~--TotalView

TotalView Reference Guide

Version 2024.3
September, 2024

PERFORCE

WW. perfo rce.com

-~ TotalView

© 2024 Perforce Software, Inc. All rights reserved.

© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998-2007 by Etnus LLC. All rights reserved.

© 1996-1998 by Dolphin Interconnect Solutions, Inc.

© 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

ACKNOWLEDGMENTS

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or
misuse of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

TotalView by Perforce
http://totalview.io

https://rwkbp.makekb.com/

About this Guide
RESOUICES . o ot 2
Part1: Usingthe CLI 3

CLI Command Summary
CLI Commands

Commands by Category 19
General CLICommands 19
Cll Initialization and Termination Commands. i 19
Program Information Commands. 20
Execution Control Commands. 20
ACtion PoiNts . .o o 21
Platform-Specific CLICommands. 22
Other Commands.o 22

AllCommands 23

CLI Namespace Commands

Commands by Categoryo 218
ACCESSOr FUNCHONS. . . oo 218
Helper FUNCHions. oo 218

AlLCoOMMaNdS 220

Batch Debugging Using tvscript

ADOULEVSCIIPE. 281
tvscript Command Syntax 282
tvsCript OptioNS . . 284
tvscript External Script Files. 291
Logging Functions APl 291
Process FUNCtions APl o 291
Thread Functions APl . . . o o 291
Action Point APl 291
Event APl 293
Example tvscript Script File. o 293

Contents

TotalView Variables

Top-Level (::) Namespace. 298

TViiNAMESPACE . .o e 307

TVIMEMDEBUG:: Namespace 348

TVaGULNamMESPACE . . . oo 350
Part 2: Transformations 358

Creating Type Transformations

About the Type Transformation Facility 360
Why Type Transformations 361
Creating Structure and Class Transformations. 363
Transforming StruCtUres 363
build_struct_transform Function. 365
Type Transformation EXpressions 365
Using Type Transformations e 370
AV W L 371
Writing a Data Display Function 372
TV _ttf_type_asCii_string ... oo 372
TVt type int 372
Templates. o 374
Precedence - Searching for TV_ttf_display_typeo i 375
TVt add oW . . o 375
TVt eC Ok 375
TV_ttf_ec_not_active 375
TV_ttf_ec_invalid_characters 376
TV_ttf_ec_buffer_exhausted 376
Returnvalues from TV_ttf_display_type 376
TV _ttf_format_ok 376
TV_ttf_format_ok_elide. 376
TV_ttf_format_failed 376

TV _ttf_format_raw 376
TV _ttf_format_never. 376
ElSiON . 377
Other Constraints 377
Safety L 378
Memory Management. 379
Multithreading o 379
Tipsand Tricks . ..o 379
CoreFiles . .. 380

Using C++View with ReplayEngine 380

Contents

C o 382
Compiling and linking tv_data_display.c......... 382
CH++ViewExampleFiles 383
LIMitatioNS . 384
LICENSING oot 384
Part 3: Running TotalView 385
TotalView Command Syntax
Command-Line Syntax 387
Command-Line Options 388
TotalView Debugger Server Command Syntax
The tvdsvr Command and itsOptions 401
DESCriPtiON. .« o e 401
OptiONS . 401
ReplacementCharacters. 404
Part 4: Platforms and Operating Systems 407
Platforms and Compilers
Compiling with Debugging Symbols 409
Apple RunningmacOS 409
IBMAIX 0N RS/6000 SyStems..\ 409
Linux Runningonanx86-64 Platform 411
Linux Runningonan ARMG4 Platform. 411
SUN SOlaris . . 411
Maintaining Debug Information Separate from an Executable 413
Controlling Separate Debug Files. o 414
Searching forthe DebugFiles. 415
Linking with the dbfork Library. 416
dbfork on IBM AIX on RS/6000 Systems 416
Linking C++ Programswithdbfork. 417
LiNux ormacOsS . .o 417
SUNOS 5 SPARC . . . 417
Compilingand Linking Split DWARF 419
Using GNU DebugFission Split DWARFon Linux 419
Using Split DWARF on Solaris.o 419
Operating Systems
Supported Operating Systems 422

Troubleshooting macOS Installations 423

Contents

Mounting the /proc File System 424
Mounting /procwith SUnOS 5. 424
SWaP SPACE. . 425
Swap Space on IBM AlX ... 425
SWap Space ON LiNUX. 425
Swap Space on SUNOS 5 L 426
Shared Libraries 427
Changing Linkage Table Entries and LD_BIND_NOW 428
Debugging Your Program’s Dynamically Loaded Libraries. 429
dlopen Options for Scalability. 429
Filteringdlopen Events 429
Handling dlopen EventsinParallel 436
Known LiImitations 436
Remapping Keys. 437
Architectures
AMD and Intel X86-64. 439
x86-64 General Registers 439
x86-64 Floating-PointRegisters 440
X86-04 FPCR RegiSter . ..o 441
X86-04 FPSRRegister 4472
X86-64 MXCSR Registero 443
Power Architectures 444
PowerGeneral Registers. 444
Power MSR Register ... 446
Power Floating-PointRegisters 447
Power FPSCR Register. o 447
ARMOBA . 450
ARMBA General Registers. o 450
ARMGB4 Floating-PointRegisters 450
ARMBA FPCR RegISter. . .ot 45]
ARMBA FPSR RegiSter . ..o 452
INtel X80 . .. 453
Intel x86 General Registers o 453
Intel x86 Floating-PointRegisters 454
Intel x86 FPCR Register 455
Intel x86 FPSR Register 456
Intel x86 MXCSR Register 456
SUN SPARC . . 458
SPARC General Registers 458
SPARC PSR Register. . .. 459

Vi

Contents

SPARC Floating-Point Registers 459
SPARC FPSRRegister. . .. 460
Usingthe SPARCFPSRRegister 461
Appendix A TotalView Glossary..................................... 462
Index. ... 469

vii

About this Guide

This guide is organized in parts:

Part |, Using the CLI on page 3 contains descriptions of all the CLI commands,
the variables that you can set using the CLI, and other CLI-related
information.

Part Il, Transformations on page 358 discusses formatting and
transformations that display data in a clear and concise format to facilitate
easier debugging sessions.

Part Ill, Running TotalView on page 385 documents all possible command-
line options as well as those that customize the behavior of the tvdsvr.

Part IV, Platforms and Operating Systems on page 407 provides general
information on compilers, runtime environments, operating systems, and
supported architectures.

About this Guide

Resources

Please see The Resources appendix in the User Guide for more information on:
m a complete list of Classic TotalView documentation
m conventions used in the documentation
m contact information

The documentation for Classic TotalView could be useful if you are using features not yet supported in the mod-
ern TotalView Ul by invoking commands through the Command Line Interface (CLI). The commands themselves
are described in this Reference Guide, but the Classic TotalView documentation, in particular the User Guide, can
provide useful information on how to use the commands to best advantage in debugging scenarios. This docu-
mentation is available in your Classic TotalView distribution, or on the TotalView documentation web site.

Resources 2

https://help.totalview.io/

rArTI Using the CLI

This part of the reference guide describes the TotalView Command Line Interface (CLI).

CLI Command Summary on page 4

Summarizes all CLI commands.

CLI Commands on page 18

Describes all commands in the CLI's unqualified (top-level) namespace. These are the commands that
you use day-in and day-out, and those that are most often used interactively.

CLI Namespace Commands on page 217

Describes commands found in the TV:: namespace. These commands are seldom used interactively, as
they are most often used in scripts.

Batch Debugging Using tvscript on page 280

Discusses how to create batch scripts that run TotalView unattended.

TotalView Variables on page 297

Describes all TotalView variables, including those uses to set GUI behaviors. These variables reside in
three namespaces: unqualified (top-level), TV:: and TV::GUI. For the most part, you set these variables
to alter TotalView behaviors.

This chapter contains a summary of all TotalView debugger CLI commands. The commands are described in
detail in CLI Commands on page 18 and CLI Namespace Commands on page 217.

actionpoint
Gets and sets action point properties
TV::actionpoint action [object-id 1[other-args]
alias

Creates a new user-defined pseudonym for a command
alias alias-name defn-body

Views previously defined aliases
alias [alias-name]
capture

Returns a command's output as a string
capture [-out | -err | -both] [-f filename 1 command

dactions

Displays information about action points
dactions [ap-id-list] [-at source-loc]
[-enabled | -disabled]
[-enabled_blocks | -disabled_blocks]
[-block_images]
[-block_lines]

Saves action points to a file
dactions -save [filename]

Loads previously saved action points
dactions -load [filename]

dassign

Changes the value of a scalar variable

CLI Command Summary

dassign target value

dattach

Brings currently executing processes under TotalView control

dattach [-g gid] [-r hname]
[-ask_attach_parallel | -no_attach_parallel]
[-replay | -no_replay]
[-go | -halt][-rank num]
[-c { core-file | recording-file }]
[-e] executable [pid-list]
[-parallel_attach_subset subset_specification]

dbarrier

Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hit { group | process | none }1]
[-stop_when_done { group | process | none }][-pending]

Creates a barrier breakpoint at an address

dbarrier -address addr [-stop_when_hit {group | process | none}]
[-stop_when_done { group | process | none }][-pending]

dbreak

Creates a breakpoint at a source location
dbreak breakpoint-expr[-p | -g | -t1 [[-llang1-e expr1[-pending]

Creates a breakpoint at an address
dbreak -address addr[-p | -g | -t] [[-l lang1-e expr 1[-pending]
dcache
Clears the remote library cache
dcache -flush
dcalltree

Displays parallel backtrace data

[-data pbv_data_array] [-show_details] [-sort columns] [-hide_backtrace]
[-save_as_csv filename] [-save_as_dot filename]

dcheckpoint

Creates a checkpoint on IBM AIX
dcheckpoint [-delete | -halt]

CLI Command Summary

dcont

Continues execution and waits for execution to stop
dcont

dcuda
Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the focus, and display

their status.
dcuda
ddelete

Deletes some action points
ddelete action-point-list

Deletes all action points
ddelete -a

ddetach

Detaches from the processes
ddetach

ddisable

Disables some action points
ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a
ddlopen

Loads a shared object library
ddlopen [-now | -lazy] [-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen [-list d/l-ids...]
ddown
Moves down the call stack
ddown [num-levels]
dec2hex

Converts a decimal number into hexadecimal
TV::dec2hex number

CLI Command Summary

denable

Enables some action points
denable action-point-list

Enables all disabled action points in the current focus
denable -a
dexamine

Display memory contents

dexamine [-column_count cnt][-count cnt][-data_only]
[-show_chars] [-string_length /en] [-format fmt]
[-memory_info] [-wordsize Size] variable_or_expression

dflush

Removes the top-most suspended expression evaluation
dflush

Removes all suspended dprint computations
dflush -all

Removes dprint computations preceding and including a suspended evaluation ID
dflush susp-eval-id
dfocus

Changes the target of future CLI commands to this P/T set
dfocus p/t-set

Executes a command in this P/T set
dfocus [p/t-set command]
dga
Displays global array variables
dga [-lang lang type] [handle_or_name][slice]
dgo
Resumes execution of target processes
dgo
dgroups

Adds members to thread and process groups
dgroups -add [-g gid 1[id-list]

CLI Command Summary

Deletes groups
dgroups -delete [-g gid]

Intersects a group with a list of processes and threads
dgroups -intersect [-g gid][id-list]

Prints process and thread group information
dgroups [-list][pattern-list]

Creates a new thread or process group
dgroups -new [thread_or_process 1[-g gid 1[id-list]

Removes members from thread or process groups
dgroups -remove [-g gid] [id-list]
dhalt
Suspends execution of processes
dhalt
dheap

Shows Memory Debugger state
dheap [-status]

Applies a saved configuration file
dheap -apply_config { default | filename }

Shows information about a backtrace
dheap -backtrace [subcommands]

Compares memory states

dheap -compare subcommands [optional_subcommands]
[process | filename [process | filename 1]

Enables or disables the Memory Debugger
dheap { -enable | -disable }

Enables or disables event notification
dheap -event_filter subcommands

Writes memory information
dheap -export subcommands

Specifies which filters the Memory Debugger uses
dheap -filter subcommands

Writes guard blocks (memory before and after an allocation)

CLI Command Summary

dheap -guard [subcommands]

Enables and disables the retaining (hoarding) of freed memory blocks
dheap -hoard [subcommands]

Displays Memory Debugger information
dheap -info [-backtrace] [start_address [end_address]

Indicates whether an address is within a deallocated block
dheap -is_dangling address

Locates memory leaks
dheap -leaks [-check_interior]

Enables or disables Memory Debugger event notification
dheap -[no]notify

Paints memory with a distinct pattern
dheap -paint [subcommands]

Enables and disables the ability to catch bounds errors and use-after-free errors retaining freed memory
blocks
dheap -red_zones [subcommands]

Enables and disables allocation and reallocation notification
dheap -tag_alloc subcommand start_address [end_address]

Displays the Memory Debugger's version number
dheap -version
dhistory

Displays information about the state of the program as it is being replayed. If you have received a timestamp,
you can go back to the line that was executing at that time.
dhistory [-info] [-get_time] [-go_time time] [-go_live]
[-enable][-disable]

dhold

Holds processes
dhold -process

Holds threads
dhold -thread

dkill

Terminates execution of target processes

CLI Command Summary

dkill [-remove]

dlappend
Appends list elements to a TotalView variable
dlappend variable-name valueT ... 1
dlist

Displays code relative to the current list location
dlist [-n num-lines]

Displays code relative to a named location
dlist breakpoint-expr [-n num-lines]

Displays code relative to the current execution location
dlist -e [-n num-lines]
dll
Manages shared libraries
TV::dll action [dil-id-list][-all]
dload

Loads debugging information
dload [-g gid 1 [-mpi starter_value][-r hname]
[-replay | -noreplay]
[-env variable=value] ... [-e] executable

