Examining and Editing Data and
Program Elements

This chapter explains how to examine and edit data and view the various elements of your program. It does
not discuss array data. For that information, see Examining Arrays on page 312.

 Changing How Data is Displayed on page 241

 Displaying Variables on page 246

 Diving in Variable Windows on page 266

 Viewing a List of Variables on page 272

 Changing the Values of Variables on page 281

 Changing a Variable’s Data Type on page 283

 Changing the Address of Variables on page 295

 Displaying C++ Types on page 296

 C++View on page 298

 Displaying Fortran Types on page 299

 Displaying Thread Objects on page 306

 Scoping and Symbol Names on page 309

241

Examining and Editing Data and Program Elements Changing How Data is Displayed

Changing How Data is Displayed
When a debugger displays a variable, it relies on the definitions of the data used by your compiler. The following
two sections show how you can change the way TotalView displays this information:

 Displaying STL Variables on page 241

 Changing Size and Precision on page 244

Displaying STL Variables
The C++ STL (Standard Template Library) greatly simplifies access to data. Since it offers standard and prepack-
aged ways to organize data, you do not have to be concerned with the mechanics of the access method. The
disadvantage to using the STL while debugging is that the information debuggers display is organized according
to the compiler’s view of the data, rather than the STL’s logical view. For example, here is how your compiler sees
a map compiled using the GNU C++ compiler (gcc):

Most of the information is generated by the STL template and, in most cases, is not interesting. In addition, the
STL does not aggregate the information in a useful way.

Figure 113, An Untransformed Map

242

Examining and Editing Data and Program Elements Changing How Data is Displayed

STLView solves these problems by rearranging (that is, transforming) the data so that you can easily examine it.
For example, here is the transformed map.

Figure 114, A Transformed Map

243

Examining and Editing Data and Program Elements Changing How Data is Displayed

Figure 115 shows an untransformed and transformed list and vector.

NOTE: By default, TotalView transforms STL strings, vectors, lists, maps, multimaps, sets, and multi-
sets. You can create transformations for other STL containers. See "Creating Type
Transformations" in the Classic TotalView Reference Guide for more information.

Figure 115, List and Vector Transformations

244

Examining and Editing Data and Program Elements Changing How Data is Displayed

By default, TotalView transforms STL types. If you need to look at the untransformed data structures, clear the
View simplified STL containers (and user-defined transformations) checkbox on the Options Page of the File
> Preference Dialog Box.

Following pointers in an STL data structure to retrieve values can be time-consuming. By default, TotalView only
follows 500 pointers. You can change this by altering the value of the TV::ttf_ max_length variable.

Changing Size and Precision
If the default formats that TotalView uses to display a variable’s value doesn’t meet your needs, you can use the
Formatting Page of the File > Preferences Dialog Box to indicate the precision for simple data types.

CLI: dset TV::ttf { true | false }

RELATED TOPICS
General information on creating custom type
transformations

"Creating Type Transformations" in the Classic TotalView Refer-
ence Guide

Transforming C++ types Displaying C++ Types on page 296

Figure 116, File > Preferences Formatting Page

245

Examining and Editing Data and Program Elements Changing How Data is Displayed

After selecting one of the data types listed on the left side of the Formatting Page, you can set how many charac-
ter positions a value uses when TotalView displays it (Min Width) and how many numbers to display to the right
of the decimal place (Precision). You can also tell TotalView how to align the value in the Min Width area, and if it
should pad numbers with zeros or spaces.

Although the way in which these controls relate and interrelate may appear to be complex, the Preview area
shows you the result of a change. Play with the controls for a minute or so to see what each control does. You
may need to set the Min Width value to a larger number than you need it to be to see the results of a change.
For example, if the Min Width value doesn’t allow a number to be justified, it could appear that nothing is
happening.

CLI: You can set these properties from within the CLI. To obtain a list of variables that you can set,
type “dset TV::data_format*”.

RELATED TOPICS
The Formatting Page in the File >
Preferences menu

The File > Preferences Formatting Page in the in-product
Help

Data format CLI variables A list of the TotalView data format variables in the Classic
TotalView Reference Guide

246

Examining and Editing Data and Program Elements Displaying Variables

Displaying Variables
The Process Window Stack Frame Pane displays variables that are local to the current stack frame. This pane
does not show the data for nonsimple variables, such as pointers, arrays, and structures. To see this information,
dive on the variable.

NOTE: Dive on a variable by clicking your middle mouse button on it. If your mouse doesn’t have
three buttons, you can single- or double-click on an item.

If you place your mouse cursor over a variable or an expression, TotalView displays its value in a tooltip window.

If TotalView cannot evaluate the object moused over, it still displays basic information. For example, if you place
the mouse over a structure, the tooltip reports the kind of structure. In all cases, the displayed information is sim-
ilar to the same information entered in the Expression List Window.

Figure 117, A Tooltip

247

Examining and Editing Data and Program Elements Displaying Variables

If you dive on simple variables or registers, TotalView still brings up a Variable Window and you do see some addi-
tional information about the variable or register.

Although a Variable Window is the best way to see all of an array’s elements or all elements in a structure, using
the Expression List Window is easier for variables with one value. Using it also cuts down on the number of win-
dows that are open at any one time. For more information, see Viewing a List of Variables on page 272.

The following sections discuss how you can display variable information:

 Displaying Program Variables on page 247

 Seeing Value Changes on page 250

 Displaying Variables in the Current Block on page 251

 Viewing Variables in Different Scopes as Program Executes on page 252

 Scoping Issues on page 253

 Browsing for Variables on page 256

 Displaying Local Variables and Registers on page 258

 Dereferencing Variables Automatically on page 260

 Displaying Areas of Memory on page 262

 Displaying Machine Instructions on page 263

 Rebinding the Variable Window on page 264

 Closing Variable Windows on page 265

Displaying Program Variables
You can display local and global variables by:

 Diving into the variable in the Source or Stack Panes.

RELATED TOPICS
Diving in variable windows Diving in Variable Windows on page 266

More on examining and editing data Examining and Editing Data and Program Elements on page 240

Details on the Variable Window The "Variable Window" in the in-product Help

Viewing lists of variables Viewing a List of Variables on page 272

248

Examining and Editing Data and Program Elements Displaying Variables

 Selecting the View > Lookup Variable command. When prompted, enter the name of the variable.

 Using the Tools > Program Browser command.

After using one of these methods, TotalView displays a Variable Window that contains the information you want.
The Variable Window can display simple variables, such as ints, sets of like elements such as arrays, or more com-
plicated variables defined as structures and arrays of structures.

If you keep a Variable Window open while a process or thread is running, the information being displayed might
not be accurate. TotalView updates the window when the process or thread stops. If TotalView can’t find a stack
frame for a displayed local variable, the variable’s status is sparse, since the variable no longer exists. The Status
area can contain other information that alerts you to issues and problems with a variable.

When you debug recursive code, TotalView doesn’t automatically refocus a Variable Window onto different
instances of a recursive function. If you have a breakpoint in a recursive function, you need to explicitly open a
new Variable Window to see the local variable’s value in that stack frame.

Select the View > Compilation Scope > Floating command to tell TotalView that it can refocus a Variable Window
on different instances. For more information, see Viewing Variables in Different Scopes as Program Executes on
page 252.

CLI: dprint variable

Figure 118, Variable Window for a Global Variable

CLI: dwhere, dup, and dprint
Use dwhere to locate the stack frame, use dup to move to it, and then use dprint
to display the value.

RELATED TOPICS
Using the Process Window Using the Process Window on page 157

Viewing lists of variables Viewing a List of Variables on page 272

249

Examining and Editing Data and Program Elements Displaying Variables

Controlling the Displayed Information

TotalView can display more information about your variable than its value. This information is sometimes called

meta-information. You can control how much of this meta-information it displays by clicking on the More and

Less buttons.

As the button names indicate, clicking More displays more meta-information and clicking Less displays less of it.

The two most useful fields are Type, which shows you what your variable’s actual type is, and Expression, which
allows you to control what is being displayed. This is sometimes needed because TotalView tries to show the type
in the way that it thinks you declared it in your program.

Figure 119, Variable Window: Using More and Less

250

Examining and Editing Data and Program Elements Displaying Variables

The online help describes all the meta-information fields.

Seeing Value Changes
TotalView reports when a variable’s value changes in several ways.

 When your program stops at a breakpoint, TotalView adds a yellow highlight to the variable’s value if
it has changed,Figure 120

If the thread is stopped for another reason—for example, you’ve stepped the thread—and the value has
changed, TotalView does not add yellow highlighting to the line.

 You can tell TotalView to display the Last Value column. Do this by selecting Last Value in the
column menu, which is displayed after you click on the column menu () icon, Figure 121.

Notice that TotalView has highlighted all items that have changed within an array. In a similar fashion it can
show the individual items that have changed within a structure.

Figure 120, Variable Window With “Change” Highlighting

Figure 121, Variable Window Showing Last Value Column

251

Examining and Editing Data and Program Elements Displaying Variables

In general, TotalView only retains the value for data items displayed within the Variable Window. At times,
TotalView may track adjacent values within arrays and structures, but you should not rely on additional items
being tracked.

NOTE: When you scroll the Variable Window, TotalView discards the information it is tracking and
fetches new information. So, while the values may have changed, TotalView does not have
information about this change. That is, TotalView only tracks what is visible. Similarly, when
you scroll back to previously displayed values, TotalView needs to refetch this information.
Because it is “new” information, no “last values” exist.

The Expression List window, described in Viewing a List of Variables on page 272, also highlights data and can
display a Last Value column.

Seeing Structure Information

When TotalView displays a Variable Window, it displays structures in a compact form, concealing the elements
within the structure. Click the + button to display these elements, or select the View > Expand All command to
see all entries. If you want to return the display to a more compact form, you can click the - button to collapse one
structure, or select the View > Collapse All command to return the window to what it was when you first opened
it.

If a substructure contains more than about forty elements, TotalView does not let you expand it in line. That is, it
does not place a + symbol in front of the substructure. To see the contents of this substructure, dive on it.

Similarly, if a structure contains an array as an element, TotalView only displays the array within the structure if it
has fewer than about forty elements. To see the contents of an embedded array, dive on it.

Displaying Variables in the Current Block
In many cases, you may want to see all of the variables in the current block. If you dive on a block label in the
Stack Frame Pane, TotalView opens a Variable Window that contains just those variables.

252

Examining and Editing Data and Program Elements Displaying Variables

After you dive on a variable in this block window, TotalView displays a Variable Window for that scoped variable. In
this figure, block $b1 has two nested blocks.

Viewing Variables in Different Scopes as Program Executes
When TotalView displays a Variable Window, it understands the scope in which the variable exists. As your pro-
gram executes, this scope doesn’t change. In other words, if you’re looking at variable my_var in one routine, and
you then execute your program until it is within a second subroutine that also has a my_var variable, TotalView
does not change the scope so that you are seeing the in scope variable.

If you would like TotalView to update a variable’s scope as your program executes, select the View > Compilation
Scope > Floating command. This tells TotalView that, when execution stops, it should look for the variable in the
current scope. If it finds the variable, it displays the variable contained within the current scope.

Select the View > Compilation Scope > Fixed command to return TotalView to its default behavior, which is not
to change the scope.

Figure 122, Displaying Scoped Variables

RELATED TOPICS
Using the Process Window Using the Process Window on page 157

253

Examining and Editing Data and Program Elements Displaying Variables

Selecting floating scope can be very handy when you are debugging recursive routines or have routines with iden-
tical names. For example, i, j, and k are popular names for counter variables.

Scoping Issues

When you dive into a variable from the Source Pane, the scope that TotalView uses is that associated with the cur-
rent frame’s PC; for example:
1: void f()
2: {
3: int x;
4: }
5:
6: int main()
7: {
8: int x;
9:}

If the PC is at line 3, which is in f(), and you dive on the x contained in main(), TotalView displays the value for the
x in f(), not the x in main(). In this example, the difference is clear: TotalView chooses the PC’s scope instead of
the scope at the place where you dove. If you are working with templated and overloaded code, determining the
scope can be impossible, since the compiler does not retain sufficient information. In all cases, you can click the
More button within the Variable window to see more information about your variable. The Valid in Scope field
can help you determine which instance of a variable you have located.

You can use the View > Lookup Variable command to locate the instance you are interested in.

Freezing Variable Window Data
Whenever execution stops, TotalView updates the contents of Variable Windows. More precisely, TotalView reeval-
uates the data based on the Expression field. If you do not want this reevaluation to occur, use the Variable
Window’s View > Freeze command. This tells TotalView that it should not change the information that is
displaying.

After you select this command, TotalView adds a marker to the window indicating that the data is frozen.

254

Examining and Editing Data and Program Elements Displaying Variables

Selecting the View > Freeze command a second time removes the freeze. TotalView again evaluates this window’s
expression whenever execution stops.

In most cases, you’ll want to compare the frozen information with an unfrozen copy. Do this by selecting the Win-
dow > Duplicate command before you freeze the display. As these two windows are identical, it doesn’t matter
which one you freeze. However, if you use the Duplicate command after you freeze the display, be aware that the
new duplicated window will continue to update normally. The ‘freeze’ state of a window is not retained when using
the Window > Duplicate command.

Locking the Address
Sometimes you want only to freeze the address, not the data at that address. Do this by selecting the View >
Lock Address command. Figure 124 shows two Variable Windows, one of which has had its address locked.

Figure 123, Variable Window Showing Frozen State

255

Examining and Editing Data and Program Elements Displaying Variables

Freezing the address lets you continually reevaluate what is at that address as execution progresses. Here are
two situations where you might want to do this:

 You need to look at a heap address access through a set of dive operations rooted in a stack frame
that has become stale.

 You dive on a *this pointer to see the actual value after *this goes stale.

Figure 124, Locked and Unlocked Variable Windows

256

Examining and Editing Data and Program Elements Displaying Variables

Browsing for Variables
The Process Window Tools > Program Browser command displays a window that contains all your executable’s
components. By clicking on a library or program name, you can access all of the variables contained in it.

The window at the top of the figure shows programs and libraries that are loaded. If you have loaded more than
one program with the File > Debug New Program command, TotalView displays information only for the cur-
rently selected process. After diving on an entry in this window (labeled Dive 1), TotalView displays a Variable
Window that contains a list of files that make up the program, as well as other related information.

Diving on an entry in this Variable Window (Dive 2 in this figure) changes the display to contain variables and
other information related to the file. A list of functions defined within the program is at the end of this list.

Diving on a function changes the Variable Window again. The window shown at the top of the next figure was cre-
ated by diving on one of these functions. The window shown in the center is the result of diving on a block in that
subroutine. The bottom window shows a variable.

Figure 125, Program Browser and Variable Windows (Part 1)

257

Examining and Editing Data and Program Elements Displaying Variables

If you dive on a line in a Variable Window, the new contents replace the old contents, and you can use the undive/

redive buttons to move back and forth.

If you are examining a complex program with large numbers of subroutines at file scope, often a result of a large
number of include files and/or template class expansions, you may experience a performance slowdown. By
default, the windows in this view display as much information as possible, including all symbols for all subroutines
in a file scope. You can restrict views to initially show only the names of subroutines within a file scope by adding
this to your .tvdrc file:
dset TV::recurse_subroutines false
You can then still examine the symbols within a particular subroutine by diving on that subroutine.

Figure 126, Program Browser and Variable Window (Part 2)

258

Examining and Editing Data and Program Elements Displaying Variables

Displaying Local Variables and Registers
In the Stack Frame Pane, diving on a function’s parameter, local variable, or register displays information in a Vari-
able Window. You can also dive on parameters and local variables in the Source Pane. The displayed Variable
Window shows the name, address, data type, and value for the object.

The window at the top of the figure shows the result of diving on a register, while the bottom window shows the
results of diving on an array variable.

You can also display local variables by using the View > Lookup Variable command.

RELATED TOPICS
Diving in variable windows Diving in Variable Windows on page 266

Details on the Variable Window The "Variable Window" in the in-product Help

Figure 127, Diving on Local Variables and Registers

CLI: dprint variable
This command lets you view variables and expressions without having to select or find them.

259

Examining and Editing Data and Program Elements Displaying Variables

Interpreting the Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU registers for the selected frame—you
might need to scroll past the stack local variables to see them.

For your convenience, TotalView displays the bit settings of many CPU registers symbolically. For example,
TotalView symbolically displays registers that control rounding and exception enable modes. You can edit the val-
ues of these registers and then resume program execution. For example, you might do this to examine the
behavior of your program with a different rounding mode.

Since the registers that are displayed vary from platform to platform, see “Architectures” in the Classic TotalView Ref-
erence Guide for information on how TotalView displays this information on your CPU. For general information on
editing the value of variables (including registers), see Displaying Areas of Memory on page 262. To learn about
the meaning of these registers, see the documentation for your CPU.

RELATED TOPICS
Diving in variable windows Diving in Variable Windows on page 266

Using the Process Window Using the Process Window on page 157

Details on the Variable Window The "Variable Window" in the in-product Help

CLI: dprint register
You must quote the initial $ character in the register name; for example, dprint \$r1.

260

Examining and Editing Data and Program Elements Displaying Variables

Dereferencing Variables Automatically
In most cases, you want to see what a pointer points to, rather than what the value of its variable is. Using the
controls on the File > Preferences Pointer Dive tab, you can tell TotalView to automatically dereference pointers
(Figure 128).

Dereferencing pointers is especially useful when you want to visualize the data linked together with pointers,
since it can present the data as a unified array. Because the data appears as a unified array, you can use
TotalView’s array manipulation commands and the Visualizer to view the data.

Each pulldown list on the Pointer Dive tab has three settings: No, Yes, and Yes (don’t push). No means do not
automatically dereference pointers. Yes means automatically dereference pointers, and allow use of the Back
command to see the undereferenced pointer value. Yes (don’t push) also enables automatic dereferencing, but
disallows use of the Back command to see the pointer value.

Figure 128, File > Preferences Pointer Dive Page

CLI: TV::auto_array_cast_bounds
TV::auto_deref_in_all_c
TV::auto_deref_in_all_fortran
TV::auto_deref_initial_c
TV::auto_deref_initial_fortran
TV::auto_deref_nested_c
TV::auto_deref_nested_fortran

261

Examining and Editing Data and Program Elements Displaying Variables

Automatic dereferencing can occur in the following situations:

 When TotalView initially displays a value.

 When you dive on a value in an aggregate or structure.

 When you use the Dive in All command.

Examining Memory
TotalView lets you display the memory used by a variable in different ways. If you select the View > Examine For-
mat > Structured or View > Examine Format > Raw commands from within the Variable Window, TotalView
displays raw memory contents. Figure 129 shows a structured view.

NOTE: The way this command displays data is similar to the way dump commands such as od that
exist in your operating system display data.

Figure 129, View > Examine Format > Stuctured Display

262

Examining and Editing Data and Program Elements Displaying Variables

When displaying a structured view, the left portion of the Variable Window shows the elements of the data,
whether it be a structure or an array. The right portion shows the value of the data in the way that it is normally
displayed within TotalView. The right-most column displays the raw memory data. By default, this information is
displayed in hexadecimal. However, you can change it to other formats by selecting a representation within the
Format pulldown. Figure 130 shows a raw display with this pulldown extended:

In either the raw or structured display, you can change the number of bytes grouped together and the range of
memory being displayed.

If you select the View > Block Status command, TotalView will also give you additional information about mem-
ory. For example, you are told if the memory is in a text, data, or bss section. (If you see unknown, you are
probably seeing a stack variable.)

In addition, if you right-click on the header area of the table, a context menu lets you add a Status column. This
column contains information such as “Allocated”, “PostGuard”, “Corrupted PreGuard”, etc.

If you have enabled the Memory Debugger, this additional information includes whether memory is allocated or
deallocated, or being used by a guard block, or hoarded.

Displaying Areas of Memory
You can display areas of memory using hexadecimal, octal, or decimal values. Do this by selecting the View >
Lookup Variable command, and then entering one of the following in the dialog box that appears:

 An address

Figure 130, View > Examine Format > Raw Display

263

Examining and Editing Data and Program Elements Displaying Variables

When you enter a single address, TotalView displays the word of data stored at that address.

 A pair of addresses

When you enter a pair of addresses, TotalView displays the data (in word increments) from the first to the
last address. To enter a pair of addresses, enter the first address, a comma, and the last address.

NOTE: All octal constants must begin with 0 (zero). Hexadecimal constants must begin
with 0x.

The Variable Window for an area of memory displays the address and contents of each word.

TotalView displays the memory area’s starting location at the top of the window’s data area. In the window,
TotalView displays information in hexadecimal and decimal notation.

If a Variable Window is already being displayed, you can change the type to $void and add an array specifier. If
you do this, the results are similar to what is shown in this figure.

You can also edit the value listed in the Value field for each machine instruction.

Displaying Machine Instructions
You can display the machine instructions for entire routines as follows:

CLI: dprint address

CLI: dprint address,address

Figure 131, Variable Window for an Area of Memory

264

Examining and Editing Data and Program Elements Displaying Variables

 Dive on the address of an assembler instruction in the Source Pane (such as main+0x10 or 0x60).
A Variable Window displays the instructions for the entire function, and highlights the instruction
you dove on.

 Dive on the PC in the Stack Frame Pane. A Variable Window displays the instructions for the entire
function that contains the PC, and also highlights the instruction pointed to by the PC.

 Cast a variable to type $code or array of $code. For example:

$code[20]
displays twenty code instructions, as shown in Figure 132.

The Variable Window lists the following information about each machine instruction:

Offset+Label The symbolic address of the location as a hexadecimal offset from a routine name.

Code The hexadecimal value stored in the location.

Instruction The instruction and operands stored in the location.

Rebinding the Variable Window
When you restart your program, TotalView must identify the thread in which the variable existed. For example,
suppose variable my_var was in thread 3.6. When you restart your program, TotalView tries to rebind the thread
to a newly created thread. Because the order in which the operating system starts and executes threads can dif-
fer, there’s no guarantee that the thread 3.6 in the current context is the same thread as what it was previously.
Problems can occur. To correct rebinding issues, use the Threads box in the upper left-hand corner of the Vari-
able Window to specify the thread to which you want to bind the variable.

Figure 132, Variable Window with Machine Instructions

265

Examining and Editing Data and Program Elements Displaying Variables

Another way to use the Threads box is to change to a different thread to see the variable or expression’s value
there. For example, suppose variable my_var is being displayed in thread 3.4. If you type 3.5 in the Threads box,
TotalView updates the information in the Expression List Window so that it is what exists in thread 3.5.

Closing Variable Windows
When you finish analyzing the information in a Variable Window, use the File > Close command to close the win-
dow. You can also use the File > Close Similar command to close all Variable Windows.

266

Examining and Editing Data and Program Elements Diving in Variable Windows

Diving in Variable Windows
If the variable being displayed in a Variable Window is a pointer, structure, or array, you can dive on the value. This
new dive, which is called a nested dive, tells TotalView to replace the information in the Variable Window with infor-
mation about the selected variable. If this information contains nonscalar data types, you can also dive on these
data types. Although a typical data structure doesn’t have too many levels, repeatedly diving on data lets you fol-
low pointer chains. That is, diving lets you see the elements of a linked list.

TotalView can display a member of an array of structures as a single array across all the structures. See Display-
ing an Array of Structure’s Elements on page 268 for more information.

TotalView remembers your dives. This means that you can use the undive/redive buttons to view where you
already dove.

Figure 133, Undive/Redive Buttons

267

Examining and Editing Data and Program Elements Diving in Variable Windows

The following figure shows a Variable Window after diving into a pointer variable named sp with a type of
simple*. The first Variable Window, which is called the base window, displays the value of sp. (This is Window 1 in
Figure 134.)

The nested dive window (Window 2 in this figure) shows the structure referenced by the simple* pointer.

You can manipulate Variable Windows and nested dive windows by using the undive/redive buttons, as follows:

 To undive from a nested dive, click the undive arrow button. The previous contents of the Variable
Window appear.

 To undive from all your dive operations, click the undive all arrow button.

 To redive after you undive, click the redive arrow button. TotalView restores a previously executed
dive operation.

 To redive from all your undive operations, click on the Redive All arrow button.

If you dive on a variable that already has a Variable Window open, the Variable Window pops to the top of the win-
dow display.

If you select the Window > Duplicate command, a new Variable Window appears, which is a duplicate of the cur-
rent Variable Window.

Figure 134, Nested Dives

268

Examining and Editing Data and Program Elements Diving in Variable Windows

Displaying an Array of Structure’s Elements
The View > Dive In All command, which is also available when you right-click on a field, can display an element in
an array of structures as if it were a simple array. For example, suppose you have the following Fortran definition:
type i_c
 integer r
 complex c
end type i_C

type(i_c), target :: rc2(3,4)

After selecting an r element, select the View > Dive In All command. TotalView displays all of the r elements of
the rc2 array as if they were a single array.

RELATED TOPICS
Diving into objects About Diving into Objects on page 164

Figure 135, Displaying a Fortran Structure

269

Examining and Editing Data and Program Elements Diving in Variable Windows

The View > Dive in All command can also display the elements of a C array of structures as arrays. Figure 136
shows a unified array of structures and a multidimensional array in a structure.

NOTE: As the array manipulation commands (described in Examining Arrays) generally work on
what’s displayed and not what is stored in memory, TotalView commands that refine and dis-
play array information work on this virtual array. For example, you can visualize the array,
obtain statistics about it, filter elements in it, and so on.

Figure 136, Displaying C Structures and Arrays

270

Examining and Editing Data and Program Elements Diving in Variable Windows

Figure 137 is a high-level look at what a dive in all operation does.

In this figure, the rounded rectangle represents a Variable Window. On the left is an array of five structures. After
you select the Dive in All command with element a selected, TotalView replaces the contents of your Variable
Window with an array that contains all of these a elements.

Changing What the Variable Window Displays
When TotalView displays a Variable Window, the Expression field contains either a variable or an expression.
Technically, a variable is also an expression. For example, my_var.an_element is actually an addressing expres-
sion. Similarly, my_var.an_element[10] and my_var[10].an_element are also expressions, since both TotalView
and your program must figure out where the data associated with the element resides.

The expression in the Expression field is dynamic. That is, you can tell TotalView to evaluate what you enter
before trying to obtain a memory address. For example, if you enter my_var.an_element[i], TotalView evaluates
the value of i before it redisplays your information. A more complicated example is my_var.an_element[i+1]. In
this example, TotalView must use its internal expression evaluation system to create a value before it retrieves
data values.

Figure 137, Dive in All

RELATED TOPICS
Arrays Examining Arrays on page 312

Structures Viewing Structures on page 287

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
a
a
a
a

271

Examining and Editing Data and Program Elements Diving in Variable Windows

You can replace the variable expression with something completely different, such as i+1, and TotalView simply
displays the value produced by evaluating the expression.

Evaluating Expressions on page 360 has a discussion of the evaluation system and typing expressions in an eval
point in the Tools > Evaluate Window. In contrast, the expressions you can type in the Expression List Window
are restricted, with the principal restriction being that what you type cannot have side effects. For example, you
cannot use an expression that contains a function call or an operator that changes memory, such as ++ or --.

272

Examining and Editing Data and Program Elements Viewing a List of Variables

Viewing a List of Variables
 As you debug your program, you may want to monitor a variable’s value as your program executes. For many
types of information, the Expression List Window offers a more compact display than the Variable Window for dis-
playing scalar variables.

For more information, see the Tools > Expression List Command.

The topics discussing the Expression List Window are:

 Entering Variables and Expressions on page 272

 Seeing Variable Value Changes in the Expression List Window on page 274

 Entering Expressions into the Expression Column on page 275

 Using the Expression List with Multi-process/Multi-threaded Programs on page 277

 Reevaluating, Reopening, Rebinding, and Restarting on page 277

 Seeing More Information on page 278

 Sorting, Reordering, and Editing on page 279

Entering Variables and Expressions

To display an initial, empty window, select the Tools > Expression List command.

You can place information in the first column of the Expression List Window in the following ways:

Figure 138, The Tools > Expression List Window

273

Examining and Editing Data and Program Elements Viewing a List of Variables

 Enter it into a blank cell in the Expression column. When you do this, the context is the current PC
in the process and thread indicated in the Threads box. If you type my_var in the window shown in
the previous section, you would type the value of my_var in process 1, thread 1.

 Right-click on a line in the Process Window Source or Stack Frame Panes. From the displayed
context menu, select Add to Expression List. Here is the context menu that TotalView displays in
the Source Pane:

 Right-click on something in a Variable Window. Select Add to Expression List from the displayed
context menu. You can also use the View > Add to Expression List command.

When you enter information in the Tools > Expression List Window, where you place the cursor and what you
select make a difference. If you click on a variable or select a row in the Variable Window, TotalView adds that vari-
able to the Expression List Window. If you instead select text, TotalView adds that text. What’s the difference?
Figure 138 on page 272 shows three variations of d1_array, each obtained in a different way, as follows:

 The first entry was added by selecting just part of what was displayed in the Source Pane.

 The second entry was added by selecting a row in the Variable Window.

 The third entry was added by clicking at a random point in the variable’s text in the Source Pane.

274

Examining and Editing Data and Program Elements Viewing a List of Variables

You can tell TotalView to look for a variable in the scope that exists when your program stops executing, rather
than keeping it locked to the scope from which it was added to the Tools > Expression List Window. Do this by
right-clicking an item, then selecting Compilation Scope > Floating from the context menu.

For more information, see Viewing Variables in Different Scopes as Program Executes on page 252.

Seeing Variable Value Changes in the Expression List Window
TotalView can tell you when a variable’s value changes in several ways.

 When your program stops at a breakpoint, TotalView adds a yellow highlight to the variable’s value if
it has changed, Figure 140.

If the thread is stopped for another reason—for example, you’ve stepped the thread—and the value has
changed, TotalView does not add yellow highlighting to the line.

Figure 139, Expression List Window Context Menu

Figure 140, Expression List Window With “Change” Highlighting

275

Examining and Editing Data and Program Elements Viewing a List of Variables

 You can tell TotalView to display the Last Value column. Do this by selecting Last Value in the
column menu, which is displayed after you click on the column menu () icon.

Notice that TotalView has highlighted all items that have changed within an array. In a similar fashion it can
show the individual items that have changed within a structure.

Entering Expressions into the Expression Column
The following Expression List Window shows four different types of expressions.

The expressions in this window are:

i A variable with one value. The Value column shows its value.

d1_array An aggregate variable; that is, an array, a structure, a class, and so on. Its value cannot be dis-
played in one line. Consequently, TotalView just gives you some information about the variable.
To see more information, dive on the variable. After diving, TotalView displays the variable in a
Variable Window.

Figure 141, Variable Window Showing Last Value Column

Figure 142, The Tools > Expression List Window

276

Examining and Editing Data and Program Elements Viewing a List of Variables

When you place an aggregate variable in the Expression column, you need to dive on it to get
more information.

d1_array[1].d1_v
An element in an array of structures. If TotalView can resolve what you enter in the Expression
column into a single value, it displays a value in the Value column. If TotalView can’t, it displays
information in the same way that it displays information in the d1_array example.

d1_array[i-1].d1_v
An element in an array of structures. This expression differs from the previous example in that
the array index is an expression. Whenever execution stops in the current thread, TotalView re-
evaluates the i-1 expression. This means that TotalView might display the value of a different
array item every time execution stops.

The expressions you enter cannot include function calls.

You can also enter methods and functions within an Expression. Figure 143 shows two get methods and a get
method used in an expression.

In a similar fashion, you can even directly enter functions, Figure 144.

Figure 143, Using Methods in the Tools > Expression List Window

Figure 144, Using Functions in the Tools > Expression List Window

277

Examining and Editing Data and Program Elements Viewing a List of Variables

Using the Expression List with Multi-process/Multi-threaded
Programs
You can change the thread in which TotalView evaluates your expressions by typing a new thread value in the
Threads box at the top of the window. A second method is to select a value by using the drop-down list in the
Threads box.

When you use an Add to Expression List command, TotalView checks whether an Expression List Window is
already open for the current thread. If one is open, TotalView adds the variable to the bottom of the list. If an
Expression List Window isn’t associated with the thread, TotalView duplicates an existing window, changes the
thread of the duplicated window, and then adds the variable to all open Tools > Expression List Windows. That
is, you have two Tools > Expression List Windows. Each has the same list of expressions. However, the results of
the expression evaluation differ because TotalView is evaluating them in different threads.

In all cases, the list of expressions in all Tools > Expression List Windows is the same. What differs is the thread
in which TotalView evaluates the window’s expressions.

Similarly, if TotalView is displaying two or more Tools > Expression List Windows, and you send a variable from
yet another thread, TotalView adds the variable to all of them, duplicates one of them, and then changes the
thread of the duplicated window.

Reevaluating, Reopening, Rebinding, and Restarting
This section explains what happens in the Tools > Expression List Window as TotalView performs various
operations.

Reevaluating Contents

TotalView reevaluates the value of everything in the Tools > Expression List Window Expression column when-
ever your thread stops executing. More precisely, if a thread stops executing, TotalView reevaluates the contents
of all Tools > Expression List Windows associated with the thread. In this way, you can see how the values of
these expressions change as your program executes.

You can use the Window > Update All command to update values in all other Tools > Expression List Windows.

Reopening Windows

If you close all open Tools > Expression List Windows and then reopen one, TotalView remembers the expres-
sions you added previously. That is, if the window contains five variables when you close it, it has the same five
variables when you open it. The thread TotalView uses to evaluate the window’s contents is based on the Process
Window from which you invoked the Tools > Expressions List command.

278

Examining and Editing Data and Program Elements Viewing a List of Variables

Rebinding Windows

The values displayed in an Expression List Window are the result of evaluating the expression in the thread indi-
cated in the Threads box at the top of the window. To change the thread in which TotalView evaluates these
expressions, you can either type a new thread value in the Threads box or select a thread from the pulldown list
in the Threads box. (Changing the thread to evaluate expressions in that thread’s context is called rebinding.)

Restarting a Program

When you restart your program, TotalView attempts to rebind the expressions in a Tools > Expression List Win-
dow to the correct thread. Unfortunately, it is not possible to select the right thread with 100% accuracy. For
example, the order in which your operating system creates threads can differ each time you run your program.
Or, your program’s logic can cause threads to be created in a different order.

You may need to manually change the thread by using the Threads box at the top of the window.

Seeing More Information
When you first open the Tools > Expression List Window, it contains two columns, but TotalView can display
other columns. If you right-click on a column heading line, TotalView displays a context menu that indicates all
possible columns. Clicking on a heading name listed in the context menu changes if from displayed to hidden or
vice versa.

Even when you add additional columns, the Expression List Window might not show you what you need to know
about a variable. If you dive on a row (or select Dive from a context menu), TotalView opens a Variable Window for
what you just dove on.

Figure 145, The Tools > Expression List Window Showing Column Selector

279

Examining and Editing Data and Program Elements Viewing a List of Variables

You can combine the Expression List Window and diving to bookmark your data. For example, you can enter the
names of structures and arrays. When you want to see information about them, dive on the name. In this way,
you don’t have to clutter up your screen with the Variable Windows that you don’t need to refer to often.

Sorting, Reordering, and Editing
This section describes operations you can perform on Tools > Expression List Window data.

Sorting Contents

You can sort the contents of the Tools > Expression List Window by clicking on the column header. After you
click on the header, TotalView adds an indicator that shows that the column was sorted and the way in which it
was sorted. In the figure in the previous topic, the Value column is sorted in ascending order.

Reordering Row Display

The up and down arrows () on the right side of the Tools > Expression List Window toolbar let you change
the order in which TotalView displays rows. For example, clicking the down arrow moves the currently selected
row (indicated by the highlight) one row lower in the display.

Editing Expressions

You can change an expression by clicking in it, and then typing new characters and deleting others. Select Edit >
Reset Defaults to remove all edits you have made. When you edit an expression, TotalView uses the scope that
existed when you created the variable.

Changing Data Type

You can edit an expression’s data type by displaying the Type column and making your changes. Select Edit >
Reset Defaults to remove all edits you have made.

Changing an Expression’s Value

You can change an expression’s value if that value is stored in memory by editing the contents of the Value
column.

About Other Commands

You can also use the following commands when working with expressions:

280

Examining and Editing Data and Program Elements Viewing a List of Variables

Edit > Delete Expression
Deletes the selected row. This command is also on a context (right-click) menu. If you have
more than one Expression List Window open, deleting a row from one window deletes the
row from all open windows.

Edit > Delete All Expressions
Deletes all of the Expression List Window rows. If you have more than one Expression List
Window open, deleting all expressions from one window deletes all expressions in all windows.

View > Dive Displays the expression or variable in a Variable Window. Although this command is also on a
context menu, you can just double-click or middle-click on the variable’s name instead.

 Edit >Duplicate Expression
Duplicates the selected column. You would duplicate a column to see a similar variable or ex-
pression. For example, if myvar_looks_at[i] is in the Expression column, duplicating it and
then modifying the new row is an easy way to see myvar_looks_at[i] and myvar_-
looks_at[i+j-k] at the same time.

This command is also on a context menu.

281

Examining and Editing Data and Program Elements Changing the Values of Variables

Changing the Values of Variables
You can change the value of any variable or the contents of any memory location displayed in a Variable Window,
Expression List Window, or Stack Frame Pane by selecting the value and typing the new value. In addition to typ-
ing a value, you can also type an expression. For example, you can enter 12*12 as shown in the following figure.
You can include logical operators in all TotalView expressions.

In most cases, you can edit a variable’s value. If you right-click on a variable and the Change Value command isn’t
faded, you can edit the displayed value.

CLI: set my_var [expr 1024*1024]
dassign int8_array(3) $my_var

Figure 146, Using an Expression to Change a Value

282

Examining and Editing Data and Program Elements Changing the Values of Variables

TotalView does not let you directly change the value of bit fields; you can use the Tools > Evaluate Window to
assign a value to a bit field. See Evaluating Expressions on page 360.

CLI: Tcl lets you use operators such as & and | to manipulate bit fields on Tcl values.

RELATED TOPICS
Editing text in source code Editing Source Text on page 176

Details on the Variable Window The "Variable Window" in the in-product Help

283

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Changing a Variable’s Data Type
The data type declared for the variable determines its format and size (amount of memory). For example, if you
declare an int variable, TotalView displays the variable as an integer.

The following sections discuss the different aspects of data types:

 Displaying C and C++ Data Types on page 284

 Viewing Pointers to Arrays on page 286

 Viewing Arrays on page 286

 Viewing typedef Types on page 287

 Viewing Structures on page 287

 Viewing Unions on page 288

 Casting Using the Built-In Types on page 288

 Type-Casting Examples on page 293

You can change the way TotalView displays data in the Variable Window and the Expression List Window by edit-
ing the data type. This is known as casting. TotalView assigns types to all data types, and in most cases, they are
identical to their programming language counterparts.

When a C or C++ variable is displayed in TotalView, the data types are identical to their C or C++ type representa-
tions, except for pointers to arrays. TotalView uses a simpler syntax for pointers to arrays. (See Viewing Pointers
to Arrays on page 286.) Similarly, when Fortran is displayed in TotalView, the types are identical to their Fortran
type representations for most data types, including INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
and CHARACTER.

If the window contains a structure with a list of fields, you can edit the data types of the listed fields.

NOTE: When you edit a data type, TotalView changes how it displays the variable in the current win-
dow. Other windows listing the variable do not change.

284

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Displaying C and C++ Data Types
The syntax for displaying data is identical to C and C++ language cast syntax for all data types except pointers to
arrays. That is, you use C and C++ cast syntax for data types. For example, you can cast using types such as int,
char, unsigned, float, double, union, all named struct types, and so on. In addition, TotalView has a built-in type
called $string. Unless you tell it otherwise, TotalView maps char arrays to this type. (For information on wide
characters, see Viewing Wide Character Arrays ($wchar Data Types) on page 291.)

Read TotalView types from right to left. For example, $string*[20]* is a pointer to an array of 20 pointers to
$string.

The following table shows some common TotalView data types:

Data Type String Description

int Integer

int* Pointer to an integer

int[10] Array of 10 integers

$string Null-terminated character string

$string** Pointer to a pointer to a null-terminated character string

$string*[20]* Pointer to an array of 20 pointers to null-terminated strings

285

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

You can enter C and C++ Language cast syntax in the Type field. Figure 147 shows three different ways to cast:

The two Variable Windows cast the same data in the same way. In the top-left window, a cast was used in the
Expression field. In the other Variable Window, the data type was changed from int to $char. In the first cast,
TotalView changed the Type for you. In the second, it did not alter the Expression field.

The Expression List Window contains two casting examples. The first casts a function’s returned value to long
long. The second is the same cast as was made in the two Variable Windows.

TotalView also lets you cast a variable into an array. In the GUI, add an array specifier to the Type declaration. For
example, adding [3] to a variable declared as an int changes it into an array of three ints.

When TotalView displays some complex arrays and structures, it displays the compound object or array types in
the Variable Window.

NOTE: Editing a compound object or array data type can produce undesirable results. TotalView tries
to give you what you ask for, so if you get it wrong, the results are unpredictable. Fortunately,
the remedy is quite simple: close the Variable Window and start over again.

Figure 147, Three Casting Examples

286

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

The following sections discuss more complex data types.

 Viewing Pointers to Arrays on page 286

 Viewing Arrays on page 286

 Viewing typedef Types on page 287

 Viewing Structures on page 287

 Viewing Unions on page 288

Viewing Pointers to Arrays
Suppose you declared a variable vbl as a pointer to an array of 23 pointers to an array of 12 objects of type
mytype_t. The C language declaration for this is:
mytype_t (*(*vbl)[23]) [12];

Here is how you would cast the vbl variable to this type:
(mytype_t (*(*)[23])[12])vbl

The TotalView cast for vbl is:
mytype_t[12]*[23]*

Viewing Arrays
When you specify an array, you can include a lower and upper bound separated by a colon (:).

NOTE: See Examining Arrays on page 312 for more information on arrays.

By default, the lower bound for a C or C++ array is 0, and the lower bound for a Fortran array is 1. In the following
example, an array of ten integers is declared in C and then in Fortran:
int a[10];
integer a(10)

The elements of the array range from a[0] to a[9] in C, while the elements of the equivalent Fortran array range
from a(1) to a(10).

TotalView also lets you cast a variable to an array. In the GUI, just add an array specifier to the Type declaration.
For example, adding (3) to a variable declared as an integer changes it to an array of three integers.

When the lower bound for an array dimension is the default for the language, TotalView displays only the extent
(that is, the number of elements in the dimension). Consider the following Fortran array declaration:

287

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

integer a(1:7,1:8)

Since both dimensions of this Fortran array use the default lower bound, which is 1, TotalView displays the data
type of the array by using only the extent of each dimension, as follows:
integer(7,8)

If an array declaration doesn’t use the default lower bound, TotalView displays both the lower bound and upper
bound for each dimension of the array. For example, in Fortran, you declare an array of integers with the first
dimension ranging from -1 to 5 and the second dimension ranging from 2 to 10, as follows:
integer a(-1:5,2:10)

TotalView displays this the same way.

When editing an array’s dimension, you can enter just the extent (if using the default lower bound), or you can
enter the lower and upper bounds separated by a colon.

TotalView also lets you display a subsection of an array, or filter a scalar array for values that match a filter expres-
sion. See Displaying Array Slices on page 313 and Filtering Array Data Overview on page 319 for more
information.

Viewing typedef Types
TotalView recognizes the names defined with typedef, and displays these user-defined types; for example:
typedef double *dptr_t;
dptr_t p_vbl;

TotalView displays the type for p_vbl as dptr_t.

Viewing Structures
TotalView lets you use the struct keyword as part of a type string. In most cases, this is optional.

NOTE: This behavior depends upon which compiler you are using. In most cases, you’ll see what is
described here.

If you have a structure and another data type with the same name, however, you must include the struct keyword
so that TotalView can distinguish between the two data types.

If you use a typedef statement to name a structure, TotalView uses the typedef name as the type string. Other-
wise, TotalView uses the structure tag for the struct.

288

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Viewing Unions
TotalView displays a union in the same way that it displays a structure. Even though the fields of a union are over-
laid in storage, TotalView displays the fields on separate lines.

Casting Using the Built-In Types
TotalView provides a number of predefined types. These types are preceded by a $. You can use these built-in
types anywhere you can use the ones defined in your programming language. These types are also useful in
debugging executables with no debugging symbol table information. The following table describes the built-in
types:

CLI: dprint variable

Figure 148, Displaying a Union

Type String Language Size Description

$address C void* Void pointer (address).

$char C char Character.

$character Fortran character Character.

$code C architecture-
dependent

Machine instructions.

The size used is the number of bytes required to hold the
shortest instruction for your computer.

289

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

$complex Fortran complex Single-precision floating-point complex number.

The complex types contain a real part and an imaginary part,
which are both of type real.

$complex_8 Fortran complex*8 A real*4-precision floating-point complex number.

The complex*8 types contain a real part and an imaginary
part, which are both of type real*4.

$complex_16 Fortran complex*16 A real*8-precision floating-point complex number.

The complex*16 types contain a real part and an imaginary
part, which are both of type real*8.

$double C double Double-precision floating-point number.

$double_precision Fortran double
precision

Double-precision floating-point number.

$extended C architecture-
dependent;
often long
double

Extended-precision floating-point number. Extended-preci-
sion numbers must be supported by the target architecture.
In addition, the format of extended floating point numbers
varies depending on where it's stored. For example, the x86
register has a special 10-byte format, which is different than
the in-memory format. Consult your vendor’s architecture
documentation for more information.

$float C float Single-precision floating-point number.

$int C int Integer.

$integer Fortran integer Integer.

$integer_1 Fortran integer*1 One-byte integer.

$integer_2 Fortran integer*2 Two-byte integer.

$integer_4 Fortran integer*4 Four-byte integer.

$integer_8 Fortran integer*8 Eight-byte integer.

$logical Fortran logical Logical.

$logical_1 Fortran logical*1 One-byte logical.

$logical_2 Fortran logical*2 Two-byte logical.

$logical_4 Fortran logical*4 Four-byte logical.

$logical_8 Fortran logical*8 Eight-byte logical.

$long C long Long integer.

Type String Language Size Description

290

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Viewing Character Arrays ($string Data Type)

If you declare a character array as char vbl[n], TotalView automatically changes the type to $string[n]; that is, a
null-terminated, quoted string with a maximum length of n. This means that TotalView displays an array as a
quoted string of n characters, terminated by a null character. Similarly, TotalView changes char* declarations to
$string* (a pointer to a null-terminated string).

$long_long C long long Long long integer.

$real Fortran real Single-precision floating-point number.

When using a value such as real, be careful that the actual
data type used by your computer is not real*4 or real*8, since
different results can occur.

$real_4 Fortran real*4 Four-byte floating-point number.

$real_8 Fortran real*8 Eight-byte floating-point number.

$real_16 Fortran real*16 Sixteen-byte floating-point number.

$short C short Short integer.

$string C char Array of characters.

$void C long Area of memory.

$wchar C platform-
specific

Platform-specific wide character used by wchar_t data types

$wchar_s16 C 16 bits Wide character whose storage is signed 16 bits (not currently
used by any platform)

$wchar_u16 C 16 bits Wide character whose storage is unsigned 16 bits

$wchar_s32 C 32 bits Wide character whose storage is signed 32 bits

$wchar_u32 C 32 bits Wide character whose storage is unsigned 32 bits

$wstring C platform-
specific

Platform-specific string composed of $wchar characters

$wstring_s16 C 16 bits String composed of $wchar_s16 characters (not currently
used by any platform)

$wstring_u16 C 16 bits String composed of $wchar_u16 characters

$wstring_s32 C 32 bits String composed of $wchar_s32 characters

$wstring_u32 C 32 bits String composed of $wchar_u32 characters

Type String Language Size Description

291

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Since most character arrays represent strings, the TotalView $string type can be very convenient. But if this isn’t
what you want, you can change the $string type back to a char (or char[n]), to display the variable as you
declared it.

Viewing Wide Character Arrays ($wchar Data Types)

If you create an array of wchar_t wide characters, TotalView automatically changes the type to $wstring[n]; that
is, it is displayed as a null-terminated, quoted string with a maximum length of n. For an array of wide characters,
the null terminator is L’0’. Similarly, TotalView changes wchar_t* declarations to $wstring* (a pointer to a null-ter-
minated string).

Figure 149 shows the declaration of two wide characters in the Process Window. The Expression List Window
shows how TotalView displays their data. The L in the data indicates that TotalView is displaying a wide literal.

Since most wide character arrays represent strings, the $wstring type can be very convenient. But if this isn’t
what you want, you can change the $wstring type back to a wchar_t (or wchar[n] or $wchar or $wchar[n]), to
display the variable as you declared it.

Figure 149, Displaying wchar_t Data

292

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

If the wide character uses from 9 to 16 bits, TotalView displays the character using the following universal-charac-
ter code representation:

\uXXXX

X represents a hexadecimal digit. If the character uses from 17 to 32 bits, TotalView uses the following
representation:

\UXXXXXXXX

NOTE: Platforms and compilers differ in the way they represent wchar_t. In consequence, TotalView
allows you to see this information in platform-specific ways. For example, you can cast a string
to $wstring_s16 or $wstring_s32. In addition, many compilers have problems either using wide
characters or handing off information about wide characters so they can be interpreted by
any debugger (not just TotalView). For information on supported compilers, see the document
TotalView Supported Platforms in the TotalView distribution at <installdir>/
totalview.<version>/doc/pdf, or on the TotalView documentation website.

Viewing Areas of Memory ($void Data Type)

TotalView uses the $void data type for data of an unknown type, such as the data contained in registers or in an
arbitrary block of memory. The $void type is similar to the int type in the C Language.

If you dive on registers or display an area of memory, TotalView lists the contents as a $void data type. If you dis-
play an array of $void variables, the index for each object in the array is the address, not an integer. This address
can be useful when you want to display large areas of memory.

If you want, you can change a $void to another type. Similarly, you can change any type to a $void to see the vari-
able in decimal and hexadecimal formats.

Viewing Instructions ($code Data Type)

TotalView uses the $code data type to display the contents of a location as machine instructions. To look at disas-
sembled code stored at a location, dive on the location and change the type to $code. To specify a block of
locations, use $code[n], where n is the number of locations being displayed.

RELATED TOPICS
Viewing assembler code Viewing the Assembler Version of Your Code on page 173

https://help.totalview.io/

293

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Viewing Opaque Data

An opaque type is a data type that could be hidden, not fully specified, or defined in another part of your pro-
gram. For example, the following C declaration defines the data type for p to be a pointer to struct foo, and foo is
not yet defined:
struct foo;
struct foo *p;

When TotalView encounters a variable with an opaque type, it searches for a struct, class, union, or enum defini-
tion with the same name as the opaque type. If TotalView doesn’t find a definition, it displays the value of the
variable using an opaque type name; for example:
(Opaque foo)

Some compilers do not store sufficient information for TotalView to locate the type. This could be the reason why
TotalView uses the opaque type.

You can tell TotalView to use the correct data type by having it read the source file. For example, if TotalView is
showing you (Opaque foo) and you know that struct foo is defined in source file foo.c, use the File > Open
Source Command. While this command’s primary purpose is to display the file within the Process Window, it also
causes TotalView to read the file’s debugging information. As a side-effect, struct foo should now be defined.
Because TotalView now knows its definition, it can resolve the opaque type.

Type-Casting Examples
This section contains three type-casting examples:

 Displaying Declared Arrays

 Displaying Allocated Arrays

 Displaying the argv Array

Displaying Declared Arrays

TotalView displays arrays the same way it displays local and global variables. In the Stack Frame or Source Pane,
dive on the declared array. A Variable Window displays the elements of the array.

Displaying Allocated Arrays

The C Language uses pointers for dynamically allocated arrays; for example:
int *p = malloc(sizeof(int) * 20);

CLI: dprint array-name

294

Examining and Editing Data and Program Elements Changing a Variable’s Data Type

Since TotalView doesn’t know that p actually points to an array of integers, you need to do several things to dis-
play the array:

1. Dive on the variable p of type int*.

2. Change its type to int[20]*.

3. Dive on the value of the pointer to display the array of 20 integers.

Displaying the argv Array

Typically, argv is the second argument passed to main(), and it is either a char **argv or char *argv[]. Suppose
argv points to an array of three pointers to character strings. Here is how you can edit its type to display an array
of three pointers:

1. Select the type string for argv.

2. Edit the type string by using the field editor commands. Change it to:

$string*[3]*

CLI: dprint argv

CLI: dprint {($string*[3]*)argv}

295

Examining and Editing Data and Program Elements Changing the Address of Variables

3. To display the array, dive on the value field for argv.

Changing the Address of Variables
You can edit the address of a variable in a Variable Window by editing the value shown in the Address field. When
you edit this address, the Variable Window shows the contents of the new location.

You can also enter an address expression such as 0x10b8 - 0x80 in this area.

Figure 150, Editing the argv Argument

296

Examining and Editing Data and Program Elements Displaying C++ Types

Displaying C++ Types

Viewing Classes
TotalView displays C++ classes and accepts class as a keyword. When you debug C++, TotalView also accepts the
unadorned name of a class, struct, union, or enum in the type field. TotalView displays nested classes that use
inheritance, showing derivation by indentation.

NOTE: Some C++ compilers do not write accessibility information. In these cases, TotalView cannot
display this information.

For example, Figure 151 displays an object of a class c.

Its definition is as follows:
class b {

RELATED TOPICS
STL variable display Displaying STL Variables on page 241

Changing the data type of a variable Changing a Variable’s Data Type on page 283

A variable’s scope Scoping and Symbol Names on page 309

Figure 151, Displaying C++ Classes That Use Inheritance

297

Examining and Editing Data and Program Elements Displaying C++ Types

 char * b_val;
public:
 b() {b_val = “b value“;}
};

class d : virtual public b {
 char * d_val;
public:
 d() {d_val = “d value“;}
};

class e {
 char * e_val;
 public:
 e() {e_val = “e value“;}
};

class c : public d, public e {
 char * c_val;
 public:
 c() {c_val = “c value“;}
};

TotalView tries to display the correct data when you change the type of a Variable Window while moving up or
down the derivation hierarchy. Unfortunately, many compilers do not contain the information that TotalView
needs so you might need to cast your class.

RELATED TOPICS
More on using C++ with TotalView Using C++ on page 364

298

Examining and Editing Data and Program Elements C++View

C++View
C++View (CV) is a facility that allows you to format program data in a more useful or meaningful form than the
concrete representation that you see in TotalView when you inspect data in a running program. To use C++View,
you must write a function for each type whose format you would like to control. The signature of the function
must be:

int TV_ttf_display_type (const T *p)

where T is the type. Your function must use a TotalView-provided API to communicate the formatted representa-
tion of your data to TotalView.

When TotalView needs to display data, it checks to see if there is a function registered for the type to which the
data belong. If there is, TotalView calls that function, and uses the results generated. Otherwise, if there is no
matching function defined, TotalView presents the data in their raw form.

For complete details on using C++View, refer to the C++View chapter in the Classic TotalView Reference Guide.

C++View is available from the Preferences window. (See Setting Preferences on page 133.)

299

Examining and Editing Data and Program Elements Displaying Fortran Types

Displaying Fortran Types
TotalView lets you display FORTRAN 77 and Fortran 90 data types.

The topics in this section describe the various types and how the debugger handles them:

 Displaying Fortran Common Blocks on page 299

 Displaying Fortran Module Data on page 301

 Debugging Fortran 90 Modules on page 302

 Viewing Fortran 90 User-Defined Types on page 303

 Viewing Fortran 90 Deferred Shape Array Types on page 304

 Viewing Fortran 90 Pointer Types on page 304

 Displaying Fortran Parameters on page 305

Displaying Fortran Common Blocks
For each common block defined in the scope of a subroutine or function, TotalView creates an entry in that func-
tion’s common block list. The Stack Frame Pane displays the name of each common block for a function. The
names of common block members have function scope, not global scope.

CLI: dprint variable-name

300

Examining and Editing Data and Program Elements Displaying Fortran Types

If you dive on a common block name in the Stack Frame Pane, the debugger displays the entire common block in
a Variable Window, as shown in Figure 152.)

Window 1 in this figure shows a common block list in a Stack Frame Pane. After several dives, Window 2 contains
the results of diving on the common block.

If you dive on a common block member name, TotalView searches all common blocks in the function’s scope for a
matching member name, and displays the member in a Variable Window.

Figure 152, Diving on a Common Block List in the Stack Frame Pane

301

Examining and Editing Data and Program Elements Displaying Fortran Types

Displaying Fortran Module Data
TotalView tries to locate all data associated with a Fortran module and display it all at once. For functions and sub-
routines defined in a module, TotalView adds the full module data definition to the list of modules displayed in the
Stack Frame Pane.

TotalView only displays a module if it contains data. Also, the amount of information that your compiler gives
TotalView can restrict what is displayed.

Although a function may use a module, TotalView doesn’t always know if the module was used or what the true
names of the variables in the module are. If this happens, either of the following occurs:

 Module variables appear as local variables of the subroutine.

 A module appears on the list of modules in the Stack Frame Pane that contains (with renaming)
only the variables used by the subroutine.

Alternatively, you can view a list of all the known modules by using the Tools > Fortran Modules command.
Because Fortran modules display in a Variable Window, you can dive on an entry to display the actual module
data, as shown in Figure 153.

CLI: dprint variable-name

302

Examining and Editing Data and Program Elements Displaying Fortran Types

NOTE: If you are using the SUNPro compiler, TotalView can only display module data if you force
TotalView to read the debug information for a file that contains the module definition or a
module function. For more information, see Finding the Source Code for Functions on
page 170.

Debugging Fortran 90 Modules
Fortran 90 lets you place functions, subroutines, and variables inside modules. You can then include these mod-
ules elsewhere by using a USE command. When you do this, the names in the module become available in the
using compilation unit, unless you either exclude them with a USE ONLY statement or rename them. This means
that you don’t need to explicitly qualify the name of a module function or variable from the Fortran source code.

When debugging this kind of information, you need to know the location of the function being called. Conse-
quently, TotalView uses the following syntax when it displays a function contained in a module:

Figure 153, Fortran Modules Window

303

Examining and Editing Data and Program Elements Displaying Fortran Types

modulename`functionname

You can also use this syntax in the File > Debug New Program and View > Lookup Variable commands.

Fortran 90 also lets you create a contained function that is only visible in the scope of its parent and siblings.
There can be many contained functions in a program, all using the same name. If the compiler gave TotalView the
function name for a nested function, TotalView displays it using the following syntax:

parentfunction()`containedfunction

Viewing Fortran 90 User-Defined Types
A Fortran 90 user-defined type is similar to a C structure. TotalView displays a user-defined type as type(name),
which is the same syntax used in Fortran 90 to create a user-defined type. For example, the following code frag-
ment defines a variable typ2 of type(whopper):
TYPE WHOPPER
 LOGICAL, DIMENSION(ISIZE) :: FLAGS
 DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
 DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA
END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2

TotalView displays this type, as shown in Figure 154.

CLI: dprint module_name‘variable_name

Figure 154, Fortran 90 User-Defined Type

304

Examining and Editing Data and Program Elements Displaying Fortran Types

Viewing Fortran 90 Deferred Shape Array Types
Fortran 90 lets you define deferred shape arrays and pointers. The actual bounds of a deferred shape array are
not determined until the array is allocated, the pointer is assigned, or, in the case of an assumed shape argument
to a subroutine, the subroutine is called. TotalView displays the type of deferred shape arrays as type(:).

When TotalView displays the data for a deferred shape array, it displays the type used in the definition of the vari-
able and the actual type that this instance of the variable has. The actual type is not editable, since you can
achieve the same effect by editing the definition’s type. The following example shows the type of a deferred shape
rank 2 array of real data with runtime lower bounds of -1 and 2, and upper bounds of 5 and 10:
 Type: real(:,:)
Actual Type: real(-1:5,2:10)
 Slice: (:,:)

Viewing Fortran 90 Pointer Types
A Fortran 90 pointer type lets you point to scalar or array types.

TotalView implicitly handles slicing operations that set up a pointer or assumed shape subroutine argument so
that indices and values it displays in a Variable Window are the same as in the Fortran code; for example:
integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = 1,10
 ia(i) = i
end do
ip => ia(10:1:-2)

305

Examining and Editing Data and Program Elements Displaying Fortran Types

After diving through the ip pointer, TotalView displays the windows shown in Figure 155:

The address displayed is not that of the array’s base. Since the array’s stride is negative, array elements that fol-
low are at lower absolute addresses. Consequently, the address displayed is that of the array element that has
the lowest index. This might not be the first displayed element if you used a slice to display the array with
reversed indices.

Displaying Fortran Parameters
A Fortran PARAMETER defines a named constant. If your compiler generates debug information for parameters,
they are displayed in the same way as any other variable. However, some compilers do not generate information
that TotalView can use to determine the value of a PARAMETER. This means that you must make a few changes to
your program if you want to see this type of information.

If you’re using Fortran 90, you can define variables in a module that you initialize to the value of these PARAMETER
constants; for example:
INCLUDE ‘PARAMS.INC’
MODULE CONSTS
SAVE
INTEGER PI_C = PI

Figure 155, Fortran 90 Pointer Value

306

Examining and Editing Data and Program Elements Displaying Thread Objects

...
END MODULE CONSTS

The PARAMS.INC file contains your parameter definitions. You then use these parameters to initialize variables in
a module. After you compile and link this module into your program, the values of these parameter variables are
visible.

If you’re using FORTRAN 77, you can achieve the same results if you make the assignments in a common block
and then include the block in main(). You can also use a block data subroutine to access this information.

Displaying Thread Objects
On IBM AIX systems, TotalView can display information about mutexes and conditional variables, read/write locks
and data keys. You can obtain this information by selecting the Tools > Thread Objects command. After selecting
this command, TotalView displays a window that contains four tabs. Figure 156 shows examples based on AIX.

307

Examining and Editing Data and Program Elements Displaying Thread Objects

Diving on any line in these windows displays a Variable Window that contains additional information about the
item. Some notes:

 If you’re displaying data keys, many applications initially set keys to 0 (the NULL pointer value).
TotalView doesn’t display a key’s information, however, until a thread sets a non-NULL value to the
key.

 If you select a thread ID in a data key window, you can dive on it using the View > Dive Thread and
View > Dive Thread in New Window commands to display a Process Window for that thread ID.

Figure 156, Thread Objects Page on an IBM AIX Computer

308

Examining and Editing Data and Program Elements Displaying Thread Objects

The online Help contains information on the contents of the displayed windows.

309

Examining and Editing Data and Program Elements Scoping and Symbol Names

Scoping and Symbol Names
TotalView assigns a unique name to every element in your program based on the scope in which the element
exists. A scope defines the part of a program that knows about a symbol. For example, the scope of a variable that
is defined at the beginning of a subroutine is all the statements in the subroutine. The variable’s scope does not
extend outside of this subroutine. A program consists of multiple scopes. Of course, a block contained in the sub-
routine could have its own definition of the same variable. This would hide the definition in the enclosing scope.

All scopes are defined by your program’s structure. Except for the simplest of programs, scopes are embedded in
other scopes. The only exception is the outermost scope, which is the one that contains main(), which is not
embedded. Every element in a program is associated with a scope.

To see the scope in which a variable is valid, click the More button in the Variable Window until the scope fields
are visible. The Variable Window now includes additional information about your variable, as is shown in Figure
157.

The Valid in Scope list indicates the scope in which the variable resides. That is, when this scope is active, the
variable is defined. The Compiled in Scope list can differ if you modify the variable with an expression. It indi-
cates where variables in this expression have meaning.

Figure 157, Variable Window: Showing Variable Properties

310

Examining and Editing Data and Program Elements Scoping and Symbol Names

When you tell the CLI or the GUI to execute a command, TotalView consults the program’s symbol table to dis-
cover which object you are referring to—this process is known as symbol lookup. Symbol lookup is performed
with respect to a particular context, and each context uniquely identifies the scope to which a symbol name
refers.

Qualifying Symbol Names
The way you describe a scope is similar to the way you specify a file. The scopes in a program form a tree, with the
outermost scope (which is your program) as the root. At the next level are executable files and dynamic libraries;
further down are compilation units (source files), procedures, modules, and other scoping units (for example,
blocks) supported by the programming language. Qualifying a symbol is equivalent to describing the path to a file
in UNIX file systems.

A symbol is fully scoped when you name all levels of its tree. The following example shows how to scope a symbol
and also indicates parts that are optional:

[##executable-or-lib#][file#][procedure-or-line#]symbol

The pound sign (#) separates elements of the fully qualified name.

NOTE: Because of the number of different types of elements that can appear in your program, a
complete description of what can appear and their possible order is complicated and unread-
able. In contrast, after you see a name in the Stack Frame Pane, it is easy to read a variable’s
scoped name.

TotalView interprets most programs and components as follows:

 If a qualified symbol begins with ##, the name that follows indicates the name of the executable or
shared library (just as an absolute file path begins with a directory immediately in the root
directory). If you omit the executable or library component, the qualified symbol doesn’t begin with
#.

 The source file’s name can appear after the possibly omitted executable or shared library.

RELATED TOPICS
Issues with scoping Scoping Issues on page 253

Variables in a current block Displaying Variables in the Current Block on page 251

311

Examining and Editing Data and Program Elements Scoping and Symbol Names

 Because programming languages typically do not let you name blocks, that portion of the qualifier
is specified using the symbols $b followed by a number that indicates which block. For example, the
first unnamed block is named $b1, the second is $b2, and so on.

RELATED TOPICS
Issues with scoping Scoping Issues on page 253

The dbreak command dbreak command description

Breakpoints at locations Setting Breakpoints at Locations on page 201

Lookup Function The View > Lookup Function topic in the in-product help

Lookup Variable The View > Lookup Variable topic in the in-product help

312

Examining Arrays

This chapter explains how to examine and change array data as you debug your program. Since arrays also
appear in the Variable Window, you need to be familiar with the information in Examining and Editing Data
and Program Elements on page 240.

The topics in this chapter are:

 Examining and Analyzing Arrays on page 313

 Displaying a Variable in all Processes or Threads on page 330

 Visualizing Array Data on page 333

313

Examining Arrays Examining and Analyzing Arrays

Examining and Analyzing Arrays
TotalView can quickly display very large arrays in Variable Windows. An array can be the elements that you define
in your program, or it can be an area of memory that you cast into an array.

If an array extends beyond the memory section in which it resides, the initial portion of the array is formatted cor-
rectly. If memory isn’t allocated for an array element, TotalView displays Bad Address in the element’s subscript.

Topics in this section are:

 Displaying Array Slices on page 313

 Array Slices and Array Sections on page 316

 Viewing Array Data on page 317

 Filtering Array Data Overview on page 319

 Sorting Array Data on page 326

 Obtaining Array Statistics on page 327

Displaying Array Slices
TotalView lets you display array subsections by editing the Slice field in an array’s Variable Window. (An array sub-
section is called a slice.) The Slice field contains placeholders for all array dimensions. For example, the following
is a C declaration for a three-dimensional array:
integer an_array[10][20][5]
Because this is a three-dimensional array, the initial slice definition is [:][:][:]. This lets you know that the array has
three dimensions and that TotalView is displaying all array elements.

The following is a deferred shape array definition for a two-dimensional array variable:
integer, dimension (:,:) :: another_array
The TotalView slice definition is (:,:).

TotalView displays as many colons (:) as there are array dimensions. For example, the slice definition for a one-
dimensional array (a vector) is [:] for C arrays and (:) for Fortran arrays.

CLI: dprint -slice “\[n:m\]” an_array
dprint -slice “(n:m,p:q)” an_array

314

Examining Arrays Examining and Analyzing Arrays

Using Slices and Strides

A slice has the following form:

lower_bound:upper_bound[:stride]

The stride, which is optional, tells TotalView to skip over elements and not display them. Adding a stride to a slice
tells the debugger to display every stride element of the array, starting at the lower_bound and continuing through
the upper_bound, inclusive.

For example, a slice of [0:9:9] used on a ten-element C array tells TotalView to display the first element and last
element, which is the ninth element beyond the lower bound.

If the stride is negative and the lower bound is greater than the upper bound, TotalView displays a dimension with
its indices reversed. That is, TotalView treats the slice as if it was defined as follows:

[upperbound : lowerbound : stride]

For example, the following definition tells TotalView to display an array beginning at its last value and moving to its
first:
[::-1]
This syntax differs from Fortran 90 syntax in that Fortran 90 requires that you explicitly enter the upper and lower
bounds when you’re reversing the order for displaying array elements.

Because the default value for the stride is 1, you can omit the stride (and the colon that precedes it) from your
definition. For example, the following two definitions display array elements 0 through 9:
[0:9:1]
[0:9]
If the lower and upper bounds are the same, just use a single number. For example, the following two definitions
tell TotalView to display array element 9:
[9:9:1]
[9]

NOTE: The lower_bound, upper_bound, and stride must be constants. They cannot be expressions.

Example 1

A slice declaration of [::2] for a C or C++ array (with a default lower bound of 0) tells TotalView to display elements
with even indices of the array; that is, 0, 2, 4, and so on. However, if this were defined for a Fortran array (where
the default lower bound is 1), TotalView displays elements with odd indices of the array; that is, 1, 3, 5, and so on.

CLI: dprint an_array(n:m:p,q:r:s)

315

Examining Arrays Examining and Analyzing Arrays

Example 2

Figure 158 displays a stride of (::9,::9). This definition displays the four corners of a ten-element by ten-element
Fortran array.

Example 3

You can use a stride to invert the order and skip elements. For example, the following slice begins with the upper
bound of the array and displays every other element until it reaches the lower bound of the array:
(::-2)
Using (::-2) with a Fortran integer(10) array tells TotalView to display the elements 10, 8, 6, 4, and 2.

Example 4

You can simultaneously invert the array’s order and limit its extent to display a small section of a large array. The
following figure shows how to specify a (2:3,7::-1) slice with an integer*4(-1:5,2:10) Fortran array.

Figure 158, Stride Displaying the Four Corners of an Array

Figure 159, Fortran Array with Inverse Order and Limited Extent

316

Examining Arrays Examining and Analyzing Arrays

After you enter this slice value, TotalView only shows elements in rows 2 and 3 of the array, beginning with column
10 and ending with column 7.

Using Slices in the Lookup Variable Command

When you use the View > Lookup Variable command to display a Variable Window, you can include a slice
expression as part of the variable name. Specifically, if you type an array name followed by a set of slice descrip-
tions in the View > Lookup Variable command dialog box, TotalView initializes the Slice field in the Variable
Window to this slice description.

If you add subscripts to an array name in the View > Lookup Variable dialog box, TotalView will look up just that
array element.

