
TotalView Cheat Sheet
1 Compiling Programs. Compile your pro-

grams using the –g option. For example:

gcc -g –o my_prog my_prog.c

2 Starting TotalView. Enter:

totalview my_prog –a arguments

Or, type totalview from the shell to open the
Sessions Manager to:

• Start a new program or parallel program

• Attach to a running process

• Open a core file

• Manage your debug sessions

3 Toolbar Buttons Defined

• Go (): Starts execution.

• Halt (): Stops execution, but you can
restart from where execution stopped.

• Kill (): Kills the executing program.

• Restart (): Does a Delete, then a Go.

• Next (): Executes all code on the current
line; program counter (PC) will be at the next
line.

• Step (): Executes line; if the line has a sub-
routine, PC moves into it.

• Out (): Executes remainder of current rou-
tine; PC is on the line that called this routine.

• Run To (): After selecting a line (click on
the line, not the line number), press this
button to execute all instructions from the PC
until this line.

• Modify Program Arguments ():
Launches the Session Editor where you can
edit parameters or other aspects of your pro-
gram.

4 Setting a Breakpoint

• Line: Click on a line number.

• Function: Select Action Points > At Loca-
tion, then enter a breakpoint expression.

• Search: Select Edit > Lookup File or Func-
tion, then click on the line number.
5 Attaching to Already Running Programs
• Select File > Attach to a Program to launch

the Sessions Manager, and browse to the pro-
gram.

• If you don’t see the program, use the ps com-
mand to find its PID (Program ID), then enter it
in the PID field.

Always attach to a program’s main thread.

6 Stopping at a Line Based on a Variable’s
Value
a Set a Evaluation Point by either right-click-

ing on a line number and selecting Create
Evaluation Point or by selecting Action
Points > Create Evaluation Point.

b. Enter an expression to evaluate in the Create
Evaluation dialog box, for example:
if (my_variable == 0) $stop

7 Seeing Variable Values
• For local variables, view the value in the Local

Variables view’s Value column or hover over
the variable to view more info in a tooltip.

• For arrays and structures, either select [Add
New Expression] in the Data View and enter
the variable expression, or drag the variable
from the Local Variables view to the Data
View.

8 Chasing Pointer Values. If a variable’s type is
a pointer, dereference it in the Data View to see
its value.

9 Viewing Multiple Variables Concurrently.
Add any number of variables to the Data View,
including struct and array elements. Watch the
values update when you run your program.

10 Examine Array Statistics.
View stats generated from array values in the
Array Statistics view by right-clicking on an
array and selecting Show Statistics. Use the
Slice field in the view to generate stats on a sub-
set. Click Update to update the stats as your pro-
gram runs.

11 Casting. Change the way TotalView interprets
and displays variable data by editing the Type
field of a variable window.
For example, if you have a pointer to an array,
you’ll want to change the datatype from some-
thing like int * to int[100] * to see array or
pointer elements.
12 Changing Variable Values.
In the Local Variables view and Data View,
double-click a value to edit it.

13 STL Variables. TotalView provides auto-
matic STL type transformations to more
clearly display STL data without the underly-
ing structure. Control this default using the
TV::ttf variable.

14 Searching For Variables or Other Program
Elements.
Select Edit > Find (Ctrl F) to search for any
program element.

15 Stopping Execution When a Variable’s
Value Changes. Select Action Points > Create
Watchpoint.
If the Data View is displaying an array or a struc-
ture, dive on an element so that only one of the
variable’s elements is displayed.

16 Seeing One Element in an Array of Struc-
tures as its own Array
a Select one element of the array in the Data

View.
b. Right-click and select Dive in All.

The Data View creates a new array to visualize
this single element across structures.

17 Seeing a Variable’s Value in Multiple
Threads or Processes.
Select a thread or process in the Processes &
Threads view. The Data View, Call Stack, and
Local Variable view updates with data and
variables relevant to the selection.

18 CLI Command Entry. Select Window >
Views > Command Line. Enter CLI com-
mands in the displayed view. Enter dhelp to
return help.

19 Debugging with fork() and execve() Pro-
grams. In most cases, TotalView automati-
cally follows fork() and execve() calls and
acquires new processes into the debugging
session. Use the TV::exec_handling and
TV::fork_handling state variables to control
how the debugger handles these system calls.

20 Debugging with ReplayEngine. Replay-
Engine is an add-on for reverse debugging in
Linux x86 and x86-64. To enable reverse
debugging, either:
• Select the checkbox Enable reverse
debugging with Replay Engine in either
the Debug a Program or Attach to Process
dialogs in the Session Editor.

• Select Debug > Enable ReplayEngine after
loading your program into TotalView, but
before running it.

The ReplayEngine toolbar:

• Record () Enables and disables Replay-
Engine.

• Go Back () Displays the state at the last
action point. If no action point is found, dis-
plays the state at the start of its recorded his-
tory.

• Prev () Displays the state at the previous
statement execution. If that line had a func-
tion call, skips over the call.

• Unstep () Displays the state at the previ-
ous statement execution. If that line had a
function call, moves to the last statement in
that function.

• Caller () Displays the state before the
current routine was called.

• Back To () Displays the state for the line
you select. This line must have executed
prior to the currently displayed line.

• Live () Shifts from replay mode to
record mode and displays the statement that
would have executed had you not moved
into ReplayMode.

• Bookmark () Creates a ReplayEngine
bookmark at a selected location.

• Save () Saves the current replay record-
ing session to a file.

TotalView Complete Documentation
help.totalview.io

TotalView Video Tutorials
totalview.io/support/video-tutorials

Copyright TotalView by Perforce©
Perforce Software, Inc. | totalview.io

https://totalview.io/support/video-tutorials
https://totalview.io
https://help.totalview.io

