
ReplayEngine User Guide

Version 2024.3
September, 2024

TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or
misuse of the Documentation

PERFORCE SOFTWARE, INC. MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOC-
UMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. PERFORCE SOFTWARE, INC. HEREBY DISCLAIMS
ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER
IN CONTRACT, TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAM-
AGES IN CONNECTION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

© 2024 Perforce Software, Inc. All rights reserved.
© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998–2007 by Etnus LLC. All rights reserved.
© 1996–1998 by Dolphin Interconnect Solutions, Inc.
© 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/

iii

About ReplayEngine

How ReplayEngine Works. 2
Play It Backwards. 2
The Process of Recording and Playback . 2

System Resource Issues . 4

Replaying Your Program . 5

Threads and Processes. 7

Attaching to Running Programs . 8

Saving and Loading the Execution History. 9

 Using ReplayEngine

Enabling and Disabling ReplayEngine . 11
Enabling ReplayEngine at Program Load . 11
Enabling and Disabling ReplayEngine for a Loaded Program. 12

Enabling Replay. 12
Disabling Replay . 12

Examining Program State and History. 14

Replay Bookmarks . 15
Creating bookmarks . 15
Activating bookmarks . 16

Setting Preferences for ReplayEngine . 17

CLI Support. 18

 Known Issues and Limitations

Performance Issues . 23

Index . 24

Contents

1

About ReplayEngine

 How ReplayEngine Works on page 2

 System Resource Issues on page 4

 Replaying Your Program on page 5

 Threads and Processes on page 7

 Attaching to Running Programs on page 8

 Saving and Loading the Execution History on page 9

ReplayEngine is embedded functionality on the Linux x86-64 platform that allows you to go backwards in a
debugging session.

NOTE: If your platform does not support ReplayEngine, the ReplayEngine toolbar and Replay-
Engine-related menu items do not display.

For information on using ReplayEngine in a debugging session, see Using ReplayEngine on page 10.

ReplayEngine complements TotalView, so this discussion assumes a working knowledge of how the TotalView
product works.

How ReplayEngine Works Play It Backwards 2

About ReplayEngine

How ReplayEngine Works

Play It Backwards
The hardest step in locating software bugs involves working backward from a failure to identify the error that
caused it. Conventional debugging techniques don’t make it easy to find the cause of an error, as they allow you
to control program execution only in a forward direction.

Instead of going back to the beginning to try to recreate the conditions of a problem, ReplayEngine starts from
the point of failure and works backward in time to find the cause. Recreating the conditions of a crash, sometimes
the hardest problem in conventional forward debugging, is no longer necessary. You can now move to locate
errors that occurred long before the failure they caused.

The Process of Recording and Playback
In order to move backward in your program, ReplayEngine saves state information as your program executes.
This information includes the order in which your program executes and any changes to its data. When
ReplayEngine is saving state information, it’s in record mode.

The saved state information is the program’s execution history. You can save the execution history at any time and
then reload the recording when debugging the executable in a subsequent session.

Using a ReplayEngine command, either by clicking a toolbar button or by entering a command into the CLI, shifts
ReplayEngine into replay mode. In this mode, you can move to any previously executed statement, at which point
ReplayEngine displays its saved state information. The information displayed in replay mode is identical to the
information displayed in record mode.

Most debugging commands work the same in replay mode as in record mode. Commands such as viewing a vari-
able or setting a breakpoint work as you would expect. Debugging commands that do not work as expected are
those that change or alter a recorded state. Typically, these are commands that:

 Change a variable’s value

 Call functions that alter memory

 Run threads asynchronously

If your program unlinks a file in record mode, the file remains always unlinked in replay mode. That is, in replay
mode, the file will be unlinked even if you move back to before the unlink statement.

How ReplayEngine Works The Process of Recording and Playback 3

About ReplayEngine

When executing in record mode, your program runs more slowly than without ReplayEngine turned on. Usually,
you will not notice the extra execution time. However, when you are in replay mode, the computational overhead
required to recreate the program’s state may be noticeable. When it needs extra time, ReplayEngine displays a
dialog box to cancel the operation.