You can, of course, type an expression into the View > Lookup Variable dialog box; for example, you could type
small_array(i-1,j-1).

Array Slices and Array Sections
An array slice allows you to see a part of an array. The slice allows you to remove parts of the array you do not
want to see. For example, if you have a 10,000 element array, you could tell TotalView that it should only display
100 of these elements. Fortran has introduced the concept of an array section. When you create an array section,
you are creating a new array that is a subset of the old array. Because it is a new array, its first array index is 1.

In Figure 160, the top left Variable Window displays an eleven-element array slice. The bottom right Variable Win-
dow displays an eleven-element array.

CLI: dprint small_array(5,5)

317

Examining Arrays Examining and Analyzing Arrays

While the data in both is identical, notice that the array numbering is different. In addition, the array slice shows
an address for the array. The section, however, only exists within TotalView. Consequently, there is no address
associated with it.

Viewing Array Data
TotalView provides another way to look at the data in a multi-dimensional array. The Variable Window’s Tools >
Array Viewer command opens a window that presents a slice of array data in a table format, Figure 161. You can
think of this as viewing a “plane” of two-dimensional data in your array.

Figure 160, An Array Slice and an Array Section

318

Examining Arrays Examining and Analyzing Arrays

When the Array Viewer opens, the initial slice of displayed data depends on the values you entered in the Variable
Window. You can change the displayed data by modifying the Expression, Type, or slice controls in the Array
Viewer and then pressing the Update View button.

Expression Field

The Expression field contains an array expression based on the value you entered in the Variable Window. You
can control the display by changing the value of this field; for example, you can cast the array to another array
expression.

Type Field

The Type field also reflects the data you initially entered in the Variable Window. You can modify the type to cast
the array to a different array type.

Figure 161, Array Viewer

319

Examining Arrays Examining and Analyzing Arrays

Slice Definition

Initially, TotalView selects the array slice by placing the appropriate array dimension as the row and the column,
setting the indices for the lower and upper bounds of the dimensions with a stride of one. Any additional dimen-
sions are held at 0. This is the slice or plane of data that is displayed in the table.

You have full control over all settings, including the ability to change which dimensions appear as rows and col-
umns, as well as their indices and strides. As you change the row and column dimensions, the controls for the
other dimensions are enabled/disabled accordingly. You can change the indices of the other dimensions to fur-
ther refine the slice of data. The section Using Slices and Strides on page 314 provides more information on
slicing arrays.

Update View Button

When you have finished making changes to the expression, type, and/or slice settings, press the Update View
button to update the data in the table display.

Data Format Selection Box

The selection box at the top left corner of the data table allows you to select the format for displaying the data.
The table automatically refreshes in the selected format.

The Slice field at the top right corner of the data table reflects the displayed slice of data.

Filtering Array Data Overview
You can restrict what TotalView displays in a Variable Window by adding a filter to the window. You can filter arrays
of type character, integer, or floating point. Your filtering options are:

 Arithmetic comparison to a constant value

 Equal or not equal comparison to IEEE NaNs, Infs, and Denorms

 Within a range of values, inclusive or exclusive

 General expressions

When an element of an array matches the filter expression, TotalView includes the element in the Variable Win-
dow display.

The following topics describe filtering options:

 Filtering Array Data on page 320

 Filtering by Comparison on page 320

320

Examining Arrays Examining and Analyzing Arrays

 Filtering for IEEE Values on page 321

 Filtering a Range of Values on page 324

 Creating Array Filter Expressions on page 325

 Using Filter Comparisons on page 325

Filtering Array Data

The procedure for filtering an array is simple: select the Filter field, enter the array filter expression, and then
press Enter.

TotalView updates the Variable Window to exclude elements that do not match the filter expression. TotalView
only displays an element if its value matches the filter expression and the slice operation.

If necessary, TotalView converts the array element before evaluating the filter expression. The following conver-
sion rules apply:

 If the filter operand or array element type is floating point, TotalView converts the operand to a
double-precision floating-point value. TotalView truncates extended-precision values to double
precision. Converting integer or unsigned integer values to double-precision values might result in
a loss of precision. TotalView converts unsigned integer values to nonnegative double-precision
values.

 If the filter operand or the array element is an unsigned integer, TotalView converts the operand to
an unsigned 64-bit integer.

 If both the filter operand and array element are of type integer, TotalView converts the values to a
64-bit integer.

TotalView conversion operations modify a copy of the array’s elements—conversions never alter the actual array
elements.

To stop filtering an array, delete the contents of the Filter field in the Variable Window and press Enter. TotalView
then updates the Variable Window so that it includes all elements.

Filtering by Comparison

The simplest filters are ones whose formats are as follows:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and value is a signed or unsigned inte-
ger constant or a floating-point number. For example, the filter for displaying all values greater than 100 is:

321

Examining Arrays Examining and Analyzing Arrays

> 100
The following table lists the comparison operators:

Figure 162 shows an array whose filter is < 0. This tells TotalView to display only array elements whose value is
less than 0 (zero).

If the value you are using in the comparison is an integer constant, TotalView performs a signed comparison. If
you add the letter u or U to the constant, TotalView performs an unsigned comparison.

Filtering for IEEE Values

You can filter IEEE NaN, Infinity, or denormalized floating-point values by specifying a filter in the following form:

operator ieee-tag

The only comparison operators you can use are equal and not equal.

The ieee-tag represents an encoding of IEEE floating-point values, as the following table describes:

Comparison C/C++ Operator Fortran Operator

Equal == .eq.

Not equal != .ne.

Less than < .lt.

Less than or equal <= .le.

Greater than > .gt.

Greater than or equal >= .ge.

Figure 162, Array Data Filtering by Comparison

322

Examining Arrays Examining and Analyzing Arrays

Figure 163 shows an example of filtering an array for IEEE values. The bottom window in this figure shows how
TotalView displays the unfiltered array. Notice the NaNQ, and NaNS, INF, and -INF values. The other two windows
show filtered displays: the top window shows only infinite values; the second window only shows the values of
denormalized numbers.

IEEE Tag Value Meaning

$nan NaN (Not a number), either quiet or signaling

$nanq Quiet NaN

$nans Signaling NaN

$inf Infinity, either positive or negative

$pinf Positive Infinity

$ninf Negative Infinity

$denorm Denormalized number, either positive or negative

$pdenorm Positive denormalized number

$ndenorm Negative denormalized number

323

Examining Arrays Examining and Analyzing Arrays

If you are writing an expression, you can use the following Boolean functions to check for a particular type of
value:

Figure 163, Array Data Filtering for IEEE Values

IEEE Intrinsic Meaning

$is_denorm(value) Is a denormalized number, either positive or negative

$is_finite(value) Is finite

$is_inf(value) Is Infinity, either positive or negative

$is_nan(value) Is a NaN (Not a number), either quiet or signaling

$is_ndenorm(value) Is a negative denormalized number

$is_ninf(value) Is negative Infinity

324

Examining Arrays Examining and Analyzing Arrays

Filtering a Range of Values

You can also filter array values by specifying a range, as follows:

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies the highest value to include, sep-
arated by a colon. The high and low values are inclusive unless you use less-than (<) and greater-than (>) symbols.
If you specify a > before low-value, the low value is exclusive. Similarly, a < before high-value makes it exclusive.

The values of low-value and high-value must be constants of type integer, unsigned integer, or floating point.
The data type of low-value must be the same as the type of high-value, and low-value must be less than high-
value. If low-value and high-value are integer constants, you can append the letter u or U to the value to force
an unsigned comparison. The following figure shows a filter that tells TotalView to only display values greater than
63, but less than 512. (See Figure 164.)

$is_nnorm(value) Is a negative normalized number

$is_norm(value) Is a normalized number, either positive or negative

$is_nzero(value) Is negative zero

$is_pdenorm(value) Is a positive denormalized number

$is_pinf(value) Is positive Infinity

$is_pnorm(value) Is a positive normalized number

$is_pzero(value) Is positive zero

$is_qnan(value) Is a quiet NaN

$is_snan(value) Is a signaling NaN

$is_zero(value) Is zero, either positive or negative

IEEE Intrinsic Meaning

325

Examining Arrays Examining and Analyzing Arrays

Creating Array Filter Expressions

The filtering capabilities described in the previous sections are those that you use most often. In some circum-
stances, you may need to create a more general expression. When you create a filter expression, you’re creating a
Fortran or C Boolean expression that TotalView evaluates for every element in the array or the array slice. For
example, the following expression displays all array elements whose contents are greater than 0 and less than
50, or greater than 100 and less than 150:
($value > 0 && $value < 50) ||
 ($value > 100 && $value < 150)
Here’s the Fortran equivalent:
($value .gt. 0 && $value .lt. 50) .or.
 ($value .gt. 100 .and. $value .lt.150)
The $value variable is a special TotalView variable that represents the current array element. You can use this
value when creating expressions.

Notice how the and and or operators are used in these expressions. The way in which TotalView computes the
results of an expression is identical to the way it computes values at an eval point. For more information, see
Defining Eval Points and Conditional Breakpoints on page 220.

Using Filter Comparisons

TotalView provides several different ways to filter array information. For example, the following two filters display
the same array items:
> 100
$value > 100
The following filters display the same array items:

Figure 164, Array Data Filtering by Range of Values

326

Examining Arrays Examining and Analyzing Arrays

>0:<100
$value > 0 && $value < 100
The only difference is that the first method is easier to type than the second, so you’re more likely to use the sec-
ond method when you’re creating more complicated expressions.

Sorting Array Data
TotalView lets you sort the displayed array data into ascending or descending order. (It does not sort the actual
data.) To sort (or remove the sort), click the Value label.

 The first time you click, TotalView sorts the array’s values into ascending order.

 The next time you click on the header, TotalView reverses the order, sorting the array’s values into
descending order.

 If you click again on the header, TotalView returns the array to its unsorted order.

Here is an example that sorts an array into descending order:

When you sort an array’s values, you are just rearranging the information that’s displayed in the Variable Window.
Sorting does not change the order in which values are stored in memory. If you alter what TotalView is displaying
by using a filter or a slice, TotalView just sorts the values that could be displayed; it doesn’t sort all of the array.

If you are displaying the array created by a Show across command—see Displaying a Variable in all Processes
or Threads on page 330 for more information—you can sort your information by process or thread.

Figure 165, Sorted Variable Window

327

Examining Arrays Examining and Analyzing Arrays

Obtaining Array Statistics
The Tools > Statistics command displays a window that contains information about your array. Figure 166
shows an example.

If you have added a filter or a slice, these statistics describe only the information currently being displayed; they
do not describe the entire unfiltered array. For example, if 90% of an array’s values are less than 0 and you filter
the array to show only values greater than 0, the median value is positive even though the array’s real median
value is less than 0.

NOTE: Array statistics are available through the CLI, as switches to the dprint command. See the
dprint description in the Reference Guide for details.

Figure 166, Array Statistics Window

328

Examining Arrays Examining and Analyzing Arrays

TotalView displays the following statistics:

 Checksum

A checksum value for the array elements.

 Count

The total number of displayed array values. If you’re displaying a floating-point array, this number doesn’t
include NaN or Infinity values.

 Denormalized Count

A count of the number of denormalized values found in a floating-point array. This includes both negative
and positive denormalized values as defined in the IEEE floating-point standard. Unlike other floating-point
statistics, these elements participate in the statistical calculations.

 Infinity Count

A count of the number of infinity values found in a floating-point array. This includes both negative and pos-
itive infinity as defined in the IEEE floating-point standard. These elements do not participate in statistical
calculations.

 Lower Adjacent

This value provides an estimate of the lower limit of the distribution. Values below this limit are called outliers.
The lower adjacent value is the first quartile value minus the value of 1.5 times the difference between the
first and third quartiles.

 Maximum

The largest array value.

 Mean

The average value of array elements.

 Median

The middle value. Half of the array’s values are less than the median, and half are greater than the median.

 Minimum

The smallest array value.

 NaN Count

A count of the number of NaN (not a number) values found in a floating-point array. This includes both sig-
naling and quiet NaNs as defined in the IEEE floating-point standard. These elements do not participate in
statistical calculations.

 Quartiles, First and Third

329

Examining Arrays Examining and Analyzing Arrays

Either the 25th or 75th percentile values. The first quartile value means that 25% of the array’s values are
less than this value and 75% are greater than this value. In contrast, the third quartile value means that 75%
of the array’s values are less than this value and 25% are greater.

 Standard Deviation

The standard deviation for the array’s values.

 Sum

The sum of all the displayed array’s values.

 Upper Adjacent

This value provides an estimate of the upper limit of the distribution. Values above this limit are called outli-
ers. The upper adjacent value is the third quartile value plus the value of 1.5 times the difference between
the first and third quartiles.

 Zero Count

The number of elements whose value is 0.

330

Examining Arrays Displaying a Variable in all Processes or Threads

Displaying a Variable in all Processes or
Threads
When you’re debugging a parallel program running many instances of the same executable, you usually need to
view or update the value of a variable in all of the processes or threads at once.

Before displaying a variable’s value in all threads or processes, you must display an instance of the variable in a
Variable Window. In this window, use one of the following commands:

 View > Show Across > Process, displays the value of the variable in all processes.

 View > Show Across > Thread, displays the value of a variable in all threads within a single
process.

 View > Show Across > None, returns the window to what it was before you used other Show
Across commands.

NOTE: You cannot simultaneously Show Across processes and threads in the same Variable Window.

After selecting a command, the Variable Window provides an array-like display of the value of the variable in each
process or thread. Figure 167 shows a simple, scalar variable in each of the processes in an OpenMP program.

Figure 167, Viewing Across Threads

331

Examining Arrays Displaying a Variable in all Processes or Threads

When looking for a matching stack frame, TotalView matches frames starting from the top frame, and considers
calls from different memory or stack locations to be different calls. For example, the following definition of
recurse() contains two additional calls to recurse(). Each of these calls generates a nonmatching call frame.
void recurse(int i) {
 if (i <= 0)
 return;
 if (i & 1)
 recurse(i - 1);
 else
 recurse(i - 1);
}
If the variables are at different addresses in the different processes or threads, the field to the left of the Address
field displays Multiple, and the unique addresses appear with each data item.

TotalView also lets you Show Across arrays and structures. When you Show Across an array, TotalView displays
each element in the array across all processes. You can use a slice to select elements to be displayed in an
“across” display. The following figure shows the result of applying a Show Across > Processes command to an
array of structures.

Diving on a “Show Across” Pointer
You can dive through pointers in a Show Across display. This dive applies to the associated pointer in each pro-
cess or thread.

Figure 168, Viewing across an Array of Structures

RELATED TOPICS
Viewing a structure’s elements as an array Displaying an Array of Structure’s Elements on page 268

332

Examining Arrays Displaying a Variable in all Processes or Threads

Editing a “Show Across” Variable
If you edit a value in a “Show Across” display, TotalView asks if it should apply this change to all processes or
threads or only the one in which you made a change. This is an easy way to update a variable in all processes.

333

Examining Arrays Visualizing Array Data

Visualizing Array Data
The Visualizer lets you create graphical images of array data. This presentation lets you see your data in one
glance and can help you quickly find problems with your data while you are debugging your programs.

You can execute the Visualizer from within TotalView, or you can run it from the command line to visualize data
dumped to a file in a previous TotalView session.

For information about running the Visualizer, see Visualizing Programs and Data on page 334.

Visualizing a “Show Across” Variable Window
You can export data created by using a Show Across command to the Visualizer by using the Tools > Visualize
command. When visualizing this kind of data, the process (or thread) index is the first axis of the visualization. This
means that you must use one less data dimension than you normally would. If you do not want the process/
thread axis to be significant, you can use a normal Variable Window, since all of the data must be in one process.

334

 Visualizing Programs and Data

TotalView provides a set of tools to visualize your program activity, including its arrays, and MPI message data.
This chapter describes:

 Displaying Call Trees and Call Graphs on page 335

 Parallel Backtrace View on page 338

 Array Visualizer on page 341

335

Visualizing Programs and Data Displaying Call Trees and Call Graphs

Displaying Call Trees and Call Graphs
Debugging is an art, not a science. Debugging often requires the intuition to guess what a program is doing and
where to look for problems. Just locating a problem can be 90% or more of the effort. A call tree or call graph can
help you understand what your program is doing so that you can understand how your program is executing.

To display a call tree or call graph, select Tools > Call Graph from the Process Window. A sample call tree is
shown in Figure 169.

The call tree or call graph shows all currently active routines linked by arrows indicating if one routine is called by
another. The display is dynamic in that it shows activity at the moment it is created. The Update button recreates
the display.

You can toggle between displaying a call tree or call graph for specific processes and threads using the controls at
the top of this window. By default, TotalView displays a tree representing the backtrace of all the selected pro-
cesses and threads. To change to a Graph Style display, deselect the Tree button.

Figure 169, Tools > Call Graph Dialog Box

336

Visualizing Programs and Data Displaying Call Trees and Call Graphs

For multi-process or multi-threaded programs, a compressed process/thread list (ptlist) next to the arrows indi-
cates which threads have a routine on their call stack.

Similar to the CLI's dwhere -group_by option, the dropdown in the call tree window enables you to aggregate the
backtraces according to different properties, as follows:

 function: Equivalence based on the name of the function containing the PC for the frame. This is
the default.

 function+line: Equivalence based on the name of the function and the file and line number
containing the PC for the frame.

 function+offset: Equivalence based on the name of the function containing the PC for the frame
and offset from the beginning of the function to the PC for the frame.

For example, Figure 170 displays the call tree grouped by function and line:

Figure 170, Tools > Call Graph grouped by function and line

337

Visualizing Programs and Data Displaying Call Trees and Call Graphs

Diving on a routine within the call tree or call graph creates a group called call_graph, containing all the threads
that have the routine you dived on in its call stack. If you look at the Process Window’s Processes tab, you’ll see
that the call_graph set is selected in the scope pulldown.

In addition, the context of the Process Window changes to the first thread in the set.

As you begin to understand your program, you will see that this diagram reflects your program’s rhythm and
dynamic. As you examine and understand this structure, you will sometimes see things that don’t look right —
these are often places where you should look for problems.

Diving on a routine that doesn’t look right can isolate the processes into their own group so that you can find out
what is occurring there. Be aware that diving on a routine overwrites the group, so if you want to preserve the
group, use the Groups > Custom Groups command to make a copy.

A call tree or call graph can also reveal bottlenecks. For example, if one routine is used by many other routines
and controls a shared resource, this thread might be negatively affecting performance.

338

Visualizing Programs and Data Parallel Backtrace View

Parallel Backtrace View
The Parallel Backtrace View displays in a single window the state of every process and thread in a parallel job,
including the host, status, process ID, rank, and location. In this way, you can view thousands of processes at once,
helping identify stray processes.

Access the Parallel Backtrace View from the Tools menu.

The Parallel Backtrace View shows the position of a program’s processes and threads at the same time, displayed
as a branching tree with the number and location of each process or thread at each point, as follows:

 Processes: the number of processes/threads at a particular location, shown as a branching tree.
Expanding the branch shows the next level of the call hierarchy, eventually down to the line of
source code. At each level the number of processes in the first column may change.

 Location: the location of the process/thread with line number if applicable.

 PC: the program counter of the process/thread.

 Host: the node on which the process/thread is executing.

 Rank: the thread rank of a parallel program. N/A indicates no rank.

Figure 171, Parallel Backtrace View

339

Visualizing Programs and Data Parallel Backtrace View

 ID: a compressed ptlist composed of a process and thread count, followed by square-bracket-
enclosed list of process and thread ranges separated by dot (.). See ptlist in the Reference Guide for
more information.

 Status: process status.

Diving (with the right mouse button) on each expanded item displays its process window

The progress indicator in the upper right reports the progress of collecting and displaying information.

Using the Show Backtrace toggle in the upper left hides the intervening branches and displays the start routine
and current execution location of the processes or threads. This removes some of the clutter in the display, as
shown above.

If a thread/process state changes, the data becomes stale, and an alert is displayed at the bottom of the window,
Figure 173.

Use the Update button to refresh the display.

Figure 172, Parallel Backtrace View without Branches

Figure 173, Stale Data Message

340

Visualizing Programs and Data Parallel Backtrace View

RELATED TOPICS
The dcalltree command dcalltree in “CLI Commands” in the Classic TotalView Reference Guide

341

Visualizing Programs and Data Array Visualizer

Array Visualizer
The TotalView Visualizer creates graphic images of your program’s array data. Topics in this section are:

 Command Summary on page 341

 How the Visualizer Works on page 342

 Viewing Data Types in the Visualizer on page 343

 Visualizing Data Manually on page 344

 Using the Visualizer on page 344

 Using the Graph Window on page 347

 Using the Surface Window on page 350

 Visualizing Data Programmatically on page 354

 Launching the Visualizer from the Command Line on page 355

 Configuring TotalView to Launch the Visualizer on page 356

Command Summary
This section summarizes Visualizer commands.

Action Click or Press

Camera mode Actor mode

Rotate camera around focal
point (surface only)

Rotate actor around focal point
(surface only)

Left mouse button

Zoom Scale Right mouse button

Pan Translate Middle mouse button or
Shift-left mouse button

Other Functions

Pick (show value) p

Camera mode: mouse events affect the camera position and focal
point. (The axis moves and you don’t.)

c

342

Visualizing Programs and Data Array Visualizer

How the Visualizer Works
The Visualizer is a stand-alone program to which TotalView sends information. Because it is separate, you can use
it in multiple ways:

 You can see your program’s data while debugging in TotalView.

 You can save the data that would be sent to the Visualizer, and view it later by invoking the
Visualizer from the command line.

 You can use a third party tool to read the datastream sent by TotalView, rather than using the
Visualizer.

Actor mode: mouse events affect the actor that is under the
mouse pointer. (You move and the axis doesn’t.)

a

Joystick mode: motion occurs continuously while a mouse button is
pressed

j

Trackball mode: motion occurs only when the mouse button is
pressed and the mouse pointer moves.

t

Wireframe view w

Surface view s

Reset r

Initialize I

Exit or Quit Ctrl-Q

Figure 174, TotalView Visualizer Relationships

Action Click or Press

Launch Third
Party Visualizer

Launch Visualizer
from Command Line

TotalView
Visualizer

Third Party
Visualizer

Launch Visualizer
from TotalView

Save Data
to File

Visualizer
Data File

TotalView

343

Visualizing Programs and Data Array Visualizer

NOTE: For more information on adapting a third-party visualizer so that it can be used with TotalView,
see Adapting a Third Party Visualizer on page 357.

Viewing Data Types in the Visualizer
The data selected for visualization is called a dataset. TotalView treats stack variables at different recursion levels
or call paths as different datasets.

TotalView can visualize one- and two-dimensional arrays of integer or floating-point data. If an array has more
than two dimensions, you can visualize part of it using an array slice that creates a subarray with fewer dimen-
sions. Figure 175 shows a three-dimensional variable sliced so that one of the dimensions is invariant.

Viewing Data

Different datasets can require different views to display their data. For example, a graph is more suitable for dis-
playing one- or two-dimensional datasets if one of the dimensions has a small extent. However, a surface view is
better for displaying a two-dimensional dataset.

When TotalView launches the Visualizer, one of the following actions occurs:

Figure 175, A Three-Dimensional Array Sliced into Two Dimensions

RELATED TOPICS
Other ways to examine arrays Examining Arrays on page 312

344

Visualizing Programs and Data Array Visualizer

 If the Visualizer is displaying the dataset, it raises the dataset’s window to the top of the desktop. If
you had minimized the window, the Visualizer restores it.

 If you previously visualized a dataset but you’ve killed its window, the Visualizer creates a new
window using the most recent visualization method.

 If you haven’t visualized the dataset, the Visualizer chooses an appropriate method. You can
disable this feature by using the Options > Auto Visualize command in the Visualizer Directory
Window.

Visualizing Data Manually
Before you can visualize an array:

 Open a Variable Window the array.

 Stop program execution when the array’s values reflect what you want to visualize.

You can restrict the visualized data by editing the Slice field. (See Displaying Array Slices on page 313.) Limiting
the amount of data increases the speed of the Visualizer.

After selecting the Variable Window Tools > Visualize command, the Visualizer creates its window.

NOTE: As you step through your program, be aware that the data sent to the Visualizer is not auto-
matically updated; explicitly update the display using Tools > Visualize.

TotalView can visualize variables across threads or processes. (See Visualizing a “Show Across” Variable Window
on page 333.) In this case, the Visualizer uses the process or thread index as one dimension, meaning that you
can visualize only scalar or vector information. If you do not want the process or thread index to be a dimension,
do not use a Show Across command.

Using the Visualizer
The Visualizer uses two types of windows:

 Dataset Window

This window contains the datasets that you can visualize. Use this window to set global options and to create
views of your datasets. Commands in this window provide different views of the same data by allowing you
to open more than one View Window.

 View Window

345

Visualizing Programs and Data Array Visualizer

These windows actually display your data. The commands in a View Window set viewing options and change
the way the Visualizer displays your data.

In Figure 176, the top window is a Dataset Window. The two remaining windows show a surface and a graph view.

Using Dataset Window Commands

The Dataset Window lists the datasets you can display. Double-click on a dataset to display it.

The View menu supports either Graph or Surface visualization. When TotalView sends a new dataset to the Visu-
alizer, the Visualizer updates its dataset list. To delete a dataset from the list, click on it, display the File menu, and
then select Delete. (It’s usually easier to just close the Visualizer.)

The following commands are in the Dataset Window menu bar:

File > Delete Deletes the currently selected dataset. It removes the dataset from the list and destroys the
View Window that displays it.

File > Exit Closes all windows and exits the Visualizer.

Figure 176, Sample Visualizer Windows

346

Visualizing Programs and Data Array Visualizer

View > Graph Creates a new Graph Window; see Using the Graph Window on page 347.

View > Surface Creates a new Surface Window; see Using the Surface Window on page 350.

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer automatically visualizes new datasets as they
are read. Typically, this option is left on. If, however, you have large datasets and want to config-
ure how the Visualizer displays the graph, disable this option.

Using View Window Commands

View Windows display graphic images of your data. Figure 177 shows a graph view and a surface view. The View
Window’s title is the text that appears in the Dataset Window.

The View Window menu commands are:

File > Close Closes the View Window.

File > Dataset Raises the Dataset Window to the front of the desktop. If you minimized the Dataset Window,
the Visualizer restores it.

File > Delete Deletes the View Window dataset from the list. This also destroys other View Windows that view
the dataset.

Figure 177, Graph and Surface Visualizer Windows

347

Visualizing Programs and Data Array Visualizer

File > Options Pops up a window of viewing options.

Window > Duplicate Base Window
Creates a new View Window with the same visualization method and dataset as the current
View Window.

Ways to view data

The drawing area displays the image of your data. You can interact with the drawing area to alter the view of your
data. For example:

 If the Visualizer is displaying a surface, you can rotate the surface to view it from different angles.

 You can get the value and indices of the dataset element nearest the cursor by clicking on it and
typing “P”. A pop-up window displays the information.

These operations are discussed in Using the Graph Window on page 347 and Using the Surface Window
on page 350.

Using the Graph Window
The Graph Window displays a two-dimensional graph of one- or two-dimensional datasets. If the dataset is two-
dimensional, the Visualizer displays multiple graphs. When you first create a Graph Window on a two-dimensional
dataset, the Visualizer uses the dimension with the larger number of elements for the X axis. It then draws a sep-
arate graph for each subarray that has the smaller number of elements. If you don’t like this choice, you can
transpose the data by selecting a checkbox within the File > Options Dialog Box.

NOTE: You probably don’t want to use a graph to visualize two-dimensional datasets with large
extents in both dimensions as the display can be very cluttered. If you try, the Visualizer
shows only the first ten.

348

Visualizing Programs and Data Array Visualizer

You can display graphs with points for each element of the dataset, with lines connecting dataset elements, or
with both lines and points, as demonstrated in Figure 178.

If the Visualizer is displaying more than one graph, each is a different color. The X axis is annotated with the indi-
ces of the long dimension. The Y axis shows you the data value.

Displaying Graph Views

The File > Options Dialog Box controls graph display. (A different dialog box appears if the Visualizer is displaying
a surface view.)

Options:

Lines Displays lines connecting dataset elements.

Points Displays points (markers) for dataset elements.

Figure 178, Visualizer Graph View Window

Figure 179, Graph Options Dialog Box

349

Visualizing Programs and Data Array Visualizer

Transpose Inverts which axis is held constant when generating a graph of a two-dimensional object. For
other than two dimensions, this option is not available.

Figure 180 shows a sine wave displayed in three different ways:

To see the value of a dataset’s element, place your cursor near a graph marker, and type “P”. The bottom graph in
Figure 180 shows the value of a data point.

Figure 180, Sine wave Displayed in Three Ways

350

Visualizing Programs and Data Array Visualizer

Using the Surface Window
The Surface Window displays two-dimensional datasets as a surface in two or three dimensions. The dataset’s
array indices map to the first two dimensions (X and Y axes) of the display. Figure 181 shows a surface view:

Figure 182 shows a three-dimensional surface that maps element values to the height (Z axis).

Figure 181, A Surface View

Figure 182, A Surface View of a Sine Wave

351

Visualizing Programs and Data Array Visualizer

Displaying Surface Views

The Surface Window File > Options command controls surface display, Figure 183 (A different dialog box con-
trols Graph View.)

Options:

Surface Displays the array’s data as a three-dimensional surface; otherwise, displays the surface as a
grid.

XY Reorients the view’s XY axes. The Z axis is perpendicular to the display.

Auto Reduce Derives the displayed surface by averaging neighboring elements in the original dataset, in or-
der to speed visualization by reducing surface resolution. Clear this option to accurately visual-
ize all dataset elements.

This option supports either viewing all your data points — which takes longer to appear in the
display — or viewing the data average over a number of nearby points.

Figure 183, Surface Options Dialog Box

352

Visualizing Programs and Data Array Visualizer

Figure 184 shows different views of the same data, based on Surface and XY options.

To restore initial state of translation, rotation, and scaling options, select View > Initialize View.

Manipulating Surface Data

The Surface Window supports various viewing modes. Camera mode is the default, in which the Visualizer
behaves as a “camera” moving around the object. Actor mode, by contrast, displays the object as if you, the
viewer, were changing position. The difference between these is subtle. In some circumstances, actions such as
pan and zoom in camera mode can also add a slight rotation to the object.

Figure 184, Four Surface Views

353

Visualizing Programs and Data Array Visualizer

From within TotalView, you can see only one array at a time. However, if you combine multiple datasets and visu-
alize them externally, the differences between camera and actor mode can help differentiate the objects.

The following table defines all surface view general commands. Command letters can be typed in either upper- or
lower-case.

The following table defines the actions you can perform using your mouse:

Action Press

Pick (show value): Displays the value of the data point at the
cursor.

p

Camera mode: Mouse events affect the camera position and
focal point. (Axes move, and you don’t.)

c

Actor mode: Mouse events affect the actor under the mouse
pointer. (You move, not the axes.)

a

Joystick mode: Motion occurs continuously while you press a
mouse button.

j

Trackball mode: Motion occurs only when you press the mouse
button and you move the mouse pointer.

t

Wireframe view: Displays the surface as a mesh. (This is the
same as not checking the Surface option.)

w

Surface view: Displays the surface as a solid. (This is the same
as having checked the Surface option.)

s

Reset: Removes the changes you’ve made to the way the Visual-
izer displays an object.

r

Initialize: Restores the object to its initial state before you inter-
acted with the Visualizer. As this is a menubar accelerator, the
window must have focus.

i

Exit or Quit: Close the Visualizer. Ctrl-Q

Action Click or Press

Camera mode Actor mode

Rotate camera around
focal point (surface
only)

Rotate actor around
focal point (surface
only)

Left mouse button

354

Visualizing Programs and Data Array Visualizer

Visualizing Data Programmatically
The $visualize function supports data visualization from within eval points and the Tools > Evaluate Window.
Because you can enter more than one $visualize function within an eval point or Evaluate Window, you can
simultaneously visualize multiple variables.

If you enter the $visualize function in an eval point, TotalView interprets rather than compiles the expression,
which can greatly decrease performance. See Defining Eval Points and Conditional Breakpoints on page 220 for
information about compiled and interpreted expressions.

Using the $visualize function in an eval point lets you animate the changes that occur in your data, because the
Visualizer updates the array’s display every time TotalView reaches the eval point. Here is this function’s syntax:

$visualize (array [, slice_string])

The array argument names the dataset being visualized. The optional slice_string argument is a quoted string that
defines a constant slice expression that modifies the array parameter’s dataset. In Fortran, you can use either a
single (’) or double (") quotation mark. You must use a double quotation mark in C or C++.

The following examples show how you can use this function. Notice that the array’s dimension ordering differs
between C/C++ and Fortran.

C and C++
$visualize(my_array);
$visualize (my_array,"[::2][10:15]");
$visualize (my_array,"[12][:]");

Fortran
$visualize (my_array)
$visualize (my_array,’(11:16,::2)’)
$visualize (my_array,’(:,13)’)

The first example in each programming language group visualizes the entire array. The second example selects
every second element in the array’s major dimension; it also clips the minor dimension to all elements in the
range. The third example reduces the dataset to a single dimension by selecting one subarray.

Zoom: Zooms in on the
object.

Scale: the object
appears to get larger

Right mouse button

Pan: Moves the “cam-
era”. For example,
moving the camera up
means the object
moves down.

Translate: The object
moves in the direction
you pull it.

Middle mouse button or
Shift-left mouse button

Action Click or Press

355

Visualizing Programs and Data Array Visualizer

You may need to cast your data so that TotalView knows what the array’s dimensions are. For example, here is a C
function that passes a two-dimensional array parameter that does not specify the major dimension’s extent.
void my_procedure (double my_array[][32])
{ /* procedure body */ }

You would need to cast this before TotalView can visualize it. For example:
$visualize (*(double[32][32]*)my_array);

Sometimes, it’s hard to know what to specify. You can quickly refine array and slice arguments, for example, by
entering the $visualize function into the Tools > Evaluate Dialog Box. When you select the Evaluate button, you
quickly see the result. You can even use this technique to display several arrays simultaneously.

Launching the Visualizer from the Command Line
To start the Visualizer from the shell, use the following syntax:

visualize [-file filename | -persist]

where:

-file filename Reads data from filename instead of reading from standard input. For information on creating
this file, see Setting the Visualizer Launch Command on page 357.

-persist Continues to run after encountering an EOF (End-of-File) on standard input. If you don’t use
this option, the Visualizer exits as soon as it reads all the data.

By default, the Visualizer reads its datasets from standard input and exits when it reads an EOF. When started by
TotalView, the Visualizer reads its data from a pipe, ensuring that the Visualizer exits when TotalView does. If you
want the Visualizer to continue to run after it exhausts all input, invoke it by using the -persist option.

If you want to read data from a file, invoke the Visualizer with the -file option:

visualize -file my_data_set_file

The Visualizer reads all the datasets in the file. This means that the images you see represent the last versions of
the datasets in the file.

RELATED TOPICS
Eval points and conditional breakpoints Defining Eval Points and Conditional Breakpoints on page 220

Writing expressions in various TotalView-
supported languages

Using Programming Language Elements on page 367

356

Visualizing Programs and Data Array Visualizer

The Visualizer supports the generic X toolkit command-line options. For example, you can start the Visualizer with
the Directory Window minimized by using the -iconic option. Your system manual page for the X server or the X
Window System User’s Guide by O’Reilly & Associates lists the generic X command-line options in detail.

You can also customize the Visualizer by setting X resources in your resource files or on the command line with
the -xrm resource_setting option.

Configuring TotalView to Launch the Visualizer
TotalView launches the Visualizer when you select the Tools > Visualize command from the Variable Window. It
also launches it when using a $visualize function in an eval point and the Tools > Evaluate Dialog Box.

You can disable visualization entirely. This lets you turn off visualization when your program executes code that
contains eval points, without having to individually disable them all.

To change the Visualizer launch options interactively, select File > Preferences, and then select the Launch
Strings Tab.

Options:

 Customize the command used to start a visualizer by entering the visualizer’s start up command in
the Command edit box.

Figure 185, File > Preferences Launch Strings Page

357

Visualizing Programs and Data Array Visualizer

 Change the autolaunching option. If you want to disable visualization, clear the Enable Visualizer
launch check box.

 Change the maximum permissible rank. Edit the value in the Maximum array rank field to save
the data exported from TotalView or display it in a different visualizer. A rank’s value can range from
1 to 16.

Setting the maximum permissible rank to either 1 or 2 (the default is 2) ensures that the Visualizer can use
your data—the Visualizer displays only two dimensions of data. This limit doesn’t apply to data saved in files
or to third-party visualizers that can display more than two dimensions of data.

 Clicking the Defaults button returns all values to their default values. This reverts options to their
default values even if you have used X resources to change them.

If you disable visualization while the Visualizer is running, TotalView closes its connection to the Visualizer. If you
reenable visualization, TotalView launches a new Visualizer process the next time you visualize something.

Setting the Visualizer Launch Command

You can change the shell command that TotalView uses to launch the Visualizer by editing the Visualizer launch
command. (In most cases, the only reason you’d do this is if you’re having path problems or you’re running a dif-
ferent visualizer.) You can also change what’s entered here so that you can view this information at another time;
for example:
cat > your_file

Later, you can visualize this information by typing either:
visualize -persist < your_file
visualize -file your_file

You can preset the Visualizer launch options by setting X resources.

Adapting a Third Party Visualizer
TotalView passes a stream of datasets to the Visualizer encoded in the format described below, thus supporting
the use of this data with other programs, with these requirements:

 TotalView and the Visualizer must be running on the same machine architectures; that is, TotalView
assumes that word lengths, byte order, and floating-point representations are identical. While
sufficient information in the dataset header exists to detect when this is not the case (with the
exception of floating-point representation), no method for translating this information is supplied.

RELATED TOPICS
The File > Preferences command File > Preferences in the in-product Help

358

Visualizing Programs and Data Array Visualizer

 TotalView transmits datasets down the pipe in a simple unidirectional flow. There is no handshaking
protocol in the interface. This requires the Visualizer to be an eager reader on the pipe. If the
Visualizer does not read eagerly, the pipe will back up and block TotalView.

Visualizer dataset format

The dataset format is described in the TotalView distribution in a header file named include/visualize.h in the
TotalView installation directory. Each dataset is encoded with a fixed-length header followed by a stream of array
elements. The header contains the following fields:

vh_axis_order Contains one of the constants vis_ao_row_major or vis_ao_column_major.

vh_dims Contains information on each dimension of the dataset. This includes a base, count, and stride.
Only the count is required to correctly parse the dataset. The base and stride give information
only on the valid indices in the original data.

Note that all VIS_MAXDIMS of dimension information is included in the header, even if the
data has fewer dimensions.

vh_effective_rank
Contains the number of dimensions that have an extent larger than 1.

vh_id Contains the dataset ID. Every dataset in a stream of datasets is numbered with a unique ID so
that updates to a previous dataset can be distinguished from new datasets.

vh_item_count Contains the total number of expected elements.

vh_item_length Contains the length (in bytes) of a single element of the array.

vh_magic Contains VIS_MAGIC, a symbolic constant to provide a check that this is a dataset header and
that byte order is compatible.

vh_title Contains a plain text string of length VIS_MAXSTRING that annotates the dataset.

vh_type Contains one of the constants vis_signed_int, vis_unsigned_int, or vis_float.

vh_version Contains VIS_VERSION, a symbolic constant to provide a check that the reader understands
the protocol.

Types in the dataset are encoded by a combination of the vh_type field and the vh_item_length field. This allows
the format to handle arbitrary sizes of both signed and unsigned integers, and floating-point numbers.

The vis_float constant corresponds to the default floating-point format (usually, IEEE) of the target machine. The
Visualizer does not handle values other than the default on machines that support more than one floating-point
format.

Although a three-byte integer is expressible in the Visualizer’s dataset format, it is unlikely that the Visualizer will
handle one. The Visualizer handles only data types that correspond to the C data types permitted on the machine
where the Visualizer is running.

359

Visualizing Programs and Data Array Visualizer

Similarly, the long double type varies significantly depending on the C compiler and target machine. Therefore,
visualization of the long double type is unlikely to work if you run the Visualizer on a machine different from the
one where you extracted the data.

In addition, be aware of these data type differences if you write your own visualizer and plan to run it on a
machine that is different from the one where you extract the data.

The data following the header is a stream of consecutive data values of the type indicated in the header. Consec-
utive data values in the input stream correspond to adjacent elements in vh_dims[0].

You can verify that your reader’s idea of the size of this type is consistent with TotalView by checking that the value
of the n_bytes field of the header matches the product of the size of the type and the total number of array
elements.

360

Evaluating Expressions

Whether you realize it or not, you’ve been telling TotalView to evaluate expressions and you’ve even been
entering them. In every programming language, variables are actually expressions—actually they are lvalues—
whose evaluation ends with the interpretation of memory locations into a displayable value. Structure, pointer
and array variables, particularly arrays where the index is also a variable, are slightly more complicated.

While debugging, you also need to evaluate expressions that contain function calls and programming lan-
guage elements such as for and while loops.

This chapter discusses what you can do evaluating expressions within TotalView:

 Why is There an Expression System? on page 361

 Using Programming Language Elements on page 367

 Using the Evaluate Window on page 371

 Using Built-in Variables and Statements on page 378

 Expression Evaluation with ReplayEngine on page 382

361

Evaluating Expressions Why is There an Expression System?

Why is There an Expression System?
Either directly or indirectly, accessing and manipulating data requires an evaluation system. When your program
(and TotalView, of course) accesses data, it must determine where this data resides. The simplest data lookups
involve two operations: looking up an address in your program’s symbol table and interpreting the information
located at this address based on a variable’s datatype. For simple variables such as an integer or a floating point
number, this is all pretty straightforward.

Looking up array data is slightly more complicated. For example, if the program wants my_var[9]—this chapter
will most often use C and C++ notation rather than Fortran—it looks up the array’s starting address, then applies
an offset to locate the array’s 10th element. In this case, if each array element uses 32 bits, my_var[9] is located 9
times 32 bits away.

In a similar fashion, your program obtains information about variables stored in structures and arrays of
structures.

Structures complicate matters slightly. For example ptr->my_var requires three operations: extract the data con-
tained within address of the my_var variable, use this information to access the data at the address being
pointed to, then display the data according to the variable’s datatype.

Accessing an array element such as my_var[9] where the array index is an integer constant is rare in most pro-
grams. In most cases, your program uses variables or expressions as array indices; for example, my_var[cntr] or
my_var[cntr+3]. In the later case, TotalView must determine the value of cntr+3 before it can access an array
element.

Using variables and expressions as array indices are common. However, the array index can be (and often is) an
integer returned by a function. For example:
my_var[access_func(first_var, second_var)+2]

362

Evaluating Expressions Why is There an Expression System?

In this example, a function with two arguments returns a value. That returned value is incremented by two, and
the resulting value becomes the array index. Here is an illustration showing TotalView accessing the my_var array
in the four ways discussed in this section:

In Fortran and C, access to data is usually through variables with some sort of simple evaluation or a function.
Access to variable information can be the same in C++ as it is in these languages. However, accessing private vari-
ables within a class almost always uses a method. For example:
myDataStructureList.get_current_place()

TotalView built-in expression evaluation system is able to understand your class inheritance structure in addition
to following C++ rules for method invocation and polymorphism. (This is discussed in Using C++ on page 364.)

Calling Functions: Problems and Issues
Unfortunately, calling functions in the expression system can cause problems. Some of these problems are:

 What happens if the function has a side effect For example, suppose you have entered
my_var[cntr] in one row in an Expression List Window, followed by my_var[++cntr] in another. If
cntr equals 3, you’ll be seeing the values of my_var[3] and my_var[4]. However, since cntr now
equals 4, the first entry is no longer correct.

 What happens when the function crashes (after all you are trying to debug problems), doesn’t
return, returns the wrong value, or hits a breakpoint?

 What does calling functions do to your debugging interaction if evaluation takes an excessive
amount of time?

 What happens if a function creates processes and threads? Or worse, kills them?

Figure 186, Expression List Window: Accessing Array Elements

363

Evaluating Expressions Why is There an Expression System?

In general, there are some protections in the code. For example, if you’re displaying items in an Expression List
Window, TotalView avoids being in an infinite loop by only evaluating items once. This does mean that the infor-
mation is only accurate at the time at which TotalView made the evaluation.

In most other cases, you’re basically on your own. If there’s a problem, you’ll get an error message. If something
takes too long, you can press the Halt button. But if a function alters memory values or starts or stops processes
or threads and you can’t live with it, you’ll need to restart your program. However, if an error occurs while using
the Evaluate Window, pressing the Stop button pops the stack, leaving your program in the state it was in before
you used the Evaluate command. However, changes made to heap variables will, of course, not be undone.

Expressions in Eval Points and the Evaluate Window
Expression evaluation is not limited to a Variable Window or an Expression List Window. You can use expressions
within eval points and in the Tools > Evaluate Window. The expressions you type here also let you use program-
ming language constructs. For example, here’s a trivial example of code that can execute within the Evaluate
Window:
int i, j, k;
j = k = 10;
for (i=0; i< 20; i++)
{
 j = j + access_func(i, k);
}
j;

This code fragment declares a couple of variables, runs them through a for loop, then displays the value of j. In all
cases, the programming language constructs being interpreted or compiled within TotalView are based on code
within TotalView. TotalView is not using the compiler you used to create your program or any other compiler or
interpreter on your system.

364

Evaluating Expressions Why is There an Expression System?

Notice the last statement inFigure 187. TotalView displays the value returned by the last statement. This value is
displayed. (See Displaying the Value of the Last Statement on page 364.)

TotalView assumes that there is always a return value, even if it’s evaluating a loop or the results of a subroutine
returning a void. The results are, of course, not well-defined. If the value returned is not well-defined, TotalView
displays a zero in the Result area.

The code within eval points and the Evaluate Window does not run in the same address space as that in which
your program runs. Because TotalView is a debugger, it knows how to reach into your program’s address space.
The reverse isn’t true: your program can’t reach into the TotalView address space. This forces some limitations
upon what you can do. In particular, you can not enter anything that directly or indirectly needs to pass an
address of a variable defined within the TotalView expression into your program. Similarly, invoking a function that
expects a pointer to a value and whose value is created within TotalView can’t work. However, you can invoke a
function whose parameter is an address and you name something within that program’s address space. For
example, you could say something like adder(an_array) if an_array is contained within your program.

Using C++
The TotalView expression system is able to interpret the way you define your classes and their inheritance hierar-
chy. For example, if you declare a method in a base class and you invoke upon an object instantiated from a
derived class, TotalView knows how to access the function. It also understands when a function is virtual. For
example, assume that you have the following declarations:
class Circle : public Shape {
public:
 ...

Figure 187, Displaying the Value of the Last Statement

365

Evaluating Expressions Why is There an Expression System?

 virtual double area();
 virtual double area(int);
 double area(int, int);

Figure 188 shows an expression list calling an overloaded function. It also shows a setter (mutator) that changes
the size of the circle object. A final call to area shows the new value.

Figure 188, Expression List Window: Showing Overloads

366

Evaluating Expressions Why is There an Expression System?

If your object is instantiated from a class that is part of an inheritance hierarchy, TotalView shows you the hierar-
chy when you dive on the object.

Figure 189, Class Casting

367

Evaluating Expressions Using Programming Language Elements

Using Programming Language Elements

Using C and C++
This section contains guidelines for using C and C++ in expressions.

 You can use C-style (/* comment */) and C++-style (// comment) comments; for example:
// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */

 You can omit semicolons if the result isn’t ambiguous.

 You can use dollar signs ($) in identifiers. However, we recommend that you do not use dollar signs
in names created within the expression system.

NOTE: If your program does not use a templated function within a library, your compiler may not
include a reference to the function in the symbol table. That is, TotalView does not create tem-
plate instances. In some cases, you might be able to overcome this limitation by preloading
the library. However, this only works with some compilers. Most compilers only generate STL
operators if your program uses them.

You can use the following C and C++ data types and declarations:

 You can use all standard data types such as char, short, int, float, and double, modifiers to these
data types such as long int and unsigned int, and pointers to any primitive type or any named
type in the target program.

 You can only use simple declarations. Do not define stuct, class, enum or union types or variables.

You can define a pointer to any of these data types. If an enum is already defined in your program, you can
use that type when defining a variable.

 The extern and static declarations are not supported.

You can use the following the C and C++ language statements.

 You can use the goto statement to define and branch to symbolic labels. These labels are local to
the window. You can also refer to a line number in the program. This line number is the number
displayed in the Source Pane. For example, the following goto statement branches to source line
number 432 of the target program:
goto 432;

368

Evaluating Expressions Using Programming Language Elements

 Although you can use function calls, you can’t pass structures.

 You can use type casting.

 You can use assignment, break, continue, if/else structures, for, goto, and while statements.
Creating a goto that branches to another TotalView evaluation is undefined.

Using Fortran
When writing code fragments in Fortran, you need to follow these guidelines:

 In general, you can use free-form syntax. You can enter more than one statement on a line if you
separate the statements with semi-colons (;). However, you cannot continue a statement onto
more than one line.

 You can use GOTO, GO TO, ENDIF, and END IF statements; Although ELSEIF statements aren’t
allowed, you can use ELSE IF statements.

 Syntax is free-form. No column rules apply.

 The space character is significant and is sometimes required. (Some Fortran 77 compilers ignore all
space characters.) For example:

You can use the following data types and declarations in a Fortran expression:

 You can use the INTEGER, REAL, DOUBLE PRECISION, and COMPLEX data types.

 You can’t define or declare variables that have implied or derived data types.

 You can only use simple declarations. You can’t use a COMMON, BLOCK DATA, EQUIVALENCE,
STRUCTURE, RECORD, UNION, or array declaration.

 You can refer to variables of any type in the target program.

 TotalView assumes that integer (kind=n) is an n-byte integer.

Fortran Statements

You can use the Fortran language statements:

Valid Invalid

DO 100 I=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X .EQ. 1 X.EQ.1

369

Evaluating Expressions Using Programming Language Elements

 You can use assignment, CALL (to subroutines, functions, and all intrinsic functions except
CHARACTER functions in the target program), CONTINUE, DO, GOTO, IF (including block IF, ENDIF,
ELSE, and ELSE IF), and RETURN (but not alternate return) statements.

 If you enter a comment in an expression, precede the comment with an exclamation point (!).

 You can use array sections within expressions. For more information, see Array Slices and Array
Sections on page 316.

 A GOTO statement can refer to a line number in your program. This line number is the number that
appears in the Source Pane. For example, the following GOTO statement branches to source line
number 432:

GOTO $432;

You must use a dollar sign ($) before the line number so that TotalView knows that you’re referring to a
source line number rather than a statement label.

You cannot branch to a label within your program. You can instead branch to a TotalView line number.

 The following expression operators are not supported: CHARACTER operators and the .EQV.,
.NEQV., and .XOR. logical operators.

 You can’t use subroutine function and entry definitions.

 You can’t use Fortran 90 pointer assignment (the => operator).

 You can’t call Fortran 90 functions that require assumed shape array arguments.

Fortran Intrinsics

TotalView supports some Fortran intrinsics. You can use these supported intrinsics as elements in expressions.
The classification of these intrinsics into groups is that contained within Chapter 13 of the Fortran 95 Handbook,
by Jeanne C. Adams, et al., published by the MIT Press.

TotalView does not support the evaluation of expressions involving complex variables (other than as the argu-
ments for real or aimag). In addition, we do not support function versions. For example, you cannot use dcos
(the double-precision version of cos).

The supported intrinsics are:

 Bit Computation functions: btest, iand, ibclr, ibset, ieor, ior, and not.

 Conversion, Null and Transfer functions: achar, aimag, char, dble, iachar, ichar, int, and real.

 Inquiry and Numeric Manipulation Functions: bit_size.

370

Evaluating Expressions Using Programming Language Elements

 Numeric Computation functions: acos, asin, atan, atan2, ceiling, cos, cosh, exp, floor, log, log10,
pow, sin, sinh, sqrt, tan, and tanh.

Complex arguments to these functions are not supported. In addition, on MacIntosh and AIX, the log10, ceil-
ing, and floor intrinsics are not supported.

The following are not supported:

 Array functions

 Character computation functions.

 Intrinsic subroutines

NOTE: If you statically link your program, you can only use intrinsics that are linked into your code. In
addition, if your operating system is Mac OS X, AIX, or Linux/Power, you can only use math
intrinsics in expressions if you directly linked them into your program. The ** operator uses
the pow function. Consequently, it too must either be used within your program or directly
linked. In addition, ceiling and log10 are not supported on these three platforms.

371

Evaluating Expressions Using the Evaluate Window

Using the Evaluate Window
TotalView lets you open a window to evaluate expressions in the context of a particular process and evaluate
them in C, Fortran, or assembler.

NOTE: Not all platforms let you use assembler constructs. See “Architectures” in the Classic TotalView
Reference Guide for details.

You can use the Tools > Evaluate Dialog Box in many different ways. The following are two examples:

 Expressions can contain loops, so you can use a for loop to search an array of structures for an
element set to a certain value. In this case, you use the loop index at which the value is found as the
last expression in the expression field.

 Because you can call subroutines, you can test and debug a single routine in your program without
building a test program to call it.

NOTE: Although the CLI does not have an evaluate command, the information in the following sec-
tions does apply to the expression argument of the dbreak, dbarrier, dprint, and dwatch
commands.

To evaluate an expression: Display the Evaluate Dialog Box by selecting the Tools > Evaluate command.

An Evaluate Dialog Box appears. If your program hasn’t yet been created, you won’t be able to use any of the pro-
gram’s variables or call any of its functions.

1. Select a button for the programming language you’re writing the expression in (if it isn’t already selected).

2. Move to the Expression field and enter a code fragment. For a description of the supported language con-
structs, see Using Built-in Variables and Statements on page 378.

Below is a sample expression. The last statement in this example assigns the value of my_var1-3 back to
my_var1. Because this is the last statement in the code fragment, the value placed in the Result field is the
same as if you had just typed my_var1-3.

372

Evaluating Expressions Using the Evaluate Window

3. Click the Evaluate button.

If TotalView finds an error, it places the cursor on the incorrect line and displays an error message. Other-
wise, it interprets (or on some platforms, compiles and executes) the code, and displays the value of the last
expression in the Result field.

While the code is being executed, you can’t modify anything in the dialog box. TotalView might also display a
message box that tells you that it is waiting for the command to complete, Figure 190.

If you click Cancel, TotalView stops execution.

Since TotalView evaluates code fragments in the context of the target process, it evaluates stack variables accord-
ing to the current program counter. If you declare a variable, its scope is the block that contains the program
counter unless, for example, you declare it in some other scope or declare it to be a static variable.

If the fragment reaches a breakpoint (or stops for any other reason), TotalView stops evaluating your expression.
Assignment statements in an expression can affect the target process because they can change a variable’s value.

Figure 190, Waiting to Complete Message Box

373

Evaluating Expressions Using the Evaluate Window

The controls at the top of the dialog box let you refine the scope at which TotalView evaluates the information you
enter. For example, you can evaluate a function in more than one process. The following figure shows TotalView
displaying the value of a variable in multiple processes, and then sending the value as it exists in each process to
a function that runs on each of these processes.

See Group, Process, and Thread Control on page 571 for information on using the P/T set controls at the top of
this window.

Writing Assembler Code
On the RS/6000 IBM AIX operating system, TotalView lets you use assembler code in eval points, conditional
breakpoints, and in the Tools > Evaluate Dialog Box. However, if you want to use assembler constructs, you must
enable compiled expressions. See About Interpreted and Compiled Expressions on page 226 for instructions.

Figure 191, Evaluating Information in Multiple Processes

374

Evaluating Expressions Using the Evaluate Window

To indicate that an expression in the breakpoint or Evaluate Dialog Box is an assembler expression, click the
Assembler button in the Action Point > Properties Dialog Box.

You write assembler expressions in the target machine’s native assembler language and in a TotalView assembler
language. However, the operators available to construct expressions in instruction operands, and the set of avail-
able pseudo-operators, are the same on all machines, and are described below.

The TotalView assembler accepts instructions using the same mnemonics recognized by the native assembler,
and it recognizes the same names for registers that native assemblers recognize.

Some architectures provide extended mnemonics that do not correspond exactly with machine instructions and
which represent important, special cases of instructions, or provide for assembling short, commonly used
sequences of instructions. The TotalView assembler recognizes mnemonics if:

 They assemble to exactly one instruction.

 The relationship between the operands of the extended mnemonics and the fields in the
assembled instruction code is a simple one-to-one correspondence.

Assembler language labels are indicated as name: and appear at the beginning of a line. You can place a label
alone on a line. The symbols you can use include labels defined in the assembler expression and all program
symbols.

The TotalView assembler operators are described in the following table:

Figure 192, Using Assembler Expressions

375

Evaluating Expressions Using the Evaluate Window

The TotalView assembler pseudo-operations are as follows:

Operators Description

+ Plus

- Minus (also unary)

* Multiplication

Remainder

/ Division

& Bitwise AND

^ Bitwise XOR

! Bitwise OR NOT (also unary minus, bitwise NOT)

| Bitwise OR

(expr) Grouping

<< Left shift

>> Right shift

“text” Text string, 1-4 characters long, is right-justified in a 32-bit word

hi16 (expr) Low 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

lo16 (expr) High 16 bits of operand expr

lo32 (expr) Low 32 bits of operand expr

Pseudo Ops Description

$debug [0 | 1] Internal debugging option.
With no operand, toggle debugging;
0 => turn debugging off
1 => turn debugging on

$hold
$holdprocess

Hold the process

$holdstopall
$holdprocessstopall

Hold the process and stop the control group

$holdthread Hold the thread

$holdthreadstop
$holdthreadstopprocess

Hold the thread and stop the process

376

Evaluating Expressions Using the Evaluate Window

$holdthreadstopall Hold the thread and stop the control group

$long_branch expr Branch to location expr using a single instruction in an architecture-
independent way; using registers is not required

$ptree Internal debugging option.
Print assembler tree

$stop
$stopprocess

Stop the process

$stopall Stop the control group

$stopthread Stop the thread

name=expr Same as def name,expr

align expr [, expr] Align location counter to an operand 1 alignment; use operand 2 (or 0)
as the fill value for skipped bytes

ascii string Same as string

asciz string Zero-terminated string

bss name,size-expr[,expr] Define name to represent size-expr bytes of storage in the bss section
with alignment optional expr; the default alignment depends on the
size:

if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else
if size-expr >= 2 then 2 else 1

byte expr [, expr] ... Place expr values into a series of bytes

comm name,expr Define name to represent expr bytes of storage in the bss section;
name is declared global; alignment is as in bss without an alignment
argument

data Assemble code into data section (data)

def name,expr Define a symbol with expr as its value

double expr [, expr] ... Place expr values into a series of doubles

equiv name,name Make operand 1 an abbreviation for operand 2

fill expr, expr, expr Fill storage with operand 1 objects of size operand 2, filled with value
operand 3

float expr [, expr] ... Place expr values into a series of floating point numbers

global name Declare name as global

Pseudo Ops Description

377

Evaluating Expressions Using the Evaluate Window

half expr [, expr] ... Place expr values into a series of 16-bit words

lcomm name,expr[,expr] Identical to bss

lsym name,expr Same as def name,expr but allows redefinition of a previously defined
name

org expr [, expr] Set location counter to operand 1 and set operand 2 (or 0) to fill
skipped bytes

quad expr [, expr] ... Place expr values into a series of 64-bit words

string string Place string into storage

text Assemble code into text section (code)

word expr [, expr] ... Place expr values into a series of 32-bit words

zero expr Fill expr bytes with zeros

Pseudo Ops Description

378

Evaluating Expressions Using Built-in Variables and Statements

Using Built-in Variables and Statements
TotalView contains a number of built-in variables and statements that can simplify your debugging activities. You
can use these variables and statements in eval points and in the Tools > Evaluate Dialog Box.

Topics in this section are:

 Using TotalView Variables on page 378

 Using Built-In Statements on page 379

Using TotalView Variables
TotalView variables that let you access special thread and process values. All variables are 32-bit integers, which is
an int or a long on most platforms. The following table describes built-in variables:

RELATED TOPICS
Creating an eval or conditional breakpoint Defining Eval Points and Conditional Breakpoints on page 220

How to use watchpoints Using Watchpoints on page 231

Name Returns

$clid The cluster ID. (Interpreted expressions only.)

$duid The TotalView-assigned Debugger Unique ID (DUID). (Inter-
preted expressions only.)

$newval The value just assigned to a watched memory location.
(Watchpoints only.)

$nid The node ID. (Interpreted expressions only.)

$oldval The value that existed in a watched memory location before a
new value modified it. (Watchpoints only.)

$pid The process ID.

$processduid The DUID (debugger ID) of the process. (Interpreted expres-
sions only.)

$systid The thread ID assigned by the operating system. When this is
referenced from a process, TotalView throws an error.

$tid The thread ID assigned by TotalView. When this is referenced
from a process, TotalView throws an error.

379

Evaluating Expressions Using Built-in Variables and Statements

The built-in variables let you create thread-specific breakpoints from the expression system. For example, the
$tid variable and the $stop built-in function let you create a thread-specific breakpoint, as the following code
shows:
if ($tid == 3)
 $stop;

This tells TotalView to stop the process only when the third thread evaluates the expression.

You can also create complex expressions using these variables; for example:
if ($pid != 34 && $tid > 7)
 printf (“Hello from %d.%d\n”, $pid, $tid);

Using any of the following variables means that the eval point is interpreted instead of compiled: $clid, $duid,
$nid, $processduid, $systid, $tid, and $visualize. In addition, $pid forces interpretation on AIX.

You can’t assign a value to a built-in variable or obtain its address.

Using Built-In Statements
TotalView statements help you control your interactions in certain circumstances. These statements are available
in all languages, and are described in the following table. The most commonly used statements are $count,
$stop, and $visualize.

Statement Use

$count expression
$countprocess expression

Sets a process-level countdown breakpoint.

When any thread in a process executes this statement for the number of
times specified by expression, the process stops. The other processes in
the control group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint.

All processes in the control group stop when any process in the group exe-
cutes this statement for the number of times specified by expression.

380

Evaluating Expressions Using Built-in Variables and Statements

$countthread expression Sets a thread-level countdown breakpoint.

When any thread in a process executes this statement for the number of
times specified by expression, the thread stops. Other threads in the pro-
cess continue to execute.

If the target system cannot stop an individual thread, this statement per-
forms the same as $countprocess.

A thread evaluates expression when it executes $count for the first time.
This expression must evaluate to a positive integer. When TotalView first
encounters this variable, it determines a value for expression. TotalView
does not reevaluate until the expression actually stops the thread. This
means that TotalView ignores changes in the value of expression until it
hits the breakpoint. After the breakpoint occurs, TotalView reevaluates the
expression and sets a new value for this statement.

The internal counter is stored in the process and shared by all threads in
that process.

$hold
$holdprocess

Holds the current process. See Holding and Releasing Processes and
Threads.

If all other processes in the group are already held at this eval point,
TotalView releases all of them. If other processes in the group are running,
they continue to run.

$holdstopall
$holdprocessstopall

Like $hold, except that any processes in the group which are running are
stopped. The other processes in the group are not automatically held by
this call—they are just stopped.

$holdthread Freezes the current thread, leaving other threads running. See Holding
and Releasing Processes and Threads.

$holdthreadstop
$holdthreadstopprocess

Like $holdthread, except that it stops the process. The other processes in
the group are left running.

$holdthreadstopall Like $holdthreadstop, except that it stops the entire group.

$stop
$stopprocess

Sets a process-level breakpoint. The process that executes this statement
stops; other processes in the control group continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the control group
stop when any thread or process in the group executes this statement.

Statement Use

381

Evaluating Expressions Using Built-in Variables and Statements

$stopthread Sets a thread-level breakpoint. Although the thread that executes this
statement stops, all other threads in the process continue to execute. If the
target system cannot stop an individual thread, this statement performs
the same as to $stopprocess.

$visualize(expres-
sion[,slice])

Visualizes the data specified by expression and modified by the optional
slice value. Expression and slice must be expressed using the code frag-
ment’s language. The expression must return a dataset (after modification
by slice) that can be visualized. slice is a quoted string that contains a slice
expression. For more information on using $visualize in an expression, see
Using the Visualizer on page 344.

Statement Use

382

Evaluating Expressions Expression Evaluation with ReplayEngine

Expression Evaluation with ReplayEngine
When you enable ReplayEngine, you still have the ability to evaluate expressions, but the behavior is different. In
regular, forward debugging, your expression may change the state of your program, for example, by changing the
value of a variable. But when ReplayEngine is enabled, expression evaluation takes place in a separate, temporary
space, and the results have no side effects in your program. When the evaluation is complete, the temporary
space is released and any changes resulting from the evaluation no longer exist.

This is important to remember if you are actually counting on an expression evaluation to change something in
your program. Note, too, that this is true even when ReplayEngine is in Record mode. If you want to regain the
ability to affect your program state through expressions, you need to disable ReplayEngine.

With ReplayEngine enabled and in Record mode, there are still two ways to change memory or registers: with the
CLI dassign command, and by directly editing the value in the TotalView user interface. However, an attempt to
modify memory or registers in this way in Replay mode results in an error or the new value being discarded.

Expressions can call functions when ReplayEngine is enabled, but if the called function stops for any reason, for
example, hits a breakpoint or receives a signal, the expression is suspended and limitations are imposed. You can
continue to debug forward in a function called from an expression, but you cannot debug backwards until the
expression evaluation is complete. Using an expression to write to stdout and stderr (file descriptors 1 and 2) is
allowed with the following limitations: Writes to those file descriptors work for any type of file in Record mode.
However, writes to those file descriptors fail in Playback mode unless the file is a TTY.

All of the above also applies to the transformations in C++View.

383

About Groups, Processes,
and Threads

While the specifics of how multi-process, multi-threaded programs execute differ greatly between hardware
platforms, operating systems, and compilers, all share some general characteristics. This chapter defines a
general model for conceptualizing the way processes and threads execute and introduces the concepts of
threads, processes, and groups. Group, Process, and Thread Control on page 571 is a more exacting and com-
prehensive look at these topics.

This chapter contains the following sections:

 A Couple of Processes on page 384

 Threads on page 387

 Complicated Programming Models on page 389

 Types of Threads on page 391

 Organizing Chaos on page 394

 How TotalView Creates Groups on page 398

 Simplifying What You’re Debugging on page 404

384

About Groups, Processes, and Threads A Couple of Processes

A Couple of Processes
When programmers write single-threaded, single-process programs, they can almost always answer the question
“Do you know where your program is?” These types of programs are rather simple, looking something like Figure
193.

If you use any debugger on these types of programs, you can almost always figure out what’s going on. Before the
program begins executing, you set a breakpoint, let the program run until it hits the breakpoint, and then inspect
variables to see their values. If you suspect that there’s a logic problem, you can step the program through its
statements to see where things are going wrong.

What is actually occurring, however, is a lot more complicated, since other programs are always executing on your
computer. For example, your computing environment could have daemons and other support programs execut-
ing, and your program can interact with them.

These additional processes can simplify your program because it can hand off some tasks and not have to focus
on how that work gets done.

Figure 194 shows a very simple architecture in which the application program just sends requests to a daemon.

The type of architecture shown in Figure 195 is more typical. In this example, an email program communicates
with a daemon on one computer. After receiving a request, this daemon sends data to an email daemon on
another computer, which then delivers the data to another mail program.

Figure 193, A Uniprocessor

Figure 194, A Program and Daemons

385

About Groups, Processes, and Threads A Couple of Processes

This architecture has one program handing off work to another. After the handoff, the programs do not interact.
The program handing off the work just assumes that the work gets done. Some programs can work well like this.
Most don’t. Most computational jobs do better with a model that allows a program to divide its work into smaller
jobs, and parcel this work to other computers. Said in a different way, this model has other machines do some of
the first program’s work. To gain any advantage, however, the work a program parcels out must be work that it
doesn’t need right away. In this model, the two computers act more or less independently. And, because the first
computer doesn’t have to do all the work, the program can complete its work faster.

Using more than one computer doesn’t mean that less computer time is being used. Overhead due to sending
data across the network and overhead for coordinating multi-processing always means more work is being done.
It does mean, however, that your program finishes sooner than if only one computer were working on the
problem.

The TotalView Server Solution to Debugging Across Computers

One problem with this model is how a programmer debugs behavior on the second computer. One solution is to
have a debugger running on each computer. The TotalView solution to this debugging problem places a server on
each remote processor as it is launched. These servers then communicate with the main TotalView process. This
debugging architecture gives you one central location from which you can manage and examine all aspects of
your program.

Figure 195, Mail Using Daemons to Communicate

Figure 196, Two Computers Working on One Problem

386

About Groups, Processes, and Threads A Couple of Processes

NOTE: TotalView can also attach to programs already running on other computers. In other words,
programs don’t have to be started from within TotalView to be debugged by TotalView.

In all cases, it is far easier to initially write your program so that it only uses one computer. After it is working, you
can split up its work so that it uses other computers. It is likely that any problems you find will occur in the code
that splits the program or in the way the programs manipulate shared data, or in some other area related to the
use of more than one thread or process.

NOTE: Initially designing a multi-process application as a single-process program may not always be
practical. For instance, some algorithms may take weeks to execute a program on one
computer.

RELATED TOPICS
How TotalView organizes groups,
processes, and threads

Group, Process, and Thread Control on page 571

Debugging remotely Setting Up Remote Debugging Sessions on page 484

Attaching to a running program Attaching to a Running Program on page 105

387

About Groups, Processes, and Threads Threads

Threads
The operating system owns the daemon programs discussed in the previous section A Couple of Processes.
These daemons perform a variety of activities, from managing computer resources to providing standard services
such as printing.

While operating systems can have many independently executing components, a program can as well, accom-
plished in various ways. One programming model splits the work off into somewhat independent tasks within the
same process. This is the threads model.

Figure 197 also shows the daemon processes that are executing. (The figures in the rest of this chapter won’t
show these daemons.)

In this computing model, a program (the main thread) creates threads. If they need to, these newly created
threads can also create threads. Each thread executes relatively independently from other threads. You can, of
course, program them to share data and to synchronize how they execute.

The debugging issue here is similar to the problem of processes running on different machines. In both, a debug-
ger must intervene with more than one executing entity, having to understand multiple address spaces and
multiple contexts.

NOTE: Little difference exists between a multi-threaded or a multi-process program when using
TotalView. The way in which TotalView displays process information is very similar to how it
displays thread information.