[-parallel_attach_subset subset_specification |

dmstat
Displays memory use information
dmstat
dnext

Steps source lines, stepping over subroutines
dnext [-back] [num-steps]

dnexti

Steps machine instructions, stepping over subroutines
dnexti [-back] [hum-steps]

domp
Displays OpenMP information using the OMPD API

CLI Command Summary

domp [-parallel_regions] [-task_regions] [-control_vars] [-ompd] [-threads {-regions | -functions | -

stack}] [-send_symbols]

dout
Executes until just after the place that called the current routine
dout [-back] [frame-count]
dprint
Prints the value of a variable or expression
dprint [-nowait] [-slice slice_expr][-stats [-data]] variable_or_expression
dptsets
Shows the status of processes and threads in an array of P/T expressions
dptsets [ptset_array] ...
drerun

Restarts processes
drerun [cmd_arguments][< infile]
[>[>1[&]outfile]
[2>[>]errfile]

drestart

Restarts a checkpoint on AIX
drestart[-halt1[-ggid 1[-r host1[-no_same_hosts]

Restarts a checkpoint on SGI

drestart [process-state][-no_unpark 1[-g gid 1[-r host]
[-ask_attach_parallel | -no_attach_parallel]
[-no_preserve_ids] checkpoint-name

drun

Starts or restarts processes
drun [cmd_arguments][< infile]
[>[>1[&]outfile]
[2>[>]errfile]

dsession

Loads a session
dsession [-load session_name]

CLI Command Summary

dset

Creates or changes a CLI state variable
dset debugger-var value

Views current CLI state variables
dset [debugger-var]

Sets the default for a CLI state variable
dset -set_as_default debugger-var value

dskip

Create a rule to skip over or through a function
dskip [over | through][function | -function | -fu] function-name

Create a rule to skip over or through a file
dskip [over | through][file | -file | -fi] filename

Create a rule to skip over or through functions that are also contained in specific source files

dskip [over | through 1{{-function | -fu} function-name | { -rfunction | -rfu} function-regexp }{{ -

file | -fi} filename | { -gfile | -gfi } file-glob }

Enable or disable skipping of a list of IDs
dskip [enable | disable][id]

Delete a list of skip IDs
dskip delete [id]

Print information about a list of skip I1Ds
dskip info [id]
dstacktransform

Enables or disables the stack transform facility.
dstacktransform [enable | disable id | transform_name]

Prints the current state of rules and transforms.
dstacktransform [list]

Prints the enabled/disabled state of the stack transform facility.
dstacktransform [status]

Removes the rule with the given id from the stack transform facility.
dstacktransform [remove id]

Adds a new transform.
dstacktransform add [-name | -n string] [-implementation | -i path]

CLI Command Summary

Adds a new transform rule.

dstacktransform add [-filter test_function_list] [-transform | -t name] [-operation | -0 operation_name

[-position | -p integer] [-before | -b integer]

dstatus
Shows current status of processes and threads
dstatus
dstep
Steps lines, stepping into subfunctions
dstep [-back 1 [num-steps]
dstepi

Steps machine instructions, stepping into subfunctions
dstepi [-back] [num-steps]

dunhold

Releases a process
dunhold -process

Releases a thread
dunhold -thread

dunset

Restores a CLI variable to its default value
dunset debugger-var

Restores all CLI variables to their default values
dunset -all

duntil

Runs to a line
duntil [-back] /ine-number

Runs to an address
duntil [-back] -address addr

Runs into a function
duntil proc-name

dup

Moves up the call stack

CLI Command Summary

dup [num-levels]

dwait
Blocks command input until the target processes stop
dwait
dwatch

Defines a watchpoint for a variable
dwatch variable [-length byte-count1 [-p | -g | -t]
[[-llang1-eexpr][-ttype]l

Defines a watchpoint for an address
dwatch -address addr -length byte-count [-p | -g | -t]
[[-llang1-eexpr1[-ttype]
dwhat
Determines what a name refers to
dwhat symbol-name
dwhere

Displays locations in the call stack

dwhere [-level level-num 1[num-levels][-args][-locals] [-registers]
[-noshow_pc][-noshow_fp][-show_image]

Displays all locations in the call stack

dwhere -all [-args] [-locals] [-registers]
[-noshow_pc][-noshow_fp][-show_image]

dworker
Adds or removes a thread from a workers group
dworker { number | boolean }
errorCodes

Returns a list of all error code tags
TV::errorCodes

Returns or raises error information
TV:errorCodes number_or_tag [-raise [message 11
exit
Terminates the debugging session
exit [-force]

CLI Command Summary

expr
Manipulates values created by dprint -nowait
TV::expr action [susp-eval-id 1[other-args]
focus_groups
Returns a list of groups in the current focus
TV::focus_groups
focus_processes
Returns a list of processes in the current focus
TV::focus_processes [-all | -group | -process | -thread]
focus_threads

Returns a list of threads in the current focus
TV::focus_threads [-all | -group | -process | -thread]

group
Gets and sets group properties
TV:group action [object-id][other-args 1
help
Displays help information
help [topic]
hex2dec
Converts to decimal
TV::hex2dec number
process
Gets and sets process properties
TV::process action [object-id][other-args]
quit
Terminates the debugging session
quit [-force]
read_symbols

Reads symbols from libraries
TV::read_symbols -lib /ib-name-list

CLI Command Summary

Reads symbols from libraries associated with a stack frame
TV::read_symbols -frame [number]

Reads symbols for all frames in the backtrace
TV::read_symbols -stack
respond
Provides responses to commands
TV::respond response command
scope
Gets and sets internal scope properties
TV:scope action [object-id 1[other-args]
SOUI’CE_pI’OCESS_Sta rtup
“Sources” a .tvd file when a process is loaded
TV:isource_proccess_startup process_id
stty
Sets terminal properties
stty [stty-args]
symbol
Returns or sets internal TotalView symbol information
TV::symbol action [object-id][other-args]
thread
Gets and sets thread properties
TV:thread action [object-id 1[other-args]
type
Gets and sets type properties
TV:type action [object-id 1[other-args]
type_transformation

Creates type transformations and examines properties

TV:type_transformation action [object-id 1[other-args]

unalias

Removes an alias

CLI Command Summary

unalias alias-name

Removes all aliases
unalias -all

CLI Commands

This chapter lists all CLI commands.

m Commands by Category on page 19

General CLI Commands on page 19

CLI Initialization and Termination Commands on page 19
Program Information Commands on page 20

Execution Control Commands on page 20

Action Points on page 21

Platform-Specific CLI Commands on page 22

Other Commands on page 22

m All Commands on page 23

18

CLI Commands

Commands by Category

NOTE: This chapter describes some functionality that exists in the underlying debugging engine

TotalView, but may not be supported in the TotalView user interface. To access these features,
use the Command Line view or launch the Classic TotalView Ul. See About this Guide on
page 1 for more details.

General CLI Commands

These commands provide information on the general CLI operating environment:

alias: Creates or views pseudonyms for commands and arguments.
capture: Sends output to a variable for commands that print information.
dlappend: Appends list elements to a TotalView variable.

dset: Changes or views values of TotalView variables.

dunset: Restores default settings of TotalView variables.

help: Displays help information.

stty: Sets terminal properties.

unalias: Removes a previously defined alias.

CLI Initialization and Termination Commands

These commands initialize and terminate the CLI session, and add processes to CLI control:

dattach: Brings one or more processes currently executing in the normal runtime environment
(that is, outside TotalView) under TotalView control.

ddetach:Detaches TotalView from a process.
ddlopen: Dynamically loads shared object libraries.
dgroups: Manipulates and manages groups.

dkill:Kills existing user processes, leaving debugging information in place.

Commands by Category General CLI Commands 19

CLI Commands

m dload:Loads debugging information about the program into TotalView and prepares it for
execution.

m drerun: Restarts a process.
m drun: Starts or restarts the execution of user processes under control of the CLI.
m dsession: Loads a session into TotalView.

m exit, quit:Exits from TotalView, ending the debugging session.

Program Information Commands

The following commands provide information about a program’s current execution location, and support brows-
ing the program's source files:

m dcalltree: Displays parallel backtrace data.

m ddown: Navigates through the call stack by manipulating the current frame.
m dexamine: Displays memory contents.

m dflush: Unwinds the stack from computations.

m dga: Displays global array variables.

m dlist: Browses source code relative to a particular file, procedure, or line.

m dmstat: Displays memory usage information.

m dprint: Evaluates an expression or program variable and displays the resulting value.
m dptsets: Shows the status of processes and threads in a P/T set.

m dstatus: Shows the status of processes and threads.

m dup: Navigates through the call stack by manipulating the current frame.

m dwhat:Determines what a name refers to.

m dwhere: Prints information about the thread'’s stack.

Execution Control Commands
The following commands control execution:

m dcont: Continues execution of processes and waits for them.

Commands by Category Program Information Commands 20

CLI Commands

dfocus: Changes the set of processes, threads, or groups upon which a CLI command acts.
dgo: Resumes execution of processes (without blocking).

dhalt: Suspends execution of processes.

dhistory (replay): Provides information for ReplayEngine and supports working with timestamps.
dhold: Holds threads or processes.

dnext: Executes statements, stepping over subfunctions.

dnexti: Executes machine instructions, stepping over subfunctions.

dout: Runs out of current procedure.

dskip: Creates and manages single-stepper skip rules.

dstep: Executes statements, moving into subfunctions if required.

dstepi: Executes machine instructions, moving into subfunctions if required.

dunhold: Releases held threads.

duntil: Executes statements until a statement is reached.

dwait: Blocks command input until processes stop.

dworker: Adds or removes threads from a workers group.

Action Points

The following action point commands define and manipulate the points at which the flow of program execution
should stop so that you can examine debugger or program state:

dactions: Views information on action point definitions and their current status; this command also
saves and restores action points.

dbarrier: Defines a process barrier breakpoint.

dbreak: Defines a breakpoint.

ddelete: Deletes an action point.

ddisable: Temporarily disables an action point.

denable: Re-enables an action point that has been disabled.

dwatch:Defines a watchpoint.

Commands by Category Action Points 21

CLI Commands

Platform-Specific CLI Commands

m dcuda: Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the
focus, and display their status.

m domp: Displays OpenMP information using the OMPD AP

Other Commands
The commands in this category do not fit into any of the other categories:
m dassign: Changes the value of a scalar variable.
m dcache: Clears the remote library cache.
m dcheckpoint: Creates a file that can later be used to restart a program.
m dheap: Displays information about the heap.
m drestart: Restarts a checkpoint.

m dstacktransform: Maintains rules that change the displayed stack frames.

Commands by Category Platform-Specific CLI Commands

CLI Commands

All Commands

All Commands Other Commands

23

CLI Commands

alias Creates or views pseudonyms for commands

Format

Creates a new user-defined pseudonym for a command
alias alias-name defn-body

Views previously defined aliases
alias [alias-name]

Arguments
alias-name

The name of the command pseudonym being defined.
defn-body
The text that Tcl substitutes when it encounters alias-name. Often this is just a command name.

Description

The alias command associates a specified name with some defined text. This text can contain one or more com-
mands. You can use an alias in the same way as a native TotalView or Tcl command. In addition, you can include
an alias as part of the definition of another alias.

If you do not enter an alias-name argument, the CLI displays the names and definitions of all aliases. If you spec-
ify only an alias-name argument, the CLI displays the definition of the alias.

Because the alias command can contain Tcl commands, defn-body must comply with all Tcl expansion, substitu-
tion, and quoting rules.

The TotalView global startup file, tvdinit.tvd, defines a set of default one or two-letter aliases for all common
commands. To see a list of these commands, type alias with no argument in the CLI -window.

You cannot use an alias to redefine the name of a CLI-defined command. You can, however, redefine a built-in CLI
command by creating your own Tcl procedure. For example, the following procedure disables the built-in dwatch
command. When a user types dwatch, the CLI executes this code instead of the built-in CLI code.

proc dwatch {} {
puts "The dwatch command i s di sabl ed"

}

NOTE: Be aware that you can potentially create aliases that are nonsensical or incorrect because the
CLI does not parse defn-body (the command'’s definition) until it is used. The CLI detects errors
only when it tries to execute your alias.

When you obtain help for any command, the help text includes any TotalView predefined aliases.

alias Other Commands 24

CLI Commands

To delete an alias, use the unalias command.

Examples
alias nt dnext
Defines a command called nt that executes the dnext command.
alias nt
Displays the definition of the nt alias.
alias
Displays the definitions of all aliases.
alias m{dlist main}
Defines an alias called m that lists the source code of function main().
alias step2 {dstep; dstep}
Defines an alias called step2 that does two dstep commands. This new command applies to the focus that
exists when this alias is used.
alias step2 {s ; s}
Creates an alias that performs the same operations as that in the previous example, differing in that it uses the
alias for dstep. You could also create the following alias which does the same thing: alias step2 {s 2}.
alias stepl {f pl. dstep}
Defines an alias called step1 that steps the first user thread in process 1. All other threads in the process run
freely while TotalView steps the current line in your program.

RELATED TOPICS

unalias Command

alias Other Commands 25

CLI Commands

capture Returns a command’s output as a string

Format
capture [-out |-err |-both] [-f filename] command

Arguments
-out

Captures only output sent to stdout.
-err
Captures only output sent to stderr.
-both
Captures output sent to both stdout and stderr. This is the default.
-f filename
Sends the captured output to filename. The file must be a writable Tcl file descriptor. Usually the Tcl file de-
scrciptor name is obtained with open filename w.
command

The CLI command (or commands) whose output is being captured. If you specify more than one command, you
must enclose them within braces ({}).

Description
The capturecommand executes command, capturing in a string all output that would normally go to the con-
sole. After command completes, it returns the string. This command is analogous to the UNIX shell's back-tick

feature ("command”). The capture command obtains the printed output of any CLI command so that you can
assign it to a variable or otherwise manipulate it.