System Resource Issues The Process of Recording and Playback 4

About ReplayEngine

System Resource Issues
ReplayEngine writes internal information in /tmp. Normally, this uses very little space, but in some situations /
tmp can grow large, and if your system has a small /tmp area, ReplayEngine may fill it up. If this occurs, you can:

 Increase the amount of storage allocated to /tmp.

 Use the TMPDIR environment variable to point to another disk location.

 Define a special TotalView variable, TVD_REPLAY_TMPDIR, for ReplayEngine to use as the base
directory for writing its temporary information. For example:
setenv TVD_REPLAY_TMPDIR /home/user/smith/replayTempDir

ReplayEngine also changes the amount of memory your program uses because it keeps history and state infor-
mation in memory.

While in replay mode, ReplayEngine creates extra processes (usually around 10) but depending on the complexity
of the application you are debugging, you may see more. Ignore these processes as they are used only by
ReplayEngine.

RELATED TOPICS
Controlling the history and state information
storage

Examining Program State and History on page 14

Saving and reloading execution history Saving and Loading the Execution History on page 9

Replaying Your Program The Process of Recording and Playback 5

About ReplayEngine

Replaying Your Program
Before you can replay your program’s statements, you must stop your program’s execution. Either halt your pro-
gram, or TotalView can stop execution when your program encounters a breakpoint.

Figure 1, ReplayEngine Toolbar in Active State

The ReplayEngine commands include:

 Record (), a toggle that enables and disables ReplayEngine. See Enabling and Disabling
ReplayEngine on page 11.

 Go Back () displays the state that existed at the last action point. If no action point is
encountered, ReplayEngine displays the state that existed at the start of its recorded history.

 Prev () displays the state that existed when the previous statement executed. If that line had a
function call, Prev skips over the call.

 Unstep () displays the state that existed when the previous statement executed. If that line had
a function call, ReplayEngine moves to the last statement in that function.

 Caller () displays the state that existed before the current routine was called.

 Back To () displays the program’s state for the line you select. This line must have executed
prior to the currently displayed line. If you wish to move forward within replay mode, select a line
and select the Run To button from the main debugging toolbar.

 Live () shifts from replay mode to record mode. It also displays the statement that would have
executed had you not moved into ReplayMode.

 Bookmark () creates a ReplayEngine bookmark at a selected location.

 Save () saves the current replay recording session to a file.

The above commands are also available on the Process menu, with indications of the keyboard shortcuts.

NOTE: The ReplayEngine toolbar commands appear only if you are using TotalView on a Linux-x86-64
machine. On this platform, these buttons are permanently disabled if you do not have a
ReplayEngine license.

Replaying Your Program The Process of Recording and Playback 6

About ReplayEngine

To move forward within the program’s history, use the Step, Next, Run To, and Out buttons. These commands
do the same thing in replay or record modes.

You can also set breakpoints in previously executed statements. After setting a breakpoint, pressing the Go but-
ton moves you to that statement. You can transform a breakpoint to an evalpoint if the evalpoint uses simple
expressions such as “if (x==y+z) $stop”. You cannot, however, create barrierpoints.

If you reach the line that would have been executed if you hadn’t gone into replay mode, you are automatically
switched back to record mode and you can then resume program execution. You can also switch back to record
mode by clicking the Live button.

Threads and Processes The Process of Recording and Playback 7

About ReplayEngine

Threads and Processes
When recording, ReplayEngine runs and records one thread at a time. In a multi-threaded or multi-process pro-
gram, normally ReplayEngine decides the order in which threads are run and recorded. ReplayEngine runs all
threads in succession and saves state information for each thread as it executes.

If you need to control the way threads execute, use the TotalView asynchronous threading commands while in
record mode. With these commands you can:

 Single-step a process or lockstep group.

 Hold threads so they do not run.

In replay mode, all actions must occur in the same order as recorded. This implies that you cannot influence the
order in which threads execute, and you cannot hold a thread.

Attaching to Running Programs The Process of Recording and Playback 8

About ReplayEngine

Attaching to Running Programs
If you attach to a program, ReplayEngine begins recording that program’s execution at the time you attached to it.
This implies that you cannot go back further than when you attached to the process.