Figure 197, Threads

388

About Groups, Processes, and Threads Threads

RELATED TOPICS
TotalView’s design on organizing groups, pro-
cesses, and threads

Group, Process, and Thread Control on page 571

Debugging multi-threaded, multi-process
programs

Manipulating Processes and Threads on page 407

Setting breakpoints Setting Breakpoints for Multiple Processes on
page 211

Setting Breakpoints When Using the fork()/execve()
Functions on page 213

Barrier points in multi-threaded programs Setting Barrier Points on page 215

389

About Groups, Processes, and Threads Complicated Programming Models

Complicated Programming Models
While most computers have one or two processors, high-performance computing often uses computers with
many more. And as hardware prices decrease, this model is starting to become more widespread. Having more
than one processor means that the threads model in Figure 197 changes to something similar to that shown in
Figure 198.

This figure shows four cores in one computer, each of which has three threads. (Only four cores are shown even
though many more could be on a chip.) This architecture is an extension to the model that links more than one
computer together. Its advantage is that the processor doesn’t need to communicate with other processors over
a network as it is completely self-contained.

The next step is to join many multi-processor computers together. Figure 199 shows five computers, each with
four processors, with each processsor running three threads. If this figure shows the execution of one program,
then the program is using 60 threads.

Figure 198, Four-Processor Computer

390

About Groups, Processes, and Threads Complicated Programming Models

This figure depicts only processors and threads. It doesn’t have any information about the nature of the programs
and threads or even whether the programs are copies of one another or represent different executables.

At any time, it is next to impossible to guess which threads are executing and what a thread is actually doing. Even
more complex, many multi-processor programs begin by invoking a process such as mpirun or IBM poe, whose
function is to distribute and control the work being performed. In this kind of environment, a program is using
another program to control the workflow across processors.

In this model, traditional debuggers and solutions don’t work. TotalView, on the other hand, organizes this mass
of executing procedures for you, distinguishing between threads and processes that the operating system uses
from those that your program uses.

Figure 199, Four Processors on a Network

if

391

About Groups, Processes, and Threads Types of Threads

Types of Threads
All threads aren’t the same. Figure 200 shows a program with three threads.

Assume that all these threads are user threads; that is, they are threads that perform some activity that you’ve
programmed.

NOTE: Many computer architectures have something called user mode, user space, or something
similar. In TotalView, the definition of a user thread is simply a unit of execution created by a
program.

Because the program creates user threads to do its work, they are also called worker threads.

Figure 200, Threads (again)

392

About Groups, Processes, and Threads Types of Threads

Other threads can also be executing. For example, there are always threads that are part of the operating envi-
ronment. These threads are called manager threads. Manager threads exist to help your program get its work
done. In Figure 201, the horizontal threads at the bottom are user-created manager threads.

All threads are not created equal, and all threads do not execute equally. Many programs also create manager-
like threads. Since these user-created manager threads perform services for other threads, they are called service
threads, Figure 202.

Figure 201, User and Service Threads

Figure 202, User, Service, and Manager Threads

393

About Groups, Processes, and Threads Types of Threads

These service threads are also worker threads. For example, the sole function of a user service thread might be to
send data to a printer in response to a request from the other two threads.

One reason you need to know which of your threads are service threads is that a service thread performs differ-
ent types of activities than your other threads. Because their activities are different, they are usually developed
separately and, in many cases, are not involved with the fundamental problems being solved by the program.
Here are two examples:

 The code that sends messages between processes is far different than the code that performs fast
Fourier transforms. Its bugs are quite different than the bugs that create the data that is being
transformed.

 A service thread that queues and dispatches messages sent from other threads might have bugs,
but the bugs are different than the rest of your code, and you can handle them separately from the
bugs that occur in nonservice user threads.

Being able to distinguish between the two kinds of threads means that you can focus on the threads and pro-
cesses that actively participate in an activity, rather than on threads performing subordinate tasks.

Although Figure 202 shows five threads, most of your debugging effort will focus on just two threads.

RELATED TOPICS
TotalView’s design on organizing groups, pro-
cesses, and threads

Group, Process, and Thread Control on page 571

Setting the focus Setting Process and Thread Focus on page 579 and

Setting Group Focus on page 585

394

About Groups, Processes, and Threads Organizing Chaos

Organizing Chaos
It is possible to debug programs that are running thousands of processes and threads across hundreds of com-
puters by individually looking at each. However, this is almost always impractical. The only workable approach is to
organize your processes and threads into groups and then debug your program by using these groups. In other
words, in a multi-process, multi-threaded program, you are most often not programming each process or thread
individually. Instead, most high-performance computing programs perform the same or similar activities on dif-
ferent sets of data.

TotalView cannot know your program’s architecture; however, it can make some intelligent guesses based on
what your program is executing and where the program counter is. Using this information, TotalView automati-
cally organizes your processes and threads into the following predefined groups:

 Control Group: All the processes that a program creates. These processes can be local or remote.
If your program uses processes that it did not create, TotalView places them in separate control
groups. For example, a client/server program that has two distinct executables that run
independently of one another has each executable in a separate control group. In contrast,
processes created by fork()/exec() are in the same control group.

 Share Group: All the processes within a control group that share the same code. Same code means
that the processes have the same executable file name and path. In most cases, your program has
more than one share group. Share groups, like control groups, can be local or remote.

 Workers Group: All the worker threads within a control group. These threads can reside in more
than one share group.

 Lockstep Group: All threads that are at the same PC (program counter). This group is a subset of a
workers group. A lockstep group only exists for stopped threads. By definition, all members of a
lockstep group are within the same workers group. That is, a lockstep group cannot have members
in more than one workers group or more than one control group. A lockstep group only means
anything when the threads are stopped.

The control and share groups contain only processes; the workers and lockstep groups contain only threads.

TotalView lets you manipulate processes and threads individually and by groups. In addition, you can create your
own groups and manipulate a group’s contents (to some extent). For more information, see Group, Process, and
Thread Control on page 571.

395

About Groups, Processes, and Threads Organizing Chaos

Figure 203 shows a processor running five processes (ignoring daemons and other programs not related to your
program) and the threads within the processes, along with a control group and two share groups within the con-
trol group.

Many of the elements in this figure are used in other figures in this book. These elements are as follows:

CPU The one outer square represents the CPU. All elements in the drawing operate within one CPU.

Processes The five white inner squares represent processes being executed by the CPU.

Control Group The large rounded rectangle that surrounds the five processes shows one control group. This
diagram doesn’t indicate which process is the main procedure.

Share Groups The two smaller rounded rectangles having yellow dashed lines surround processes in a share
group. This drawing shows two share groups within one control group. The three processes in
the first share group have the same executable. The two processes in the second share group
share a second executable.

The control group and the share group contain only processes.

Figure 204 shows how TotalView organizes the threads in the previous figure, adding a workers group and two
lockstep groups.

Figure 203, Five-Processes: Their Control and Share Groups

396

About Groups, Processes, and Threads Organizing Chaos

NOTE: This figure doesn’t show the control group since it encompasses everything in this figure. That
is, this example’s control group contains all of the program’s lockstep, share, and worker
group’s processes and threads.

The additional elements in this figure are as follows:

Workers Group All nonmanager threads within the control group make up the workers group. This group in-
cludes service threads.

Lockstep Groups Each share group has its own lockstep group. The previous figure shows two lockstep
groups, one in each share group.

Service Threads Each process has one service thread. A process can have any number of service threads, but
this figure shows only one.

Manager Threads The ten manager threads are the only threads that do not participate in the workers group.

Figure 204, Five Processes: Adding Workers and Lockstep Groups

397

About Groups, Processes, and Threads Organizing Chaos

Figure 205 extends Figure 204 to show the same kinds of information executing on two processors.

This figure differs from others in this section because it shows ten processes executing within two processors
rather than five processes within one processor. Although the number of processors has changed, the number of
control and share groups is unchanged. Note that, while this makes a nice example, most programs are not this
regular.

Figure 205, Five Processes and Their Groups on Two Computers

RELATED TOPICS
TotalView’s design on organizing
groups, processes, and threads

Group, Process, and Thread Control on page 571

Setting the focus Setting Process and Thread Focus on page 579 and

Setting Group Focus on page 585

398

About Groups, Processes, and Threads How TotalView Creates Groups

How TotalView Creates Groups
TotalView places processes and threads in groups as your program creates them, except for the lockstep groups
that are created or changed whenever a process or thread hits an action point or is stopped for any reason.
There are many ways to build this type of organization. The following steps indicate how TotalView might do this.

Step 1

TotalView and your program are launched, and your program begins executing.

 Control group: The program is loaded and creates a group.

 Share group: The program begins executing and creates a group.

 Workers group: The thread in the main() routine is the workers group.

 Lockstep group: There is no lockstep group because the thread is running. (Lockstep groups
contain only stopped threads.)

Figure 206, Step 1: A Program Starts

399

About Groups, Processes, and Threads How TotalView Creates Groups

Step 2

The program creates a thread.

 Control group: The control group is unchanged.

 Share group: The share group is unchanged.

 Workers group: TotalView adds the thread to the existing group.

 Lockstep group: There are no lockstep groups because the threads are running.

Step 3

The first process uses the exec() function to create a second process, Figure 208.

 Control group: The group is unchanged.

Figure 207, Step 2: A Thread is Started

Figure 208, Step 3: Creating a Process using exec()

400

About Groups, Processes, and Threads How TotalView Creates Groups

 Share group: TotalView creates a second share group with the process created by the exec()
function as a member. TotalView removes this process from the first share group.

 Workers group: Both threads are in the workers group.

 Lockstep group: There are no lockstep groups because the threads are running.

Step 4

The first process hits a breakpoint.

 Control group: The group is unchanged.

 Share group: The groups are unchanged.

 Workers group: The group is unchanged.

 Lockstep group: TotalView creates a lockstep group whose member is the thread of the current
process. (In this example, each thread is its own lockstep group.)

Step 5

The program is continued and TotalView starts a second version of your program from the shell. You attach to it
within TotalView and put it in the same control group as your first process.

 Control group: TotalView adds a third process.

 Share group: TotalView adds this third process to the first share group.

 Workers group: TotalView adds the thread in the third process to the group.

 Lockstep group: There are no lockstep groups because the threads are running.

Figure 209, Step 5: Creating a Second Version

401

About Groups, Processes, and Threads How TotalView Creates Groups

Step 6

Your program creates a process on another computer.

 Control group: TotalView extends the control group so that it contains the fourth process, which is
running on the second computer.

 Share group: The first share group now contains this newly created process, even though it is
running on the second computer.

 Workers group: TotalView adds the thread within this fourth process to the workers group.

 Lockstep group: There are no lockstep groups because the threads are running.

Figure 210, Step 6: Creating a Remote Process

402

About Groups, Processes, and Threads How TotalView Creates Groups

Step 7

A process within the control group creates a thread. This adds a second thread to one of the processes.

 Control group: The group is unchanged.

 Share group: The group is unchanged.

 Workers group: TotalView adds a fifth thread to this group.

 Lockstep group: There are no lockstep groups because the threads are running.

Step 8

A breakpoint is set on a line in a process executing in the first share group. By default, TotalView shares the break-
point. The program executes until all three processes are at the breakpoint.

Figure 211, Step 7: Creating a Thread

Figure 212, Step 8: Hitting a Breakpoint

403

About Groups, Processes, and Threads How TotalView Creates Groups

 Control group: The group is unchanged.

 Share group: The groups are unchanged.

 Workers group: The group is unchanged.

 Lockstep groups: TotalView creates a lockstep group whose members are the four threads in the
first share group.

Step 9

You tell TotalView to step the lockstep group.

 Control group: The group is unchanged.

 Share group: The groups are unchanged.

 Workers group: The group is unchanged.

 Lockstep group: The lockstep groups are unchanged. (There are other lockstep groups as
explained in Group, Process, and Thread Control on page 571.)

What Comes Next

This example could continue to create a more complicated system of processes and threads. However, adding
more processes and threads would not change the described behavior.

Figure 213, Step 9: Stepping the Lockstep Group

404

About Groups, Processes, and Threads Simplifying What You’re Debugging

Simplifying What You’re Debugging
The reason you’re using a debugger is because your program isn’t operating correctly, and the method you think
will solve the problem is to stop your program’s threads, examine the values assigned to variables, and step your
program so you can observe execution.

Unfortunately, your multi-process, multi-threaded program and the computers upon which it executes are run-
ning several threads or processes that you want TotalView to ignore. For example, you don’t want to examine
manager and service threads that the operating system, your programming environment, and your program
create.

Also, most of us are incapable of understanding exactly how a program is acting when perhaps thousands of pro-
cesses are executing asynchronously. Fortunately, only a few problems require full asynchronous behavior at all
times.

One of the first simplifications you can make is to change the number of processes. For example, suppose you
have a buggy MPI program running on 128 processors. Your first step might be to have it execute in an 8-proces-
sor environment.

After the program is running under TotalView control, run the process being debugged to an action point so that
you can inspect the program’s state at that point. In many cases, because your program has places where pro-
cesses are forced to wait for an interaction with other processes, you can ignore what they are doing.

NOTE: TotalView lets you control as many groups, processes, and threads as you need to control.
Although you can control each one individually, it would be very complicated to try to control
large numbers of these independently. TotalView creates and manages groups so that you can
focus on portions of your program.

In most cases, you don’t need to interact with everything that is executing. Instead, you want to focus on one pro-
cess and the data that this process manipulates. Things get complicated when the process being investigated is
using data created by other processes, and these processes might be dependent on other processes.

The following is a typical way to use TotalView to locate problems:

1. At some point, make sure that the groups you are manipulating do not contain service or manager threads.
(You can remove processes and threads from a group by using the Group > Custom Group command.)

CLI: dgroups -remove

405

About Groups, Processes, and Threads Simplifying What You’re Debugging

2. Place a breakpoint in a process or thread and begin investigating the problem. In many cases, you are set-
ting a breakpoint at a place where you hope the program is still executing correctly. Because you are
debugging a multi-process, multi-threaded program, set a barrier point so that all threads and processes
stop at the same place.

NOTE: Don’t step your program unless you need to individually look at a thread. Using
barrier points is much more efficient. Barrier points are discussed in Setting Bar-
rier Points on page 215.

3. After execution stops at a barrier point, look at the contents of your variables. Verify that your program
state is actually correct.

4. Begin stepping your program through its code. In most cases, step your program synchronously or set bar-
riers so that everything isn’t running freely.

Things begin to get complicated at this point. You’ve been focusing on one process or thread. If another pro-
cess or thread modifies the data and you become convinced that this is the problem, you need to go off to
it and see what’s going on.

Keep your focus narrow so that you’re investigating only a limited number of behaviors. This is where debugging
becomes an art. A multi-process, multi-threaded program can be doing a great number of things. Understanding
where to look when problems occur is the art.

For example, you most often execute commands at the default focus. Only when you think that the problem is
occurring in another process do you change to that process. You still execute in the default focus, but this time
the default focus changes to another process.

Although it seems like you’re often shifting from one focus to another, you probably will do the following:

 Modify the focus so that it affects just the next command. If you are using the GUI, you might select
this process and thread from the list displayed in the Root Window. If you are using the CLI, you use
the dfocus command to limit the scope of a future command. For example, the following is the CLI
command that steps thread 7 in process 3:
dfocus t3.7 dstep

 Use the dfocus command to change focus temporarily, execute a few commands, and then return
to the original focus.

406

About Groups, Processes, and Threads Simplifying What You’re Debugging

RELATED TOPICS
Detailed information on TotalView
threads, processes, and groups

Group, Process, and Thread Control on page 571

Solving problems when starting MPI
applications

Starting MPI Issues on page 542

Setting barrier points Setting Barrier Points on page 215

More specific debugging tips for parallel
applications

Debugging Strategies for Parallel Applications on page 437

407

Manipulating Processes and
Threads

This chapter illustrates some foundational parallel debugging tasks and is based on the shipped program,
wave_extended_threads, located in the directory installdir/toolworks/totalview.version/platform/examples.
This is a simple program that creates an array and then increments its values to simulate a wave form which
can then be viewed using the Visualizer. The program requires user input to provide the number of times to
increment.

The first steps when debugging programs with TotalView are similar to those using other debuggers:

 Use the -g option to compile the program. (Compiling is not discussed here. Please see
Compiling Programs on page 87.)

 Start the program under TotalView control.

 Start the debugging process, including setting breakpoints and examining your program’s data.

When working with multi-process, multi-threaded programs, you have many options for controlling thread
and process execution, viewing specific threads and processes, and organizing processes in to groups in
order to better view the various elements of your program.

This chapter includes:

 Viewing Process and Thread States on page 409

 Using the Toolbar to Select a Target on page 416

 Stopping Processes and Threads on page 417

 Using the Processes/Ranks and Threads Tabs on page 418

 Updating Process Information on page 421

 Holding and Releasing Processes and Threads on page 422

 Using Barrier Points on page 425

 Barrier Point Illustration on page 426

 Examining Groups on page 428

 Placing Processes in Groups on page 430

408

Manipulating Processes and Threads

 Starting Processes and Threads on page 431

 Creating a Process Without Starting It on page 432

 Creating a Process by Single-Stepping on page 433

 Stepping and Setting Breakpoints on page 434

409

Manipulating Processes and Threads Viewing Process and Thread States

Viewing Process and Thread States
Process and thread states are displayed in the following:

 The Root Window.

 The information within the File > Attach to a Running Program dialog.

 The process and thread status bars of the Process Window.

 The Threads tab of the Process Window.

Figure 214 shows TotalView displaying process state information in the Root Window.

CLI: dstatus and dptsets

410

Manipulating Processes and Threads Viewing Process and Thread States

When you use either of these commands, TotalView also displays state information.

The Status of a process includes the process location, the process ID, and the state of the process. (These char-
acters are explained in Seeing Attached Process States on page 411.)

If you need to attach to a process that is not yet being debugged, open the File > Attach to a Running Program
dialog. TotalView displays all processes associated with your username. Notice that some of the processes will be
dim (drawn in a lighter font). This indicates either you cannot attach to the process or you’re already attached to
it.

Notice that the status bars in the Process Window also display status information, Figure 215.

Figure 214, Root Window Showing Process and Thread Status

Figure 215, Process and Thread Labels in the Process Window

411

Manipulating Processes and Threads Viewing Process and Thread States

NOTE: TotalView displays both the user thread id (if one exists) assigned by the pthread runtime, as
well as the kernel thread id assigned by the operating system (user_tid/kernel_tid). If you are
debugging an MPI program, TotalView displays the thread’s rank number.

Seeing Attached Process States
The Root Window displays the Process and/or Thread State. To view these states, enable the “Process State” and/
or “Thread State” check boxes in the Configure pane. Once enabled, the states display in the first column.

.

Seeing Unattached Process States
TotalView derives the state information for a process displayed in the File > Attach to a Running Program dialog
box from the operating system. The state characters TotalView uses to summarize the state of an unattached
process do not necessarily match those used by the operating system. The following table describes the state
indicators that TotalView displays:

RELATED TOPICS
The Root Window Using the Root Window on page 147

The Process Window Using the Process Window on page 157

Process state definition and
display

Seeing Attached Process States on page 411

CLI: The CLI prints out a word indicating the state; for example,
“breakpoint.”

State Code State Description

I Idle

R Running

S Sleeping

T Stopped

Z Zombie (no apparent owner)

412

Manipulating Processes and Threads Displaying a Thread Name

Displaying a Thread Name
In complex, multi-threaded programs with perhaps thousands of threads, it may be useful to name certain
threads, for instance, if particular threads are dedicated to performing special functions. This can be helpful when
sorting or identifying threads in your programs.

If you set a thread name in your program, the name is displayed in the TotalView UI:

 In the Root Window (if Thread Name is selected in the Group By sidebar)

 In the Process Window’s thread status bar

 In the Threads Pane Tab

To display a thread name in the TotalView UI, first set the name in your program using the pthread_setnam-
e_np() method.

For example:
int rc = pthread_setname_np(thread, "MyThreadName");
Unless explicitly set by the program, threads are not named.

Thread Names in the UI
When set, thread names are displayed in both the Process Window and the Root Window.

RELATED TOPICS
TV::thread properties TV::thread in the TotalView Reference Guide

Thread names displayed in the UI Thread Names in the UI on page 412

dstatus options relating to thread names dstatus in the TotalView Reference Guide

413

Manipulating Processes and Threads Displaying a Thread Name

This program sets these thread names:
 pthread_mutex_lock(&name_mutex);
 int rc;
 if (!first_in)
 {
 first_in = true;
 rc = pthread_setname_np(thread, "Primary");
 }
 else
 rc = pthread_setname_np(thread, "Secondary");
The first thread to enter a function is named “Primary”, and all subsequent threads are called “Secondary.”

Note that the thread names are displayed in:

Thread names in the Process Window

414

Manipulating Processes and Threads Displaying a Thread Name

1. The Thread status bar at the top, which also displays the utid / ktid (“thread user ID” / “thread kernel ID”)

2. The Stack Frame view, if relevant

3. The Threads View tab, again also displaying the utid / ktid.

Thread Properties
TV::thread includes these properties relevant to thread naming:

 thread_name: The name given to a thread by the application.

 thread_ktid: The kernel thread id)

 thread_utid: User thread ID (pthread_t)

These properties are read-only, so can be accessed but not set.

Thread names in the Root Window

415

Manipulating Processes and Threads Displaying a Thread Name

Thread Options on dstatus
The command dstatus has options and properties related to thread names:

 -thread_name: Displays any thread names in a program, if they exist

 Properties on the -group_by option:

 systid: Either the user thread ID (utid) or the kernel thread ID (ktid) if no utid exists

 utid_ktid: "utid / ktid" or just ktid if no utid exists.

 tname: thread name or "<unnamed>" if no thread name exists.

416

Manipulating Processes and Threads Using the Toolbar to Select a Target

Using the Toolbar to Select a Target
The Process Window toolbar has a dropdown list that controls process and thread focus. The selection in this
dropdown list defines the focus, or target of the toolbar commands. (The selected target in this pulldown is also
called a scope modifier.)

For example, if you select a thread and then select Step, TotalView steps the current thread. If Process (workers)
is selected and you select Halt, TotalView halts all processes associated with the current thread’s workers group.
If you are running a multi-process program, other processes continue to execute.

In a multi-process, multi-threaded program, this is important, as TotalView needs to know which processes and
threads to act on.

In the CLI, specify this target using the dfocus command.

NOTE: Group, Process, and Thread Control on page 571 describes how TotalView manages processes
and threads. While TotalView gives you the ability to control the precision your application
requires, most applications do not need this level of interaction. In almost all cases, using the
controls in the toolbar gives you all the control you need.

Figure 216, The Toolbar

RELATED TOPICS
The Processes/Ranks tab in the Pro-
cess Window

Using the Processes/Ranks and Threads
Tabs on page 418

How to create custom groups Creating Custom Groups on page 602

417

Manipulating Processes and Threads Stopping Processes and Threads

Stopping Processes and Threads
To stop a group, process, or thread, select a Halt command from the Group, Process, or Thread pulldown
menus in the menubar.

The three Halt commands differ in the scope of what they halt. In all cases, TotalView uses the current thread,
which is called the thread of interest or TOI, to determine what else it will halt. For example, selecting Process >
Halt tells TotalView to determine the process in which the TOI is running. It then halts this process. Similarly, if you
select Group > Halt, TotalView determines what processes are in the group in which the current thread partici-
pates. It then stops all of these processes.

NOTE: For more information on the Thread of Interest, see Defining the GOI, POI, and TOI on
page 572.

When you select the Halt button in the toolbar instead of the commands in the menubar, TotalView decides what
it should stop based on what is set in the toolbar pulldown list.

After entering a Halt command, TotalView updates any windows that can be updated. When you restart the pro-
cess, execution continues from the point where TotalView stopped the process.

CLI: dhalt
Halts a group, process, or thread. Setting the focus changes the scope.

418

Manipulating Processes and Threads Using the Processes/Ranks and Threads Tabs

Using the Processes/Ranks and Threads Tabs

The Processes Tab
The Processes Tab was displayed by default in previous versions of TotalView, but now it is off by default. This is
because it can significantly affect performance, particularly for large, massively parallel applications. The tab can
be turned back on with the command line switch -processgrid and/or by setting TV::GUI::process_grid_wanted
to true in the .tvdrc file. If you enable this tab in the .tvdrc file, you can disable it for a particular session with
the -noprocessgrid command line switch.

The Processes tab, which is called a Ranks tab if you are running an MPI program, contains a grid. Each block in
the grid represents one process. The color that TotalView uses to display a process indicates the process’s state,
as follows:

Figure 217 shows a tab with processes in three different states:

If you select a group by using the Process Window’s group selector pulldown (see Using the Toolbar to Select a
Target on page 416 for information), TotalView dims the blocks for processes not in the group, Figure 218.

Color Meaning

Blue Stopped; usually due to another process or thread hitting a
breakpoint.

Orange At breakpoint.

Green All threads in the process are running or can run.

Red The Error state. Signals such as SIGSEGV, SIGBUS, and SIGFPE can indi-
cate an error in your program.

Gray The process has not begun running.

Figure 217, The Processes Tab

CLI: dptsets

419

Manipulating Processes and Threads Using the Processes/Ranks and Threads Tabs

If you click on a block, the context within the Process Window changes to the first thread in that process.

Clicking on the P+ and P- buttons in the tab bar changes the process being displayed within the Process Window.
Click on Px to launch a Jump To dialog in which you can specify a particular process or thread to focus on, Figure
219.

Figure 218, The Processes Tab: Showing Group Selection

CLI: dfocus

Figure 219, The Jump To Dialog

RELATED TOPICS
Custom group creation Creating Custom Groups on page 602

More on controlling processes and
threads

Using the Toolbar to Select a Target on
page 416

420

Manipulating Processes and Threads Using the Processes/Ranks and Threads Tabs

The Threads Tab
The Threads Tab displays information about the state of your threads. Clicking on a thread shifts the focus within
the Process Window to that thread.

Clicking on the T+ and T- buttons in the tab bar also changes the thread being displayed within the Process
Window.

Figure 220, The Threads Tab

RELATED TOPICS
More on the Threads Tab and its
display

The Threads Tab in the online Help

421

Manipulating Processes and Threads Updating Process Information

Updating Process Information
Normally, TotalView updates information only when the thread being executed stops executing. You can force
TotalView to update a window by using the Window > Update command. You need to use this command if you
want to see what a variable’s value is while your program is executing.

NOTE: When you use this command, TotalView momentarily stops execution to obtain update infor-
mation, then restarts the thread.

422

Manipulating Processes and Threads Holding and Releasing Processes and Threads

Holding and Releasing Processes and
Threads
Many times when you are running a multi-process or multi-threaded program, you want to synchronize execution
to the same place. You can do this manually using a hold command, or automatically by setting a barrier point.

When a process or a thread is held, it ignores any command to resume executing. For example, assume that you
place a hold on a process in a control group that contains three processes. If you select Group > Go, two of the
three processes resume executing. The held process ignores the Go command.

Use the Release command to remove the hold. When you release a process or a thread, it can resume execution,
but you still need to tell it to do so. That is, you must resume execution with a command such as Go, Out, or Step.

Manually holding and releasing processes and threads is useful when:

 You need to run a subset of the processes and threads. You can manually hold all but the ones you
want to run.

 A process or thread is held at a barrier point and you want to run it without first running all the
other processes or threads in the group to that barrier. In this case, you release the process or the
thread manually and then run it.

See Setting Barrier Points on page 215 for more information on manually holding and releasing barrier
breakpoints.

When TotalView is holding a process, the Root Window displays Stopped, and the Process Window displays a held
indicator, which is the uppercase letter H. When TotalView is holding a thread, it displays a lowercase h.

You can hold or release a thread, process, or group of processes in one of the following ways:

 You can hold a group of processes using the Group > Hold command.

 You can release a group of processes using the Group > Release command.

 You can toggle the hold/release state of a process by selecting and clearing the Process > Hold
command.

 You can toggle the hold/release state of a thread by selecting and clearing the Thread > Hold
command.

CLI: dhold and dunhold
Setting the focus changes the scope.

423

Manipulating Processes and Threads Holding and Releasing Processes and Threads

If a process or a thread is running when you use a hold or release command, TotalView stops the process or
thread and then holds it. TotalView lets you hold and release processes independently from threads.

The Process pulldown menu contains the commands Hold Threads and Release Threads, which act on all the
threads in a multi-process program. The result is seldom what you actually want as you really do want something
to run. You can select one or more threads and use the Thread > Hold toggle command to clear them so that
TotalView lets them run. This may appear awkward, but it is actually an easy way to run just one or more threads
when your program has a lot of threads. You can verify that you’re doing the right thing by looking at the thread
status in the Root Window.

Here are some examples of using hold commands:

CLI: dhold -thread
dhold -process
dunhold -thread

Held/Release
State What Can Be Run Using Process > Go

This figure shows a process with three threads. Before you do
anything, all threads in the process can be run.

Select the Process > Hold toggle. The blue shading indicates
that you held the process.

Nothing runs when you select Process > Go.

Go to the Threads menu. The button next to the Hold com-
mand isn’t selected. This is because the thread hold state is
independent from the process hold state.

Select it. The circle indicates that thread 1 is held. At this time,
there are two different holds on thread 1. One is at the pro-
cess level; the other is at thread level.

Nothing will run when you select Process > Go.

424

Manipulating Processes and Threads Holding and Releasing Processes and Threads

Select the Process > Hold command.

Select Process > Go. The second and third threads run.

Select Process > Release Threads. This releases the hold placed
on the first thread by the Thread > Hold command. You could
also release the thread individually with Thread > Hold.

When you select Process > Go, all threads run.

RELATED TOPICS
Barrier points Setting Barrier Points on page 215

The CLI dbarrier command dbarrier in the "CLI Commands" in the Classic
TotalView Reference Guide

Held/Release
State What Can Be Run Using Process > Go

425

Manipulating Processes and Threads Using Barrier Points

Using Barrier Points
Because threads and processes are often executing different instructions, keeping threads and processes
together is difficult. The best strategy is to define places where the program can run freely and places where you
need control. This is where barrier points come in.

To keep things simple, this section only discusses multi-process programs. You can do the same types of opera-
tions when debugging multi-threaded programs.

Why breakpoints don’t work
(part 1)

If you set a breakpoint that stops all processes when it is hit and you let your processes run using the Group > Go
command, you might get lucky and have all of your threads reach the breakpoint together. More likely, though,
some processes won’t have reached the breakpoint and TotalView will stop them wherever they happen to be. To
get your processes synchronized, you would need to find out which ones didn’t get there and then individually get
them to the breakpoint using the Process > Go command. You can’t use the Group > Go command since this
also restarts the processes stopped at the breakpoint.

Why breakpoints don’t work
(part 2)

If you set the breakpoint’s property so that only the process hitting the breakpoint stops, you have a better
chance of getting all your processes there. However, you must be careful not to have any other breakpoints
between where the program is currently at and the target breakpoint. If processes hit these other breakpoints,
you are once again left to run processes individually to the breakpoint.

Why single stepping doesn’t work

Single stepping is just too tedious if you have a long way to go to get to your synchronization point, and stepping
just won’t work if your processes don’t execute exactly the same code.

Why barrier points work

If you use a barrier point, you can use the Group > Go command as many times as it takes to get all of your pro-
cesses to the barrier, and you won’t have to worry about a process running past the barrier.

The Root Window shows you which processes have hit the barrier, grouping all held processes under Breakpoint
in the first column.

426

Manipulating Processes and Threads Using Barrier Points

Barrier Point Illustration
Creating a barrier point tells TotalView to hold a process when it reaches the barrier. Other processes that can
reach the barrier but aren’t yet at it continue executing. One-by-one, processes reach the barrier and, when they
do, TotalView holds them.

When a process is held, it ignores commands that tell it to execute. This means, for example, that you can’t tell it
to go or to step. If, for some reason, you want the process to execute, you can manually release it using either the
Group > Release or Process > Release Threads command.

When all processes that share a barrier reach it, TotalView changes their state from held to released, which means
they no longer ignore a command that tells them to begin executing.

The following figure shows seven processes that are sharing the same barrier. (Processes that aren’t affected by
the barrier aren’t shown.)

 First block: All seven processes are running freely.

 Second block: One process hits the barrier and is held. Six processes are executing.

 Third block: Five of the processes have now hit the barrier and are being held. Two are executing.

RELATED TOPICS
Barrier points Setting Barrier Points on page 215

The CLI dbarrier command dbarrier in "CLI Commands" in the Classic
TotalView Reference Guide

427

Manipulating Processes and Threads Using Barrier Points

 Fourth block: All processes have hit the barrier. Because TotalView isn’t waiting for anything else to
reach the barrier, it changes the processes’ states to released. Although the processes are released,
none are executing.

For more information on barriers, see Setting Barrier Points on page 215.

Figure 221, Running To Barriers

RELATED TOPICS
Barrier points Setting Barrier Points on page 215

The CLI dbarrier command dbarrier in "CLI Commands" in the Classic
TotalView Reference Guide

Barrier Barrier Barrier

Running Freely One Held None Held

Barrier

Five Held
All Released

428

Manipulating Processes and Threads Examining Groups

Examining Groups
When you debug a multi-process program, TotalView adds processes to both a control and a share group as the
process starts. These groups are not related to either UNIX process groups. (See About Groups, Processes,
and Threads on page 383 for information on groups.)

Because a program can have more than one control group and more than one share group, TotalView decides
where to place a process based on the type of system call—which can either be fork() or execve()—that created
or changed the process. The two types of process groups are:

Control Group The parent process and all related processes. A control group includes children that a process
forks (processes that share the same source code as the parent). It also includes forked chil-
dren that subsequently call a function such as execve(). That is, a control group can contain
processes that don’t share the same source code as the parent.

Control groups also include processes created in parallel programming disciplines like MPI.

Share Group The set of processes in a control group that shares the same source code. Members of the
same share group share action points.

NOTE: See Group, Process, and Thread Control on page 571 for a complete discussion of groups.

TotalView automatically creates share groups when your processes fork children that call the execve() function,
or when your program creates processes that use the same code as some parallel programming models such as
MPI do.

TotalView names processes according to the name of the source program, using the following naming rules:

 TotalView names the parent process after the source program.

 The name for forked child processes differs from the parent in that TotalView appends a numeric
suffix (.n). If you’re running an MPI program, the numeric suffix is the process’s rank in
COMM_WORLD.

 If a child process calls the execve() function after it is forked, TotalView places a new executable
name in angle brackets (<>).

In Figure 222, assume that the generate process doesn’t fork any children, and that the filter process forks two
child processes. Later, the first child forks another child, and then calls the execve() function to execute the expr
program. In this figure, the middle column shows the names that TotalView uses.

429

Manipulating Processes and Threads Examining Groups

Figure 222, Control and Share Groups Example

RELATED TOPICS
Custom group creation Creating Custom Groups on page 602

Understanding threads and pro-
cesses and how TotalView organizes
them

About Groups, Processes, and Threads

TotalView’s process/thread model in
detail

Group, Process, and Thread Control

Control
Group 2

Share Group 1

Share Group 2

Share Group 3

filter
filter.1
filter.2

filter<expr>.1.1
generate

parent process #1
child process #1
child process #2

grandchild process #1
parent process #2

Process Groups

Control
Group 1

Process Names Relationship

430

Manipulating Processes and Threads Placing Processes in Groups

Placing Processes in Groups
TotalView uses your executable’s name to determine the share group that the program belongs to. If the path
names are identical, TotalView assumes that they are the same program. If the path names differ, TotalView
assumes that they are different, even if the file name in the path name is the same, and places them in different
share groups.

RELATED TOPICS
Using the Group > Edit Group command Group > Edit Group in the in-product

Help

431

Manipulating Processes and Threads Starting Processes and Threads

Starting Processes and Threads
To start a process, select a Go command from the Group, Process, or Thread pulldown menus.

After you select a Go command, TotalView determines what to execute based on the current thread. It uses this
thread, which is called the Thread of Interest (TOI), to decide other threads that should run. For example, if you
select Group > Go, TotalView continues all threads in the current group that are associated with this thread.

The commands you will use most often are Group > Go and Process > Go. The Group > Go command creates
and starts the current process and all other processes in the multi-process program. There are some limitations,
however. TotalView only resumes a process if the following are true:

 The process is not being held.

 The process already exists and is stopped.

 The process is at a breakpoint.

Using a Group > Go command on a process that’s already running starts the other members of the process’s
control group.

If the process hasn’t yet been created, a Go command creates and starts it. Starting a process means that all
threads in the process resume executing unless you are individually holding a thread.

NOTE: TotalView disables the Thread > Go command if asynchronous thread control is not available.
If you enter a thread-level command in the CLI when asynchronous thread controls aren’t
available, TotalView tries to perform an equivalent action. For example, it continues a process
instead of a thread.

For a single-process program, the Process > Go and Group > Go commands are equivalent. For a single-
threaded process, the Process > Go and Thread > Go commands are equivalent.

CLI: dfocus g dgo
Abbreviation: G

CLI: dgo

432

Manipulating Processes and Threads Creating a Process Without Starting It

Creating a Process Without Starting It
The Process > Create command creates a process and stops it before the first statement in your program exe-
cutes. If you link a program with shared libraries, TotalView allows the dynamic loader to map into these libraries.
Creating a process without starting it is useful when you need to do the following:

 Create watchpoints or change the values of global variables after a process is created, but before it
runs.

 Debug C++ static constructor code.

CLI: dstepi
While there is no CLI equivalent to the Process > Create command, exe-
cuting the dstepi command produces the same effect.

433

Manipulating Processes and Threads Creating a Process by Single-Stepping

Creating a Process by Single-Stepping
The TotalView single-stepping commands let you create a process and run it to the beginning of your program.
The single-stepping commands available from the Process menu are as shown in the following table:

If a group-level or thread-level stepping command creates a process, the behavior is the same as if it were a pro-
cess-level command.

NOTE: Group, Process, and Thread Control on page 571 contains a detailed discussion of setting the
focus for stepping commands.

GUI command CLI command Creates the process and ...

Process > Step dfocus p dstep Runs it to the first line of the main() routine.

Process > Next dfocus p dnext Runs it to the first line of the main() routine; this
is the same as Process > Step.

Process >
Step Instruction

dfocus p dstepi Stops it before any of your program executes.

Process >
Next Instruction

dfocus p dnexti Runs it to the first line of the main() routine. This
is the same as Process > Step.

434

Manipulating Processes and Threads Stepping and Setting Breakpoints

Stepping and Setting Breakpoints
Several of the single-stepping commands require that you select a source line or machine instruction in the
Source Pane. To select a source line, place the cursor over the line and click your left mouse button. If you select
a source line that has more than one instantiation, TotalView will try to do the right thing. For example, if you
select a line within a template so you can set a breakpoint on it, you’ll actually set a breakpoint on all of the tem-
plate’s instantiations. If this isn’t what you want, select the Addresses button in the Action Point > Properties
Dialog Box to change which instantiations will have a breakpoint.

Initially, addresses are either enabled or disabled, but you can change their state by clicking the checkbox in the
first column. The checkbox in the columns bar enables or disables all the addresses. This dialog supports select-
ing multiple separate items (Ctrl-Click) or a range of items (Shift-Click or click and drag). Once the desired subset is
selected, right-click one of the selected items and choose Enable Selection or Disable Selection from the context
menu.

Filtering

In complex programs that use many shared libraries, the number of addresses can become very large, so the
Addresses dialog has several mechanisms to manage the data. The search box filters the currently displayed data
based on one or more space-separated strings or phrases (enclosed in quotes). Remember that data not cur-
rently displayed is not included in the filtering. It may be helpful to click the Detailed Information checkbox, which
displays much more complete symbol table information, giving you more possibilities for filtering.

Figure 223, Action Point and Addresses Dialog Boxes

435

Manipulating Processes and Threads Stepping and Setting Breakpoints

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between
ascending and descending order. If entry values in a column are the same, the values of the column to the right
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new
location.

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have
been assigned.

Similarly, if TotalView cannot figure out which instantiation to set a breakpoint at, it displays its Address Dialog
Box.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

Figure 224, Ambiguous Address Dialog Box

436

Manipulating Processes and Threads Stepping and Setting Breakpoints

RELATED TOPICS
Action points Setting Action Points on page 188

437

Debugging Strategies for
Parallel Applications

This chapter provides tips and strategies for debugging parallel programs.

 General Parallel Debugging Tips on page 438

 Breakpoints, Stepping, and Program Execution on page 438

 Viewing Processes, Threads, and Variables on page 439

 Restarting from within TotalView on page 440

 Attaching to Processes Tips on page 440

 MPI Debugging Tips and Tools on page 445

 MPI Display Tools on page 445

 MPICH Debugging Tips on page 451

 IBM PE Debugging Tips on page 453

RELATED TOPICS
A general discussion on ways to simplify the debug-
ging of complex, multi-threaded and multi-process
applications

Simplifying What You’re Debugging on page 404

438

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

General Parallel Debugging Tips
This section provides debugging tips relevant to most parallel programs.

Breakpoints, Stepping, and Program Execution

Setting Breakpoint Behavior

When you’re debugging message-passing and other multi-process programs, it is usually easier to understand
the program’s behavior if you change the default stopping action of breakpoints and barrier breakpoints. By
default, when one process in a multi-process program hits a breakpoint, TotalView stops all other processes.

To change the default stopping action of breakpoints and barrier breakpoints, you can set debugger preferences.
The online Help contains information on these preference. These preferences tell TotalView whether to continue
to run when a process or thread hits the breakpoint.

These options affect only the default behavior. You can choose a behavior for a breakpoint by setting the break-
point properties in the File > Preferences Action Points Page. See Setting Breakpoints for Multiple Processes
on page 211.

Synchronizing Processes

TotalView has two features that make it easier to get all of the processes in a multi-process program synchronized
and executing a line of code. Process barrier breakpoints and the process hold/release features work together to
help you control the execution of your processes. See Setting Barrier Points on page 215.

The Process Window Group > Run To command is a special stepping command. It lets you run a group of pro-
cesses to a selected source line or instruction. See Stepping (Part I) on page 575.

Using Group Commands

Group commands are often more useful than process commands.

It is often more useful to use the Group > Go command to restart the whole application instead of the Process >
Go command.

CLI: dfocus g dgo
Abbreviation: G

439

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

You would then use the Group > Halt command instead of Process > Halt to stop execution.

The group-level single-stepping commands such as Group > Step and Group > Next let you single-step a group
of processes in a parallel. See Stepping (Part I) on page 575.

Stepping at Process Level

If you use a process-level single-stepping command in a multi-process program, TotalView may appear to hang (it
continuously displays the watch cursor). If you single-step a process over a statement that can’t complete without
allowing another process to run, and that process is stopped, the stepping process appears to hang. This can
occur, for example, when you try to single-step a process over a communication operation that cannot complete
without the participation of another process. When this happens, you can abort the single-step operation by
selecting Cancel in the Waiting for Command to Complete Window that TotalView displays. As an alternative,
consider using a group-level single-step command.

NOTE: Rogue Wave receives many bug reports on hung processes, usually because one process is
waiting for another. Using the Group debugging commands almost always solves this
problem.

Viewing Processes, Threads, and Variables

Identifying Process and Thread Execution

The Root Window helps you determine where various processes and threads are executing. When you select a
line of code in the Process Window, the Root Window updates to show which processes and threads are execut-
ing that line.

CLI: dfocus g dhalt
Abbreviation: H

CLI: dfocus g dstep
Abbreviation: S
dfocus g dnext
Abbreviation: N

CLI: Type Ctrl+C

440

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

Viewing Variable Values

You can view the value of a variable that is replicated across multiple processes or multiple threads in a single
Variable Window. See Displaying a Variable in all Processes or Threads on page 330.

Restarting from within TotalView
You can restart a parallel program at any time. If your program runs past the point you want to examine, you can
kill the program by selecting the Group > Kill command. This command kills the master process and all the slave
processes. Restarting the master process (for example, mpirun or poe) recreates all of the slave processes. Start
up is faster when you do this because TotalView doesn’t need to reread the symbol tables or restart its tvdsvr
processes, since they are already running.

Attaching to Processes Tips
In a typical multi-process job, you’re interested in some processes and not as much in others. By default,
TotalView tries to attach to all of the processes that your program starts. If there are a lot of processes, there can
be considerable overhead involved in opening and communicating with the jobs.

CLI: dfocus g dkill

441

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

You can minimize this overhead by using the Attach Subset dialog box, shown in Figure 225.

NOTE: You can start MPI jobs in two ways. One requires that the starter program be under TotalView
control and have special instrumentation for TotalView, while the other does not. In the first
case, you will enter the name of the starter program on the command line. The other requires
that you enter information into the File > Debug New Program or File > Debug New Parallel
Program > dialog boxes. The Attach Subset command is available only if you directly name a
starter program on the command line.

The Subset Attach dialog box can be launched in multiple ways. It is automatically available when you launch your
job with the parallel preference set to “Ask what to do.” (See Figure 227). It is also available through other menu
options after the job has been started, as discussed later in this section.

Selecting check boxes in the Attach column defines the processes to attach to. Although your program will launch
all these processes, TotalView attaches only to the those you have selected.

The Attach All and Detach All buttons elect or deselect all the processes at once. You can then use the check
boxes to select and deselect individual processes. For example, to attach to only a few processes in a lengthy list,
use Detach All and then select those to which TotalView should attach.

The Filter controls restrict which processes are displayed; filtering is unrelated to attaching or detaching.

Figure 225, Group > Attach Subset Dialog Box

442

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

 The Communicator control specifies that the processes displayed must be involved with the
communicators that you select. For example, if something goes wrong that involves a
communicator, selecting it from the list displays only the processes that use that communicator.
You can then use Attach All to attach to only those processes.

 The Talking to Rank control limits the processes displayed to those that receive messages from
the indicated ranks. In addition to your rank numers, you can also select All or MPI_ANY_SOURCE.

 The Array of Ranks option is automatically selected and the array name displayed if you have
invoked Tools > Attach Subset (Array of Ranks) from the Variable Window. In this case, the dialog
box will only display the list of processes whose ranks match the array elements.

 The List of Ranks control allows you to enter rank numbers to filter on. Use a dash to indicate a
range of ranks, and commas to indicate individual ranks. For example: 3, 10-16, 24.

 The three checkboxes in the Message Type area add yet another qualifier. Checking a box displays
only communicators that are involved with a Send, Receive, or Unexpected message.

The Halt Control Group button is not active if the dialog box is launched after the job is already started. It is
active only at the initial startup of a parallel job. You typically want to halt processes to allow the setting of
breakpoints.

Many applications place values that indicate ranks in an array variable so that the program can refer to them as
needed. You can display the variable in a Variable Window and then select the Tools > Attach Subset (Array of
Ranks) command to display this dialog box. (See the Array of Ranks explanation above.)

You can use the Group > Attach Subset command at any time, but you would probably use it immediately before
TotalView launches processes. Unless you have set preferences otherwise, TotalView stops and asks if you want it
to stop your processes. When selected, the Halt control group check box also stops a process just before it
begins executing.

If you click Yes, when the job stops the starter process should be at a “magic breakpoint.” These are set by
TotalView behind the scene, and usually not visible. The other processes may or may not be at a “magic
breakpoint.”

Figure 226, Stop Before Going Parallel Question Box

443

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

The commands on the Parallel Page in the File > Preferences Dialog Box control what TotalView does when your
program goes parallel.

NOTE: TotalView displays the preceding question box only when you directly name a starter program
on the command line.

The radio buttons in the When a job goes parallel or calls exec() area:

 Stop the group: Stops the control group immediately after the processes are created.

 Run the group: Allows all newly created processes in the control group to run freely.

 Ask what to do: Asks whether TotalView should start the created processes.

The radio buttons in the When a job goes parallel area:

 Attach to all: Automatically attaches to all processes at executing.

 Attach to none: Does not attach to any created process at execution.

Figure 227, File > Preferences: Parallel Page

CLI: dset TV::parallel_stop

444

Debugging Strategies for Parallel Applications General Parallel Debugging Tips

 Ask what to do: Asks what processes to attach to. For this option, the same dialog box opens as
that displayed for Group > Attach Subset. TotalView then attaches to the processes that you have
selected. Note that this dialog box isn’t displayed when you set the preference; rather, it controls
behavior when your program actually creates parallel processes.

CLI: dset TV::parallel_attach

445

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

MPI Debugging Tips and Tools
TotalView provides specific tools to view MPI program status, including rank and message queues.

This section discusses these display tools as well as any other information specific to an MPI program.

MPI Display Tools
The tools available for MPI display include the Processes/Ranks Tab and the Message Queue Graph Window.

MPI Rank Display

The Processes/Ranks Tab at the bottom of the Process Window displays the status of each rank. For example, in
Figure 228, one rank is at a breakpoint, two are running, and five are stopped.

Figure 228, Ranks Tab

RELATED TOPICS
Creating Custom Groups Creating Custom Groups on page 602

The Processes/Rank Tab Using the Processes/Ranks and Threads Tabs on page 418.

446

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

Displaying the Message Queue Graph Window

TotalView can graphically display your MPI program’s message queue state. Select the Process Window Tools >
Message Queue Graph command to display a graph of the current message queue state.

If you want to restrict the display, select the Options button, Figure 230.

Figure 229, Tools > Message Queue Graph Window

Figure 230, Tools > Message Queue Graph Options Window

447

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

Here, you can alter the way in which TotalView displays ranks within this window—for example, as a grid or in a
circle.

Use the commands within the Cycle Detection tab to receive reports about cycles in your messages. This is a
quick and efficient way to detect when messages are blocking one another and causing deadlocks.

Perhaps the most used of these tabs is Filter.

The button colors used for selecting messages are the same as those used to draw the lines and arrows in the
Message Queue Graph Window, as follows:

 Green: Pending Sends

 Blue: Pending Receives

 Red: Unexpected Messages

You can directly select which ranks you want displayed in the lower part of the window. The Filter on specified
message tags area lets you name the tags to be used as filters. Finally, you can select a group or a communicator
in the group pulldown. If you have created your own communicators and groups, they appear here.

Changes made within the Options dialog box do not occur until you click Apply. The graph window then updates
to reflect your changes.

The message queue graph shows your program’s state at a particular instant. Select Update to fetch new infor-
mation and redraw the graph.

The numbers in the boxes within the Message Queue Graph Window indicate the MPI message source or desti-
nation process rank. Diving on a box opens a Process Window for that process.

Figure 231, Tools > Message Queue Graph Options. Filter Tab

448

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

The numbers next to the arrows indicate the MPI message tags that existed when TotalView created the graph.
Diving on an arrow displays the Tools > Message Queue Window, with detailed information about the messages.
If TotalView has not attached to a process, it displays this information in a grey box.

You can use the Message Queue Graph Window in many ways, including the following:

 Pending messages often indicate that a process can’t keep up with the amount of work it is
expected to perform. These messages indicate places where you may be able to improve your
program’s efficiency.

 Unexpected messages can indicate that something is wrong with your program because the
receiving process doesn’t know how to process the message. The red lines indicate unexpected
messages.

 After a while, the shape of the graph tends to tell you something about how your program is
executing. If something doesn’t look right, you will want to determine why.

 You can change the shape of the graph by dragging nodes or arrows. This is often useful when
you’re comparing sets of nodes and their messages with one another. By default, TotalView does
not persist changes to the graph shape. This means that if you select Update after you arrange the
graph, your changes are lost. To retain your changes, select Keep nodes as positioned from with
the Options dialog box.

Displaying the Message Queue

The Tools > Message Queue Window displays your MPI program’s message queue state textually. This can be
useful when you need to find out why a deadlock occurred.

MPI versions that support message queue display are described in the Platforms Guide in the product distribu-
tion at <installdir>/totalview.<version>/doc/pdf, or available on the TotalView documentation website at
https://help.totalview.io/.

https://help.totalview.io/
https://help.totalview.io/

449

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

About the Message Queue Display

After an MPI process returns from the call to MPI_Init(), you can display the internal state of the MPI library by
selecting the Tools > Message Queue command, Figure 232.

This window displays the state of the process’ MPI communicators. If user-visible communicators are imple-
mented as two internal communicator structures, TotalView displays both. One is used for point-to-point
operations and the other is used for collective operations.

NOTE: You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue Window are valid only when a process is stopped.

Using Message Operations

For each communicator, TotalView displays a list of pending receive operations, pending unexpected messages,
and pending send operations. Each operation has an index value displayed in brackets ([n]).

Figure 232, Message Queue Window

RELATED TOPICS
Message Queue field descriptions available for display "Message Queue Window" in the in-product help

Message operations "Message Operations" in the in-product Help

450

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

Diving on MPI Processes

To display more detail, you can dive into fields in the Message Queue Window. When you dive into a process field,
TotalView does one of the following:

 Raises its Process Window if it exists.

 Sets the focus to an existing Process Window on the requested process.

 Creates a new Process Window for the process if a Process Window doesn’t exist.

Diving on MPI Buffers

When you dive into the buffer fields, TotalView opens a Variable Window. It also guesses the correct format for the
data based on the buffer length and data alignment. You can edit the Type field within the Variable Window, if
necessary.

NOTE: TotalView doesn’t use the MPI data type to set the buffer type.

About Pending Receive Operations

TotalView displays each pending receive operation in the Pending receives list. Figure 233 shows an example of
an MPICH pending receive operation.

Figure 233, Message Queue Window Showing Pending Receive Operation

451

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

NOTE: TotalView displays all receive operations maintained by the IBM MPI library. Set the environ-
ment variable MP_EUIDEVELOP to DEBUG to make blocking operations visible; otherwise, the
library maintains only nonblocking operations. For more details on this variable, see the IBM
Parallel Environment Operations and Use manual.

About Unexpected Messages

The Unexpected messages portion of the Message Queue Window shows information for retrieved and
enqueued messages that are not yet matched with a receive operation.

Some MPI libraries, such as MPICH, only retrieve messages that have already been received as a side effect of
calls to functions such as MPI_Recv() or MPI_Iprobe(). (In other words, while some versions of MPI may know
about the message, the message may not yet be in a queue.) This means that TotalView can’t list a message until
after the destination process makes a call that retrieves it.

About Pending Send Operations

TotalView displays each pending send operation in the Pending sends list.

MPICH does not normally keep information about pending send operations. If you want to see them, start your
program under TotalView control and use the mpirun -ksq or -KeepSendQueue command.

Depending on the device for which MPICH was configured, blocking send operations may or may not be visible.
However, if TotalView doesn’t display them, you can see that these operations occurred because the call is in the
stack backtrace.

If you attach to an MPI program that isn’t maintaining send queue information, TotalView displays the following
message:
Pending sends : no information available

MPICH Debugging Tips
These debugging tips apply only to MPICH:

 Passing options to mpirun

You can pass options to TotalView using the MPICH mpirun command.

To pass options to TotalView when running mpirun, you can use the TOTALVIEW environment variable. For
example, you can cause mpirun to invoke TotalView with the -no_stop_all option, as in the following C shell
example:
setenv TOTALVIEW "totalview -no_stop_all"

452

Debugging Strategies for Parallel Applications MPI Debugging Tips and Tools

 Using ch_p4

If you start remote processes with MPICH/ch_p4, you may need to change the way TotalView starts its serv-
ers.

By default, TotalView uses ssh to start its remote server processes. This is the same behavior as ch_p4 uses.
If you configure ch_p4 to use a different start-up mechanism from another process, you probably also need
to change the way that TotalView starts the servers.

RELATED TOPICS
MPICH configuration and session
setup

MPICH Applications on page 523 and MPICH2 Applications on
page 528

tvdsvr and ssh TotalView Server Launch Options and Commands on page 495

ssh specifically Setting the Single-Process Server Launch Command on page 498

453

Debugging Strategies for Parallel Applications IBM PE Debugging Tips

IBM PE Debugging Tips
These debugging tips apply only to IBM MPI (PE):

 Avoid unwanted timeouts

Timeouts can occur if you place breakpoints that stop other processes too soon after calling MPI_Init() or
MPL_Init(). If you create “stop all” breakpoints, the first process that gets to the breakpoint stops all the other
parallel processes that have not yet arrived at the breakpoint. This can cause a timeout.

To turn the option off, select the Process Window Action Point > Properties command while the line with
the stop symbol is selected. After the Properties Dialog Box appears, select the Process button in the When
Hit, Stop area, and also select the Plant in share group button.

 Control the poe process

Even though the poe process continues under debugger control, do not attempt to start, stop, or otherwise
interact with it. Your parallel tasks require that poe continues to run. For this reason, if poe is stopped,
TotalView automatically continues it when you continue any parallel task.

 Avoid slow processes due to node saturation

If you try to debug a PE program in which more than three parallel tasks run on a single node, the parallel
tasks on each node can run noticeably slower than they would run if you were not debugging them.

In general, the number of processes running on a node should be the same as the number of processors in
the node.

This becomes more noticeable as the number of tasks increases, and, in some cases, the parallel tasks does
not progress. This is because PE uses the SIGALRM signal to implement communications operations, and
AIX requires that debuggers must intercept all signals. As the number of parallel tasks on a node increases,
TotalView becomes saturated and can’t keep up with the SIGALRM signals being sent, thus slowing the tasks.

CLI: dbarrier location -stop_when_hit process

RELATED TOPICS
Detail on IBM PE configuration
and session setup

IBM MPI Parallel Environment (PE) Applications on page 532

 454

PART III Using the CLI

This part deals exclusively with the CLI. Most CLI commands must have a process/thread focus for what they
do. See Group, Process, and Thread Control on page 571 for more information.

 Using the Command Line Interface (CLI)
You can use CLI commands without knowing much about Tcl, which is the approach taken in this chapter. This
chapter tells you how to enter CLI commands and how the CLI and TotalView interact with one another when
used in a nongraphical way.

 Seeing the CLI at Work
While you can use the CLI as a stand-alone debugger, using the GUI is usually easier. You will most often use the
CLI when you need to debug programs using very slow communication lines or when you need to create debug-
ging functions that are unique to your program. This chapter presents a few Tcl macros in which CLI commands
are embedded.
Most of these examples are simple, designed to give you a feel for what you can do.

455

Using the Command Line Interface
(CLI)

The two components of the Command Line Interface (CLI) are the Tcl-based programming environment and
the commands added to the Tcl interpreter that lets you debug your program. This chapter looks at how
these components interact, and describes how you specify processes, groups, and threads.

This chapter emphasizes interactive use of the CLI rather than using the CLI as a programming language
because many of its concepts are easier to understand in an interactive framework. However, everything in
this chapter can be used in both environments.

This chapter contains the following sections:

 About the Tcl and the CLI on page 456

 Starting the CLI on page 458

 About CLI Output on page 462

 Using Command Arguments on page 464

 Using Namespaces on page 465

 About the CLI Prompt on page 466

 Using Built-in and Group Aliases on page 467

 How Parallelism Affects Behavior on page 468

 Controlling Program Execution on page 470

456

Using the Command Line Interface (CLI) About the Tcl and the CLI

About the Tcl and the CLI
The CLI is built in version 8.0 of Tcl, so TotalView CLI commands are built into Tcl. This means that the CLI is not a
library of commands that you can bring into other implementations of Tcl. Because the Tcl you are running is the
standard 8.0 version, the CLI supports all libraries and operations that run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands. This lets you enter and execute all CLI
commands in exactly the same way as you enter and execute built-in Tcl commands. As CLI commands are also
Tcl commands, you can embed Tcl primitives and functions in CLI commands, and embed CLI commands in
sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl commands to manipulate that list, and
then use a CLI command that operates on the elements of this list. You can also create a Tcl function that dynam-
ically builds the arguments that a process uses when it begins executing.

About The CLI and TotalView
Figure 234 illustrates the relationship between the CLI, the GUI, the TotalView core, and your program:

The CLI and GUI are components that communicate with the TotalView core, which is what actually does the work.
In this figure, the dotted arrow between the GUI and the CLI indicates that you can invoke the CLI from the GUI.
The reverse is not true: you can’t invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up your program, receives information
back from these processes, and passes information back to the component that sent the request. If the GUI is
also active, the core also updates the GUI’s windows. For example, stepping your program from within the CLI
changes the PC in the Process Window, updates data values, and so on.

Figure 234, The CLI, GUI and TotalView

CLI GUI

Core

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged

TotalView
Tcl

457

Using the Command Line Interface (CLI) About the Tcl and the CLI

Using the CLI Interface
You interact with the CLI by entering a CLI or Tcl command. (Entering a Tcl command does exactly the same thing
in the CLI as it does when interacting with a Tcl interpreter.) Typically, the effect of executing a CLI command is
one or more of the following:

 The CLI displays information about your program.

 A change takes place in your program’s state.

 A change takes place in the information that the CLI maintains about your program.

After the CLI executes your command, it displays a prompt. Although CLI commands are executed sequentially,
commands executed by your program might not be. For example, the CLI doesn’t require that your program be
stopped when it prompts for and performs commands. It only requires that the last CLI command be complete
before it can begin executing the next one. In many cases, the processes and threads being debugged continue
to execute after the CLI has finished doing what you asked it to do.

If you need to stop an executing command or Tcl macro, press Ctrl+C while the command is executing. If the CLI is
displaying its prompt, typing Ctrl+C stops any executing processes.

Because actions are occurring constantly, state information and other kinds of messages that the CLI displays are
usually mixed in with the commands that you type. You might want to limit the amount of information TotalView
displays by setting the VERBOSE variable to WARNING or ERROR. (For more information, see the “Variables”
chapter in the Classic TotalView Reference Guide.)

458

Using the Command Line Interface (CLI) Starting the CLI

Starting the CLI
You can start the CLI in one of the following ways:

 You can start the CLI from the GUI by selecting the Tools > Command Line command in the Root
or Process Windows. After selecting this command, TotalView opens a window into which you can
enter CLI commands.

 You can start the CLI directly from a shell prompt by typing totalviewcli. (This assumes that the
TotalView binary directory is in your path.)

Figure 235 is a snapshot of a CLI window that shows part of a program being debugged.

If you have problems entering and editing commands, it might be because you invoked the CLI from a shell or
process that manipulates your stty settings. You can eliminate these problems if you use the stty sane CLI com-
mand. (If the sane option isn’t available, you have to change values individually.)

If you start the CLI with the totalviewcli command, you can use all of the command-line options that you can use
when starting TotalView, except those that have to do with the GUI. (In some cases, TotalView displays an error
message if you try. In others, it just ignores what you did.)

Information on command-line options is in the "TotalView Command Syntax" chapter of the Classic TotalView Ref-
erence Guide.

Figure 235, CLI xterm Window

459

Using the Command Line Interface (CLI) Starting the CLI

Startup Example
The following is a very small CLI script:
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file, which was described in Seeing the CLI
at Work on page 472. It then loads the fork_loop executable, sets its default startup arguments, and steps one
source-level statement.

If you stored this in a file named fork_loop.tvd, you can tell TotalView to start the CLI and execute this file by
entering the following command:
totalviewcli -s fork_loop.tvd

The following example places a similar set of commands in a file that you invoke from the shell:
#!/bin/sh
Next line executed by shell, but ignored by Tcl because: \

exec totalviewcli -s "$0" "$@"
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

RELATED TOPICS
All the ways to start TotalView Starting TotalView on page 89

How to perform remote debugging Setting Up Remote Debugging Sessions on page 484

Setting up for MPI debugging Setting Up MPI Debugging Sessions on page 516

Setting up for non-MPI parallel
debugging

Setting Up Parallel Debugging Sessions on page 546

460

Using the Command Line Interface (CLI) Starting the CLI

The only real difference between the last two examples is the first few lines in the file. In this second example, the
shell ignores the backslash continuation character; Tcl processes it. This means that the shell executes the exec
command while Tcl will ignore it.

Starting Your Program
The CLI lets you start debugging operations in several ways. To execute your program from within the CLI, enter a
dload command followed by the drun command.

NOTE: If your program is launched from a starter program such as srun or aprun, use the drerun
command rather than drun to start your program. If you use drun, default arguments to the
process are suppressed; drerun passes them on.

The following example uses the totalviewcli command to start the CLI. This is followed by dload and drun com-
mands. Since this was not the first time the file was run, breakpoints exist from a previous session.

NOTE: In this listing, the CLI prompt is “d1.<>”. The information preceding the greater-than symbol
(>) symbol indicates the processes and threads upon which the current command acts. The
prompt is discussed in About the CLI Prompt on page 466.

% totalviewcli
d1.<> dload arraysAlpha #load the arraysAlpha program
1
d1.<> dactions # Show the action points
No matching breakpoints were found
d1.<> dlist -n 10 75
 75 real16_array (i, j) = 4.093215 * j+2
 76 #endif
 77 26 continue
 78 27 continue
 79
 80 do 40 i = 1, 500
 81 denorms(i) = x'00000001'
 82 40 continue
 83 do 42 i = 500, 1000
 84 denorms(i) = x'80000001'
d1.<> dbreak 80 # Add two action points
1
d1.<> dbreak 83
2

461

Using the Command Line Interface (CLI) Starting the CLI

d1.<> drun # Run the program to the action point
This two-step operation of loading and running supports setting action points before execution begins, as well as
executing a program more than once. At a later time, you can use drerun to restart your program, perhaps send-
ing it new arguments. In contrast, reentering the dload command tells the CLI to reload the program into
memory (for example, after editing and recompiling the program).

The dload command always creates a new process. The new process is in addition to any existing processes for
the program because the CLI does not shut down older processes when starting the new one.

The dkill command terminates one or more processes of a program started by using a dload, drun, or drerun
command. The following example continues where the previous example left off:
d1.<> dkill # kills process
d1.<> drun # runs program from start
d1.<> dlist -e -n 3 # shows lines about current spot
 79
 80@> do 40 i = 1, 500
 81 denorms(i) = x'00000001'
d1.<> dwhat master_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100);
 Size: 400 bytes; Addr: 0x140821310
 Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
 (Scope class: Any)
 Address class: proc_static_var
 (Routine static variable)
d1.<> dgo # Start program running
d1.<> dwhat denorms # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes;
 Addr: 0x1408214b8
 Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
 (Scope class: Any)
 Address class: proc_static_var
 (Routine static variable)
d1.<> dprint denorms(0) # Show me what is stored
 denorms(0) = 0x0000000000000001 (1)
d1.<>

Because information is interleaved, you may not realize that the prompt has appeared. It is always safe to use the
Enter key to have the CLI redisplay its prompt. If a prompt isn’t displayed after you press Enter, you know that the
CLI is still executing.

462

Using the Command Line Interface (CLI) About CLI Output

About CLI Output
A CLI command can either print its output to a window or return the output as a character string. If the CLI exe-
cutes a command that returns a string value, it also prints the returned string. Most of the time, you won’t care
about the difference between printing and returning-and-printing. Either way, the CLI displays information in your
window. And, in both cases, printed output is fed through a simple more processor. (This is discussed in more
detail in the next section.)

In the following two cases, it matters whether the CLI directly prints output or returns and then prints it:

 When the Tcl interpreter executes a list of commands, the CLI only prints the information returned
from the last command. It doesn’t show information returned by other commands.

 You can only assign the output of a command to a variable if the CLI returns a command’s output.
You can’t assign output that the interpreter prints directly to a variable, or otherwise manipulate it,
unless you save it using the capture command.

For example, the dload command returns the ID of the process object that was just created. The ID is normally
printed—unless, of course, the dload command appears in the middle of a list of commands; for example:
{dload test_program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program, since the dload command was not the last
command.

When information is returned, you can assign it to a variable. For example, the next command assigns the ID of a
newly created process to a variable:
set pid [dload test_program]

Because you can’t assign the output of the help command to a variable, the following doesn’t work:
set htext [help]

This statement assigns an empty string to htext because the help command doesn’t return text. It just prints it.

To save the output of a command that prints its output, use the capture command. For example, the following
example writes the help command’s output into a variable:
set htext [capture help]

NOTE: You can capture the output only from commands. You can’t capture the informational mes-
sages displayed by the CLI that describe process state. If you are using the GUI, TotalView also
writes this information to the Log Window. You can display this information by using the Tools
> Event Log command.

463

Using the Command Line Interface (CLI) About CLI Output

‘more’ Processing
When the CLI displays output, it sends data through a simple more-like process. This prevents data from scrolling
off the screen before you view it. After you see the MORE prompt, press Enter to see the next screen of data. If
you type q (followed by pressing the Enter key), the CLI discards any data it hasn’t yet displayed.

You can control the number of lines displayed between prompts by using the dset command to set the
LINES_PER_SCREEN CLI variable. (For more information, see the Classic TotalView Reference Guide.)

464

Using the Command Line Interface (CLI) Using Command Arguments

Using Command Arguments
The default command arguments for a process are stored in the ARGS(num) variable, where num is the CLI ID
for the process. If you don’t set the ARGS(num) variable for a process, the CLI uses the value stored in the
ARGS_DEFAULT variable. TotalView sets the ARGS_DEFAULT variable when you use the -a option when starting
the CLI or the GUI.

NOTE: The -a option tells TotalView to pass everything that follows on the command line to the
program.

For example:
totalviewcli -a argument-1, argument-2, ...

To set (or clear) the default arguments for a process, you can use the dset (or dunset) command to modify the
ARGS() variables directly, or you can start the process with the drun command. For example, the following clears
the default argument list for process 2:
dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained in ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT variable; for example:
dunset ARGS_DEFAULT

All commands (except the drun command) that can create a process—including the dgo, drerun, dcont, dstep,
and dnext commands—pass the default arguments to the new process. The drun command differs in that it
replaces the default arguments for the process with the arguments that are passed to it.

RELATED TOPICS
The ARGS variable ARGS in "TotalView Variables" in the Classic TotalView

Reference Guide

The ARGS_DEFAULT variable ARGS_DEFAULT in "TotalView Variables" in the Classic
TotalView Reference Guide

The Process > Startup Parameters command Process > Startup Parameters in the
in-product Help

465

Using the Command Line Interface (CLI) Using Namespaces

Using Namespaces
CLI interactive commands exist in the primary Tcl namespace (::). Some of the TotalView state variables also reside
in this namespace. Seldom-used functions and functions that are not primarily used interactively reside in other
namespaces. These namespaces also contain most TotalView state variables. (The variables that appear in other
namespaces are usually related to TotalView preferences.) TotalView uses the following namespaces:

TV:: Contains commands and variables that you use when creating functions. They can be used in-
teractively, but this is not their primary role.

TV::GUI:: Contains state variables that define and describe properties of the user interface, such as win-
dow placement and color.

If you discover other namespaces beginning with TV, you have found a namespace that contains private functions
and variables. These objects can (and will) disappear, so don’t use them. Also, don’t create namespaces that begin
with TV, since you can cause problems by interfering with built-in functions and variables.