Examples
set save _stat [capture st]
Saves the current process status to a Tcl variable.
set arg [capture p argc]
Saves the printed value of argc into a Tcl variable.
set vbl [capture {foreach i {1 2 3 4} {p int2 array\[$i\]}}]
Saves the printed output of four array elements into a Tcl variable. Here is sample output:

int2_array(l) = -8 (Oxfff8)
int2 array(2) = -6 (Oxfffa)
int2 array(3) = -4 (0xfffc)
int2_array(4) = -2 (Oxfffe)

Because the capture command records all information sent to it by the commands in the foreach loop, you
do not have to use a dlist command.

capture Other Commands 26

CLI Commands

exec cat << [capture help commands | > cli _hel p.txt
Writes the help text for all CLI commands to the cli_help.txtfile.

set ofile [open cli_help.txt w
capture -f $ofile hel p commands
close $ofile

Also writes the help text for all CLI commands to the cli_help.txtfile. This set of commands is more efficient
than the previous command because the captured data is not buffered.

RELATED TOPICS

drun Command

drerun Command

capture Other Commands

27

CLI Commands

dactions Displays information, and saves and reloads action points

Format

Displays information about action points.
dactions [ap-id-list][-at source-loc][-full] [-enabled | -disabled] [-enabled_blocks |-disabled_blocks]
[-block_images|-block_lines]

Saves action points to a file.
dactions -save [filename]

Loads previously saved action points.
dactions -load[filename]

Suppresses or unsuppresses action points.
dactions [-suppress | -unsuppress]

Arguments
ap-id-list
Alist of action point identifiers. If you specify individual action points, the information that appears is limited to
these points.

Do not enclose this list within quotes or braces. See the examples at the end of this section for more informa-
tion.

Without this argument, the CLI displays summary information about all action points in the processes in the fo-
cus set. If you enter one ID, the CLI displays full information for it. If you enter more than one ID, the CLI displays
just summary information for each.

-at source-loc
Displays the action points at source-loc. See dbreak for the details on the form of source-loc.
-full

Displays complete, rather than summary, information about the action points in the current share group. Com-
plete information is the default when dactions is used with a single action point argument. Use -full to display
complete information when invoking dactions with no arguments, or with two or more action point arguments.

-enabled
Shows only enabled action points.
-disabled

Shows only disabled action points.

dactions Other Commands 28

CLI Commands

-suppress
Effectively disables all existing action points. If the code is run, threads will not stop at any action points. Al-
though you can create new action points (and delete existing ones), the new action points too will be effectively
disabled.

-unsuppress
Restores all action points to the state they were in when suppressed. Any new action points added are set as en-
abled.

-enabled_blocks
When displaying the full information for an action point, only shows the enabled address blocks. (See example
below.)

-disabled_blocks
When displaying the full information for an action point, only shows the disabled address blocks. (See example
below.)

-block_images
When displaying the full information for an action point, shows the image name of each address block.

-block_lines
When displaying the full information for an action point, shows the source line of each address block. If the
source line is followed by a tilde, the breakpoint block address is approximate.

-save
Writes information about action points to a file.

-load

Restores action point information previously saved in a file.

filename
The name of the file into which TotalView reads and writes action point information. If you omit this file name, To-
talView writes action point information to a file named program_name.TVD.v4breakpoints, where pro-
gram_name is the name of your program.

Description

The dactions command displays information about action points in the processes in the current focus. If you do
not indicate a focus, the default focus is at the process level. The full breakpoint specification is printed (not
returned), including the canonical file name's path.

Using the Action Point Identifier

To get the action point identifier, just enter dactions with no arguments. You need this identifier to delete,
enable, and disable action points.

The identifier is returned when TotalView creates the action point. The CLI prints this ID when the thread stops at
an action point.

dactions Other Commands 29

CLI Commands

You can include action point identifiers as arguments to the command when more detailed information is
needed. The -enabled and -disabled options restrict output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file or before TotalView loads
executables.

Saving and Loading Action Points

The -save option writes action point information to a file so that either you or TotalView can restore your action
points later. The -load option immediately reads the saved file. Using the filename argument with either option
writes to or reads from this file. If you do not use this argument, TotalView names the file pro-
gram_name.TVD.v4breakpoints (where program_name is the name of your program), and writes it to the
directory in which your program resides.

The information saved includes expressions associated with the action point and whether the action point is
enabled or disabled. For example, if your program’s name is foo, TotalView writes this information to
foo.TVD.v4breakpoints.

NOTE: TotalView does not save information about watchpoints.

If a file with the default name exists, TotalView can read this information when it starts your program. When
TotalView exits, it can create the default. For more information, see “Action Point Preferences” in the TotalView
User Guide.

Suppressing and Unsuppressing Action Points

Suppress effectively disables all existing action points. If the code is run, threads will not stop at any action points.
Although you can create new action points (and delete existing ones), the new action points too will be effectively
disabled. Unsuppress restores all action points to the state they were in when suppressed. Any new action points
added are set as enabled.

Command alias

Alias Definition Description

ac dactions Displays all action points
Examples

ac -at 81

Displays information about the action points on line 75. (This example uses the alias instead of the full com-
mand name.) Here is the output from this command:

dl.<> ac -at 75
1 shared action point for group 3:

dactions Other Commands 30

CLI Commands

1 [/hone/total view tests/src/tx_bl ocks. cxx#75] Enabl ed
Address 0: [Enabl ed] mai n+0x1d0 (0x0040071c)

Share in group: true

Stop when hit: group

di. <>

dactions 1 2
Displays information about action points 1 and 2, as follows:

dl. <> dactions 1 2

2 shared action points for group 3:

1 [/hone/total view tests/src/tx_bl ocks. cxx#75] Enabl ed
2 [/ home/ total view tests/src/tx_bl ocks. cxx#48] Enabl ed
dil. <>

If you have saved a list of action points as a string or as a Tcl list, you can use the eval command to process the
list's elements.

For example:

dl. <> dacti ons

3 shared action points for group 3:

1 [/hone/total view tests/src/tx_bl ocks. cxx#75] Enabl ed
2 [/ hone/total view tests/src/tx_bl ocks. cxx#69] Enabl ed
3 [/ home/ total view tests/src/tx_bl ocks. cxx#57] Enabl ed

dl. <> set groupl "2 3"

23

dl. <> eval ddisabl e $groupl

dl. <> ac

3 shared action points for group 3:

1 [/hone/total view tests/src/tx_bl ocks. cxx#75] Enabl ed
2 [/ honme/total view tests/src/tx_bl ocks. cxx#69] D sabl ed
3 [/ home/total view tests/src/tx_bl ocks. cxx#57] Di sabl ed

df ocus pl dacti ons
Displays information about all action points defined in process 1.

dl. <> df ocus pl dacti ons

3 shared action points for group 3:

1 [/hone/total view tests/src/tx_ bl ocks. cxx#75] Enabl ed

2 [/ home/total view tests/src/tx_blocks. cxx#69] Disabl ed

3 [/ hone/total view tests/src/tx_bl ocks. cxx#57] Di sabl edd1. <>

df ocus pl dactions -enabled
Displays information about all enabled action points in process 1
dactions -full
Displays more complete information about the action points. Here is an example of the output:

dl. <> dactions -full
3 shared action points for group 3:

dactions Other Commands 31

CLI Commands

1 [/hone/total view tests/src/tx_bl ocks. cxx#75] Enabl ed
Address 0: [Enabl ed] nai n+0x1d0 (0x0040071c)

Share in group: true

St op when hit: group

2 [/ home/total view tests/src/tx_bl ocks. cxx#69] Di sabl ed
Address 0: [Enabl ed] mai n+0x189 (0x004006d5)

Share in group: true

Stop when hit: process

3 [/ hone/total view tests/src/tx_bl ocks. cxx#57] Di sabl ed
Address 0: [Enabl ed] nmai n+0x9f (0x004005eb)

Address 1: [Enabl ed] mai n+0x257 (0x004007a3)

Address 2: [Disabl ed] mai n+0x266 (0x004007b2)

Share in group: true

Stop when hit: process

Examples of Action Points in Both Host and Dynamically Loaded Code

These examples show the dactions output for a program that dynamically loads code at runtime. In this case, an
action point may contain a mixture of host and dynamically-loaded code address blocks, some of which may be
identified as pending. (See “Pending Breakpoints” in the TotalView User Guide.) Note that these examples are for a

CUDA program, but are relevant to any code loaded dynamically.
Both examples use -block_lines with -full to display the source line for each address block.
Pending and Mixed Breakpoint Example

Action points consisting only of invalid/nullified blocks are displayed as Pendi ng:
dactions -full -block |ines

dl. <> dactions -full -block_ |ines

2 shared action points for group 3:

1 [/ hone/ nvi di a6/total view tests/src/tx_cuda. cu#218] Enabl ed

Pendi ng

Share in group: true

Stop when hit: process

2 [/ home/ nvi di a6/total view tests/src/tx_cuda. cu#219] Enabl ed
Address 0: [Di sabl ed] Scranbl eKer nel +0x19, src/tx_cuda. cu#228
(0x00403998)

Address 1: [Enabl ed] Scranbl eKer nel +0x450, ../../src/tx_cuda. cu#220
(Locati on not mapped)

Address 2: [Enabl ed] Scranbl eKer nel +0x1c50, ../../src/tx_cuda. cu#220
(Locati on not mapped)

Share in group: true

Stop when hit: process

dl. <>

Note that:
Action point 1 has no valid address blocks, so is listed as Pending.
Action point 2 contains a mixture of host and GPU address blocks:

m Block 0 originally slid to line 228, but was disabled when the GPU code was loaded and
TotalView found a better match at line 220. (See “Sliding Breakpoints” in the TotalView User
Guide.)

dactions Other Commands

32

CLI Commands

m Block 1 and 2 show "Location not mapped" because the CLI focus was on the process, not
the CUDA thread. Using df ocus t1.-1 dactions ..would provide the GPU address.

Nullified and Pending Breakpoint Example

In this example, lines 220 and 221 contain “for” loops in the CUDA GPU code (a “for” loop typically has multiple
line number symbols):

di.<> 1| 218 -n 5

218

219 /* Loop over all elenents of the matrix, scranbling them*/
220 for (int i =start_i; i < Awdth; i++)

221 for (int j =0; j < Awidth; j++)

222

Set some breakpoints:

dil.<> b 220

1
dl.<> b 221
2

Use -full and -block_lines to view the breakpoint's source lines and addresses:

dl.<> ac -full -block_lines

2 shared action points for group 3:

1 [/ hone/nvidi a6/total view tests/src/tx_cuda. cu#220] Enabl ed

Pendi ng

Share in group: true

Stop when hit: process

2 [/ home/ nvi di a6/t ot al vi ew t ests/src/tx_cuda. cu#221] Enabl ed

Address 0: [Enabl ed] Scranbl eKernel +0x19, src/tx_cuda. cu#228 0x00403998)
Share in group: true

Stop when hit: process

Note that:

m Creating the action point 1 at line 220 in the GPU code caused it to slide to line 228 in the host
code.

m Creating the action point 2 at line 221 in the GPU code caused it to slide to line 228 in the host
code and nullified address block 0 in action point 1, which caused it to become pending.

(See “Sliding Breakpoints” in the TotalView User Guide.)

Continue the process so that the GPU code is loaded and a CUDA thread stops at line 220, then view the output
again:

Thread 1.-1 hit breakpoint 1 at line 220 in "Scranbl eKernel (Matrix,int)"
dl. <> ac -full -block |ines

2 shared action points for group 3:
1 [/ hone/ nvi di a6/ total view tests/src/tx_cuda. cu#220] Enabl ed

dactions Other Commands 33

CLI Commands

Address 0: (Nullified)

Address 1. [Enabl ed] Scranbl eKer nel +0x450, ../../src/tx_cuda. cu#220 (0x00dacf b0)

Address 2: [Enabl ed] Scranbl eKer nel +0x1c50, ../../src/tx_cuda. cu#220 (0x00dae7b0)

Share in group: true

Sop when hit: process

2 [/ hone/ nvi di a6/t ot al vi ew t est s/ src/t x_cuda. cu#221] Enabl ed

Address O: [D sabl ed] Scranbl eKer nel +0x19, src/tx_cuda. cu#228 (0x00403998)

Address 1. [Enabl ed] Scranbl eKer nel +0x568, ../../src/tx_cuda. cu#221 (Location not napped)
Address 2: [Enabl ed] Scranbl eKer nel +0x1c18, ../../src/tx_cuda. cu#221 (Locati on not napped)
Share in group: true

S op when hit: process

dl. <

Loading the GPU code caused the action points to be reevaluated, thus adjusting their address blocks:

m Action point 1 added two address blocks for line 220, and thus is no longer pending. Note that this
action point contains a mixture of valid and nullified blocks, therefore dactions lists address block
0 as Nullified rather than listing the entire breakpoint as Pending.

m Action point 2 added two address blocks for line 221, and block 0 was disabled because better
matching line number symbols were added.

Extended example using -enabled_blocks and -disabled_blocks
dacti onsn [-enabl ed bl ocks|]

This extended example demonstrates the use of these two options.

Set a break point:

dl.<> b {bar<std::vector<int, std::allocator<int> > >::bar(int)}

| ncor porating 10079 bytes of DWARF '.debug_info' information for tx_test2.cxx
(I'i nenunber)...done

1

Entering dact i ons reports on only the top-level action point associated with this action point number:

dl. <> dacti ons
1 shared action point for group 3:
1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled

Entering dact i ons n reports on all action point instances (the address block) associated with this action point
number:

dl. <> dactions 1

1 shared action point for group 3:

1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled

Addr ess O: gEnabIed] bar <std: :vector<int,std::allocator<int> > >::bar+0x12
(0x004013d2

Address 1: [Enabl ed] bar<std::vector<int,std::allocator<int> > >::bar+0x84
(0x00401444

Address 2: [Disabl ed] bar<std::vector<doubl e, std:: all ocat or<doubl e> > >:: bar +0x12
(0x00401496

Addr ess 3: gu sabl ed] bar<std::vector<doubl e, std:: all ocat or<doubl e> > >:: bar +0x86
(0x0040150a

Share in group: true
Stop when hit: process

Using - enabl ed_bl ocks reports on only enabled action point instances (the address block) associated with
this action point number:

dactions Other Commands 34

CLI Commands

dl. <> dactions 1 -enabl ed_bl ocks

1 shared action point for group 3:

1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)
Addr ess O0: gEnabIed] bar <st d: : vector<int, std::all ocator<int>
(0x004013d2

Addr ess 1: gEnabIed] bar <std: :vector<int,std::allocator<int> > >::bar+0x84
(0x00401444

Share in group: true

Stop when hit: process

Enabl ed
> >:: bar+0x12

Using - di sabl ed_bl ocks reports on only disabled action point instances (the address block) associated with
this action point number:

dl. <> dactions 1 -disabl ed bl ocks

1 shared action point for group 3:

1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabl ed

Addr ess 2: gu sabl ed] bar<std::vector<doubl e, std:: al |l ocat or <doubl e> > >:: bar +0x12
(0x00401496

Addr ess 3: gu sabl ed] bar<std::vector<doubl e, std:: all ocat or<doubl e> > >:: bar +0x86
(0x0040150a

Share in group: true

Stop when hit: process

di. <>

You could use this information, for example, to enable the currently disabled action point addresses:
dl. <> denabl e -block 2 3

RELATED TOPICS

Setting Action Points in the TotalView User Guide
Saving Action Points to a File in the TotalView User Guide

TV::auto_save_breakpoints Variable

dactions Other Commands 35

CLI Commands

daSS|gn Changes the value of a scalar variable

Format
dassign target value

Arguments
target

The name of a scalar variable in your program.
value

A source-language expression that evaluates to a scalar value. This expression can use the name of another
variable.