Saving and Loading the Execution History The Process of Recording and Playback 9

About ReplayEngine

Saving and Loading the Execution History
TotalView can save the current ReplayEngine execution history to a recording file at any time. The saved recording
file can then be loaded into TotalView where all the replay options are available to go back and forth within the
time boundaries of the saved recording.

To save a recording, either:

 Select the Save button on the ReplayEngine toolbar: , or

 Choose the Save Recording File … menu item in the File menu.

A Save dialog launches. Edit the default filename if you wish, then select a location to save the file. By default, the
name of the recording file is replay_<executable-name>_<date>_<time>.recording.

Alternatively, use the CLI dhistory command:

The filename can be either a path or a simple file name, in which case it is saved into the current working direc-
tory. If no filename is specified, the recording is saved in the current working directory as
replay_pid-hostname.recording.

The saved recording can be loaded into TotalView as follows:

 At startup, using the same syntax as when opening a core file:

totalview executable recording-file

TotalView recognizes the recording file for what it is and acts appropriately.

 After TotalView is running, using the dattach command with option -c:

dattach executable -c recording-file

 On the Start Page view by selecting Load Core File or Replay Recording File. (See Debug a Core
or Replay Recording File in the TotalView User Guide.)

Performing any of the above displays the dialog for selecting the record file and application used during the
recording session when the recording session was saved.

Again, TotalView recognizes it is dealing with a recording file.

dhistory -save filename

10

 Using ReplayEngine

 Enabling and Disabling ReplayEngine on page 11

 Examining Program State and History on page 14

 Replay Bookmarks on page 15

 Setting Preferences for ReplayEngine on page 17

 CLI Support on page 18

There is very little difference between running TotalView and running ReplayEngine. With ReplayEngine
enabled on a running program, use the special buttons Go Back, Prev, Unstep, Caller, or Back To to go back
in your program’s history to the statement you wish to examine.

Enabling and Disabling ReplayEngine Enabling ReplayEngine at Program Load 11

Using ReplayEngine

Enabling and Disabling ReplayEngine
You can prepare a program for replay when you first load it into TotalView. Once the program is loaded, there are
a number of ways to enable replay.

Enabling ReplayEngine at Program Load
To enable ReplayEngine when loading a program into TotalView, select the checkbox Enable reverse debugging
with Replay Engine in either the Debug a Program or Attach to Process dialogs available on the Start Page.

Figure 2, Enabling ReplayEngine from the Start Page

For a program already under TotalView control, you can use the Command Line view to enter the dattach com-
mand with the -replay option.

dattach -replay program-path

Enabling and Disabling ReplayEngine Enabling and Disabling ReplayEngine for a Loaded Program 12

Using ReplayEngine

For a new program, ReplayEngine begins recording instructions as soon as you begin executing the program. For
a running process to which you have attached, ReplayEngine starts recording the next time you restart the
process.

Enabling and Disabling ReplayEngine for a Loaded Program
Once a program is loaded into TotalView, enable and disable replay via several options.

Enabling Replay

Replay behavior differs depending on whether or not program execution has begun.

The program is not yet executing

If the program is loaded but has not started executing, enable ReplayEngine in any of the following ways:

 Click the Record toolbar button

 Select the Debug > Enable ReplayEngine menu item

 Execute the CLI command dhistory -enable

ReplayEngine begins recording when the process starts executing. If you restart the process, ReplayEngine begins
recording from the beginning of process execution.

To stop recording, exit the program and explicitly disable ReplayEngine. You cannot turn replay off while a process
is executing.

The program is executing but halted

If a process is already executing and stopped, you can immediately enable replay with any of the methods used
when your program is not yet executing — but replay will then be enabled only while the program executes that
single time. At process exit and restart, ReplayEngine will no longer be enabled unless you explicitly re-enable it.

Enabling ReplayEngine during program execution also means that you cannot step backward beyond the point at
which ReplayEngine was enabled.

Disabling Replay

You cannot disable ReplayEngine for a process that is executing. You must:

1. Kill the executing process.

Enabling and Disabling ReplayEngine Enabling and Disabling ReplayEngine for a Loaded Program 13

Using ReplayEngine

2. Disable ReplayEngine either by

 Clicking the Record button or de-selecting the Debug > Enable ReplayEngine menu item,
both of which are toggles.