The CLI dset command lets you set the value of these variables. You can have the CLI display a list of these vari-
ables by specifying the namespace; for example:
dset TV::

You can use wildcards with this command. For example, dset TV::au* displays all variables that begin with “au”.

RELATED TOPICS
CLI namespace commands "CLI Namespace Commands" in the Classic TotalView Reference Guide

TotalView variables "TotalView Variables" in the Classic TotalView Reference Guide

466

Using the Command Line Interface (CLI) About the CLI Prompt

About the CLI Prompt
The appearance of the CLI prompt lets you know that the CLI is ready to accept a command. This prompt lists the
current focus, and then displays a greater-than symbol (>) and a blank space. (The current focus is the processes
and threads to which the next command applies.) For example:

d1.<> The current focus is the default set for each command, focusing on the first user thread in pro-
cess 1.

g2.3> The current focus is process 2, thread 3; commands act on the entire group.

t1.7> The current focus is thread 7 of process 1.

gW3.> The current focus is all worker threads in the control group that contains process 3.

p3/3 The current focus is all processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to set the PROMPT state variable; for
example:
dset PROMPT "Kill this bug! > "

467

Using the Command Line Interface (CLI) Using Built-in and Group Aliases

Using Built-in and Group Aliases
Many CLI commands have an alias that lets you abbreviate the command’s name. (An alias is one or more charac-
ters that Tcl interprets as a command or command argument.)

NOTE: The alias command, which is described in the Classic TotalView Reference Guide, lets you cre-
ate your own aliases.

For example, the following command tells the CLI to halt the current group:
dfocus g dhalt

Using an abbreviation is easier. The following command does the same thing:
f g h

You often type less-used commands in full, but some commands are almost always abbreviated. These com-
mands include dbreak (b), ddown (d), dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase group versions of aliases for a number of commands, including all stepping com-
mands. For example, the alias for dstep is s; in contrast, S is the alias for dfocus g dstep. (The first command tells
the CLI to step the process. The second steps the control group.)

Group aliases differ from the group-level command that you type interactively, as follows:

 They do not work if the current focus is a list. The g focus specifier modifies the current focus, and
can only be applied if the focus contains just one term.

 They always act on the group, no matter what width is specified in the current focus. Therefore,
dfocus t S does a step-group command.

468

Using the Command Line Interface (CLI) How Parallelism Affects Behavior

How Parallelism Affects Behavior
A parallel program consists of some number of processes, each involving some number of threads. Processes fall
into two categories, depending on when they are created:

 Initial process

A pre-existing process from the normal run-time environment (that is, created outside TotalView), or one that
was created as TotalView loaded the program.

 Spawned process

A new process created by a process executing under CLI control.

TotalView assigns an integer value to each individual process and thread under its control. This process/thread
identifier can be the system identifier associated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a debugging session; in contrast, thread
numbers are only unique while the process exists.

Process/thread notation lets you identify the component that a command targets. For example, if your program
has two processes, and each has two threads, four threads exist:

Thread 1 of process 1

Thread 2 of process 1

Thread 1 of process 2

Thread 2 of process 2

You identify the four threads as follows:

1.1—Thread 1 of process 1

1.2—Thread 2 of process 1

2.1—Thread 1 of process 2

2.2—Thread 2 of process 2

RELATED TOPICS
An overview of threads and processes and how
TotalView organizes them into groups

About Groups, Processes, and Threads on page 383

More detail on the TotalView thread/process model
and how to create custom groups

Group, Process, and Thread Control on page 571

469

Using the Command Line Interface (CLI) How Parallelism Affects Behavior

Types of IDs
Multi-threaded, multi-process, and distributed programs contain a variety of IDs. The following types are used in
the CLI and the GUI:

System PID This is the process ID and is generally called the PID.

System TID This is the ID of the system kernel or user thread. On some systems (for example, AIX), the TIDs
have no obvious meaning. On other systems, they start at 1 and are incremented by 1 for each
thread.

TotalView thread ID
This is usually identical to the system TID. On some systems (such as AIX) where the threads
have no obvious meaning, TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package. If this differs from the system TID, the TID
is a pointer value that points to the pthread ID.

Debugger PID This is an ID created by TotalView that lets it identify processes. It is a sequentially numbered
value beginning at 1 that is incremented for each new process. If the target process is killed and
restarted (that is, you use the dkill and drun commands), the TotalView PID does not change.
The system PID changes, however, since the operating system has created a new target pro-
cess.

470

Using the Command Line Interface (CLI) Controlling Program Execution

Controlling Program Execution
Knowing what’s going on and where your program is executing is simple in a serial debugging environment. Your
program is either stopped or running. When it is running, an event such as arriving at a breakpoint can occur. This
event tells TotalView to stop the program. Sometime later, you tell the serial program to continue executing. Multi-
process and multi-threaded programs are more complicated. Each thread and each process has its own execu-
tion state. When a thread (or set of threads) triggers a breakpoint, TotalView must decide what it should do about
other threads and processes because it may need to stop some and let others continue to run.

Advancing Program Execution
Debugging begins by entering a dload or dattach command. If you use the dload command, you must use the
drun (or perhaps drerun if there’s a starter program) command to start the program executing. These three
commands work at the process level and you can’t use them to start individual threads. (This is also true for the
dkill command.)

To advance program execution, you enter a command that causes one or more threads to execute instructions.
The commands are applied to a P/T set. (P/T sets are discussed in About Groups, Processes, and Threads on
page 383 and Group, Process, and Thread Control on page 571.) Because the set doesn’t have to include all pro-
cesses and threads, you can cause some processes to be executed while holding others back. You can also
advance program execution by increments, stepping the program forward, and you can define the size of the
increment. For example, dnext 3 executes the next three statements, and then pauses what you’ve been
stepping.

RELATED TOPICS
Tasks for working with a multi-process, multi-
threaded application

Manipulating Processes and Threads on page 407

Stepping commands Using Stepping Commands on page 178

The dload command dload in "CLI Commands" in the Classic TotalView Refer-
ence Guide

The dattach command dattach in "CLI Commands" in the Classic TotalView Refer-
ence Guide

The drun command drun in "CLI Commands" in the Classic TotalView Reference
Guide

The dkill command dkill in "CLI Commands" in the Classic TotalView Reference
Guide

471

Using the Command Line Interface (CLI) Controlling Program Execution

Typically, debugging a program means that you have the program run, and then you stop it and examine its state.
In this sense, a debugger can be thought of as a tool that lets you alter a program’s state in a controlled way, and
debugging is the process of stopping a process to examine its state. However, the term stop has a slightly differ-
ent meaning in a multi-process, multi-threaded program. In these programs, stopping means that the CLI holds
one or more threads at a location until you enter a command that tells them to start executing again. Other
threads, however, may continue executing.

For more detailed information on debugging in general, see Part II, Debugging Tools and Tasks on page 84.

Using Action Points
Action points tell the CLI to stop a program’s execution. You can specify the following types of action points:

 A breakpoint (see dbreak in the Classic TotalView Reference Guide) stops the process when the
program reaches a location in the source code.

 A watchpoint (see dwatch in the Classic TotalView Reference Guide) stops the process when the value
of a variable is changed.

 A barrier point (see dbarrier in the Classic TotalView Reference Guide), as its name suggests,
effectively prevents processes from proceeding beyond a point until all other related processes
arrive. This gives you a method for synchronizing the activities of processes. (You can only set a
barrier point on processes; you can’t set then on individual threads.)

 An eval point (see dbreak in the Classic TotalView Reference Guide) lets you programmatically
evaluate the state of the process or variable when execution reaches a location in the source code.
An eval point typically does not stop the process; instead, it performs an action. In most cases, an
eval point stops the process when some condition that you specify is met.

NOTE: For extensive information on action points, see Setting Action Points on page 188.

Each action point is associated with an action point identifier. You use these identifiers when you need to refer to
the action point. Like process and thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1; the second ID is 2, and so on. These numbers are never
reused during a debugging session.

The CLI and the GUI let you assign only one action point to a source code line, but you can make this action point
as complex as you need it to be.

472

Seeing the CLI at Work

The CLI is a command-line debugger that is completely integrated with TotalView. You can use it and never use
the TotalView GUI, or you can use it and the GUI simultaneously. Because the CLI is embedded in a Tcl inter-
preter, you can also create debugging functions that exactly meet your needs. When you do this, you can use
these functions in the same way that you use TotalView’s built-in CLI commands.

This chapter contains macros that show how the CLI programmatically interacts with your program and with
TotalView. Reading examples without bothering too much with details gives you an appreciation for what the
CLI can do and how you can use it. With a basic knowledge of Tcl, you can make full use of all CLI features.

In each macro in this chapter, all Tcl commands that are unique to the CLI are displayed in bold.

These macros perform the following tasks:

 Setting the CLI EXECUTABLE_PATH Variable on page 473

 Initializing an Array Slice on page 475

 Printing an Array Slice on page 476

 Writing an Array Variable to a File on page 478

 Automatically Setting Breakpoints on page 479

473

Seeing the CLI at Work Setting the CLI EXECUTABLE_PATH Variable

Setting the CLI EXECUTABLE_PATH Variable
 The following macro recursively descends through all directories, starting at a location that you enter. (This is
indicated by the root argument.) The macro ignores directories named in the filter argument. The result is set as
the value of the CLI EXECUTABLE_PATH state variable.

See also the Classic TotalView Reference Guide’s entry for the EXECUTABLE_PATH variable
Usage:
#
rpath [root] [filter]
#
If root is not specified, start at the current
directory. filter is a regular expression that removes
unwanted entries. If it is not specified, the macro
automatically filters out CVS/RCS/SCCS directories.
#
The search path is set to the result.

proc rpath {{root "."} {filter "/(CVS|RCS|SCCS)(/|$)"}} {

 # Invoke the UNIX find command to recursively obtain
 # a list of all directory names below "root".
 set find [split [exec find $root -type d -print] \n]

 set npath ""

 # Filter out unwanted directories.
 foreach path $find {
 if {! [regexp $filter $path]} {
 append npath ":"
 append npath $path
 }
 }

 # Tell TotalView to use it.
 dset EXECUTABLE_PATH $npath
}

In this macro, the last statement sets the EXECUTABLE_PATH state variable. This is the only statement that is
unique to the CLI. All other statements are standard Tcl.

474

Seeing the CLI at Work Setting the CLI EXECUTABLE_PATH Variable

The dset command, like most interactive CLI commands, begins with the letter d. (The dset command is only
used in assigning values to CLI state variables. In contrast, values are assigned to Tcl variables by using the stan-
dard Tcl set command.)

475

Seeing the CLI at Work Initializing an Array Slice

Initializing an Array Slice
The following macro initializes an array slice to a constant value:
array_set (var lower_bound upper_bound val) {
 for {set i $lower_bound} {$i <= $upper_bound} {incr i}{
 dassign $var\($i) $val
 }
}

The CLI dassign command assigns a value to a variable. In this case, it is setting the value of an array element.
Use this function as follows:
d1.<> dprint list3
 list3 = {
 (1) = 1 (0x0000001)
 (2) = 2 (0x0000001)
 (3) = 3 (0x0000001)
 }
d1.<> array_set list 2 3 99
d1.<> dprint list3
 list3 = {
 (1) = 1 (0x0000001)
 (2) = 99 (0x0000063)
 (3) = 99 (0x0000063)
 }

For more information on slices, see Displaying Array Slices on page 313.

476

Seeing the CLI at Work Printing an Array Slice

Printing an Array Slice
The following macro prints a Fortran array slice. This macro, like others shown in this chapter, relies heavily on Tcl
and uses unique CLI commands sparingly.
proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} \
 {width 20}} {
 for {set i $i1} {$i <= $i2} {incr i $i3} {
 set row_out ""
 for {set j $j1} {$j <= $j2} {incr j $j3} {
 set ij [capture dprint $anArray\($i,$j\)]
 set ij [string range $ij \
 [expr [string first "=" $ij] + 1] end]
 set ij [string trimright $ij]
 if {[string first "-" $ij] == 1} {
 set ij [string range $ij 1 end]}
 append ij " "
 append row_out " " \
 [string range $ij 0 $width] " "
 }
 puts $row_out
 }
}

NOTE: The CLI’s dprint command lets you specify a slice. For example, you can type: dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3, j1:j2:j3) of a Fortran array to a numeric
field whose width is specified by the width argument. This width doesn’t include a leading minus sign (-).

All but one line is standard Tcl. This line uses the dprint command to obtain the value of one array element. This
element’s value is then captured into a variable. The CLI capture command allows a value that is normally printed
to be sent to a variable. For information on the difference between values being displayed and values being
returned, see About CLI Output on page 462.

The following shows how this macro is used:
d1.<> pf2Dslice a 1 4 1 4
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
 -0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
 -0.756802499294 0.989358246326-0.536572933197-0.287903308868

477

Seeing the CLI at Work Printing an Array Slice

d1.<> pf2Dslice a 1 4 1 4 2 2 10
 0.84147095 0.14112000
 0.14112000 0.41211849
d1.<> pf2Dslice a 2 4 2 4 2 2 10
 -0.75680249 0.98935824
 0.98935824 -0.28790330
d1.<>

478

Seeing the CLI at Work Writing an Array Variable to a File

Writing an Array Variable to a File
It often occurs that you want to save the value of an array so that you can analyze its results at a later time. The
following macro writes array values to a file:
proc save_to_file {var fname} {
 set values [capture dprint $var]
 set f [open $fname w]

 puts $f $values
 close $f
}

The following example shows how you might use this macro. Using the exec command tells the shell’s cat com-
mand to display the file that was just written.
d1.<> dprint list3
 list3 = {
 (1) = 1 (0x00000001)
 (2) = 2 (0x00000002)
 (3) = 3 (0x00000003)
 }
d1.<> save_to_file list3 foo
d1.<> exec cat foo
 list3 = {
 (1) = 1 (0x00000001)
 (2) = 2 (0x00000002)
 (3) = 3 (0x00000003)
 }
d1.<>

479

Seeing the CLI at Work Automatically Setting Breakpoints

Automatically Setting Breakpoints
In many cases, your knowledge of what a program is doing lets you make predictions as to where problems are
occurring. The following CLI macro parses comments that you can include in a source file and, depending on the
comment’s text, sets a breakpoint or an eval point.

(For detailed information on action points, see Setting Action Points on page 188.)

Following this macro is an excerpt from a program that uses it.
make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions {{filename ""}} {

 if {$filename == ""} {
 puts "You need to specify a filename"
 error "No filename"
 }

 # Open the program’s source file and initialize a
 # few variables.
 set fname [set filename]
 set fsource [open $fname r]
 set lineno 0
 set incomment 0

 # Look for "signals" that indicate the type of
 # action point; they are buried in the comments.
 while {[gets $fsource line] != -1} {
 incr lineno
 set bpline $lineno

 # Look for a one-line eval point. The
 # format is ... /* EVAL: some_text */.
 # The text after EVAL and before the "*/" in
 # the comment is assigned to "code".
 if [regexp "/* EVAL: *(.*)*/" $line all code] {
 dbreak $fname\#$bpline -e $code
 continue
 }

 # Look for a multiline eval point.
 if [regexp "/* EVAL: *(.*)" $line all code] {
 # Append lines to "code".

480

Seeing the CLI at Work Automatically Setting Breakpoints

 while {[gets $fsource interiorline] != -1} {
 incr lineno

 # Tabs will confuse dbreak.
 regsub -all \t $interiorline \
 " " interiorline

 # If "*/" is found, add the text to "code",
 # then leave the loop. Otherwise, add the
 # text, and continue looping.
 if [regexp "(.*)*/" $interiorline \
 all interiorcode]{
 append code \n $interiorcode
 break
 } else {
 append code \n $interiorline
 }
 }
 dbreak $fname\#$bpline -e $code
 continue
 }
 # Look for a breakpoint.
 if [regexp "/* STOP: .*" $line] {
 dbreak $fname\#$bpline
 continue
 }
 # Look for a command to be executed by Tcl.
 if [regexp "/* *CMD: *(.*)*/" $line all cmd] {
 puts "CMD: [set cmd]"
 eval $cmd
 }
 }
 close $fsource
}

The only similarity between this macro and the previous three is that almost all of the statements are Tcl. The only
purely CLI commands are the instances of the dbreak command that set eval points and breakpoints.

The following excerpt from a larger program shows how to embed comments in a source file that is read by the
make_actions macro:
...
struct struct_bit_fields_only {
 unsigned f3 : 3;
 unsigned f4 : 4;
 unsigned f5 : 5;
 unsigned f20 : 20;

481

Seeing the CLI at Work Automatically Setting Breakpoints

 unsigned f32 : 32;
} sbfo, *sbfop = &sbfo;
...
int main()
{
 struct struct_bit_fields_only *lbfop = &sbfo;
...
 int i;
 int j;

 sbfo.f3 = 3;
 sbfo.f4 = 4;
 sbfo.f5 = 5;
 sbfo.f20 = 20;
 sbfo.f32 = 32;
...
 /* TEST: Check to see if we can access all the
 values */
 i=i; /* STOP: */
 i=1; /* EVAL: if (sbfo.f3 != 3) $stop; */
 i=2; /* EVAL: if (sbfo.f4 != 4) $stop; */
 i=3; /* EVAL: if (sbfo.f5 != 5) $stop; */
 ...
 return 0;
}

The make_actions macro reads a source file one line at a time. As it reads these lines, the regular expressions
look for comments that begin with /* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an eval point at an eval line, or executes a command at a cmd line.

Using eval points can be confusing because eval point syntax differs from that of Tcl. In this example, the $stop
function is built into the CLI. Stated differently, you can end up with Tcl code that also contains C, C++, Fortran,
and TotalView functions, variables, and statements. Fortunately, you only use this kind of mixture in a few places
and you’ll know what you’re doing.

 482

PART IV Advanced Tools and
Customization

This part discusses tools and configurations that are either specific to a particular environment or setup, or
that are used only in advanced customizations or other non-routine ways.

 Setting Up Remote Debugging Sessions
When you are debugging a program that has processes executing on a remote computer, TotalView launches
server processes for these remote processes. Usually, you don’t need to know much about this. The primary fo-
cus of this chapter is what to do when you have problems.

 Setting Up MPI Debugging Sessions
Setting up an MPI debugging session may require special startup or environment configuration. This chapter
details any non-default configuration information for individual platforms.
Debugging other kinds of parallel programs is discussed in the next chapter.

 Setting Up Parallel Debugging Sessions
You can debug programs created using many different parallel environments, such as OpenMP, SHMEM, Global
Arrays, UPC, CAF, and the like. This chapter discusses how to set up these environments.

 Controlling fork, vfork, and execve Handling
You can control TotalView’s behavior for system calls to fork, vfork, and execve.

 Group, Process, and Thread Control
In a multi-process, multi-threaded program, you may need to finely control execution. This chapter discusses
the TotalView process/thread model, how to direct a command to a specific process or thread, and how to cre-
ate custom groups of processes.

 Scalability in HPC Computing Environments

483

When working in an HPC environment, you can configure TotalView for maximum scalability, including the use of
MRNet, a tree-based overlay network that supports scalable communication.

484

Setting Up Remote
Debugging Sessions

This chapter explains how to set up TotalView remote debugging sessions, detailed in the following sections:

 Automatically Launching a Process on a Remote Server on page 487.

In most cases, you can easily perform this from the New Program dialog which launches the TotalView
Server tvdsvr program automatically. If so, you will likely not need to read any of the following sections.

 Troubleshooting Server Autolaunch on page 488

Some systems have requirements that may prohibit TotalView’s default autolaunching capabilities. This
section discusses various ways to customize autolaunch options and commands.

 Starting the TotalView Server Manually on page 492

You can also just manually launch the tvdsvr program, discussed in this section.

 TotalView Server Launch Options and Commands on page 495

The File > Preferences dialog box features several ways to customize both options and commands for
single and bulk server launch. This section discusses these options as well as specific commands relevant
to particular platforms.

 Debugging Over a Serial Line on page 503

TotalView supports debugging programs over a serial line as well as TCP/IP sockets, discussed in this sec-
tion.

485

Setting Up Remote Debugging Sessions About Remote Debugging

About Remote Debugging
Debugging a remote process with TotalView is similar to debugging a native process, with these primary
differences:

 The remote server hosting the processes to debug must be running the TotalView Server process
tvdsvr, automatically launched by TotalView in most cases.

 TotalView performance depends on your network’s performance. If the network is overloaded,
debugging can be slow.

NOTE: You cannot debug remote processes using TotalView Individual.

TotalView can automatically launch tvdsvr either:

 Independently on each remote host, called single-process server launch.

 As a bulk job, launching all remote processes at the same time, called bulk server launch.

Because TotalView can automatically launch tvdsvr, programs that launch remote processes rarely require any
special handling. When using TotalView, it doesn’t matter whether a process is local or remote.

NOTE: When debugging programs remotely, the architecture of the remote machine must be com-
patible with that of the machine running TotalView. See Platform Issues when Remote
Debugging on page 485 for more information.

Platform Issues when Remote Debugging
In general, when debugging programs remotely, the architecture of the remote machine must be compatible with
that of the machine running TotalView. For example, you cannot perform remote debugging on a Linux x86-64
system if you launch TotalView from a Linux PowerLE system. In addition, the operating systems must also be
compatible.

You must install TotalView for each host and target platform combination being debugged.

486

Setting Up Remote Debugging Sessions About Remote Debugging

NOTE: The path to TotalView must be identical on the local and all remote systems so that TotalView
can find the tvdsvr program.

TotalView assumes that you launch tvdsvr using ssh -x. If ssh is unavailable, set the TVDSVRLAUNCHCMD envi-
ronment variable to the command that you use to remotely access the remote system.

NOTE: If the default single-process server launch procedure meets your needs and you’re not experi-
encing any problems accessing remote processes from TotalView, you probably do not need
the information in this chapter. If you do experience a problem launching the server, check
that the tvdsvr process is in your path.

487

Setting Up Remote Debugging Sessions Automatically Launching a Process on a Remote Server

Automatically Launching a Process on a
Remote Server
In most cases, loading a process to debug on a remote server is no different than debugging a process on a local
host. You can add or select a remote host from these debugging sessions:

 File > Debug New Program

 File > Attach to a Running Program

 File > Debug Core File or Replay Recording File

After you have set up a debug session, TotalView can automatically launch the process tvdsvr on the remote
computer. For more information, see Adding a Remote Host on page 116. If this simple procedure does not
work for you, your system may not support TotalView’s default autolaunching. You can disable autolaunch or
reconfigure some of your settings. See Troubleshooting Server Autolaunch on page 488.

488

Setting Up Remote Debugging Sessions Troubleshooting Server Autolaunch

Troubleshooting Server Autolaunch
Some systems do not support TotalView’s default autolaunch behavior, requiring you to create your own auto-
launch command or requiring special permissions or some other custom configuration.

If autolaunching of the TotalView Server is not working, you can

 Disable autolaunch and start the TotalView server manually (Starting the TotalView Server
Manually on page 492)

 Customize either server options or commands, discussed here.

This section discusses how to edit the remote shell command as well as the arguments provided to TotalView at
remote launch. For more information on the commands and options in general, see TotalView Server Launch
Options and Commands on page 495 and tvdsvr in the Classic TotalView Reference Guide.

Changing the Remote Shell Command
Some environments require you to create your own autolaunching command, for example, if your remote shell
command doesn’t provide the security that your site requires.

If you create your own autolaunching command, use the tvdsvr -callback and -set_pw command-line options.

If you’re not sure whether ssh (or rsh on Sun SPARC computers) works at your site, try typing “ssh -x hostname”
(or “rsh hostname”) from an xterm window, where hostname is the name of the host on which you want to
invoke the remote process. If the process doesn’t just run and instead this command prompts you for a pass-
word, add the host name of the host computer to your .rhosts file on the target computer.

For example, you can use the following combination of the echo and telnet commands:
echo %D %L %P %V; telnet %R

After telnet establishes a connection to the remote host, you can use the cd and tvdsvr commands directly,
using the values of %D, %L, %P, and %V that were displayed by the echo command; for example:
cd directory
tvdsvr -callback hostname:portnumber -set_pw password

If your computer doesn’t have a command for invoking a remote process, TotalView can’t autolaunch the tvdsvr
and you must disable both single server and bulk server launches.

For information on the ssh and rsh commands, see the manual page supplied with your operating system.

For more information on editing server launch commands, see Customizing Server Launch Commands on
page 498.

489

Setting Up Remote Debugging Sessions Troubleshooting Server Autolaunch

Changing Arguments
You can also change the command-line arguments passed to ssh (TotalView passes -x by default), or whatever
command you use to invoke the remote process.

For example, if the host computer doesn’t mount the same file systems as your target computer, tvdsvr might
need to use a different path to access the executable being debugged. If this is the case, you can change %D to
the directory used on the target computer.

If the remote executable reads from standard input, you cannot use the -n option with your remote shell com-
mand because the remote executable receives an EOF immediately on standard input. If you omit the -n
command-line option, the remote executable reads standard input from the xterm in which you started
TotalView. This means that you should invoke tvdsvr from another xterm window if your remote program reads
from standard input. The following is an example:
%C %R "xterm -display hostname:0 -e tvdsvr \
 -callback %L -working_directory %D -set_pw %P \
 -verbosity %V"

Each time TotalView launches tvdsvr, a new xterm opens to handle standard input and output for the remote
program.

Autolaunching Sequence
This section describes the actions involved in autolaunching. This information is provided to help you trouble-
shoot autolaunching issues.

1. With the File > Debug New Program or dload commands, specify the host name of the computer on
which you want to debug a remote process, as described in Starting the TotalView Server Manually on
page 492.

2. TotalView begins listening for incoming connections.

3. TotalView launches the tvdsvr process with the server launch command. (See Setting the Single-Process
Server Launch Command on page 498.)

4. The tvdsvr process starts on the remote computer.

5. The tvdsvr process establishes a connection with TotalView.

490

Setting Up Remote Debugging Sessions Troubleshooting Server Autolaunch

Figure 236 illustrates a single server launch. The numbers in the diagram refer to the numbers in the preceding
procedure.

Figure 236, Launching tvdsvr

TotalView

Remote
Executable

5

2

3

4

Network

2. Listens
3. Invokes commands
4. tvdsvr starts
5. Makes connection

491

Setting Up Remote Debugging Sessions Troubleshooting Server Autolaunch

If you have more than one server process, Figure 237 shows what your environment might look like:

Figure 237, Multiple tvdsvr Processes

Process 1

Process 2

Process 3

Process 4

Main Process

TotalView

492

Setting Up Remote Debugging Sessions Starting the TotalView Server Manually

Starting the TotalView Server Manually
In some cases, TotalView is unable to automatically launch the TotalView Server on the remote host, and you will
need to manually start the server.

NOTE: You cannot debug remote processes using TotalView Individual.

If TotalView can’t automatically launch tvdsvr, start it manually:

 Disable both bulk launch and single server launch, set in the File > Preferences dialog box

 Enter a host name and port number into the relevant Sessions Manager window (see
Automatically Launching a Process on a Remote Server on page 487 for where this is located on
the various dialogs). This disables autolaunching for the current connection.

If you disable autolaunching, you must start tvdsvr before you load a remote executable or attach to a remote
process.

For information on all the ways to start TotalView, see Starting TotalView on page 89.

NOTE: Some parallel programs — MPI programs, for example — make use of a starter program such
as poe or mpirun to create all the parallel jobs on your nodes. TotalView lets you start these
programs in two ways. One requires that the starter program be under TotalView control, and
the other does not. In the first case, enter the name of the starter program on the command
line. In the other, enter program information into the File > Debug New Parallel Program or
Process > Startup Parameter dialog boxes. Programs started using these dialog boxes do not
use the information you set for single-process and bulk server launching.

Here are the steps in detail to manually start tvdsvr:

1. Disable both bulk launch and single server launch, set in the File > Preferences dialog box from either the
Root Window or the Process Window.

NOTE: Bulk and single server launch options are discussed in detail in Server Launch
Options on page 495.

493

Setting Up Remote Debugging Sessions Starting the TotalView Server Manually

 To disable bulk launch, select the Bulk Launch Tab and clear the Enable debug server bulk
launch check box.

 To disable single server bulk launch, select the Launch Strings Tab and clear the Enable sin-
gle debug server launch check box.

2. Log in to the remote computer and start tvdsvr:

tvdsvr -server

If you don’t (or can’t) use the default port number (4142), use the -port or -search_port options. For details,
see “TotalView Debugger Server (tvdsvr) Command Syntax” in the Classic TotalView Reference Guide.

After printing the port number and the assigned password, the server begins listening for connections. Be
sure to note the password, which must be entered in Step 3.

NOTE: Using the -server option is not secure, as other users could connect to your tvdsvr
process and use your UNIX UID. Consequently, this command-line option must
be explicitly enabled. (Your system administrator usually does this.) For details,
see -server in the “TotalView Command Syntax” chapter of the Classic TotalView Ref-
erence Guide.

CLI: dset TV::bulk_launch_enabled

CLI: dset TV::server_launch_enabled

494

Setting Up Remote Debugging Sessions Starting the TotalView Server Manually

3. From the Root Window, select the File > Debug New Program command (or any other type of debugging
session). Enter the program’s name in the File Name field and the hostname:portnumber in the Debug
On Host > Add Host dialog, and then select OK.

TotalView tries to connect to tvdsvr.

4. Enter the password at the prompt.

Figure 238 summarizes the steps for starting tvdsvr manually.

CLI: dload executable -r hostname

Figure 238, Manual Launching of Debugger Server

TotalView

Remote
Executable

1

2

Network

1. Makes connection
2. Listens

495

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

TotalView Server Launch Options and
Commands

Server Launch Options

Setting Single-Process Server Launch Options

Use the Enable single debug server launch check box in the Launch Strings Page of the File > Preferences dia-
log box to disable autolaunching, change the command that TotalView uses to launch remote servers, and alter
the amount of time TotalView waits when establishing connections to a tvdsvr process. (The Enable Visualizer
launch and Source Code Editor areas are not used when setting launch options.)

Enable single debug server launch
Independently launches the tvdsvr on each remote system.

Figure 239, File > Preferences: Launch Strings Page

CLI: dset TV::server_launch_enabled

496

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

NOTE >> Even if you have enabled bulk server launch, you probably also want to
enable this option. TotalView uses this launch string after you start TotalView and
when you name a host in the File > Debug New Program dialog box or have used the -
remote command-line option. Disable single server launch only when it can’t work.

Command The command to use when independently launching tvdsvr. For information on this com-
mand and its options, see TotalView Server Launch Options and Commands on page 495.

Timeout The time TotalView waits for a connection after automatically launching the tvdsvr process.
The default is 30 seconds. If the connection isn’t made in this time, TotalView times out. Change
the length of time by entering a value from 1 to 3600 seconds (1 hour).

If you notice that TotalView fails to launch tvdsvr (as shown in the xterm window from which
you started TotalView) before the timeout expires, click Yes in the Question dialog box that
appears.

Defaults Reverts to the default settings.

Clicking the Defaults button also discards all changes you made using a CLI variable. TotalView
doesn’t immediately change settings after you click the Defaults button; instead, it waits until
you click the OK button.

Setting Bulk Launch Window Options

Use the File > Preferences Bulk Launch Page to change the bulk launch command, disable bulk launch, and alter
connection timeouts that TotalView uses when it launches tvdsvr programs.

CLI: dset TV::server_launch_string

CLI: dset TV::server_launch_timeout

CLI: dset TV::bulk_launch_enabled

497

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

Enable debug server bulk launch
Uses the bulk launch procedure when launching the tvdsvr. By default, bulk launch is dis-
abled; that is, TotalView uses its single-server launch procedure.

Command Command used to launch tvdsvr if bulk launch is enabled. For information on this command
and its options, see Setting the Bulk Server Launch Command on page 500 and IBM RS/
6000 AIX on page 501.

Temp File 1 Prototype
Temp File 2 Prototype

Specifies the contents of temporary files that the bulk launch operation uses. For information
on these fields, see “TotalView Debugger Server (tvdsvr) Command Syntax” in the Classic To-
talView Reference Guide.

Figure 240, File > Preferences: Bulk Launch Page

CLI: dset TV::bulk_launch_string

CLI: dset TV::bulk_launch_tmpfile1_header_line
dset TV::bulk_launch_tmpfile1_host_lines
dset TV::bulk_launch_tmpfile1_trailer_line
dset TV::bulk_launch_tmpfile2_header_line
dset TV::bulk_launch_tmpfile2_host_lines
dset TV::bulk_launch_tmpfile2_trailer_line

498

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

Connection Timeout (in seconds)
Sets the connection timeout TotalView uses after launching tvdsvr processes. The default is
20 seconds for responses from the process (the Base time) plus 10 seconds for each server
process being launched.

A Base timeout value can range from 1 to 3600 seconds (1 hour). The incremental Plus value
is from 1 to 360 seconds (6 minutes). See the online Help for information on setting these
values.

If you notice that TotalView fails to launch tvdsvr (as shown in the xterm window from which
you started TotalView) before the timeout expires, select Yes in the Question dialog box that
appears.

Defaults Returns to the default settings.

Clicking Defaults also discards any changes made using a CLI variable. TotalView doesn’t im-
mediately change settings after you click the Defaults button; instead, it waits until you click
the OK button.

Customizing Server Launch Commands
If autolaunch is not working on your system, you may wish to check the default commands set for launching the
TotalView Server on your system. You can edit customize these for both single and bulk server launch.

Setting the Single-Process Server Launch Command

You can customize the default command string that TotalView uses when it automatically launches TotalView
server for a single process. This string is accessible via the File >Preferences > Launch Strings dialog in its Com-
mand text box:

This is the default command string:

CLI: dset TV::bulk_launch_base_timeout
dset TV::bulk_launch_incr_timeout

499

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

%C %R -n "%B/tvdsvr -working_directory %D -callback %L \
-set_pw %P -verbosity %V %F"

where:

%C Expands to the name of the server launch command to use, which is the value of
TV::launch_command. On most platforms, this is ssh -x. On Sun SPARC computers, it is rsh.
If the TVDSVRLAUNCHCMD environment variable exists, TV::launch_command is initial-
ized to its value.

%R Expands to the host name of the remote computer specified in the File > Debug New Pro-
gram (and other Session Manager dialog boxes) or dload commands.

%B Expands to the bin directory in which tvdsvr is installed.

-n Tells the remote shell to read standard input from
/dev/null; that is, the process immediately receives an EOF (End-Of-File) signal.

-working_directory %D
Makes %D the directory to which TotalView connects. %D expands to the absolute path name
of the directory.

When you use this option, the host computer and the target computer must mount identical
file systems. That is, the path name of the directory to which TotalView connects must be iden-
tical on host and target computers.

After changing to this directory, the shell invokes the tvdsvr command.

You must make sure that the tvdsvr directory is in your path on the remote computer.

-callback %L Establishes a connection from tvdsvr to TotalView. %L expands to the host name and TCP/IP
port number (hostname:portnumber) on which TotalView is listening for connections from
tvdsvr.

-set_pw %P Sets a 64-bit password. TotalView must supply this password when tvdsvr establishes a con-
nection with it. TotalView expands %P to the password that it automatically generates. For
more information on this password, see “TotalView Debugger Server (tvdsvr) Command Syn-
tax” in the Classic TotalView Reference Guide.

-verbosity %V Sets the verbosity level of the tvdsvr. %V expands to the current verbosity setting. For infor-
mation on verbosity, see the “Variables” chapter within the Classic TotalView Reference Guide.

%F Contains the tracer configuration flags that need to be sent to tvdsvr processes. These are
system-specific startup options that the tvdsvr process needs.

You can also use the %H option with this command. See Setting the Bulk Server Launch Command on page 500
for more information.

500

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

For information on the complete syntax of the tvdsvr command, see “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” in the Classic TotalView Reference Guide.

Setting the Bulk Server Launch Command

The commands for bulk server launch settings vary according to platform.

SGI XE and SGI ICE

The bulk server launch string is as follows:

array tvdsvr -working_directory %D -callback_host %H \
-callback_ports %L -set_pws %P -verbosity %V %F

where:

-working_directory %D
Specifies the directory to which TotalView connects. TotalView expands %D to this directory’s
absolute path name.

When you use this option, the host computer and the target computer must mount identical
file systems. That is, the path name of the directory to which TotalView connects must be iden-
tical on the host and target computers.

After performing this operation, tvdsvr starts executing.

-callback_host %H
Names the host upon which TotalView makes this callback. TotalView expands %H to the host
name of the computer on which TotalView is running.

-callback_ports %L
Names the ports on the host computers that TotalView uses for callbacks. TotalView expands
%L to a comma-separated list of host names and TCP/IP port numbers (hostname:portnum-
ber,hostname:portnumber,...) on which TotalView is listening for connections.

-set_pws %P Sets 64-bit passwords. TotalView must supply these passwords when tvdsvr establishes the
connection with it. %P expands to a comma-separated list of 64-bit passwords that TotalView
automatically generates. For more information, see “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” in the Classic TotalView Reference Guide.

-verbosity %V Sets the tvdsvr verbosity level. TotalView expands %V to the current verbosity setting.For in-
formation on verbosity, see the “Variables” chapter within the Classic TotalView Reference
Guide.

You must enable the use of the array command by tvdsvr by adding the following information to the /usr/lib/
array/arrayd.conf file:
#

501

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

Command that allows invocation of the TotalView
Debugger server when performing a Bulk Server Launch.
#
command tvdsvr
 invoke /opt/totalview/bin/tvdsvr %ALLARGS
 user %USER
 group %GROUP
 project %PROJECT

If your code is not in /opt/totalview/bin, you will need to change this information. For information on the syntax
of the tvdsvr command, see “TotalView Debugger Server (tvdsvr) Command Syntax” in the Classic TotalView Refer-
ence Guide.

Cray XT/XE/XK/XC Series

NOTE: Bulk server launch is not used when MRNet is enabled in TotalView, which is the default for
Cray.

The following is the bulk server launch string for Cray computers:

svrlaunch %B/tvdsvrmain%K -verbosity %V %F %H \
%t1 %I %K

where the options unique to this command are:

%B The bin directory where tvdsvr resides.

%K The number of servers that TotalView launches.

-verbosity %V Sets the verbosity level of the tvdsvr. %V expands to the current verbosity setting. For infor-
mation on verbosity, see the “Variables” chapter within the Classic TotalView Reference Guide.

%F Contains the “tracer configuration flags” that need to be sent to tvdsvr processes. These are
system-specific startup options that the tvdsvr process needs.

%H Expands to the host name of the machine upon which TotalView is running.

%t1 A temporary file created by TotalView that contains a list of the hosts on which tvdsvr runs.
This is the information you enter in the Temp File 1 Prototype field on the Bulk Launch Page.

%I Expands to the pid of the MPI starter process. For example, it can contain mpirun, aprun, etc.
It can also be the process to which you manually attach. If no pid is available, %I expands to 0.

IBM RS/6000 AIX

The following is the bulk server launch string on an IBM RS/6000 AIX computer:

502

Setting Up Remote Debugging Sessions TotalView Server Launch Options and Commands

%C %H -n “poe -pgmmodel mpmd -resd no -tasks_per_node 1\
-procs %N -hostfile %t1 -cmdfile %t2 %F”

where the options unique to this command are:

%N The number of servers that TotalView launches.

%t1 A temporary file created by TotalView that contains a list of the hosts on which tvdsvr runs.
This is the information you enter in the Temp File 1 Prototype field on the Bulk Launch Page.

TotalView generates this information by expanding the %R symbol. This is the information you
enter in the Temp File 2 Prototype field on the Bulk Launch Page.

%t2 A file that contains the commands to start the tvdsvr processes on each computer. TotalView
creates these lines by expanding the following template:

tvdsvr -working_directory %D \
 -callback %L -set_pw %P \
 -verbosity %V

Information on the options and expansion symbols is in the “TotalView Debugger Server (tvdsvr) Syntax” chapter
of the Classic TotalView Reference Guide.

503

Setting Up Remote Debugging Sessions Debugging Over a Serial Line

Debugging Over a Serial Line
TotalView supports debugging programs over a serial line as well as TCP/IP sockets. However, if a network connec-
tion exists, use it instead to improve performance.

You need two connections to the target computer: one for the console and the other for TotalView. TotalView can-
not share a serial line with the console.

Figure 241 illustrates a TotalView session using a serial line. In this example, TotalView is communicating over a
dedicated serial line with a tvdsvr running on the target host. A VT100 terminal is connected to the target host’s
console line, allowing you to type commands on the target host.

Starting the TotalView Debugger Server
To start a debugging session over a serial line, first start the tvdsvr from the command line.

Using the console connected to the target computer, start tvdsvr and enter the name of the serial port device on
the target computer. Use the following syntax:

tvdsvr -serial device[:baud=num]

where:

device The name of the serial line device.

num The serial line’s baud rate. If you omit the baud rate, TotalView uses a default value of 38400.

For example:
tvdsvr -serial /dev/com1:baud=38400

Figure 241, Debugging Session Over a Serial Line

TotalView

Remote
Executable

Network

Serial Line

VT100
Console

Line

504

Setting Up Remote Debugging Sessions Debugging Over a Serial Line

After it starts, tvdsvr waits for TotalView to establish a connection.

505

Reverse Connections

The organization of modern HPC systems often makes it difficult to deploy tools such as TotalView. For exam-
ple, the compute nodes in a cluster may not have access to any X libraries or X forwarding, so launching a GUI
on a compute node is not possible.

Using the Reverse Connect feature, you can run the TotalView UI on a front-end node to debug a job execut-
ing on compute nodes.

The basic process is to embed the tvconnect command in a batch script; when the batch job runs, the
tvconnect process connects with the TotalView client to start the debugger server process on the batch
node. The TotalView client would typically run on a front-end node, where the application is built and batch
jobs are submitted.

506

Reverse Connections About Reverse Connections

About Reverse Connections
When using reverse connect, TotalView is started in two stages:

1. Run the tvconnect command to create a debugging request, typically from a batch job on a batch node or
compute node in a cluster. The tvconnect command accepts the name of the program to debug, along
with any arguments to pass to the program.

The tvconnect process blocks for a TotalView session to accept the request.

2. Start TotalView on another node, which is typically a front-end node. When the UI opens, TotalView looks for
a request, and if it finds one, confirms via a pop-up that the user wants to accept it. If the request is
accepted, TotalView starts a debugger server on the node where the tvconnect process is running, and
loads the program that was passed to the tvconnect command. If the request is rejected, the tvconnect
process exits with an error.

At that point, debug the program in the normal way within the TotalView UI.

The process works as follows:

507

Reverse Connections About Reverse Connections

Typically, a tvconnect command is added to a batch script, placed in front of the command to debug. For
example:
tvconnect srun -n4 myMPIprogram
Once a batch script runs and starts the tvconnect command and a TotalView front-end UI is started:

1. The tvconnect command creates a request in the $HOME/.totalview/connect directory and blocks
indefinitely until the request is either accepted or rejected. If the tvconnect process is killed with a SIGINT
or SIGTERM, the tvconnect process deletes the request it created.

2. TotalView reads the request file written by the tvconnect process.

3. TotalView accepts or rejects the request, sending back a response.

4. tvconnect reads the response. If it was accepted:

5. tvconnect execs tvdsvr, the command that allows TotalView to control and debug a program on a remote
machine.

6. tvdsvr opens a connection to the TotalView UI. TotalView then loads the program and any program argu-
ments, using the parameters provided to tvconnect. In this example, srun was loaded to debug an MPI job.

Figure 242, Reverse connect flow

508

Reverse Connections About Reverse Connections

NOTE: TotalView does not look for reverse connect requests once it starts to debug a program, i.e., it
automatically listens only if no other debug session is active. You can choose, however, to con-
tinue to listen for connection requests while debugging. See Listening for Reverse
Connections.

Reverse connections are also supported by the CLI dload command, which has options to either accept or reject
reverse connections. In addition, some command line arguments and special environment variables are available
that can be used to modify some behavior.

Reverse Connection Environment Variables
TotalView supports two special reverse-connection specific environment variables:

 TV_REVERSE_CONNECT_DIR

 TVCONNECT_OPTIONS

TV_REVERSE_CONNECT_DIR

The environment variable TV_REVERSE_CONNECT_DIR identifies the directory where the request and response
files will be written and read.

The default location is the user’s $HOME/.totalview/connect directory.

RELATED TOPICS
dload command’s reverse connect options -list_reverse_connect in the TotalView Reference Guide

-reject_reverse_connect in the TotalView Reference Guide

-accept_reverse_connect in the TotalView Reference Guide

Environment variables specific to reverse
connections

Reverse Connection Environment Variables

State variable TV::reverse_connect_wanted TV::reverse_connect_wanted in the TotalView Reference
Guide

Command line arguments specific to reverse
connections

-reverse_connect and -no_reverse_connect in the TotalView
Reference Guide

The tvdsvr command “The tvdsvr Command and Its Options” in the TotalView Ref-
erence Guide

509

Reverse Connections About Reverse Connections

To customize the location for your reverse connection files, set this environment variable before starting
tvconnect and TotalView:
setenv TV_REVERSE_CONNECT_DIR /home/tv-reverse-connect/tmp
Reverse Connection Directory Requirements

The directory that will contain the generated reverse connect files must:

 Be owned by the same user that is running the tvconnect process and the TotalView client.

 Have permissions that allow access only by the user. No "Group" or "Other" permissions are
allowed.

By default, tvconnect creates the connect directory with the following permissions:

>ls -l ~/.totalview/
total 80
drwx------ 2 smith tss 4096 Jul 23 12:11 connect

TV_CONNECT_OPTIONS

The environment variable TVCONNECT_OPTIONS supports the ability to add extra arguments to the tvconnect
command. One such option might be -ipv6_support, which adds support for IPv6 addresses. For example:

setenv TVCONNECT_OPTIONS="-ipv6_support"
tvconnect ~/tx_hello
or just:
env TVCONNECT_OPTIONS="-ipv6_support" tvconnect ~/tx_hello

510

Reverse Connections Starting a Reverse Connect Session

Starting a Reverse Connect Session
1. Run the tvconnect command on a “back-end” compute node. This node does not need access to X libraries

to launch a UI. Provide as an argument the program to debug. For example, at its most simple:
tvconnect /home/totalview/tests/myTest
This command creates a request file in the user’s $HOME/.totalview/connect directory. The file con-
tains all the information needed to launch a debugging session on a “front-end” where TotalView is installed
with UI capabilities. The request includes such things as the remote host name, the IP address, the user’s
home directory, and other information required to launch the debugging session.

This command then blocks waiting for a response.

2. Start TotalView with no arguments on the server where you will perform debugging:
totalview
When TotalView launches, it automatically listens for reverse connection requests:

NOTE: TotalView automatically listens for connections at launch only when invoked with-
out specifying a debug target. If TotalView starts debugging a different program, it
does not listen for reverse connections.

511

Reverse Connections Starting a Reverse Connect Session

If one or more requests are found, it then launches a pop-up to confirm that you want to accept the reverse
debugging request:

If you select “No,” the back-end tvconnect stops waiting and exits with the following error message:

“Reverse connect request was rejected.”

If you select “Yes,” your program to debug launches in the usual way, and you can start your debugging ses-
sion.

Note that the UI displays the node where TotalView is running in parentheses in the Process Window’s title
bar:

Listening for Reverse Connections
Once you start a debugging session, TotalView automatically stops listening for reverse connection requests.

To turn back on listening mode:

1. From the File menu, choose New Debugging Session to open the Start a Debugging Session window.

2. Select Accept reverse connections:

512

Reverse Connections Reverse Connect Examples

Reverse Connect Examples
Initiate a reverse connection request by specifying any debug target program as the argument to tvconnect. The
specified program must be accessible by the TotalView front-end UI that wishes to accept the request.

Here’s a simple example:
tvconnect /home/totalview/tests/myTest
To start it on an MPI job, for example:
tvconnect srun -n 4 /home/fullpath/tx_mpi_test

CLI Example
This example illustrates the usage of the reverse connection dload options.

Assume that:

 tvconnect was started on machine1 specifying a program with a full path

 tvconnect was started on machine2 specifying the program tx_hello

 The program was in the current working directory and no path was added to the program.

d1.<> dload -list_reverse_connect
(1) machine1.totalviewtech.com /home/user/tests/tx_blocks
(2) machine2.totalviewtech.com tx_hello
d1.<> dload -accept_rc 1
d1.<> dload -reject_rc 2

MPI Batch Script Example
This is a simple example for invoking an MPI job from a batch script.

1. Create your job script. For example, create a batch script containing the following:
 #-----------------------
 #!/bin/tcsh
 #SBATCH -p pdebug
 #SBATCH -J myJob
 #SBATCH -N 2
 # Wait for a front end TV to accept this reverse connection request
 tvconnect srun -n4 myMPIprogram
 echo 'DONE!'
 #-----------------------

513

Reverse Connections Reverse Connect Examples

Once the script is run, the tvconnect command creates the request file with the necessary details, then
holds and waits for a connection request.

2. Start TotalView on your front-end node and accept the request. The debugger begins debugging srun.
Pressing Go starts the MPI job and TotalView will attach to the MPI processes running on the compute
nodes in the normal way.

NOTE: If the application is in your system path, TotalView will find it. i.e., you do not need to enter the
full path in your command.

it is not required that you include the full path to your application in the command, if the application is in your
path. In the above case, myMPIprogram was in the current working directory when the batch job was submitted.
The request file reports the current working directory, so that the front-end TotalView can find the application
even if it was not started from same directory.

MPI Batch Script Example
This is a simple example for invoking an MPI job from a batch script.

1. Create your job script. For example, create a batch script containing the following:
 #-----------------------
 #!/bin/tcsh
 #SBATCH -p pdebug
 #SBATCH -J myJob
 #SBATCH -N 2
 # Wait for a front end TV to accept this reverse connection request
 tvconnect srun -n4 myMPIprogram
 echo 'DONE!'
 #-----------------------
Once the script is run, the tvconnect command creates the request file with the necessary details, then
holds and waits for a connection request.

2. Start TotalView on your front-end node and accept the request. The debugger begins debugging srun.
Pressing Go starts the MPI job and TotalView will attach to the MPI processes running on the compute
nodes in the normal way.

NOTE: If the application is in your system path, TotalView will find it. i.e., you do not need to enter the
full path in your command.

514

Reverse Connections Reverse Connect Examples

it is not required that you include the full path to your application in the command, if the application is in your
path. In the above case, myMPIprogram was in the current working directory when the batch job was submitted.
The request file reports the current working directory, so that the front-end TotalView can find the application
even if it was not started from same directory.

515

Reverse Connections Troubleshooting Reverse Connections

Troubleshooting Reverse Connections
Most of the issues that can result in a failed reverse connection have to do with the reverse connect directory
where TotalView writes and reads connection requests.

Stale Files in the Reverse Connect Directory
In some cases, TotalView may leave stale request or response files in the reverse connect directory, which could
result in a failed connection attempt.

If you have no pending reverse connect requests, it is safe to remove the entire directory or its contents. For
example, use rm -rf $HOME/.totalview/connect to remove the default directory and all its files. The
tvconnect process will recreate the directory when needed.

Directory Permissions
You must be the owner of the reverse connect directory, and its permissions must allow "user" access only. The
directory cannot be owned by a different user, and cannot have any "group" or "other" permission bits set.

User ID Issues
The tvconnect process and the TotalView client must be running with the same effective user id (euid). The
euid of the processes run by the client must match that of the reverse connect directory.

Reverse Connect Directory Environment Variable
If the TotalView client fails to find a tvconnect request, make sure that the tvconnect process is writing its
request file to the same directory being read by the TotalView client.

For example, the client may read the wrong directory if your home directory on the node where tvconnect is run-
ning is different than the node where the TotalView client is running.

To work around this problem, set the environment variable TV_REVERSE_CONNECT_DIR.

When setting this variable, make sure that it points to a directory accessible by both the tvconnect and TotalView
client processes, and that it meets all the ownership and permission requirements.

516

Setting Up MPI
Debugging Sessions

This chapter discusses how to set up TotalView MPI debugging sessions for various environments and special
use cases, as well as some application-specific debugging tasks. In most cases, you can just use the basic pro-
cedure, discussed in Starting MPI Programs Using File > Debug New Parallel Program on page 518.

For information on setting up non-MPI parallel programs, see Setting Up Parallel Debugging Sessions on
page 546.

NOTE: For TotalView Individual, all your MPI processes must execute on the computer on which
you installed TotalView. Further, you are limited to no more than 16 processes and
threads.

This chapter describes the basics on setting up to debug an MPI system (Debugging MPI Programs on
page 518), as well as the following MPI systems:

 MPICH Applications on page 523

 MPICH2 Applications on page 528

 Cray MPI Applications on page 531

 IBM MPI Parallel Environment (PE) Applications on page 532

 Open MPI Applications on page 536

 QSW RMS Applications on page 537

This chapter also includes these topics specific to MPI applications:

 Starting MPI Issues on page 542

 Using ReplayEngine with Infiniband MPIs on page 544

517

Setting Up MPI Debugging Sessions

RELATED TOPICS
Tips for debugging parallel applications Debugging Strategies for

Parallel Applications on page 437

Tools for displaying an MPI Message Queue MPI Display Tools on page 445

Creating startup profiles for environments not defined by
TotalView. These definitions will appear in the Additional
Starter Arguments field of the Debug New Parallel Program
dialog box.

"MPI Startup" in the Classic TotalView Refer-
ence Guide

518

Setting Up MPI Debugging Sessions Debugging MPI Programs

Debugging MPI Programs

Starting MPI Programs
MPI programs use a starter program such as mpirun to start your program. You can start these MPI programs in
two ways: with the starter program under TotalView control, or using the GUI, in which case the starter program is
not under TotalView control. In the first case, you will enter the name of the starter program on the command
line. In the latter, you will enter program information into the File > Debug New Parallel Program or Process >
Startup Parameters dialog boxes.

NOTE: Programs started using GUI dialog boxes have some limitations: program launch does not use
the information you set for single-process and bulk server launching, and you cannot use the
Attach Subset command.

Starting MPI programs using the dialog boxes is the recommended method. This method is described in the next
section. Starting using a starter program is described in various discussions throughout this chapter.

Starting MPI Programs Using File > Debug New Parallel Program
In many cases, the way in which you invoke an MPI program within TotalView control differs little from discipline to
discipline. If you invoke TotalView from the command line without an argument, TotalView displays its Start a
Debugging Session dialog box. This is the same as choosing File > New Debugging Session from either the Root
or Process windows.

519

Setting Up MPI Debugging Sessions Debugging MPI Programs

From here, select A new parallel program. Alternatively, if TotalView is already running, choose File > Debug
New Parallel Program from the Root or Process window. Both launch the Parallel Program Session dialog.

Figure 243, Start a Debugging Session dialog

520

Setting Up MPI Debugging Sessions Debugging MPI Programs

The Parallel Program Session Dialog

1. Enter a session name in the Session Name field.

NOTE: Any previously entered sessions of the same type are available from the Session
Name dropdown box. Once selected, you can change any session properties and
start your debug session. See Editing or Starting New Sessions in a Sessions Win-
dow on page 126.

2. Select the Parallel system, the number of Tasks, and Nodes.

3. (Optional) Enter any additional arguments required by the starter process into the Arguments area. Note
that these arguments are those sent to a starter process such as mpirun or poe. They are not arguments
sent to your program.

4. Select the Program Details tab to enter the file name of the program being debugged and any arguments
to be sent to your program.

Figure 244, Parallel Program Session dialog

521

Setting Up MPI Debugging Sessions Debugging MPI Programs

5. Select any optional settings:

 Select Debug Options to enable reverse, memory or CUDA debugging. See Options:
Reverse Debugging, Memory Debugging, and CUDA on page 118.

 Select the Environment tab to add or initialize environment variables or customize standard
I/O. See Setting Environment Variables and Altering Standard I/O on page 120.

 Select the Preview Launch tab to view the launch string TotalView will use to open your
debugging session.

522

Setting Up MPI Debugging Sessions Debugging MPI Programs

6. Select the Start Session button to launch the TotalView.

Once created, a session named my_foo can be quickly launched later using the
-load command line option, like so:
totalview -load_session my_foo

523

Setting Up MPI Debugging Sessions MPICH Applications

MPICH Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

To debug Message Passing Interface/Chameleon Standard (MPICH) applications, you must use MPICH version
1.2.3 or later on a homogeneous collection of computers. If you need a copy of MPICH, you can obtain it at no
cost from Argonne National Laboratory at http://www.mpich.org/downloads/. (We strongly urge that you use a
later version of MPICH. For versions that work with TotalView, see TotalView Supported Platforms document in the
TotalView distribution at <installdir>/totalview.<version>/doc/pdf or TotalView Supported Platforms on
the TotalView documentation website.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem, ch_lfshmem, or ch_mpl devices.

 For networks of workstations, the default MPICH library is ch_p4.

 For shared-memory SMP computers, use ch_shmem.

 On an IBM SP computer, use the ch_mpl device.

The MPICH source distribution includes all these devices. Choose the one that best fits your environment when
you configure and build MPICH.

NOTE: When configuring MPICH, you must ensure that the MPICH library maintains all of the infor-
mation that TotalView requires. This means that you must use the -enable-debug option with
the MPICH configure command. (Versions earlier than 1.2 used the --debug option.) In addi-
tion, the TotalView Release Notes contains information on patching your MPICH version 1.2.3
distribution.

For more information on MPICH applications, see MPICH Debugging Tips on page 451.

Starting TotalView on an MPICH Job
Before you can bring an MPICH job under TotalView’s control, both TotalView and the tvdsvr must be in your
path, most easily set in a login or shell startup script.

For version 1.1.2, the following command-line syntax starts a job under TotalView control:

https://help.totalview.io/
https://help.totalview.io/current/PDFs/TotalView_Platforms_Guide.pdf
http://www.mpich.org/downloads/

524

Setting Up MPI Debugging Sessions MPICH Applications

mpirun [MPICH-arguments] -tv program [program-arguments]

For example:
mpirun -np 4 -tv sendrecv

The MPICH mpirun command obtains information from the TOTALVIEW environment variable and then uses this
information when it starts the first process in the parallel job.

For Version 1.2.4, the syntax changes to the following:

mpirun -dbg=totalview [other_mpich-args] program [program-args]

For example:
mpirun -dbg=totalview -np 4 sendrecv

In this case, mpirun obtains the information it needs from the -dbg command-line option.

In other contexts, setting this environment variable means that you can use different versions of TotalView or
pass command-line options to TotalView.

For example, the following is the C shell command that sets the TOTALVIEW environment variable so that mpi-
run passes the -no_stop_all option to TotalView:
setenv TOTALVIEW "totalview -no_stop_all"

TotalView begins by starting the first process of your job, the master process, under its control. You can then set
breakpoints and begin debugging your code.

On the IBM SP computer with the ch_mpl device, the mpirun command uses the poe command to start an MPI
job. While you still must use the MPICH mpirun (and its -tv option) command to start an MPICH job, the way you
start MPICH differs. For details on using TotalView with poe, see Starting TotalView on a PE Program on
page 533.

Starting TotalView using the ch_p4mpd device is similar to starting TotalView using poe on an IBM computer or
other methods you might use on Sun and HP platforms. In general, you start TotalView using the totalview com-
mand, with the following syntax;

totalview mpirun [totalview_args] -a [mpich-args] program [program-args]

As your program executes, TotalView automatically acquires the processes that are part of your parallel job as
your program creates them. Before TotalView begins to acquire them, it asks if you want to stop the spawned pro-
cesses. If you click Yes, you can stop processes as they are initialized. This lets you check their states or set

CLI: totalviewcli mpirun [totalview_args] \
-a [mpich-args] program [program-args]

525

Setting Up MPI Debugging Sessions MPICH Applications

breakpoints that are unique to the process. TotalView automatically copies breakpoints from the master process
to the slave processes as it acquires them. Consequently, you don’t have to stop them just to set these
breakpoints.

If you’re using the GUI, TotalView updates the Root Window to show these newly acquired processes. For more
information, see Attaching to Processes Tips on page 440.

Attaching to an MPICH Job
You can attach to an MPICH application even if it was not started under TotalView control. To attach to an MPICH
application:

1. Start TotalView.

 Select A running program (attach) on the Start a Debugging Session dialog. A list of processes running on
the selected host displays in the Attach to running program(s) dialog.

2. Attach to the first MPICH process in your workstation cluster by diving into it.

3. On an IBM SP with the ch_mpi device, attach to the poe process that started your job. For details, see
Starting TotalView on a PE Program on page 533.

CLI: dattach executable pid

526

Setting Up MPI Debugging Sessions MPICH Applications

Normally, the first MPICH process is the highest process with the correct program name in the process list.
Other instances of the same executable can be:

 The p4 listener processes if MPICH was configured with ch_p4.

 Additional slave processes if MPICH was configured with ch_shmem or ch_lfshmem.

 Additional slave processes if MPICH was configured with ch_p4 and has a file that places mul-
tiple processes on the same computer.

4. After attaching to your program’s processes, a dialog launches where you can choose to also attach to slave
MPICH processes. If you do, press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes.

As an alternative, you can use the Group > Attach Subset command to predefine what TotalView should
do. For more information, see Attaching to Processes Tips on page 440.

NOTE: If you are using TotalView Individual, all your MPI processes must execute on the computer on
which you installed TotalView.

In some situations, the processes you expect to see might not exist (for example, they may crash or exit).
TotalView acquires all the processes it can and then warns you if it cannot attach to some of them. If you attempt
to dive into a process that no longer exists (for example, using a message queue display), you are alerted that the
process no longer exists.

Using MPICH P4 procgroup Files
If you’re using MPICH with a P4 procgroup file (by using the -p4pg option), you must use the same absolute path
name in your procgroup file and on the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though this name resolves to the same exe-
cutable, TotalView assumes that it is a different executable, which causes debugging problems.

The following example uses the same absolute path name on the TotalView command line and in the procgroup
file:
% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun -p4pg p4group -tv /users/smith/mympichexe

In this example, TotalView does the following:

1. Reads the symbols from mympichexe only once.

527

Setting Up MPI Debugging Sessions MPICH Applications

2. Places MPICH processes in the same TotalView share group.

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a problem occurred and you need to com-
pare the contents of your procgroup file and mpirun command line.

528

Setting Up MPI Debugging Sessions MPICH2 Applications

MPICH2 Applications

NOTE: You should be using MPICH2 version 1.0.5p4 or higher. Earlier versions had problems that
prevented TotalView from attaching to all the processes or viewing message queue data.

Downloading and Configuring MPICH2

You can download the current MPICH2 version from:

http://www.mpich.org/downloads/versions/

If you wish to use all of the TotalView MPI features, you must configure MPICH2. Do this by adding one of the fol-
lowing to the configure script that is within the downloaded information:

- -enable-debuginfo

or

- - -enable-totalview

The configure script looks for the following file:

python2.x/config/Makefile

It fails if the file is not there.

The next steps are:

1. Run make

2. Run make install

This places the binaries and libraries in the directory specified by the optional - -prefix option.

3. Set the PATH and LD_LIBRARY_PATH to point to the MPICH2 bin and lib directories.

Starting TotalView Debugging on an MPICH2 Hydra Job
As of MPICH2 1.4.1, the default job type for MPICH2 is Hydra. If you are instead using MPD, see Starting
TotalView Debugging on an MPICH2 MPD Job on page 529.

http://www.mpich.org/downloads/versions/

529

Setting Up MPI Debugging Sessions MPICH2 Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

Start a Hydra job as follows:

totalview -args mpiexec mpiexec-args program program-args
You may not see sources to your program at first. If you do see the program, you can set break-
points. In either case, press the Go button to start your process. TotalView displays a dialog box
when your program goes parallel that allows you to stop execution. (This is the default behav-
ior. You can change it using the options within File >Preferences >Parallel page.)

Starting TotalView Debugging on an MPICH2 MPD Job
You must start the mpd daemon before starting an MPICH2 MPI job.

NOTE: As of MPICH2 1.4.1, the default job type is Hydra, rather than MPD, so if you are using the
default, there is no need to start the daemon. See Starting TotalView Debugging on an MPICH2
Hydra Job on page 528.

Starting the MPI MPD Job with MPD Process Manager

To start the mpd daemon, use the mpdboot command. For example:
mpdboot -n 4 -f hostfile

where:

-n 4 The number of hosts on which you wish to run the daemon. In this example, the daemon runs
on four hosts

-f hostfile Lists the hosts on which the application will run. In this example, a file named hostfile contains
this list.

You are now ready to start debugging your application.

530

Setting Up MPI Debugging Sessions MPICH2 Applications

Starting an MPICH2 MPD Job

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

Start an MPICH2 MPD job in one of the following ways:

mpiexec mpi-args -tv program -a program-args
This command tells MPI to start TotalView. You must have set the TOTALVIEW environment vari-
able with the path to TotalView’s executable when you start a program using mpiexec. For ex-
ample:

 setenv TOTALVIEW \
 /opt/totalview/bin/totalview
This method of starting TotalView does not let you restart your program without exiting To-
talView and you will not be able to attach to a running MPI job.

totalview python -a `which mpiexec` \
-tvsu mpiexec-args program program-args

This command lets you restart your MPICH2 job. It also lets you attach to a running MPICH2 job
by using the Attach to a Running Program dialog box. You need to be careful that you at-
tach to the right instance of python as it is likely that a few instances are running. The one to
which you want to attach has no attached children—child processes are indented with a line
showing the connection to the parent.

You may not see sources to your program at first. If you do see the program, you can set break-
points. In either case, press the Go button to start your process. TotalView displays a dialog box
when your program goes parallel that allows you to stop execution. (This is the default behav-
ior. You can change it using the options within File >Preferences >Parallel page.)

You will also need to set the TOTALVIEW environment variable as indicated in the previous
method.

531

Setting Up MPI Debugging Sessions Cray MPI Applications

Cray MPI Applications
In many cases, you can bypass the procedure described in this section. For more information, see Debugging
MPI Programs on page 518

Specific information on debugging Cray MPI applications is located in our discussion of running TotalView on Cray
platforms. See Debugging Cray XT/XE/XK/XC Applications on page 554 for information.

532

Setting Up MPI Debugging Sessions IBM MPI Parallel Environment (PE) Applications

IBM MPI Parallel Environment (PE)
Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

You can debug IBM MPI Parallel Environment (PE) applications on the IBM RS/6000 and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes, you must be using release 3,1 or later
of the Parallel Environment for AIX.

Topics in this section are:

 Preparing to Debug a PE Application on page 532

 Starting TotalView on a PE Program on page 533

 Setting Breakpoints on page 534

 Starting Parallel Tasks on page 534

 Attaching to a PE Job on page 534

Preparing to Debug a PE Application
The following sections describe what you must do before TotalView can debug a PE application.

Using Switch-Based Communications

If you’re using switch-based communications (either IP over the switch or user space) on an SP computer, configure
your PE debugging session so that TotalView can use IP over the switch for communicating with the TotalView
Server (tvdsvr). Do this by setting the -adapter_use option to shared and the -cpu_use option to multiple, as
follows:

 If you’re using a PE host file, add shared multiple after all host names or pool IDs in the host file.

 Always use the following arguments on the poe command line:
-adapter_use shared -cpu_use multiple

533

Setting Up MPI Debugging Sessions IBM MPI Parallel Environment (PE) Applications

If you don’t want to set these arguments on the poe command line, set the following environment variables
before starting poe:
setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using IP over the switch, the default is usually shared adapter use and multiple cpu use; we recommend
that you set them explicitly using one of these techniques. You must run TotalView on an SP or SP2 node. Since
TotalView will be using IP over the switch in this case, you cannot run TotalView on an RS/6000 workstation.

Performing a Remote Login

You must be able to perform a remote login using the ssh command. You also need to enable remote logins by
adding the host name of the remote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries to start the TotalView Server by using
the ssh command with the switch host name of the node.

Setting Timeouts

If you receive communications timeouts, you can set the value of the MP_TIMEOUT environment variable; for
example:
setenv MP_TIMEOUT 1200

If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

Starting TotalView on a PE Program
The following is the syntax for running Parallel Environment (PE) programs from the command line:

program [arguments] [pe_arguments]

You can also use the poe command to run programs as follows:

poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as TotalView’s target using the following
syntax:

{ totalview | totalviewcli } poe -a program [arguments] [PE_arguments]

For example:
totalview poe -a sendrecv 500 -rmpool 1

534

Setting Up MPI Debugging Sessions IBM MPI Parallel Environment (PE) Applications

Setting Breakpoints
After TotalView is running, start the poe process using the Process > Go command.

A dialog box launches in the GUI —in the CLI, it prints a question—to determine if you want to stop the parallel
tasks.

If you want to set breakpoints in your code before they begin executing, answer Yes. TotalView initially stops the
parallel tasks, which also allows you to set breakpoints. You can now set breakpoints and control parallel tasks in
the same way as any process controlled by TotalView.

If you have already set and saved breakpoints with the Action Point > Save All command, and you want to reload
the file, answer No. After TotalView loads these saved breakpoints, the parallel tasks begin executing.

Starting Parallel Tasks
After you set breakpoints, you can start all of the parallel tasks with the Process Window Group > Go command.

NOTE: No parallel tasks reach the first line of code in your main routine until all parallel tasks start.

Be very cautious in placing breakpoints at or before a line that calls MPI_Init() or MPL_Init() because timeouts
can occur while your program is being initialized. After you allow the parallel processes to proceed into the
MPI_Init() or MPL_Init() call, allow all of the parallel processes to proceed through it within a short time. For more
information on this, see IBM PE Debugging Tips on page 453.

Attaching to a PE Job
To take full advantage of TotalView’s poe-specific automation, you need to attach to poe itself, and let TotalView
automatically acquire the poe processes on all of its nodes. In this way, TotalView acquires the processes you
want to debug.

CLI: dfocus p dgo

CLI: dactions -save filename
dactions -load filename

CLI: dfocus G dgo
Abbreviation: G

535

Setting Up MPI Debugging Sessions IBM MPI Parallel Environment (PE) Applications

Attaching from a Node Running poe

To attach TotalView to poe from the node running poe:

1. Start TotalView in the directory of the debug target.

If you can’t start TotalView in the debug target directory, you can start TotalView by editing the tvdsvr com-
mand line before attaching to poe. See Setting the Single-Process Server Launch Command on page 498.

2. In the File > Attach to a Running Program, then find the poe process list, and attach to it by diving into it.
When necessary, TotalView launches tvdsvrs. TotalView also updates the Root Window and opens a Pro-
cess Window for the poe process.

3. Locate the process you want to debug and dive on it, which launches a Process Window for it. If your source
code files are not displayed in the Source Pane, invoke the File > Search Path command to add directories
to your search path.

