
TotalView Reference Guide

Version 2024.3
September, 2024

TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or
misuse of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

© 2024 Perforce Software, Inc. All rights reserved.
© 2007-2024 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
© 1998–2007 by Etnus LLC. All rights reserved.
© 1996–1998 by Dolphin Interconnect Solutions, Inc.
© 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

Perforce and other identified trademarks are the property of Perforce Software, Inc., or one of its affiliates. Such trade-
marks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks are the prop-
erty of their respective holders. References to third-party trademarks do not imply endorsement or sponsorship of any
products or services by the trademark holder. Contact Perforce Software, Inc., for further details.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.

Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/

iii

Contents

About this Guide

Resources . 2

Part 1: Using the CLI . 3

CLI Command Summary

CLI Commands

Commands by Category . 19
General CLI Commands . 19
CLI Initialization and Termination Commands . 19
Program Information Commands. 20
Execution Control Commands. 20
Action Points . 21
Platform-Specific CLI Commands. 22
Other Commands . 22

All Commands . 23

CLI Namespace Commands

Commands by Category . 218
Accessor Functions. 218
Helper Functions. 218

All Commands .220

Batch Debugging Using tvscript

About tvscript. 281

tvscript Command Syntax .282

tvscript Options .284

tvscript External Script Files . 291
Logging Functions API . 291
Process Functions API . 291
Thread Functions API . 291
Action Point API . 291
Event API .293
Example tvscript Script File. .293

iv

Contents

TotalView Variables

Top-Level (::) Namespace. 298

TV:: Namespace. 307

TV::MEMDEBUG:: Namespace . 348

TV::GUI:: Namespace . 350

Part 2: Transformations . 358

 Creating Type Transformations

About the Type Transformation Facility . 360

Why Type Transformations .361

Creating Structure and Class Transformations . 363
Transforming Structures . 363
build_struct_transform Function . 365
Type Transformation Expressions . 365
Using Type Transformations . 370

C++View . 371
Writing a Data Display Function . 372

TV_ttf_type_ascii_string . 372
TV_ttf_type_int . 372

Templates. 374
Precedence - Searching for TV_ttf_display_type . 375
TV_ttf_add_row . 375

TV_ttf_ec_ok . 375
TV_ttf_ec_not_ active . 375
TV_ttf_ec_invalid_characters . 376
TV_ttf_ec_buffer_exhausted . 376

Return values from TV_ttf_display_type . 376
TV_ttf_format_ok . 376
TV_ttf_format_ok_elide. 376
TV_ttf_format_ failed . 376
TV_ttf_format_ raw . 376
TV_ttf_format_ never . 376

Elision . 377
Other Constraints . 377
Safety . 378
Memory Management. 379
Multithreading . 379
Tips and Tricks . 379
Core Files . 380
Using C++View with ReplayEngine . 380

v

Contents

C . 382
Compiling and linking tv_data_display.c . 382
C++View Example Files . 383
Limitations . 384
Licensing . 384

Part 3: Running TotalView . 385

 TotalView Command Syntax

Command-Line Syntax . 387

Command-Line Options . 388

 TotalView Debugger Server Command Syntax

The tvdsvr Command and its Options .401
Description. 401
Options . 401

Replacement Characters. 404

Part 4: Platforms and Operating Systems . 407

 Platforms and Compilers

Compiling with Debugging Symbols . 409
Apple Running macOS . 409
IBM AIX on RS/6000 Systems. 409
Linux Running on an x86-64 Platform . 411
Linux Running on an ARM64 Platform. 411
Sun Solaris . 411

Maintaining Debug Information Separate from an Executable 413
Controlling Separate Debug Files. 414
Searching for the Debug Files. 415

Linking with the dbfork Library. 416
dbfork on IBM AIX on RS/6000 Systems . 416

Linking C++ Programs with dbfork. 417
Linux or macOS . 417
SunOS 5 SPARC. 417

Compiling and Linking Split DWARF . 419
Using GNU DebugFission Split DWARF on Linux . 419
Using Split DWARF on Solaris . 419

 Operating Systems

Supported Operating Systems . 422

Troubleshooting macOS Installations . 423

vi

Contents

Mounting the /proc File System . 424
Mounting /proc with SunOS 5 . 424

Swap Space. 425
Swap Space on IBM AIX . 425
Swap Space on Linux. 425
Swap Space on SunOS 5 . 426

Shared Libraries . 427
Changing Linkage Table Entries and LD_BIND_NOW . 428

Debugging Your Program’s Dynamically Loaded Libraries . 429
dlopen Options for Scalability. 429

Filtering dlopen Events . 429
Handling dlopen Events in Parallel . 436

Known Limitations . 436

Remapping Keys. 437

 Architectures

AMD and Intel x86-64. 439
x86-64 General Registers . 439
x86-64 Floating-Point Registers . 440
x86-64 FPCR Register . 441
x86-64 FPSR Register . 442
x86-64 MXCSR Register . 443

Power Architectures . 444
Power General Registers . 444
Power MSR Register . 446
Power Floating-Point Registers . 447
Power FPSCR Register . 447

ARM64 . 450
ARM64 General Registers . 450
ARM64 Floating-Point Registers . 450
ARM64 FPCR Register . 451
ARM64 FPSR Register . 452

Intel x86 . 453
Intel x86 General Registers . 453
Intel x86 Floating-Point Registers . 454
Intel x86 FPCR Register . 455
Intel x86 FPSR Register . 456
Intel x86 MXCSR Register . 456

Sun SPARC. 458
SPARC General Registers . 458
SPARC PSR Register. 459

vii

Contents

SPARC Floating-Point Registers . 459
SPARC FPSR Register . 460

Using the SPARC FPSR Register . 461

Appendix A TotalView Glossary . 462

Index . 469

 1

About this Guide

This guide is organized in parts:

 Part I, Using the CLI on page 3 contains descriptions of all the CLI commands,
the variables that you can set using the CLI, and other CLI-related
information.

 Part II, Transformations on page 358 discusses formatting and
transformations that display data in a clear and concise format to facilitate
easier debugging sessions.

 Part III, Running TotalView on page 385 documents all possible command-
line options as well as those that customize the behavior of the tvdsvr.

 Part IV, Platforms and Operating Systems on page 407 provides general
information on compilers, runtime environments, operating systems, and
supported architectures.

Resources 2

About this Guide

Resources
Please see The Resources appendix in the User Guide for more information on:

 a complete list of Classic TotalView documentation

 conventions used in the documentation

 contact information

The documentation for Classic TotalView could be useful if you are using features not yet supported in the mod-
ern TotalView UI by invoking commands through the Command Line Interface (CLI). The commands themselves
are described in this Reference Guide, but the Classic TotalView documentation, in particular the User Guide, can
provide useful information on how to use the commands to best advantage in debugging scenarios. This docu-
mentation is available in your Classic TotalView distribution, or on the TotalView documentation web site.

https://help.totalview.io/

 3

PART I Using the CLI

This part of the reference guide describes the TotalView Command Line Interface (CLI).

 CLI Command Summary on page 4

Summarizes all CLI commands.

 CLI Commands on page 18

Describes all commands in the CLI’s unqualified (top-level) namespace. These are the commands that
you use day-in and day-out, and those that are most often used interactively.