 Entering dhistory -disable in a CLI prompt focused on the process.

If you now restart the process, ReplayEngine will be disabled for the executing process.

After killing the process, you can also return to the Start Page, click the Edit option for your most recent session
(the pencil icon), and then de-select the Enable reverse debugging with Replay Engine option in the resulting

dialog.

Examining Program State and History Enabling and Disabling ReplayEngine for a Loaded Program 14

Using ReplayEngine

Examining Program State and History
After enabling ReplayEngine, you can begin controlling your program’s execution using the same execution com-
mands used when ReplayEngine is not enabled. For example, you might set a breakpoint and press the Go
button, or select a line and press the Run To button.

When you wish to review the program’s state at some previous point, halt your program and use the Go Back,
Prev, Unstep, Caller, or Back To buttons to go to the statement you wish to examine. These four buttons are
similar to the Next, Step, Out, and Run To toolbar buttons, differing only in that the Replay buttons go back-
wards in the program’s history. The Process pull-down menu contains the menu bar equivalents to these
commands.

While you are in replay mode, note that the Next, Step, Out, and Run To toolbar buttons are still active to move
forward in the history.

When you’re in replay mode, TotalView changes the highlight line from yellow to orange within the Source Pane.

Figure 3, Source View with ReplayEngine

The Source View always shows the last line executed – the “Live” location – within record mode using the sym-
bol. When you are in replay mode, this symbol is where ReplayEngine shifts from replay mode back to record
mode.

NOTE: ReplayEngine supports process width only; therefore, the scoping commands at the far left
side of the main toolbar have no effect in replay mode.

Replay Bookmarks Creating bookmarks 15

Using ReplayEngine

Replay Bookmarks
Replay bookmarks mark a point in the execution of a program, allowing you to quickly jump back to that point in
time.

NOTE: Bookmarks are set at a specific point during the program's execution history. If you restart
your program, it is not guaranteed that the execution history will be the same. Even if you did
not recompile your application, data inputs and other factors may alter the execution paths
taken and, as a result, a bookmark might not map to the same point in execution history as
when you initially created it.

Creating bookmarks
Create bookmarks at any point while stepping through the code of your program by:

 Selecting the Debug > Create Replay Bookmark… menu item.

 Using the Ctrl+Shift+D keyboard shortcut.

 Clicking the Bookmark icon () on the ReplayEngine toolbar.

You can add an optional comment from the Create Replay Bookmark dialog.

Figure 4, Create Replay Bookmark dialog

Once the bookmark is created, it displays in the Replay Bookmarks view.

Replay Bookmarks Activating bookmarks 16

Using ReplayEngine

Figure 5, Replay Bookmarks view

Activating bookmarks
Activate a bookmark by double-clicking on the bookmark in the Replay Bookmarks view. ReplayEngine takes
you to that point in your program’s execution history where you have the full power of TotalView and Replay-
Engine to examine the state of your program, run forward or backward, set breakpoints, and so forth.

Figure 6, Activated Replay bookmark

Return to the live point in your program by clicking the Live icon on the ReplayEngine toolbar, selecting Live

from the Process menu, or using the Alt+Shift+L keyboard shortcut.

Setting Preferences for ReplayEngine Activating bookmarks 17

Using ReplayEngine

Setting Preferences for ReplayEngine
You can set these preferences for ReplayEngine:

 The maximum amount of memory to allocate to ReplayEngine

 The preferred behavior when the memory maximum is reached

Set memory size preference in the CLI, like so:

The value can be a number, or a number followed by ‘K’ or ‘M’ for kilobytes or megabytes. The default value ‘0’
specifies to limit the maximum size by available memory only.

For example:

dset TV::replay_history_size 1024M

Sets the maximum history size to 1024 megabytes.

dset TV::replay_history_size 1000000

Sets the maximum history size to 1000000 bytes.

The behavior preference defines ReplayEngine behavior when the maximum memory size is reached. By default,
the oldest history is discarded so that recording can continue. Alternatively, you can specify that the recording
process simply stops when the allocated memory is used up.