Attaching from a Node Not Running poe

The procedure for attaching TotalView to poe from a node that is not running poe is essentially the same as the
procedure for attaching from a node that is running poe. Since you did not run TotalView from the node running
poe (the startup node), you won’t be able to see poe on the process list in the Root Window and you won’t be
able to start it by diving into it.

To place poe in this list:

1. Connect TotalView to the startup node. For details, see Starting the TotalView Server Manually on
page 492.

2. Select the File > Attach to a Running Program.

3. Look for the process named poe and continue as if attaching from a node that is running poe.

CLI: dattach poe pid

CLI: dattach -r hostname poe poe-pid

536

Setting Up MPI Debugging Sessions Open MPI Applications

Open MPI Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

Open MPI is an open source implementation of both the MPI-1 and MPI-2 documents that combines some
aspects of four different (and now no longer under active development) MPI implementations: FT-MPI from the
University of Tennessee, LA-MPI from Los Alamos National Laboratory, LAM/MPI from Indiana University, and
PACX-MPI from the University of Stuttgart.

For more information on Open MPI, see https://www.open-mpi.org/.

Debug an Open MPI program similarly to most MPI programs, using the following syntax if TotalView is in your
path:

mpirun -tv args prog prog_args

As an alternative, you can invoke TotalView on mpirun.

totalview -args mpirun args ./prog

For example, to start TotalView on a four-process MPI program:
totalview -args mpirun -np 4 ./mpi_program

Alternatively, you can use the Session Manager or Startup Parameter window (accessed via Process > Startup
Parameters) and choose the Parallel option to enter the parallel session details in the GUI.

https://www.open-mpi.org/

537

Setting Up MPI Debugging Sessions QSW RMS Applications

QSW RMS Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

Starting TotalView on an RMS Job
To start a parallel job under TotalView control, use TotalView as if you were debugging prun:

{ totalview | totalviewcli } prun -a prun-command-line

TotalView starts and shows you the machine code for RMS prun. Since you’re not usually interested in debugging
this code, use the Process > Go command to let the program run.

The RMS prun command executes and starts all MPI processes. After TotalView acquires them, it asks if you want
to stop them at startup. If you answer yes, TotalView halts them before they enter the main program. You can
then create breakpoints.

Attaching to an RMS Job
To attach to a running RMS job, attach to the RMS prun process that started the job.

You attach to the prun process the same way you attach to other processes.

After you attach to the RMS prun process, you have the option to attach to slave MPICH processes. If you do,
press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPI processes.

As an alternative, you can use the Group > Attach Subset command to predefine what TotalView should do.

CLI: dfocus p dgo

RELATED TOPICS
Attaching to processes using prun Attaching to a Running Program on page 105

Using the Group > Attach Subset command to specify
TotalView behavior when attaching to an RMS prun process

 Attaching to Processes Tips on page 440

538

Setting Up MPI Debugging Sessions SGI MPI Applications

SGI MPI Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

TotalView can acquire processes started by SGI MPI applications. This MPI is part of the Message Passing Toolkit
(MPT) 1.3 and 1.4 packages. TotalView can display the Message Queue Graph Window for these releases. See Dis-
playing the Message Queue Graph Window on page 446 for message queue display.

Starting TotalView on an SGI MPI Job
You normally start SGI MPI programs by using the mpirun command. You use a similar command to start an MPI
program under debugger control, as follows:

{ totalview | totalviewcli } mpirun -a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for mpirun. Since you’re not usually interested
in debugging this code, use the Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After TotalView acquires them, it asks if you
want to stop them at startup. If you answer Yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView also prints a message that shows the
name of the array and the value of the array services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job
To attach to a running SGI MPI program, attach to the SGI MPI mpirun process that started the program. The pro-
cedure for attaching to an mpirun process is the same as that for attaching to any other process.

After you attach to the mpirun process, TotalView asks if you also want to attach to slave MPICH processes. If you
do, press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes.

As an alternative, you can use the Group > Attach Subset command to predefine what to do.

CLI: dfocus p dgo

539

Setting Up MPI Debugging Sessions SGI MPI Applications

Using ReplayEngine with SGI MPI
SGI MPI uses the xpmem module to map memory from one MPI process to another during job startup. Memory
mapping is enabled by default. The size of this mapped memory can be quite large, and can have a negative
effect on TotalView’s ReplayEngine performance. Therefore, mapped memory is limited by default for the xpmem
module if Replay is enabled. The environment variable, MPI_MEMMAP_OFF, is set to 1 in the TotalView file paral-
lel_support.tvd by adding the variable to the replay_env: specification as follows: replay_env:
MPI_MEMMAP_OFF=1.

If full memory mapping is required, set the startup environment variable in the Arguments field of the Program
Session dialog. Add the following to the environment variables: MPI_MEMMAP_OFF=0.

Be aware that the default mapped memory size may prove to be too large for ReplayEngine to deal with, and it
could be quite slow. You can limit the size of the mapped heap area by using the MPI_MAPPED_HEAP_SIZE envi-
ronment variable documented in the SGI documentation. After turning off MEMMAP_OFF as described above,
you can set the size (in bytes) in the TotalView startup parameters.

For example:
MPI_MAPPED_HEAP_SIZE=1048576

NOTE: SGI has a patch for an MPT/XPMEM issue. Without this patch, XPMEM can crash the system if
ReplayEngine is turned on. To get the XPMEM fix for the munmap problem, either upgrade to
ProPack 6 SP 4 or install SGI patch 10570 on top of ProPack 6 SP 3.

RELATED TOPICS
Attaching to an mpirun process Debugging an MPI Program on page 94

Using the Group > Attach Subset com-
mand to specify TotalView behavior when
attaching to a process

 Attaching to Processes Tips on page 440

540

Setting Up MPI Debugging Sessions Sun MPI Applications

Sun MPI Applications

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

TotalView can debug a Sun MPI program and can display Sun MPI message queues. This section describes how to
perform job startup and job attach operations.

To start a Sun MPI application:

1. Enter the following command:

totalview mprun [totalview_args] -a [mpi_args]

For example:
totalview mprun -g blue -a -np 4 /usr/bin/mpi/conn.x

When the TotalView Process Window appears, select the Go button.

TotalView may display a dialog box with the following text:
Process mprun is a parallel job. Do you want to stop
the job now?

2. If you compiled using the -g option, click Yes to open a Process Window that shows your source. All pro-
cesses are halted.

Attaching to a Sun MPI Job
To attach to an already running mprun job:

1. Find the host name and process identifier (PID) of the mprun job by typing mpps -b. For more information,
see the mpps(1M) manual page.

The following is sample output from this command:
JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

CLI: totalviewcli mprun [totalview_args] -a [mpi_args]

CLI: dfocus p dgo

541

Setting Up MPI Debugging Sessions Sun MPI Applications

2. After selecting File > Attach to a Running Program, type mprun in the File Name field and type the PID in
the Process ID field.

3. If TotalView is running on a different node than the mprun job, select the host or add a new host in the
Host field.

CLI: dattach mprun mprun-pid
For example:

dattach mprun 12601

CLI: dattach -r host-name mprun mprun-pid

542

Setting Up MPI Debugging Sessions Starting MPI Issues

Starting MPI Issues

NOTE: In many cases, you can bypass the procedure described in this section. For more information,
see Debugging MPI Programs on page 518.

If you can’t successfully start TotalView on MPI programs, check the following:

 Can you successfully start MPICH programs without TotalView?

The MPICH code contains some useful scripts that verify if you can start remote processes on all of the com-
puters in your computers file. (See tstmachines in mpich/util.)

 You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by TotalView to extract the
message queues are not as expected in the image <your image name>. This is
probably an MPICH version or configuration problem.
You need to check that you are using MPICH Version 1.1.0 or later and that you have configured it with the
-debug option. (You can check this by looking in the config.status file at the root of the MPICH directory
tree.)

 Does the TotalView Server (tvdsvr) fail to start?

tvdsvr must be in your PATH when you log in. Remember that TotalView uses ssh to start the server, and
that this command doesn’t pass your current environment to remotely started processes.

 Make sure you have the correct MPI version and have applied all required patches. See the
TotalView Release Notes at https://help.totalview.io/ for up-to-date information.

 Under some circumstances, MPICH kills TotalView with the SIGINT signal. You can see this behavior
when you use the Group > Kill command as the first step in restarting an MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try setting the TV::ignore_control_c
variable to true.

CLI: dfocus g ddelete

RELATED TOPICS
Tips for debugging MPI applications MPI Debugging Tips and Tools on page 445

https://help.totalview.io/

543

Setting Up MPI Debugging Sessions Starting MPI Issues

The TotalView server, tvdsvr " The tvdsvr Command and Its Options" in the Classic
TotalView Reference Guide

MPI version information The TotalView Release Notes on the TotalView docu-
mentation page

RELATED TOPICS

https://help.totalview.io/
https://help.totalview.io/

544

Setting Up MPI Debugging Sessions Using ReplayEngine with Infiniband MPIs

Using ReplayEngine with Infiniband MPIs
In general, using ReplayEngine with MPI versions that communicate over Infiniband is no different than using it
with other MPIs, but its use requires certain environment settings, as described here. If you are launching the MPI
job from within TotalView, these are set for you; if instead, you start the MPI program from outside TotalView, you
must explicitly set your environment.

Required Environment Settings

When you start the MPI program from within TotalView with ReplayEngine enabled, TotalView inserts environment
variable settings into the MPI processes to disable certain RDMA optimizations. (These are optimizations that
hinder ReplayEngine’s ability to identify the memory regions being actively used for RDMA, and their use can
therefore result in unreasonably slow execution in record mode.) These variables are set for you, requiring no
extra tasks compared to using a non-Infiniband MPI.

The inserted settings are:

 VIADEV_USE_DREG_CACHE=0 (addresses MVAPICH1 versions)

 MV2_DREG_CACHE_LIMIT=1 (addresses MVAPICH2 versions)

 MV2_RNDV_PROTOCOL=R3 (addresses Intel MPI versions, also affects MVAPICH2)

 OMPI_MCA_mpool_rdma_rcache_size_limit=1 (addresses Open MPI versions)

When the MPI program is started outside TotalView (for example, when using a command like mpirun -tv, or
when you attach TotalView to an MPI program that is already running), you must set the relevant environment
variable for your MPI version, as described above. Also, two additional environment variables are required to
make the MPI program's use of RDMA memory visible to ReplayEngine, as follows:

 IBV_FORK_SAFE: Set to any value, for example IBV_FORK_SAFE=1

 LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation
directory at toolworks/totalview.<version>/linux-x86-64/lib/
undodb_infiniband_preload_x64.so.

For example, here’s how to set the environment for the MVAPICH1 implementation of MPI:

mpirun_rsh -np 8 -hostfile myhosts \
VIADEV_USE_DREG_CACHE=0 IBV_FORK_SAFE=1 \
LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so myprogram
For more information, consult your MPI version documentation for specifics on setting environment variables.

545

Setting Up MPI Debugging Sessions Using ReplayEngine with Infiniband MPIs

Cray XT/XE/XK/XC MPIs

On Cray XT/XE/XK/XC (x86_64 only) systems, although Infiniband is not used, the MPIs do use RDMA techniques.
As a result, using Replay on these systems requires some particular environmental settings. Briefly, the required
settings are MPICH_SMP_SINGLE_COPY_OFF = 1, and LD_PRELOAD set to the location of the Infiniband pre-
load library described above. Refer to the “Debugging Cray XT/XE/XK/XC Applications” section for details.

Possible Errors

ReplayEngine checks environment settings before it attaches to the MPI program, but in some cases, may not
detect incompatible settings, reporting the following errors:

 If ReplayEngine finds that either the IBV_FORK_SAFE setting is absent, or that the preload library
has not been loaded, it declines to attach and issues an error message citing unmet prerequisites.
You can still attach TotalView to the program without ReplayEngine - for example, in the GUI by
using the New Program dialog.

 If ReplayEngine cannot determine that the environment variable setting to disable an MPI
optimization has been set, it continues to attach, but issues a warning message that it could not
verify prerequisites. Depending on your program's use of memory for RDMA, you may find that it
runs unreasonably slowly in record mode, or encounters errors that would not occur if
ReplayEngine were not attached.

RELATED TOPICS
Using ReplayEngine in general Getting Started with Replay Engine

MPI programs Debugging MPI Programs on page 518

546

Setting Up Parallel Debugging
Sessions

This chapter explains how to set up TotalView parallel debugging sessions for applications that use the paral-
lel execution models that TotalView supports and which do not use MPI.

NOTE: If you are using TotalView Individual, all your program’s processes must execute on the
computer on which you installed TotalView. In addition, TotalView Individual limits you to
no more than 16 processes and threads.

This chapter discusses the following topics:

 Debugging OpenMP Applications on page 547

 Using SLURM on page 553

 Debugging Cray XT/XE/XK/XC Applications on page 554

 Debugging Global Arrays Applications on page 557

 Debugging Shared Memory (SHMEM) Code on page 559

 Debugging UPC Programs on page 560

 Debugging CoArray Fortran (CAF) Programs on page 564

This chapter also describes TotalView features that you can use with most parallel models:

 Define the process you want TotalView to attach to. See Attaching to Processes Tips on
page 440.

 See Debugging Strategies for Parallel Applications on page 437 for general hints on how to
approach debugging parallel programs.

547

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

Debugging OpenMP Applications
TotalView supports many OpenMP compilers for the C, C++, and Fortran languages. Supported compilers and
architectures are listed in the TotalView Platforms and Systems Requirements document.

The following are some features that TotalView supports:

 Source-level debugging of the original OpenMP code.

 The ability to plant breakpoints throughout the OpenMP code, including lines that are executed in
parallel.

 Visibility of OpenMP worker threads.

 Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

 A stack-back link token in worker threads’ stacks so that you can find their master stack.

 Access to OMP THREADPRIVATE data in code compiled by supported compilers.

Topics in this section are:

 Debugging OpenMP Programs on page 547

 Viewing OpenMP Private and Shared Variables on page 549

 Viewing OpenMP THREADPRIVATE Common Blocks on page 550

 Viewing the OpenMP Stack Parent Token Line on page 551

Debugging OpenMP Programs
Debugging OpenMP code is similar to debugging multi-threaded code. The major differences are in the way the
OpenMP compiler alters your code. These alterations include:

 Outlining. The compiler pulls the body of a parallel region out of the original routine and places it in
an outlined routine. In some cases, the compiler generates multiple outlined routines from a single
parallel region. This allows multiple threads to execute the parallel region.

The outlined routine’s name is based on the original routine’s name. In most cases, the compiler adds a
numeric suffix.

 The compiler inserts calls to the OpenMP runtime library.

548

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

 The compiler splits variables between the original routine and the outlined routine. Normally,
shared variables reside in the master thread’s original routine, and private variables reside in the
outlined routine.

 The master thread creates threads to share the workload. As the master thread begins to execute
a parallel region in the OpenMP code, it creates the worker threads, dispatches them to the
outlined routine, and then calls the outlined routine itself.

About TotalView OpenMP Features

TotalView interprets the changes that the OpenMP compiler makes to your code so that it can display your pro-
gram in a coherent way. Here are some things you should know:

 The compiler can generate multiple outlined routines from a single parallel region. This means that
a single line of source code can generate multiple blocks of machine code inside different
functions.

 You can’t single step into or out of a parallel region. Instead, set a breakpoint inside the parallel
region and let the process run to it. After execution reaches the parallel region, you can single step
in it.

 OpenMP programs are multi-threaded programs, so the rules for debugging multi-threaded
programs apply.

About OpenMP Platform Differences

In general, TotalView smooths out the differences that occur when you execute OpenMP platforms on different
platforms. The following list discusses these differences:

 The OpenMP master thread has logical thread ID number 1. The OpenMP worker threads have a
logical thread ID number greater than 1.

 Select or dive on the stack parent token line to view the original routine’s stack frame in the
OpenMP master thread.

 When you stop the OpenMP worker threads in a PARALLEL DO outlined routine, the stack
backtrace shows the following call sequence:

 Outlined routine called from the special stack parent token line.

 The OpenMP runtime library called from.

 The original routine (containing the parallel region).

549

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

Viewing OpenMP Private and Shared Variables
You can view both OpenMP private and shared variables.

The compiler maintains OpenMP private variables in the outlined routine, and treats them like local variables. See
Displaying Local Variables and Registers on page 258. In contrast, the compiler maintains OpenMP shared vari-
ables in the master thread’s original routine stack frame.

You can display shared variables through a Process Window focused on the OpenMP master thread, or through
one of the OpenMP worker threads.

To see these variables:

1. Select the outlined routine in the Stack Trace Pane, or select the original routine stack frame in the OpenMP
master thread.

2. Dive on the variable name, or select the View > Lookup Variable command. When prompted, enter the
variable name.

A Variable Window is launched that displays the value of the OpenMP shared variable, as shown in Figure
245.

CLI: dprint
You need to first set your focus to the OpenMP master thread.

Figure 245, OpenMP Shared Variable

550

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

Shared variables reside in the OpenMP master thread’s stack. When displaying shared variables in OpenMP
worker threads, TotalView uses the stack context of the OpenMP master thread to find the shared variable.
TotalView uses the OpenMP master thread’s context when displaying the shared variable in a Variable Window.

You can also view OpenMP shared variables in the Stack Frame Pane by selecting either of the following:

 Original routine stack frame in the OpenMP master thread.

 Stack parent token line in the Stack Trace Pane of OpenMP worker threads.

Viewing OpenMP THREADPRIVATE Common Blocks
Some compilers implement OpenMP THREADPRIVATE common blocks by using the thread local storage system
facility. This facility stores a variable declared in OpenMP THREADPRIVATE common blocks at different memory
locations in each thread in an OpenMP process. This allows the variable to have different values in each thread. In
contrast, IBM and other compilers use the pthread key facility.

To view a variable in an OpenMP THREADPRIVATE common block or the OpenMP THREADPRIVATE common
block:

1. In the Threads Tab of the Process Window, select the thread that contains the private copy of the variable
or common block you want to view.

2. In the Stack Trace Pane of the Process Window, select the stack frame that lets you access the OpenMP
THREADPRIVATE common block variable. You can select either the outlined routine or the original routine
for an OpenMP master thread. You must, however, select the outlined routine for an OpenMP worker
thread.

3. From the Process Window, dive on the variable name or common block name, or select the View > Lookup
Variable command. When prompted, enter the name of the variable or common block. You may need to
append an underscore character (_) after the common block name.

A Variable Window opens that displays the value of the variable or common block for the selected thread.

See Displaying Variables on page 246 for more information on displaying variables.

4. To view OpenMP THREADPRIVATE common blocks or variables across all threads, use the Variable Win-
dow’s Show across > Threads command. See Displaying a Variable in all Processes or Threads on
page 330.

CLI: dprint

551

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

Figure 246 shows Variable Windows displaying OpenMP THREADPRIVATE common blocks. Because the Variable
Window has the same thread context as the Process Window from which it was created, the title bar patterns for
the same thread match. TotalView displays the values of the common block across all threads when you use the
View > Show Across > Threads command.

Viewing the OpenMP Stack Parent Token Line
TotalView inserts a special stack parent token line in the Stack Trace Pane of OpenMP worker threads when they
are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Window switches to the OpenMP master
thread, allowing you to see the stack context of the OpenMP worker thread’s routine.

Figure 246, OpenMP THREADPRIVATE Common Block Variables

Figure 247, OpenMP Stack Parent Token Line

552

Setting Up Parallel Debugging Sessions Debugging OpenMP Applications

This stack context includes the OpenMP shared variables.

553

Setting Up Parallel Debugging Sessions Using SLURM

Using SLURM
TotalView supports the SLURM resource manager. Here is some information copied from the SLURM website
(https://computing.llnl.gov/tutorials/linux_clusters/).

SLURM is an open-source resource manager designed for Linux clusters of all sizes. It provides three key func-
tions. First it allocates exclusive and/or non-exclusive access to resources (computer nodes) to users for some
duration of time so they can perform work. Second, it provides a framework for starting, executing, and moni-
toring work (typically a parallel job) on a set of allocated nodes. Finally, it arbitrates conflicting requests for
resources by managing a queue of pending work.

SLURM is not a sophisticated batch system, but it does provide an Applications Programming Interface (API) for
integration with external schedulers such as the Maui Scheduler. While other resource managers do exist,
SLURM is unique in several respects:

 Its source code is freely available under the GNU General Public License.

 It is designed to operate in a heterogeneous cluster with up to thousands of nodes.

 It is portable; written in C with a GNU autoconf configuration engine. While initially written for Linux,
other UNIX-like operating systems should be easy porting targets. A plugin mechanism exists to
support various interconnects, authentication mechanisms, schedulers, etc.

 SLURM is highly tolerant of system failures, including failure of the node executing its control
functions.

 It is simple enough for the motivated end user to understand its source and add functionality.

https://computing.llnl.gov/tutorials/linux_clusters/

554

Setting Up Parallel Debugging Sessions Debugging Cray XT/XE/XK/XC Applications

Debugging Cray XT/XE/XK/XC Applications
The Cray XT/XE/XK/XC series of supercomputers are supported by the TotalView Linux x86_64 and Linux ARM64
(aarch64) distributions. The discussion here is based on running applications using the Cray Linux Environment
(CLE). TotalView supports launching application programs using either PBS Pro with ALPS aprun or SLURM srun.

Starting TotalView on Cray
Because the configuration of most Cray systems typically varies from site to site, the following provides only gen-
eral guidelines for starting TotalView on your application. Please consult your site's documentation for the specific
steps needed to debug a program using TotalView on your Cray system.

File System Considerations

Place your application to debug on a file system that is shared across all Cray node types, such as the service,
elogin, login/MOM, and/or compute nodes. This allows you to compile and debug your application across node
types.

Further, make sure that your $HOME/.totalview directory is on a shared file system that is common across all
Cray node types to ensure that you can use the tvconnect feature in batch scripts. For more information, see
Reverse Connections on page 505.

Starting TotalView

TotalView typically runs interactively. If your site has not designated any compute nodes for interactive processing,
you can allocate compute nodes for interactive use. Use PBS Pro's qsub -I or SLURM's salloc command to allo-
cate an interactive job. Be sure that your X11 DISPLAY environment variable is propagated or set properly. See
"man qsub" or "man salloc" for more information on interactive jobs.

If TotalView is installed on your system, load it into your user environment:
module load totalview

Use the following command to start TotalView where mpi_starter is the MPI starter program for your system,
such as aprun or srun.

The CLI:

RELATED TOPICS
Setting up an MPI debugging session Setting Up MPI Debugging Sessions on page 516

Tips for parallel debugging General Parallel Debugging Tips on page 438

555

Setting Up Parallel Debugging Sessions Debugging Cray XT/XE/XK/XC Applications

totalviewcli -tv_options -args mpi_starter [mpi_options] application_name
[application_arguments]

The GUI:
totalview -tv_options -args mpi_starter [mpi_options] application_name [application_arguments]

TotalView is not able to stop your program before it calls MPI_Init() when using ALPS. While this is typically at the
beginning of main(), the actual location depends on how you’ve written the program. This means that if you set a
breakpoint before the MPI_Init() call, your program will not hit it because the statement upon which you set the
breakpoint will have already executed. On the other hand, SLURM will stop your program before it enters main(),
which allows you to debug the statements before MPI_Init() is called.

Example 1: Interactive Jobs Using qsub and aprun

This example shows how you can start TotalView on a program named a.out running in an interactive job using
qsub and aprun.

n9610@crystal:~> qsub -I -X -l nodes=4
qsub: waiting for job 599856.sdb to start
qsub: job 599856.sdb ready
Directory: /home/users/n9610
Mon Nov 4 17:23:28 CST 2019
n9610@crystal2:~> cd shared/rctest
n9610@crystal2:~/shared/rctest> module load totalview
n9610@crystal2:~/shared/rctest> totalview -verbosity errors -args aprun -n 4 ./a.out
Example 2: Interactive jobs using salloc and srun

Similarly, you can debug an interactive job using salloc and srun if your Cray system uses SLURM.

This example shows how to submit a SLURM batch job using tvconnect in the batch script. After the batch job
starts running, TotalView is started to accept the reverse-connect request.

n9610@jupiter-elogin:~/shared/rctest> cat slurm-script.bash
#!/bin/bash -x
#SBATCH --qos=debug
#SBATCH --time=00:30:00
#SBATCH --nodes=4
#SBATCH --tasks-per-node=1
#SBATCH --constraint=haswell
module load totalview
tvconnect srun -n 4 tx_basic_mpi
n9610@jupiter-elogin:~/shared/rctest> sbatch -C BW28 slurm-script.bash
Submitted batch job 1374150
n9610@jupiter-elogin:~/shared/rctest> squeue -u $USER

JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES CPUS
 1374150 n9610 (null) slurm-script.b R None 2019-11-05T09:31:53 0:16 29:44 4 8
n9610@jupiter-elogin:~/shared/rctest> module load totalview
n9610@jupiter-elogin:~/shared/rctest> totalview

556

Setting Up Parallel Debugging Sessions Debugging Cray XT/XE/XK/XC Applications

Support for Cray Abnormal Termination Processing (ATP)
Cray's ATP module stops a running job at the moment it crashes. This allows you to attach TotalView to the held
job and begin debugging it. To hold a job as it is crashing you must set the ATP_HOLD_TIME environment variable
before launching your job with aprun or srun.

When your job crashes, the MPI starter process outputs a message stating that your job has crashed and that
ATP is holding it. You can now attach TotalView tothe aprun or srun process using the normal attach procedure
(see Attaching to a Running Program on page 105.

For more information on ATP, see the Cray intro_atp man page.

Special Requirements for Using ReplayEngine
On Crayx86_64 systems, the MPIs use RDMA techniques, similar to Infiniband MPIs. When using ReplayEngine on
MPI programs, certain environment variable settings must be in effect for the MPI rank processes. These settings
ensure that memory mapping operations are visible to ReplayEngine. The required environment variable settings
are:

 MPICH_SMP_SINGLE_COPY_OFF=1

 LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation
directory at toolworks/totalview.<version>/linux-x86-64/lib/
undodb_infiniband_preload_x64.so.

When using APLS, these settings may be applied with the aprun -e option. For example, to have TotalView launch
an MPI program with ReplayEngine enabled, use a command similar to this:

totalview -replay -args aprun -n 8 \
-e MPICH_SMP_SINGLE_COPY_OFF=1 \
-e LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so \
myprogram
When using SLURM, these settings may be applied with the srun --export option. For example:
totalview -replay -args srun -n 8 \
--export=ALL,MPICH_SMP_SINGLE_COPY_OFF=1,LD_PRELOAD=/<path>/undodb_infiniband_pre-load_x64.so \
myprogram

557

Setting Up Parallel Debugging Sessions Debugging Global Arrays Applications

Debugging Global Arrays Applications
The following paragraphs, which are copied from the Global Arrays home site (http://hpc.pnl.gov/globalarrays),
describe the global arrays environment:

The Global Arrays (GA) toolkit provides a shared memory style programming environment in the context of dis-
tributed array data structures (called “global arrays”). From the user perspective, a global array can be used as
if it was stored in shared memory. All details of the data distribution, addressing, and data access are encapsu-
lated in the global array objects. Information about the actual data distribution and locality can be easily
obtained and taken advantage of whenever data locality is important. The primary target architectures for which
GA was developed are massively-parallel distributed-memory and scalable shared-memory systems.

GA divides logically shared data structures into “local” and “remote” portions. It recognizes variable data transfer
costs required to access the data depending on the proximity attributes. A local portion of the shared memory
is assumed to be faster to access and the remainder (remote portion) is considered slower to access. These dif-
ferences do not hinder the ease-of-use since the library provides uniform access mechanisms for all the shared
data regardless where the referenced data is located. In addition, any processes can access a local portion of
the shared data directly/in-place like any other data in process local memory. Access to other portions of the
shared data must be done through the GA library calls.

GA was designed to complement rather than substitute for the message-passing model, and it allows the user
to combine shared-memory and message-passing styles of programming in the same program. GA inherits an
execution environment from a message-passing library (w.r.t. processes, file descriptors etc.) that started the
parallel program.

The global arrays environment has a few unique attributes. Using TotalView, you can:

 Display a list of a program's global arrays.

 Dive from this list of global variables to see the contents of a global array in C or Fortran format.

 Cast the data so that TotalView interprets data as a global array handle. This means that TotalView
displays the information as a global array. Specifically, casting to $GA forces the Fortran
interpretation; casting to $ga forces the C interpretation; and casting to $Ga uses the language in
the current context.

Within a Variable Window, the commands that operate on a local array, such as slicing, filtering, obtaining statis-
tics, and visualization, also operate on global arrays.

The command used to start TotalView depends on your operating system. For example, the following command
starts TotalView on a program invoked using prun using three processes:
totalview prun -a -N 3 boltz.x

http://hpc.pnl.gov/globalarrays/

558

Setting Up Parallel Debugging Sessions Debugging Global Arrays Applications

Before your program starts parallel execution, a Question dialog launches so you can stop the job to set break-
points or inspect the program before it begins execution

After your program hits a breakpoint, use the Tools > Global Arrays command to begin inspecting your pro-
gram’s global arrays. TotalView displays the following window.

The arrays named in this window are displayed using their C and Fortran type names. Diving on the line that con-
tains the type definition displays Variable Windows that contain information about that array.

After TotalView displays this information, you can use other standard commands and operations on the array. For
example, you can use the slice and filter operations and the commands that visualize, obtain statistics, and show
the nodes from which the data was obtained.

If you inadvertently dive on a global array variable from the Process Window, TotalView does not know that it is a
component of a global array. If, however, you do dive on the variable, you can cast the variable into a global array
using either $ga for a C Language cast or $GA for a Fortran cast.

Figure 248, Question Window for Global Arrays Program

Figure 249, Tools > Global Arrays Window

CLI: dga

559

Setting Up Parallel Debugging Sessions Debugging Shared Memory (SHMEM) Code

Debugging Shared Memory (SHMEM) Code
TotalView supports programs using the distributed memory access Shared Memory (SHMEM) library on Quadrics
RMS systems and SGI Altix systems. The SHMEM library allows processes to read and write data stored in the
memory of other processes. This library also provides collective operations.

Debugging a SHMEM RMS or SGI Altix program is no different than debugging any other program that uses a
starter program. For example:
totalview srun -a my_program

560

Setting Up Parallel Debugging Sessions Debugging UPC Programs

Debugging UPC Programs
TotalView supports debugging UPC programs on Linux x86 platforms. This section discusses only the UPC-spe-
cific features of TotalView. It is not an introduction to the UPC Language. For an introduction to the UPC language,
see https://www2.gwu.edu/~upc/.

NOTE: When debugging UPC code, TotalView requires help from a UPC assistant library that your
compiler vendor provides. You need to include the location of this library in your LD_LI-
BRARY_PATH environment variable. TotalView also provides assistants that you can use.

Topics in this section are:

 Invoking TotalView on page 560

 Viewing Shared Objects on page 560

 Displaying Pointer to Shared Variables on page 562

Invoking TotalView
The way in which you invoke TotalView on a UPC program is straight-forward. However, this procedure depends
on the parallel technology you are using. Here are a couple of examples:

 For Quadrics RMS:
totalview prun -a prog_upc_args

 For MPICH and LAM
totalview mpirun -a -np 2 prog_upc_args

Viewing Shared Objects
TotalView displays UPC shared objects, and fetches data from the UPC thread with which it has an affinity. For
example, TotalView always fetches shared scalar variables from thread 0.

The upper-left screen in Figure 250 displays elements of a large shared array. You can manipulate and examine
shared arrays the same as any other array. For example, you can slice, filter, obtain statistical information, and so
on. (For more information on displaying array data, see Examining Arrays on page 312.) The lower-right screen
shows a slice of this array.

https://www2.gwu.edu/~upc/

561

Setting Up Parallel Debugging Sessions Debugging UPC Programs

In this figure, TotalView displays the value of a pointer-to-shared variable whose target is the array in the Shared
Address area. As usual, the address in the process appears in the top left of the display.

Figure 250, A Sliced UPC Array

562

Setting Up Parallel Debugging Sessions Debugging UPC Programs

Since the array is shared, it has an additional property: the element’s affinity. You can display this information if
you right-click your mouse on the header and tell TotalView to display Nodes.

You can also use the Tools > Visualize Distribution command to visualize this array. For more information on
visualization, see Array Visualizer on page 341.

Displaying Pointer to Shared Variables
TotalView understands pointer-to-shared data and displays the components of the data, as well as the target of
the pointer to shared variables. For example,Figure 252 shows this data being displayed:

In this figure, notice the following:

Figure 251, UPC Variable Window Showing Nodes

Figure 252, A Pointer to a Shared Variable

563

Setting Up Parallel Debugging Sessions Debugging UPC Programs

 Because the Type field displays the full type name, this is a pointer to a shared int with a block size
of 10.

 TotalView also displays the upc_threadof ("T0"), the upc_phaseof ("P0"), and the upc_addrfield
(0x0x10010ec4) components of this variable.

In the same way that TotalView normally shows the target of a pointer variable, it also shows the target of a UPC
pointer variable. When dereferencing a UPC pointer, TotalView fetches the target of the pointer from the UPC
thread with which the pointer has affinity.

You can update the pointer by selecting the pointer value and editing the thread, phase, or address values. If the
phase is corrupt, you’ll see something like the following in the Value area:
T0;P6;0x3ffc0003b00 <Bad phase [max 4]> ->
 0xc0003c80 (-1073726336)

In this example, the pointer is invalid because the phase is outside the legal range. TotalView displays a similar
message if the thread is invalid.

Since the pointer itself is not shared, you can use the TView > Show Across commands to display the value from
each of the UPC threads.

Figure 253, Pointer to a Shared Variable

564

Setting Up Parallel Debugging Sessions Debugging CoArray Fortran (CAF) Programs

Debugging CoArray Fortran (CAF) Programs
TotalView has partial support for debugging CoArray Fortran (CAF) programs on Cray platforms. This section dis-
cusses the parts of TotalView that support CAF-specific features. CoArray Fortran allows a programmer to
distribute parts of an array over a set of processes using an augmented Fortran array syntax. The processes in a
CAF job share the same executable. The processes are assigned "image ids" starting at image one.

NOTE: When debugging CAF code, TotalView requires help from a CAF assistant library that your com-
piler vendor provides. You need to include the location of this library in your
LD_LIBRARY_PATH environment variable. TotalView also provides assistants that you can use.

Because currently TotalView support is partial, expressions that attempt to re-cast CAF types or change the visible
slices of CAF types are likely to fail.

Invoking TotalView
CAF programs commonly rely on an underlying parallel protocol such as MPI. They are started the same way as
other programs using the same parallel technology.

On Cray machines that use aprun, invoking a four-image job on TotalView may look like this:
totalview aprun -a -n 4 caf_program caf_program_args

Viewing CAF Programs
For a CAF program, the process id in the TotalView process window shows the CAF image id. TotalView shows the
correct dimensions and co-dimensions of arrays and the co-dimensions of scalars.

When diving on a CAF array or scalar, TotalView shows the data local to the current image. Diving across pro-
cesses shows the entire distributed array.

565

Setting Up Parallel Debugging Sessions Debugging CoArray Fortran (CAF) Programs

If you use the array viewer, statistics, and visualizer commands from the Tools menu when viewing a CAF array
across processes, the commands treat the co-array dimensions much like standard array dimensions.

Using CLI with CAF
The dprint command in the CLI displays the data in CAF arrays in a similar way to the above. When the focus is a
process, dprint lists the local values. When the focus is the shared group containing the CAF images, dprint lists
the entire co-array.

Figure 254, Diving on CAF array y

Figure 255, Diving on CAF array y across processes

566

Controlling fork, vfork, and execve
Handling

TotalView supports customizing how to handle system calls to system calls to execve(), fork(), vfork(), and
clone() (when used without the CLONE_VM flag).

This chapter includes:

 exec_handling and fork_handling Command Options and State Variables on page 567

 Exec Handling on page 568

 Fork Handling on page 569

567

Controlling fork, vfork, and execve Handling exec_handling and fork_handling Command Options and State

exec_handling and fork_handling Command
Options and State Variables
TotalView allows you to control how the debugger handles system calls to execve(), fork(), vfork(), and clone()
(when used without the CLONE_VM flag).

 When calling fork(), vfork() or clone(), choose to either attach or detach from the new child
process.

 When calling execve(), choose either to continue the new process, halt it, or ask what action to
take.

This behavior is controlled by two CLI state variables and two command options. Set the state variables to control
the default behavior for TotalView. Use the command options when starting TotalView to control the behavior for
a particular debugging session. The command options override the state variable settings.

The lists exec-handling-list and fork-handling-list are Tcl lists of regexp and action pairs. Each regexp is
matched against the process's name to find a matching action, which determines how to handle the exec or fork
event.

Table 2: exec_handling and fork_handling Command Options and State Variables

Command Options CLI State Variables

-exec_handling exec-handling-list TV::exec_handling exec-handling-list

-fork_handling fork-handling-list TV::fork_handling fork-handling-list

RELATED TOPICS
The state variables TV::exec_handling exec-handling-list and

TV::fork_handling fork-handling-list

The totalview command options -exec_handling exec-handling-list and -fork_han-
dling fork-handling-list

Setting breakpoints when using fork() and
execve()

Setting Breakpoints When Using the fork()/execve()
Functions on page 213

Linking with the dbfork library Compiling Programs on page 87, and "Linking with the
dbfork Library" in the Classic TotalView Reference Guide

568

Controlling fork, vfork, and execve Handling Exec Handling

Exec Handling
When a process being debugged execs a new executable, the debugger iterates over exec-handling-list to match
the original process name (that is, the name of the process before it called exec) against each regexp in the list.
When it finds a match, it uses the corresponding action, as follows:

If a matching process name is not found in the exec-handling-list, the value of the TV::parallel_stop CLI state
variable preference is used.

Action Description

halt Stop the process

go Continue the process

ask Ask whether to stop the process

569

Controlling fork, vfork, and execve Handling Fork Handling

Fork Handling
When first launching or attaching to a process, the debugger iterates over fork-handling-list to match the pro-
cess name against each regexp in the list. When it finds a match, it uses the corresponding action to determine
how future fork system calls will be handled, as follows:

If a matching process name is not found in the fork-handling-list list, TotalView handles fork() based on whether the
process was linked with the dbfork library and the setting of the TV::dbfork CLI state variable preference.

For more information, see"Linking with the dbfork Library" in the Classic TotalView Reference Guide.

Example
It’s important to properly construct the exec-handling-list and fork-handling-list list of pairs, so that the list is
properly quoted for Tcl or the shell. Generally, enclose the list in curly braces in the CLI, and enclose it in single
quotes in the shell.

Note that the regular expressions are not anchored, so you must use "^" and "$" to match the beginning or end
of the process name.

Calling exec:

This example configures TotalView to automatically continue the process (without asking) when bash calls exec,
but to ask when other processes call exec, using the following dset CLI command or totalview command
option:

dset TV::exec_handling {{{^bash$} go} {. ask}}
totalview -exec_handling '{{^bash$} go} {. ask}'
Above, the regexp is wrapped in an extra set of curly braces to make sure that Tcl does not process the "$" as a
variable reference.

Calling fork:

This example configures TotalView to attach to the child process when a process containing the name "tx_-
fork_exec" calls fork, but to detach from other forked processes, using the following dset CLI command or
totalview command option:

Action Description

attach Attach to the new child processes.

detach Detach from the new child processes.

570

Controlling fork, vfork, and execve Handling Fork Handling

dset TV::fork_handling {{tx_fork_exec attach} {. detach}}
totalview -fork_handling '{tx_fork_exec attach} {. detach}'
An example session:

% totalviewcli -verbosity errors \
 -exec_handling '{{^bash$} go} {. ask}' \
 -fork_handling '{tx_fork_exec attach} {. detach}' \
 -args \
 bash -c 'tx_fork_exec tx_hello'
d1.<> co
Parent done
Child is calling execve ...
Process bash<tx_fork_exec>.1 has exec'd /path/to/tx_hello.
 Do you want to stop it now?

: yes
d1.<> ST
1 (0) Nonexistent [bash]
2 (20053) Stopped [bash<tx_fork_exec><tx_hello>.1]
 2.1 (20053/20053) Stopped PC=0x7f70517dd210
d1.<>

571

Group, Process, and
Thread Control

The specifics of how multi-process, multi-threaded programs execute differ greatly from platform to platform
and environment to environment, but all share some general characteristics. This chapter discusses the
TotalView process/thread model. It also describes how you tell the GUI and the CLI what processes and
threads to direct a command to.

This chapter contains the following sections:

 Defining the GOI, POI, and TOI on page 572

 Recap on Setting a Breakpoint on page 574

 Stepping (Part I) on page 575

 Setting Process and Thread Focus on page 579

 Setting Group Focus on page 585

 Stepping (Part II): Examples on page 598

 Using P/T Set Operators on page 600

 Creating Custom Groups on page 602

572

Group, Process, and Thread Control Defining the GOI, POI, and TOI

Defining the GOI, POI, and TOI
This chapter consistently uses the following three related acronyms:

 GOI—Group of Interest

 POI—Process of Interest

 TOI—Thread of Interest

These terms are important in the TotalView process/thread model because TotalView must determine the scope
of what it does when it executes a command. For example, About Groups, Processes, and Threads introduced
the types of groups TotalView defines. That chapter ignored what happens when you execute a TotalView com-
mand on a group. For example, what does “stepping a group” actually mean? What happens to processes and
threads that aren’t in this group?

Associated with these three terms is a fourth term: arena. The arena is the collection of processes, threads, and
groups that are affected by a debugging command. This collection is called an arena list.

In the GUI, the arena is most often set using the pulldown list in the toolbar. You can also set the arena using
commands in the menubar. For example, there are eight next commands. The difference between them is the
arena; that is, the difference between the next commands is the processes and threads that are the target of what
the next command runs.

When TotalView executes any action command, the arena decides the scope of what can run. It doesn’t, however,
determine what does run. Depending on the command, TotalView determines the TOI, POI, or GOI, and then exe-
cutes the command’s action on that thread, process, or group. For example, suppose TotalView steps the current
control group:

 TotalView needs to know what the TOI is so that it can determine what threads are in the lockstep
group—TotalView only lets you step a lockstep group.

 The lockstep group is part of a share group.

 This share group in turn is part of a control group.

By knowing what the TOI is, the GUI also knows what the GOI is. This is important because, while TotalView knows
what it will step (the threads in the lockstep group), it also knows what it will allow to run freely while it is stepping
these threads. In the CLI, the P/T set determines the TOI.

573

Group, Process, and Thread Control Defining the GOI, POI, and TOI

RELATED TOPICS
Concept information on threads and processes and
how TotalView organizes them into groups

About Groups, Processes, and Threads on page 383

Selecting a focus Using the Toolbar to Select a Target on page 416

574

Group, Process, and Thread Control Recap on Setting a Breakpoint

Recap on Setting a Breakpoint
You can set breakpoints in your program by selecting the boxed line numbers in the Source Code pane of a Pro-

cess window. A boxed line number indicates that the line generates executable code. A icon masking a line

number indicates that a breakpoint is set on the line. Selecting the icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can let the program resume execution in any of the following
ways:

 Use the single-step commands described in Using Stepping Commands on page 178.

 Use the set program counter command to resume program execution at a specific source line,
machine instruction, or absolute hexadecimal value. See Setting the Program Counter on
page 187.

 Set breakpoints at lines you choose, and let your program execute to that breakpoint. See Setting
Breakpoints and Barriers on page 194.

 Set conditional breakpoints that cause a program to stop after it evaluates a condition that you
define, for example, “stop when a value is less than eight." See Setting Eval Points on page 222.

TotalView provides additional features for working with breakpoints, process barrier breakpoints, and eval points.
For more information, see Setting Action Points on page 188.

575

Group, Process, and Thread Control Stepping (Part I)

Stepping (Part I)
You can use TotalView stepping commands to:

 Execute one source line or machine instruction at a time; for example, Process > Step in the GUI
and dstep in the CLI.

 Run to a selected line, which acts like a temporary breakpoint; for example, Process > Run To.

 Run until a function call returns; for example, Process > Out.

In all cases, stepping commands operate on the Thread of Interest (TOI). In the GUI, the TOI is the selected thread
in the current Process Window. In the CLI, the TOI is the thread that TotalView uses to determine the scope of the
stepping operation.

On all platforms except SPARC Solaris, TotalView uses smart single-stepping to speed up stepping of one-line
statements that contain loops and conditions, such as Fortran 90 array assignment statements. Smart stepping
occurs when TotalView realizes that it doesn’t need to step through an instruction. For example, assume that you
have the following statements:
integer iarray (1000,1000,1000)
iarray = 0

These two statements define one billion scalar assignments. If your computer steps every instruction, you will
probably never get past this statement. Smart stepping means that TotalView single-steps through the assignment
statement at a speed that is very close to your computer’s native speed.

NOTE: To define a rule to skip over or through specific functions or files, use the dskip command. You
can add rules that match a function, all functions in a source file, or a specific function in a specific
source file.

Other topics in this section are:

 Understanding Group Widths on page 576

 Understanding Process Width on page 576

CLI: dstep

CLI: duntil

CLI: dout

576

Group, Process, and Thread Control Stepping (Part I)

 Understanding Thread Width on page 577

 Using Run To and duntil Commands on page 577

Understanding Group Widths
TotalView behavior when stepping at group width depends on whether the Group of Interest (GOI) is a process
group or a thread group. In the following lists, goal means the place at which things should stop executing. For
example, if you selected a step command, the goal is the next line. If you selected a run to command, the goal is
the selected line.

The actions that TotalView performs on the GOI are dependent on the type of process group that is the focus, as
follows:

 Process group—TotalView examines the group, and identifies which of its processes has a thread
stopped at the same location as the TOI (a matching process). TotalView runs these matching
processes until one of its threads arrives at the goal. When this happens, TotalView stops the
thread’s process. The command finishes when it has stopped all of these matching processes.

 Thread group—TotalView runs all processes in the control group. However, as each thread arrives
at the goal, TotalView only stops that thread; the rest of the threads in the same process continue
executing. The command finishes when all threads in the GOI arrive at the goal. When the
command finishes, TotalView stops all processes in the control group.

TotalView doesn’t wait for threads that are not in the same share group as the TOI, since they are executing
different code and can never arrive at the goal.

Understanding Process Width
TotalView behavior when stepping at process width (which is the default) depends on whether the Group of Inter-
est (GOI) is a process group or a thread group.

The actions that TotalView performs on the GOI are dependent on the type of process group that is the focus, as
follows:

 Process group—TotalView runs all threads in the process, and execution continues until the TOI
arrives at its goal, which can be the next statement, the next instruction, and so on. Only when the
TOI reaches the goal does TotalView stop the other threads in the process.

RELATED TOPICS
Stepping through your program Using Stepping Commands on page 178

Stepping examples Stepping (Part II): Examples on page 598

577

Group, Process, and Thread Control Stepping (Part I)

 Thread group—TotalView lets all threads in the GOI and all manager threads run. As each member
of the GOI arrives at the goal, TotalView stops it; the rest of the threads continue executing. The
command finishes when all members of the GOI arrive at the goal. At that point, TotalView stops
the whole process.

Understanding Thread Width
When TotalView performs a stepping command, it decides what it steps based on the width. Using the toolbar,
you specify width using the left-most pulldown. This pulldown has three items: Group, Process, and Thread.

Stepping at thread width tells TotalView to only run that thread. It does not step other threads. In contrast, pro-
cess width tells TotalView to run all threads in the process that are allowed to run while the TOI is stepped. While
TotalView is stepping the thread, manager threads run freely.

Stepping a thread isn’t the same as stepping a thread’s process, because a process can have more than one
thread.

NOTE: Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-stepping is
not available with pthread programs. If, however, your program’s parallelism is based on SGI’s
sprocs, thread-stepping is available.

Thread-level single-step operations can fail to complete if the TOI needs to synchronize with a thread that isn’t
running. For example, if the TOI requires a lock that another held thread owns, and steps over a call that tries to
acquire the lock, the primary thread can’t continue successfully. You must allow the other thread to run in order
to release the lock. In this case, you should use process-width stepping instead.

Using Run To and duntil Commands
The duntil and Run To commands differ from other step commands when you apply them to a process group.
(These commands tell TotalView to execute program statements until it reaches the selected statement.) When
used with a process group, TotalView identifies all processes in the group that already have a thread stopped at
the goal. These are the matching processes. TotalView then runs only nonmatching processes. Whenever a thread
arrives at the goal, TotalView stops its process. The command finishes when it has stopped all members of the
group. This lets you synchronize all the processes in a group in preparation for group-stepping them.

You need to know the following if you’re running at process width:

Process group If the Thread of Interest (TOI) is already at the goal location, TotalView steps the TOI past the line
before the process runs. This lets you use the Run To command repeatedly in loops.

578

Group, Process, and Thread Control Stepping (Part I)

Thread group If any thread in the process is already at the goal, TotalView temporarily holds it while other
threads in the process run. After all threads in the thread group reach the goal, TotalView stops
the process. This lets you synchronize the threads in the POI at a source line.

If you’re running at group width:

Process group TotalView examines each process in the process and share group to determine whether at
least one thread is already at the goal. If a thread is at the goal, TotalView holds its process.
Other processes are allowed to run. When at least one thread from each of these processes is
held, the command completes. This lets you synchronize at least one thread in each of these
processes at a source line. If you’re running a control group, this synchronizes all processes in
the share group.

Thread group TotalView examines all the threads in the thread group that are in the same share group as the
TOI to determine whether a thread is already at the goal. If it is, TotalView holds it. Other
threads are allowed to run. When all of the threads in the TOI’s share group reach the goal, To-
talView stops the TOI’s control group and the command completes. This lets you synchronize
thread group members. If you’re running a workers group, this synchronizes all worker
threads in the share group.

The process stops when the TOI and at least one thread from each process in the group or process being run
reach the command stopping point. This lets you synchronize a group of processes and bring them to one
location.

You can also run to a selected line in a nested stack frame, as follows:

1. Select a nested frame in the Stack Trace Pane.

2. Select a source line or instruction in the function.

3. Enter a Run To command.

TotalView executes the primary thread until it reaches the selected line in the selected stack frame.

RELATED TOPICS
Stepping commands Using Stepping Commands on page 178

Running to a specific line Executing to a Selected Line on page 182

The duntil command duntil in "CLI Commands" in the Classic TotalView Reference
Guide

The Group > Run To command Group > Run To in the in-product Help

TheProcess > Run To command Process > Run To in the in-product Help

The Thread > Run To command Thread > Run To in the in-product Help

579

Group, Process, and Thread Control Setting Process and Thread Focus

Setting Process and Thread Focus

NOTE: The previous sections emphasize the GUI; this section and the ones that follow emphasize the
CLI. Here you will find information on how to have full asynchronous debugging control over
your program. Fortunately, having this level of control is seldom necessary. In other words,
don’t read the rest of this chapter unless you have to.

When TotalView executes a command, it must decide which processes and threads to act on. Most commands
have a default set of threads and processes and, in most cases, you won’t want to change the default. In the GUI,
the default is the process and thread in the current Process Window. In the CLI, this default is indicated by the
focus, which is shown in the CLI prompt.

There are times, however, when you need to change this default. This section begins a rather intensive look at
how you tell TotalView what processes and threads to use as the target of a command.

Topics in this section are:

 Understanding Process/Thread Sets on page 579

 Specifying Arenas on page 581

 Specifying Processes and Threads on page 581

Understanding Process/Thread Sets
All TotalView commands operate on a set of processes and threads. This set is called a Process/Thread (P/T) set. The
right-hand text box in windows that contain P/T set controls lets you construct these sets. In the CLI, you specify a
P/T set as an argument to a command such as dfocus. If you’re using the GUI, TotalView creates this list for you
based on which Process Window has focus.

Unlike a serial debugger in which each command clearly applies to the only executing thread, TotalView can con-
trol and monitor many threads with their PCs at many different locations. The P/T set indicates the groups,
processes, and threads that are the target of the CLI command. No limitation exists on the number of groups,
processes, and threads in a set.

A P/T set is a list that contains one or more P/T identifiers. (The next section, Specifying Arenas on page 581,
explains what a P/T identifier is.) Tcl lets you create lists in the following ways:

 You can enter these identifiers within braces ({ }).

 You can use Tcl commands that create and manipulate lists.

580

Group, Process, and Thread Control Setting Process and Thread Focus

These lists are then used as arguments to a command. If you’re entering one element, you usually do not have to
use the Tcl list syntax.

For example, the following list contains specifiers for process 2, thread 1, and process 3, thread 2:
{p2.1 p3.2}

If you do not explicitly specify a P/T set in the CLI, TotalView defines a target set for you. (In the GUI, the default set
is determined by the current Process Window.) This set is displayed as the default CLI prompt. (For information on
this prompt, see About the CLI Prompt on page 466.)

You can change the focus on which a command acts by using the dfocus command. If the CLI executes the dfo-
cus command as a unique command, it changes the default P/T set. For example, if the default focus is process 1,
the following command changes the default focus to process 2:
dfocus p2

After TotalView executes this command, all commands that follow focus on process 2.

NOTE: In the GUI, you set the focus by displaying a Process Window that contains this process. Do
this by either using the P+, Px and P- buttons in the tab bar at the bottom, by making a selec-
tion in the Processes/Ranks Tab, or by clicking on a process in the Root Window. Note that the
Px button launches a dialog box that enables you to enter a specific Process or Thread to
focus on.

If you begin a command with dfocus, TotalView changes the target only for the command that follows. After the
command executes, TotalView restores the former default. The following example shows both of these ways to
use the dfocus command. Assume that the current focus is process 1, thread 1. The following commands change
the default focus to group 2 and then step the threads in this group twice:
dfocus g2
dstep
dstep

In contrast, if the current focus is process 1, thread 1, the following commands step group 2 and then step pro-
cess 1, thread 1:
dfocus g2 dstep
dstep

Some commands only operate at the process level; that is, you cannot apply them to a single thread (or group of
threads) in the process, but must apply them to all or to none.

581

Group, Process, and Thread Control Setting Process and Thread Focus

Specifying Arenas
A P/T identifier often indicates a number of groups, processes, and threads. For example, assume that two
threads executing in process 2 are stopped at the same statement. This means that TotalView places the two
stopped threads into lockstep groups. If the default focus is process 2, stepping this process actually steps both
of these threads.

TotalView uses the term arena to define the processes and threads that are the target of an action. In this case,
the arena has two threads. Many CLI commands can act on one or more arenas. For example, the following com-
mand has two arenas:
dfocus {p1 p2}

The two arenas are process 1 and process 2.

When there is an arena list, each arena in the list has its own GOI, POI, and TOI.

Specifying Processes and Threads
The previous sections described P/T sets as being lists; however, these discussions ignored what the individual
elements of the list are. A better definition is that a P/T set is a list of arenas, where an arena consists of the pro-
cesses, threads, and groups that are affected by a debugging command. Each arena specifier describes a single
arena in which a command acts; the list is just a collection of arenas. Most commands iterate over the list, acting
individually on an arena. Some CLI output commands, however, combine arenas and act on them as a single
target.

An arena specifier includes a width and a TOI. (Widths are discussed later in this section.) In the P/T set, the TOI
specifies a target thread, while the width specifies how many threads surrounding the thread of interest are
affected.

Defining the Thread of Interest (TOI)

The TOI is specified as p.t, where p is the TotalView process ID (PID) and t is the TotalView thread ID (TID). The p.t
combination identifies the POI (Process of Interest) and TOI. The TOI is the primary thread affected by a com-
mand. This means that it is the primary focus for a TotalView command. For example, while the dstep command
always steps the TOI, it may also run the rest of the threads in the POI and step other processes in the group.

In addition to using numerical values, you can also use two special symbols:

 The less-than character (<) indicates the lowest numbered worker thread in a process, and is used
instead of the TID value. If, however, the arena explicitly names a thread group, the < symbol means
the lowest numbered member of the thread group. This symbol lets TotalView select the first user
thread, which is not necessarily thread 1.

582

Group, Process, and Thread Control Setting Process and Thread Focus

 A dot (.) indicates the current set. Although you seldom use this symbol interactively, it can be
useful in scripts.

About Process and Thread Widths

You can enter a P/T set in two ways. If you’re not manipulating groups, the format is as follows:

[width_letter][pid][.tid]

NOTE: Specifying Groups in P/T Sets on page 586 extends this format to include groups. When using
P/T sets, you can create sets with just width indicators or just group indicators, or both.

For example, p2.3 indicates process 2, thread 3.

Although the syntax seems to indicate that you do not need to enter any element, TotalView requires that you
enter at least one. Because TotalView tries to determine what it can do based on what you type, it tries to fill in
what you omit. The only requirement is that when you use more than one element, you use them in the order
shown here.

You can leave out parts of the P/T set if what you do enter is unambiguous. A missing width or PID is filled in from
the current focus. A missing TID is always assumed to be <. For more information, see Naming Incomplete Are-
nas on page 596.

The width_letter indicates which processes and threads are part of the arena. You can use the following letters:

t Thread width

A command’s target is the indicated thread.

p Process width

A command’s target is the process that contains the TOI.

g Group width

A command’s target is the group that contains the POI. This indicates control and share groups.

a All processes

A command’s target is all threads in the GOI that are in the POI.

d Default width

A command’s target depends on the default for each command. This is also the width to which
the default focus is set. For example, the dstep command defaults to process width (run the
process while stepping one thread), and the dwhere command defaults to thread width.

583

Group, Process, and Thread Control Setting Process and Thread Focus

You must use lowercase letters to enter these widths.

Figure 256 illustrates how these specifiers relate to one another.

The g specifier indicates control and share groups. This inverted triangle indicates that the arena focuses on a
greater number of entities as you move from Thread level at the bottom to All level at the top.

As mentioned previously, the TOI specifies a target thread, while the width specifies how many threads surround-
ing the TOI are also affected. For example, the dstep command always requires a TOI, but entering this command
can do the following:

 Step just the TOI during the step operation (thread-level single-step).

 Step the TOI and step all threads in the process that contain the TOI (process-level single-step).

 Step all processes in the group that have threads at the same PC as the TOI (group-level single-
step).

This list doesn’t indicate what happens to other threads in your program when TotalView steps your thread. For
more information, see Stepping (Part II): Examples on page 598.

To save a P/T set definition for later use, assign the specifiers to a Tcl variable; for example:
set myset {g2.3 t3.1}
dfocus $myset dgo

As the dfocus command returns its focus set, you can save this value for later use; for example:
set save_set [dfocus]

Figure 256, Width Specifiers

All

Control Group

Share Group

Process

Thread

a

g

p

g

t

584

Group, Process, and Thread Control Setting Process and Thread Focus

Specifier Examples
The following are some sample specifiers:

g2.3 Select process 2, thread 3, and set the width to group.

t1.7 Commands act only on thread 7 or process 1.

d1.< Use the default set for each command, focusing on the first user thread in process 1. The less-
than symbol (<) sets the TID to the first user thread.

585

Group, Process, and Thread Control Setting Group Focus

Setting Group Focus
TotalView has two types of groups: process groups and thread groups. Process groups only contain processes,
and thread groups only contain threads. The threads in a thread group can be drawn from more than one
process.

Topics in this section are:

 Specifying Groups in P/T Sets on page 586

 About Arena Specifier Combinations on page 588

 ‘All’ Does Not Always Mean ‘All’ on page 590

 Setting Groups on page 591

 Using the g Specifier: An Extended Example on page 592

 Merging Focuses on page 595

 Naming Incomplete Arenas on page 596

 Naming Lists with Inconsistent Widths on page 596

For a general discussion on how TotalView organizes threads and processes into groups, see About Groups, Pro-
cesses, and Threads on page 383.

TotalView has four predefined groups. Two of these only contain processes, while the other two only contain
threads. TotalView also lets you create your own groups, and these groups can have elements that are processes
and threads. The following are the predefined process groups:

 Control Group

Contains the parent process and all related processes. A control group includes children that were forked
(processes that share the same source code as the parent) and children that were forked but subsequently
called the execve() function.

Assigning a new value to the CGROUP (dpid) variable for a process changes that process’s control group. In
addition, the dgroups -add command lets you add members to a group in the CLI. In the GUI, you use the
Group > Custom Groups command.

 Share Group

Contains all members of a control group that share the same executable. TotalView automatically places
processes in share groups based on their control group and their executable.

586

Group, Process, and Thread Control Setting Group Focus

NOTE: You can’t change a share group’s members. However, the dynamically loaded
libraries used by group members can be different.

In general, if you’re debugging a multi-process program, the control group and share group differ only when the
program has children that it forked by calling the execve() function.

The following are the predefined thread groups:

 Workers Group

Contains all worker threads from all processes in the control group. The only threads not contained in a
workers group are your operating system’s manager threads.

 Lockstep Group

Contains every stopped thread in a share group that has the same PC. TotalView creates one lockstep group
for every thread. For example, suppose two threads are stopped at the same PC. TotalView creates two lock-
step groups. While each lockstep group has the same two members, they differ in that each has a different
TOI. While there are some circumstances where this is important, you can usually ignore this distinction. That
is, while two lockstep groups exist if two threads are stopped at the same PC, ignoring the second lockstep
group is almost never harmful.

The group ID value for a lockstep group differs from the ID of other groups. Instead of having an automatic
and transient integer ID, the lockstep group ID is pid.tid, where pid.tid identifies the thread with which it is
associated. For example, the lockstep group for thread 2 in process 1 is 1.2.

Specifying Groups in P/T Sets
This section extends the arena specifier syntax to include groups.

If you do not include a group specifier, the default is the control group. The CLI only displays a target group in the
focus string if you set it to something other than the default value.

NOTE: You most often use target group specifiers with the stepping commands, as they give these
commands more control over what’s being stepped.

Use the following format to add groups to an arena specifier:

[width_letter][group_indicator][pid][.tid]

This format adds the group_indicator to what was discussed in Specifying Processes and Threads on page 581.

587

Group, Process, and Thread Control Setting Group Focus

In the description of this syntax, everything appears to be optional. But, while no single element is required, you
must enter at least one element. TotalView determines other values based on the current focus.

TotalView lets you identify a group by using a letter, number, or name.

A Group Letter

You can name one of TotalView’s predefined sets. Each set is identified by a letter. For example, the following
command sets the focus to the workers group:
dfocus W

The following are the group letters. These letters are in uppercase:

C Control group

All processes in the control group.

D Default control group

All processes in the control group. The only difference between this specifier and the C speci-
fier is that this letter tells the CLI not to display a group letter in the CLI prompt.

S Share group

The set of processes in the control group that have the same executable as the arena’s TOI.

W Workers group

The set of all worker threads in the control group.

L Lockstep group

A set that contains all threads in the share group that have the same PC as the arena’s TOI. If
you step these threads as a group, they proceed in lockstep.

A Group Number

You can identify a group by the number TotalView assigns to it. The following example sets the focus to group 3:
dfocus 3/

The trailing slash tells TotalView that you are specifying a group number instead of a PID. The slash character is
optional if you’re using a group_letter. However, you must use it as a separator when entering a numeric group ID
and a pid.tid pair. For example, the following example identifies process 2 in group 3:
p3/2

A Group Name

You can name a set that you define. You enter this name with slashes. The following example sets the focus to the
set of threads contained in process 3 that are also contained in a group called my_group:
dfocus p/my_group/3

588

Group, Process, and Thread Control Setting Group Focus

About Arena Specifier Combinations

The following table lists what’s selected when you use arena and group specifiers to step your program:

NOTE: Stepping commands behave differently if the group being stepped is a process group rather
than a thread group. For example, aC and aS perform the same action, but aL is different.

If you don’t add a PID or TID to your arena specifier, TotalView does it for you, taking the PID and TID from the cur-
rent or default focus.

Specifier Specifies

aC All threads.

aS All threads.

aW All threads in all workers groups.

aL All threads.

Every thread is a member of a control group and a member of a
share group and a member of a lockstep group. Consequently,
three of these definitions mean “all threads.”

gC All threads in the Thread of Interest (TOI) control group.

gS All threads in the TOI share group.

gW All worker threads in the control group that contains the TOI.

gL All threads in the same share group within the process that con-
tains the TOI that have the same PC as the TOI.

pC All threads in the control group of the Process of Interest (POI). This
is the same as gC.

pS All threads in the process that participate in the same share group
as the TOI.

pW All worker threads in the POI.

pL All threads in the POI whose PC is the same as the TOI.

tC Just the TOI. The t specifier overrides the group specifier, so all of
these specifiers resolve to the current thread.tS

tW

tL

589

Group, Process, and Thread Control Setting Group Focus

The following are some additional examples. These examples add PIDs and TIDs numbers to the raw specifier
combinations listed in the previous table:

pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. The focus of this specifier is the same as the focus in the previ-
ous example.

gW3 All worker threads in the control group that contains process 3. The difference between this
and pW3 is that pW3 restricts the focus to just one of the processes in the control group.

gL3.2 All threads in the same share group as process 3 that are executing at the same PC as thread 2
in process 3. The reason this is a share group and not a control group is that different share
groups can reside only in one control group.

/3 Specifies processes and threads in process 3. The arena width, POI, and TOI are inherited from
the existing P/T set, so the exact meaning of this specifier depends on the previous context.

While the slash is unnecessary because no group is indicated, it is syntactically correct.

g3.2/3 The 3.2 group ID is the name of the lockstep group for thread 3.2. This group includes all
threads in the process 3 share group that are executing at the same PC as thread 2.

p3/3 Sets the process to process 3. The Group of Interest (GOI) is set to group 3. If group 3 is a pro-
cess group, most commands ignore the group setting. If group 3 is a thread group, most com-
mands act on all threads in process 3 that are also in group 3.

When you set the process using an explicit group, you might not be including all the threads
you expect to be included. This is because commands must look at the TOI, POI, and GOI.

NOTE: It is redundant to specify a thread width with an explicit group ID as this width means that the
focus is on one thread.

In the following examples, the first argument to the dfocus command defines a temporary P/T set that the CLI
command (the last term) operates on. The dstatus command lists information about processes and threads.
These examples assume that the global focus was d1.< initially.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control group.

dfocus p dstatus
Displays the status of all worker threads in the current focus process. The width here, as in the
previous example, is process, and the (default) group is the control group. The intersection of
this width and the default group creates a focus that is the same as in the previous example.

590

Group, Process, and Thread Control Setting Group Focus

dfocus pW dstatus
Displays the status of all worker threads in the current focus process. The width is process
level, and the target is the workers group.

The following example shows how the prompt changes as you change the focus. In particular, notice how the
prompt changes when you use the C and the D group specifiers.
d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

Two of these lines end with the less-than symbol (<). These lines are not prompts. Instead, they are the value
returned by TotalView when it executes the dfocus command.

‘All’ Does Not Always Mean ‘All’
When you use stepping commands, TotalView determines the scope of what runs and what stops by looking at
the TOI. This section looks at the differences in behavior when you use the a (all) arena specifier. The following
table describes what runs when you use this arena:

The following are some combinations:

f aC dgo Runs everything. If you’re using the dgo command, everything after the a is ignored: a/aPizza/
17.2, ac, aS, and aL do the same thing. TotalView runs everything.

f aC duntil While everything runs, TotalView must wait until something reaches a goal. It really isn’t obvious
what this focus is. Since C is a process group, you might guess that all processes run until at
least one thread in every participating process arrives at a goal. The reality is that since this goal
must reside in the current share group, this command completes as soon as all processes in
the TOI share group have at least one thread at the goal. Processes in other control groups run
freely until this happens.

Specifier Specifies

aC All threads.

aS All threads.

aW All threads in all workers groups.

aL All threads.

Every thread is a member of a control group and a member of a
share group and a member of a lockstep group. Consequently,
three of these definitions mean “all threads.”

591

Group, Process, and Thread Control Setting Group Focus

The TOI determines the goal. If there are other control groups, they do not participate in the
goal.

f aS duntil This command does the same thing as the f aC duntil command because the goals for f aC
duntil and f aS duntil are the same, and the processes that are in this scope are identical.

Although more than one share group can exist in a control group, these other share groups do
not participate in the goal.

f aL duntil Although everything will run, it is not clear what should occur. L is a thread group, so you might
expect that the duntil command will wait until all threads in all lockstep groups arrive at the
goal. Instead, TotalView defines the set of threads that it allows to run to a goal as just those
threads in the TOI’s lockstep group. Although there are other lockstep groups, these lockstep
groups do not participate in the goal. So, while the TOI’s lockstep threads are progressing to-
wards their goal, all threads that were previously stopped run freely.

f aW duntil Everything runs. TotalView waits until all members of the TOI workers group arrive at the goal.

Two broad distinctions between process and thread group behavior exist:

 When the focus is on a process group, TotalView waits until just one thread from each participating
process arrives at the goal. The other threads just run.

When focus is on a thread group, every participating thread must arrive at the goal.

 When the focus is on a process group, TotalView steps a thread over the goal breakpoint and
continues the process if it isn’t the right thread.

When the focus is on a thread group, TotalView holds a thread even if it isn’t the right thread. It also continues
the rest of the process.

If your system does not support asynchronous thread control, TotalView treats thread specifiers as if they
were process specifiers.

With this in mind, f aL dstep does not step all threads. Instead, it steps only the threads in the TOI’s lockstep
group. All other threads run freely until the stepping process for these lockstep threads completes.

Setting Groups

This section presents a series of examples that set and create groups.

You can use the following methods to indicate that thread 3 in process 2 is a worker thread:

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker threads associated with process 2 to the
WGROUP variable. (Assigning a nonzero value to WGROUP indicates that this is a worker
group.)

592

Group, Process, and Thread Control Setting Group Focus

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the previous example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers group.

dset CGROUP(2) $CGROUP(1)
dgroups -add -g $CGROUP(1) 2
dfocus 1 dgroups -add 2

These three commands insert process 2 into the same control group as process 1.

dgroups -add -g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associated with process 2.

dfocus tW2.3 dgroups -add
This is a simpler way of doing the same thing as the previous example.

Following are some additional examples:

dfocus g1 dgroups -add -new thread
Creates a new thread group that contains all the threads in all the processes in the control
group associated with process 1.

set mygroup [dgroups -add -new thread $GROUP($SGROUP(2))]
dgroups -remove -g $mygroup 2.3
dfocus g$mygroup/2 dgo

The first command creates a new group that contains all the threads from the process 2 share
group; the second removes thread 2.3; and the third runs the remaining threads.

Using the g Specifier: An Extended Example
The meaning of the g width specifier is sometimes not clear when it is coupled with a group scope specifier. Why
have a g specifier when you have four other group specifiers? Stated in another way, isn’t something like gL
redundant?

The simplest answer, and the reason you most often use the g specifier, is that it forces the group when the
default focus indicates something different from what you want it to be.