 CLI Namespace Commands on page 217

Describes commands found in the TV:: namespace. These commands are seldom used interactively, as
they are most often used in scripts.

 Batch Debugging Using tvscript on page 280

Discusses how to create batch scripts that run TotalView unattended.

 TotalView Variables on page 297

Describes all TotalView variables, including those uses to set GUI behaviors. These variables reside in
three namespaces: unqualified (top-level), TV:: and TV::GUI. For the most part, you set these variables
to alter TotalView behaviors.

4

CLI Command Summary

This chapter contains a summary of all TotalView debugger CLI commands. The commands are described in
detail in CLI Commands on page 18 and CLI Namespace Commands on page 217.

actionpoint
Gets and sets action point properties

TV::actionpoint action [object-id] [other-args]

alias
Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases
alias [alias-name]

capture
Returns a command’s output as a string

capture [-out | -err | -both] [-f filename] command

dactions
Displays information about action points

dactions [ap-id-list] [-at source-loc]
 [-enabled | -disabled]
 [-enabled_blocks | -disabled_blocks]
 [-block_images]
 [-block_lines]

Saves action points to a file
dactions -save [filename]

Loads previously saved action points
dactions -load [filename]

dassign
Changes the value of a scalar variable

 5

CLI Command Summary

dassign target value

dattach
Brings currently executing processes under TotalView control

dattach [-g gid] [-r hname]
 [-ask_attach_parallel | -no_attach_parallel]
 [-replay | -no_replay]
 [-go | -halt] [-rank num]
 [-c { core-file | recording-file }]
 [-e] executable [pid-list]
 [-parallel_attach_subset subset_specification]

dbarrier
Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hit { group | process | none }]
 [-stop_when_done { group | process | none }] [-pending]

Creates a barrier breakpoint at an address
dbarrier -address addr [-stop_when_hit { group | process | none }]
 [-stop_when_done { group | process | none }] [-pending]

dbreak
Creates a breakpoint at a source location

dbreak breakpoint-expr [-p | -g | -t] [[-l lang] -e expr] [-pending]

Creates a breakpoint at an address
dbreak -address addr [-p | -g | -t] [[-l lang] -e expr] [-pending]

dcache
Clears the remote library cache

dcache -flush

dcalltree
Displays parallel backtrace data

[-data pbv_data_array] [-show_details] [-sort columns] [-hide_backtrace]
[-save_as_csv filename] [-save_as_dot filename]

dcheckpoint
Creates a checkpoint on IBM AIX

dcheckpoint [-delete | -halt]

 6

CLI Command Summary

dcont
Continues execution and waits for execution to stop

dcont

dcuda
Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the focus, and display
their status.

dcuda

ddelete
Deletes some action points

 ddelete action-point-list

Deletes all action points
ddelete -a

ddetach
Detaches from the processes

ddetach

ddisable
Disables some action points

ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a

ddlopen
Loads a shared object library

ddlopen [-now | -lazy] [-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen [-list dll-ids...]

ddown
Moves down the call stack

ddown [num-levels]

dec2hex
Converts a decimal number into hexadecimal

TV::dec2hex number

 7

CLI Command Summary

denable
Enables some action points

denable action-point-list

Enables all disabled action points in the current focus
denable -a

dexamine
Display memory contents

dexamine [-column_count cnt] [-count cnt] [-data_only]
 [-show_chars] [-string_length len] [-format fmt]
 [-memory_info] [-wordsize size] variable_or_expression

dflush
Removes the top-most suspended expression evaluation

dflush

Removes all suspended dprint computations
dflush -all

Removes dprint computations preceding and including a suspended evaluation ID
dflush susp-eval-id

dfocus
Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command in this P/T set
dfocus [p/t-set command]

dga
Displays global array variables

dga [-lang lang_type] [handle_or_name] [slice]

dgo
Resumes execution of target processes

dgo

dgroups
Adds members to thread and process groups

dgroups -add [-g gid] [id-list]

 8

CLI Command Summary

Deletes groups
dgroups -delete [-g gid]

Intersects a group with a list of processes and threads
dgroups -intersect [-g gid] [id-list]

Prints process and thread group information
dgroups [-list] [pattern-list]

Creates a new thread or process group
dgroups -new [thread_or_process] [-g gid] [id-list]

Removes members from thread or process groups
dgroups -remove [-g gid] [id-list]

dhalt
Suspends execution of processes

dhalt

dheap
Shows Memory Debugger state

dheap [-status]

Applies a saved configuration file
dheap -apply_config { default | filename }

Shows information about a backtrace
dheap -backtrace [subcommands]

Compares memory states
dheap -compare subcommands [optional_subcommands]
 [process | filename [process | filename]]

Enables or disables the Memory Debugger
dheap { -enable | -disable }

Enables or disables event notification
dheap -event_filter subcommands

Writes memory information
dheap -export subcommands

Specifies which filters the Memory Debugger uses
dheap -filter subcommands

Writes guard blocks (memory before and after an allocation)

 9

CLI Command Summary

dheap -guard [subcommands]

Enables and disables the retaining (hoarding) of freed memory blocks
dheap -hoard [subcommands]

Displays Memory Debugger information
dheap -info [-backtrace] [start_address [end_address]]

Indicates whether an address is within a deallocated block
dheap -is_dangling address

Locates memory leaks
dheap -leaks [-check_interior]

Enables or disables Memory Debugger event notification
dheap -[no]notify

Paints memory with a distinct pattern
dheap -paint [subcommands]

Enables and disables the ability to catch bounds errors and use-after-free errors retaining freed memory
blocks

dheap -red_zones [subcommands]

Enables and disables allocation and reallocation notification
dheap -tag_alloc subcommand start_address [end_address]

Displays the Memory Debugger’s version number
dheap -version

dhistory
Displays information about the state of the program as it is being replayed. If you have received a timestamp,
you can go back to the line that was executing at that time.

dhistory [-info] [-get_time] [-go_time time] [-go_live]
 [-enable] [-disable]

dhold
Holds processes

dhold -process

Holds threads
dhold -thread

dkill
Terminates execution of target processes

 10

CLI Command Summary

dkill [-remove]

dlappend
Appends list elements to a TotalView variable

dlappend variable-name value [...]

dlist
Displays code relative to the current list location

dlist [-n num-lines]

Displays code relative to a named location
dlist breakpoint-expr [-n num-lines]

Displays code relative to the current execution location
dlist -e [-n num-lines]

dll
Manages shared libraries

TV::dll action [dll-id-list] [-all]

dload
Loads debugging information

dload [-g gid] [-mpi starter_value] [-r hname]
 [-replay | -noreplay]
 [-env variable=value] ... [-e] executable
 [-parallel_attach_subset subset_specification]

dmstat
Displays memory use information

dmstat

dnext
Steps source lines, stepping over subroutines

dnext [-back] [num-steps]

dnexti
Steps machine instructions, stepping over subroutines

dnexti [-back] [num-steps]

domp
Displays OpenMP information using the OMPD API

 11

CLI Command Summary

domp [-parallel_regions] [-task_regions] [-control_vars] [-ompd] [-threads {-regions | -functions | -
stack}] [-send_symbols]

dout
Executes until just after the place that called the current routine

dout [-back] [frame-count]

dprint
Prints the value of a variable or expression

dprint [-nowait] [-slice slice_expr] [-stats [-data]] variable_or_expression

dptsets
Shows the status of processes and threads in an array of P/T expressions

dptsets [ptset_array] ...