For example:

dset TV::replay_history_mode 1

Discard oldest history and continue recording (the default).

dset TV::replay_history_size 1000000

Stop the process being recorded and stop recording.

dset TV::replay_history_size value

CLI Support Activating bookmarks 18

Using ReplayEngine

CLI Support
CLI support is accessed through the Command Line view on the interface. If that view is not currently displayed,
you can show it either by right-clicking in the menu and toolbar area and selecting the Command Line view in the
context menu, or through the Window > Views menu.

 The dload and dattach CLI commands have the -replay option for enabling and disabling
ReplayEngine. For example:
dload -replay myProgram

 The dgo, dnext, dnexti, dout, dstep, dstepi, and duntil commands let you step or run backwards
by using the -back option. For example:
dnext -back
duntil -back 22

The dhistory command has the following options:

 –info

Displays the current time. The output of this command shows an integer value followed by an address. The
first integer value is a virtual timestamp. This virtual timestamp does not refer to the exact point in time; it
has a granularity that is typically a few lines of code. The address value is a PC value that corresponds to a
precise point within that block of code.

 –enable

If the program has not been started, ReplayEngine is enabled when the program is started. If the program
is already running, ReplayEngine is enabled immediately. Recording begins at the point that ReplayEngine
was enabled and moving back beyond that point is not possible.

 –disable

Disables ReplayEngine for the next restart for the process.

 –create_bookmark [comment]

Creates a Replay bookmark at the current execution location so you can return to it later. You can specify an
optional comment to this command and it will be stored with the bookmark for display when you use the
show_bookmarks command. A bookmark is created with a unique numeric ID, which is the return value

 –goto_bookmark ID

Goes to the bookmark with the specified ID. This returns the focus process to the execution location where
the bookmark was first created.

 –go_live

Resets the process back to record mode.

CLI Support Activating bookmarks 19

Using ReplayEngine

 –show_bookmarks

Displays all Replay bookmarks. This command shows the bookmark ID along with information about what
line number, PC and function the bookmark is on. If you added a comment to help you remember the sig-
nificance of the bookmark, it displays this as well.

 –delete_bookmark ID

Deletes the bookmark with the given ID.

 –clear_bookmarks

Deletes all Replay bookmarks.

 –get_time — Deprecated. Use the bookmark options.

Displays the current time. The output of this command shows an integer value followed by an address. The
first integer value is a virtual timestamp. This virtual timestamp does not refer to the exact point in time; it
has a granularity that is typically a few lines of code. The address value is a PC value that corresponds to a
precise point within that block of code.

 –go_time time — Deprecated. Use the bookmark options.

Moves the process to an execution point represented by the time argument. The time argument is a virtual
timestamp as reported by dhistory -get_time. You cannot use this command to move to a specific instruc-
tion but you can use it to get to within a small block of code (usually within a few lines of your intended point
in execution history). This command is typically used either for roughly bookmarking a point in code or for
searching execution history. It may need to be combined with stepping and duntil commands to return to
an exact position.

These CLI commands are explained in detail in the TotalView Reference Guide.

20

 Known Issues and Limitations

 Limitations on page 20

 Performance Issues on page 23

Limitations
 Obscure instructions: Use of AMD 3DNow! and other extended AMD instructions is not

supported (though Intel SSE, SSE2, SSE3 and SSE4 instructions are supported). Instructions
that modify CS, DS, ES or SS registers are also not supported.

 AsyncIO: ReplayEngine does not support asynchronous IO operations. io_cancel, io_destroy,
io_getevents, ioperm, iopl, io_setup, and io_submit system calls are all unsupported.

 Exec: ReplayEngine does not support the execve syscall, as used by libc's execl(), execlp(),
execle(), execv(), execvp(), and execve() functions. If the target program attempts to issue this
system call, forward execution will not be possible beyond this point (though reverse execution
is still possible).

 Obscure system calls: Certain rarely used system calls are not supported. If the target
program attempts to issue an unsupported system call, forward execution will not be possible
beyond this point (though reverse execution is still possible). The following system calls are
either esoteric or obsolete, and only maintained in the kernel for backward compatibility with
binaries written for early 2.x series kernels: ssetmask, modify_ldt, pivot_root, vm86, and
unshare.