The following example shows this. The first step sets a breakpoint in a multi-threaded OMP program and exe-
cutes the program until it hits the breakpoint.

RELATED TOPICS
The dfocus command dfocus in "CLI Commands" in the Classic TotalView Reference Guide

The dgroup command dgroup in "CLI Commands" in the Classic TotalView Reference Guide

The dset command dset in "CLI Commands" in the Classic TotalView Reference Guide

593

Group, Process, and Thread Control Setting Group Focus

d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so :
 KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "omp_prog"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in ".breakpoint_here"

The default focus is d1.<, which means that the CLI is at its default width, the POI is 1, and the TOI is the lowest
numbered nonmanager thread. Because the default width for the dstatus command is process, the CLI displays
the status of all processes. Typing dfocus p dstatus produces the same output.
d1.<> dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Stopped PC=0xd042c944
d1.<> dfocus p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Stopped PC=0xd042c944

The CLI displays the following when you ask for the status of the lockstep group. (The rest of this example uses
the f abbreviation for dfocus, and st for dstatus.)
d1.<> f L st
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

This command tells the CLI to display the status of the threads in thread, which is the 1.1 lockstep group since
this thread is the TOI. The f L focus command narrows the set so that the display only includes the threads in the
process that are at the same PC as the TOI.

NOTE: By default, the dstatus command displays information at process width. This means that you
don’t need to type f pL dstatus.

594

Group, Process, and Thread Control Setting Group Focus

The duntil command runs thread 1.3 to the same line as thread 1.1. The dstatus command then displays the
status of all the threads in the process:
d1.<> f t1.3 duntil 35
 35@> write(*,*)"i= ",i,
 "thread= ",omp_get_thread_num()
d1.<> f p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

As expected, the CLI adds a thread to the lockstep group:
d1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

The next set of commands begins by narrowing the width of the default focus to thread width—notice that the
prompt changes—and then displays the contents of the lockstep group:
d1.<> f t
t1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

Although the lockstep group of the TOI has two threads, the current focus has only one thread, and that thread is,
of course, part of the lockstep group. Consequently, the lockstep group in the current focus is just the one thread,
even though this thread’s lockstep group has two threads.

If you ask for a wider width (p or g) with L, the CLI displays more threads from the lockstep group of thread 1.1. as
follows:
t1.<> f pL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
t1.<> f gL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

595

Group, Process, and Thread Control Setting Group Focus

 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

NOTE: If the TOI is 1.1, L refers to group number 1.1, which is the lockstep group of thread 1.1.

Because this example only contains one process, the pL and gL specifiers produce the same result when used
with the dstatus command. If, however, there were additional processes in the group, you only see them when
you use the gL specifier.

Merging Focuses
When you specify more than one focus for a command, the CLI merges them. In the following example, the focus
indicated by the prompt—this focus is called the outer focus—controls the display. This example shows what hap-
pens when dfocus commands are strung together:
t1.<> f d
d1.<
d1.<> f tL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p f D dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p f D f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

596

Group, Process, and Thread Control Setting Group Focus

Stringing multiple focuses together might not produce the most readable result. In this case, it shows how one
dfocus command can modify what another sees and acts on. The ultimate result is an arena that a command
acts on. In these examples, the dfocus command tells the dstatus command what to display.

Naming Incomplete Arenas
In general, you do not need to completely specify an arena. TotalView provides values for any missing elements.
TotalView either uses built-in default values or obtains them from the current focus. The following explains how
TotalView fills in missing pieces:

 If you don’t use a width, TotalView uses the width from the current focus.

 If you don’t use a PID, TotalView uses the PID from the current focus.

 If you set the focus to a list, there is no longer a default arena. This means that you must explicitly
name a width and a PID. You can, however, omit the TID. (If you omit the TID, TotalView defaults to
the less-than symbol <.)

You can type a PID without typing a TID. If you omit the TID, TotalView uses the default <, where < indicates
the lowest numbered worker thread in the process. If, however, the arena explicitly names a thread group,
< means the lowest numbered member of the thread group.

TotalView does not use the TID from the current focus, since the TID is a process-relative value.

 A dot before or after the number specifies a process or a thread. For example, 1. is clearly a PID,
while .7 is clearly a TID.

If you type a number without typing a dot, the CLI most often interprets the number as being a PID.

 If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

 If you enter a width and don’t specify a PID or TID, TotalView uses the PID and TID from the current
focus.

If you use a letter as a group specifier, TotalView obtains the rest of the arena specifier from the default focus.

 You can use a group ID or tag followed by a /. TotalView obtains the rest of the arena from the
default focus.

Focus merging can also influence how TotalView fills in missing specifiers. For more information, see Merging
Focuses on page 595.

Naming Lists with Inconsistent Widths
TotalView lets you create lists that contain more than one width specifier. This can be very useful, but it can be
confusing. Consider the following:

597

Group, Process, and Thread Control Setting Group Focus

{p2 t7 g3.4}

This list is quite explicit: all of process 2, thread 7, and all processes in the same group as process 3, thread 4.
However, how should TotalView use this set of processes, groups, and threads?

In most cases, TotalView does what you would expect it to do: it iterates over the list and acts on each arena. If
TotalView cannot interpret an inconsistent focus, it prints an error message.

Some commands work differently. Some use each arena’s width to determine the number of threads on which it
acts. This is exactly what the dgo command does. In contrast, the dwhere command creates a call graph for pro-
cess-level arenas, and the dstep command runs all threads in the arena while stepping the TOI. TotalView may
wait for threads in multiple processes for group-level arenas. The command description in the Classic TotalView
Reference Guide points out anything that you need to watch out for.

598

Group, Process, and Thread Control Stepping (Part II): Examples

Stepping (Part II): Examples
The following are examples that use the CLI stepping commands:

 Step a single thread

While the thread runs, no other threads run (except kernel manager threads).

Example: dfocus t dstep

 Step a single thread while the process runs

A single thread runs into or through a critical region.

Example: dfocus p dstep

 Step one thread in each process in the group

While one thread in each process in the share group runs to a goal, the rest of the threads run freely.

Example: dfocus g dstep

 Step all worker threads in the process while nonworker threads run

Worker threads run through a parallel region in lockstep.

Example: dfocus pW dstep

 Step all workers in the share group

All processes in the share group participate. The nonworker threads run.

Example: dfocus gW dstep

 Step all threads that are at the same PC as the TOI

TotalView selects threads from one process or the entire share group. This differs from the previous two
items in that TotalView uses the set of threads that are in lockstep with the TOI rather than using the workers
group.

Example: dfocus L dstep

In the following examples, the default focus is set to d1.<.

dstep Steps the TOI while running all other threads in the process.

dfocus W dnext Runs the TOI and all other worker threads in the process to the next statement. Other threads
in the process run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

599

Group, Process, and Thread Control Stepping (Part II): Examples

dfocus L dnext Runs the TOI and all other stopped threads at the same PC to the next statement. Other
threads in the process run freely. Threads that encounter a temporary breakpoint in the
course of running to the next statement usually join the lockstep group.

dfocus gW duntil 37
Runs all worker threads in the share group to line 37. Other threads in the control group run
freely.

UNW 37 Performs the same action as the previous command: runs all worker threads in the share
group to line 37. This example uses the predefined UNW alias instead of the individual com-
mands. That is, UNW is an alias for dfocus gW duntil.

SL Finds all threads in the share group that are at the same PC as the TOI and steps them all in one
statement. This command is the built-in alias for dfocus gL dstep.

sl Finds all threads in the current process that are at the same PC as the TOI, and steps them all in
one statement. This command is the built-in alias for dfocus L dstep.

RELATED TOPICS
Stepping through your program Using Stepping Commands on page 178

Stepping (Part 1) Stepping (Part I) on page 575

600

Group, Process, and Thread Control Using P/T Set Operators

Using P/T Set Operators
At times, you do not want all of one type of group or process to be in the focus set. TotalView lets you use the fol-
lowing three operators to manage your P/T sets:

| Creates a union; that is, all members of two sets.

- Creates a difference; that is, all members of the first set that are not also members of the sec-
ond set.

& Creates an intersection; that is, all members of the first set that are also members of the sec-
ond set.

For example, the following creates a union of two P/T sets:
p3 | L2

You can, apply these operations repeatedly; for example:
p2 | p3 & L2

This statement creates an intersection between p3 and L2, and then creates a union between p2 and the results
of the intersection operation. You can directly specify the order by using parentheses; for example:
p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set functions:

breakpoint(ptset) Returns a list of all threads that are stopped at a breakpoint.

comm(process, “comm_name”)
Returns a list containing the first thread in each process associated within a communicator
within the named process. While process is a P/T set it is not expanded into a list of threads.

error(ptset) Returns a list of all threads stopped due to an error.

existent(ptset) Returns a list of all threads.

held(ptset) Returns a list of all threads that are held.

nonexistent(ptset)
Returns a list of all processes that have exited or which, while loaded, have not yet been cre-
ated.

running(ptset) Returns a list of all running threads.

stopped(ptset) Returns a list of all stopped threads.

unheld(ptset) Returns a list of all threads that are not held.

601

Group, Process, and Thread Control Using P/T Set Operators

watchpoint(ptset) Returns a list of all threads that are stopped at a watchpoint.

The way in which you specify the P/T set argument is the same as the way that you specify a P/T set for the dfocus
command. For example, watchpoint(L) returns all threads in the current lockstep group. The only operator that
differs is comm, whose argument is a process.

The dot operator (.), which indicates the current set, can be helpful when you are editing an existing set.

The following examples clarify how you use these operators and functions. The P/T set a (all) is the argument to
these operators.

f {breakpoint(a) | watchpoint(a)} dstatus
Shows information about all threads that are stopped at breakpoints and watchpoints. The a
argument is the standard P/T set indicator for all.

f {stopped(a) - breakpoint(a)} dstatus
Shows information about all stopped threads that are not stopped at breakpoints.

f {. | breakpoint(a)} dstatus
Shows information about all threads in the current set, as well as all threads stopped at a
breakpoint.

f {g.3 - p6} duntil 577
Runs thread 3 along with all other processes in the group to line 577. However, it does not run
anything in process 6.

f {($PTSET) & p123}
Uses just process 123 in the current P/T set.

602

Group, Process, and Thread Control Creating Custom Groups

Creating Custom Groups
Debugging a multi-process or multi-threaded program most often focuses on running the program in one of two
ways: either you run everything or run one or two things. Figuring out what you should be running, however, is a
substantial part of the art of debugging. You can make things easier on yourself if you divide your program into
groups, and then control these groups separately. When you need to do this, use the Groups > Custom Groups
Dialog Box. (See Figure 257.) This dialog box also lets you alter a group’s contents as well as delete the group.

NOTE: You can manage only process groups with this dialog box. Thread groups can only be man-
aged using the CLI. In addition, the groups you create must reside within one control group.

When you first display this dialog box, TotalView also displays a second, used to enter the group’s name.

The dialog’s right side contains a set of boxes. Each represents one of your processes. The initial color represents
the process’s state. (This just helps you coordinate within the display in the Process Window’s Processes/Ranks
Tab.) You can now create a group using your mouse by clicking on blocks as follows:

 Left-click on a box: Selects a box. No other box is selected. If other boxes are selected, they are
deselected.

 Shift-left-click and drag: select a group of contiguous boxes.

 Control-left-click on a box: Adds a box to the current selection.

Edit an existing group in the same way. After making the group active by clicking on its name on the left, click
within the right to make changes. (In most cases, you’ll be using a control-left-click.)

Figure 257, Group > Custom Groups Dialog Box

603

Group, Process, and Thread Control Creating Custom Groups

If you’ve changed a group and then select Add or Close, TotalView asks if you want to save the changed group.

If you click Add when a group is selected, TotalView creates a group with the same members as that group.

Finally, you can delete a group by selecting its name and clicking Remove.

604

Scalability in HPC Computing
Environments

TotalView provides features and performance enhancements for scalable debugging in today’s HPC comput-
ing environments, and no special configuration or action is necessary on your part to take advantage of
TotalView’s scalability abilities.

This chapter details TotalView’s features and configurations related to scalability, as follows:

 Root Window. The Root Window aggregates program state so that it can display quickly and is
easy to understand.

 Scalability Configuration Settings. Depending on your needs, you might want to set specific
configuration variables that enable scalable debugging operations.

 MRNet Configuration Settings. TotalView uses MRNet, a tree-based overlay network, for
scalable communication. TotalView is preconfigured for scalability, but in some situations you
may want to change MRNet's configuration.

 dstatus and dwhere command options. These options provide aggregated views of various
process and thread properties. (See the -group_by option in the Reference Guide entries for
these commands.)

 Compressed process/thread list. The ptlist compactly displays the set of processes and
threads that have been aggregated together.

RELATED TOPICS
Compressed List Syntax (ptlist) “Compressed List Syntax (ptlist)” in the dstatus

entry of the Reference Guide

the Px “Jump to Process/Thread” button Using the Processes/Ranks and Threads Tabs on
page 418

dstatus -group_by and dwhere-group_by
options

dstatus and dwhere in the Reference Guide

605

Scalability in HPC Computing Environments Configuring TotalView for Scalability

Configuring TotalView for Scalability
To take advantage of TotalView’s features that support better scalability, disable user-thread debugging. User
thread debugging is an area of the debugger that has not yet been parallelized, and can therefore slow down job
launch and attach time. However, disabling user thread debugging also disables support for displaying thread
local storage (e.g., via the __thread compiler keyword. This limitation will be fixed in a future release.

To configure TotalView with these settings, create a TotalView startup file in <totalviewInstallDir>/<PLATFORM>/lib/
.tvdrc and add the following lines:

If TLS is not required, disable user threads for faster launch
and attach times
dset -set_as_default TV::user_threads false

Process Window’s Process Tab
By default, TotalView 8.15.0 and later suppress the display of the process grid in the Processes tab, because it can
have a negative impact when scaling to a large number of processes. If debugger scalability is not a concern and
you prefer to display the Processes tab in the Process Window, specify the -process_grid option or set the
TV::GUI:process_grid_wanted state variable to true in the startup file.

To display the Process Window’s Processes tab when you start TotalView, pass TotalView the -process_grid com-
mand option:

totalview -process_grid

To always display the Processes tab in the Process Window by default, set the state variable
TV::GUI:process_grid_wanted to true for use when initializing TotalView:

dset TV::GUI:process_grid_wanted true

606

Scalability in HPC Computing Environments dlopen Options

dlopen Options
When a target process calls dlopen(), a dlopen event is generated and must be handled by TotalView. Because
dlopen event handling can affect debugger performance for a variety of reasons, especially if the application
loads many shared libraries or the debugger is controlling many processes, TotalView provides ways to configure
dlopen for better performance and scalability in HPC computing environments:

 Filtering dlopen events to avoid stopping a process for each event.

 Handling dlopen events in parallel, reducing client/server communication overhead to fetch library
information. Note: Both this option and MRNet must be enabled for TotalView to fetch libraries in
parallel.

dlopen Event Filtering
You can filter dlopen events to plant breakpoints in the dlopened libraries only when the process stops for some
other reason. Deferring dlopen event processing allows the debugger to handle all dynamically loaded shared
libraries at the same time, which is much more efficient than handling them serially.

A robust combination of settings support a range of options, so that you can finely control which dlopen events
are reported immediately, and which are deferred.

Filtering dlopen events may be particularly beneficial when using Open MPI or other highly dynamic runtime
libraries.

For detail, see “Filtering dlopen Events” in the Classic TotalView Reference Guide.

Handling dlopen Events in Parallel
TotalView’s default behavior is to handle dlopened libraries serially, creating multiple, single-cast client-server com-
munications. This can degrade performance, depending on the number of libraries a process dlopens, and the
number of processes in the job.

A state variable and a command line option support handling events in parallel: TV::dlopen_read_librar-
ies_in_parallel and dlopen_read_libraries_in_parallel, discussed in the Classic TotalView Reference Guide

To handle dlopened libraries in parallel using MRNet, enter the following in your tvdrc file so that all future invoca-
tions of TotalView will have this set:

dset TV::dlopen_read_libraries_in_parallel true

607

Scalability in HPC Computing Environments dlopen Options

Or for a single invocation of TotalView, simply launch TotalView using the command parameter:
totalview -dlopen_read_libraries_in_parallel

NOTE: Enabling this option does not guarantee that dlopen performance will improve on all systems
in all scenarios. Be sure to test the impact of this setting on your system and debugging envi-
ronments.

Remember that MRNet must also be enabled for this to work.

608

Scalability in HPC Computing Environments MRNet

MRNet
MRNet stands for “Multicast/Reduction Network.” MRNet uses a tree-based front-end to back-end communica-
tion model to significantly improve the efficiency of data multicast and aggregation for front-end tools running on
massively parallel systems.

The following description is from the MRNet web site (http://www.paradyn.org/mrnet/):

MRNet is a software overlay network that provides efficient multicast and reduction communications for parallel
and distributed tools and systems. MRNet uses a tree of processes between the tool's front-end and back-ends
to improve group communication performance. These internal processes are also used to distribute many
important tool activities, reducing data analysis time and keeping tool front-end loads manageable.

MRNet-based tool components communicate across logical channels called streams. At MRNet internal pro-
cesses, filters are bound to these streams to synchronize and aggregate dataflows. Using filters, MRNet can effi-
ciently compute averages, sums, and other more complex aggregations and analyses on tool data. MRNet also
supports facilities that allow tool developers to dynamically load new tool-specific filters into the system.

TotalView’s use of MRNet is part of a larger strategy to improve the scalability of TotalView as high-end computers
grow into very high process and thread counts.

TotalView supports MRNet on Linux x86_64, Linux ARM64, Linux PowerLE clusters, and Cray XT/XE/XK/XC.

TotalView Infrastructure Models

Starting with TotalView 8.11.0, the TotalView debugger supported two infrastructure models that control the way
the debugger organizes its TotalView debugger server processes when debugging a parallel job involving multiple
compute nodes. Starting with TotalView 8.15, TotalView uses the tree-based infrastructure described below by
default.

The first model uses a “flat vector” of TotalView debugger server processes. The TotalView debugger has always
supported this model, and still does. Under the flat vector model, the debugger server processes have a direct
(usually socket) connection to the TotalView front-end client. This model works well at low process scales, but
begins to degrade as the target application scales beyond a few thousand nodes or processes. This is the default
infrastructure model.

Figure 258 shows the TotalView client connected to four TotalView debugger servers (tvdsvr). In this example,
four separate socket channels directly connect the client to the debugger servers.

609

Scalability in HPC Computing Environments MRNet

The second model uses MRNet to form a tree of debugger server and MRNet communication processes con-
nected to the TotalView front-end client, which forms the root of the tree. MRNet supports building many
different shapes of trees, but note that the shape of the tree (for example, depth and fan-out) can greatly affect
the performance of the debugger. The following sections describe how to control the shape of the MRNet tree in
TotalView.

Figure 259 shows an MRNet tree in which the TotalView client is connected to four TotalView debugger servers
through two MRNet commnode processes using a tree fan-out value of 2.

Figure 258, Flat Vector of Servers Infrastructure Model

610

Scalability in HPC Computing Environments MRNet

Using MRNet with TotalView
TotalView is already preconfigured for maximum scalability, so no further customization is necessary. This section
is for advanced users and describes TotalView options and state variables related to the use of MRNet with
TotalView, as follows:blue

 General Use

 Using MRNet on Cray Computers

Please refer to the TotalView documentation for a general description of how options and state variables can be
used with TotalView.

General Use

This section discusses basic configuration options of MRNet with TotalView. If you are working on a Cray com-
puter, you will need to look at the section specific to that system as well.

Figure 259, MRNet Infrastructure Model

611

Scalability in HPC Computing Environments MRNet

Disabling MRNet Before Startup

By default, TotalView uses the MRNet infrastructure on the platforms where it is supported (see the TotalView Plat-
forms Guide for specifics). On platforms where MRNet is not supported, TotalView uses its standard vector-of-
servers infrastructure.

If for some reason you do not want to use the MRNet infrastructure to debug an MPI job, you must first disable
MRNet in TotalView before launching the MPI job. MRNet can be disabled by:

 Starting TotalView with the -nomrnet option:

prompt> totalview -nomrnet

 With TotalView running, use the command line interface (CLI) to set the TV::mrnet_enabled state
variable:

prompt> dset TV::mrnet_enabled false

MRNet Server Launch String

Option: -mrnet_server_launch_string string

State variable: TV::mrnet_server_launch_string string

Default string: %B/tvdsvr%K -working_directory %D -set_pw %P -verbosity %V %F

The server launch string defines configuration options when launching a debugging server. TotalView has a
default string it uses when launching a server using the vector-of-servers architecture, and an option and state
variable that allow you to modify the default string. The MRNet usage of TotalView also has a default launch string
and corresponding option and state variables.

The MRNet launch string differs from the standard launch string in two ways: it does not contain a remote shell
command expansion (e.g., rsh or ssh), and it has no -callback option.

TotalView always appends the following string to the expanded MRNet launch string:

-mrnet_launch node_id

where node_id is an integer that specifies the server's TotalView node ID within the job. If node_id is 0, the
server assigns itself a node ID equal to its MRNet rank plus 1.

Controlling the Shape of an MRNet Tree

The shape of the MRNet tree calculated by TotalView can be controlled through a collection of options and state
variables. Given the list of hosts, which is typically extracted from the MPIR proctable, TotalView calculates an
MRNet topology string to create various shapes of trees.

These are the basic controls:

612

Scalability in HPC Computing Environments MRNet

 Tree fan-out: specifies the maximum number of children a node can have. If the number of leaves
in the tree is not a power of the fan-out, some of the tree nodes will have fewer children.

 Tree depth: specifies the maximum depth of the tree (that is, the number of levels below the root).
If the number of leaves is not greater than the square of the tree depth value, a shallower tree is
built.

 Extra root node: Whether to allocate an extra communications node below the root.

 Create a “super bushy” tree: Create one debugger server process per MPI process rather than
the default of creating one debugger server process per node, to overcome a CUDA limitation.

MRNet Tree Fan-Out

Option: –mrnet_fanout integer

State variable: TV::mrnet_fanout integer

Default value: 32

If you change the default value, the new value must be greater than or equal to 2 and less than or equal to
32768.

MRNet Tree Depth

Option: –mrnet_levels integer

State variable: TV::mrnet_levels integer

Default value: 2

The MRNet tree depth can be specified in terms of the number of levels below the root. If you change the
default value, the new value must be greater than or equal to -2 and less than or equal to 32.

 If the tree depth is 0, the MRNet tree fan-out value is used, and TotalView attempts to honor the
fan-out value near the bottom of the tree (the leaves).

 If the tree depth is set to a value that is greater than 0 (which includes the default value of 2), the
fan-out value is ignored and a balanced tree is built with at most the specified number of levels.

 If the tree depth is -1, the fan-out value is used, and TotalView attempts to honor the fan-out value
near the top (the root) of the tree, rather than near the bottom of the tree (the leaves).

 If the tree depth is -2, TotalView builds a tree similar to the one created when the tree depth is -1,
except that the tree is unbalanced from side-to-side.

613

Scalability in HPC Computing Environments MRNet

As an example, consider a tree with a root node and eight leaf nodes. If the fan-out value is 4 and the tree
depth value is 0, a tree that is “bushy” near the leaves is built because TotalView honors fan-out at the leaf end
of the tree.
root:1 => n1:2 n5:2 ;

n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

However, for the same tree when the tree depth setting is -1, a tree that is “bushy” near the root is built
because TotalView honors fan-out at the root end of the tree.
root:1 => n1:2 n3:2 n5:2 n7:2 ;

n1:2 => n1:1 n2:1 ;
n3:2 => n3:1 n4:1 ;
n5:2 => n5:1 n6:1 ;
n7:2 => n7:1 n8:1 ;

Allocate an Extra Root Node

Option: –mrnet_extra_root boolean

State variable: TV::mrnet_extra_root boolean

Default value: false

For example, for a tree with a root and eight leaf nodes, using a fan-out value of 4, a tree depth value of 0, and
requesting an extra root node, the following topology string will be calculated:
root:3 => root:1 ;

root:1 => n1:2 n5:2 ;
n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

Create a “Super Bushy” Tree

Option: -mrnet_super_bushy

State variable: TV::mrnet_super_bushy

Default value: false

Set this option to true if you are debugging an MPI job in which more than one CUDA process is running on a
node. This option addresses the CUDA debug API limitation that allows a debugger process (such as the
tvdsvr) to debug at most one target process using a GPU.

Path to MRNet Components

Option: -mrnet_commnode_path path-to-mrnet_commnode

State variable: TV::mrnet_commnode_path path-to-mrnet_commnode

614

Scalability in HPC Computing Environments MRNet

Default value: tv-installation-root/platform/bin/mrnet_commnode

In a TotalView distribution, this is a path to a shell script that sets environment variables and execs the proper
executable for the platform.

Path to the MRNet shared library directory

Option: -mrnet_filterlib_dir path-to-mrnet-shlib-directory

State variable: TV::mrnet_filterlib_dir path-to-mrnet-shlib-directory

Default value: tv-installation-root/platform/shlib/mrnet/obj

The TotalView server tree filters library libservertree_filters.so.1 and the MRNet libxplat.so and
libmrnet.so libraries are stored in this directory.

Performance Notes

Rogue Wave has conducted performance tests on some specific systems, and based on this testing we here pro-
vide a couple of tips. These tips should be considered as guidelines. The only way to know how performance is
affected by different tree configurations on your system is by trying out alternatives with your own jobs.

 In general, higher fan-outs seem to perform better than deeper trees. Specifically, trees deeper
than two levels consistently performed worse than a two-level tree.

 In our testing, a one-level tree failed due to resource shortages at around 512 nodes, so this is not
a viable option at higher scales.

MRNet and ssh/rsh

Controlling MRNet’s Use of rsh vs ssh

When MRNet is used as the infrastructure in a Linux cluster, MRNet's built-in support is used to instantiate the
tree of debugger servers and communications processes. Tree instantiation is based on a remote shell startup
mechanism. By default, MRNet uses ssh as the remote shell program, but some environments require that rsh
be used instead. TotalView controls the remote shell used by MRNet using the TV::xplat_rsh state variable or
the -xplat_rsh TotalView command option to set this state variable. If this variable isn't explicitly set and the
XPLAT_RSH environment variable is not set or is empty, TotalView uses the value of TV::launch_command when
instantiating an MRNet tree.

On Cray XT, XE, and XK systems, MRNet uses the ALPS Tool Helper library to instantiate the tree, which does not
require the use of a separate remote shell program.

615

Scalability in HPC Computing Environments MRNet

Tips on Using ssh/rsh with MRNet

The use of rsh / ssh differs in every system environment, therefore you should consult your system's documen-
tation to know whether rsh or ssh should be used for your system. The rsh and ssh man pages are also a
useful resource. Regardless, we offer the following tips as a guideline for how to configure rsh and ssh:

 Configure rsh or ssh to allow accessing the remote nodes without a password. rsh typically uses
a file named $HOME/.rhosts (see man 5 rhost on a Linux system). ssh typically uses a pair of
private/public keys stored in files under your $HOME/.ssh directory (see man 1 ssh on a Linux
system).

 Disable X11 forwarding in ssh in your $HOME/.ssh/config file (see man 5 ssh_config on a
Linux system).

 Set StrictHostKeyChecking to no in ssh in your $HOME/.ssh/config file (see man 5
ssh_config on a Linux system). If the ssh host keys change for a remote host, you may need to
delete the lines for the host from the $HOME/.ssh/known_hosts file, or remove the file.

Using MRNet on Cray Computers

The following sections describe the options and state variables that control the configuration and use of MRNet
on Cray. Please refer to the TotalView Reference Guide for a general description of how options and state variables
can be used with TotalView.

For more information on Cray, see Debugging Cray XT/XE/XK/XC Applications on page 554.

Is Cray XT Flag

State variable: TV::is_cray_xt boolean

Default value: Set to true if TotalView is running on Linux-x86_64 or Linux-ARM64 (aarch64) and /proc/
cray_xt/nid exists; otherwise, set to false.

Note that some Cray front-end (elogin) nodes do not have a /proc/cray_xt/nid file, in which case a job must
be submitted to start TotalView on a Cray XT/XE/XK/XC node, or tvconnect must be used in your batch job. (For
detail on tvconnect, see Reverse Connections on page 505.)

Is Cray CTI Flag

State variable: TV::is_cray_cti boolean

Default value: Set to true if TotalView is running on Linux-x86_64 or Linux-ARM64 (aarch64) and /opt/cray/
pe/cti/ exists; otherwise, set to false. TotalView uses the CTI (Cray Tools Interface) library to deploy debugger
processes on the node where your application is running.

616

Scalability in HPC Computing Environments MRNet

Cray XT MRNet Server Launch String

Option: –cray_xt_mrnet_server_launch_string string

State variable: TV::cray_xt_mrnet_server_launch_string string

Default value: /var/spool/alps/%A/toolhelper%A/tvdsvr%K \

-working_directory %D -set_pw %P -verbosity %V %F

Analogous to the standard MRNet server launch string, the Cray XT MRNet server launch string is used when
MRNet launches the TotalView debugger servers on Cray when using the ATH (ALPS Tool Helper) library. TotalView
expands the launch string using the normal launch string expansion rules.

Cray XT MRNet Transfer File List

Option: –cray_xt_mrnet_xfer_file_list stringlist

State variable: TV::cray_xt_mrnet_xfer_file_list stringlist

Default value:

The default value is calculated at TotalView startup time, as follows. The following is used as a "base" list of files
needed by TotalView on the Cray compute nodes when MRNet and the Cray ATH libraries are in use.
TVROOT/bin/mrnet_commnode_main_cray_xt
TVROOT/bin/tvdsvr_mrnet
TVROOT/bin/tvdsvrmain_mrnet
TVROOT/shlib/mpa/obj_cray_xt/libmpattr.so.1
TVROOT/shlib/unwind/obj/libunwind-*.so.8
TVROOT/shlib/mrnet/obj_cray_xt/libmrnet.so
TVROOT/shlib/mrnet/obj_cray_xt/libxplat.so
TVROOT/shlib/mrnet/obj_cray_xt/libservertree_filters.so.1
TVROOT/shlib/mrnet/obj_cray_xt/libtvwrapalps.so.1
/lib64/libthread_db.so.1
Note that the name of the "libunwind-*.so.8" library depends on the platform, and will be either "libunwind-
x86_64.so.8" for x86_64 or "libunwind-aarch64.so.8" for ARM64.

On the x86_64 platform, TotalView also stages the libraries required to support ReplayEngine, which include:
/usr/bin/ld
/usr/bin/objcopy
TVROOT/lib/libundodb_debugger_x64.so
TVROOT/lib/undodb_a_x64.o
TVROOT/lib/undodb_infiniband_preload_x64.so
TVROOT/lib/undodb_a_x32.o
TVROOT/lib/undodb_infiniband_preload_x32.so
The above list is then passed to the shell script named "cray_sysdso_deps.sh" to calculate the system shared
libraries needed by the executables and shared libraries on the base list. The actual list of system libraries can
vary from system to system, but typically consists of the following files:

/lib64/libgcc_s.so.1
/usr/lib64/libbfd-<version>.so

617

Scalability in HPC Computing Environments MRNet

/usr/lib64/libstdc++.so.6
The version of libbfd, which is needed by ld and objcopy, varies from system to system.

The default value is a space-separated string-list of file names that are transferred (staged) to the compute nodes.
These files are the shell script, executable and shared library files required to run the MRNet commnode and
TotalView debugger server processes on the compute nodes. When instantiating the MRNet tree on Cray, the
ALPS Tool Helper library is used to broadcast these files into the compute nodes' ramdisk under the /var/
spool/alps/apid directory. TVROOT is the path to the platform-specific files in the TotalView installation.

Note that most up-to-date Cray systems support the debugger using the Cray Tools Interface (CTI) library, how-
ever TotalView attempts to support older legacy Cray systems that do not have CTI available by using the ALPS
Tool Helper (ATH) library.

Cray CTI MRNet Transfer File List

Option: –cray_cti_mrnet_xfer_file_list stringlist

State variable: TV::cray_cti_mrnet_xfer_file_list stringlist

Default value:

The default value is calculated at TotalView startup time, as follows. The following is used the “base” list of files
needed by TotalView on the Cray compute nodes when MRNet and the Cray CTI libraries are in use.
TVROOT/bin/mrnet_commnode_main_cray_cti
TVROOT/bin/tvdsvrmain_mrnet
TVROOT/shlib/mpa/obj_cray_xt/libmpattr.so.1
TVROOT/shlib/unwind/obj/libunwind-*.so.8
TVROOT/shlib/mrnet/obj_cray_cti/libmrnet.so
TVROOT/shlib/mrnet/obj_cray_cti/libxplat.so
TVROOT/shlib/mrnet/obj_cray_cti/libservertree_filters.so.1
TVROOT/shlib/mrnet/obj_cray_cti/libtvwrapcti.so.1
/lib64/libthread_db.so.1
Note that the name of the "libunwind-*.so.8" library depends on the platform, and will be either "libunwind-
x86_64.so.8" for x86_64 or "libunwind-aarch64.so.8" for ARM64.

On the x86_64 platform, TotalView also stages the libraries required to support ReplayEngine, which include:
/usr/bin/ld
/usr/bin/objcopy
TVROOT/lib/libundodb_debugger_x64.so
TVROOT/lib/undodb_a_x64.o
TVROOT/lib/undodb_infiniband_preload_x64.so
Note that CTI does not support staging 32-bit ELF files, therefore they are not included in the above list. Shared
library dependencies are calculated by CTI itself, therefore CTI takes care of staging any additional required
shared library dependencies.

618

Checkpointing

You can save the state of selected processes and then use this saved information to restart the processes
from the position where they were saved. For more information, see the Process Window Tools > Create
Checkpoint and Tools > Restart Checkpoint commands in the online Help, Figure 260.

This feature is currently available only on IBM RS/6000 platforms.

CLI: dcheckpoint
drestart

619

Checkpointing

Figure 260, Create Checkpoint and Restart Checkpoint Dialog Boxes

620

Fine-Tuning Shared Library Use

When TotalView encounters a reference to a shared library, it normally reads all of that library’s symbols. In
some cases, you might need to explicitly read in this library’s information before TotalView automatically reads
it.

On the other hand, you may not want TotalView to read and process a library’s loader and debugging sym-
bols. In most cases, reading these symbols occurs quickly. However, if your program uses large libraries, you
can increase performance by telling TotalView not to read these symbols.

621

Fine-Tuning Shared Library Use Preloading Shared Libraries

Preloading Shared Libraries
As your program executes, it can call the dlopen() function to access code contained in shared libraries. In some
cases, you might need to do something from within TotalView that requires you to preload library information. For
example, you might need to refer to one of a library’s functions in an eval point or in a Tools > Evaluate com-
mand. If you use the function’s name before TotalView reads the dynamic library, TotalView displays an error
message.

Use the Tools > Debugger Loaded Libraries command to tell the debugger to open a library.

After selecting this command, TotalView displays the following dialog box:

CLI: ddlopen
This CLI command gives you additional ways to control how a library’s sym-
bols are used.

Figure 261, Tools > Debugger Loaded Libraries Dialog Box

622

Fine-Tuning Shared Library Use Preloading Shared Libraries

Selecting the Load button tells TotalView to display a file explorer dialog box that lets you navigate through your
computer’s file system to locate the library. After selecting a library, TotalView reads it and displays a question box
that lets you stop execution to set a breakpoint:

NOTE: TotalView might not read in symbol and debugging information when you use this command.
See Controlling Which Symbols TotalView Reads on page 623 for more information.

Figure 262, Stopping to Set a Breakpoint Question Box

RELATED TOPICS
TV:dll TV::dll in the Classic TotalView Reference Guide

The ddlopen command ddlopen in the Classic TotalView Reference Guide

623

Fine-Tuning Shared Library Use Controlling Which Symbols TotalView Reads

Controlling Which Symbols TotalView Reads
When debugging large programs with large libraries, reading and parsing symbols can impact performance. This
section describes how you can minimize the impact that reading this information has on your debugging session.

NOTE: Using the preference settings and variables described in this section, you can control the time
it takes to read in the symbol table. For most programs, even large ones, changing the settings
is often inconsequential, but if you are debugging a very large program with large libraries,
you can achieve significant performance improvements.

A shared library contains, among other things, loader and debugging symbols. Typically, loader symbols are read
quite quickly. Debugging symbols can require considerable processing. The default behavior is to read all sym-
bols. You can change this behavior by telling TotalView to only read in loader symbols or even that it should not
read in any symbols.

NOTE: Saying “TotalView reads all symbols” isn’t quite true as TotalView often just reads in loader
symbols for some libraries. For example, it only reads in loader symbols if the library resides in
the /usr/lib directory. (These libraries are typically those provided with the operating system.)
You can override this behavior by adding a library name to the All Symbols list that is
described in the next section.

624

Fine-Tuning Shared Library Use Controlling Which Symbols TotalView Reads

Specifying Which Libraries are Read
After invoking the File > Preferences command, select the Dynamic Libraries Page.

The lower portion of this page lets you enter the names of libraries for which you need to manage the informa-
tion that TotalView reads.

When you enter a library name, you can use the * (asterisk) and ? (question mark) wildcard characters. These
characters have their standard meaning. Placing entries into these areas does the following:

all symbols This is the default operation. You only need to enter a library name here if it would be excluded
by a wildcard in the loader symbols and no symbols areas.

loader symbols TotalView reads loader symbols from these libraries. If your program uses a number of large
shared libraries that you will not be debugging, you might set this to asterisk (*). You then enter
the names of DLLs that you need to debug in the all symbols area.

no symbols Normally, you wouldn’t put anything on this list since TotalView might not be able to create a
backtrace through a library if it doesn’t have these symbols. However, you can increase perfor-
mance if you place the names of your largest libraries here.

When reading a library, TotalView looks at these lists in the following order:

1. all symbols

2. loader symbols

Figure 263, File > Preferences: Dynamic Libraries Page

625

Fine-Tuning Shared Library Use Controlling Which Symbols TotalView Reads

3. no symbols

If a library is found in more than one area, TotalView does the first thing it is told to do and ignores any other
requests. For example, after TotalView reads a library’s symbols, it cannot honor a request to not load in symbols,
so it ignores a request to not read them.

See the online Help for additional information.

If your program stops in a library that has not already had its symbols read, TotalView reads the library’s symbols.
For example, if your program SEGVs in a library, TotalView reads the symbols from that library before it reports the
error. In all cases, however, TotalView always reads the loader symbols for shared system libraries.

Reading Excluded Information
While you are debugging your program, you might find that you do need the symbol information that you told
TotalView it shouldn’t read. Tell TotalView to read them by right-clicking your mouse in the Stack Trace Pane and
then selecting the Load All Symbols in Stack command from the context menu.

After selecting this command, TotalView examines all active stack frames and, if it finds unread libraries in any
frame, reads them.

CLI: dset TV::dll_read_all_symbols
dset TV::dll_read_loader_symbols_only
dset TV::dll_read_no_symbols

Figure 264, Load All Symbols in Stack Context menu

CLI: TV::read_symbols
This CLI command also gives you finer control over how TotalView reads in
library information.

 626

PART V Using the CUDA
Debugger

This part introduces the TotalView CUDA debugger and includes the following chapters:

 About the TotalView CUDA Debugger
Introduces the CUDA debugger, including features, requirements, installation and drivers.

 CUDA Debugging Model and Unified Display
Explores setting and viewing action points in CUDA code.

 CUDA Debugging Tutorial
Discusses how to build and debug a simple CUDA program, including compiling, controlling execution, and ana-
lyzing data.

 CUDA Problems and Limitations
Issues related to limitations in the NVIDIA environment.

 Sample CUDA Program
Compilable sample CUDA program.

627

About the TotalView CUDA
Debugger

The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA
code that is running on the host system and the NVIDIA® GPU. CUDA support is an extension to the standard
version TotalView, and is capable of debugging 64-bit CUDA programs. Debugging 32-bit CUDA programs is
currently not supported.

Supported major features:

 Debug CUDA application running directly on GPU hardware

 Set breakpoints, pause execution, and single step in GPU code

 View GPU variables in PTX registers, local, parameter, global, or shared memory

 Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

 Debug multiple GPU devices per process

 Support for the CUDA MemoryChecker

 Debug remote, distributed and clustered systems

 Support for directive-based programming languages

 Support for host debugging features

Requirements:

The CUDA SDK and a host distribution supported by NVIDIA. For SDK versions and supported NVIDIA GPUs,
please see the TotalView Supported Platforms guide.

628

About the TotalView CUDA Debugger Installing the CUDA SDK Tool Chain

Installing the CUDA SDK Tool Chain
Before you can debug a CUDA program, you must download and install the CUDA SDK software from NVIDIA
using the following steps:

 Visit the NVIDIA CUDA Zone download page:

https://developer.nvidia.com/cuda-downloads

 Select Linux as your operating system

 Download and install the CUDA SDK Toolkit for your Linux distribution (64-bit)

By default, the CUDA SDK Toolkit is installed under /usr/local/cuda/. The nvcc compiler driver is installed in /
usr/local/cuda/bin, and the CUDA 64-bit runtime libraries are installed in /usr/local/cuda/lib64.

You may wish to:

 Add /usr/local/cuda/bin to your PATH environment variable.

 Add /usr/local/cuda/lib64 to your LD_LIBRARY_PATH environment variable.

https://developer.nvidia.com/cuda-downloads

629

About the TotalView CUDA Debugger Directive-Based Accelerator Programming Languages

Directive-Based Accelerator Programming
Languages
Converting C or Fortran code into CUDA code can take some time and effort. To simplify this process, a number of
directive-based accelerator programming languages have emerged. These languages work by placing compiler
directives in the user’s code. Instead of writing CUDA code, the user can write standard C or Fortran code, and the
compiler converts it to CUDA at compile time.

TotalView currently supports Cray’s OpenMP Accelerator Directives and Cray’s OpenACC Directives. TotalView
uses the normal CUDA Debugging Model when debugging programs that have been compiled using these
directives.

630

CUDA Debugging Model and
Unified Display

Debugging CUDA programs presents some challenges when it comes to setting action points. When the host
process starts, the CUDA threads don’t yet exist and so are not visible to the debugger for setting breakpoints.
(This is also true of any libraries that are dynamically loaded using dlopen and against which the code was not
originally linked.)

To address this issue, TotalView allows setting a breakpoint on any line in the Source View, whether or not it
can identify executable code for that line. The breakpoint becomes either a pending breakpoint or a sliding
breakpoint until the CUDA code is loaded at runtime.

The Source Pane provides a unified display that includes line number symbols and breakpoints that span the
host executable, host shared libraries, and the CUDA ELF images loaded into the CUDA threads. This design
allows you to easily set breakpoints and view line number information for the host and GPU code at the same
time. This is made possible by the way CUDA threads are grouped, discussed in the section Unified Source
Pane and Breakpoint Display on page 634The TotalView CUDA Debugging Model on page 631.

 Unified Source Pane and Breakpoint Display on page 634The TotalView CUDA Debugging
Model on page 631

 Pending and Sliding Breakpoints on page 633

631

CUDA Debugging Model and Unified Display Unified Source Pane and Breakpoint Display on page 634The

Unified Source Pane and Breakpoint Display on page 634The
TotalView CUDA Debugging Model
The address space of the Linux CPU process and the address spaces of the CUDA threads are placed into the
same share group. Breakpoints are created and evaluated within the share group, and apply to all of the image
files (executable, shared libraries, and CUDA ELF images) in the share group.

That means that a breakpoint can apply to both the CPU and GPU code. This allows setting breakpoints on source
lines in the host code that are then planted in the CUDA images at the same location once the CUDA kernel
starts.

Consider a Linux process consisting of two Linux pthreads and two CUDA threads. (A CUDA thread is a CUDA con-
text loaded onto a GPU device.) Figure 265 illustrates how TotalView would group the Linux and CUDA threads.

The Linux host CUDA process

A Linux host CUDA process consists of:

 A Linux process address space, containing a Linux executable and a list of Linux shared libraries.

 A collection of Linux threads, where a Linux thread:

 Is assigned a positive debugger thread ID.

 Shares the Linux process address space with other Linux threads.

 A collection of CUDA threads, where a CUDA thread:

Figure 265, TotalView CUDA debugging model

632

CUDA Debugging Model and Unified Display Unified Source Pane and Breakpoint Display on page 634The

 Is assigned a negative debugger thread ID.

 Has its own address space, separate from the Linux process address space, and separate
from the address spaces of other CUDA threads.

 Has a "GPU focus thread", which is focused on a specific hardware thread (also known as a
core or "lane" in CUDA lingo).

The above TotalView CUDA debugging model is reflected in the TotalView user interface and command line inter-
face. In addition, CUDA-specific CLI commands allow you to inspect CUDA threads, change the focus, and display
their status. See the dcuda entry in the Classic TotalView Reference Guide for more information.

633

CUDA Debugging Model and Unified Display Pending and Sliding Breakpoints

Pending and Sliding Breakpoints
Because CUDA threads and the host process are all in the same share group, you can create pending or sliding
breakpoints on source lines and functions in the GPU code before the code is loaded onto the GPU. If TotalView
can’t locate code associated with a particular line in the source view, you can still plant a breakpoint there, if you
know that there will be code there once the CUDA kernel loads.

Pending and sliding breakpoints are not specific to CUDA and are discussed in more detail in Setting
Action Points on page 188.

RELATED TOPICS
Sliding breakpoints Sliding Breakpoints on page 198

Pending breakpoints Pending Breakpoints on page 201

Pending eval points Creating a Pending Eval Point on page 223

How the unified Source Pane displays break-
points in dynamically-loaded code

Unified Source Pane and Breakpoint Display on page 634

Using dactions to display pending and mixed
breakpoint detail before and after CUDA code
has loaded.

“Examples of Actions Points in Both Host and Dynamically
Loaded Code” in the dactions entry in the TotalView Reference
Guide

634

CUDA Debugging Model and Unified Display Unified Source Pane and Breakpoint Display

Unified Source Pane and Breakpoint Display
Because CUDA threads are in the same share group as are their host Linux processes, the Source Pane can visi-
bly display a unified view of lines and breakpoints set in both the host code and the CUDA code. TotalView
determines the equivalence of host and CUDA source files by comparing the base name and directory path of
each file in the share group; if they are equal, the line number information is unified in the Source Pane.

NOTE: A unified display is not specific to CUDA but is particularly suited to debugging CUDA pro-
grams. It is discussed in more detail in The Source Pane on page 161.

This is particularly visible when breakpoints are set. For example, Figure 266 shows source code before the CUDA
thread has launched. A breakpoint has been set at line 130 which slid to line 134 in the host code.

After CUDA kernel launch, Figure 267 shows that TotalView has read the line number information for the CUDA
image and the slid breakpoint now displays according to the full breakpoint expression in the Action Points tab.

Figure 266, Source Pane before CUDA kernel launch

Figure 267, Source Pane after CUDA kernel launch

635

CUDA Debugging Model and Unified Display Unified Source Pane and Breakpoint Display

Notice also that the source-line breakpoint boxes for the CUDA code have been unified with the CPU code. For
example, lines 132 and 133 appeared with no breakpoint boxes before runtime, but after the CUDA threads have
launched, TotalView is able to identify line symbol information there, so they now appear with gray boxes.

RELATED TOPICS
More on the unified Source Pane display Unified Source Pane Display on page 161

The CUDA share group model Unified Source Pane and Breakpoint Display on
page 634The TotalView CUDA Debugging Model
on page 631

Using dactions to display pending and mixed breakpoint
detail before and after CUDA code has loaded.

“Examples of Actions Points in Both Host and
Dynamically Loaded Code” in the dactions entry in
the TotalView Reference Guide

636

CUDA Debugging Tutorial

This chapter discusses how to build and debug a simple CUDA program using TotalView.

 Compiling for Debugging on page 637

 Starting a TotalView CUDA Session on page 639

 Controlling Execution on page 641

 Displaying CUDA Program Elements on page 645

 Enabling CUDA MemoryChecker Feature on page 653

 GPU Core Dump Support on page 654

 GPU Error Reporting on page 655

 Displaying Device Information on page 657

637

CUDA Debugging Tutorial Compiling for Debugging

Compiling for Debugging
When compiling an NVIDIA CUDA program for debugging, it is necessary to pass the -g -G options to the nvcc
compiler driver. These options disable most compiler optimization and include symbolic debugging information
in the driver executable file, making it possible to debug the application. For example, to compile the sample
CUDA program named tx_cuda_matmul.cu for debugging, use the following commands to compile and execute
the application:
% /usr/local/bin/nvcc -g -G -c tx_cuda_matmul.cu -o tx_cuda_matmul.o
% /usr/local/bin/nvcc -g -G -Xlinker=-R/usr/local/cuda/lib64 \
 tx_cuda_matmul.o -o tx_cuda_matmul
% ./tx_cuda_matmul
A:
[0][0] 0.000000
...output deleted for brevity...
[1][1] 131.000000
%

Access the source code for this CUDA program tx_cuda_matmul.cu program at Sample CUDA Program on
page 663.

Compiling for Fermi
To compile for Fermi, use the following compiler option:
-gencode arch=compute_20,code=sm_20

Compiling for Fermi and Tesla

To compile for both Fermi and Tesla GPUs, use the following compiler options:
-gencode arch=compute_20,code=sm_20 -gencode arch=compute_10,code=sm_10

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Kepler
To compile for Kepler GPUs, use the following compiler options:
-gencode arch=compute_35,code=sm_35

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

638

CUDA Debugging Tutorial Compiling for Debugging

Compiling for Pascal
To compile for Pascal GPUs, use the following compiler options:
-gencode arch=compute_60,code=sm_60

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Volta
To compile for Volta GPUs, use the following compiler options:
-gencode arch=compute_70,code=sm_70

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

639

CUDA Debugging Tutorial Starting a TotalView CUDA Session

Starting a TotalView CUDA Session
A standard TotalView installation supports debugging CUDA applications running on both the host and GPU pro-
cessors. TotalView dynamically detects a CUDA install on your system. To start the TotalView GUI or CLI, provide
the name of your CUDA host executable to the totalview or totalviewcli command. For example, to start the
TotalView GUI on the sample program, use the following command:
% totalview tx_cuda_matmul

If TotalView successfully loads the CUDA debugging library, it prints the current CUDA debugger API version and
the NVIDIA driver version:
CUDA library loaded: Current DLL API version is “8.0.128”; NVIDIA driver version
384.125
...

After reading the symbol table information for the CUDA host executable, TotalView opens the initial process win-
dow focused on main in the host code, as shown in Figure 268.

640

CUDA Debugging Tutorial Starting a TotalView CUDA Session

You can debug the CUDA host code using the normal TotalView commands and procedures.

Figure 268, Initial process window opened on CUDA host code

641

CUDA Debugging Tutorial Controlling Execution

Controlling Execution

NOTE: Set breakpoints in CUDA code before you start the process. If you start the process without set-
ting any breakpoints, there are no prompts to set them afterward.

Note that breakpoints set in CUDA code will slide to the next host (CPU) line in the source file, but once the pro-
gram is running and the CUDA code is loaded, TotalView recalculates the breakpoint expression and plants a
breakpoint at the proper location in the CUDA code. (See Sliding Breakpoints on page 198.)

Viewing GPU Threads
Once the CUDA kernel starts executing, it will hit the breakpoint planted in the GPU code, as shown in Figure 269.

Figure 269, CUDA thread stopped at a breakpoint, focused on GPU thread <<<(0,0,0),(0,0,0)>>>

642

CUDA Debugging Tutorial Controlling Execution

The logical coordinates of the GPU focus threads are shown in the thread status title bar and the Threads pane.
You can use the GPU focus thread selector to change the GPU focus thread. When you change the GPU focus
thread, the logical coordinates displayed also change, and the stack trace, stack frame, and source panes are
updated to reflect the state of the new GPU focus thread.

The yellow PC arrow in the source pane shows the execution location of the GPU focus thread. The GPU hard-
ware threads, also known as "lanes," execute in parallel so multiple lanes may have the same PC value. The lanes
may be part of the same warp (up to 32 maximum threads that are scheduled concurrently), or in different warps.

The stack trace pane shows the stack backtrace and inlined functions. Each stack frame in the stack backtrace
represents either the PC location of GPU kernel code, or the expansion of an inlined function. Inlined functions
can be nested. The "return PC" of an inlined function is the address of the first instruction following the inline
expansion, which is normally within the function containing the inlined-function expansion.

The stack frame pane shows the parameter, register and local variables for the function in the selected stack
frame. The variables for the selected GPU kernel code or inlined function expansion are shown.

CUDA Thread IDs and Coordinate Spaces

TotalView gives host threads a positive debugger thread ID and CUDA threads a negative thread ID. In this exam-
ple, the initial host thread in process "1" is labeled "1.1" and the CUDA thread is labeled "1.-1".

In TotalView, a "CUDA thread" is a CUDA kernel invocation consisting of registers and memory, as well as a "GPU
focus thread". Use the "GPU focus selector" to change the physical coordinates of the GPU focus thread.

There are two coordinate spaces. One is the logical coordinate space that is in CUDA terms grid and block indices:
<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>. The other is the physical coordinate space that is in hardware terms the device num-
ber, streaming multiprocessor (SM) number on the device, warp (WP) number on the SM, and lane (LN) number
on the warp.

Any given thread has both a thread index in this 4D physical coordinate space, and a different thread index in the
6D logical coordinate space. These indices are shown in a series of spin boxes in the process window. If the but-
ton says “Physical,” the physical thread number is displayed; if “Logical” (Figure 269), the logical number. Pressing
this button switches between the two numbering systems, but does not change the actual thread.

643

CUDA Debugging Tutorial Controlling Execution

To view a CUDA host thread, select a thread with a positive thread ID in the Threads tab of the process window. To
view a CUDA GPU thread, select a thread with a negative thread ID, then use the GPU thread selector to focus on
a specific GPU thread. There is one GPU focus thread per CUDA thread, and changing the GPU focus thread
affects all windows displaying information for a CUDA thread and all command line interface commands targeting
a CUDA thread. In other words, changing the GPU focus thread can change data displayed for a CUDA thread and
affect other commands, such as single-stepping.

Note that in all cases, when you select a thread, TotalView automatically switches the stack trace, stack frame and
source panes, and Action Points tab to match the selected thread.

Viewing the Kernel’s Grid Identifier

TotalView supports showing the grid identification in the stack frame information when a CUDA thread stops, Fig-
ure 271.

The grid is a unique identifier for a kernel running on a device. CUDA supports kernels launching parallel kernels
on the same device. The parent grid is the identifier of the grid that launched the kernel currently in focus.

Single-Stepping GPU Code
TotalView allows you to single-step GPU code just like normal host code, but note that a single-step operation
steps the entire warp associated with the GPU focus thread. So, when focused on a CUDA thread, a single-step
operation advances all of the GPU hardware threads in the same warp as the GPU focus thread.

Figure 270, Logical / physical toggle in the process window

Figure 271, Viewing the Grid and Parent Grid Identifiers

644

CUDA Debugging Tutorial Controlling Execution

To advance the execution of more than one warp, you may either:

 set a breakpoint and continue the process

 select a line number in the source pane and select "Run To".

Execution of more than one warp also happens when single-stepping a __syncthreads() thread barrier call. Any
source-level single-stepping operation runs all of the GPU hardware threads to the location following the thread
barrier call.

Single-stepping an inlined function (nested or not) in GPU code behaves the same as single-stepping a non-
inlined function. You can:

 step into an inlined function,

 step over an inlined function,

 run to a location inside an inlined function,

 single-step within an inlined function, and

 return out of an inlined function.

Halting a Running Application
You can temporarily halt a running application at any time by selecting "Halt", which halts the host and CUDA
threads. This can be useful if you suspect the kernel might be hung or stuck in an infinite loop. You can resume
execution at any time by selecting "Go" or by selecting one of the single-stepping buttons.

645

CUDA Debugging Tutorial Displaying CUDA Program Elements

Displaying CUDA Program Elements

GPU Assembler Display
Due to limitations imposed by NVIDIA, assembler display is not supported. All GPU instructions are currently dis-
played as 32-bit hexadecimal words.

GPU Variable and Data Display
TotalView can display variables and data from a CUDA thread. The stack frame pane of the process window con-
tains parameter, register, local, and shared variables, as shown in Figure 272. The variables are contained within
the lexical blocks in which they are defined. The type of the variable determines its storage kind (register, or local,
shared, constant or global memory). The address is a PTX register name or an offset within the storage kind.

Dive on a variable in the stack frame pane or source pane in the process window to open a variable window. Fig-
ure 272 shows a parameter named A with type @parameter const Matrix.

The identifier @parameter is a TotalView built-in type storage qualifier that tells the debugger the storage kind of
"A" is parameter storage. The debugger uses the storage qualifier to determine how to locate A in device memory.
The supported type storage qualifiers are shown in Table 3.

Figure 272, A variable window displaying a parameter

646

CUDA Debugging Tutorial Displaying CUDA Program Elements

The type storage qualifier is a necessary part of the type for correct addressing in the debugger. When you edit a
type or a type cast, make sure that you specify the correct type storage qualifier for the address offset.

Managed Memory Variables

About Managed Memory

The CUDA Unified Memory component defines a managed memory space that allows all GPUs and hosts to “see
a single coherent memory image with a common address space,” as described in the NVIDIA documentation “Uni-
fied Memory Programming.”

Table 3: Supported Type Storage Qualifiers

Storage Qualifier Meaning

@code An offset within executable code storage

@constant An offset within constant storage

@generic An offset within generic storage

@frame An offset within frame storage

@global An offset within global storage

@local An offset within local storage

@parameter An offset within parameter storage

@iparam Input parameter

@oparam Output parameter

@shared An offset within shared storage

@surface An offset within surface storage

@texsampler An offset within texture sampler storage

@texture An offset within texture storage

@rtvar Built-in runtime variables (see CUDA Built-In Runtime
Variables)

@register A PTX register name (see PTX Registers)

@sregister A PTX special register name (see PTX Registers)

@managed_global Statically allocated managed variable. See Managed Memory
Variables.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

647

CUDA Debugging Tutorial Displaying CUDA Program Elements

Allocating a variable in managed memory avoids explicit memory transfers between host and GPUs, as any alloca-
tion created in the managed memory space is automatically migrated between the host and GPU.

A managed memory variable is marked with a "__managed__" memory space specifier.

How TotalView Displays Managed Variables

To make it easier to recognize and work with managed variables, TotalView annotates their address with the term
“Managed”, and, for statically allocated variables, adds the @managed_global type qualifier.

Statically Allocated Managed Variables

For example, consider this statically allocated managed variable, declared with the __managed__ keyword:

 __device__ __managed__ int mv_int_initialized=10;
TotalView adds “Managed” in the Address field and decorates the type with @managed_global:

Dynamically Allocated Managed Variables

Managed memory can be dynamically allocated using the cudaMallocManaged() function, for example:

cudaMallocManaged((void**)&(elm->name), sizeof(char) * (strlen("hello") + 1));
Here, the Stack Frame shows that the variable elem points into managed memory. That is, elem is a pointer and
its value points into managed memory; the pointer’s value is annotated with "(Managed)".

Diving on it shows that the pointer’s value points into managed memory. Diving on the pointer itself annotates
the Address value with “Managed”. Note that one of its members, name, also points into managed memory.

648

CUDA Debugging Tutorial Displaying CUDA Program Elements

CUDA Built-In Runtime Variables
TotalView allows access to the CUDA built-in runtime variables, which are handled by TotalView like any other vari-
ables, except that you cannot change their values.

The supported CUDA built-in runtime variables are as follows:

 struct dim3_16 threadIdx;

 struct dim3_16 blockIdx;

 struct dim3_16 blockDim;

 struct dim3_16 gridDim;

 int warpSize;

The types of the built-in variables are defined as follows:

 struct dim3_16 { unsigned short x, y, z; };

 struct dim2_16 { unsigned short x, y; };

You can dive on the name of a runtime variable in the source pane of the process window, or input its name into
the View > Lookup Variable… (v) menu command dialog box. Built-in variables can also be used in the TotalView
expression system.

649

CUDA Debugging Tutorial Displaying CUDA Program Elements

Type Casting
The variable window allows you to edit the types of variables. This is useful for viewing an address as a different
type. For example, Figure 273 shows the result of casting a float in global storage to a 2x2 array of floats in global
storage.

You can determine the storage kind of a variable by diving on the variable to open a variable window in the graph-
ical user interface (GUI), or by using the dwhat command in the command line interface (CLI).

Here are some examples of using the CLI to determine variable types and to perform type casts. Use Tools >
Command Line from the process window menu to open a CLI window from the GUI.

The following examples use the CLI for ease of illustration, but you can instead use the GUI by entering the cast
expression (dprint argument) in the Expression field of the variable window.

When you are using the CLI and want to operate on a CUDA thread, you must first focus on the CUDA thread. The
GPU focus thread in the CLI is the same as in the GUI:
d1.<> dfocus .-1
d1.-1
d1.-1>

The dwhat command prints the type and address offset or PTX register name of a variable. The dwhat command
prints additional lines that have been omitted here for clarity:
d1.-1> dwhat A

Figure 273, Casting to a 2x2 array of float in global storage

650

CUDA Debugging Tutorial Displaying CUDA Program Elements

In thread 1.-1:
Name: A; Type: @parameter const Matrix; Size: 24 bytes; Addr: 0x00000010
...
d1.-1> dwhat blockRow
In thread 1.-1:
Name: blockRow; Type: @register int; Size: 4 bytes; Addr: %r2
...
d1.-1> dwhat Csub
In thread 1.-1:
Name: Csub; Type: @local Matrix; Size: 24 bytes; Addr: 0x00000060
...
d1.-1>

You can use dprint in the CLI to cast and print an address offset as a particular type. Note that the CLI is a Tcl
interpreter, so we wrap the expression argument to dprint in curly braces {} for Tcl to treat it as a literal string to
pass into the debugger. For example, below we take the address of "A", which is at 0x10 in parameter storage.
Then, we can cast 0x10 to a "pointer to a Matrix in parameter storage", as follows:
d1.-1> dprint {&A}
 &A = 0x00000010 -> (Matrix const @parameter)
d1.-1> dprint {*(@parameter Matrix*)0x10}
 (@parameter Matrix)0x10 = {
 width = 0x00000002 (2)
 height = 0x00000002 (2)
 stride = 0x00000002 (2)
 elements = 0x00110000 -> 0
 }
d1.-1>

The above "@parameter" type qualifier is an important part of the cast, because without it the debugger cannot
determine the storage kind of the address offset. Casting without the proper type storage qualifier usually results
in "Bad address" being displayed, as follows:
d1.-1> dprint {*(Matrix*)0x10}
 (Matrix)0x10 = <Bad address: 0x00000010> (struct Matrix)
d1.-1>

You can perform similar casts for global storage addresses. We know that "A.elements" is a pointer to a 2x2 array
in global storage. The value of the pointer is 0x110000 in global storage. You can use C/C++ cast syntax:
d1.-1> dprint {A.elements}
 A.elements = 0x00110000 -> 0
d1.-1> dprint {*(@global float(*)[2][2])0x00110000}
 (@global float()[2][2])0x00110000 = {
 [0][0] = 0
 [0][1] = 1
 [1][0] = 10
 [1][1] = 11

651

CUDA Debugging Tutorial Displaying CUDA Program Elements

 }
d1.-1>

Or you can use TotalView cast syntax, which is an extension to C/C++ cast syntax that allows you to simply read
the type from right to left to understand what it is:
d1.-1> dprint {*(@global float[2][2]*)0x00110000}
 (@global float[2][2])0x00110000 = {
 [0][0] = 0
 [0][1] = 1
 [1][0] = 10
 [1][1] = 11
 }
d1.-1>

If you know the address of a pointer and you want to print out the target of the pointer, you must specify a stor-
age qualifier on both the pointer itself and the target type of the pointer. For example, if we take the address of
"A.elements", we see that it is at address offset 0x20 in parameter storage, and we know that the pointer points
into global storage. Consider this example:
d1.-1> dprint {*(@global float[2][2]*@parameter*)0x20}
 (@global float[2][2]@parameter*)0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float[2][2]*@parameter*)0x20}
 **(@global float[2][2]*@parameter*)0x20 = {
 [0][0] = 0
 [0][1] = 1
 [1][0] = 10
 [1][1] = 11
 }
d1.-1>

Above, using the TotalView cast syntax and reading right to left, we cast 0x20 to a pointer in parameter storage to
a pointer to a 2x2 array of floats in global storage. Dereferencing it once gives the value of the pointer to global
storage. Dereferencing it twice gives the array in global storage. The following is the same as above, but this time
in C/C++ cast syntax:
d1.-1> dprint {*(@global float(*@parameter*)[2][2])0x20}
 (@global float(@parameter*)[2][2])0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float(*@parameter*)[2][2])0x20}
 **(@global float(*@parameter*)[2][2])0x20 = {
 [0][0] = 0
 [0][1] = 1
 [1][0] = 10
 [1][1] = 11
 }
d1.-1>

652

CUDA Debugging Tutorial Displaying CUDA Program Elements

PTX Registers
In CUDA, PTX registers are more like symbolic virtual locations than hardware registers in the classic sense. At any
given point during the execution of CUDA device code, a variable that has been assigned to a PTX register may live
in one of three places:

 A hardware (SAS) register

 Local storage

 Nowhere (its value is dead)

Variables that are assigned to PTX registers are qualified with the "@register" type storage qualifier, and their
locations are PTX register names. The name of a PTX register can be anything, but the compiler usually assigns a
name in one of the following formats: %rN, %rdN, or %fN, where N is a decimal number.

Using compiler-generated location information, TotalView maps a PTX register name to the SASS hardware regis-
ter or local memory address where the PTX register is currently allocated. If the PTX register value is "live", then
TotalView shows you the SASS hardware register name or local memory address. If the PTX register value is
"dead", then TotalView displays Bad address and the PTX register name as show in Figure 274.

Figure 274, PTX register variables: one live, one dead

653

CUDA Debugging Tutorial Enabling CUDA MemoryChecker Feature

Enabling CUDA MemoryChecker Feature
You can detect global memory addressing violations and misaligned global memory accesses by enabling the
CUDA MemoryChecker feature.

To enable the feature, use one of the following:

 Select "Enable CUDA memory checking" from the Startup Parameters dialog box in TotalView, as
shown in Figure 275.

 Pass the -cuda_memcheck option to the totalview command.

 Set the TV::cuda_memcheck CLI state variable to true. For example:
dset TV::cuda_memcheck true

Note that global memory violations and misaligned global memory accesses will be detected only while the CUDA
thread is running. Detection will not happen when single-stepping the CUDA thread.

Figure 275, Enabling CUDA memory checking from TotalView Startup Parameters

654

CUDA Debugging Tutorial GPU Core Dump Support

GPU Core Dump Support
CUDA GPU core dumps can be debugged just as you debug any other core dump. To obtain a GPU core dump,
you must first set the CUDA_ENABLE_COREDUMP_ON_EXCEPTION environment variable to 1 to enable genera-
tion of a GPU core dump when a GPU exception is encountered. This option is disabled by default.

To change the default core dump file name, set the CUDA_COREDUMP_FILE environment variable to a specific file
name. The default core dump file name is in the following format: core.cuda.<hostname>.<pid> where
<hostname> is the host name of machine running the CUDA application and <pid> is the process identifier of
the CUDA application.

To debug a GPU core dump, TotalView must be running on a machine with the CUDA SDK installed.

As with any core dump, you must also supply the name of the executable that produced the core dump:
totalview <executable> <core-dump-file>

655

CUDA Debugging Tutorial GPU Error Reporting

GPU Error Reporting
By default, TotalView reports GPU exception errors as "signals." Continuing the application after these errors can
lead to application termination or unpredictable results.

Table 4 lists reported errors, according to these platforms and settings:

 Exception codes Lane Illegal Address and Lane Misaligned Address are detected using
all supported SDK versions when CUDA memcheck is enabled, on supported Tesla and Fermi
hardware.

 All other CUDA errors are detected only for GPUs with sm_20 or higher (for example Fermi) running
SDK 3.1 or higher. It is not necessary to enable CUDA memcheck to detect these errors.

Table 4: CUDA Exception Codes

Exception code Error Precision Error Scope Description

CUDA_EXCEPTION_0:

“Device Unknown Exception”

Not precise Global error on
the GPU

An application-caused global GPU error that does
not match any of the listed error codes below.

CUDA_EXCEPTION_1:

“Lane Illegal Address”

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has accessed an illegal (out of bounds)
global address.

CUDA_EXCEPTION_2:

“Lane User Stack Overflow”

Precise Per lane/thread
error

A thread has exceeded its stack memory limit.

CUDA_EXCEPTION_3:

“Device Hardware Stack Overflow”

Not precise Global error on
the GPU

The application has triggered a global hardware
stack overflow, usually caused by large amounts of
divergence in the presence of function calls.

CUDA_EXCEPTION_4:

“Warp Illegal Instruction”

Not precise Warp error A thread within a warp has executed an illegal
instruction.

CUDA_EXCEPTION_5:

“Warp Out-of-range Address”

Not precise Warp error A thread within a warp has accessed an address
that is outside the valid range of local or shared
memory regions.

CUDA_EXCEPTION_6:

“Warp Misaligned Address”

Not precise Warp error A thread within a warp has accessed an incorrectly
aligned address in the local or shared memory
segments.

656

CUDA Debugging Tutorial GPU Error Reporting

CUDA_EXCEPTION_7:

“Warp Invalid Address Space”

Not precise Warp error A thread within a warp has executed an instruc-
tion that attempts to access a memory space not
permitted for that instruction.

CUDA_EXCEPTION_8:

“Warp Invalid PC”
Not precise Warp error A thread within a warp has advanced its PC

beyond the 40-bit address space.

CUDA_EXCEPTION_9:

“Warp Hardware Stack Overflow”

Not precise Warp error A thread within a warp has triggered a hardware
stack overflow.

CUDA_EXCEPTION_10:

“Device Illegal Address”

Not precise Global error A thread has accessed an illegal (out of bounds)
global address. For increased precision, enable
memcheck.

CUDA_EXCEPTION_11:

“Lane Misaligned Address”

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has accessed an incorrectly aligned
global address.

CUDA_EXCEPTION_12 :
"Warp Assert"

Precise Per warp Any thread in the warp has hit a device side
assertion.

CUDA_EXCEPTION_13:
"Lane Syscall
Error"

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has corrupted the heap by invoking free
with an invalid address (for example, trying to free
the same memory region twice)

CUDA_EXCEPTION_14 :
"Warp Illegal
Address"

Not precise Per warp A thread has accessed an illegal (out of bounds)
global/local/shared address. For increased preci-
sion, enable the CUDA memcheck option. See
Enabling CUDA MemoryChecker Feature on
page 653.