drerun
Restarts processes

drerun [cmd_arguments] [< infile]
 [> [>][&] outfile]
 [2> [>] errfile]

drestart
Restarts a checkpoint on AIX

drestart [-halt] [-g gid] [-r host] [-no_same_hosts]

Restarts a checkpoint on SGI
drestart [process-state] [-no_unpark] [-g gid] [-r host]
 [-ask_attach_parallel | -no_attach_parallel]
 [-no_preserve_ids] checkpoint-name

drun
Starts or restarts processes

drun [cmd_arguments] [< infile]
 [> [>][&] outfile]
 [2> [>] errfile]

dsession
Loads a session

dsession [-load session_name]

 12

CLI Command Summary

dset
Creates or changes a CLI state variable

dset debugger-var value

Views current CLI state variables
dset [debugger-var]

Sets the default for a CLI state variable
dset -set_as_default debugger-var value

dskip
Create a rule to skip over or through a function

dskip [over | through] [function | -function | -fu] function-name

Create a rule to skip over or through a file
dskip [over | through] [file | -file | -fi] filename

Create a rule to skip over or through functions that are also contained in specific source files
dskip [over | through] { { -function | -fu } function-name | { -rfunction | -rfu } function-regexp } { { -
file | -fi } filename | { -gfile | -gfi } file-glob }

Enable or disable skipping of a list of IDs
dskip [enable | disable] [id]

Delete a list of skip IDs
dskip delete [id]

Print information about a list of skip IDs
dskip info [id]

dstacktransform
Enables or disables the stack transform facility.

dstacktransform [enable | disable id | transform_name]

Prints the current state of rules and transforms.
dstacktransform [list]

Prints the enabled/disabled state of the stack transform facility.
dstacktransform [status]

Removes the rule with the given id from the stack transform facility.
dstacktransform [remove id]

Adds a new transform.
dstacktransform add [-name | -n string] [-implementation | -i path]

 13

CLI Command Summary

Adds a new transform rule.
dstacktransform add [-filter test_function_list] [-transform | -t name] [-operation | -o operation_name
[-position | -p integer] [-before | -b integer]

dstatus
Shows current status of processes and threads

dstatus

dstep
Steps lines, stepping into subfunctions

dstep [-back] [num-steps]

dstepi
Steps machine instructions, stepping into subfunctions

dstepi [-back] [num-steps]

dunhold
Releases a process

dunhold -process

Releases a thread
dunhold -thread

dunset
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values
dunset -all

duntil
Runs to a line

duntil [-back] line-number

Runs to an address
duntil [-back] -address addr

Runs into a function
duntil proc-name

dup
Moves up the call stack

 14

CLI Command Summary

dup [num-levels]

dwait
Blocks command input until the target processes stop

dwait

dwatch
Defines a watchpoint for a variable

dwatch variable [-length byte-count] [-p | -g | -t]
 [[-l lang] -e expr] [-t type]

Defines a watchpoint for an address
dwatch -address addr -length byte-count [-p | -g | -t]
 [[-l lang] -e expr] [-t type]

dwhat
Determines what a name refers to

dwhat symbol-name

dwhere
Displays locations in the call stack

dwhere [-level level-num] [num-levels] [-args] [-locals] [-registers]
 [-noshow_pc][-noshow_fp][-show_image]

Displays all locations in the call stack
dwhere -all [-args] [-locals] [-registers]
 [-noshow_pc][-noshow_fp][-show_image]

dworker
Adds or removes a thread from a workers group

dworker { number | boolean }

errorCodes
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information
TV::errorCodes number_or_tag [-raise [message]]

exit
Terminates the debugging session

exit [-force]

 15

CLI Command Summary

expr
Manipulates values created by dprint -nowait

TV::expr action [susp-eval-id] [other-args]

focus_groups
Returns a list of groups in the current focus

TV::focus_groups

focus_processes
Returns a list of processes in the current focus

TV::focus_processes [-all | -group | -process | -thread]

focus_threads
Returns a list of threads in the current focus

TV::focus_threads [-all | -group | -process | -thread]

group
Gets and sets group properties

TV::group action [object-id] [other-args]

help
Displays help information

help [topic]

hex2dec
Converts to decimal

TV::hex2dec number

process
Gets and sets process properties

TV::process action [object-id] [other-args]

quit
Terminates the debugging session

quit [-force]

read_symbols
Reads symbols from libraries

TV::read_symbols -lib lib-name-list

 16

CLI Command Summary

Reads symbols from libraries associated with a stack frame
TV::read_symbols -frame [number]

Reads symbols for all frames in the backtrace
TV::read_symbols -stack

respond
Provides responses to commands

TV::respond response command

scope
Gets and sets internal scope properties

TV::scope action [object-id] [other-args]

source_process_startup
“Sources” a .tvd file when a process is loaded

TV::source_proccess_startup process_id

stty
Sets terminal properties

stty [stty-args]

symbol
Returns or sets internal TotalView symbol information

TV::symbol action [object-id] [other-args]

thread
Gets and sets thread properties

TV::thread action [object-id] [other-args]

type
Gets and sets type properties

TV::type action [object-id] [other-args]

type_transformation
Creates type transformations and examines properties

TV::type_transformation action [object-id] [other-args]

unalias
Removes an alias

 17

CLI Command Summary

unalias alias-name

Removes all aliases
unalias -all

18

CLI Commands

This chapter lists all CLI commands.

 Commands by Category on page 19

 General CLI Commands on page 19

 CLI Initialization and Termination Commands on page 19

 Program Information Commands on page 20

 Execution Control Commands on page 20

 Action Points on page 21

 Platform-Specific CLI Commands on page 22

 Other Commands on page 22

 All Commands on page 23

Commands by Category General CLI Commands 19

CLI Commands

Commands by Category

NOTE: This chapter describes some functionality that exists in the underlying debugging engine
TotalView, but may not be supported in the TotalView user interface. To access these features,
use the Command Line view or launch the Classic TotalView UI. See About this Guide on
page 1 for more details.

General CLI Commands
These commands provide information on the general CLI operating environment:

 alias: Creates or views pseudonyms for commands and arguments.

 capture: Sends output to a variable for commands that print information.

 dlappend: Appends list elements to a TotalView variable.

 dset: Changes or views values of TotalView variables.

 dunset: Restores default settings of TotalView variables.

 help: Displays help information.

 stty: Sets terminal properties.

 unalias: Removes a previously defined alias.

CLI Initialization and Termination Commands
These commands initialize and terminate the CLI session, and add processes to CLI control:

 dattach: Brings one or more processes currently executing in the normal runtime environment
(that is, outside TotalView) under TotalView control.

 ddetach:Detaches TotalView from a process.

 ddlopen: Dynamically loads shared object libraries.

 dgroups: Manipulates and manages groups.

 dkill:Kills existing user processes, leaving debugging information in place.

Commands by Category Program Information Commands 20

CLI Commands

 dload:Loads debugging information about the program into TotalView and prepares it for
execution.

 drerun: Restarts a process.

 drun: Starts or restarts the execution of user processes under control of the CLI.

 dsession: Loads a session into TotalView.

 exit, quit:Exits from TotalView, ending the debugging session.