Description

The dassign command evaluates an expression and replaces the value of a variable with the evaluated result.
The location can be a scalar variable, a dereferenced pointer variable, or an element in an array or structure.

The default focus for the dassign command is thread. If you do not change the focus, this command acts upon
the thread of interest (TOI). If the current focus specifies a width that is wider than t (thread) and is not d (default),
dassign iterates over the threads in the focus set and performs the assignment in each. In addition, if you use a
list with the dfocus command, the dassign command iterates over each list member.

The CLI interprets each symbol name in the expression according to the current context. Because the value of a
source variable might not have the same value across threads and processes, the value assigned can differ in
your threads and processes. If the data type of the resulting value is incompatible with that of the target location,
you must cast the value into the target's type. (Casting is described in the Data chapter of the TotalView User
Guide.)

Assigning Characters and Strings

m [fyou are assigning a character to a target, place the character value within single-quotation marks;
for example, ‘c’.

m You can use the standard C language escape character sequences; for example, \n and \t. These
escape sequences can also be in a character or string assignment.

m [fyou are assigning a string to a target, place the string within quotation marks. However, you must
escape the quotation marks so they are not interpreted by Tcl; for example, \"The quick brown
fox\".

If value contains an expression, TotalView evaluates the expression. See About Expressions in the TotalView User
Guide.

dassign Other Commands 36

CLI Commands

Command alias

Alias Definition Description
as dassign Changes a scalar variable’s value
Examples

dassi gn scalar_y 102
Stores the value 102 in each occurrence of variable scalar_y for all processes and threads in the current set.

dassign i 10*10
Stores the value 100 in variable .

dassign i i*i
Does not work and the CLI displays an error message. Ifiis a simple scalar variable, you can use the following
statements:

set x [lindex [capture dprint i] 2]
dassign i [expr $x * $x]

f {pl p2 p3} as scalar_y 102
Stores the value 102 in each occurrence of variable scalar_y contained in processes 1, 2, and 3.

RELATED TOPICS

Changing the Value of Variablesin the Tota/View User Guide
Changing a Variable’s Data Type in the TotalView User Guide

dassign Other Commands

37

CLI Commands

dattach Brings currently executing processes under TotalView control

Format

dattach [-g gid][-r hname]

[-ask_attach_parallel | -no_attach_parallel]
[-replay | -no_replay]

[-go | -halt]

[-e] executable [pid-list]

[-c core-file | recording-file] [-rank num]

[-parallel_attach_subset subset-specification]

Arguments
-g gid
Sets the control group for the processes being added to group gid. This group must already exist. (The CLI
GROUPS variable contains a list of all groups. See GROUPS on page 307 for more information.)
-r hname

The host on which the process is running. The CLI launches a TotalView Server on the host machine if one is not
already running. See the Setting Up Parallel Debugging Sessions chapter of the TotalView User Guide for in-
formation on the launch command used to start this server.

Setting a host sets it for all PIDs attached to in this command. If you do not name a host machine, the CLI uses
the local host.

-attach_parallel
Attaches to any additional parallel processes in a parallel job.

-ask_attach_parallel

Specifies that TotalView should ask before attaching to parallel processes of a parallel job. The default is to auto-
matically attach to processes. For additional information, see the Parallel Configuration in the
File > Preferences Dialog Box in the TotalView User Guide.

If none of the attach_parallel switches is specified, and there is exactly one process ID in the process list, the
user's preferences are used to determine whether to perform a parallel attach.

If none of the attach_parallel switches is specified, and there is more than one process ID in the process list,
the defaultis -no_attach_parallel.
-no_attach_parallel

Does not attach to any additional parallel processes in a parallel job. For additional information, see the
Parallel Page in the File > Preferences Dialog Box in the in-product helpfor Classic TotalView.

-replay | -no_replay
Enables or disables the ReplayEngine the next time the program is restarted. To enable, the feature must be
supported and licensed on the current platform.

dattach Other Commands 38

CLI Commands

-go | -halt
Specifies to explicitly continue or halt target execution after attaching. The default is to leave the target's run
state as it was before the attach.

-rank num
Specifies the rank associated with the executable being loaded. While this can be used independently, this op-
tion is best used with core files.

Tells the CLI that the next argument is an executable file name. You need to use -e if the executable name begins
with a dash (-) or consists of only numeric characters. Otherwise, you can just provide the executable file name.
executable
The name of the executable. Setting an executable here sets it for all PIDs being attached to in this
command. If you do not include this argument, the CLI tries to determine the executable file from the
process. Some architectures do not allow this to occur.
pid-list
A list of system-level process identifiers (such as a UNIX PID) naming the processes that TotalView
controls. All PIDs must reside on the same system, and they are placed in the same control group.
If you need to place the processes in different groups or attach to processes on more than one system, you
must use multiple dattach commands.
-c core-file | recording-file
Loads the core file core-file or the ReplayEngine recording-file, which restores a previous ReplayEngine de-
bugging session. If you use this option, you must also specify an executable name (executable).

-parallel_attach_subset subset_specification

Defines a list of MPI ranks to attach to when an MPI job is created or attached to. The list is space-separated;

each element can have one of three forms:
rank: specifies that rank only
rank1-rank2: specifies all ranks between rank1 and rank2, inclusive
rank1-rank2:stride: specifies every strideth rank between rank1 and rank?2
A rank must be either a positive decimal integer or max (the last rank in the MPI job).
A subset_specification that is the empty string ("") is equivalent to 0-max.
For example:
dattach -parallel _attach_subset {1 2 4-6 7-max:2} npirun
attachestoranks1,2,4,5,6,7,9,11,13,....

Description
The dattach command attaches to one or more processes, making it possible to continue process execution
under TotalView control.

dattach Other Commands 39

CLI Commands

This command returns the TotalView process ID (DPID) as a string. If you specify more than one process in a com-
mand, the dattach command returns a list of DPIDs instead of a single value.

TotalView places all processes to which it attaches in one dattach command in the same control group. This lets
you place all processes in a multiprocess program executing on the same system in the same control group.

If a program has more than one executable, you must use a separate dattach command for each one.

If you have not loaded executable already, the CLI searches for it. The search includes all directories in the
-EXECUTABLE_PATH CLI variable.

The process identifiers specified in the pid-list must refer to existing processes in the runtime environment.
TotalView attaches to the processes, regardless of their execution states.

Command alias

Alias Definition Description
at dattach Brings the process under TotalView control
Examples

dattach nysys 10020
Loads debugging information for mysys and brings the process known to the runtime system as PID 10020
under TotalView control.
dattach -e 123 10020
Loads file 123 and brings the process known to the runtime system by PID 10020 under TotalView control.
dattach -g 4 -r Enterprise nyfile 10020
Loads myfile that is executing on the host named Enterprise into group 4, and brings the process known to
the runtime system by PID 10020 under TotalView control. If a TotalView Server (tvdsvr) is not running on
Enterprise, the CLI will start it.
dattach ny _file 51172 52006
Loads debugging information for my_file and brings the processes corresponding to PIDs 51172 and 52006
under TotalView control.

set new pid [dattach -e nmi nprog 123]
dattach -r otherhost -g $CGROUP($new pi d) -e slave 456

Begins by attaching to mainprog running on the local host; then attaches to slave running on the otherhost
host and inserts them both in the same control group.

dattach Other Commands 40

CLI Commands

RELATED TOPICS

Attaching to Processesin the TotalView User Guide
Examining Core Filesin the TotalView User Guide
ddetach Command

TV:.parallel_attach Variable

dattach Other Commands

41

CLI Commands

dbarrier Defines a process or thread barrier breakpoint

Format
Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hitwidth][-stop_when_donewidth] [-pending]

Creates a barrier breakpoint at an absolute address
dbarrier -addressaddr [-stop_when_hitwidth][-stop_when_donewidth] [-pending]

Arguments
breakpoint-expr
This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see “Qualifying Symbol Names" in the Classic TotalView User Guide.

For more information on breakpoint expressions, see dbreak on page 47, particularly Breakpoint Expres-
sions.
-address addr
The barrier breakpoint location as an absolute address in the address space of the program.
-stop_when_hitwidth
Identifies, using the width argument, any additional processes or threads to stop when stopping the thread that
arrives at a barrier point.

If you do not use this option, the value of BARRIER_STOP_ALL indicates what to stop.

The argument width may have one of the following three values:

group
Stops all processes in the control group when the execution reaches the barrier point.

process
Stops the process that hit the barrier.

none
Stops only the thread that hit the barrier; that is, the thread is held and all other threads continue
running. If you apply this width to a process barrier breakpoint, TotalView stops the process that hit
the breakpoint.

-stop_when_done width

After all processes or threads reach the barrier, releases all processes and threads held at the barrier. (Re-
leased means that these threads and processes can run.) Setting this option stops additional threads con-
tained in the same group or process.

dbarrier Other Commands 42

CLI Commands

If you do not use this option, the value of BARRIER_STOP_WHEN_DONE indicates any other processes or
threads to stop.

Use the width argument indicates other stopped processes or threads. You can enter one of the following
three values:
group

Stops the entire control group when the barrier is satisfied.

process
Stops the processes that contain threads in the satisfaction set when the barrier is satisfied.

none
Stops the satisfaction set. For process barriers, process and none have the same effect. This is the
default if the BARRIER_STOP_WHEN_DONE variable is none.

-pending
If TotalView cannot find a location to set the barrier, adding this option creates the barrier anyway. As shared i-
braries are read, TotalView checks to see if it can be set in the newly loaded library. For more information on this
option, see dbreak on page 47.

Description

The dbarrier command sets a process or thread barrier breakpoint that triggers when execution arrives at a
location. This command returns the ID of the newly created breakpoint.

The dbarrier command is most often used to synchronize a set of threads. The P/T set defines which threads the
barrier affects. When a thread reaches a barrier, it stops, just as it does for a breakpoint. The difference is that
TotalView prevents—that is, holds—each thread that reaches the barrier from responding to resume commands
(for example, dstep, dnext, and dgo) until a/l threads in the affected set arrive at the barrier. When all threads
reach the barrier, TotalView considers the barrier to be satisfied and releases these threads. Note that they are
just released, not continued. That is, TotalView leaves them stopped at the barrier. If you continue the process,
those threads stopped at the barrier also run along with any other threads that were not participating with the
barrier. After the threads are released, they can respond to resume commands.

If the process is stopped and then continued, the held threads, including the ones waiting on an unsatisfied bar-
rier, do not run. Only unheld threads run.

The satisfaction set for the barrier is determined by the current focus. If the focus group is a thread group,
TotalView creates a thread barrier:

m When a thread hits a process barrier, TotalView holds the thread's process.

m When a thread hits a thread barrier, TotalView holds the thread; TotalView might also stop the
thread's process or control group. While they are stopped, neither is held.

dbarrier Other Commands 43

CLI Commands

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If it is
set to true, the default is group. Otherwise, it is process.

TotalView determines the processes and threads that are part of the satisfaction set by taking the intersection of
the share group with the focus set. (Barriers cannot extend beyond a share group.)

The CLI displays an error message if you use an inconsistent focus list.

NOTE: Barriers can create deadlocks. For example, if two threads participate in two different barriers,
each could be left waiting at different barriers that can never be satisfied. A deadlock can also
occur if a barrier is set in a procedure that is never invoked by a thread in the affected set. If a
deadlock occurs, use the ddelete command to remove the barrier, since deleting the barrier
also releases any threads held at the barrier.

The -stop_when_hit option specifies if other threads should stop when a thread arrives at a barrier.

The -stop_when_done option controls the set of additional threads that are stopped when the barrier is finally
satisfied. That is, you can also stop an additional collection of threads after the last expected thread arrives, and
all the threads held at the barrier are released. Normally, you want to stop the threads contained in the control

group.

If you omit a stop option, TotalView sets the default behavior by using the BARRIER_STOP_ALL and
BARRIER_STOP_WHEN_DONE variables. For more information, see the dset command.

Use the none argument for these options to not stop additional threads.

m |f-stop_when_hit is nonewhen a thread hits a thread barrier, TotalView stops only that thread; it
does not stop other threads.

m |f-stop_when_done is none, TotalView does not stop additional threads, aside from the ones that
are already stopped at the barrier.