CUDA_EXCEPTION_15 :
"Invalid Managed
Memory Access"

Precise Per host thread A host thread has attempted to access managed
memory currently used by the GPU.

Table 4: CUDA Exception Codes

Exception code Error Precision Error Scope Description

657

CUDA Debugging Tutorial Displaying Device Information

Displaying Device Information
TotalView can display each device installed on the system, along with the properties of each SM, warp, and lane
on that device. Together, these four attributes form the physical coordinates of a CUDA thread. To view the win-
dow, select Tools > CUDA Devices.

Figure 276, CUDA Devices when no CUDA threads are present

Figure 277, CUDA Devices when CUDA threads are present

658

CUDA Debugging Tutorial Displaying Device Information

659

CUDA Problems and Limitations

CUDA TotalView sits directly on top of the CUDA debugging environment provided by NVIDIA, which is still
evolving and maturing. This environment contains certain problems and limitations, discussed in this chapter.

 Hangs or Initialization Failures on page 660

 CUDA and ReplayEngine on page 661

 CUDA and MRNet on page 662

660

CUDA Problems and Limitations Hangs or Initialization Failures

Hangs or Initialization Failures
When starting a CUDA debugging session, you may encounter hangs in the debugger or target application, initial-
ization failures, or failure to launch a kernel. Use the following checklist to diagnose the problem:

Serialized Access There may be at most one CUDA debugging session active per node at a time. A node cannot
be shared for debugging CUDA code simultaneously by multiple user sessions, or multiple ses-
sions by the same user. Use ps or other system utilities to determine if your session is conflict-
ing with another debugging session.

Leaky Pipes The CUDA debugging environment uses FIFOs (named pipes) located in "/tmp" and named
matching the pattern "cudagdb_pipe.N.N", where N is a decimal number. Occasionally, a de-
bugging session might accidentally leave a set of pipes lying around. You may need to manually
delete these pipes in order to start your CUDA debugging session:

rm /tmp/cudagdb_pipe.*
If the pipes were leaked by another user, that user will own the pipes and you may not be able
to delete them. In this case, ask the user or system administrator to remove them for you.

Orphaned Processes
Occasionally, a debugging session might accidentally orphan a process. Orphaned processes
might go compute bound or prevent you or other users from starting a debugging session. You
may need to manually kill orphaned CUDA processes in order to start your CUDA debugging
session or stop a compute-bound process. Use system tools such as ps or top to find the pro-
cesses and kill them using the shell kill command. If the process were orphaned by another
user, that user will own the processes and you may not be able to kill them. In this case, ask the
user or system administrator to kill them for you.

Multi-threaded Programs on Fermi
We have seen problems debugging some multi-threaded CUDA programs on Fermi, where the
CUDA debugging environment kills the debugger with an internal error (SIGSEGV). We are
working with NVIDIA to resolve this problem.

661

CUDA Problems and Limitations CUDA and ReplayEngine

CUDA and ReplayEngine
You can enable ReplayEngine while debugging CUDA code; that is, ReplayEngine record mode will work. However,
ReplayEngine does not support replay operations when focused on a CUDA thread. If you attempt this, you will
receive a Not Supported error.

662

CUDA Problems and Limitations CUDA and MRNet

CUDA and MRNet
The CUDA API has a limitation that allows a debugger process (such as the tvdsvr) to debug just one target
process using a GPU. If you are using the MRNet (Multicast/Reduction Network) infrastructure model and are
running multiple CUDA processes on a node, you’ll need to set the TV::mrnet_super_bushy to true.

This setting creates a "super bushy" MRNet tree by launching one MRNet tvdsvr process per target MPI pro-
cess, instead of the default in which TotalView launches one tvdsvr process per node.

See TV::mrnet_super_bushy in the Classic TotalView Reference Guide.

663

Sample CUDA Program

/*
 * NVIDIA CUDA matrix multiply example straight out of the CUDA
 * programming manual, more or less.
 */
#include <cuda.h>
#include <stdio.h>
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
 int width;/* number of columns */
 int height;/* number of rows */
 int stride;
 float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
 return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col, float value)
{
 A.elements[row * A.stride + col] = value;
}
// Thread block size
#define BLOCK_SIZE 2
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
 Matrix Asub;
 Asub.width = BLOCK_SIZE;
 Asub.height = BLOCK_SIZE;
 Asub.stride = A.stride;
 Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
 + BLOCK_SIZE * col];

 return Asub;
}
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

664

Sample CUDA Program

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
 // Load A and B to device memory
 Matrix d_A;
 d_A.width = d_A.stride = A.width; d_A.height = A.height;
 size_t size = A.width * A.height * sizeof(float);
 cudaMalloc((void**)&d_A.elements, size);
 cudaMemcpy(d_A.elements, A.elements, size,
 cudaMemcpyHostToDevice);
 Matrix d_B;
 d_B.width = d_B.stride = B.width; d_B.height = B.height;
 size = B.width * B.height * sizeof(float);
 cudaMalloc((void**)&d_B.elements, size);
 cudaMemcpy(d_B.elements, B.elements, size,
 cudaMemcpyHostToDevice);
 // Allocate C in device memory
 Matrix d_C;
 d_C.width = d_C.stride = C.width; d_C.height = C.height;
 size = C.width * C.height * sizeof(float);
 cudaMalloc((void**)&d_C.elements, size);
 // Invoke kernel
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
 MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
 // Read C from device memory
 cudaMemcpy(C.elements, d_C.elements, size,
 cudaMemcpyDeviceToHost);
 // Free device memory
 cudaFree(d_A.elements);
 cudaFree(d_B.elements);
 cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatrixMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
 // Block row and column
 int blockRow = blockIdx.y;
 int blockCol = blockIdx.x;
 // Each thread block computes one sub-matrix Csub of C
 Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0;
 // Thread row and column within Csub
 int row = threadIdx.y;
 int col = threadIdx.x;
 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results
 for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
 // Get sub-matrix Asub of A
 Matrix Asub = GetSubMatrix(A, blockRow, m);
 // Get sub-matrix Bsub of B
 Matrix Bsub = GetSubMatrix(B, m, blockCol);
 // Shared memory used to store Asub and Bsub respectively
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 // Load Asub and Bsub from device memory to shared memory
 // Each thread loads one element of each sub-matrix
 As[row][col] = GetElement(Asub, row, col);
 Bs[row][col] = GetElement(Bsub, row, col);
 // Synchronize to make sure the sub-matrices are loaded

665

Sample CUDA Program

 // before starting the computation
 __syncthreads();
 // Multiply Asub and Bsub together
 for (int e = 0; e < BLOCK_SIZE; ++e)
 Cvalue += As[row][e] * Bs[e][col];
 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }
 // Write Csub to device memory
 // Each thread writes one element
 SetElement(Csub, row, col, Cvalue);
 // Just a place to set a breakpoint in the debugger
 __syncthreads();
 __syncthreads();/* STOP: Csub should be fully updated */
}
static Matrix
cons_Matrix (int height_, int width_)
{
 Matrix A;
 A.height = height_;
 A.width = width_;
 A.stride = width_;
 A.elements = (float*) malloc(sizeof(*A.elements) * width_ * height_);
 for (int row = 0; row < height_; row++)
 for (int col = 0; col < width_; col++)
 A.elements[row * width_ + col] = row * 10.0 + col;
 return A;
}
static void
print_Matrix (Matrix A, char *name)
{
 printf("%s:\n", name);
 for (int row = 0; row < A.height; row++)
 for (int col = 0; col < A.width; col++)
 printf ("[%5d][%5d] %f\n", row, col, A.elements[row * A.stride + col]);
}
// Multiply an m*n matrix with an n*p matrix results in an m*p matrix.
// Usage: tx_cuda_matmul [m [n [p]]]
// m, n, and p default to 1, and are multiplied by BLOCK_SIZE.
int main(int argc, char **argv)
{
// cudaSetDevice(0);
 const int m = BLOCK_SIZE * (argc > 1 ? atoi(argv[1]) : 1);
 const int n = BLOCK_SIZE * (argc > 2 ? atoi(argv[2]) : 1);
 const int p = BLOCK_SIZE * (argc > 3 ? atoi(argv[3]) : 1);
 Matrix A = cons_Matrix(m, n);
 Matrix B = cons_Matrix(n, p);
 Matrix C = cons_Matrix(m, p);
 MatMul(A, B, C);
 print_Matrix(A, "A");
 print_Matrix(B, "B");
 print_Matrix(C, "C");
 return 0;
}

 666

PART VI Appendices

This part contains appendices that are essentially reference material:

 Appendix A, Glossary, on page 667
Definitions for technical terms used in this documentation.

 Appendix B, Open Source Software Notice, on page 685
Licenses for 3rd-party software.

 Appendix C, Resources, on page 686
General information on resources available to you.

 667

Appendix A
Glossary

ACTION POINT: A debugger feature that lets a user request that program execution stop under certain
conditions. Action points include breakpoints, watchpoints, eval points, and barriers.

ACTION POINT IDENTIFIER:
A unique integer ID associated with an action point.

ACTIVATION RECORD:
See stack frame on page 681.

ADDRESS SPACE:
A region of memory that contains code and data from a program. One or more threads can run in an
address space. A process normally contains an address space.

ADDRESSING EXPRESSION:
A set of instructions that tell TotalView where to find information. These expressions are only used
within the type transformation facility.

AFFECTED P/T SET:
The set of process and threads that are affected by the command. For most commands, this is identical
to the target P/T set, but in some cases it might include additional threads. (See p/t (process/thread)
set on page 678 for more information.)

AGGREGATE DATA:
A collection of data elements. For example, a structure or an array is an aggregate.

AGGREGATED OUTPUT:
The CLI compresses output from multiple threads when they would be identical except for the P/T iden-
tifier.

API:
Application Program Interface. The formal interface by which programs communicate with libraries.

ARENA:
A specifier that indicates the processes, threads, and groups upon which a command executes. Arena
specifiers are p (process), t (thread), g (group), d (default), and a (all).

668

Glossary

ARRAY SECTION:
In Fortran, a portion of an array that is also an array. The elements of this array is a new unnamed array
object with its own indices. Compare this with a TotalView array slice on page 668.

ARRAY SLICE:
A subsection of an array, which is expressed in terms of a lower bound on page 675, upper bound on
page 684, and stride on page 682. Displaying a slice of an array can be useful when you are working with
very large arrays. Compare this with a TotalView array section on page 668.

ASYNCHRONOUS:
When processes communicate with one another, they send messages. If a process decides that it doesn’t
want to wait for an answer, it is said to run “asynchronously.” For example, in most client/server programs,
one program sends an RPC request to a second program and then waits to receive a response from the
second program. This is the normal synchronous mode of operation. If, however, the first program sends a
message and then continues executing, not waiting for a reply, the first mode of operation is said to be
asynchronous.

ATTACH:
The ability for TotalView to gain control of an already running process on the same machine or a remote
machine.

AUTOLAUNCHING:
When a process begins executing on a remote computer, TotalView can also launch a tvdsvr (TotalView
Debugger Server) process on the computer that will send debugging information back to the TotalView pro-
cess that you are interacting with.

AUTOMATIC PROCESS ACQUISITION:
TotalView automatically detects the many processes that parallel and distributed programs run in, and
attaches to them automatically so you don’t have to attach to them manually. If the process is on a remote
computer, automatic process acquisition automatically starts the TotalView Debugger Server (tvdsvr).

BARRIER POINT:
An action point specifying that processes reaching a particular location in the source code should stop and
wait for other processes to catch up.

BASE WINDOW:
The original Process Window or Variable Window before you dive into routines or variables. After diving, you
can use a Reset or Undive command to restore this original window.

BLOCKED:
A thread state in which the thread is no longer executing because it is waiting for an event to occur. In most
cases, the thread is blocked because it is waiting for a mutex or condition state.

BREAKPOINT:
A point in a program where execution can be suspended to permit examination and manipulation of data.

669

Glossary

BUG:
A programming error. Finding them is why you’re using TotalView.

BULK LAUNCH:
A TotalView procedure that launches multiple tvdsvr processes simultaneously.

CAF:
See CoArray Fortran.

CALL FRAME:
The memory area that contains the variables belonging to a function, subroutine, or other scope division,
such as a block.

CALL STACK:
A higher-level view of stack memory, interpreted in terms of source program variables and locations. This is
where your program places stack frames.

CALLBACK:
A function reference stored as a pointer. By using the function reference, this function can be invoked. For
example, a program can hand off the function reference to an event processor. When the event occurs, the
function can be called.

CHILD PROCESS:
A process created by another process (see parent process on page 677) when that other process calls the
fork() function.

CLOSED LOOP:
See closed loop on page 669.

CLUSTER DEBUGGING:
The action of debugging a program that is running on a cluster of hosts in a network. Typically, the hosts are
of the same type and have the same operating system version.

COARRAY FORTRAN (CAF):
A variation of Fortran with array syntax augmented to depict arrays distributed across processes.

COMMAND HISTORY LIST:
A debugger-maintained list that stores copies of the most recent commands issued by the user.

CONDITION SYNCHRONIZATION:
A process that delays thread execution until a condition is satisfied.

CONDITIONAL BREAKPOINT:
A breakpoint containing an expression. If the expression evaluates to true, program stops. TotalView does
not have conditional breakpoints. Instead, you must explicitly tell TotalView to end execution by using the
$stop directive.

670

Glossary

CONTEXT SWITCHING:
In a multitasking operating system, the ability of the CPU to move from one task to another. As a switch is
made, the operating system must save and restore task states.

CONTEXTUALLY QUALIFIED (SYMBOL):
A symbol that is described in terms of its dynamic context, rather than its static scope. This includes pro-
cess identifier, thread identifier, frame number, and variable or subprocedure name.

CONTROL GROUP:
All the processes that a program creates. These processes can be local or remote. If your program uses
processes that it did not create, TotalView places them in separate control groups. For example, a client/
server program has two distinct executables that run independently of one another. Each would be in a
separate control group. In contrast, processes created by the fork() function are in the same control group.

CORE FILE:
A file that contains the contents of memory and a list of thread registers. The operating system dumps (cre-
ates) a core file whenever a program exits because of a severe error (such as an attempt to store into an
invalid address).

CORE-FILE DEBUGGING:
A debugging session that examines a core file image. Commands that modify program state are not permit-
ted in this mode.

CPU:
Central Processing Unit. The component within the computer that most people think of as “the computer”.
This is where computation and activities related to computing occur.

CROSS-DEBUGGING:
A special case of remote debugging where the host platform and the target platform are different types of
machines.

CURRENT FRAME:
The current portion of stack memory, in the sense that it contains information about the subprocedure
invocation that is currently executing.

CURRENT LANGUAGE:
The source code language used by the file that contains the current source location.

CURRENT LIST LOCATION:
The location governing what source code appears in response to a list command.

DATASET:
A set of array elements generated by TotalView and sent to the Visualizer. (See visualizer process on
page 684.)

671

Glossary

DBELOG LIBRARY:
A library of routines for creating event points and generating event logs from TotalView. To use event points,
you must link your program with both the dbelog and elog libraries.

DBFORK LIBRARY:
A library of special versions of the fork() and execve() calls used by TotalView to debug multi-process pro-
grams. If you link your program with the TotalView dbfork library, TotalView can automatically attach to
newly spawned processes.

DEADLOCK:
A condition where two or more processes are simultaneously waiting for a resource such that none of the
waiting processes can execute.

DEBUGGING INFORMATION:
Information relating an executable to the source code from which it was generated.

DEBUGGER PROMPT:
A string printed by the CLI that indicates that it is ready to receive another user command.

DEBUGGER SERVER:
See tvdsvr process on page 683.

DEBUGGER STATE:
Information that TotalView or the CLI maintains to interpret and respond to user commands. This includes
debugger modes, user-defined commands, and debugger variables.

DEPRECATED:
A feature that is still available but might be eliminated in a future release.

DISASSEMBLED CODE:
A symbolic translation of binary code into assembler language.

DISTRIBUTED DEBUGGING:
The action of debugging a program that is running on more than one host in a network. The hosts can be
homogeneous or heterogeneous. For example, programs written with message-passing libraries such as
Parallel Macros (PARMACS), run on more than one host.

DIVING:
The action of displaying more information about an item. For example, if you dive into a variable in
TotalView, a window appears with more information about the variable.

DLL:
Dynamic Link Library. A shared library whose functions can be dynamically added to a process when a func-
tion with the library is needed. In contrast, a statically linked library is brought into the program when it is
created.

672

Glossary

DOPE VECTOR:
This is a run time descriptor that contains all information about an object that requires more information
than is available as a single pointer or value. For example, you might declare a Fortran 90 pointer variable
that is a pointer to some other object, but which has its own upper bound, as follows:
integer, pointer, dimension (:) :: iptr
Suppose that you initialize it as follows:
iptr => iarray (20:1:-2)
iptr is a synonym for every other element in the first twenty elements of iarray, and this pointer array is in
reverse order. For example, iptr(1) maps to iarray(20), iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor that contains (at least) elements such as a
pointer to the first element of the actual data, a stride value, and a count of the number of elements (or
equivalently, an upper bound).

DPID:
Debugger ID. This is the ID TotalView uses for processes.

DYNAMIC LIBRARY:
A library that uses dynamic loading to load information in an external file at runtime. Dynamic loading
implies dynamic linking, which is a process that does not copy a program and its data into the executable at
compile time.

EDITING CURSOR:
A black line that appears when you select a TotalView GUI field for editing. You use field editor commands
to move the editing cursor.

EVAL POINT:
A point in the program where TotalView evaluates a code fragment without stopping the execution of the
program.

EVENT LOG:
A file that contains a record of events for each process in a program.

EVENT POINT:
A point in the program where TotalView writes an event to the event log for later analysis with TimeScan.

EXCEPTION:
A condition generated at runtime that indicates that a non-standard event has occurred. The program usu-
ally creates a method to handle the event. If the event is not handled, either the program's result will be
inaccurate or the program will stop executing.

EXECUTABLE:
A compiled and linked version of source files

EXPRESSION SYSTEM:

673

Glossary

A part of TotalView that evaluates C, C++, and Fortran expressions. An expression consists of symbols (pos-
sibly qualified), constants, and operators, arranged in the syntax of a source language. Not all Fortran 90, C,
and C++ operators are supported.

EXTENT:
The number of elements in the dimension of an array. For example, a Fortran array of integer(7,8) has an
extent of 7 in one dimension (7 rows) and an extent of 8 in the other dimension (8 columns).

FIELD EDITOR:
A basic text editor that is part of TotalView. The field editor supports a subset of GNU Emacs commands.

FOCUS:
The set of groups, processes, and threads upon which a CLI command acts. The current focus is indicated
in the CLI prompt (if you’re using the default prompt).

FRAME:
An area in stack memory that contains the information corresponding to a single invocation of a subproce-
dure. See stack frame on page 681.

FRAME POINTER:
See stack pointer on page 681.

FULLY QUALIFIED (SYMBOL):
A symbol is fully qualified when each level of source code organization is included. For variables, those lev-
els are executable or library, file, procedure or line number, and variable name.

GARBAGE COLLECTION:
Examining memory to determine if it is still be referenced. If it is not, it sent back to the program's memory
manager so that it can be reused.

GID:
The TotalView group ID.

GLOBAL ARRAYS:
(from a definition on the Global Arrays web site) The Global Arrays (GA) toolkit provides an efficient and por-
table “shared-memory” programming interface for distributed-memory computers. Each process in a
MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-
dimensional arrays, without need for explicit cooperation by other processes. For more information, see
http://hpc.pnl.gov/globalarrays/.

GRID:
A collection of distributed computing resources available over a local or wide area network that appears as
if it were one large virtual computing system.

GOI:

http://hpc.pnl.gov/globalarrays/

674

Glossary

The group of interest. This is the group that TotalView uses when it is trying to determine what to step, stop,
and so on.

GROUP:
When TotalView starts processes, it places related processes in families. These families are called “groups.”

GROUP OF INTEREST:
The primary group that is affected by a command. This is the group that TotalView uses when it is trying to
determine what to step, stop, and so on.

HEAP:
An area of memory that your program uses when it dynamically allocates blocks of memory. It is also how
people describe my car.

HOST COMPUTER:
The computer on which TotalView is running.

IMAGE:
All of the programs, libraries, and other components that make up your executable.

INFINITE LOOP:
See loop, infinite on page 675.

INSTRUCTION POINTER:
See program counter.

INITIAL PROCESS:
The process created as part of a load operation, or that already existed in the runtime environment and
was attached by TotalView or the CLI.

INITIALIZATION FILE:
An optional file that establishes initial settings for debugger state variables, user-defined commands, and
any commands that should be executed whenever TotalView or the CLI is invoked. Must be called .tvdrc.

INTERPRETER:
A program that reads programming language statements and translates the statements into machine code,
then executes this code.

LAMINATE:
A process that combines variables contained in separate processes or threads into a unified array for dis-
play purposes.

LHS EXPRESSION:
This is a synonym for lvalue.

LINKER:

675

Glossary

A program that takes all the object files creates by the compiler and combines them and libraries required
by the program into the executable program.

LOCKSTEP GROUP:
All threads that are at the same PC (program counter). This group is a subset of a workers group. A lockstep
group only exists for stopped threads. All threads in the lockstep group are also in a workers group. By defi-
nition, all members of a lockstep group are in the same workers group. That is, a lockstep group cannot
have members in more than one workers group or more than one control group.

LOOP, INFINITE:
See infinite loop on page 674.

LOWER BOUND:
The first element in the dimension of an array or the slice of an array. By default, the lower bound of an
array is 0 in C and 1 in Fortran, but the lower bound can be any number, including negative numbers.

LVALUE:
A symbol name or expression suitable for use on the left-hand side of an assignment statement in the cor-
responding source language. That is, the expression must be appropriate as the target of an assignment.

MACHINE STATE:
Convention for describing the changes in memory, registers, and other machine elements as execution
proceeds.

MANAGER THREAD:
A thread created by the operating system. In most cases, you do not want to manage or examine manager
threads.

MESSAGE QUEUE:
A list of messages sent and received by message-passing programs.

MIMD:
An acronym for Multiple Instruction, Multiple Data, which describes a type of parallel computing.

MISD:
An acronym for Multiple Instruction, Single Data, which describes a type of parallel computing.

MPI:
An acronym for “Message Passing Interface.”

MPICH:
MPI/Chameleon (Message Passing Interface/Chameleon) is a freely available and portable MPI implementa-
tion. MPICH was written as a collaboration between Argonne National Lab and Mississippi State University.
For more information, see https://www.mcs.anl.gov/research/projects/mpi/.

MPMD PROGRAMS:

https://www.mcs.anl.gov/research/projects/mpi/

676

Glossary

An acronym for Multiple Program, Multiple Data, which describes programs that involve multiple execut-
ables, executed by multiple threads and processes.

MULTITASK:
In the context of high performance computing, this is the ability to divide a program into smaller pieces or
tasks that execute separately.

MULTI-PROCESS:
The ability of a program to spawn off separate programs, each having its own context and memory. multi-
process programs can (and most often do) run processes on more than one computer. They can also run
multiple processes an one computer. In this case, memory can be shared

MULTI-THREADED:
The ability of a program to spawn off separate tasks that use the same memory. Switching from task to task
is controlled by the operating system.

MUTEX (MUTUAL EXCLUSION):
Techniques for sharing resources so that different users do not conflict and cause unwanted interactions.

NATIVE DEBUGGING:
The action of debugging a program that is running on the same machine as TotalView.

NESTED DIVE:
TotalView lets you dive into pointers, structures, or arrays in a variable. When you dive into one of these ele-
ments, TotalView updates the display so that the new element appears. A nested dive is a dive within a dive.
You can return to the previous display by selecting the left arrow in the top-right corner of the window.

NODE:
A machine on a network. Each machine has a unique network name and address.

NULLIFIED:
A breakpoint expression that, when reevaluated, points to an invalid address block.

OFF-BY-ONE:
An error usually caused by forgetting that arrays begin with element 0 in C and C++.

OPENMP:
(from a definition on the OpenMP web site) OpenMP is a specification for a set of compiler directives,
library routines, and environment variables that can be used to specify shared memory parallelism in For-
tran and C/C++ programs. The MP in OpenMP stands for Multi Processing. We provide Open specifications
for Multi Processing via collaborative work with interested parties from the hardware and software industry,
government and academia. For more information, see https://openmp.org/.

OUT-OF-SCOPE:

https://www.openmp.org

677

Glossary

When symbol lookup is performed for a particular symbol name and it isn’t found in the current scope or
any that contains scopes, the symbol is said to be out-of-scope.

PAGE PROTECTION:
The ability to segregate memory pages so that one process cannot access pages owned by another pro-
cess. It can also be used to generate an exception when a process tries to access the page.

PARALLEL PROGRAM:
A program whose execution involves multiple threads and processes.

PARALLEL TASKS:
Tasks whose computations are independent of each other, so that all such tasks can be performed simulta-
neously with correct results.

PARALLELIZABLE PROBLEM:
A problem that can be divided into parallel tasks. This type of program might require changes in the code
and/or the underlying algorithm.

PARCEL: The number of bytes required to hold the shortest instruction for the target architecture.

PARENT PROCESS:
A process that calls the fork() function to spawn other processes (usually called child processes).

PARMACS LIBRARY:
A message-passing library for creating distributed programs that was developed by the German National
Research Centre for Computer Science.

PARTIALLY QUALIFIED (SYMBOL):
A symbol name that includes only some of the levels of source code organization (for example, file name
and procedure, but not executable). This is permitted as long as the resulting name can be associated
unambiguously with a single entity.

PATCHING:
Inserting code in a breakpoint that is executed immediately preceding the breakpoint's line. The patch can
contain a GOTO command to branch around incorrect code.

PC:
An abbreviation for Program Counter.

PID:
Depending on the context, this is either the process ID or the program ID. In most cases, this is the process
ID.

POI:
The process of interest. This is the process that TotalView uses when it is trying to determine what to step,
stop, and so on.

678

Glossary

/PROC:
An interface that allows debuggers and other programs to control or obtain information from running pro-
cesses. ptrace also does this, but /proc is more general.

PROCESS:
An executable that is loaded into memory and is running (or capable of running).

PROCESS GROUP:
A group of processes associated with a multi-process program. A process group includes program control
groups and share groups.

PROCESS/THREAD IDENTIFIER:
A unique integer ID associated with a particular process and thread.

PROCESS OF INTEREST:
The primary process that TotalView uses when it is trying to determine what to step, stop, and so on.

PROGRAM CONTROL GROUP:
A group of processes that includes the parent process and all related processes. A program control group
includes children that were forked (processes that share the same source code as the parent), and children
that were forked with a subsequent call to the execve() function (processes that don’t share the same
source code as the parent). Contrast this with share group on page 679.

PROGRAM EVENT:
A program occurrence that is being monitored by TotalView or the CLI, such as a breakpoint.

PROGRAM STATE:
A higher-level view of the machine state, where addresses, instructions, registers, and such are interpreted
in terms of source program variables and statements.

P/T (PROCESS/THREAD) SET:
The set of threads drawn from all threads in all processes of the target program.

PTHREAD ID:
This is the ID assigned by the Posix pthreads package. If this differs from the system TID, it is a pointer value
that points to the pthread ID.

QUEUE:
A data structure whose data is accessed in the order in which it was entered. This is like a line at a tollbooth
where the first in is the first out.

RACE CONDITION:
A problem that occurs when threads try to simultaneously access a resource. The result can be a deadlock,
data corruption, or a program fault.

REMOTE DEBUGGING:

679

Glossary

The action of debugging a program that is running on a different machine than TotalView. The machine on
which the program is running can be located many miles away from the machine on which TotalView is run-
ning.

RESUME COMMANDS:
Commands that cause execution to restart from a stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION:
This is a synonym for rvalue.

RVALUE:
An expression suitable for inclusion on the right-hand side of an assignment statement in the correspond-
ing source language. In other words, an expression that evaluates to a value or collection of values.

SATISFACTION SET:
The set of processes and threads that must be held before a barrier can be satisfied.

SATISFIED:
A condition that indicates that all processes or threads in a group have reached a barrier. Prior to this
event, all executing processes and threads are either running because they have not yet hit the barrier, or
are being held at the barrier because not all of the processes or threads have reached it. After the barrier is
satisfied, the held processes or threads are released, which means they can be run. Prior to this event, they
could not run.

SCOPE:
The region in your program in which a variable or a function exists or is defined. This region begins with its
declaration and extends to the end of the current block.

SEARCH PATH:
A list that contains places that software looks to locate files contained within the file system. In TotalView,
the search path contains locations containing your program’s source code.

SERIAL EXECUTION:
Execution of a program sequentially, one statement at a time.

SERIAL LINE DEBUGGING:
A form of remote debugging where TotalView and the tvdsvr communicate over a serial line.

SERVICE THREAD:
A thread whose purpose is to service or manage other threads. For example, queue managers and print
spoolers are service threads. There are two kinds of service threads: those created by the operating system
or runtime system and those created by your program.

SHARE GROUP:
All the processes in a control group that share the same code. In most cases, your program has more than
one share group. Share groups, like control groups, can be local or remote.

680

Glossary

SHARED LIBRARY:
A compiled and linked set of source files that are dynamically loaded by other executables.

SIGNALS:
Messages informing processes of asynchronous events, such as serious errors. The action that the process
takes in response to the signal depends on the type of signal and whether the program includes a signal
handler routine, a routine that traps certain signals and determines appropriate actions to be taken by the
program.

SIMD:
An acronym for Single Instruction, Multiple Data, which describes a type of parallel computing.

SINGLE PROCESS SERVER LAUNCH:
A TotalView procedure that individually launches tvdsvr processes.

SINGLE STEP:
The action of executing a single statement and stopping (as if at a breakpoint).

SISD:
An acronym for Single Instruction, Single Data, which describes a type of parallel computing.

SLICE:
A subsection of an array, which is expressed in terms of a lower bound on page 675, upper bound on
page 684, and stride on page 682. Displaying a slice of an array can be useful when you are working with
very large arrays. Compare this with a TotalView array section on page 668.

SOID:
An acronym for symbol object ID. A SOID uniquely identifies all TotalView information. It also represents a
handle by which you can access this information.

SOURCE FILE:
Program file that contains source language statements. TotalView lets you debug FORTRAN 77, Fortran 90,
Fortran 95, C, C++, and assembler files.

SOURCE LOCATION: For each thread, the source code line it executes next. This is a static location, indicating
the file and line number; it does not, however, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS:
The process created by a user process executing under debugger control.

SPMD PROGRAMS:
An acronym for Single Program, Multiple Data, which describe a type of parallel computing that involves just
one executable, executed by multiple threads and processes.

STACK:

681

Glossary

A portion of computer memory and registers used to hold information temporarily. The stack consists of a
linked list of stack frames that holds return locations for called routines, routine arguments, local variables,
and saved registers.

STACK FRAME:
Whenever your program calls a function, it creates a set of information that includes the local variables,
arguments, contents of the registers used by an individual routine, a frame pointer pointing to the previous
stack frame, and the value of the program counter (PC) at the time the routine was called. The information
for one function is called a “stack frame” as it is placed on your program’s stack.

When your program begins executing, it has only one frame: the one allocated for function main(). As your
program calls functions, new frames are allocated. When a function returns to the function from which it is
called, the frame is deallocated.

STACK POINTER:
A pointer to the area of memory where subprocedure arguments, return addresses, and similar informa-
tion is stored. This is also called a frame pointer.

STACK TRACE:
A sequential list of each currently active routine called by a program, and the frame pointer that points to its
stack frame.

STATIC (SYMBOL) SCOPE:
A region of a program’s source code that has a set of symbols associated with it. A scope can be nested
inside another scope.

STEPPING:
Advancing program execution by fixed increments, such as by source code statements.

STL:
An acronym for Standard Template Library.

STOP SET:
A set of threads that TotalView stops after an action point triggers.

STOPPED/HELD STATE:
The state of a process whose execution has paused in such a way that another program event (for example,
arrival of other threads at the same barrier) is required before it is capable of continuing execution.

STOPPED/RUNNABLE STATE:
The state of a process whose execution has been paused (for example, when a breakpoint triggered or due
to some user command) but can continue executing as soon as a resume command is issued.

STOPPED STATE:
The state of a process that is no longer executing, but will eventually execute again. This is subdivided into
stopped/runnable and stopped/held.

682

Glossary

STRIDE:
The interval between array elements in a slice and the order in which TotalView displays these elements. If
the stride is 1, TotalView displays every element between the lower bound and upper bound of the slice. If
the stride is 2, TotalView displays every other element. If the stride is -1, TotalView displays every element
between the upper bound and lower bound (reverse order).

SYMBOL:
Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP:
Process whereby TotalView consults its debugging information to discover what entity a symbol name
refers to. Search starts with a particular static scope and occurs recursively so that contains scopes are
searched in an outward progression.

SYMBOL NAME:
The name associated with a symbol known to TotalView (for example, function, variable, data type, and so
on).

SYMBOL TABLE:
A table of symbolic names used in a program (such as variables or functions) and their memory locations.
The symbol table is part of the executable object generated by the compiler (with the -g option) and is used
by debuggers to analyze the program.

SYNCHRONIZATION:
A mechanism that prevents problems caused by concurrent threads manipulating shared resources. The
two most common mechanisms for synchronizing threads are mutual exclusion and condition synchroniza-
tion.

TARGET COMPUTER:
The computer on which the process to be debugged is running.

TARGET PROCESS SET:
The target set for those occasions when operations can only be applied to entire processes, not to individ-
ual threads in a process.

TARGET PROGRAM:
The executing program that is the target of debugger operations.

TARGET P/T SET:
The set of processes and threads that a CLI command acts on.

TASK:
A logically discrete section of computational work. (This is an informal definition.)

THREAD:

683

Glossary

An execution context that normally contains a set of private registers and a region of memory reserved for
an execution stack. A thread runs in an address space.

THREAD EXECUTION STATE:
The convention of describing the operations available for a thread, and the effects of the operation, in
terms of a set of predefined states.

THREAD OF INTEREST:
The primary thread affected by a command. This is abbreviated as TOI.

TID:
The thread ID. On some systems (such as AIX where the threads have no obvious meaning), TotalView uses
its own IDs.

TLA:
An acronym for Three-Letter Acronym. So many things from computer hardware and software vendors are
referred to by a three-letter acronym that yet another acronym was created to describe these terms.

TOI:
The thread of interest. This is the primary thread affected by a command.

TRIGGER SET:
The set of threads that can trigger an action point (that is, the threads upon which the action point was
defined).

TRIGGERS:
The effect during execution when program operations cause an event to occur (such as arriving at a break-
point).

TTF:
See type transformation facility on page 683.

TRAP:
An instruction that stops program execution and which allows a debugger to gain control over your pro-
gram.

TVDSVR PROCESS:
The TotalView Debugger Server process, which facilitates remote debugging by running on the same
machine as the executable and communicating with TotalView over a TCP/IP port or serial line.

TYPE TRANSFORMATION FACILITY:
This is abbreviated as TTF. A TotalView subsystem that allows you to change the way information appears.
For example, an STL vector can appear as an array.

UNDISCOVERED SYMBOL:
A symbol that is referred to by another symbol. For example, a typedef is a reference to the aliased type.

684

Glossary

UNDIVING:
The action of displaying the previous contents of a window, instead of the contents displayed for the cur-
rent dive. To undive, you click the undive icon in the upper-right corner of the window.

UPC:
(from a definition on the UPC web site) The Unified Parallel C language, which is an extension to the C pro-
gramming language that is designed for high performance computing on large-scale parallel machines. The
language provides a uniform programming model for both shared and distributed memory hardware. The
programmer is presented with a single shared, partitioned address space, where variables may be directly
read and written by any processor, but each variable is physically associated with a single processor. See
http://upc.lbl.gov/ for more information.

UPPER BOUND:
The last element in the dimension of an array or the slice of an array.

USER THREAD:
A thread created by your program.

USER INTERRUPT KEY:
A keystroke used to interrupt commands, most commonly defined as Ctrl+C.

VARIABLE WINDOW:
A TotalView window that displays the name, address, data type, and value of a particular variable.

VISUALIZATION:
In TotalView, visualization means graphically displaying an array’s values.

VISUALIZER PROCESS:
A process that works with TotalView in a separate window, allowing you to see a graphic representation of
program array data.

WATCHPOINT:
An action point that tells TotalView to stop execution when the value of a memory location changes.

WORKER THREAD:
A thread in a workers group. These are threads created by your program that performs the task for which
you’ve written the program.

WORKERS GROUP:
All the worker threads in a control group. Worker threads can reside in more than one share group.

http://upc.lbl.gov/

 685

Appendix B
Open Source Software Notice

TotalView publishes the open source software products it uses in the ATTRIBUTION.HTML file located in the
doc directory where you installed TotalView.

 686

Appendix C
Resources

687

Resources TotalView Family Differences

TotalView Family Differences
This section describes the TotalView Enterprise, TotalView Team, and TotalView Developer debuggers. Each of
these supports the use of the CLI debugger as well.

NOTE: The most fundamental differences between TotalView Team and TotalView Enterprise are the
way resources are shared and used. When you purchase TotalView Team, you are purchasing
“tokens” that represent the number of job processes that can be run at a single time. For
example, if you have 64 tokens available, 64 users could each debug a one-process job; or two
users could each debug a 32-process job. In contrast, a TotalView Enterprise license is based
on the number of users and the number of licensed processors. You’ll find more precise infor-
mation on our web site.

The basic differences are:

Topic TotalView Team TotalView Enterprise TotalView Developer

Architecture
limitations

Execute on any licensed com-
puter of the same architecture.

Execute on any licensed com-
puter of the same architecture.

Execute on any licensed com-
puter of the same architecture
but only by a single, named
user.

Processor
limitations

Unlimited Determined by license. Can only run on machines with
32 or less processors.

Process/ thread
limitations

Processes limited by the num-
ber of tokens, one token
equals one process. No limit
on threads.

Unlimited processes, but only
on number of processors
specified.

No more than 32 processes
and threads.

User limits User limit is determined by the
number of tokens.

User limit is determined by the
license.

Single named user allowed to
use it on multiple machines.

Remote access Processes can execute on any
computers in the same
network.

Processes can execute on any
computers in the same
network.

Processes must execute on the
installed computer.

688

Resources TotalView Documentation

TotalView Documentation
The following table describes all available TotalView documentation:

Product Title Description HTML PDF Print

General TotalView Documentation

Getting Started with TotalView
Products

Introduces the basic features of
TotalView, MemoryScape, and Replay-
Engine, with links for more detailed
information

TotalView Platforms Guide Specifies supported platforms for
TotalView, MemoryScape, and
ReplayEngine

TotalView Evaluation Guide Brochure that introduces basic TotalView
features

User Guides

TotalView User Guide Primary resource for information on
using the TotalView GUI and the CLI

Debugging Memory Problems
with MemoryScape

How to debug memory issues, relevant to
both TotalView and the MemoryScape
standalone product

Reverse Debugging with Replay
Engine

How to perform reverse debugging using
the embedded add-on
ReplayEngine

Reference Guides

TotalView Reference Guide A reference of CLI commands, how to run
TotalView, and platform-specific detail

New Features New features in the current release

What’s new in this release On the landing page of the HTML docu-
mentation, lists new features for the
documented release

TotalView Change Log Details the changes to the product from
release to release

Installation Guides

689

Resources TotalView Documentation

TotalView Install Guide Installing TotalView and the FLEXlm
license manager

MemoryScape Install Guide Installing MemoryScape as a standalone
product

In-Product Help Help screens launched from within the
product’s GUI

TotalView Help Context-sensitive help launched from
TotalView

MemoryScape Help Context-sensitive help launched from
MemoryScape

Product Title Description HTML PDF Print

690

Resources Conventions

Conventions
This section describes the formatting conventions used throughout the documentation.

:

Table 5: Formatting conventions in commands and their descriptions

Convention Meaning

Bold Bold formats literal text, i.e., commands, keywords, or options that must be entered
exactly as displayed. For example:

dactions -save [filename]

italics Italics format parameter values entered by the user, for example:

dactions -save myFile

[] Brackets describe optional parts of a command. For example, in this command,
both -g and -r are optional parameters:

dattach [-g gid] [-r hname]

{ } Curly braces wrap a group of entries where exactly one choice is required. For
example, in this command, if you provide the -c parameter, you must provide a
parameter value:

 dattach [-c { core-file | recording-file }]

| A vertical bar identifies a choice, for example, provide either a core-file or a recording-
file:

dattach [-c { core-file | recording-file }]

Monospace Example code or a response to a shell or CLI prompt

Table 6: Formatting conventions in regular text

Convention Meaning

Bold Words that are used in a programmatic way rather than their normal way, including
UI elements and menus such as “File |Preferences.”

italics Emphasis

Monospace Example code or a response to a shell or CLI prompt

691

Resources Contacting Us

Contacting Us
Please contact us if you have problems installing TotalView, questions that are not answered in the product docu-
mentation or on our Web site, or suggestions for new features or improvements.

 On the website: Perforce Customer Support Portal at https://portal.perforce.com

 By email: support-TotalView@perforce.com

 By phone: See TotalView’s Contact Support page (https://totalview.io/support#contact-support)
for support numbers.

If you are reporting a problem, please include the following information:

 The version of TotalView and the platform on which you are running TotalView.

 An example that illustrates the problem.

 A record of the sequence of events that led to the problem.

https://portal.perforce.com
mailto:support-TotalView@perforce.com
https://totalview.io/support#contact-support

692

Symbols
: (colon), in array type strings 286
: as array separator 313
. (dot) current set indicator 582,

601
. (period), in suffix of process

names 428
.dmg installer 91
.rhosts file 488, 533
.totalview subdirectory 97
.tvdrc initialization files 97
.Xdefaults file 98, 143

autoLoadBreakpoints 143
deprecated resources 143

‘ module separator 303
@ action point marker, in CLI 195
/ slash in group specifier 587
/usr/lib/array/arrayd.conf file 500
& intersection operator 600
scope separator character 310
#string data type 284
%B bulk server launch

command 501
%C server launch replacement

characters 499
%D bulk server launch

command 500
%D single process server launch

command 499
%F bulk server launch

command 501
%H bulk server launch

command 500
%H hostname replacement

character 501
%I bulk server launch

command 501
%K bulk server launch

command 501
%L bulk server launch

command 500
%L single process server launch

command 499
%N bulk server launch

command 502
%P bulk server launch

command 500
%P single process server launch

command 499
%R single process server launch

command 499
%t1 bulk server launch

command 501, 502
%t2 bulk server launch

command 502
%V bulk server launch

command 500
< first thread indicator (CLI) 581
> (right angle bracket), indicating

nested dives 267
- difference operator 600
| union operator 600
$address data type 288
$char data type 288
$character data type 288
$clid built-in variable 378
$code data type 264, 288, 292
$complex data type 289
$complex_16 data type 289
$complex_8 data type 289
$count built-in function 193, 224,

228, 379
$countall built-in function 379
$countthread built-in function 380
$debug assembler pseudo op 375
$denorm filter 322
$double data type 289
$double_precision data type 289
$duid built-in variable 378
$extended data type 289

$float data type 289
$hold assembler pseudo op 375
$hold built-in function 380
$holdprocess assembler pseudo

op 375
$holdprocess built-in function 380
$holdprocessall built-in

function 380
$holdprocessstopall assembler

pseudo op 375
$holdstopall assembler pseudo

op 375
$holdstopall built-in function 380
$holdthread assembler pseudo

op 375
$holdthread built-in function 380
$holdthreadstop assembler pseu-

do op 375
$holdthreadstop built-in

function 380
$holdthreadstopall assembler

pseudo op 376
$holdthreadstopall built-in

function 380
$holdthreadstopprocess assem-

bler pseudo op 375
$holdthreadstopprocess built-in

function 380
$inf filter 322
$int data type 289
$integer data type 289
$integer_1 data type 289
$integer_2 data type 289
$integer_4 data type 289
$integer_8 data type 289
$is_denorm intrinsic function 323
$is_finite intrinsic function 323
$is_inf intrinsic function 323
$is_nan intrinsic function 323
$is_ndenorm intrinsic function 323

 Index

693

INDEX

$is_ninf intrinsic function 323
$is_nnorm intrinsic function 324
$is_norm intrinsic function 324
$is_pdenorm intrinsic function 324
$is_pinf intrinsic function 324
$is_pnorm intrinsic function 324
$is_pzero intrinsic function 324
$is_qnan intrinsic function 324
$is_snan intrinsic function 324
$is_zero intrinsic function 324
$logical data type 289
$logical_1 data type 289
$logical_2 data type 289
$logical_4 data type 289
$logical_8 data type 289
$long data type 289
$long_branch assembler pseudo

op 376
$long_long data type 290
$nan filter 322
$nanq filter 322
$nans filter 322
$ndenorm filter 322
$newval built-in function 237
$newval built-in variable 378
$nid built-in variable 378
$ninf filter 322
$oldval built-in function 237
$oldval built-in variable 378
$oldval watchpoint variable 237
$pdenorm filter 322
$pid built-in variable 378
$pinf filter 322
$processduid built-in variable 378
$ptree assembler pseudo op 376
$real data type 290
$real_16 data type 290
$real_4 data type 290
$real_8 data type 290
$short data type 290
$stop assembler pseudo op 376
$stop built-in function 193, 228,

238, 380
$stopall assembler pseudo op 376

$stopall built-in function 380
$stopprocess assembler pseudo

op 376
$stopprocess built-in function 380
$stopthread assembler pseudo

op 376
$stopthread built-in function 381
$string data type 284, 290
$systid built-in variable 378
$tid built-in variable 378
$visualize built-in function 354,

355, 381
in animations 354
using casts 355

$void data type 290, 292
$wchar data type 290, 291
$wchar_s16 data type 290
$wchar_s32 data type 290
$wchar_u16 data type 290
$wchar_u32 data type 290
$wstring data type 290, 291
$wstring_s16 data type 290
$wstring_s32 data type 290
$wstring_u16 data type 290
$wstring_u32 data type 290

A
-a command-line option 93, 464

passing arguments to
program 93

a width specifier 588
general discussion 590

absolute addresses, display assem-
bler as 173

acquiring processes 534
action

points tab 206, 207
Action Point > At Location

command 201, 202, 207
Action Point > At Location Dialog

Box figure 201, 207
Action Point > Delete All

command 206
Action Point > Properties

command 190, 191, 205, 206,
211, 212, 213, 216, 219, 222, 434,

453
deleting barrier points 218

Action Point > Properties dialog
box 205, 211, 212, 216

Action Point > Save All
command 239, 534

Action Point > Save As
command 239

Action Point > Set Barrier
command 216

Action Point > Suppress All
command 206

action point identifiers
never reused in a session 471

action points 211
common properties 189
definition 42, 189
deleting 206
disabling 205
enabling 206
evaluation points 192
files 98
identifiers 471
list of 160
multiple addresses 196
saving 239
suppressing 206
symbols 190
unsuppressing 206
watchpoint 16

Action Points Page 160, 438
actor mode, Visualizer 342
adapter_use option 532
Add host option 116
Add to Expression List

command 273, 277
Add to Expression List context

menu command 273
Add username dialog 107
adding a user to an Attach to a Pro-

gram debug session 107
adding command-line

arguments 121
adding environment variables 121
adding members to a group 585
adding program arguments 93
$address 288

694

INDEX

address range conflicts 229
addresses

changing 295
editing 295
specifying in variable

window 262
tracking in variable

window 248
advancing

and holding processes 470
program execution 470

aggregates, in Expression List
window 275

aliases
built-in 467
group 467
group, limitations 467

align assembler pseudo op 376
all width specifier 582
allocated arrays, displaying 293
altering standard I/O 121
Ambiguous Function dialog 169,

202, 203, 207
ambiguous function names 169
Ambiguous Line dialog 198
ambiguous names 171
ambiguous source lines 434
angle brackets, in windows 267
animation using $visualize 354
areas of memory, data type 292
arena specifiers 581

defined 581
incomplete 596
inconsistent widths 596

arenas
and scope 572
defined 572, 581
iterating over 581

-args command-line option 93
ARGS variable 464

modifying 464
ARGS_DEFAULT variable 93, 464

clearing 464
arguments

in server launch
command 489, 498

passing to program 93

replacing 464
Arguments area of new program

session 520
argv, displaying 294
array data

filtering by comparison 319
filtering by range of values 324
filtering for IEEE values 321
updating the view in the Array

Viewer 318
array of structures

about 266
displaying 269
in Expression List window 275

array pointers 260
array rank 357
array services handle (ash) 538
array slice

defined 316
Array Statistics Window figure 327
array structure

viewing limitations 251
Array Viewer

dialog for viewing array
data 317

arrays
array data filtering 319
bounds 286
casting 286
character 290
checksum statistic 328
colon separators 313
count statistic 328
deferred shape 304, 313
denormalized count

statistic 328
display subsection 287
displaying 313, 355
displaying allocated 293
displaying argv 294
displaying contents 165
displaying declared 293
displaying multiple 355
displaying slices 313
diving into 266
editing dimension of 287
extent 287
filter conversion rules 320
filtering 287, 319, 320, 321

filtering expressions 325
filtering options 319
in C 286
in Fortran 286
infinity count statistic 328
limiting display 315
lower adjacent statistic 328
lower bound of slices 314
lower bounds 286
maximum statistic 328
mean statistic 328
median statistic 328
minimum statistic 328
multi-dimensional array data,

viewing 317
NaN statistic 328
non-default lower bounds 287
overlapping nonexistent

memory 313
pointers to 286
quartiles statistic 328
skipping elements 315
slice example 314
slice, initializing 475
slice, printing 476
slice, refining 355
slices with the variable

command 316
slices, defined 316
sorting 326
standard deviation

statistic 329
statistics 327
stride 314
stride elements 314
subsections 313
sum statistic 329
type strings for 286
upper adjacent statistic 329
upper bound 286
upper bound of slices 314
viewing across elements 331
visualizing 343, 354
writing to file 478
zero count statistic 329

arrow over line number 159
ascii assembler pseudo op 376
asciz assembler pseudo op 376
ash (array services handle 538
ash (array services handle) 538

695

INDEX

ASM icon 107, 117, 125, 190, 209
assembler

absolute addresses 173
and -g compiler option 165
constructs 373
displaying 173
expressions 374
in code fragment 220
symbolic addresses 173

Assembler > By Address
command 173

Assembler > Symbolically
command 173

Assembler command 173
assigning output to variable 462
assigning p/t set to variable 583
asynchronous processing 385
At Location command 201, 202, 207
attach options

in Attach to a Program
dialog 108

Attach Page 535
Attach Subset command 441, 442
Attach to a Running Program

command 105
Attach to a Running Program

dialog 105
Attach to a running program

dialog 410
possible errors 108

attaching
commands 115
configuring a debug

session 105
restricting 440
restricting by

communicator 442
selective 440
to all 443
to job 534
to MPI tasks 443
to MPICH application 525
to MPICH job 525
to none 443
to PE 534
to poe 535
to processes 105, 440, 535
to RMS processes 537

to SGI MPI job 538, 539
attaching to a program

adding a new user 107
attaching to processes

preference 443
Auto Visualize command 344
Auto Visualize, in Dataset

Window 346
auto_array_cast_bounds

variable 260
auto_deref_in_all_c variable 260
auto_deref_in_all_fortran

variable 260
auto_deref_initial_c variable 260
auto_deref_initial_fortran

variable 260
auto_deref_nested_c variable 260
auto_deref_nested_fortran

variable 260
auto_save_breakpoints

variable 239
autolaunch 485, 495

defined 93
disabling 93, 495, 496
launch problems 492

autolaunching 489
autoLoadBreakpoints

.Xdefault 143
automatic dereferencing 260
automatic process acquisition 524,

532
averaging data points 351
averaging surface display 351
axis, transposing 349

B
backtick separator 303
backward icon 166
barrier points 215, 217, 405, 422

clearing 206
defined 471
defined (again) 215
deleting 218
satisfying 217
states 215
stopped process 218

baud rate, for serial line 503

bit fields 282
block scoping 309
Block Status command 262
blocking send operations 451
blocks

displaying 251
naming 310

bold data 10
Both command 173, 187
bounds for arrays 286
boxed line number 159, 194, 574
branching around code 225
Breakpoint at Assembler Instruc-

tion figure 209
breakpoint files 98
breakpoint operator 600
breakpoints

and MPI_Init() 534
apply to all threads 189
automatically copied from

master process 525
behavior when reached 210
changing for

parallelization 438
clearing 146, 206, 574
conditional 220, 224, 379
copy, master to slave 525
countdown 224, 379, 380
default stopping action 438
defined 189, 471
deleting 206
disabling 205
enabling 206
entering 538
example setting in multipro-

cess program 214
fork() 213
hitting within eval point 372
ignoring 206
in child process 211
in parent process 211
listing 160
machine-level 209
multiple processes 211
not shared in separated

children 213
placing 159
reloading 534
removed when detaching 110

696

INDEX

removing 146, 191
saving 239
set while a process is

running 195
set while running parallel

tasks 534
setting 146, 191, 194, 211, 479,

534, 574
shared by default in

processes 213
sharing 211, 213
sliding 198
stop all related processes 211
suppressing 206
thread-specific 379
toggling 201
while stepping over 179

bss assembler pseudo op 376
built-in aliases 467
built-in functions

$count 193, 224, 228, 379
$countall 379
$countthread 380
$hold 380
$holdprocess 380
$holdprocessall 380
$holdstopall 380
$holdthread 380
$holdthreadstop 380
$holdthreadstopall 380
$holdthreadstopprocess 380
$stop 193, 228, 238, 380
$stopall 380
$stopprocess 380
$stopthread 381
$visualize 354, 355, 381
forcing interpretation 227

built-in variables 378
$clid 378
$duid 378
$newval 378
$nid 378
$oldval 378
$pid 378
$processduid 378
$string 288
$systid 378
$tid 378
forcing interpretation 379

Bulk Launch page 492

bulk server launch 485, 496
command 497
connection timeout 498
on IBM RS/6000 501
on Cray 501

bulk server launch command
%B 501
%D 500
%F 501
%H 500
%I 501
%K 501
%L 500
%N 502
%P 500
%t1 501, 502
%t2 502
%V 500
-callback_host 500
-callback_ports 500
-set_pws 500
-verbosity 500
-working_directory 500

bulk_incr_timeout variable 498
bulk_launch_base_timeout

variable 498
bulk_launch_enabled variable 493,

496, 497
bulk_launch_incr_timeout

variable 498
bulk_launch_string variable 497
bulk_launch_tmpfile1_header_ line

variable 497
bulk_launch_tmpfile1_header_line

variable 497
bulk_launch_tmpfile1_host_line

variable 497
bulk_launch_tmpfile1_host_lines

variable 497
bulk_launch_tmpfile1_trailer_ line

variable 497
bulk_launch_tmpfile1_trailer_line

variable 497
bulk_launch_tmpfile2_header_ line

variable 497
bulk_launch_tmpfile2_header_line

variable 497
bulk_launch_tmpfile2_host_ lines

variable 497
bulk_launch_tmpfile2_host_line

variable 497
bulk_launch_tmpfile2_trailer_ line

variable 497
bulk_launch_tmpfile2_trailer_line

variable 497
By Address command 173
byte assembler pseudo op 376

C
C casting for Global Arrays 557, 558
C control group specifier 587, 588
C/C++

array bounds 286
arrays 286
filter expression 325
how data types are

displayed 284
in code fragment 220
type strings supported 283

C/C++ statements
expression system 367

C++
changing class types 297
display classes 296

C++/C++
in expression system 364

CAF (CoArray Fortran) 564
Call Graph command 335
call graph, updating display 335
call stack 159
call_graph group 337
-callback command-line

option 488
-callback_host bulk server launch

command 500
-callback_option single process

server launch command 499
-callback_ports bulk server launch

command 500
camera mode, Visualizer 341
capture command 462
casting 270, 283, 285

examples 293
to type $code 264
types of variable 283

697

INDEX

casting arrays 286
casting Global Arrays 557, 558
CGROUP variable 585, 592
ch_lfshmem device 523
ch_mpl device 523
ch_p4 device 452, 523, 526
ch_shmem device 523, 526
Change Value command 281
changing autolaunch options 495
changing command-line

arguments 121
changing expressions 270
changing precision 244
changing process thread set 580
changing processes 419
changing program state 457
changing remote shell 488
changing size 244
changing threads 420
changing threads in Variable

Window 264
changing variables 281
$char data type 288
$character data type 288
character arrays 290
chasing pointers 260, 266
checksum array statistic 328
child process names 428
classes, displaying 296
Clear All STOP and EVAL

command 206
clearing

breakpoints 146, 206, 211, 574
continuation signal 184
evaluation points 146

CLI
components 455
in startup file 459
initialization 459
introduced 7
invoking program from shell

example 459
launching from GUI 649
not a library 456
output 462
prompt 460

relationship to TotalView 456
starting 89, 91, 458
starting a new session 92
starting from command

prompt 458
starting from TotalView

GUI 458
CLI commands

assigning output to
variable 462

capture 462
dactions 190
dactions -load 239, 534
dactions -save 239, 534
dassign 281
dattach 92, 95, 106, 115, 470,

525, 535, 541
dattach mprun 541
dbarrier 215, 217
dbarrier -e 222, 223
dbarrier -stop_when_hit 453
dbreak 201, 211, 480
dbreak -e 222, 223
dcheckpoint 618
ddelete 201, 206, 218, 542
ddetach 110
ddisable 205, 206, 219
ddlopen 621
ddown 182
default focus 580
denable 206
dfocus 178, 579, 580
dga 558
dgo 431, 438, 534, 538, 597
dgroups -add 585, 592
dhalt 179, 417, 439
dhold 216, 422
dhold -thread 423
dkill 186, 440, 461, 470
dload 115, 460, 461, 470, 494
dnext 180, 433, 439
dnexti 180, 433
dout 183, 575
dprint 170, 248, 258, 259, 263,

288, 293, 299, 301, 303, 313,
314, 316, 476, 549, 550

dptsets 409, 418
drerun 186, 461
drestart 618
drun 460, 464
dsession 114

dsession -load 92
dset 464, 466
dstatus 218, 409
dstep 180, 433, 439, 575, 581,

583, 597
dstepi 180, 432, 433
dunhold 216, 422
dunhold -thread 423
dunset 464
duntil 182, 575, 577
dup 182, 248
dwhere 248, 582, 597
exit 99
read_symbols 625
run when starting TotalView 97

CLI variables
ARGS 464
ARGS_DEFAULT 93, 464

clearing 464
ARGS, modifying 464
auto_array_cast_bounds 260
auto_deref_in_all_c 260
auto_deref_in_all_fortran 260
auto_deref_initial_c 260
auto_deref_initial_fortran 260
auto_deref_nested_c 260
auto_deref_nested_fortran 26

0
auto_save_breakpoints 239
bulk_incr_timeout 498
bulk_launch_base_timeout 498
bulk_launch_enabled 493, 496,

497
bulk_launch_incr_timeout 498
bulk_launch_string 497
bulk_launch_tmpefile1_trailer_

line 497
bulk_launch_tmpefile2_trailer_

line 497
bulk_launch_tmpfile1_header_

line 497
bulk_launch_tmpfile1_header_l

ine 497
bulk_launch_tmpfile1_host_

lines 497
bulk_launch_tmpfile1_host_line

497
bulk_launch_tmpfile1_trailer_li

ne 497
bulk_launch_tmpfile2_header_

line 497

698

INDEX

bulk_launch_tmpfile2_header_l
ine 497

bulk_launch_tmpfile2_host_line
497

bulk_launch_tmpfile2_host_line
s 497

bulk_launch_tmpfile2_trailer_li
ne 497

data format 245
dll_read_all_symbols 625
dll_read_loader_symbols_only

625
dll_read_no_symbols 625
EXECUTABLE_PATH 104, 130,

132, 473
LINES_PER_SCREEN 463
parallel_attach 444
parallel_stop 443
pop_at_breakpoint 129
pop_on_error 128
process_load_callbacks 98
PROMPT 466
server_launch_enabled 493,

495
server_launch_string 496
server_launch_timeout 496
SHARE_ACTION_POINT 205,

211, 213
signal_handling_mode 128
STOP_ALL 205, 211
suffixes 88
ttf 244
ttf_max_length 244
VERBOSE 457
warn_step_throw 128

$clid built-in variable 378
Close command 166, 265
Close command (Visualizer) 346
Close Relatives command 166
Close Similar command 166, 265
Close, in dataset window 346
closing similar windows 166
closing variable windows 265
closing windows 166
cluster ID 378
CoArray Fortran (CAF) 564
$code data type 288
code constructs supported

assembler 373

C/C++ 367
Fortran 368

$code data type 292
code fragments 220, 372, 378

modifying instruction path 221
when executed 221
which programming

languages 220
code, branching around 225
collapsing structures 251
colons as array separators 313
colors used 418
columns, displaying 278
comm assembler pseudo op 376
command arguments 464

clearing example 464
passing defaults 464
setting 464

Command Line command 89, 458
Command Line Interpreter 7
command prompts 466

default 466
format 466
setting 466
starting the CLI from 458

command scope 309
command-line options 461

-a 464
–a 93
launch Visualizer 355
-no_startup_scripts 97
passing to TotalView 93
-remote 496
–remote 93
-s startup 458

commands 89
Action Point > At Location 201
Action Point > Delete All 206
Action Point > Properties 206,

211, 212, 213, 216, 219, 453
Action Point > Save All 239, 534
Action Point > Save As 239
Action Point > Set Barrier 216
Action Point > Suppress All 206
Add to Expression List 277
Auto Visualize (Visualizer) 346
change Visualizer launch 357
Clear All STOP and EVAL 206

Custom Groups 602
Edit > Delete All

Expressions 280
Edit > Delete Expression 280
Edit > Duplicate

Expression 280
Edit > Find 168
Edit > Find Again 168
Edit > Reset Defaults 279
File > Attach to a Running

Program 105
File > Close 166, 265
File > Close (Visualizer) 346
File > Close Similar 166, 265
File > Debug Core File 110
File > Debug New Parallel

Program 518
File > Debug New

Program 104, 132, 494, 496
File > Delete (Visualizer) 345,

346
File > Edit Source 176
File > Exit (Visualizer) 345
File -> Manage Sessions 124
File > New Debugging

Session 102, 518
File > Options (Visualizer) 347,

348
File > Preferences 133

Formatting page 244
Launch Strings page 356
Options page 244
Pointer Dive page 260

File > Save Pane 167
File > Search Path 104, 130,

131, 535
File > Signals 128
Group > Attach 537, 538, 539
Group > Attach Subset 441
Group > Control > Go 422
Group > Detach 109
Group > Edit 585
Group > Go 213, 431, 438, 534
Group > Halt 179, 417, 439
Group > Hold 422
Group > Kill 186, 542
Group > Next 439
Group > Release 422
Group > Restart 186
Group > Run To 438
Group > Step 439

699

INDEX

group or process 438
interrupting 457
Load All Symbols in Stack 625
mpirun 538
Options > Auto Visualize 344
poe 524, 532
Process > Create 432
Process > Detach 110
Process > Go 186, 431, 438,

534, 537, 538
Process > Halt 179, 417, 439
Process > Hold 422
Process > Next 433
Process > Next Instruction 433
Process > Out 575
Process > Run To 575
Process > Startup 93
Process > Step 433
Process > Step Instruction 433
Process Startup

Parameters 132
prun 537
remsh 488
rsh 533
server launch, arguments 498
single-stepping 178
ssh 488
Startup 93
Thread > Continuation

Signal 109, 184
Thread > Go 431
Thread > Hold 422
Thread > Set PC 187
Tools > Attach Subset 442
Tools > Call Graph 335
Tools > Command Line 458
Tools > Create Checkpoint 618
Tools > Evaluate 271, 355, 356,

371, 621
Tools > Global Arrays 558
Tools > Manage Shared

Libraries 621
Tools > Message Queue 448,

449
Tools > Message Queue

Graph 446
Tools > Program Browser 248
Tools > Restart 618
Tools > Statistics 327
Tools > Thread Objects 306
Tools > Variable Browser 256

Tools > View Across 563
Tools > Visualize 17, 344
Tools > Visualize

Distribution 562
Tools > Watchpoint 236
totalview

core files 89
totalview command 89, 538
totalviewcli command 89, 91,

92, 538
tvdsvr 485

launching 498
View > Add to Expression

List 273
View > Assembler > By

Address 173
View > Assembler >

Symbolically 173
View > Block Status 262
View > Collapse All 251
View > Compilation Scope 252
View > Dive 280
View > Dive In All 268, 269
View > Dive in New Window 12
View > Dive Thread 307
View > Dive Thread New 307
View > Examine Format >

Raw 261
View > Examine Format >

Structured 261
View > Expand All 251
View > Graph (Visualizer) 346
View > Lookup Function 169,

172
View > Lookup Variable 248,

258, 262, 303, 316
View > Reset 170, 172
View > Reset (Visualizer) 352
View > Source As >

Assembler 173
View > Source As > Both 173,

187
View > Source As > Source 173
View > Surface (Visualizer) 346
View > Variable 549
View > View Across > None 330
View > View Across >

Process 330
View > View Across >

Thread 330
Visualize 17

visualize 355, 357
Window > Duplicate 166, 267
Window > Duplicate Base Win-

dow (Visualizer) 347
Window > Memorize 163
Window > Memorize All 163
Window > Update 421

common block
displaying 299
diving on 300
members have function

scope 299
comparing variable values 254
comparisons in filters 325
Compilation Scope > Floating

command 274
Compilation Scope command 252
compiled expressions 226, 227

allocating patch space for 228
performance 227

compiled in scope list 309
compiling

CUDA programs. See CUDA,
compiling.