Program Information Commands
The following commands provide information about a program’s current execution location, and support brows-
ing the program's source files:

 dcalltree: Displays parallel backtrace data.

 ddown: Navigates through the call stack by manipulating the current frame.

 dexamine: Displays memory contents.

 dflush: Unwinds the stack from computations.

 dga: Displays global array variables.

 dlist: Browses source code relative to a particular file, procedure, or line.

 dmstat: Displays memory usage information.

 dprint: Evaluates an expression or program variable and displays the resulting value.

 dptsets: Shows the status of processes and threads in a P/T set.

 dstatus: Shows the status of processes and threads.

 dup: Navigates through the call stack by manipulating the current frame.

 dwhat:Determines what a name refers to.

 dwhere: Prints information about the thread’s stack.

Execution Control Commands
The following commands control execution:

 dcont: Continues execution of processes and waits for them.

Commands by Category Action Points 21

CLI Commands

 dfocus: Changes the set of processes, threads, or groups upon which a CLI command acts.

 dgo: Resumes execution of processes (without blocking).

 dhalt: Suspends execution of processes.

 dhistory (replay): Provides information for ReplayEngine and supports working with timestamps.

 dhold: Holds threads or processes.

 dnext: Executes statements, stepping over subfunctions.

 dnexti: Executes machine instructions, stepping over subfunctions.

 dout: Runs out of current procedure.

 dskip: Creates and manages single-stepper skip rules.

 dstep: Executes statements, moving into subfunctions if required.

 dstepi: Executes machine instructions, moving into subfunctions if required.

 dunhold: Releases held threads.

 duntil: Executes statements until a statement is reached.

 dwait: Blocks command input until processes stop.

 dworker: Adds or removes threads from a workers group.

Action Points

The following action point commands define and manipulate the points at which the flow of program execution
should stop so that you can examine debugger or program state:

 dactions: Views information on action point definitions and their current status; this command also
saves and restores action points.

 dbarrier: Defines a process barrier breakpoint.

 dbreak: Defines a breakpoint.

 ddelete: Deletes an action point.

 ddisable: Temporarily disables an action point.

 denable: Re-enables an action point that has been disabled.

 dwatch:Defines a watchpoint.

Commands by Category Platform-Specific CLI Commands 22

CLI Commands

Platform-Specific CLI Commands
 dcuda: Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the

focus, and display their status.

 domp: Displays OpenMP information using the OMPD API

Other Commands
The commands in this category do not fit into any of the other categories:

 dassign: Changes the value of a scalar variable.

 dcache: Clears the remote library cache.

 dcheckpoint: Creates a file that can later be used to restart a program.

 dheap: Displays information about the heap.

 drestart: Restarts a checkpoint.

 dstacktransform: Maintains rules that change the displayed stack frames.

All Commands Other Commands 23

CLI Commands

All Commands

alias Other Commands 24

CLI Commands

alias Creates or views pseudonyms for commands

Format
Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases
alias [alias-name]

Arguments
alias-name

The name of the command pseudonym being defined.

defn-body
The text that Tcl substitutes when it encounters alias-name. Often this is just a command name.

Description
The alias command associates a specified name with some defined text. This text can contain one or more com-
mands. You can use an alias in the same way as a native TotalView or Tcl command. In addition, you can include
an alias as part of the definition of another alias.

If you do not enter an alias-name argument, the CLI displays the names and definitions of all aliases. If you spec-
ify only an alias-name argument, the CLI displays the definition of the alias.

Because the alias command can contain Tcl commands, defn-body must comply with all Tcl expansion, substitu-
tion, and quoting rules.

The TotalView global startup file, tvdinit.tvd, defines a set of default one or two-letter aliases for all common
commands. To see a list of these commands, type alias with no argument in the CLI -window.

You cannot use an alias to redefine the name of a CLI-defined command. You can, however, redefine a built-in CLI
command by creating your own Tcl procedure. For example, the following procedure disables the built-in dwatch
command. When a user types dwatch, the CLI executes this code instead of the built-in CLI code.
proc dwatch {} {
puts "The dwatch command is disabled"
}

NOTE: Be aware that you can potentially create aliases that are nonsensical or incorrect because the
CLI does not parse defn-body (the command’s definition) until it is used. The CLI detects errors
only when it tries to execute your alias.

When you obtain help for any command, the help text includes any TotalView predefined aliases.

alias Other Commands 25

CLI Commands

To delete an alias, use the unalias command.

Examples
alias nt dnext

Defines a command called nt that executes the dnext command.
alias nt

Displays the definition of the nt alias.
alias

Displays the definitions of all aliases.
alias m {dlist main}

Defines an alias called m that lists the source code of function main().
alias step2 {dstep; dstep}

Defines an alias called step2 that does two dstep commands. This new command applies to the focus that
exists when this alias is used.

alias step2 {s ; s}
Creates an alias that performs the same operations as that in the previous example, differing in that it uses the
alias for dstep. You could also create the following alias which does the same thing: alias step2 {s 2}.

alias step1 {f p1. dstep}
Defines an alias called step1 that steps the first user thread in process 1. All other threads in the process run
freely while TotalView steps the current line in your program.

RELATED TOPICS

unalias Command

capture Other Commands 26

CLI Commands

capture Returns a command’s output as a string

Format
capture [-out |-err |-both] [-f filename] command

Arguments
-out

Captures only output sent to stdout.

-err

Captures only output sent to stderr.

-both

Captures output sent to both stdout and stderr. This is the default.

-f filename
Sends the captured output to filename. The file must be a writable Tcl file descriptor. Usually the Tcl file de-
scrciptor name is obtained with open filename w.

command
The CLI command (or commands) whose output is being captured. If you specify more than one command, you
must enclose them within braces ({ }).

Description
The capturecommand executes command, capturing in a string all output that would normally go to the con-
sole. After command completes, it returns the string. This command is analogous to the UNIX shell’s back-tick
feature (`command`). The capture command obtains the printed output of any CLI command so that you can
assign it to a variable or otherwise manipulate it.

Examples
set save_stat [capture st]

Saves the current process status to a Tcl variable.
set arg [capture p argc]

Saves the printed value of argc into a Tcl variable.
set vbl [capture {foreach i {1 2 3 4} {p int2_array\[$i\]}}]
Saves the printed output of four array elements into a Tcl variable. Here is sample output:
int2_array(1) = -8 (0xfff8)
int2_array(2) = -6 (0xfffa)
int2_array(3) = -4 (0xfffc)
int2_array(4) = -2 (0xfffe)
Because the capture command records all information sent to it by the commands in the foreach loop, you
do not have to use a dlist command.

capture Other Commands 27

CLI Commands

exec cat << [capture help commands] > cli_help.txt
Writes the help text for all CLI commands to the cli_help.txtfile.

set ofile [open cli_help.txt w]
capture -f $ofile help commands
close $ofile

Also writes the help text for all CLI commands to the cli_help.txtfile. This set of commands is more efficient
than the previous command because the captured data is not buffered.

