<--TotalView

by Perforce

MemoryScape Cheat Sheet

Compiling Programs. Compile your pro-

grams using the —g option. For example:gec

-g —0 my_prog my_prog.c

Starting MemoryScape. One way is to type

memscape my_prog —a arguments

on the command line.

Or, from the shell, type memscape to open

the MemoryScape window.

%o Select Add new program.

%o Use the Next buttons to move through the
screens to set up and start your memory
debugging session.

Checking for Errors. MemoryScape stops
program execution and raises an event flag
before events such as the following occur:
%o Freeing memory that is already freed

%o Freeing the wrong address

%o Freeing an interior pointer

%o Misaligning blocks

Click on the event flag for details.

Backtraces Defined. When your program
makes a memory request, MemoryScape
records the stack frames that existed when
the action occurred. This list of frames is
called a backtrace.

Showing Memory Leaks

%o Press the Halt button to stop program
execution.

%o Select the Memory Reports tab, then Leak
Detection.

%o Within the Leak Detection page, select
either Source or Backtrace Report.

If there are leaks, MemoryScape summarizes

the number of leaks and how much memory is

associated with a backtrace or source line.

Displaying the Heap Graphically. Use the
Heap Status Graphical Report to see how
your program is using memory. Clicking on

10

11

12

a block in the top area displays information at
the bottom. Clicking on the Backtrace/Source
tab and selecting a backtrace highlights the
related blocks.

Filtering Information. To reduce the amount

of data displayed, you can filter information

related to a process, library, source file, class
name, line number, etc.

%o Select Tools > Filters... Menu Item, or
Manage Filters on the left.

%o Select the Add button to create a filter. Creat-
ing a filter is similar to creating a message
filter within an email program.

%o After creating the filter, generate a report by
clicking on the button. || il

Tracking Memory Usage. You can track how
much memory your program is using by gener-
ating Memory Usage Reports.

Block Painting. Block painting helps you
locate problems caused by accessing allocated
memory before you initialize it, or accessing
deallocated memory.

Block painting writes a bit pattern into newly
allocated or deallocated blocks. When you see
this pattern, you know that a problem is occur-
ring.

Enable block painting by selecting Paint
Memory within the Memory Debugging
Options Page.

Tracking Deallocations

%0 On the Heap Status Graphical Report,
right-click on a selected block and select
Properties.

%o Select Hide Backtrace Information, then
expand the block by clicking +.

%o At the bottom of the expanded window, select
Notify when deallocated.

Tracking Memory Blocks. The Block Prop-
erties Window can contain information about
many memory blocks. After you place a block
in the window, it’s often hard to identify the
allocation. Adding a comment lets you
remember why you’re tracking a block.

Comparing Memory Use. You can use the
Export Memory Data link on the left to write
memory information to disk. At a later time,
use the Add Memory Debugging File link on

13

14

the left of the Home page to bring the informa-
tion back into MemoryScape. You can exam-
ine this information in exactly the same way as
normal memory information, or by using the
Memory Compare page.

Guarding Allocated Memory. Guards detect
when a program writes beyond the limits of
your memory block. To turn them on, either
select Medium from Basic Memory Debug-
ging Options or select Guard allocated
memory from Advanced Memory Debugging
Options.

With guards on, MemoryScape adds a small
segment of memory before and after each
block that you allocate. Here are two ways to
find corrupted memory blocks:

%o When the program frees the memory, the
guards are checked for corruption. If a cor-
rupted guard is found, MemoryScape stops
program execution and raises an event flag.

%o Select Corrupted Memory Report from the
Memory Reports page.

Using Red Zones. Red Zones allow Memory-
Scape to immediately notify you if your pro-
gram oversteps the bounds of your allocated
block. Turn them on by selecting High from
Basic Memory Debugging Options, or by
selecting Use Red Zones to find memory
access violations from Advanced Memory
Debugging Options.

With Red Zones on, a page of memory is
placed either before or after your allocated
block, and if your program tries to read or
write in this zone, MemoryScape stops pro-
gram execution and raises an event flag. Click
on the event flag to see the event details.

If You Have Trouble Running Your Program
in MemoryScape.