 Use of setrlimit(): If the target program uses setrlimit to reduce the amount of memory,
processes, or other resources consumed, ReplayEngine may not be able to operate properly
due to lack of resources.

 21

Known Issues and Limitations

 Use of x86 inter-segment (aka 'far') jumps/calls: ReplayEngine does not support the use of far
jumps/calls in the target program. Any such attempt will result in forward execution not being able
to continue from the point at which the far jump/call instruction is issued.

 Non-executable memory: ReplayEngine ignores the executable status of memory when running
code, so code that would usually fail because it is in non-executable memory will run successfully.

 Disk usage: Depending on the target program, ReplayEngine can create large temporary files
within /tmp. See System Resource Issues for information on how to use alternative temporary
directories.

 Self-modifying code: ReplayEngine mostly works with self-modifying code, but in some situations
the effects of writing into the currently executing “basic block” may be delayed (that is, writing
instructions just ahead of the current program counter such that the processor executes the newly
written code by virtue of “running in to” rather than “jumping to” it).

 Shared memory accesses straddling valid and invalid pages: Accessing shared memory where
the instruction's operand straddles a page boundary such that the first part of the operand is in
accessible shared memory, but the second part is in mapped shared memory which is not backed
by a valid shared object (e.g. because the file which is mapped has been truncated) should receive
signal SIGBUS. Under ReplayEngine, a target program making such an access will not receive
SIGBUS but will read zeros for the part of the operand that straddles into unbacked memory. Note
that normal attempted access to shared memory not backed by a shared object will generate a
SIGBUS as normal; the issue applies only when a single instruction's access that lies half in valid
memory and half in invalid memory that should generate a SIGBUS.

 Breakpoints: All breakpoints used with ReplayEngine work like hardware breakpoints. In particular,
if the code where the breakpoint resides is not modified, writing to that code will not remove the
breakpoint, and setting a breakpoint that is not at the first byte of an instruction will have no effect.

 System call output buffers: Any system calls that write to memory must be passed a buffer
entirely within writable memory. For example, if read() is passed an 8k buffer of which only the first
4k is in user-writable memory, if that read() would normally return 4k or fewer characters then
natively it may succeed, but on ReplayEngine it will fail with EFAULT. If a system call that writes to
memory is passed a buffer which is not in writable memory at all, but fails for some other reason
before the kernel tries to write to the buffer, then natively it may fail with some error other than
EFAULT, but on ReplayEngine it may fail with EFAULT. If two buffers which overlap are passed to a
system call which writes to both of them or reads from one and writes to the other, the behavior in
ReplayEngine may differ from the native behavior (although behavior in such cases is liable to vary
between kernel versions, too.)

 22

Known Issues and Limitations

 Adjust Flag: According to the Intel manuals, the state of the Adjust Flag (AF) after some instructions
is “undefined.” On some processor models, different executions of the same code can produce
different states of AF. If the behavior of a program depends on the state of AF when it is supposed
to be undefined, the program may not run correctly with ReplayEngine.

 SIGCHLD while attaching: If a SIGCHLD arrives for a process while ReplayEngine is in the middle
of attaching to the process, the SIGCHLD may be silently lost. Once the process has been attached
to, SIGCHLD is handled normally.

 Loading a previous recording session: The successful reloading and debugging of a previously
saved replay recording session requires that both the environment that saved the session and the
environment replaying the recording session be exactly the same.

Performance Issues 23

Known Issues and Limitations

Performance Issues
High TLB rates with certain multi-threaded target programs

When reverse debugging an application in which many threads make frequent system calls on a multi-processor
platform, binding the application process to a single processor can improve performance. This is because such
applications put stress on ReplayEngine's heap management, which in turn stresses the processor's TLB (transla-
tion lookaside buffer). If the application is bound to a single processor, it is less likely to suffer TLB misses caused
by process migration. Since user threads are automatically serialized during reverse debugging, there is no loss of
concurrency due to binding.

If the application is to be launched under TotalView, one way to accomplish binding is to preface the totalview
command with a taskset(1) command specifying a single processor. For example:
taskset --cpu-list 3 totalview -replay myapp
To accomplish binding when TotalView is to be attached to a running application, find the PID (process identifier)
of the application process, and use taskset to bind that process to a single processor before attaching to it with
TotalView. For example:
taskset --pid --cpu-list 3 <PID of myapp>
We have noticed the need for such binding when debugging MySQL applications with ReplayEngine.