RELATED TOPICS

drun Command

drerun Command

dactions Other Commands 28

CLI Commands

dactions Displays information, and saves and reloads action points

Format
Displays information about action points.

dactions [ap-id-list] [-at source-loc] [-full] [-enabled|-disabled] [-enabled_blocks|-disabled_blocks]
[-block_images|-block_lines]

Saves action points to a file.
dactions -save [filename]

Loads previously saved action points.
dactions -load[filename]

Suppresses or unsuppresses action points.
dactions [-suppress | -unsuppress]

Arguments
ap-id-list

A list of action point identifiers. If you specify individual action points, the information that appears is limited to
these points.

Do not enclose this list within quotes or braces. See the examples at the end of this section for more informa-
tion.

Without this argument, the CLI displays summary information about all action points in the processes in the fo-
cus set. If you enter one ID, the CLI displays full information for it. If you enter more than one ID, the CLI displays
just summary information for each.

-at source-loc
Displays the action points at source-loc. See dbreak for the details on the form of source-loc.

-full

Displays complete, rather than summary, information about the action points in the current share group. Com-
plete information is the default when dactions is used with a single action point argument. Use -full to display
complete information when invoking dactions with no arguments, or with two or more action point arguments.

-enabled

Shows only enabled action points.

-disabled

Shows only disabled action points.

dactions Other Commands 29

CLI Commands

-suppress

Effectively disables all existing action points. If the code is run, threads will not stop at any action points. Al-
though you can create new action points (and delete existing ones), the new action points too will be effectively
disabled.

-unsuppress

Restores all action points to the state they were in when suppressed. Any new action points added are set as en-
abled.

-enabled_blocks

When displaying the full information for an action point, only shows the enabled address blocks. (See example
below.)

-disabled_blocks

When displaying the full information for an action point, only shows the disabled address blocks. (See example
below.)

-block_images

When displaying the full information for an action point, shows the image name of each address block.

-block_lines

When displaying the full information for an action point, shows the source line of each address block. If the
source line is followed by a tilde, the breakpoint block address is approximate.

-save

Writes information about action points to a file.

-load

Restores action point information previously saved in a file.

filename
The name of the file into which TotalView reads and writes action point information. If you omit this file name, To-
talView writes action point information to a file named program_name.TVD.v4breakpoints, where pro-
gram_name is the name of your program.

Description
The dactions command displays information about action points in the processes in the current focus. If you do
not indicate a focus, the default focus is at the process level. The full breakpoint specification is printed (not
returned), including the canonical file name's path.

Using the Action Point Identifier

To get the action point identifier, just enter dactions with no arguments. You need this identifier to delete,
enable, and disable action points.

The identifier is returned when TotalView creates the action point. The CLI prints this ID when the thread stops at
an action point.

dactions Other Commands 30

CLI Commands

You can include action point identifiers as arguments to the command when more detailed information is
needed. The -enabled and -disabled options restrict output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file or before TotalView loads
executables.

Saving and Loading Action Points

The -save option writes action point information to a file so that either you or TotalView can restore your action
points later. The -load option immediately reads the saved file. Using the filename argument with either option
writes to or reads from this file. If you do not use this argument, TotalView names the file pro-
gram_name.TVD.v4breakpoints (where program_name is the name of your program), and writes it to the
directory in which your program resides.

The information saved includes expressions associated with the action point and whether the action point is
enabled or disabled. For example, if your program’s name is foo, TotalView writes this information to
foo.TVD.v4breakpoints.

NOTE: TotalView does not save information about watchpoints.

If a file with the default name exists, TotalView can read this information when it starts your program. When
TotalView exits, it can create the default. For more information, see “Action Point Preferences” in the TotalView
User Guide.

Suppressing and Unsuppressing Action Points

Suppress effectively disables all existing action points. If the code is run, threads will not stop at any action points.
Although you can create new action points (and delete existing ones), the new action points too will be effectively
disabled. Unsuppress restores all action points to the state they were in when suppressed. Any new action points
added are set as enabled.

Command alias

Examples
ac -at 81

Displays information about the action points on line 75. (This example uses the alias instead of the full com-
mand name.) Here is the output from this command:
d1.<> ac -at 75
1 shared action point for group 3:

Alias Definition Description

ac dactions Displays all action points

dactions Other Commands 31

CLI Commands

1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
Address 0: [Enabled] main+0x1d0 (0x0040071c)
Share in group: true
Stop when hit: group
d1.<>

dactions 1 2
Displays information about action points 1 and 2, as follows:
d1.<> dactions 1 2
2 shared action points for group 3:
1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
2 [/home/totalview/tests/src/tx_blocks.cxx#48] Enabled
d1.<>

If you have saved a list of action points as a string or as a Tcl list, you can use the eval command to process the
list’s elements.

For example:
d1.<> dactions
3 shared action points for group 3:
1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
2 [/home/totalview/tests/src/tx_blocks.cxx#69] Enabled
3 [/home/totalview/tests/src/tx_blocks.cxx#57] Enabled
d1.<> set group1 "2 3"
2 3
d1.<> eval ddisable $group1
d1.<> ac
3 shared action points for group 3:
1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
2 [/home/totalview/tests/src/tx_blocks.cxx#69] Disabled
3 [/home/totalview/tests/src/tx_blocks.cxx#57] Disabled

dfocus p1 dactions
Displays information about all action points defined in process 1.

d1.<> dfocus p1 dactions
3 shared action points for group 3:
1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
2 [/home/totalview/tests/src/tx_blocks.cxx#69] Disabled
3 [/home/totalview/tests/src/tx_blocks.cxx#57] Disabledd1.<>

dfocus p1 dactions -enabled
Displays information about all enabled action points in process 1

dactions -full
Displays more complete information about the action points. Here is an example of the output:
d1.<> dactions -full
3 shared action points for group 3:

dactions Other Commands 32

CLI Commands

1 [/home/totalview/tests/src/tx_blocks.cxx#75] Enabled
Address 0: [Enabled] main+0x1d0 (0x0040071c)
Share in group: true
Stop when hit: group
2 [/home/totalview/tests/src/tx_blocks.cxx#69] Disabled
Address 0: [Enabled] main+0x189 (0x004006d5)
Share in group: true
Stop when hit: process
3 [/home/totalview/tests/src/tx_blocks.cxx#57] Disabled
Address 0: [Enabled] main+0x9f (0x004005eb)
Address 1: [Enabled] main+0x257 (0x004007a3)
Address 2: [Disabled] main+0x266 (0x004007b2)
Share in group: true
Stop when hit: process

Examples of Action Points in Both Host and Dynamically Loaded Code

These examples show the dactions output for a program that dynamically loads code at runtime. In this case, an
action point may contain a mixture of host and dynamically-loaded code address blocks, some of which may be
identified as pending. (See “Pending Breakpoints” in the TotalView User Guide.) Note that these examples are for a
CUDA program, but are relevant to any code loaded dynamically.

Both examples use -block_lines with -full to display the source line for each address block.

Pending and Mixed Breakpoint Example

Action points consisting only of invalid/nullified blocks are displayed as Pending:
dactions -full -block_lines
d1.<> dactions -full -block_lines
2 shared action points for group 3:
1 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#218] Enabled
Pending
Share in group: true
Stop when hit: process
2 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#219] Enabled
Address 0: [Disabled] ScrambleKernel+0x19, src/tx_cuda.cu#228
(0x00403998)
Address 1: [Enabled] ScrambleKernel+0x450, ../../src/tx_cuda.cu#220
(Location not mapped)
Address 2: [Enabled] ScrambleKernel+0x1c50, ../../src/tx_cuda.cu#220
(Location not mapped)
Share in group: true
Stop when hit: process
d1.<>
Note that:

Action point 1 has no valid address blocks, so is listed as Pending.