–g compiler option 87
multiprocess programs 87
–O option 87
optimization 87
programs 32, 87, 407

completion rules for arena
specifiers 596

$complex data type 289
$complex_8 data type 289
$complex_16 data type 289
compound objects 285
conditional breakpoints 220, 224,

379
conf file 500
configure command 523
configuring the Visualizer 356
connection for serial line 503
connection timeout 496, 498

altering 495
connection timeout, bulk server

launch 498
contained functions 303

displaying 303

700

INDEX

context menus 146
continuation signal 184

clearing 184
Continuation Signal

command 109, 184
continuing with a signal 184
continuous execution 457
Control Group and Share Groups

Examples figure 429
control groups 395, 428

adding an Attach to Program
debug session 108

defined 394
discussion 428
overview 585
specifier for 587

control in parallel
environments 470

control in serial environments 470
control registers

interpreting 259
controlling program execution 470
conversion rules for filters 320
core dump, naming the signal that

caused 111
core files

debug session in the Debug
Core File dialog 110

debugging 92, 94
examining 114
in totalview command 89
multi-threaded 111
opening 115

correcting programs 226
count array statistic 328
$count built-in function 379
$countall built-in function 379
countdown breakpoints 224, 379
counter, loop 224
$countthread built-in function 380
CPU registers 259
cpu_use option 532
Cray

loading TotalView 554
starting the CLI 554
starting TotalView 554

Cray XT, XE, and XK debugging 554

Create Checkpoint command 618
creating custom groups 602
creating groups 398, 431
creating new processes 461
creating processes 431

and starting them 431
using Step 433
without starting it 432
without starting them 432

creating threads 387
creating type transformations 243
Ctrl+C 457
CUDA

@parameter qualifier 650
@register storage qualifier 652
assigned thread IDs 642
CLI and operating on CUDA

threads 649
compiling a program for

debugging 637
compiling options 637
compiling Pascal GPU 638
compiling Tesla GPU 637
compiling Volta GPU 638
coordinate spaces, 4D and

5D 642
CUDA thread defined 642
data from CUDA thread,

displaying 645
devices, displaying 657
execution, viewing 642
features 28, 627
-g -G compiling option 637
GPU focus thread 642
GPU thread selector 642
host thread, viewing 643
installing 628
Linux-PowerLE, supported

platform 627
Linux-x86_64, supported

platform 627
logical coordinate space 642
MemoryChecker 653
nvcc compiler 637
physical coordinate space 642
process, defined 631
PTX register, locations 652
ReplayEngine limitations 661,

662

requirements 627
runtime variables,

supported 648
sample program 663
single-stepping GPU code 643
starting TotalView for CUDA

applications 639
storage qualifier, supported

types 645
thread’s four attributes 657
troubleshooting 660
type casting 649
variables from CUDA thread,

displaying 645
variables, editing 649

CUDA Debugging option in Pro-
gram Session dialog 119

current location of program
counter 159

current set indicator 582
current stack frame 172
current working directory 130, 131
Custom Groups command 602
Cycle Detection tab 447

D
D control group specifier 587
dactions command 190

-load 239, 534
-save 239, 534

daemons 384, 387
dassign command 281
data

editing 10
viewing, from Visualizer 343

data assembler pseudo op 376
data dumping 261
data in arrays

viewing using Array Viewer 317
data precision, changing

display 140
data types 288

C++ 296
changing 283
changing class types in

C++ 297
for visualization 343
int 284

701

INDEX

int[] 284
int* 284
opaque data 293
pointers to arrays 286
predefined 288
to visualize 343

data_format variables 245
dataset

defined for Visualizer 343
visualizing 354
window (Visualizer) 346
window (Visualizer), display

commands 347
window, menu

commands 345
deleting 345
dimensions 358
header fields 358
ID 358
vh_axis_order field 358

dattach command 92, 95, 106, 115,
470, 525, 535, 541
mprun command 541

dbarrier command 215, 217
-e 222, 223
-stop_when_hit 453

dbfork library 87
linking with 87

dbreak command 201, 211, 480
-e 222, 223

dcheckpoint command 618
ddelete command 201, 206, 218,

542
ddetach command 110
ddisable command 205, 206, 219
ddlopen command 621
ddown command 182
deadlocks 577

message passing 448
$debug assembler pseudo op 375
Debug New Parallel Program

command 518
Debug New Program

command 132, 494
Debug Options

in Debug New Program
dialog 105

tab in Debug New Program
dialog 91

-debug, using with MPICH 542
debugger initialization 459
debugger PID 469
debugger server

starting manually 492
Debugger Unique ID (DUID) 378
debugging

core file 92
executable file 89
multiprocess programs 87
not compiled with –g 87
OpenMP applications 547
over a serial line 503
PE applications 532
programs that call execve 87
programs that call fork 87
script 94
SHMEM library code 559
UPC programs 560

debugging core files
in the Debug Core File

dialog 110
debugging Fortran modules 302
debugging MPI programs 94
debugging session 471
debugging symbols, reading 623
debugging techniques 404, 437,

542
declared arrays, displaying 293
def assembler pseudo op 376
default address range conflicts 229
default control group specifier 587
default focus 593
default process/thread set 580
default programming language 88
default text editor 176
default width specifier 582
deferred shape array

definition 313
types 304

deferred symbols
force loading 625
reading 623

deferring order for shared
libraries 624

Delete All command 206
Delete command (Visualizer) 345,

346
Delete, in dataset window 346
deleting

action points 206
datasets 345
programs 186

denable command 206
denorm filter 322
denormalized count array

statistic 328
DENORMs 319
deprecated X defaults 143
deprecated, defined 143
dereferencing 12

automatic 260
pointers 260

Detach command 109, 110
Detach from processes

command 110
detaching from processes 109
detaching removes all

breakpoints 110
detecting cycles 447
determining scope 253, 572
dfocus command 178, 579, 580

example 580
dga command 558
dgo command 431, 438, 534, 538,

597
dgroups command

-add 585, 592
-remove 404

dhalt command 179, 417, 439
dhold command 216, 422

-process 423
-thread 423

difference operator 600
directories, setting order of

search 130
disabling

action points 205
autolaunch 495
autolaunch feature 496

disassembled machine code 170

702

INDEX

in variable window 264
discard dive stack 170
discard mode for signals 129
discarding signal problem 129
disconnected processing 385
displaying 165

areas of memory 262
argv array 294
array data 165
arrays 313
blocks 251
columns 278
common blocks 299
declared and allocated

arrays 293
Fortran data types 299
Fortran module data 301
global variables 247, 256
long variable names 249
machine instructions 263
memory 262
pointer 165
pointer data 165
registers 258
remote hostnames 154
stack trace pane 165
STL variables 241
structs 287
subroutines 165
thread objects 306
typedefs 287
unions 288
variable 164
Variable Windows 246

dive icon 166, 266
Dive In All command 268, 269, 270
Dive In New Window command 12
Dive Thread command 307
Dive Thread New command 307
dividing work up 385
diving 146, 164, 448, 535

creating call_graph group 337
defined 10
in a "view acrosss" pane 331
in a variable window 266
in source code 170
into a pointer 165, 266
into a process 164
into a stack frame 165

into a structure 266
into a thread 164
into a variable 164
into an array 266
into formal parameters 258
into Fortran common

blocks 300
into function name 170
into global variables 247, 256
into local variables 258
into MPI buffer 450
into MPI processes 450
into parameters 258
into pointer 165
into processes 164
into registers 258
into routines 165
into the PC 264
into threads 159, 164
into variables 164, 165
nested 165
nested dive defined 266
program browser 256
registers 247
scoping issue 253
variables 247

dkill command 186, 440, 461, 470
dll_read_all_symbols variable 625
dll_read_loader_symbols

variable 625
dll_read_loader_symbols_only

variable 625
dll_read_no_symbols variable 625
dload command 115, 460, 461, 470,

494
returning process ID 462

dlopen(), using 621
dmg installer 91
dnext command 180, 433, 439
dnexti command 180, 433
double assembler pseudo op 376
$double_precision data type 289
dout command 183, 575
dpid 469
dprint command 170, 248, 258, 259,

263, 288, 293, 299, 301, 303, 313,
314, 316, 476, 549, 550
using with CAF 565

dptsets command 409, 418
drerun command 186, 461
drestart command 618
drun command 460, 464
dsession command 114
dset command 464, 466
dstatus command 218, 409
dstep command 180, 433, 575, 581,

583, 597
dstep commands 439
dstepi command 180, 432, 433
DUID 378

of process 378
$duid built-in variable 378
dunhold command 216, 422

-thread 423
dunset command 464
duntil command 182, 575, 577
dup command 182
dup commands 248
Duplicate Base Window

in Visualizer dataset
window 347

Duplicate command 166, 267
dwhere command 248, 582, 597
dynamic call graph 335
Dynamic Libraries page 624
dynamic patch space

allocation 229

E
Edit > Delete All Expressions

command 280
Edit > Delete Expression

command 280
Edit > Duplicate Expression

command 280
Edit > Find Again command 168
Edit > Find command 168
Edit > Reset Defaults

command 279
edit mode 146
Edit Source command 176
editing

addresses 295
compound objects or

703

INDEX

arrays 285
source text 176
type strings 283
view across data 332

editing groups 602
EDITOR environment variable 176
editor launch string 176
effects of parallelism on debugger

behavior 468
Enable action point 206
Enable memory debugging

checkbox 119
Enable Visualizer Launch check

box 357
enabling

action points 206
Environment tab of Program Ses-

sions dialog 120
environment variables

adding 121
before starting poe 533
EDITOR 176
for reverse connect 508
how to enter 121
LC_LIBRARY_PATH 98
LM_LICENSE_FILE 98
MP_ADAPTER_USE 533
MP_CPU_USE 533
MP_EUIDEVELOP 451
PATH 130, 131
setting in of Program Sessions

dialog 120
SHLIB_PATH 98
TOTALVIEW 94, 451, 524
TVDSVRLAUNCHCMD 499

envrionment variables
in Debug New Program

dialog 105
equiv assembler pseudo op 376
errors

returned in Attach to a Running
Program dialog 108

using ReplayEngine with Infini-
band MPIs 545

errors, in multiprocess
program 128

EVAL icon 146
for evaluation points 146

eval points
and expression system 363

Evaluate command 355, 356, 371,
378

Evaluate Window
expression system 363

Evaluate window 363
evaluating an expression in a

watchpoint 231
evaluating expressions 371
evaluating state 471
evaluation points 192, 220

assembler constructs 373
C constructs 367
clearing 146
defined 189, 471
defining 220
examples 224
Fortran constructs 368
hitting breakpoint while

evaluating 372
listing 160
lists of 160
machine level 221
patching programs 224
printing from 192
saving 221
setting 146, 222, 479
using $stop 193
where generated 221

evaluation system limitations 364
event points listing 160
Examine Format > Raw Format

command 261
Examine Format > Structured

command 261
examining

core files 114
memory 261
processes 428
stack trace and stack

frame 258
exception enable modes 259
excluded information, reading 625
exclusion list, shared library 624
EXECUTABLE_PATH tab 131
EXECUTABLE_PATH variable 104,

130, 132, 473

setting 473
executables

debugging 89
specifying name in scope 310

execution
controlling 470
halting 417
out of function 183
resuming 422
startup file 97
to completion of function 183

execve() 213, 428
debugging programs that

call 87
setting breakpoints with 213

existent operator 600
exit CLI command 99
Exit command 99
Exit command (Visualizer) 345
expanding structures 251
expression evaluation window

compiled and interpreted
expressions 226

discussion 371
Expression List window 16, 247,

265, 272
Add to Expression List

command 273
aggregates 275
and expression system 363
array of structures 275
diving 275
editing contents 279
editing the value 279
editing type field 279
entering variables 273
expressions 275
highlighting changes 274
multiple windows 277
multiprocess/multithreaded

behavior 277
rebinding 278
reevaluating 277
reopening 277
reordering rows 279
restarting your program 278
selecting before sending 273
sorting columns 279

Expression List window, 363

704

INDEX

expression system
accessing array elements 361
C/C++ declarations 367
C/C++ statements 367
defined 361
eval points 363
Expression List Window 363
Fortran 368
Fortran intrinsics 369
functions and their issues 362
methods 362
structures 361
templates and limitations 367
Tools > Evaluate Window 363
using C++ 364
Variable Window 363

expressions 212, 600
can contain loops 371
changing in Variable

Window 270
compiled 227
evaluating 371
in Expression List window 275
performance of 227
side effects 271

expressions and variables 270
$extended data type 289
extent of arrays 287

F
features of CUDA debugger. See

CUDA, features.
Fermi GPU, compiling for 637
Fermi GPU, compiling for. See CU-

DA, compiling for Fermi
figures

Action Point > At Location Dia-
log Box 201, 207

Action Point > Properties Dia-
log Box 205, 211, 216

Action Point Symbol 190
Ambiguous Function Dialog

Box 169, 203
Ambiguous Line Dialog

Box 198
Array Data Filter by Range of

Values 325
Array Data Filtering by

Comparison 321

Array Data Filtering for IEEE
Values 323

Array Statistics Window 327
Breakpoint at Assembler In-

struction Dialog Box 209
Control and Share Groups

Example 429
File > Preferences: Action

Points Page 212
Five Processes and Their

Groups on Two
Computers 397

Fortran Array with Inverse Or-
der and Limited
Extent 315

PC Arrow Over a Stop Icon 210
Sorted Variable Window 326
Stopped Execution of Com-

piled Expressions 228
Stride Displaying the Four Cor-

ners of an Array 315
Tools > Evaluate Dialog

Box 373
Tools > Watchpoint Dialog

Box 234
Undive/Redive Buttons 266
Using Assembler 374
Viewing Across an Array of

Structures 331
Viewing Across Threads 330
Waiting to Complete Message

Box 372
File > Attach to a Running

Program 105
File > Close command 166, 265
File > Close command

(Visualizer) 346
File > Close Relatives

command 166
File > Close Similar command 166,

265
File > Debug New Parallel Program

command 518
File > Debug New Program

command 132, 494
File > Debug New Program

dialog 104
File > Delete command

(Visualizer) 345, 346

File > Edit Source command 176
File > Exit command 99
File > Exit command

(Visualizer) 345
File -> Manage Sessions

command 124
File > New Debugging Session

dialog 102
File > Options command

(Visualizer) 347, 348
File > Preferences

Bulk Launch page 492
Options page 163

File > Preferences > Launch Strings
saving remote server launch

string 118
File > Preferences command

Action Points page 129, 438
Bulk Launch page 492, 496
different values between

platforms 133
Dynamic Libraries page 624
Formatting page 244
Launch Strings page 356, 495
Options page 128, 244
overview 133
Parallel page 443
Pointer Dive page 260

File > Preferences: Action Points
Page figure 212

File > Save Pane command 167
File > Search Path command 104,

130, 131, 535
search order 130, 131

File > Signals command 128
-file command-line option to

Visualizer 355, 357
file extensions 88
file, start up 97
files

.rhosts 533
hosts.equiv 533
visualize.h 358

fill assembler pseudo op 376
filter expression, matching 319
filtering

array data 319, 320
array expressions 325

705

INDEX

by comparison 320
comparison operators 321
conversion rules 320
example 321
IEEE values 321
options 319
ranges of values 324
unsigned comparisons 321

filters 325
$denorm 322
$inf 322
$nan 322
$nanq 322
$nans 322
$ninf 322
$pdenorm 322
$pinf 322
comparisons 325

Find Again command 168
Find command 168
finding

functions 170
source code 170, 172
source code for functions 170

first thread indicator of < 581
Five Processes and Their Groups

on Two Computers figure 397
$float data type 289
float assembler pseudo op 376
floating scope 274
focus

as list 596
changing 580
jump to thread or process 419
pushing 580
restoring 580
setting 579

for loop 371
Force window positions (disables

window manager placement
modes) check box 163

fork_loop.tvd example
program 459

fork() 428
debugging programs that

call 87
setting breakpoints with 213

Formatting page 244

Fortran
array bounds 286
arrays 286
CoArray support 564
common blocks 299
contained functions 303
data types, displaying 299
debugging modules 302
deferred shape array

types 304
expression system 368
filter expression 325
in code fragment 220
in evaluation points 368
intrinsics in expression

system 369
module data, displaying 301
modules 301, 302
pointer types 304
type strings supported by

TotalView 283
user defined types 303

Fortran Array with Inverse Order
and Limited Extent figure 315

Fortran casting for Global
Arrays 557, 558

Fortran modules 305
command 301

Fortran parameters 305
forward icon 166
four linked processors 389
4142 default port 493
frame pointer 182
freezing window display 253
function calls, in eval points 226
function visualization 335
functions

finding 170
IEEE 323
in expression system 362
locating 169
returning from 183

G
-g compiler option 165
–g compiler option 87
-g -G option, for compiling CUDA

program. See CUDA, -g -G op-

tion.
g width specifier 588, 592
$GA cast 557, 558, 557
$ga cast 557, 558
generating a symbol table 87
Global Arrays 557

casting 557, 558
diving on type information 558

global assembler pseudo op 376
global variables

changing 432
displaying 432
diving into 247, 256

Go command 431, 438, 534, 537,
538

GOI defined 572
going parallel 443
goto statements 221
GPU. See CUDA.
Graph command (Visualizer) 346
Graph Data Window 347
graph points 348
Graph visualization menu 345
graph window, creating 346
Graph, in Dataset Window 346
graphs, two dimensional 347
group

process 578
thread 578

Group > Attach Subset
command 441, 537, 538, 539

Group > Control > Go
command 422

Group > Custom Group
command 404

Group > Detach command 109
Group > Edit command 585
Group > Go command 213, 425,

431, 438, 534
Group > Halt command 179, 417,

439
Group > Hold command 422
Group > Kill command 186, 440,

542
Group > Next command 439
Group > Release command 422

706

INDEX

Group > Restart command 186
Group > Run To command 438
Group > Step command 439
group aliases 467

limitations 467
group commands 438
group indicator

defined 586
group name 587
group number 587
group stepping 576
group syntax 586

group number 587
naming names 587
predefined groups 587

GROUP variable 592
group width specifier 582
groups

adding an Attach to Program
debug session 108

behavior 576
creating 398, 431, 602
defined 394
editing 602
examining 428
holding processes 422
overview 394
process 577
relationships 583
releasing processes 422
running 443
selecting processes for 602
starting 431
stopping 443
thread 578

Groups > Custom Groups
command 337, 602

GUI namespace 465

H
h held indicator 422
half assembler pseudo op 377
Halt command 179, 417, 439
halt commands 417
halting 417

groups 417
processes 417
threads 417

handler routine 127
handling signals 127, 128
header fields for datasets 358
held indicator 422
held operator 600
held processes, defined 216
hexadecimal address, specifying in

variable window 262
hi16 assembler operator 375
hi32 assembler operator 375
highlighted variables 250, 251
highlighting changes in Expression

List window 274
hold and release 422
$hold assembler pseudo op 375
$hold built-in function 380
Hold command 422
hold state 422

toggling 216
Hold Threads command 423
holding and advancing

processes 470
holding problems 426
holding threads 578
$holdprocess assembler pseudo

op 375
$holdprocess built-in function 380
$holdprocessall built-in

function 380
$holdprocessstopall assembler

pseudo op 375
$holdstopall assembler pseudo

op 375
$holdstopall built-in function 380
$holdthread assembler pseudo

op 375
$holdthread built-in function 380
$holdthreadstop assembler pseu-

do op 375
$holdthreadstop built-in

function 380
$holdthreadstopall assembler

pseudo op 376
$holdthreadstopall built-in

function 380

$holdthreadstopprocess assem-
bler pseudo op 375

$holdthreadstopprocess built-in
function 380

hostname
expansion 501
for tvdsvr 93
in square brackets 154

hosts.equiv file 533
how TotalView determines share

group 430
hung processes 105

I
I state 411
IBM MPI 532
IBM SP machine 523, 524
idle state 411
IEEE functions 323
Ignore mode warning 129
ignoring action points 206
implicitly defined process/thread

set 580
incomplete arena specifier 596
inconsistent widths 596
inf filter 322
Infiniband MPIs

possible errors 545
settings 544
with ReplayEngine 544

infinity count array statistic 328
INFs 319
inheritance hierarchy 366
initial process 468
initialization search paths 97
initialization subdirectory 97
initializing an array slice 475
initializing debugging state 97
initializing the CLI 459
initializing TotalView 97
instructions

data type for 292
displaying 263

$int data type 289
int data type 284
int[] data type 284

707

INDEX

int* data type 284
$integer_2 data type 289
$integer_4 data type 289
$integer_8 data type 289
interactive CLI 455
internal counter 224
interpreted expressions 226

performance 227
interrupting commands 457
intersection operator 600
intrinsic functions

$is_Inf 323
$is_inf 323
$is_nan 323
$is_ndenorm 323
$is_ninf 323
$is_nnorm 324
$is_norm 324
$is_pdenorm 324
$is_pinf 324
$is_pnom 324
$is_pzero 324
$is_qnan 324
$is_snan 324
$is_zero 324

inverting array order 315
inverting axis 349
invoking CLI program from shell

example 459
invoking TotalView on UPC 560
IP over the switch 532
iterating

over a list 597
over arenas 581

J
joystick mode, Visualizer 342
jump to dialog 419

K
-KeepSendQueue command-line

option 451
Kepler GPU, compiling 637
Kill command 186, 440
killing programs 186
-ksq command-line option 451

L
L lockstep group specifier 587, 588
labels, for machine

instructions 264
Last Value column 250, 275
launch

configuring Visualizer 356
options for Visualizer 356
TotalView Visualizer from com-

mand line 355
launch strings

saving as a preference 118
Launch Strings page 356, 495
lcomm assembler pseudo op 377
LD_LIBRARY_PATH environment

variable 98, 560
left margin area 159
left mouse button 146
libraries

dbfork 87
debugging SHMEM library

code 559
naming 624
see alsoshared libraries

limitations
CUDA and ReplayEngine 661,

662
limitations in evaluation

system 364
limiting array display 315
line number area 146, 191
line numbers 159

for specifying blocks 310
LINES_PER_SCREEN variable 463
linked lists, following pointers 266
Linux-PowerLE 233
Linux-PowerLE, supported CUDA

platform. See CUDA, Linux-
PowerLE.

Linux-x86_64, supported CUDA
platform. See CUDA, Linux-
x86_64.

list transformation, STL 243
lists of variables, seeing 16
lists with inconsistent widths 596
lists, iterating over 597

LM_LICENSE_FILE environment
variable 98

lo16 assembler operator 375
lo32 assembler operator 375
Load All Symbols in Stack

command 625
-load_session flag 92
loader symbols, reading 623
loading

file into TotalView 92
new executables 102
remote executables 93
shared library symbols 624

loading loader symbols 624
loading no symbols 624
local hosts 93
locations, toggling breakpoints

at 201
lockstep group 396, 572, 581

defined 394
L specifier 587
number of 586
overview 586

$logical data type 289
$logical_1 data type 289
$logical_2 data type 289
$logical_4 data type 289
$logical_8 data type 289
$long data type 289
long variable names,

displaying 249
$long_branch assembler pseudo

op 376
$long_long data type 290
Lookup Function command 169,

172
Lookup Variable command 169,

248, 258, 262, 303, 550
specifying slices 316

loop counter 224
lower adjacent array statistic 328
lower bounds 286

non default 287
of array slices 314

lysm TotalView pseudo op 377

708

INDEX

M
Mac OS X

procmod permission 91
starting execution 91
starting from an xterm 91

machine instructions
data type 292
data type for 292
displaying 263

make_actions.tcl sample
macro 459, 479

Manage Debugging Sessions win-
dow
accessing 124

manager threads 392, 396
managing sessions

accessing dialog 124
editing, deleting,

duplicating 125
launching your last

session 113
manual hold and release 422
map templates 241
map transformation, STL 241
master process, recreating slave

processes 440
master thread 548

OpenMP 548, 551
stack 550

matching processes 577
matching stack frames 330
maximum array statistic 328
mean array statistic 328
median array statistic 328
Memorize All command 163
Memorize command 163
memory contents, raw 262
Memory Debugging option in Pro-

gram Session dialog 119
memory information 262
memory locations, changing values

of 281
memory, displaying areas of 262
memory, examining 261
menus, context 146
message passing deadlocks 448

Message Queue command 448,
449

message queue display 538, 542
Message Queue Graph 448

diving 448
rearranging shape 448
updating 447

Message Queue Graph
command 446

message-passing programs 438
messages

envelope information 451
unexpected 451

messages from TotalView,
saving 462

methods, in expression
system 362

middle mouse button 146
minimum array statistic 328
missing TID 582
mixing arena specifiers 597
modifying code behavior 221
module data definition 301
modules 301, 302

debugging
Fortran 302

displaying Fortran data 301
modules in Fortran 305
more processing 463
more prompt 463
mouse button

diving 146
left 146
middle 146
right 146
selecting 146

mouse buttons, using 146
MP_ADAPTER_USE environment

variable 533
MP_CPU_USE environment

variable 533
MP_EUIDEVELOP environment

variable 451
MP_TIMEOUT 533
MPI

attaching to 538, 539
buffer diving 450

communicators 449
debugging 94
Infiniband, using with

ReplayEngine 544
library state 449
on IBM 532
on SGI 538
on Sun 540
Open 536
process diving 450
rank display 445
starting 518
starting on Cray 531
starting on SGI 538
starting processes 537
starting processes, SGI 538
troubleshooting 542

mpi tasks, attaching to 443
MPI_Init() 449, 534

breakpoints and timeouts 453
MPI_Iprobe() 451
MPI_Recv() 451
MPICH 523, 524

and SIGINT 542
and the TOTALVIEW environ-

ment variable 524
attach from TotalView 525
attaching to 525
ch_lfshmem device 523, 526
ch_mpl device 523
ch_p4 device 523, 526
ch_shmem device 526
ch_smem device 523
configuring 523
debugging tips 451
diving into process 525
MPICH/ch_p4 452
mpirun command 524
naming processes 527
obtaining 523
P4 526
-p4pg files 526
starting TotalView using 523
-tv command-line option 523
using -debug 542

mpirun command 451, 524, 538
options to TotalView

through 451
passing options to 451

mpirun process 538, 539

709

INDEX

MPL_Init() 534
and breakpoints 534

mprun command 540
MRNet and CUDA limitations 662
multiple classes, resolving 171
Multiple indicator 331
multi-process programming

library 87
multi-process programs

and signals 128
compiling 87
process groups 428
setting and clearing

breakpoints 211
multiprocessing 389
multi-threaded core files 111
multi-threaded signals 184

N
-n option, of rsh command 489
-n single process server launch

command 499
names of processes in process

groups 428
namespaces 465

TV:: 465
TV::GUI:: 465

naming libraries 624
naming MPICH processes 527
naming rules

for control groups 428
for share groups 428

nan filter 322
nanq filter 322
NaNs 319, 321

array statistic 328
nans filter 322
navigating, source code 172
ndenorm filter 322
nested dive 165

defined 266
window 267

nested stack frame, running to 578
Next command 178, 433, 439
“next” commands 180
Next Instruction command 433

$nid built-in variable 378
ninf filter 322
-no_startup_scripts command line

option 97
-no_stop_all command-line

option 451
node ID 378
nodes, attaching from to poe 535
None (lView Across) command 330
nonexistent operators 600
non-sequential program

execution 457
nvcc compiler, and CUDA. See CU-

DA, nvcc compiler.
NVIDIA. See CUDA.

O
–O option 87
offsets, for machine

instructions 264
$oldval built-in variable 378
omitting array stride 314
omitting period in specifier 596
omitting width specifier 596
opaque data 293
opaque type definitions 293
Open MPI

starting 536
Open process window at break-

point check box 129
Open process window on signal

check box 128
opening a core file 115
opening shared libraries 621
OpenMP 547, 548

debugging 547
debugging applications 547
master thread 548, 550, 551
master thread stack

context 550
private variables 549
runtime library 547
shared variables 549, 552
stack parent token 551
THREADPRIVATE variables 551
TotalView-supported

features 547

viewing shared variables 550
worker threads 548

operators
- difference 600
& intersection 600
| union 600
breakpoint 600
existent 600
held 600
nonexistent 600
running 600
stopped 600
unheld 600
watchpoint 601

optimizations, compiling for 87
options

for visualize 355
in dataset window 347
-patch_area 229
-patch_area_length 229
-sb 239
setting 143

Options > Auto Visualize command
(Visualizer) 344, 346

Options command (Visualizer) 347,
348

Options page 163, 244
options, for compiling CUDA. See

CUDA, compiling options
org assembler pseudo op 377
Out command 178
“out” commands 183
out command, goal 183
outliers 328, 329
outlined routine 547, 550, 551
outlining, defined 547
output

assigning output to
variable 462

from CLI 462
only last command executed

returned 462
printing 462
returning 462
when not displayed 462

P
p width specifier 588

710

INDEX

p.t notation 581
p/t sets

arguments to Tcl 580
expressions 600
set of arenas 581
syntax 582

p/t syntax, group syntax 586
P+/P- buttons 419
p4 listener process 526
-p4pg files 526
-p4pg option 526
panes, saving 167
parallel debugging tips 440
PARALLEL DO outlined routine 548
parallel environments, execution

control of 470
Parallel page 443
parallel program, defined 468
parallel program, restarting 440
parallel region 548
parallel tasks, starting 534
parallel_attach variable 444
parallel_stop variables 443
parameters, displaying in

Fortran 305
parsing comments example 479
Pascal GPU, compiling for 638
passing arguments 93
passing default arguments 464
pasting

with middle mouse 146
patch space size, different than

1MB 230
patch space, allocating 228
-patch_area_base option 229
-patch_area_length option 229
patching

function calls 226
programs 225

PATH environment variable 104,
130, 131

pathnames, setting in procgroup
file 526

PC Arrow Over a Stop Icon
figure 210

PC icon 187
pdenorm filter 322
PE 534

adapter_use option 532
and slow processes 453
applications 532
cpu_use option 532
debugging tips 453
from command line 533
from poe 533
options to use 532
switch-based

communication 532
PE applications 532
pending messages 448
pending receive operations 449,

450
pending send operations 449, 451

configuring for 451
pending unexpected

messages 449
performance

and shared library use 620
performance of interpreted, and

compiled expressions 227
performance of remote

debugging 485
Performance, improving in the Pro-

gram Browser 257
-persist command-line option to

Visualizer 355, 357
phase, UPC 563
pick, Visualizer 341
picking a dataset point value 349
$pid built-in variable 378
pid specifier, omitting 596
pid.tid to identify thread 159
pinf filter 322
piping information 167
plant in share group 211
Plant in share group check

box 213, 222
poe

and mpirun 524
and TotalView 533
arguments 532
attaching to 535

interacting with 453
on IBM SP 525
placing on process list 535
required options to 532
running PE 533
TotalView acquires poe

processes 534
poe, and bulk server launch 501
POI defined 572
point of execution for multiprocess

or multithreaded program 159
pointer data 165
Pointer Dive page 260
pointers 165

as arrays 260
chasing 260, 266
dereferencing 260
diving on 165
in Fortran 304
to arrays 286

pointer-to-shared UPC data 562
points, in graphs 348
pop_at_breakpoint variable 129
pop_on_error variable 128
popping a window 165
port 4142 493
-port command-line option 493
port number for tvdsvr 93
precision 244

changing 244
changing display 140

predefined data types 288
preference file 97
preferences

Bulk Launch page 492, 496
Launch Strings page 495
Options page 128
saving remote server launch

string 118
setting 143

preloading shared libraries 621
primary thread, stepping

failure 577
print statements, using 191
printing an array slice 476
printing in an eval point 192
private variables 548

711

INDEX

in OpenMP 549
procedures

debugging over a serial
line 503

displaying 293
displaying declared and allo-

cated arrays 293
process

detaching 109
holding 578
ID 378
numbers are unique 468
selecting in processes/rank

tab 418
state 409
states 159
stepping 576
synchronization 438, 578
width specifier 582
width specifier, omitting 596

Process > Create command 432
Process > Detach command 110
Process > Enable Memory Debug-

ging command 119
Process > Go command 186, 425,

431, 438, 534, 537, 538
Process > Halt command 179, 417,

439
Process > Hold command 422
Process > Hold Threads

command 423
Process > Next command 433
Process > Next Instruction

command 433
Process > Out command 575
Process > Release Threads

command 423
Process > Run To command 575
Process > Startup Parameters

command 93, 132
entering standard I/O

information 122
Process > Step command 433
Process > Step Instruction

command 433
process as dimension in

Visualizer 344
process barrier breakpoint

changes when clearing 218
changes when setting 218
defined 189
deleting 218
setting 216

process DUID 378
process focus 579
process groups 394, 577, 578, 585

behavior 591
behavior at goal 577
stepping 576
synchronizing 577

Process Window 157
host name in title 154
raising 128

process_id.thread_id 581
process_load_callbacks variable 98
process/set threads

saving 583
process/thread identifier 468
process/thread notation 468
process/thread sets 469

as arguments 579
changing focus 580
default 580
implicitly defined 580
inconsistent widths 597
structure of 582
target 579
widths inconsistent 597

$processduid built-in variable 378
processes

acquiring 524, 526
acquisition in poe 534
apparently hung 439
attaching to 105, 535
barrier point behavior 218
behavior 576
breakpoints shared 211
call graph 335
changing 419
copy breakpoints from master

process 525
creating 431, 433
creating by single-

stepping 433
creating new 461
creating using Go 431
creating without starting 432

deleting 186
deleting related 186
detaching from 109
displaying data 164
diving into 535
diving on 164
groups 428
held defined 216
holding 215, 380, 422
hung 105
initial 468
loading programs using the

Sessions Manager 102
master restart 440
MPI 450
names 428
refreshing process info 421
released 216
releasing 215, 218, 422
restarting 186
single-stepping 575
slave, breakpoints in 525
spawned 468
starting 431
state 410
status of 409
stepping 439, 576
stop all related 211
stopped 216
stopped at barrier point 218
stopping 220, 417
stopping all related 128
stopping intrinsic 380
stopping spawned 524
synchronizing 471, 577
tab 418
terminating 461
types of process groups 428
when stopped 576

Processes button 211
process-level stepping 439
processors and threads 390
procgroup file 526

using same absolute path
names 526

procmod permission, Mac OS X 91
Program arguments

in Debug New Program
dialog 105

Program Browser 256

712

INDEX

explaining symbols 256
improving performance 257

program control groups
defined 585
naming 428

program counter (PC) 159
arrow icon for PC 159
indicator 159
setting 187
setting program counter 187
setting to a stopped

thread 187
program execution

advancing 470
controlling 470

Program Session dialog 103
program state, changing 457
program visualization 335
programming languages, deter-

mining which used 88
programming TotalView 7
programs

compiling 32, 87, 407
compiling using –g 87
correcting 226
deleting 186
killing 186
not compiled with –g 87
patching 224, 225
restarting 186

prompt and width specifier 590
PROMPT variable 466
Properties command 190, 205, 211,

212, 216, 222, 453
properties, of action points 191
prototypes for temp files 497
prun command 537
pthread ID 469
$ptree assembler pseudo op 376
pushing focus 580

Q
QSW RMS applications

attaching to 537
starting 537

quad assembler pseudo op 377
quartiles array statistic 328

R
R state 411
raising process window 128
rank display 445
rank for Visualizer 357
ranks 446
ranks tab 418, 445
Raw Format command 261
raw memory contents 261
raw memory data 262
RDMA optimizations

disabled with Infiniband 544
read_symbols command 625
reading loader and debugger

symbols 623
$real data type 290
$real_16 data type 290
$real_4 data type 290
$real_8 data type 290
rebinding the Variable Window 264
recursive functions 183

single-stepping 182
redive 267
redive all 267
redive buttons 266
redive icon 166, 266
registers

editing 259
interpreting 259

Release command 422
release state 422
Release Threads command 423
reloading breakpoints 534
remembering window

positions 163
-remote command-line option 93,

496
Remote Debug Server Launch

preferences 495
remote debugging

in Debug New Program
dialog 104

performance 485
remote executables, loading 93
remote hosts 93

adding 116
viewing remote server launch

command 117
remote login 533
–remote option 93
Remote Server Launch Command

field
Advanced button in Add Host

dialog 117
remote server launch string

saving as a preference 118
remote shell command,

changing 488
removing breakpoints 146, 191
remsh command 488

used in server launches 499
replacing default arguments 464
ReplayEngine

and Infiniband MPIs 544
CUDA limitations 661

researching directories 132
Reset command 170, 172
Reset command (Visualizer) 352
resetting command-line

arguments 121
resetting the program counter 187
resolving ambiguous names 171
resolving multiple classes 171
resolving multiple static

functions 171
Restart Checkpoint command 618
Restart command 186
restarting

parallel programs 440
program execution 186, 461

restoring focus 580
restricting output data 167
results, assigning output to

variables 462
resuming

executing thread 187
execution 422, 431
processes with a signal 184

returning to original source
location 170

reusing windows 165

713

INDEX

reverse connect
concepts 506
environment variables 508
examples 512
starting a session 510

reverse connections
tvconnect 505

Reverse Debugging option in Pro-
gram Session dialog 119

.rhosts file 488
right angle bracket (>) 165
right mouse button 146
RMS applications

attaching to 537
starting 537

Root Window 147
Attached Page 535
selecting a process 164
starting CLI from 458
state indicator 410

rounding modes 259
routine visualization 335
routines, diving on 165
routines, selecting 159
rsh command 488, 533
rules for scoping 310
Run To command 178, 438
“run to” commands 182, 577
running CLI commands 97
running groups 443
running operator 600

S
-s command-line option 97, 458
S share group specifier 587
S state 411
S width specifier 588
sample programs

make_actions.tcl 459
sane command argument 458
Satisfaction group items

pulldown 217
satisfaction set 217
satisfied barrier 217
Save All (action points)

command 239

Save All command 239
Save Pane command 167
saved action points 98
saving

action points 239
TotalView messages 462
window contents 167

saving data, restricting output 167
-sb option 239
scope

determining 253
scopes

compiled in 309
scoping 252, 309

as a tree 310
floating 274
issues 253
rules 310
Variable Window 249
variables 252

scrolling 146
output 463
undoing 172

search
for processes in Attach to a

Program dialog 107
Search Path command 104, 130,

131, 535
search order 130, 131

search paths
default lookup order 130
for initialization 97
not passed to other

processes 132
order 130
setting 130

-search_port command-line
option 493

searching 168
case-sensitive 168
for source code 172
functions 170
locating closest match 169
source code 170

searching, variable not found 169
seeing structures 251
seeing value changes 250

limitationss 251

select button 146
selected line, running to 578
selecting

different stack frame 159
routines 159
source code, by line 187
source line 434

selecting a target 416
selecting process for a group 602
selection and Expression List

window 273
sending signals to program 129
-serial command-line option 503
serial line

baud rate 503
debugging over a 503

server launch 495
command 496
enabling 495
replacement character %C 499

server launch command
viewing in Add Host dialog 117

server on each processor 385
-server option 493
server_launch_enabled

variable 493, 495
server_launch_string variable 496
server_launch_timeout

variable 496
service threads 392, 396
sessions

launching your last
session 113

loading into TotalView using -
load_session flag 92

Set Barrier command 216
set expressions 600
set indicator, uses dot 582, 601
Set PC command 187
-set_pw command-line option 488
-set_pw single process server

launch command 499
-set_pws bulk server launch

command 500
setting

barrier breakpoint 216
breakpoints 146, 194, 211, 479,

714

INDEX

534, 574
breakpoints while running 194
evaluation points 146, 222
options 143
preferences 143
search paths 130
thread specific

breakpoints 379
timeouts 533

setting focus 579
setting up, debug session 100
setting up, parallel debug

session 546
setting up, remote debug

session 484
setting up,MPIl debug session 516
setting X resources 143
settings

for use of Infiniband MPIs and
ReplayEngine 544

SGROUP variable 592
shape arrays, deferred types 304
Share > Halt command 417
share groups 395, 428, 585

defined 394
determining 430
determining members of 430
discussion 428
naming 428
overview 585
S specifier 587

SHARE_ACTION_POINT
variable 205, 211, 213

shared libraries 620
controlling which symbols are

read 623
loading all symbols 624
loading loader symbols 624
loading no symbols 624
preloading 621
reading excluded

information 625
shared library, exclusion list

order 624
shared library, specifying name in

scope 310
shared variables 548

in OpenMP 549

OpenMP 549, 552
procedure for displaying 549

sharing action points 213
shell, example of invoking CLI

program 459
SHLIB_PATH environment

variable 98
SHMEM library code

debugging 559
$short data type 290
Show full path names check

box 171, 207
showing areas of memory 262
side 362
side-effects of functions in expres-

sion system 362
SIGALRM 453
SIGFPE errors (on SGI) 127
SIGINT signal 542
signal handling mode 128
signal_handling_mode variable 128
signal/resignal loop 129
signals

affected by hardware
registers 127

clearing 184
continuing execution with 184
discarding 129
error option 129
handler routine 127
handling 127
handling in TotalView 127
handling mode 128
ignore option 129
resend option 129
sending continuation

signal 184
SIGALRM 453
stop option 129
stops all related processes 128
that caused core dump 111

Signals command 128
SIGSTOP

used by TotalView 127
when detaching 109

SIGTRAP, used by TotalView 127
single process server launch 485,

495, 498
single process server launch com-

mand
%D 499
%L 499
%P 499
%R 499
%verbosity 499, 501
-callback_option 499
-n 499
-set_pw 499
-working_directory 499

single-stepping 178, 575
commands 178
in a nested stack frame 578
into function calls 179
not allowed for a parallel

region 548
on primary thread only 575
operating system

dependencies 182, 184
over function calls 180
recursive functions 182

skipping elements 315
slash in group specifier 587
sleeping state 411
slices

defining 314
descriptions 316
examples 314
lower bound 314
of arrays 313
operations using 304
stride elements 314
UPC 560
upper bound 314
with the variable

command 316
sliding breakpoints 198
SLURM 553
smart stepping, defined 575
SMP machines 523
sockets 503
Sorted Variable Window figure 326
sorting

array data 326
Source As > Assembler 173
Source As > Both 173, 187

715

INDEX

Source As > Both command 187
Source As > Source 173
source code

finding 170, 172
navigating 172

Source command 173
source file, specifying name in

scope 310
source lines

ambiguous 434
editing 176
searching 434
selecting 434

Source Pane 157, 159
described 161
unified display 161

source-level breakpoints 194
space allocation

dynamic 229
static 229

spawned processes 468
stopping 524

specifier combinations 588
specifiers

and dfocus 589
and prompt changes 590
example 592
examples 588, 589, 590

specifying groups 586
specifying search directories 132
splitting up work 386
stack

master thread 550
trace, examining 258
unwinding 187

stack context of the OpenMP mas-
ter thread 550

stack frame 248
current 172
examining 258
matching 330
pane 159
selecting different 159

Stack Frame Pane 159, 264
stack parent token 551

diving 551
Stack Trace Pane 159, 625

displaying source 165
standard deviation array

statistic 329
Standard I/O

in Program Sessions
dialog 121

standard I/O, altering 121
standard input, and launching

tvdsvr 489
Standard Template Library 241
Start a Debugging Session

dialog 103
starting 557

CLI 89, 91, 92, 458
groups 431
parallel tasks 534
TotalView 89, 90, 533
tvdsvr 93, 492

starting MPI programs 518
starting Open MPI programs 536
starting Totalview 86
Startup command 93
startup file 97
startup options

-no_startup_scripts 97
Startup Parameters command 132
state characters 411
states

and status 410
initializing 97
of processes and threads 410
unattached process 411

static constructor code 432
static functions, resolving

multiple 171
static internal counter 224
static patch space allocation 229
statistics for arrays 327
status

and state 410
of processes 409
of threads 409

status registers
interpreting 259

Step command 178, 433, 439
“step” commands 180

Step Instruction command 433
stepping

see also single-stepping
apparently hung 439
at process width 576
at thread width 577
goals 576
into 179
multiple statements on a

line 179
over 180
primary thread can fail 577
process group 576
processes 439
Run (to selection) Group

command 438
smart 575
target program 470
thread group 576, 577
threads 598
using a numeric argument in

CLI 179
workers 598

stepping a group 576
stepping a process 576
stepping commands 433
STL 241

list transformation 243
map transformation 241

STL preference 244
STLView 241
$stop assembler pseudo op 376
$stop built-in function 380
Stop control group on error check

box 129
Stop control group on error signal

option 128
STOP icon 9, 146, 191, 195, 209, 574

for breakpoints 146, 196
Stop on Memory Errors

checkbox 119
STOP_ALL variable 205, 211
stop, defined in a multiprocess

environment 471
$stopall built-in function 380
Stopped Execution of Compiled Ex-

pressions figure 228
stopped operator 600

716

INDEX

stopped process 218
stopped state

unattached process 411
stopping

all related processes 128
groups 443
processes 417
spawned processes 524
threads 417

$stopprocess assembler pseudo
op 376

$stopprocess built-in function 380
$stopthread built-in function 381
storage qualifier for CUDA. See CU-

DA, storage qualifier
stride 314

default value of 314
elements 314
in array slices 314
omitting 314

Stride Displaying the Four Corners
of an Array figure 315

$string data type 290
string assembler pseudo op 377
$string data type 290
structs

defined using typedefs 287
how displayed 287

structure information 251
Structured command 261
structures 266, 287

collapsing 251
editing types 283
expanding 251
expression evaluation 361
viewing across 331

stty sane command 458
subroutines, displaying 165
subset attach command 442
substructure viewing,

limitations 251
suffixes of processes in process

groups 428
suffixes variables 88
sum array statistic 329
Sun MPI 540
Suppress All command 206

suppressing action points 206
surface

in dataset window 346
Surface command (Visualizer) 346
surface view 350, 351

Visualizer 342
surface visualization window 345
surface window, creating 346
suspended windows 372
switch-based communication 532

for PE 532
symbol lookup 310

and context 310
symbol name representation 309
symbol reading, deferring 623
symbol scoping, defined 310
symbol table debugging

information 87
symbolic addresses, displaying as-

sembler as 173
Symbolically command 173
symbols

loading all 624
loading loader 624
not loading 624

synchronizing execution 422
synchronizing processes 471, 577,

578
syntax 587
system PID 469
system TID 469
systid 159, 469
$systid built-in variable 378

T
T state 411
t width specifier 588
T+/T- buttons 420
tag field 209

area 159
Talking to Rank control 442
target process/thread set 470, 579
target program

stepping 470
target, changing 580
tasks

starting 534
Tcl

and the CLI 7
CLI and thread lists 456
version based upon 456

TCP/IP address, used when
starting 93

TCP/IP sockets 503
temp file prototypes 497
templates

expression system 367
maps 241
STL 241

terminating processes 461
Tesla GPU, compiling 637
Tesla GPU, compiling for. See CU-

DA, Tesla GPU.
testing for IEEE values 323
testing when a value changes 231
text

locating closest match 169
saving window contents 167

text assembler pseudo op 377
text editor, default 176
third party debugger and TotalView

Visualizer 357
third party visualizer 342

and TotalView data set
format 358

thread
width specifier, omitting 596

Thread > Continuation Signal
command 109, 184

Thread > Go command 431
Thread > Hold command 422, 423
Thread > Set PC command 187
thread as dimension in

Visualizer 344
thread focus 579
thread group 578

stepping 576, 577
thread groups 394, 578, 585

behavior 591
behavior at goal 578

thread ID
about 159, 469
assigned to CUDA threads. See

717

INDEX

CUDA, assigned thread
IDs.

system 378
TotalView 378

thread local storage 550
variables stored in different

locations 550
thread numbers are unique 468
Thread Objects command 306
thread objects, displaying 306
Thread of Interest 431
thread of interest 581, 583

defined 417, 581
thread stepping 598

platforms where allowed 577
Thread Tab 159
THREADPRIVATE common block,

procedure for viewing vari-
ables in 550

THREADPRIVATE variables 551
threads

call graph 335
changing 420
changing in Expression List

window 278
changing in Variable

window 264
creating 387
displaying source 164
diving on 159, 164
finding window for 159
holding 217, 422, 578
ID format 159
listing 159
manager 392
opening window for 159
releasing 215, 217, 422
resuming executing 187
service 392
setting breakpoints in 379
single-stepping 575
stack trace 159
state 409
status of 409
stopping 417
systid 159
tid 159
user 391
width 577

width specifier 582
workers 391, 393

threads model 387
threads tab 420
thread-specific breakpoints 379
tid 159, 469
$tid built-in variable 378
TID missing in arena 582
timeouts

avoid unwanted 453
during initialization 534
for connection 496
TotalView setting 533

timeouts, setting 533
TOI defined 417

again 572
toolbar, using 416
Tools > Attach Subset

command 442
Tools > Call Graph command 335
Tools > Command Line

command 89, 458
Tools > Create Checkpoint

command 618
Tools > Evaluate command 271,

355, 356, 371, 378, 621
Tools > Evaluate Dialog Box

figure 373
Tools > Evaluate Window

expression system 363
Tools > Expression List

Window 273
Tools > Fortran Modules

command 301
Tools > Global Arrays

command 558
Tools > Manage Shared Libraries

command 621
Tools > Message Queue

command 448, 449
Tools > Message Queue Graph

command 446
Tools > Program Browser

command 248
Tools > Restart Checkpoint

command 618

Tools > Statistics command 327
Tools > Thread Objects

command 306
Tools > Variable Browser

command 256
Tools > View Across command 563
Tools > Visualize command 17,

333, 344
Tools > Visualize Distribution

command 562
Tools > Watchpoint command 233,

236
Tools > Watchpoint Dialog Box

figure 234
tooltips 246

evaluation within 246
TotalView

and MPICH 523
core files 89
initializing 97
invoking on CAF 564
invoking on UPC 560
programming 7
relationship to CLI 456
starting 89, 90, 533
starting on remote hosts 93
starting the CLI within 458
Visualizer configuration 356

TotalView assembler operators
hi16 375
hi32 375
lo16 375
lo32 375

TotalView assembler pseudo ops
$debug 375
$hold 375
$holdprocess 375
$holdprocessstopall 375
$holdstopall 375
$holdthread 375
$holdthreadstop 375
$holdthreadstopall 376
$holdthreadstopprocess 375
$long_branch 376
$ptree 376
$stop 376
$stopall 376
$stopprocess 376
$stopthread 376

718

INDEX

align 376
ascii 376
asciz 376
bss 376
byte 376
comm 376
data 376
def 376
double 376
equiv 376
fill 376
float 376
global 376
half 377
lcomm 377
lysm 377
org 377
quad 377
string 377
text 377
word 377
zero 377

totalview command 89, 97, 538
TotalView data types

$address 288
$char 288
$character 288
$code 288, 292
$complex 289
$complex_16 289
$complex_8 289
$double 289
$double_precision 289
$extended 289
$float 289
$int 289
$integer 289
$integer_1 289
$integer_2 289
$integer_4 289
$integer_8 289
$logical 289
$logical_1 289
$logical_2 289
$logical_4 289
$logical_8 289
$long 289
$long_long 290
$real 290
$real_16 290

$real_4 290
$real_8 290
$short 290
$string 290
$void 290, 292
$wchar 290
$wchar_s16 290
$wchar_s32 290
$wchar_u16 290
$wchar_u32 290
$wstring 290
$wstring_s16 290
$wstring_s32 290
$wstring_u16 290
$wstring_u32 290

TOTALVIEW environment
variable 94, 451, 524

totalview subdirectory 98
TotalView windows

action point List tab 160
totalviewcli command 89, 91, 92,

93, 97, 458, 460, 538
–remote 93

trackball mode, Visualizer 342
tracking changed values 250

limitations 251
transformations, creating 243
transposing axis 349
TRAP_FPE environment variable on

SGI 127
troubleshooting 691

MPI 542
ttf variable 244
ttf_ max_length variable 244
TV

mrnet_super_bushy 613
recurse_subroutines

setting 257
-tv command-line option 523
TV_REVERSE_CONNECT_DIR, env.

variable 508
TV:: namespace 465
TV::GUI:: namespace 465
tvconnect

reverse connection
command 505

TVCONNECT_OPTIONS, env.

variable 508
TVDB_patch_base_address

object 230
tvdb_patch_space.s 230
tvdsvr 93, 227, 487, 489, 495, 496,

503
-callback command-line

option 488
editing command line for

poe 535
fails in MPI environment 542
launch problems 496, 498
launching 498
launching, arguments 489
-port command-line

option 493
-search_port command-line

option 493
-server command-line

option 493
-set_pw command-line

option 488
starting 492
starting for serial line 503
starting manually 492

tvdsvr command 493
timeout while launching 496,

498
TVDSVRLAUNCHCMD environment

variable 499
two-dimensional graphs 347
type casting 283

examples 293
type strings

built-in 288
editing 283
for opaque types 293
supported for Fortran 283

type transformation variable 244
type transformations, creating 243
typedefs

defining structs 287
how displayed 287

types supported for C
language 283

types, user defined type 303

719

INDEX

U
UDT 303
UID, UNIX 493
unattached process states 411
undive 267
undive all 267
undive buttons 266
undive icon 166, 170, 266
Undive/Redive Buttons figure 266
undiving, from windows 267
unexpected messages 448, 451
unheld operator 600
unified display

Source Pane 161
union operator 600
unions 287

how displayed 288
unique process numbers 468
unique thread numbers 468
unsuppressing action points 206
unwinding the stack 187
UPC

assistant library 560
phase 563
pointer-to-shared data 562
shared scalar variables 560
slicing 560
starting 560
viewing shared objects 560

UPC debugging 560
Update command 421
upper adjacent array statistic 329
upper bounds 286

of array slices 314
USEd information 302
user defined data type 303
user mode 391
user threads 391
users

adding to an Attach to a Pro-
gram debug session 107

Using Assembler figure 374

V
Valid in Scope list 309
value changes, seeing 250

limitations 251
value field 372
values

editing 10
Variable Browser command 256
variable scope 252
variable scoping 309
Variable Window 270

and expression system 363
changing threads 264
closing 265
displaying 246
duplicating 267
expression field 249
in recursion, manually

refocus 248
rebinding 264
scope 252
scoping display 249
stale in pane header 248
tracking addresses 248
type field 249
updates to 248
view across 332

variables
assigning p/t set to 583
at different addresses 331
CGROUP 585, 592
changing the value 281
changing values of 281
comparing values 254
display width 245
displaying all globals 256
displaying contents 164
displaying long names 249
displaying STL 241
diving 164, 165
freezing 254
GROUP 592
in modules 301
locating 169
not updating display 254
precision 245
previewing size and

precision 245
setting command output

to 462
SGROUP 592
stored in different

locations 550

ttf 244
View Across display 330
watching for value changes 16
WGROUP 591, 592

variables and expressions 270
variables, viewing as list 272
VERBOSE variable 457
-verbosity bulk server launch

command 500
verbosity level 538
-verbosity single process server

launch command 499, 501
vh_axis_order header field 358
vh_dims dataset

field 358
vh_dims header field 358
vh_effective_rank dataset

field 358
vh_effective_rank header field 358
vh_id dataset field 358
vh_id header field 358
vh_item_count dataset

field 358
vh_item_count header field 358
vh_item_length dataset

field 358
vh_item_length header field 358
vh_magic dataset

field 358
vh_magic header field 358
vh_title dataset

field 358
vh_title header field 358
vh_type dataset

field 358
vh_type header field 358
vh_version dataset

field 358
vh_version header field 358
View > Add to Expression List

command 273
View > Assembler > By Address

command 173
View > Assembler > Symbolically

command 173
View > Block Status command 262

720

INDEX

View > Collapse All command 251
View > Compilation Scope > Fixed

command 252
View > Compilation Scope > Float-

ing command 248, 252
View > Compilation Scope

commands 252
View > Dive command 280
View > Dive In All command 268,

269
View > Dive in New Window

command 12
View > Dive Thread command 307
View > Dive Thread New

command 307
View > Examaine Format > Struc-

tured command 261
View > Examine Format > Raw

command 261
View > Expand All command 251
View > Freeze command 253
View > Graph command 345
View > Graph command

(Visualizer) 346
View > Lookup Function

command 169, 172
View > Lookup Variable

command 169, 248, 258, 262,
303, 549, 550
specifying slices 316

View > Reset command 170, 172
View > Reset command

(Visualizer) 352
View > Show Across > Process 330
View > Show Across > Thread 330
View > Source As > Assembler

command 173
View > Source As > Both

command 173, 187
View > Source As > Source

command 173
View > Surface command

(Visualizer) 345, 346
View > View Across > None

command 330
View > View Across > Process

command 330
View > View Across > Thread

command 330
View > View Across > Threads

command 550
View Across

arrays and structures 331
view across

editing data 332
View Across command. 550
View Across None command 330
View simplified STL containers

preference 244
viewing across

variables 330
Viewing Across an Array of Struc-

tures figure 331
viewing across processes and

threads 13
Viewing Across Threads figure 330
Viewing Across Variable

Window 332
viewing across variables and

processes 330
viewing acrosscross

diving in pane 331
viewing assembler 173
viewing opaque data 293
viewing shared UPC objects 560
viewing templates 241
viewing variables in lists 272
viewing wide characters 291
virtual functions 364
vis_ao_column_major constant 358
vis_ao_row_major constant 358
vis_float constant 358
VIS_MAGIC constant 358
VIS_MAXDIMS constant 358
VIS_MAXSTRING constant 358
vis_signed_int constant 358
vis_unsigned_int constant 358
VIS_VERSION constant 358
visualization

deleting a dataset 345
$visualize 381

visualize 354
$visualize built-in function 354
Visualize command 17, 333, 344,

357
visualize command 355
visualize.h file 358
Visualizer 333, 344

actor mode 342, 353
auto reduce option 351
autolaunch options,

changing 357
camera mode 341, 353
choosing method for display-

ing data 343
configuring 356
configuring launch 356
creating graph window 346
creating surface window 346
data sets to visualize 343
data types 343
dataset defined 343
dataset window 344, 345, 346
deleting datasets 345
dimensions 344
exiting from 345
-file command-line option 355,

357
graphs, display 347, 348
joy stick mode 342
joystick mode 353
launch command, changing

shell 357
launch from command

line 355
launch options 356
method 343
number of arrays 343
obtaining a dataset value 349
pan 354
-persist command-line

option 355, 357
pick 341
picking 353
rank 357
relationship to TotalView 342
restricting data 344
rotate 353

rotate, Visualizer 341
scale 354
shell launch command 357

721

INDEX

slices 343
surface view 342, 350, 351, 353
third party 342

adapting to 357
considerations 357

trackball mode 342, 353
using casts 355
view across data 344
view window 344
windows, types of 344
wireframe mode 342
wireframe view 353
zoom 354

visualizer
closing connection to 357
customized command for 356

visualizing
data 341, 345
data sets from a file 355
from variable window 344
in expressions using

$visualize 354
visualizing a dataset 354
$void data type 290, 292
Volta GPU, compiling for 638
Volta, compiling for 638

W
W width specifier 588
W workers group specifiers 587
Waiting for Command to Complete

window 439
Waiting to Complete Message Box

figure 372
warn_step_throw variable 128
watching memory 235
Watchpoint command 233, 236
watchpoint operator 601
watchpoints 16, 231

$newval watchpoint
variable 237

$oldval 237
alignment 237
conditional 231, 236
copying data 236
creating 233
defined 189, 471
disabling 235

enabling 235
evaluated, not compiled 238
evaluating an expression 231
example of triggering when val-

ue goes negative 237
length compared to $oldval or

$newval 237
lists of 160
lowest address triggered 236
modifying a memory

location 231
monitoring adjacent

locations 236
multiple 236
not saved 239
on stack varaibles 234
PC position 236
platform differences 232
problem with stack

variables 235
supported platforms 232
testing a threshold 231
testing when a value

changes 231
triggering 231, 236
watching memory 235

$whchar data type 291
wchar_t wide characters 291
WGROUP variable 591, 592
When a job goes parallel or calls ex-

ec() radio buttons 443
When a job goes parallel radio

buttons 443
When Done, Stop radio

buttons 217
When Hit, Stop radio buttons 217
wide characters 291
width relationships 583
width specifier 581

omitting 596
wildcards, when naming shared

libraries 624
Window > Duplicate Base Window

(Visualizer) 347
Window > Duplicate

command 166, 254, 267
Window > Memorize All

command 163

Window > Memorize
command 163

Window > Update command 421
window contents, saving 167
windows 265

closing 166, 265
dataset 346
dataset window 345
dataset window

(Visualizer) 347
graph data 347
popping 165
resizing 163
surface view 350
suspended 372

wireframe view, Visualizer 342
word assembler pseudo op 377
worker threads 391, 548
workers group 396, 578

defined 394
overview 586

workers group specifier 587
working directory 131
working independently 385
-working_directory bulk server

launch command 500
-working_directory single process

server launch command 499
writing array data to files 478
$wstring data type 291

X
X resources setting 143
xterm, launching tvdsvr from 489

Y
yellow highlighted variables 250,

251

Z
Z state 411
zero assembler pseudo op 377
zero count array statistic 329
zombie state 411

722

INDEX

723

INDEX

724

INDEX

	Contents
	About This Guide
	Content Organization
	Audience
	Using the CLI
	Resources

	Introduction to Debugging with TotalView
	About TotalView
	Sessions Manager
	GUI and Command Line Interfaces
	The CLI

	Stepping and Breakpoints
	Data Display and Visualization
	Data Display
	Data Visualization
	C++ View

	Tools for Multi-Threaded and Parallel Applications
	Program Using Almost Any Execution Model
	View Process and Thread State
	Control Program Execution

	Batch and Automated Debugging
	Remote Display
	Debugging on a Remote Host
	CUDA Debugger
	Memory Debugging
	Reverse Debugging
	What’s Next

	Basic Debugging
	Program Load and Navigation
	Load the Program to Debug
	Program Navigation

	Stepping and Executing
	Simple Stepping
	Canceling

	Setting Breakpoints (Action Points)
	Basic Breakpoints
	Evaluation Points
	Saving and Reloading Action Points

	Examining Data
	Viewing Built-in Data
	Viewing Compound Variables Using the Variable Window

	Visualizing Arrays
	Launching the Visualizer from an Eval Point
	Viewing Options

	Moving On

	Accessing TotalView Remotely
	Remote Display Supported Platforms
	Remote Display Components
	Installing the Client
	Installing on Linux
	Installing on Microsoft Windows
	Installing on macOS

	Client Session Basics
	Working on the Remote Host

	Advanced Options
	Naming Intermediate Hosts
	Submitting a Job to a Batch Queuing System
	Setting Up Your Systems and Security
	Session Profile Management
	Batch Scripts
	tv_PBS.csh Script
	tv_LoadLeveler.csh Script

	Debugging Tools and Tasks
	Starting TotalView
	Compiling Programs
	Using File Extensions

	Starting TotalView
	Starting TotalView
	Creating or Loading a Session
	Debugging a Program
	Debugging a Core File
	Debugging with a Replay Recording File
	Passing Arguments to the Program Being Debugged
	Debugging a Program Running on Another Computer
	Debugging an MPI Program
	Starting TotalView on a Script

	Initializing TotalView
	Exiting from TotalView

	Loading and Managing Sessions
	Setting up Debugging Sessions
	Loading Programs from the Sessions Manager
	Loading Programs Using the CLI

	Debugging Options and Environment Setup
	Adding a Remote Host
	Options: Reverse Debugging, Memory Debugging, and CUDA
	Setting Environment Variables and Altering Standard I/O
	Adding Notes to a Session

	Managing Sessions
	Editing or Starting New Sessions in a Sessions Window

	Other Configuration Options
	Handling Signals
	Setting Search Paths
	Setting Startup Parameters
	Setting Preferences

	Using and Customizing the GUI
	Using Mouse Buttons
	Using the Root Window
	Controlling the Display of Processes and Threads
	Using the Old Root Window
	Suppressing the Root Window

	Using the Process Window
	The Source Pane
	Unified Source Pane Display

	Resizing and Positioning Windows
	About Diving into Objects
	Saving the Data in a Window
	Searching and Navigating Program Elements
	Searching for Text
	Looking for Functions and Variables
	Finding the Source Code for Functions
	Finding the Source Code for Files
	Resetting the Stack Frame

	Viewing the Assembler Version of Your Code
	Editing Source Text

	Stepping through and Executing your Program
	Using Stepping Commands
	Stepping into Function Calls
	Stepping Over Function Calls
	Skipping Function Calls

	Executing to a Selected Line
	Executing Out of a Function
	Continuing with a Specific Signal
	Killing (Deleting) Programs
	Restarting Programs
	Setting the Program Counter

	Setting Action Points
	About Action Points
	Action Point Properties
	Action Point Status Display
	Manipulating Action Points
	Print Statements vs. Action Points

	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Setting Breakpoints at Locations
	Pending Breakpoints
	Displaying and Controlling Action Points
	Setting Breakpoints on Classes and Functions
	Setting Breakpoints for Multiple Processes
	Setting Breakpoints When Using the fork()/execve() Functions
	Setting Barrier Points

	Defining Eval Points and Conditional Breakpoints
	Setting Eval Points
	Creating a Pending Eval Point
	Creating Conditional Breakpoint Examples
	Patching Programs
	About Interpreted and Compiled Expressions
	Allocating Patch Space for Compiled Expressions

	Using Watchpoints
	Using Watchpoints on Different Architectures
	Creating Watchpoints
	Watching Memory
	Triggering Watchpoints
	Using Conditional Watchpoints

	Saving Action Points to a File

	Examining and Editing Data and Program Elements
	Changing How Data is Displayed
	Displaying STL Variables
	Changing Size and Precision

	Displaying Variables
	Displaying Program Variables
	Seeing Value Changes
	Displaying Variables in the Current Block
	Viewing Variables in Different Scopes as Program Executes
	Freezing Variable Window Data
	Locking the Address
	Browsing for Variables
	Displaying Local Variables and Registers
	Dereferencing Variables Automatically
	Examining Memory
	Displaying Areas of Memory
	Displaying Machine Instructions
	Rebinding the Variable Window
	Closing Variable Windows

	Diving in Variable Windows
	Displaying an Array of Structure’s Elements
	Changing What the Variable Window Displays

	Viewing a List of Variables
	Entering Variables and Expressions
	Seeing Variable Value Changes in the Expression List Window
	Entering Expressions into the Expression Column
	Using the Expression List with Multi-process/Multi-threaded Programs
	Reevaluating, Reopening, Rebinding, and Restarting
	Seeing More Information
	Sorting, Reordering, and Editing

	Changing the Values of Variables
	Changing a Variable’s Data Type
	Displaying C and C++ Data Types
	Viewing Pointers to Arrays
	Viewing Arrays
	Viewing typedef Types
	Viewing Structures
	Viewing Unions
	Casting Using the Built-In Types
	Type-Casting Examples

	Changing the Address of Variables
	Displaying C++ Types
	Viewing Classes

	C++View
	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Viewing Fortran 90 User-Defined Types
	Viewing Fortran 90 Deferred Shape Array Types
	Viewing Fortran 90 Pointer Types
	Displaying Fortran Parameters

	Displaying Thread Objects
	Scoping and Symbol Names
	Qualifying Symbol Names

	Examining Arrays
	Examining and Analyzing Arrays
	Displaying Array Slices
	Array Slices and Array Sections
	Viewing Array Data
	Filtering Array Data Overview
	Sorting Array Data
	Obtaining Array Statistics

	Displaying a Variable in all Processes or Threads
	Diving on a “Show Across” Pointer
	Editing a “Show Across” Variable

	Visualizing Array Data
	Visualizing a “Show Across” Variable Window

	Visualizing Programs and Data
	Displaying Call Trees and Call Graphs
	Parallel Backtrace View
	Array Visualizer
	Command Summary
	How the Visualizer Works
	Viewing Data Types in the Visualizer
	Visualizing Data Manually
	Using the Visualizer
	Using the Graph Window
	Using the Surface Window
	Visualizing Data Programmatically
	Launching the Visualizer from the Command Line
	Configuring TotalView to Launch the Visualizer
	Adapting a Third Party Visualizer

	Evaluating Expressions
	Why is There an Expression System?
	Calling Functions: Problems and Issues
	Expressions in Eval Points and the Evaluate Window
	Using C++

	Using Programming Language Elements
	Using C and C++
	Using Fortran

	Using the Evaluate Window
	Writing Assembler Code

	Using Built-in Variables and Statements
	Using TotalView Variables
	Using Built-In Statements

	Expression Evaluation with ReplayEngine

	About Groups, Processes, and Threads
	A Couple of Processes
	Threads
	Complicated Programming Models
	Types of Threads
	Organizing Chaos
	How TotalView Creates Groups
	Simplifying What You’re Debugging

	Manipulating Processes and Threads
	Viewing Process and Thread States
	Seeing Attached Process States
	Seeing Unattached Process States

	Displaying a Thread Name
	Thread Names in the UI
	Thread Properties
	Thread Options on dstatus

	Using the Toolbar to Select a Target
	Stopping Processes and Threads
	Using the Processes/Ranks and Threads Tabs
	The Processes Tab
	The Threads Tab

	Updating Process Information
	Holding and Releasing Processes and Threads
	Using Barrier Points
	Barrier Point Illustration

	Examining Groups
	Placing Processes in Groups
	Starting Processes and Threads
	Creating a Process Without Starting It
	Creating a Process by Single-Stepping
	Stepping and Setting Breakpoints

	Debugging Strategies for Parallel Applications
	General Parallel Debugging Tips
	Breakpoints, Stepping, and Program Execution
	Viewing Processes, Threads, and Variables
	Restarting from within TotalView
	Attaching to Processes Tips

	MPI Debugging Tips and Tools
	MPI Display Tools
	MPICH Debugging Tips

	IBM PE Debugging Tips

	Using the CLI
	Using the Command Line Interface (CLI)
	About the Tcl and the CLI
	About The CLI and TotalView
	Using the CLI Interface

	Starting the CLI
	Startup Example
	Starting Your Program

	About CLI Output
	‘more’ Processing

	Using Command Arguments
	Using Namespaces
	About the CLI Prompt
	Using Built-in and Group Aliases
	How Parallelism Affects Behavior
	Types of IDs

	Controlling Program Execution
	Advancing Program Execution
	Using Action Points

	Seeing the CLI at Work
	Setting the CLI EXECUTABLE_PATH Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Automatically Setting Breakpoints

	Advanced Tools and Customization
	Setting Up Remote Debugging Sessions
	About Remote Debugging
	Platform Issues when Remote Debugging

	Automatically Launching a Process on a Remote Server
	Troubleshooting Server Autolaunch
	Changing the Remote Shell Command
	Changing Arguments
	Autolaunching Sequence

	Starting the TotalView Server Manually
	TotalView Server Launch Options and Commands
	Server Launch Options
	Customizing Server Launch Commands

	Debugging Over a Serial Line
	Starting the TotalView Debugger Server

	Reverse Connections
	About Reverse Connections
	Reverse Connection Environment Variables

	Starting a Reverse Connect Session
	Listening for Reverse Connections

	Reverse Connect Examples
	CLI Example
	MPI Batch Script Example
	MPI Batch Script Example

	Troubleshooting Reverse Connections
	Stale Files in the Reverse Connect Directory
	Directory Permissions
	User ID Issues
	Reverse Connect Directory Environment Variable

	Setting Up MPI Debugging Sessions
	Debugging MPI Programs
	Starting MPI Programs
	Starting MPI Programs Using File > Debug New Parallel Program

	MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	Using MPICH P4 procgroup Files

	MPICH2 Applications
	Downloading and Configuring MPICH2
	Starting TotalView Debugging on an MPICH2 Hydra Job
	Starting TotalView Debugging on an MPICH2 MPD Job

	Cray MPI Applications
	IBM MPI Parallel Environment (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Program
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job

	Open MPI Applications
	QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	SGI MPI Applications
	Starting TotalView on an SGI MPI Job
	Attaching to an SGI MPI Job
	Using ReplayEngine with SGI MPI

	Sun MPI Applications
	Attaching to a Sun MPI Job

	Starting MPI Issues
	Using ReplayEngine with Infiniband MPIs

	Setting Up Parallel Debugging Sessions
	Debugging OpenMP Applications
	Debugging OpenMP Programs
	Viewing OpenMP Private and Shared Variables
	Viewing OpenMP THREADPRIVATE Common Blocks
	Viewing the OpenMP Stack Parent Token Line

	Using SLURM
	Debugging Cray XT/XE/XK/XC Applications
	Starting TotalView on Cray
	Support for Cray Abnormal Termination Processing (ATP)
	Special Requirements for Using ReplayEngine

	Debugging Global Arrays Applications
	Debugging Shared Memory (SHMEM) Code
	Debugging UPC Programs
	Invoking TotalView
	Viewing Shared Objects
	Displaying Pointer to Shared Variables

	Debugging CoArray Fortran (CAF) Programs
	Invoking TotalView
	Viewing CAF Programs
	Using CLI with CAF

	Controlling fork, vfork, and execve Handling
	exec_handling and fork_handling Command Options and State Variables
	Exec Handling
	Fork Handling
	Example

	Group, Process, and Thread Control
	Defining the GOI, POI, and TOI
	Recap on Setting a Breakpoint
	Stepping (Part I)
	Understanding Group Widths
	Understanding Process Width
	Understanding Thread Width
	Using Run To and duntil Commands

	Setting Process and Thread Focus
	Understanding Process/Thread Sets
	Specifying Arenas
	Specifying Processes and Threads
	Specifier Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	About Arena Specifier Combinations
	‘All’ Does Not Always Mean ‘All’
	Setting Groups
	Using the g Specifier: An Extended Example
	Merging Focuses
	Naming Incomplete Arenas
	Naming Lists with Inconsistent Widths

	Stepping (Part II): Examples
	Using P/T Set Operators
	Creating Custom Groups

	Scalability in HPC Computing Environments
	Configuring TotalView for Scalability
	Process Window’s Process Tab

	dlopen Options
	dlopen Event Filtering
	Handling dlopen Events in Parallel

	MRNet
	Using MRNet with TotalView

	Checkpointing
	Fine-Tuning Shared Library Use
	Preloading Shared Libraries
	Controlling Which Symbols TotalView Reads
	Specifying Which Libraries are Read
	Reading Excluded Information

	Using the CUDA Debugger
	About the TotalView CUDA Debugger
	Installing the CUDA SDK Tool Chain
	Directive-Based Accelerator Programming Languages

	CUDA Debugging Model and Unified Display
	Unified Source Pane and Breakpoint Display on page 634The TotalView CUDA Debugging Model
	Pending and Sliding Breakpoints
	Unified Source Pane and Breakpoint Display

	CUDA Debugging Tutorial
	Compiling for Debugging
	Compiling for Fermi
	Compiling for Fermi and Tesla
	Compiling for Kepler
	Compiling for Pascal
	Compiling for Volta

	Starting a TotalView CUDA Session
	Controlling Execution
	Viewing GPU Threads
	Single-Stepping GPU Code
	Halting a Running Application

	Displaying CUDA Program Elements
	GPU Assembler Display
	GPU Variable and Data Display
	Managed Memory Variables
	CUDA Built-In Runtime Variables
	Type Casting
	PTX Registers

	Enabling CUDA MemoryChecker Feature
	GPU Core Dump Support
	GPU Error Reporting
	Displaying Device Information

	CUDA Problems and Limitations
	Hangs or Initialization Failures
	CUDA and ReplayEngine
	CUDA and MRNet

	Sample CUDA Program

	Appendices
	Glossary
	Open Source Software Notice
	Resources
	TotalView Family Differences
	TotalView Documentation
	Conventions
	Contacting Us

	Index