%o For AIX, read Chapter 4 of the user guide
“Debugging Memory Problems Using Mem-
oryScape” at help.totalview.io.

%o If you’re running a program that spawns pro-
cesses, the problem may be that your environ-
ment isn’t sending environment variables to
the process. If this happens, you’ll need to
explicitly add libraries that we provide.
Again, please see Chapter 4 of the Memory-
Scape user guide.

Using MemoryScape from TotalView®
for HPC

1 Starting MemoryScape from TotalView

%o Select the Debug > Enable Memory
Debugging command before you tell
your program to start executing.

If you don’t do this, memory debugging
won 't work.

%o Let your program run, then stop it after it
allocates some memory.

%o Select Debug > Open MemoryScape.

%o Select a report, such as Leak Detection or
Heap Graphical Report.

If you make changes or run your program to
another breakpoint, you’ll need to regener-
ate the report.

2 Identifying Dangling Pointers. When
memory debugging is enabled and
TotalView displays the value of a variable, it
tells you if memory is allocated or if you’re
looking at a dangling pointer.

3 Seeing Changes (Setting a Baseline)

%o In a Process Window, select the Debug >
Heap Baseline > Set Heap Baseline com-
mand.

%o Run your program. After stopping exe-
cution, select Debug > Heap Baseline >
Heap Change Summary to see any
memory allocations or leaks that
occurred since you set the baseline.

4 Comparing Memory Use. If you created a
baseline, go to the MemoryScape window
and select your memory report. You can
select the option Relative to Baseline,
which shows you the information relative to
the baseline you set.

Copyright TotalView by Perforce©
Perforce Software, Inc.

https://totalview.io

https://help.totalview.io/
https://help.totalview.io/
http://totalview.io

	MemoryScape Cheat Sheet
	1 Compiling Programs. Compile your programs using the –g option. For example: gcc -g –o my_prog my_prog.c
	2 Starting MemoryScape. One way is to type
	3 Checking for Errors. MemoryScape stops program execution and raises an event flag before events such as the following occur:
	4 Backtraces Defined. When your program makes a memory request, MemoryScape records the stack frames that existed when the action occurred. This list of frames is called a backtrace.
	5 Showing Memory Leaks
	6 Displaying the Heap Graphically. Use the Heap Status Graphical Report to see how your program is using memory. Clicking on a block in the top area displays information at the bottom. Clicking on the Backtrace/Source tab and selecting a backtrace hi...
	7 Filtering Information. To reduce the amount of data displayed, you can filter information related to a process, library, source file, class name, line number, etc.
	8 Tracking Memory Usage. You can track how much memory your program is using by generating Memory Usage Reports.
	9 Block Painting. Block painting helps you locate problems caused by accessing allocated memory before you initialize it, or accessing deallocated memory.
	10 Tracking Deallocations
	11 Tracking Memory Blocks. The Block Properties Window can contain information about many memory blocks. After you place a block in the window, it’s often hard to identify the allocation. Adding a comment lets you remember why you’re tracking a b...
	12 Comparing Memory Use. You can use the Export Memory Data link on the left to write memory information to disk. At a later time, use the Add Memory Debugging File link on the left of the Home page to bring the information back into MemoryScape. You...
	13 Guarding Allocated Memory. Guards detect when a program writes beyond the limits of your memory block. To turn them on, either select Medium from Basic Memory Debugging Options or select Guard allocated memory from Advanced Memory Debugging Options.
	14 Using Red Zones. Red Zones allow MemoryScape to immediately notify you if your program oversteps the bounds of your allocated block. Turn them on by selecting High from Basic Memory Debugging Options, or by selecting Use Red Zones to find memory a...
	15 If You Have Trouble Running Your Program in MemoryScape.
	Using MemoryScape from TotalView® for HPC
	1 Starting MemoryScape from TotalView
	2 Identifying Dangling Pointers. When memory debugging is enabled and TotalView displays the value of a variable, it tells you if memory is allocated or if you’re looking at a dangling pointer.
	3 Seeing Changes (Setting a Baseline)
	4 Comparing Memory Use. If you created a baseline, go to the MemoryScape window and select your memory report. You can select the option Relative to Baseline, which shows you the information relative to the baseline you set.