Action point 2 contains a mixture of host and GPU address blocks:

 Block 0 originally slid to line 228, but was disabled when the GPU code was loaded and
TotalView found a better match at line 220. (See “Sliding Breakpoints” in the TotalView User
Guide.)

dactions Other Commands 33

CLI Commands

 Block 1 and 2 show "Location not mapped" because the CLI focus was on the process, not
the CUDA thread. Using dfocus t1.-1 dactions … would provide the GPU address.

Nullified and Pending Breakpoint Example

In this example, lines 220 and 221 contain “for” loops in the CUDA GPU code (a “for” loop typically has multiple
line number symbols):

d1.<> l 218 -n 5
218
219 /* Loop over all elements of the matrix, scrambling them */
220 for (int i = start_i; i < A.width; i++)
221 for (int j = 0; j < A.width; j++)
222
Set some breakpoints:

d1.<> b 220
1
d1.<> b 221
2
Use -full and -block_lines to view the breakpoint’s source lines and addresses:

d1.<> ac -full -block_lines
2 shared action points for group 3:
1 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#220] Enabled
Pending
Share in group: true
Stop when hit: process
2 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#221] Enabled
Address 0: [Enabled] ScrambleKernel+0x19, src/tx_cuda.cu#228 0x00403998)
Share in group: true
Stop when hit: process
Note that:

 Creating the action point 1 at line 220 in the GPU code caused it to slide to line 228 in the host
code.

 Creating the action point 2 at line 221 in the GPU code caused it to slide to line 228 in the host
code and nullified address block 0 in action point 1, which caused it to become pending.

(See “Sliding Breakpoints” in the TotalView User Guide.)

Continue the process so that the GPU code is loaded and a CUDA thread stops at line 220, then view the output
again:

...
Thread 1.-1 hit breakpoint 1 at line 220 in "ScrambleKernel(Matrix,int)"
d1.<> ac -full -block_lines
2 shared action points for group 3:
1 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#220] Enabled

dactions Other Commands 34

CLI Commands

Address 0: (Nullified)
Address 1: [Enabled] ScrambleKernel+0x450, ../../src/tx_cuda.cu#220 (0x00dacfb0)
Address 2: [Enabled] ScrambleKernel+0x1c50, ../../src/tx_cuda.cu#220 (0x00dae7b0)
Share in group: true
Stop when hit: process
2 [/home/nvidia6/totalview/tests/src/tx_cuda.cu#221] Enabled
Address 0: [Disabled] ScrambleKernel+0x19, src/tx_cuda.cu#228 (0x00403998)
Address 1: [Enabled] ScrambleKernel+0x568, ../../src/tx_cuda.cu#221 (Location not mapped)
Address 2: [Enabled] ScrambleKernel+0x1c18, ../../src/tx_cuda.cu#221 (Location not mapped)
Share in group: true
Stop when hit: process
d1.<>
Loading the GPU code caused the action points to be reevaluated, thus adjusting their address blocks:

 Action point 1 added two address blocks for line 220, and thus is no longer pending. Note that this
action point contains a mixture of valid and nullified blocks, therefore dactions lists address block
0 as Nullified rather than listing the entire breakpoint as Pending.

 Action point 2 added two address blocks for line 221, and block 0 was disabled because better
matching line number symbols were added.

Extended example using -enabled_blocks and -disabled_blocks
dactionsn [-enabled_blocks|]

This extended example demonstrates the use of these two options.

Set a break point:
d1.<> b {bar<std::vector<int, std::allocator<int> > >::bar(int)}
Incorporating 10079 bytes of DWARF '.debug_info' information for tx_test2.cxx
(linenumber)...done
1
Entering dactions reports on only the top-level action point associated with this action point number:
d1.<> dactions
1 shared action point for group 3:
1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled
Entering dactions n reports on all action point instances (the address block) associated with this action point
number:
d1.<> dactions 1
1 shared action point for group 3:
1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled
Address 0: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x12
(0x004013d2)
Address 1: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x84
(0x00401444)
Address 2: [Disabled] bar<std::vector<double,std::allocator<double> > >::bar+0x12
(0x00401496)
Address 3: [Disabled] bar<std::vector<double,std::allocator<double> > >::bar+0x86
(0x0040150a)
Share in group: true
Stop when hit: process
Using -enabled_blocks reports on only enabled action point instances (the address block) associated with
this action point number:

dactions Other Commands 35

CLI Commands

d1.<> dactions 1 -enabled_blocks
1 shared action point for group 3:
1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int) Enabled
Address 0: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x12
(0x004013d2)
Address 1: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x84
(0x00401444)
Share in group: true
Stop when hit: process
Using -disabled_blocks reports on only disabled action point instances (the address block) associated with
this action point number:
d1.<> dactions 1 -disabled_blocks
1 shared action point for group 3:
1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled
Address 2: [Disabled] bar<std::vector<double,std::allocator<double> > >::bar+0x12
(0x00401496)
Address 3: [Disabled] bar<std::vector<double,std::allocator<double> > >::bar+0x86
(0x0040150a)
Share in group: true
Stop when hit: process
d1.<>
You could use this information, for example, to enable the currently disabled action point addresses:
d1.<> denable -block 2 3

RELATED TOPICS

Setting Action Points in the TotalView User Guide

Saving Action Points to a File in the TotalView User Guide

TV::auto_save_breakpoints Variable

dassign Other Commands 36

CLI Commands

dassign Changes the value of a scalar variable

Format
dassign target value

Arguments
target

The name of a scalar variable in your program.

value
A source-language expression that evaluates to a scalar value. This expression can use the name of another
variable.

Description
The dassign command evaluates an expression and replaces the value of a variable with the evaluated result.
The location can be a scalar variable, a dereferenced pointer variable, or an element in an array or structure.

The default focus for the dassign command is thread. If you do not change the focus, this command acts upon
the thread of interest (TOI). If the current focus specifies a width that is wider than t (thread) and is not d (default),
dassign iterates over the threads in the focus set and performs the assignment in each. In addition, if you use a
list with the dfocus command, the dassign command iterates over each list member.

The CLI interprets each symbol name in the expression according to the current context. Because the value of a
source variable might not have the same value across threads and processes, the value assigned can differ in
your threads and processes. If the data type of the resulting value is incompatible with that of the target location,
you must cast the value into the target’s type. (Casting is described in the Data chapter of the TotalView User
Guide.)

Assigning Characters and Strings

 If you are assigning a character to a target, place the character value within single-quotation marks;
for example, ‘c’.

 You can use the standard C language escape character sequences; for example, \n and \t. These
escape sequences can also be in a character or string assignment.

 If you are assigning a string to a target, place the string within quotation marks. However, you must
escape the quotation marks so they are not interpreted by Tcl; for example, \"The quick brown
fox\".