TotalView places the barrier point in the processes or groups specified in the current focus, as follows:

m [fthe current focus does not indicate an explicit group, the CLI creates a process barrier across the
share group.

m |f the current focus indicates a process group, the CLI creates a process barrier that is satisfied
when all members of that group reach the barrier.

m If the current focus indicates a thread group, TotalView creates a thread barrier that is satisfied
when all members of the group arrive at the barrier.

dbarrier Other Commands 44

CLI Commands

The following example illustrates these differences. If you set a barrier with the focus set to a control group (the
default), TotalView creates a process barrier. This means that the -stop_when_hit value is set to process even
though you specified thread.

d1. <> dbarrier 580 -stop_when_hit thread

2

dl.<> ac2

1 shared action point for group 3:

2 addr=0x120005598 [../regress/fork_| oop. cxx#580] Enabl ed (barrier)
Share in group: true

Stop when hit: process

St op when done: process

process barrier; satisfaction set = group 1

However, if you create the barrier with a specific workers focus, the stop when hit property remains set to thread:

1. <> baw 580 -stop_when_hit thread

1

di.<> ac1

1 unshared action point for process 1:

1 addr=0x120005598 [../regress/fork | oop. cxx#580]
Enabl ed (barrier)

Share in group: false

Stop when hit: thread

St op when done: process

thread barrier; satisfaction set = group 2

Command alias

Alias Definition Description

ba dbarrier Defines a barrier.

baw {dfocus pW dbarrier Creates a thread barrier across the worker threads in the
-stop_when_done process} process of interest (POI). TotalView sets the set of threads

stopped when the barrier is satisfied to the process that
contains the satisfaction set.

BAW {dfocus gW dbarrier Creates a thread barrier across the worker threads in the
-stop_when_done group} share group of interest. The set of threads stopped when
the barrier is satisfied is the entire control group.

Examples

dbarrier 123
Stops each process in the control group when it arrives at line 123. After all processes arrive, the barrier is sat-
isfied, and TotalView releases all processes.

df ocus {pl p2 p3} dbarrier ny_proc
Holds each thread in processes 1, 2, and 3 as it arrives at the first executable line in procedure my_proc. After
all threads arrive, the barrier is satisfied and TotalView releases all processes.

df ocus gWdbarrier 642 -stop_when_hit none

dbarrier Other Commands 45

CLI Commands

Sets a thread barrier at line 642 in the workers group. The process is continued automatically as each thread
arrives at the barrier. That is, threads that are not at this line continue running.

RELATED TOPICS

Barrier Points in the TotalView User Guide

Creating a Satisfaction Set in the TotalView User Guide
Groups in TotalView in the TotalView User Guide
dactions Command

dbreak Command

denable Command

ddisable Command

dbarrier Other Commands

46

CLI Commands

dbreak Defines a breakpoint

Format
Creates a breakpoint at a source location

dbreak breakpoint-expr[-p| -g | -t1[[-llang]-e expr][-pending]

Creates a breakpoint at an absolute address
dbreak -address addr [-p| -g | -t]1 [[-l lang] -e expr][-pending]

Arguments
breakpoint-expr
This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see “Qualifying Symbol Names" in the Classic TotalView User Guide.
Breakpoint expressions are discussed later in this section.
-address addr

The breakpoint location specified as an absolute address in the address space of the program.

P
Stops the process that hit this breakpoint. You can set this option as the default by setting the STOP_ALL vari-
able to process. See dset on page 167 for more information.

8
Stops all processes in the process's control group when execution reaches the breakpoint. You can set this op-
tion as the default by setting the STOP_ALL variable to group. See dset on page 167 for more information.

-t
Stops the thread that hit this breakpoint. You can set this option as the default by setting the STOP_ALL variable
to thread. See dset on page 167 for more information.

-llang
Sets the programming language used when you are entering expression expr. Enter either: ¢, c++, f7,f9, or
asm (for C, C++, FORTRAN 77, Fortran 9x, and assembler, respectively). If you do not specify a language, To-
talView assumes the language in which the routine at the breakpoint was written.

-e expr
When the breakpoint is hit, TotalView evaluates expression expr in the context of the thread that hit the break-
point. See Breakpoint Expressions.

-pending

If TotalView cannot find a location to set the breakpoint, adding this option creates the breakpoint anyway. As
shared libraries are read, TotalView checks to see if it can be set in the newly loaded library.

dbreak Other Commands 47

CLI Commands

Description

The dbreak command defines a breakpoint or evaluation point triggered when execution arrives at the specified
location, stopping each thread that arrives at a breakpoint. This command returns the ID of the new breakpoint. If
a line does not contain an executable statement, the CLI cannot set a breakpoint.

If you try to set a breakpoint at a line at which TotalView cannot stop execution, it sets one at the nearest follow-
ing line where it can halt execution.

Specifying a procedure name without a line number sets an action point at the beginning of the procedure. If you
do not name a file, the default is the file associated with the current source location.

The -pending Option

If, after evaluating the breakpoint expression, TotalView determines the location represented by the expression
does not exist, it can still set a breakpoint if you use the -pending option. This option allows a breakpoint to be
created when the breakpoint expression does not currently match any program locations. For example, a com-
mon use case is to create a pending function breakpoint with a breakpoint expression that matches the name of
a function that will be loaded at runtime via dlopen(), CUDA kernel launch, or anything that dynamically loads
executable code.

When displaying information on a pending breakpoint’s status, TotalView displays the breakpoint expression fol-
lowed by "(pending)" indicating that the breakpoint currently contains no valid addresses.

Note that using this option doesn't catch typos or errors in the user's input. For example, if you want to set a
breakpoint on a function f 0o, but you typed voo instead, a pending breakpoint is immediately created for the
function voo, which would not be your intention.

To set dbreak to always use the -pending option, use the TV::default_breakpoints_pending state variable.
A stop group Breakpoint

If the CLI encounters a stop group breakpoint, it suspends each process in the group as well as the process that
contains the triggering thread. The CLI then shows the identifier of the triggering thread, the breakpoint location,
and the action point identifier.

Default Focus Width

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If set
to true, the default is group. Otherwise, it is process.

Breakpoint Expressions

Breakpoint expressions, also called breakpoint specifications, are used in both breakpoints and barrier points, so
this discussion is relevant to both.

dbreak Other Commands 48

CLI Commands

One possibly confusing aspect of using expressions is that their syntax differs from that of Tcl. This is because you
need to embed code written in Fortran, C, or assembler in Tcl commands. In addition, your expressions often
include TotalView built-in functions. For example, if you want to use the TotalView $tidbuilt-in function, you need
to type it as \$tid.

A breakpoint expression can evaluate to more than one source line. If the expression evaluates to a function that
has multiple overloaded implementations, TotalView sets a breakpoint on each of the overloaded functions.

Set a breakpoint at the line specified by breakpoint-expr or the absolute address addr. You can enter a break-
point expression that are sets of addresses at which the breakpoint is placed, and are as follows:
= [[##image#]filename#]line_number

Indicates all addresses at this line number.

m Afunction signature; this can be a partial signature.
Indicates all addresses that are the addresses of functions matching signature. If parts of a function signa-
ture are missing, this expression can match more than one signature. For example, “f' matches “f(void)” and
“A::f(int)". You cannot specify a return type in a signature.

m class class_name

Specifies that the breakpoint should be planted in all member functions of class class_name.

m virtual class:signature

Specifies that the breakpoint should be planted in all virtual member functions that match signature and
are in the class or derived from the class.

Command alias

Alias Definition Description

b break Sets a breakpoint

bt {dbreak t} Sets a breakpoint only on the thread of interest
Examples

For all examples, assume that the current process set is d2.<when the breakpoint is defined.
dbreak 12

Suspends process 2 when it reaches line 12. However, if the STOP_ALL variable is set to group, all other pro-
cesses in the group are stopped. In addition, if SHARE_ACTION_POINT is true, the breakpoint is placed in every
process in the group.

dbreak -address 0x1000764

Suspends process 2 when execution reaches address 0x1000764.

dbreak Other Commands 49

CLI Commands

b 12 -g
Suspends all processes in the current control group when execution reaches line 12.
dbreak 57 -1 f9 -e {goto $63}
Causes the thread that reaches the breakpoint to transfer to line 63. The host language for this statement is
Fortran 90 or Fortran 95.
df ocus p3 b 57 -e {goto $63}
In process 3, sets the same evaluation point as the previous example.

RELATED TOPICS

Barrier Points in the TotalView User Guide

Creating Conditional Breakpoints in the TotalView User Guide
Groups in TotalView in the TotalView User Guide

dactions Command

dbreak Command

denable Command

ddisable Command

dbreak Other Commands

50

CLI Commands

dcache Clears the remote library cache

Format
dcache -flush

Arguments
-flush

Deletes all files from the library cache that are not currently being used.

Description

The dcache -flush command removes the library files that it places in your cache, located in the .TotalView/lib_-
cache subdirectory in your home directory.

When you are debugging programs on remote systems that use libraries that either do not exist on the host or
whose version differ, TotalView copies the library files into your cache. This cache can become large.

TotalView automatically deletes cached library files that it hasn't used in the last week. If you need to reclaim addi-
tional space at any time, use this command to remove files not currently being used.

dcache Other Commands 51

CLI Commands

dcalltree

Format

dcalltree [-datapbv_data_array] [-show_details] [-sortcolumns] [-hide_backtrace] [-save_as_csvfilename]

[-save_as_dotfilename]

Arguments
-datapbv_data_array

Displays parallel backtrace data

Captures the data from calling dcalltree in an associative Tcl array rather than writing the data to the console.

-show_details

Displays the data with all processes and threads displayed.

-hide_backtrace

Displays the data with only root and leaf nodes displayed.

-sort column

Sorts the data display based on the data in a particular column. The possible arguments are Processes, Loca-

tion, PC, Host, Rank, ID, and Status.

-save_as_csvfilename

Saves the backtrace data as a file of comma-separated values under the name filename.

-save_as_dotfilename

Saves the backtrace data as a dot file under the name filename. Dot is a plain text graph description language.

Description

The dcalltree command shows the state of processes and threads in a parallel job. Normally the output is writ-
ten to the console, but the -data subcommand makes the data available as a Tcl associative array. The associative

array has the following format:

{

Key <val ue>

Level <val ue>
Processes <val ue>
Locati on <val ue>
PC <val ue>

Host <val ue>

Rank <val ue>

| D <val ue>

St at us <val ue>

{
}

dcalltree Other Commands

52

CLI Commands

If you are using the Classic TotalView Ul, the data displayed by this command is similar to the data displayed in the
Parallel Backtrace View window.

The -show_details and -hide_backtrace switches pull in opposite directions. The -show_details switch shows
the maximum data, including all processes and threads. The -hide_backtrace command hides any intermediate
nodes, displaying only the root and leaf nodes. If used together, this results in a display of root and leaf nodes
and all threads. This reduction can help to de-clutter the data display if the number of processes and threads is
large.

Command alias

Alias Definition Description

ct dcalltree Prints data to console

ctd dcalltree -data Puts data in a Tcl associative array
ctsd dcalltree -show_details Prints more complete data

ctshb dcalltree -hide_backtrace Prints data only on root and leaf nodes
Examples

df ocus group dcalltree

This example first changes the focus to the group using dfocus, then calls dcalltree with no switches. Note
that the ID column is a compressed ptlist describing process and thread count, range, and IDs. See Com-
pressed List Syntax (ptlist) for more information.

Processes Location PC Host Rank | D Status

12/ ... <local> -1 4:12[pl-4.1-3] ..
4 start 0x004011b9 <local > -1 4: 4] p1 4.1]

4 _libc_start_mai n 0x2b3425358184 <l ocal > - 1 4: 4] p1-4. 1]

4 mai n 0x004035bf <local > -1 4:4[pl-4.1] ..

4 fork_wapper 0x00402790 <l ocal > -1 4:4[pl-4.1]

4 forker 0x0040274b <l ocal > -1 4: 4] pl1-4.1]

4 snore 0x00401cll <local > -1 4:4[pl-4.1] ..

1 snore#681 0x00401c05 <local > -1 2.1 - 47502964801120 St opped

1 snore#705 0x00401c9b <local > -1 4.1 - 47502964801120 Breakpoi nt
2 wait_a while 0x00401a09 <local > -1 2:2[pl.1, p3.1] Stopped

2 _select_nocancel 0x2b34253f56e2 <local > -1 2:2[pl.1, p3.1] Stopped
8 start_thread 0x2b3424db1143 <l ocal > -1 4:12[p1-4.1-3] ..

8 snore_or_| eave 0x004021cb <l ocal > -1 4: 8[pl1-4. 2- 3]

8 snore ... <local> -1 4:8[pl-4.2-3] ...

1 snore#681 0x00401c05 <local > -1 1.2 - 1082132800 Breakpoi nt

1 snore#681 0x00401c05 <local > -1 1.3 - 1090525504 St opped

1 snore#705 0x00401c9b <l ocal > -1 2.2 - 1082132800 Br eakpoi nt

1 snor e#681 0x00401c05 <l ocal > -1 2.3 - 1090525504 St opped

1 snore#681 0x00401c05 <local > -1 4.2 - 1082132800 St opped

1 snore#681 0x00401c05 <l ocal > -1 4.3 - 1090525504 St opped
2wait_a while ... <local> -1 1:2[p3.2-3] ...

dcalltree Other Commands 53

CLI Commands

dcalltree -show details

By adding the -show_details, switch, you get more complete output:
Processes Location PC Host Rank | D Status

12 /

<local > -1 4:12[pl1-4. 1-3]

4 start 0x004011b9 <i ocal > -1 4: 4[pl-4. 1]

RPRPRNRPRPRRRPRRPROOORRPNNRREAAMDNDNRN

__sel ect_nocance
__sel ect_nocance
sel ect _nocance

wait_a while ...
sel ect _nocance

1- 4.