24

Symbols
/tmp

use with ReplayEngine 4

B
BackTo toolbar button

(ReplayEngine) 5

barriers with ReplayEngine 6

breakpoints
and ReplayEngine 6

C
Caller toolbar button

(ReplayEngine) 5

CLI
commands supporting

ReplayEngine 18

CLI commands
-back option for replay

debugging 18
dattach -replay 18
dhistory 18
dhistory -disable 13
dhistory -replay 12
dload -replay 18
dnext and dnexti -back

commands 18
supporting ReplayEngine 18

code highlighting
during ReplayEngine replay 14

code marker for end of replay
(ReplayEngine) 14

D
dattach command

-replay option for
ReplayEngine 18

Debug > Enable ReplayEngine
menu item
disabling replay 12
enabling replay 12

Debug menu 12

Debug New Program dialog

enabling ReplayEngine 11

debugging
CLI commands supporting re-

play debugging 18
switching between replay and

live debugging 6

debugging behavior in Replay-
Engine replay mode 6, 14

debugging commands in
ReplayEngine 2

dhistory command 18

disabling ReplayEngine 12
Debug > Enable RepayEngine

menu item 12
with CLI dhistory -disable

command 13
with Process > Startup Param-

eters dialog 13
with Record button 12

dload command
-replay option for

ReplayEngine 18

dload -replay and -noreplay
options 18

dnext and dnexti -back command-
line options 18

E
enabling ReplayEngine

with CLI dhistory command 12
with Debug > Enable Replay-

Engine menu item 12

eval breakpoints with
ReplayEngine 6

G
GoBack toolbar button

(ReplayEngine) 5

H
highlighting

during ReplayEngine replay 14

L
Live toolbar button

(ReplayEngine) 5, 6

M
menus

Debug 12
Process 5, 14
save ReplayEngine recording

file 9

P
performance with ReplayEngine 3

Prev toolbar button
(ReplayEngine) 5

process creation by
ReplayEngine 4

Process menu 5
ReplayEngine commands 14

program state in ReplayEngine 2

R
Record button (ReplayEngine)

disabling replay 12

record mode 2

Record toolbar button
(ReplayEngine) 5

recording program history 2

replay mode 2

ReplayEngine
breakpoints, evalpoints, and

barrierpoints 6
canceling operations in replay

mode 3
CLI command support 18
CLI commands for debugging

during replay 18
debugging commands 2
debugging commands during

replay 6, 14
debugging through the CLI 18
dhistory CLI command 18
disabling 12

 Index

enabling 11
end of replay marker 14
highlighting in code during

replay 14
performance when using 3
process creation 4
program state 2
record mode 2
replay mode 2
saving a recording file 9
scoping disabled during

replay 14
supports only process

width 14
switching between replay and

live debugging 6
thread execution in replay

mode 7

ReplayEngine commands 5

replayengine_about 1

S
scoping

disabled during replay
(ReplayEngine) 14

space requirements with
ReplayEngine 4

state of program in ReplayEngine 2

T
temp space requirements with

ReplayEngine 4

temp space with Cray XT 4

thread execution during Replay-
Engine replay 7

TMPDIR environment variable and
ReplayEngine 4

toolbars
ReplayEngine 14

TVD_REPLAY_TMPDIR variable 4

U
Unstep toolbar button

(ReplayEngine) 5

using ReplayEngine 10

	Contents
	About ReplayEngine
	How ReplayEngine Works
	Play It Backwards
	The Process of Recording and Playback

	System Resource Issues
	Replaying Your Program
	Threads and Processes
	Attaching to Running Programs
	Saving and Loading the Execution History

	Using ReplayEngine
	Enabling and Disabling ReplayEngine
	Enabling ReplayEngine at Program Load
	Enabling and Disabling ReplayEngine for a Loaded Program

	Examining Program State and History
	Replay Bookmarks
	Creating bookmarks
	Activating bookmarks

	Setting Preferences for ReplayEngine
	CLI Support

	Known Issues and Limitations
	Performance Issues

	Index