If value contains an expression, TotalView evaluates the expression. See About Expressions in the TotalView User
Guide.

dassign Other Commands 37

CLI Commands

Command alias

Examples
dassign scalar_y 102

Stores the value 102 in each occurrence of variable scalar_y for all processes and threads in the current set.

dassign i 10*10
Stores the value 100 in variable i.

dassign i i*i
Does not work and the CLI displays an error message. If iis a simple scalar variable, you can use the following
statements:

set x [lindex [capture dprint i] 2]
dassign i [expr $x * $x]
f {p1 p2 p3} as scalar_y 102

Stores the value 102 in each occurrence of variable scalar_y contained in processes 1, 2, and 3.

RELATED TOPICS

Changing the Value of Variablesin the TotalView User Guide

Changing a Variable’s Data Type in the TotalView User Guide

Alias Definition Description

as dassign Changes a scalar variable’s value

dattach Other Commands 38

CLI Commands

dattach Brings currently executing processes under TotalView control

Format
dattach [-g gid] [-r hname]
[-ask_attach_parallel | -no_attach_parallel]
[-replay | -no_replay]
[-go | -halt]
[-e] executable [pid-list]
[-c core-file | recording-file] [-rank num]
[-parallel_attach_subset subset-specification]

Arguments
-g gid

Sets the control group for the processes being added to group gid. This group must already exist. (The CLI
GROUPS variable contains a list of all groups. See GROUPS on page 301 for more information.)

-r hname
The host on which the process is running. The CLI launches a TotalView Server on the host machine if one is not
already running. See the Setting Up Parallel Debugging Sessions chapter of the TotalView User Guide for in-
formation on the launch command used to start this server.

Setting a host sets it for all PIDs attached to in this command. If you do not name a host machine, the CLI uses
the local host.

-attach_parallel

Attaches to any additional parallel processes in a parallel job.

-ask_attach_parallel

Specifies that TotalView should ask before attaching to parallel processes of a parallel job. The default is to auto-
matically attach to processes. For additional information, see the Parallel Configuration in the
File > Preferences Dialog Box in the TotalView User Guide.

If none of the attach_parallel switches is specified, and there is exactly one process ID in the process list, the
user's preferences are used to determine whether to perform a parallel attach.

If none of the attach_parallel switches is specified, and there is more than one process ID in the process list,
the default is -no_attach_parallel.

-no_attach_parallel

Does not attach to any additional parallel processes in a parallel job. For additional information, see the
Parallel Page in the File > Preferences Dialog Box in the in-product helpfor Classic TotalView.

-replay | -no_replay

Enables or disables the ReplayEngine the next time the program is restarted. To enable, the feature must be
supported and licensed on the current platform.

dattach Other Commands 39

CLI Commands

-go | -halt

Specifies to explicitly continue or halt target execution after attaching. The default is to leave the target's run
state as it was before the attach.

-rank num
Specifies the rank associated with the executable being loaded. While this can be used independently, this op-
tion is best used with core files.

-e

Tells the CLI that the next argument is an executable file name. You need to use -e if the executable name begins
with a dash (-) or consists of only numeric characters. Otherwise, you can just provide the executable file name.

executable
The name of the executable. Setting an executable here sets it for all PIDs being attached to in this
command. If you do not include this argument, the CLI tries to determine the executable file from the
process. Some architectures do not allow this to occur.

pid-list
A list of system-level process identifiers (such as a UNIX PID) naming the processes that TotalView
controls. All PIDs must reside on the same system, and they are placed in the same control group.

If you need to place the processes in different groups or attach to processes on more than one system, you
must use multiple dattach commands.

-c core-file | recording-file
Loads the core file core-file or the ReplayEngine recording-file, which restores a previous ReplayEngine de-
bugging session. If you use this option, you must also specify an executable name (executable).

-parallel_attach_subset subset_specification
Defines a list of MPI ranks to attach to when an MPI job is created or attached to. The list is space-separated;
each element can have one of three forms:

rank: specifies that rank only
rank1-rank2: specifies all ranks between rank1 and rank2, inclusive
rank1-rank2:stride: specifies every strideth rank between rank1 and rank2
A rank must be either a positive decimal integer or max (the last rank in the MPI job).
A subset_specification that is the empty string ("") is equivalent to 0-max.
For example:
dattach -parallel_attach_subset {1 2 4-6 7-max:2} mpirun
attaches to ranks 1, 2, 4, 5, 6, 7, 9, 11, 13,....

Description
The dattach command attaches to one or more processes, making it possible to continue process execution
under TotalView control.

dattach Other Commands 40

CLI Commands

This command returns the TotalView process ID (DPID) as a string. If you specify more than one process in a com-
mand, the dattach command returns a list of DPIDs instead of a single value.

TotalView places all processes to which it attaches in one dattach command in the same control group. This lets
you place all processes in a multiprocess program executing on the same system in the same control group.

If a program has more than one executable, you must use a separate dattach command for each one.

If you have not loaded executable already, the CLI searches for it. The search includes all directories in the
-EXECUTABLE_PATH CLI variable.

The process identifiers specified in the pid-list must refer to existing processes in the runtime environment.
TotalView attaches to the processes, regardless of their execution states.

Command alias

Examples
dattach mysys 10020

Loads debugging information for mysys and brings the process known to the runtime system as PID 10020
under TotalView control.

dattach -e 123 10020
Loads file 123 and brings the process known to the runtime system by PID 10020 under TotalView control.

dattach -g 4 -r Enterprise myfile 10020
Loads myfile that is executing on the host named Enterprise into group 4, and brings the process known to
the runtime system by PID 10020 under TotalView control. If a TotalView Server (tvdsvr) is not running on
Enterprise, the CLI will start it.

dattach my_file 51172 52006
Loads debugging information for my_file and brings the processes corresponding to PIDs 51172 and 52006
under TotalView control.

set new_pid [dattach -e mainprog 123]
dattach -r otherhost -g $CGROUP($new_pid) -e slave 456

Begins by attaching to mainprog running on the local host; then attaches to slave running on the otherhost
host and inserts them both in the same control group.

Alias Definition Description

at dattach Brings the process under TotalView control

dattach Other Commands 41

CLI Commands

RELATED TOPICS

Attaching to Processesin the TotalView User Guide

Examining Core Filesin the TotalView User Guide

ddetach Command

TV::parallel_attach Variable

dbarrier Other Commands 42

CLI Commands

dbarrier Defines a process or thread barrier breakpoint

Format
Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hitwidth][-stop_when_donewidth] [-pending]

Creates a barrier breakpoint at an absolute address
dbarrier -addressaddr [-stop_when_hitwidth][-stop_when_donewidth] [-pending]

Arguments
breakpoint-expr

This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see “Qualifying Symbol Names” in the Classic TotalView User Guide.

For more information on breakpoint expressions, see dbreak on page 47, particularly Breakpoint Expres-
sions.

-address addr
The barrier breakpoint location as an absolute address in the address space of the program.

-stop_when_hitwidth
Identifies, using the width argument, any additional processes or threads to stop when stopping the thread that
arrives at a barrier point.

If you do not use this option, the value of BARRIER_STOP_ALL indicates what to stop.

The argument width may have one of the following three values:

group

Stops all processes in the control group when the execution reaches the barrier point.

process

Stops the process that hit the barrier.

none

Stops only the thread that hit the barrier; that is, the thread is held and all other threads continue
running. If you apply this width to a process barrier breakpoint, TotalView stops the process that hit
the breakpoint.