__libc_start _mai n 0x2b3425358184 <l ocal > - 1 4: 4] pl-4. 1]
mai n 0x004035bf <l ocal > -1 4:4[pl-4.1] ...
fork_w apper 0x00402790 <l ocal > -1 4:4[pl-4.1]
f orker 0x0040274b <l ocal > -1 4: 4[p1 4.1]
snore 0x00401cll <local > -1 4:4[p ..
snor e#681 0x00401c05 <l ocal > -1 2 1 - 47502964801120 St opped
snor e#705 0x00401c9b <local > -1 4.1 - 47502964801120 Br eakpoi nt
wait _a while 0x00401a09 <l ocal > -1 2:2[pl.1, p3.1] Stopped
0x2b34253f 56e2 <l ocal > -1 2:2[pl.1, p3.1]
0x2b34253f 56e2 <local > -1 1.1 - 47502964801120 St opped
_ | 0x2b34253f 56e2 <l ocal > -1 3.1 - 47502964801120 St opped
start _thread 0x2b3424db1143 <l ocal > -1 4: 12[pl-4. 1- 3]
snore_or | eave 0x004021cb <l ocal > -1 4: 8[pl-

1]

St opped

4. 2-3]

snore ... <local> -1 4:8[pl-4.2-3] ...

snor e#681 0x00401c05 <local > -1 1.2 - 1082132800 Breakpoi nt
snor e#681 0x00401c05 <l ocal > -1 1.3 - 1090525504 St opped
snor e#705 0x00401c9b <l ocal > -1 2.2 - 1082132800 Breakpoi nt
snor e#681 0x00401c05 <local > -1 2.3 - 1090525504 St opped
snor e#681 0x00401c05 <l ocal > -1 4.2 - 1082132800 St opped
snor e#681 0x00401c05 <l ocal > -1 4.3 - 1090525504 St opped

<local > -1 1:2[p3.2-3] ...
_ | _| 0x2b34253f 56e2 <l ocal > -1 3.3 - 1090525504 St opped
wai t _a whil e#580 0x004019€9 <l ocal >

-1 3.2 - 1082132800 Breakpoi nt

dcalltree -show details -hide backtrace

Adding the -hide_backtrace switch reduces the clutter somewhat:
Processes Locati on PC Host Rank | D Status

1 _sel ect_nocance

<local > -1 4:12[pl-4.1-3] ..
0x2b34253f 56e2 <l ocal > -1 3.3 - 1090525504 St opped

1 select nocancel 0x2b34253f56e2 <local > -1 1.1 - 47502964801120 St opped
1 select nocancel 0x2b34253f56e2 <local > -1 3.1 - 47502964801120 St opped
1 snore#681 0x00401c05 <local > -1 2.1 - 47502964801120 St opped

1 snore#705 0x00401c9b <local > -1 4.1 - 47502964801120 Breakpoi nt

1 snore#681 0x00401c05 <local > -1 1.2 - 1082132800 Breakpoi nt

1 snore#681 0x00401c05 <local > -1 1.3 - 1090525504 St opped

1 snore#705 0x00401c9b <local > -1 2.2 - 1082132800 Br eakpoi nt

1 snore#681 0x00401c05 <l ocal > -1 2.3 - 1090525504 St opped

1 snore#681 0x00401c05 <local > -1 4.2 - 1082132800 St opped

1 snore#681 0x00401c05 <l ocal > -1 4.3 - 1090525504 St opped

1 wait_a_whil e#580 0x004019e9 <l ocal > -1 3.2 - 1082132800 Breakpoi nt

Here is code to get the location of all threads that are at a breakpoint:
dcalltree -data pbv_data array -show details

dcalltree Other Commands

54

CLI Commands

foreach { data record } [array get pbv_data_array]

set print_location O

set break | ocation

foreach {title value} $data record {
if {$title == "Location"} {

set break | ocation $val ue

}
i f {$val ue == "Breakpoint"} {
set print_location 1

}
if {1 == $print_location} {

puts stdout "Breakpoint found at $break_ | ocation"
set print_location O

}
}

RELATED TOPICS

Parallel Backtrace View in the Classic TotalView User Guide

dcalltree Other Commands

{

55

CLI Commands

dCheCkp0|nt Creates a checkpoint image of processes (IBM RS6000 only)

Format

Creates a checkpoint on IBM RS6000 machines.
dcheckpoint[-byprocess_set] [-delete | -halt]

Arguments
-by process_set

This option can take two possible values:
pe
Checkpoint the Parallel Environment job. This value is the default.
pid
Checkpoint the focus process.
-delete
Processes exit after the checkpoint occurs.
-halt
Processes halt after the checkpoint occurs.

Description

The dcheckpoint command saves program and process information to a file. This information includes process
and group IDs. Later, use the drestart command to restart the program.

NOTE: This command does not save TotalView breakpoint information. To save breakpoints, use the
dactions command.

By default, TotalView checkpoints the Parallel Environment job. To checkpoint a particular process, make that pro-
cess the focus and use the pid argument to -by. If the focus is a group that contains more than one process, the
CLI displays an error -message.

By default, the checkpointed processes stop, allowing you to investigate a -program’s state at the checkpointed
position. You can modify this behavior with the -delete and -halt options.

When you request a checkpoint:

m TotalView temporarily stops (that is, parks) the processes that are being checkpointed. Parking
ensures that the processes do not run freely after a dcheckpoint or drestart operation. (If they
did, your code would begin running before you could control it.)

dcheckpoint Other Commands 56

CLI Commands

m The CLI detaches from processes before they are checkpointed. After checkpointing, the CLI
automatically reattaches to them.

Examples
dcheckpoi nt
Checkpoints the Parallel Environment job. All associated processes stop.
f3 dcheckpoi nt -by pid
Checkpoints process 3. Process 3 stops.
dcheckpoi nt -by pe -halt
Checkpoints the Parallel Environment job. All associated processes halt.

RELATED TOPICS

drestart Command

dcheckpoint Other Commands

57

CLI Commands

dCOﬂt Continues execution and waits for execution to stop

Format
dcont

Arguments

This command has no arguments

Description

The dcont command continues all processes and threads in the current focus, and then waits for all of them to
stop.

NOTE: You can interrupt this action using Ctr/+Cto stop process execution.

A dcont command completes when all threads in the focus set of processes stop executing. If you do not indi-
cate a focus, the default focus is the process of interest (POI).

This command is a Tcl macro, with the following definition:
proc dcont {args} {uplevel dgo; "dwait $args" }

You often want this behavior in scripts. You seldom want to do it interactively.

Command alias

Alias Definition Description

co dcont Resume

co {dfocus g dcont} Resume at group-level
Examples

dcont

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (This command does not affect threads that are held at barriers.) The command blocks further input
until all threads in all target processes stop. After the CLI displays its prompt, you can enter additional com-
mands.

df ocus pl dcont
Resumes execution of all stopped threads that are not held and that belong to process 1. The CLI does not
accept additional commands until the process stops.

df ocus {pl p2 p3} co

dcont Other Commands 58

CLI Commands

Resumes execution of all stopped threads that are not held and that belong to processes 1, 2, and 3.
Cco
Resumes execution of all stopped threads that are not held and that belong to the current group.

RELATED TOPICS

Starting Processes and Threads in the Classic TotalView User Guide
dgoCommand

dwaitCommand

dcont Other Commands

59

CLI Commands

dcuda Manages GPU threads

Format

dcuda block [(Bx,By,Bz)]
dcuda thread [(Tx, Ty, Tz)]
dcuda kernel

dcuda device [<n>]

dcuda sm [<n>]

dcuda warp [<n>]

dcuda lane [<n>]

dcuda info-system

dcuda info-device

dcuda info-sm

dcuda info-warp

dcuda info-lane

dcuda focus (Bx,By,Bz),(Tx,Ty, Tz)
dcuda hwfocus <D/S/W/L>

Arguments
Bx, By, Bz

The x, y and z block indices
Ix, Ty, 1z
The x,y, and z thread indices
D/S/W/L
The coordinates defining the physical space of the hardware:

D: device number

S: streaming multiprocessor (SM)
W: warp (WP) number on the SM
L: lane (LN) number on the warp

Description

The dcuda commands allow you to manage and view GPU threads, in either the logical coordinate space of block
and thread indices (<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>) or the physical coordinate space that defines the hardware (the
device number, the streaming multiprocessor number on the device, the warp number on the SM, and lane num-
ber on the warp).

dcuda block [(Bx,By,Bz)]

m With no arguments, shows the current CUDA block

dcuda Other Commands 60

CLI Commands

m With a block argument of the form (Bx, By, Bz), changes the CUDA focus to that block. Parameters to
the right (By and Bz, or just Bz) may be omitted; these are unchanged.

dcuda thread [(Tx,Ty,Tz)]
m With no arguments, shows the current CUDA thread.

m With a thread argument of the form (Tx, Ty, 7Z), changes the CUDA focus to that thread. Parameters
to the right (Ty and Tz, or just Tz) may be omitted; these are unchanged.

dcuda kernel
Displays the logical and hardware coordinates of the current CUDA context.
dcuda device [<n>]

m With no arguments, shows the current CUDA device.

m With a numeric argument, changes the CUDA device focus to that device.
dcuda sm [<n>]

m With no arguments, shows the current CUDA SM (streaming multiprocessor).

m With a numeric argument, changes the CUDA SM focus to that SM.
dcuda warp [<n>]

m With no arguments, shows the current CUDA warp.

m With a numeric argument, changes the CUDA warp focus to that warp.
dcuda lane [<n>]

m With no arguments, shows the current CUDA lane.

m With a numeric argument, changes the CUDA lane focus to that lane.
dcuda info-system
Displays the CUDA devices in the system.
dcuda info-device
Displays currently running SMs in the current device.
dcuda info-sm

Displays valid warps in the current SM.

dcuda Other Commands

61

CLI Commands

dcuda info-warp

Displays valid lanes in the current warp.

dcuda info-lane

Displays the current lane.

dcuda focus (Bx,By, Bz),(Tx,Ty,Tz)

Changes the focus via CUDA logical coordinates of the form <<<(Bx, By, Bz), (Tx, Ty, Tz) >>>,

The following abbreviations are also accepted:

<<<LTX>>>

<<<(Tx) >>>

<<<(Tx, Ty) >>>
<<<L(Tx, Ty, Tz) >>>
<<<(Bx), (Tx) >>>

<<<(BX), (Tx, Ty) >>>
<<<(Bx), (Tx, Ty, Tz) >>>
<<<(Bx, By), (Tx) >>>
<<<(Bx, By), (Tx, Ty) >>>
<<<(Bx, By), (Tx, Ty, Tz) >>>
<<<(Bx, By, Bz), (Tx) >>>
<<<(Bx, By, Bz), (Tx, Ty) >>>
<<<(Bx, By, Bz), (Tx, Ty, Tz) >>>

Angle brackets are optional, but must be balanced.
dcuda hwfocus <D/S/W/L>

Changes the focus via CUDA hardware coordinates of the form D/S/W/L, S/W/L, W/L, or L.

Command alias

Alias Definition Description
cuda dcuda Writes out the focus thread, as in dcuda kernel.
Examples

Displaying device information
dcuda i nf o-devi ce
Output:

DEV: 0/1 Device Type: gt200 SM Type: sm 13 SM WP/ LN: 30/ 32/32 Regs/LN. 128
SM 0/30 valid warps: 0x0000000000000001

dcuda i nfo-sm
Output:

DEV: 0/1 Device Type: gt200 SM Type: sm 13 SM WP/ LN: 30/ 32/ 32 Regs/LN. 128
SM 0/30 valid warps: 0x0000000000000001

dcuda Other Commands 62

CLI Commands

}/\g: 00/03’32 val i d/ acti ve/ di vergent | anes: 0x0000000f/ 0x0000000f/ 0x00000000 bl ock:

dcuda i nf o-war p
Output:

DEV: 0/1 Device Type: gt200 SM Type: sm 13 SM WP/ LN: 30/ 32/ 32 Regs/LN:. 128

SM 0/30 valid warps: 0x0000000000000001

Y\g: 0063’)2 val i d/ acti ve/ di vergent | anes: 0x0000000f/ 0x0000000f/ 0x00000000 bl ock:
LN: 0/32 pc=0x000000001ef 2ef a8 t hread: (0, 0, 0)

LN: 1/ 32 pc=0x000000001ef 2ef a8 thread: (1,0,0)
LN: 2/ 32 pc=0x000000001ef 2efa8 thread: (O, 1, 0)
LN: 3/32 pc=0x000000001ef 2efa8 thread: (1,1,0)

dcuda i nfo-I| ane
Output:

DEV: 0/1 Device Type: gt200 SM Type: sm 13 SM WP/ LN: 30/ 32/32 Regs/LN. 128
SM 0/30 valid warps: 0x0000000000000001

}/\g: 00/03’-32 val i d/ acti ve/ di vergent | anes: 0x0000000f/ 0x0000000f/ 0x00000000 bl ock:

Displaying the focus
dcuda warp sm

Output:

smO warp O
dcuda | ane devi ce

Output:

device 0 | ane 3
dcuda t hread

Output:

thread (1,1, 0)
dcuda ker ne

Output:

device 0, smO, warp O, lane 3, block (0,0,0), thread (1,1, 0)

Changing the focus

In these commands, note that TotalView assigns CUDA threads a negative thread ID. In the examples here, the
CUDA thread is labeled "1.-1".

dcuda thread (1,1, 0)
Changes the CUDA focus to the thread represented by logical coordinates 1,1,0.

dcuda Other Commands

CLI Commands

New CUDA focus (1.-1): device 0, smO0O, warp
(1,1,0)

dcuda | ane 2
Changes the CUDA focus to lane 2.

New CUDA focus (1.-1): device 0, smO0O, warp
(0,1,0)

dcuda lane 1 smO

Changes the CUDA focus to lane 1 and to SM 0.

New CUDA focus (1.-1): device 0, smO0O, warp
(1,0,0)

dcuda thread 0,0,0
Changes the CUDA focus to thread 0,0,0.

New CUDA focus (1.-1): device 0, smO0O, warp
(0,0, 0)

dcuda thread 1
Changes the CUDA focus to thread 1,0,0.

New CUDA focus (1.-1): device 0, smO0O, warp
(1,0,0)

RELATED TOPICS

Using the CUDA Debugger in the TotalView User Guide

dcuda Other Commands

| ane

| ane

| ane

| ane

| ane

bl ock (0,0, 0),

bl ock (0, 0, 0),

bl ock (0,0, 0),

bl ock (0,0, 0),

bl ock (0,0, 0),

t hr ead

t hr ead

t hr ead

t hr ead

t hr ead

64

CLI Commands

ddelete Deletes action points

Format

Deletes the specified action points
ddelete action-point-list

Deletes all action points
ddelete -a

Arguments
action-point-list

Alist of the action points to delete.

Deletes all action points in the current focus.

Description

The ddelete command permanently removes one or more action points. If you delete a barrier point, the CLI
releases the processes and threads held at it.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Alias Definition Description
de ddelete Deletes action points
Examples

ddelete 1 2 3
Deletes action points 1, 2, and 3.
ddelete -a
Deletes all action points associated with processes in the current focus.
df ocus {pl p2 p3 p4} ddelete -a
Deletes all the breakpoints associated with processes 1 through 4. Breakpoints associated with other threads
are not affected.
df ocus a de -a
Deletes all action points known to the CLI.

ddelete Other Commands 65

CLI Commands

ddetach Detaches from processes

Format
ddetach

Arguments

This command has no arguments.

Description

The ddetach command detaches the CLI from all processes in the current focus. This undoes the effects of
attaching the CLI to a running process; that is, the CLI releases all control over the process, eliminates all debug-
ger state information related to it (including action points), and allows the process to continue executing in the
normal runtime environment.

You can detach any process controlled by the CLI; the process being detached need not have been loaded with a
dattachcommand.

After this command executes, you are no longer able to access program variables, source location, action point
settings, or other information related to the detached process.

If a single thread serves as the set, the CLI detaches the process that contains the thread. If you do not indicate a
focus, the default focus is the process of interest (POI).

Command alias

Alias Definition Description

det ddetach Detaches from processes
Examples

ddet ach

Detaches the process or processes that are in the current focus.
df ocus {p4 p5 p6} det
Detaches processes 4, 5, and 6.
df ocus g2 det
Detaches all processes in the control group associated with process 2.

ddetach Other Commands 66

CLI Commands

RELATED TOPICS

Detaching from Processes in the Classic TotalView User Guide

dattachCommand

ddetach Other Commands

67

CLI Commands

ddisable Temporarily disables action points

Format
Disables the specified action points

ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a

Arguments
action-point-list
Alist of the action points to disable.

-block number-list

If you set a breakpoint on a line that is ambiguous, use this option to identify the instances to disable. Obtain a

list of these numbers using the dactionscommand.

Disables all action points.

Description

The ddisable command temporarily deactivates action points. To delete an action point, use ddelete.

You can explicitly name the IDs of the action points to disable or you can disable all action points.
If you do not indicate a focus, the default focus is the process of interest (POI).

Note that you cannot disable a nullified action point, i.e., one that points to an invalid address block.

Command alias

Alias Definition Description
di ddisable Temporarily disables action points
Examples
ddi sable 3 7
Disables the action points with IDs 3 and 7.
di -a

Disables all action points in the current focus.
df ocus {pl p2 p3 p4} ddisable -a

ddisable Other Commands

68

CLI Commands

Disables all action points associated with processes 1 through 4. Action points associated with other processes
are not affected.

di 1 -block 3 4
Disables the action points associated with blocks 3 and 4. That is, one logical action point can map to more
than one actual action point if you set the action point at an ambiguous location.

ddi sable 1 2 -block 3 4
Disables the action points associated with blocks 3 and 4 in action points 1 and 2.

ddi sable 1 -block O
ddi sabl e: Actionpoint 1 block O is nullified and cannot be di sabl ed

Disabling an action point that is nullified, i.e., one that points to an invalid address block, returns an error mes-
sage.

ddisable Other Commands 69

CLI Commands

dd |Open Dynamically loads shared object libraries

Format

Dynamically loads a shared object library
ddlopen [-now| -lazy][-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen -list [d/l-ids ... | -all]

Arguments
-now

Includes RTLD_NOW in the dlopen command's mode argument. (Now immediately resolves all undefined
symbols.)

-lazy
Includes RTLD_LAZY in the dlopen command's mode argument. (Lazy tries to resolve unresolved symbols as
code is executed, rather than now.)

-local
Includes RTLD_GLOBAL in the dlopen command’s mode argument. (Local makes library symbols unavailable
to libraries that the program subsequently loads.) This argument is the default.

-global
Includes RTLD_LOCAL in the dlopen command'’s mode argument. (Global makes library symbols available to li-
braries that the program subsequently loads.)

-mode int
The integer arguments are ORed into the other mode flags passed to the dlopen() function. (See your operat-
ing system's documentation for information on these flags.)

filespec
The shared library to load.

-list
Displays information about the listed DLL IDs. If you use ddlopen without arguments or use the -list option
without a DLL ID list (ddlopen -list), TotalView displays information about all DLL IDs.

dll-ids
Alist of one or more DLL IDs. DLL IDs are the return values when you use the ddlopen command to load DLLs.

Description

The ddlopen command dynamically loads shared object libraries, or lists the shared object libraries loaded using
this or the Tools > Debugger Loaded Libraries command, available in Classic TotalView.

ddlopen Other Commands 70

CLI Commands

For a filespec argument, TotalView performs a dlopen operation on this file in each process in the current P/T
set. On the IBM AIX operating system, you can add a parenthesized library module name to the end of the
filespec argument.

NOTE: dlopen(3), dlerror(3), and other related routines are not part of the default runtime libraries
on AlX, Solaris, and Red Hat Linux. Instead, they are in the libdl system library. Consequently,
you must link your program using the-ldloption if you want to use the ddlopen command.

Also, the ddlopen command operates by calling dlopen(3). This can alter the string returned
by dlerror(3). Thus, issuing a ddlopen command can change the values returned to the appli-
cation by any of its subsequent dlerror(3) calls.

The -now and -lazy options indicate whether dlopen immediately resolves unresolved symbol references or
defers resolving them until the target program references them. If you don't use either option, TotalView uses
your operating system'’s default. (Not all platforms support both alternatives. For example, AlX treats RTLD_LAZY
the same as RTLD_NOW).

The -local and-global options determine if symbols from the newly loaded library are available to resolve refer-
ences. If you don't use either option, TotalView uses the target operating system's default. (Linux supports only
the -global option. If you don't specify an option, the default is the -local option.)

After entering this command, the CLI waits until all dlopen calls complete across the current focus. The CLI then
returns a unique dll-id and displays its prompt, which means that you can enter additional CLI commands. How-
ever, if an event occurs (for example, a $stop, a breakpoint in user function called by static object constructors, a
SEGV, and so on), the ddlopen command throws an exception that describes the event. The first exception sub-
code in the errorCode variable is the DLL IDfor the suspended dlopen() function call.

If an error occurs while executing the dlopen() function, TotalView calls the dlerror()function in the target pro-
cess, and then prints the returned string.

A DLL ID represents a shareable object that was dynamically loaded by the ddlopen command. Use the TV:dlI
command to obtain information about and delete these objects. If all dlopen() calls return immediately, the
ddlopen command returns a unique DLL ID that you can also use with the TV::dll command.

Every DLL ID is also a valid breakpoint ID, representing the expressions used to load and unload DLLs. You can
manipulate these breakpoints using the TV::expr command.

To obtain a listing of all objects loaded using ddlopen, enter just ddlopen without a filespec argument, or
ddlopen -list.

The ddlopen command prints its output directly to the console.

ddlopen Other Commands 71

CLI Commands

Examples
ddl open "npi stat. so"
1

Loads the mpistat.so library file. The return value (1) indicates the process into which TotalView loaded the
library.

df ocus g ddl open "npi stat.so(npistat.o)"
2

Loads the module mpistat.o in the AIX DLL library mpistat.so into all members of the current process'’s con-
trol group.

ddl open -1 azy -gl obal "npistat.so"

Loads mpistat.so into process 1, and does not resolve outstanding application symbol requests to point to
mpistat. However, TotalView uses the symbols in this library if it needs them.

ddl open
dl [-id susp-eval -id [Switches] DLL nane p.t dl open handle (TV::expr get p.t status)
1 2 -lazy tx_shared_|lib.so 1.1 3

Prints the list of shared objects dynamically loaded by the ddlopen command.

ddlopen prints its output directly to the console. Type “help output” for more information.

RELATED TOPICS

Preloading Shared Libraries in the Classic TotalView User Guide
TV::dliCommand

ddlopen Other Commands 72

CLI Commands

ddown Moves down the call stack

Format
ddown [num-levels]

Arguments
num-levels

Number of levels to move down. The defaultis 1.

Description

The ddown command moves the selected stack frame down one or more levels and prints the new frame’s num-
ber and function name.

Call stack movements are all relative, so using the ddown command effectively moves down in the call stack. (If
up is in the direction of the main() function, then down is back to where you were before you moved through
stack frames.)

Frame 0O is the most recent—that is, the currently executing—frame in the call stack, frame 1 corresponds to the
procedure that invoked the currently executing frame, and so on. The call stack's depth is increased by one each
time a procedure is entered, and decreased by one when it is exited.

The command affects each thread in the focus. That is, if the current width is process, the ddown command acts
on each thread in the process. You can specify any collection of processes and threads as the target set.

In addition, the ddown command modifies the current list location to be the current execution location for the
new frame; this means that a dlist command displays the code that surrounds this new location.

The context and scope changes made by this command remain in effect until the CLI executes a command that
modifies the current execution location (for example, the dstep command), or until you enter either a dup or
ddown command.

If you tell the CLI to move down more levels than exist, the CLI simply moves down to the lowest level in the stack,
which was the place where you began moving through the stack frames.

Command alias

Alias Definition Description

d ddown Moves down the call stack
Examples

ddown

ddown Other Commands 73

CLI Commands

Moves down one level in the call stack. As a result, for example, dlist commands that follow refers to the pro-
cedure that invoked this one. The following example shows what prints after you enter this command:

0 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays. F#48]

d>5
Moves the current frame down five levels in the call stack.

RELATED TOPICS

dup Command

ddown Other Commands 74

CLI Commands

denable Enables action points

Format

Enables some action points
denable action-point-list [-block number-list]

Enables all disabled action points in the current focus
denable -a

Arguments
action-point-list
The identifiers of the action points being enabled.

Enables all action points.
-block number-list

If you set a breakpoint on a line that is ambiguous, this option names which instances to enable. Use the
dactions command to obtain a list of these numbers.

Description

The denable command reactivates action points that you previously disabled with the ddisable command. The -
a option enables all action points in the current focus.

Note that you cannot enable an action point with nullified blocks, i.e. those that point to an invalid address block.
If you did not save the ID values of disabled action points, use dactions to obtain a list of this information.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Alias Definition Description

en denable Enables action points
Examples

denable 3 4

Enables two previously identified action points.

df ocus {pl p2} denable -a
Enables all action points associated with processes 1 and 2. This command does not affect settings associated
with other processes.

en -a

denable Other Commands 75

CLI Commands

Enables all action points associated with the current focus.
f aen-a

Enables all action points in all processes.
en 1 -block 3 4

Enables the action points associated with blocks 3 and 4. That is, one logical action point can map to more than
one actual action point if you set the action point at an ambiguous location.

denable 1 2 -block 3 4
Enables the action points associated with blocks 3 and 4 in action points 1 and 2.

denable 1 -block 0
denabl e: Actionpoint 1 block O is nullified and cannot be enabl ed

Enabling an action point that is nullified, i.e. that points to an invalid address block, returns an error message.

RELATED TOPICS

Enabling Action Pointsin the TotalView User Guide
ddisableCommand

dbarrierCommand

dbreakCommand

dwatchCommand

denable Other Commands 76

CLI Commands

dexamine Displays memory contents

Format

dexamine [-column_count cnt][-countcnt][-data_only][-show_chars][-string_length /en][-format fmt
1[-memory_info] [-wordsize size] variable_or_expression

Arguments
-cols| -column_count cnt

Specifies the number of columns to display. Without this option, the CLI determines this number of columns
based on the data’s wordactid size and format.
-c | -count cnt
Specifies the number of elements to examine. Without this option, the CLI displays the entire object. This num-
ber is determined by the object's datatype. If no type is available, the default value for cntis 1 element.
-d | -data_only
Does not display memory values with a prefixed address: field or address annotations. This option is incompati-
ble with -memory_info.
-f | -format fmt
Specifies the format to use when displaying memory. The default format is hex. You can abbreviate each of
these to the first character in the format's name.
a | address
Interprets memory as addresses; the word size is always the size of a pointer
b | binary
Binary; this can also be abbreviated to t
¢ | char
Unsigned character

d | dec

Signed decimal value of size 1, 2, 4, or 8 bytes
f | float

Signed float value, either 4 or 8 byte word size
h | hex

Unsigned hexadecimal value of size 1, 2, 4, or 8 bytes
i | instruction

Sequence of instructions
o | oct

Unsigned octal value of size 1, 2, 4, or 8 bytes

dexamine Other Commands 77

CLI Commands

s | string
String
-m | -memory_info
Shows information about the type of memory associated with the address. Without this option, the CLI does not
display this information. This argument is incompatible with -data_only. When you use this option, the CLI an-
notates address each line in the dump as follows:
[d]: .data
[t]: .text

[pl: plt
[b]: .bss
[?1: Another type of memory (such as stack address)

If you have enabled memory debugging, the following annotations can also appear:

[A]: Allocated block of memory

[D]: Deallocated block of memory

[G]: Address is a guard region

[C]: Address is a corrupted guard region

If the address being examined is within an allocated block, this option tells the Memory Debugger to automati-
cally include the pre-guard region if the user specified guards in the memory debugging configuration.
-sc | -show_chars
Shows a trailing character dump for each line. Without this option, the CLI does not show the trailing characters.
-sl | -string_length len

Specifies the maximum size string to display. Without this option, the length is all characters up to the first null
character.

-w | -wordsize Size

Specifies the “word size" to apply to the format. The default word size is "1' for most formats. For 'address' format,
the word size is always the size of a target pointer. The values can be 1, 2, 4, 8 or one of the following: b (byte), h
(half word), w (word), or g (giant).

variable_or_expression

Avariable or an expression that can be resolved into a memory address.

Description

Examines memory at the address of the specified variable or the address resulting from the evaluation of an
expression. If you specify an expression, the result of the evaluation must be an Ivalue.

In most cases, you will enclose the expression in {} symbols.

dexamine Other Commands 78

CLI Commands

NOTE: Instead of using the listed dexamine options, you can instead use the gdb examine command
syntax.

Command alias

Alias Definition Description
X dexamine Examines (dumps) memory
Examples

dl. <> dexanmine -f b {dbl _array[1]}
ox7fffff0od70e8: 0100000000000011001100110011001100110011001100110011001100110011
ox7fffffod70fO0:

Examines the memory of element one of dbl _ar r ay in binary format.

dl. <> dexani ne -wordsi ze 8 {dbl _array[1]}
Ox7fffff0d70e8: 0x4003333333333333
ox7fffffod70fO0:

Examines the memory of element one of dbl _ar r ay and applies an eight-bit word size to the formatting out-
put.

dl. <> dexam ne -data_only {dbl _array[1]}
0x4003333333333333

Examines the memory of element one of dbl _ar r ay and displays only the memory values and not the
address field or address annotations.

dl. <> dexani ne -format oct {dbl _array[1]}
Ox7fffff0d70e8: 00400031463146314631463
ox7fffffod70fO0:

Examines the memory of element one of dbl _ar r ay and formats the output in octal.

dexamine Other Commands 79

CLI Commands

dflush Unwinds stack from suspended computations

Format
Removes the top-most suspended expression evaluation.
dflush

Removes the computation indicated by a suspended evaluation ID and all those that precede it
dflush susp-eval-id

Removes all suspended computations
dflush -all

Arguments
susp-eval-id
The ID returned or thrown by the dprintcommand or which is printed by the dwherecommand.
-all
Flushes all suspended evaluations in the current focus.

Description

The dflushcommand unwinds the stack to eliminate frames generated by suspended computations. Typically,
these frames can occur when using the dprint -nowait command. Other possibilities are if an error occurred in a
function call in an eval point, in an expression in a Tools > Evaluate window (available in Classic TotalView), or if
you use a $stopfunction.

Use this command as follows:

m Ifyou don't use an argument, the CLI unwinds the top-most suspended evaluation in all threads in
the current focus.

m [fyou use a susp-eval-id, the CLI unwinds each stack of all threads in the current focus, flushing all
pending computations up to and including the frame associated with the ID.

m |f you use the-all option, the CLI flushes all suspended evaluations in all threads in the current
focus.

If no evaluations are suspended, the CLI ignores this command. If you do not indicate a focus, the default focus is
the thread of interest.

Examples

The following example uses the dprint command to place five suspended routines on the stack. It then uses the
dflush command to remove them. This example uses the dflush command in three different ways.

#

dflush Other Commands 80

CLI Commands

Create 5 suspended functi ons
#

dl. <> dprint -nowait nothing2(7)
7

Thread 1.1 hit breakpoint 4 at |Iine 310 in "nothing2(int)"
dl. <> dprint -nowait nothing2(8)

8

Thread 1.1 hit breakpoint 4 at |Iine 310 in "nothing2(int)"
dl. <> dprint -nowait nothing2(9)

9

Thread 1.1 hit breakpoint 4 at |Iine 310 in "nothing2(int)"
dl. <> dprint -nowait nothing2(10)

10

Thread 1.1 hit breakpoint 4 at |ine 310 in "nothing2(int)"
dl. <> dprint -nowait nothing2(11)

11

Thread 1.1 hit breakpoint 4 at |ine 310 in "nothing2(int)"

#
The top of the call stack |ooks Iike:

#

dl. <> dwhere 0 not hi ng2 PC=0x00012520, FP=0xffbef 130 [fork. cxx#310]
kkk EVaI FUHCtIOﬂ Call (11) kkhkkkkhkkkhhkkkhkkhkkkk%x
not hi ng2 PC=0x00012520, FP=0xffbef 220 [fork. cxx#310]
*k k%% Eval FUﬂCtIOﬂ Call (10) EE R S b R I
not hi ng2 PC=0x00012520, FP=0xffbef 310 [fork. cxx#310]

* k k k% EVB.' Functlon Ca.ll (9) kkhkkkhkhkkhkhkkhkkkkkkk*k

not hi ng2 PC=0x00012520, FP=0xffbef400 [fork. cxx#310]
*k Kk k% EVaI FUHCtIOﬂ Call (8) kkhkkkkhkkkhhkkkhkkhkkkk%x
not hi ng2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
*k k%% Eval FunCtlon Call (7) EE R S b b I

10 forker PC=0x00013fd8, FP=0xffbef 648 [fork.cxx#1120]
11 fork_wap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]
#

Use the dflush command to renmove the | ast item pushed
onto the stack. Notice the frame associated with "11"
is no | onger there.

#

dl. <> df | ush

dl. <> dwhere

not hi ng2 PC=0x00012520, FP=0xffbef 220 [fork. cxx#310]

* k k k% EVB.' Functlon Ca.ll (10) EE R S O I R I I
not hi ng2 PC=0x00012520, FP=0xffbef 310 [fork. cxx#310]

* k Kk k% EVaI FUHCtIOﬂ Call (9) kkhkkkkhkkkhhkkkhkkhkkk%x
not hi ng2 PC=0x00012520, FP=0xffbef400 [fork. cxx#310]
*k k%% Eval FunCtlon Call (8) EIE R S b b S I
not hi ng2 PC=0x00012520, FP=0xffbef4f0 [fork. cxx#310]
*k k k% EVa.I Functlon Ca.ll (7) kkhkkkhkhkkhkhkkhkkhkkhkkhkkkkkx

forker PC=0x00013f d8, FP=0xffbef 648 [fork.cxx#1120]
fork_ wap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

OCO~NOUIRRWN -

Use the dflush command wi th a suspened | D argunment to renove
all franmes up to and including the one associated with
suspended ID 9. This means that IDs 7 and 8 renain

HFHHFEHFFOONOUDDWNEO

dl.<> dflush 9

Top of call stack after dflush 9

dl. <> dwhere

0 not hi ng2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]

dflush Other Commands 81

CLI Commands

*k k k% EVa.I Functlon Ca.ll (8) kkhkkkhkhkkhkhkkhkhkkkhkkkkkx

not hi ng2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
*k Kk k% EV8.| FUﬂCtIOﬂ C:a.ll (7) kkhkkkkhkkkhhkkkhkhkkkk%x

forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
fork_w ap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

Use dflush -all to renove all franmes. Only the franes
associ ated with the programrenain.

HFHHFEHFOL,WONRE

dl. <> dflush -all

Top of call stack after dflush -all

dl. <> dwhere

0 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]

1 fork_wap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

dflush Other Commands

82

CLI Commands

dfocus Changes the current (Process/Thread P/T) set

Format

Changes the target of future CLI commands to this P/T set or returns the value of the current P/T set
dfocus [p/t-set]

Executes a command in this P/T set
dfocus p/t-set command

Arguments
p/t-set

A set of processes and threads to be the target of subsequent CLI commands.

command
A CLI command that operates on its own local focus. This argument may be a single command or a list.

Description

The dfocus command changes the set of processes, threads, and groups upon which a command acts. This com-
mand can change the focus for all commands that follow, or just the command that immediately follows.

If a command argument is provided, the focus is set temporarily, command is executed in the new focus, and
then the focus is restored to its old value.

For example, to continue the TotalView group containing the focus process, you could type:

df ocus g dgo
To stop process 3 and display backtraces for each of its threads, type:

df ocus p3 { dhalt ; dwhere }
Summary

m [f ptset is provided but not command: The default focus for subsequent commands is changed to
ptset.

m [f neither command nor ptset are provided: The current default focus is returned as a string value.
m If no argument is provided: dfocus returns the focus as a string value.
m [fanyargument is provided: dfocus returns the result of the command.

For more information on command output, enter "help output".

For more information on P/T sets, see “Group, Process and Thread Control” of the Classic TotalView User Guide.

dfocus Other Commands 83

CLI Commands

Command alias

Alias Definition Description
f dfocus Changes the object upon which a command acts
Examples

df ocus g dgo
Continues the TotalView group that contains the focus process.
df ocus p3 {dhalt; dwhere}
Stops process 3 and displays backtraces for each of its threads.
df ocus 2.3
Sets the focus to thread 3 of process 2, where 2 and 3 are TotalView process and thread identifier values. The
focus becomes d2.3.

df ocus 3.2
df ocus .5

Sets and then resets command focus. A focus command that includes a dot and omits the process value uses
the current process. Thus, this sequence of commands changes the focus to process 3, thread 5 (d3.5).

df ocus g dstep
Steps the current group. Although the thread of interest (TOI) is determined by the current focus, this command
acts on the entire group that contains that thread.

df ocus {p2 p3} {dwhere ; dgo}
Performs a backtrace on all threads in processes 2 and 3, and then tells these processes to execute.

f2.3{f pw fts; g}
Executes a backtrace (dwhere) on all the threads in process 2, steps thread 3 in process 2 (without running
any other threads in the process), and continues the process.

df ocus pl
Changes the current focus to include just those threads currently in process 1. The width is set to process. The
CLI sets the prompt to p1.<.

df ocus a
Changes the current set to include all threads in all processes. After you execute this command, your prompt
changes to a1.<. This command alters CLI behavior so that actions that previously operated on a thread now
apply to all threads in all processes.

df ocus gWdst at us
Displays the status of all worker threads in the control group. The width is group level and the target is the
workers group.

df ocus pWdst at us
Displays the status of all worker threads in the current focus process. The width is process level and the target
is the workers group.

dfocus Other Commands 84

CLI Commands

f {breakpoint(a) | watchpoint(a)} st

Shows all threads that are stopped at breakpoints or watchpoints.
f {stopped(a) - breakpoint(a)} st

Shows all stopped threads that are not stopped at breakpoints.

“Group, Process, and Thread Control” in the Classic TotalView User Guide contains additional dfocus examples.

RELATED TOPICS

Groups in TotalView in the TotalView User Guide

dfocus Other Commands

85

CLI Commands

dga Displays Global Array variables
Format
dga [-lang lang type1[handle_or_name][slice]
Arguments
-lang
Specifies the language conventions to use. Without this option, TotalView uses the language used by the thread
of interest (TOI).
lang_type
Specifies the language type to use when displaying a global array. The type must be either “c” or “f".
handle_or_name

Displays an array. This can be either a numeric handle or the name of the array. Without this argument, To-
talView displays a list of all Global Arrays.
slice

Displays only a slice (that is, part of an array). If you are using C, you must place the array designators within
braces {} because square brackets ([1) have special meaning in Tcl.

Description

The dga command displays information about Global Arrays.

If the focus includes more than one process, TotalView prints a list for each process in the focus. Because the
arrays are global, each list is identical. If there is more than one thread in the focus, the CLI prints the value of the
array as seen from that thread.

In almost all cases, you should change the focus tod2.<so that you don't include a starter process such as prun.

Examples
dga
Displays a list of Global Arrays, for example:

I b_di st
Handl e - 1000
Chosts yes
C type $doubl e[129][129] [27]
Fortran Type \
$doubl e_preci si on(27, 129, 129)

bc_mask
Handl e - 999
Ghosts yes

C type long[129][129]
Fortran Type $integer (129, 129)

dga bc_mask (:2,:2)

dga Other Commands 86

CLI Commands

Displays a slice of the bec_mask variable, for example:

bc_mask(:2,:2) = {
(1,1) = 1 (0x00000001)
1 (0x00000001)
1 (0x00000001)
0 (0x00000000)

(2
(1,
(2

NN B
~—
I n

}

dga -lang c -998 {[:1]{: 1]}
Displays the same bc_mask variable as in the previous example in C format. In this case, the command refers

to the variable by its handle.

RELATED TOPICS

Debugging Global Arrays Applications in the Classic TotalView User Guide

dga Other Commands

87

CLI Commands

ng Resumes execution of processes

Format
dgo
Arguments
-back | -b
(ReplayEngine only). Runs the nonheld process in the current focus backward until it hits some action point or
the beginning of recorded Replay history. This option can be abbreviated to --b.

Description

The dgo command resumes execution of all nonheld processes and threads in the current focus. If the process
does not exist, this command creates it, passing it the default command arguments. These can be arguments
passed into the CLI, or they can be the arguments set with the drerun command. If you are also using the
TotalView GUI, you can set this value by using the Process > Startup Parameterscommand.

You cannot use a dgo command when you are debugging a core file, nor can you use it before the CLI loads an
executable and starts executing it.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Alias Definition Description

g dgo Resumes execution
G {dfocus g dgo} Resumes group
Examples

dgo

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (Threads held at barriers are not affected.)
G
Resumes execution of all threads in the current control group.
fpg
Continues the current process. Only threads that are not held can run.
fagg
Continues all processes in the control group. Only processes and threads that are not held are allowed to run.
faglg
Continues all threads in the share group that are at the same PC as the thread of interest(TOI).
fpLg

dgo Other Commands 88

CLI Commands

Continues all threads in the current process that are at the same PC as the TO/.
ftog
Continues a single thread.

RELATED TOPICS

Starting Processes and Threads in the Classic TotalView User Guide

dcontCommand

dgo Other Commands

89

CLI Commands

dgpu_status Manages GPU threads

Format

dcuda block [(Bx,By,Bz)]
dcuda thread [(Tx, Ty, Tz)]
dcuda kernel

dcuda device [<n>]

dcuda sm [<n>]

dcuda warp [<n>]

dcuda lane [<n>]

dcuda info-system

dcuda info-device

dcuda info-sm

dcuda info-warp

dcuda info-lane

dcuda focus (Bx,By,Bz),(Tx,Ty, Tz)
dcuda hwfocus <D/S/W/L>

Arguments
Bx, By, Bz

The x, y and z block indices
Ix, Ty, 1z
The x,y, and z thread indices
D/S/W/L
The coordinates defining the physical space of the hardware:

D: device number

S: streaming multiprocessor (SM)
W: warp (WP) number on the SM
L: lane (LN) number on the warp

Description

The dcuda commands allow you to manage and view GPU threads, in either the logical coordinate space of block
and thread indices (<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>) or the physical coordinate space that defines the hardware (the
device number, the streaming multiprocessor number on the device, the warp number on the SM, and lane num-
ber on the warp).

dcuda block [(Bx,By,Bz)]

m With no arguments, shows the current CUDA block

dgpu_status Other Commands 90

CLI