-stop_when_done width
After all processes or threads reach the barrier, releases all processes and threads held at the barrier. (Re-
leased means that these threads and processes can run.) Setting this option stops additional threads con-
tained in the same group or process.

dbarrier Other Commands 43

CLI Commands

If you do not use this option, the value of BARRIER_STOP_WHEN_DONE indicates any other processes or
threads to stop.

Use the width argument indicates other stopped processes or threads. You can enter one of the following
three values:

group

Stops the entire control group when the barrier is satisfied.

process

Stops the processes that contain threads in the satisfaction set when the barrier is satisfied.

none

Stops the satisfaction set. For process barriers, process and none have the same effect. This is the
default if the BARRIER_STOP_WHEN_DONE variable is none.

-pending

If TotalView cannot find a location to set the barrier, adding this option creates the barrier anyway. As shared li-
braries are read, TotalView checks to see if it can be set in the newly loaded library. For more information on this
option, see dbreak on page 47.

Description
The dbarrier command sets a process or thread barrier breakpoint that triggers when execution arrives at a
location. This command returns the ID of the newly created breakpoint.

The dbarrier command is most often used to synchronize a set of threads. The P/T set defines which threads the
barrier affects. When a thread reaches a barrier, it stops, just as it does for a breakpoint. The difference is that
TotalView prevents—that is, holds—each thread that reaches the barrier from responding to resume commands
(for example, dstep, dnext, and dgo) until all threads in the affected set arrive at the barrier. When all threads
reach the barrier, TotalView considers the barrier to be satisfied and releases these threads. Note that they are
just released, not continued. That is, TotalView leaves them stopped at the barrier. If you continue the process,
those threads stopped at the barrier also run along with any other threads that were not participating with the
barrier. After the threads are released, they can respond to resume commands.

If the process is stopped and then continued, the held threads, including the ones waiting on an unsatisfied bar-
rier, do not run. Only unheld threads run.

The satisfaction set for the barrier is determined by the current focus. If the focus group is a thread group,
TotalView creates a thread barrier:

 When a thread hits a process barrier, TotalView holds the thread’s process.

 When a thread hits a thread barrier, TotalView holds the thread; TotalView might also stop the
thread’s process or control group. While they are stopped, neither is held.

dbarrier Other Commands 44

CLI Commands

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If it is
set to true, the default is group. Otherwise, it is process.

TotalView determines the processes and threads that are part of the satisfaction set by taking the intersection of
the share group with the focus set. (Barriers cannot extend beyond a share group.)

The CLI displays an error message if you use an inconsistent focus list.

NOTE: Barriers can create deadlocks. For example, if two threads participate in two different barriers,
each could be left waiting at different barriers that can never be satisfied. A deadlock can also
occur if a barrier is set in a procedure that is never invoked by a thread in the affected set. If a
deadlock occurs, use the ddelete command to remove the barrier, since deleting the barrier
also releases any threads held at the barrier.

The -stop_when_hit option specifies if other threads should stop when a thread arrives at a barrier.

The -stop_when_done option controls the set of additional threads that are stopped when the barrier is finally
satisfied. That is, you can also stop an additional collection of threads after the last expected thread arrives, and
all the threads held at the barrier are released. Normally, you want to stop the threads contained in the control
group.

If you omit a stop option, TotalView sets the default behavior by using the BARRIER_STOP_ALL and
BARRIER_STOP_WHEN_DONE variables. For more information, see the dset command.

Use the none argument for these options to not stop additional threads.

 If -stop_when_hit is nonewhen a thread hits a thread barrier, TotalView stops only that thread; it
does not stop other threads.

 If -stop_when_done is none, TotalView does not stop additional threads, aside from the ones that
are already stopped at the barrier.

TotalView places the barrier point in the processes or groups specified in the current focus, as follows:

 If the current focus does not indicate an explicit group, the CLI creates a process barrier across the
share group.

 If the current focus indicates a process group, the CLI creates a process barrier that is satisfied
when all members of that group reach the barrier.

 If the current focus indicates a thread group, TotalView creates a thread barrier that is satisfied
when all members of the group arrive at the barrier.

dbarrier Other Commands 45

CLI Commands

The following example illustrates these differences. If you set a barrier with the focus set to a control group (the
default), TotalView creates a process barrier. This means that the -stop_when_hit value is set to process even
though you specified thread.
d1.<> dbarrier 580 -stop_when_hit thread
2
d1.<> ac 2
1 shared action point for group 3:
2 addr=0x120005598 [../regress/fork_loop.cxx#580] Enabled (barrier)
Share in group: true
Stop when hit: process
Stop when done: process
process barrier; satisfaction set = group 1

However, if you create the barrier with a specific workers focus, the stop when hit property remains set to thread:
1.<> baw 580 -stop_when_hit thread
1
d1.<> ac 1
1 unshared action point for process 1:
1 addr=0x120005598 [../regress/fork_loop.cxx#580]
Enabled (barrier)
Share in group: false
Stop when hit: thread
Stop when done: process
thread barrier; satisfaction set = group 2

Command alias

Examples
dbarrier 123

Stops each process in the control group when it arrives at line 123. After all processes arrive, the barrier is sat-
isfied, and TotalView releases all processes.

dfocus {p1 p2 p3} dbarrier my_proc
Holds each thread in processes 1, 2, and 3 as it arrives at the first executable line in procedure my_proc. After
all threads arrive, the barrier is satisfied and TotalView releases all processes.

dfocus gW dbarrier 642 -stop_when_hit none

Alias Definition Description

ba dbarrier Defines a barrier.

baw {dfocus pW dbarrier
-stop_when_done process}

Creates a thread barrier across the worker threads in the
process of interest (POI). TotalView sets the set of threads
stopped when the barrier is satisfied to the process that
contains the satisfaction set.

BAW {dfocus gW dbarrier
-stop_when_done group}

Creates a thread barrier across the worker threads in the
share group of interest. The set of threads stopped when
the barrier is satisfied is the entire control group.

dbarrier Other Commands 46

CLI Commands

Sets a thread barrier at line 642 in the workers group. The process is continued automatically as each thread
arrives at the barrier. That is, threads that are not at this line continue running.

RELATED TOPICS

Barrier Points in the TotalView User Guide

Creating a Satisfaction Set in the TotalView User Guide

Groups in TotalView in the TotalView User Guide

dactions Command

dbreak Command

denable Command

ddisable Command

dbreak Other Commands 47

CLI Commands

dbreak Defines a breakpoint

Format
Creates a breakpoint at a source location

dbreak breakpoint-expr [-p| -g | -t] [[-llang] -e expr] [-pending]

Creates a breakpoint at an absolute address
dbreak -address addr [-p| -g | -t] [[-l lang] -e expr] [-pending]

Arguments
breakpoint-expr

This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see “Qualifying Symbol Names” in the Classic TotalView User Guide.

Breakpoint expressions are discussed later in this section.

-address addr
The breakpoint location specified as an absolute address in the address space of the program.

-p

Stops the process that hit this breakpoint. You can set this option as the default by setting the STOP_ALL vari-
able to process. See dset on page 167 for more information.

-g

Stops all processes in the process’s control group when execution reaches the breakpoint. You can set this op-
tion as the default by setting the STOP_ALL variable to group. See dset on page 167 for more information.

-t

Stops the thread that hit this breakpoint. You can set this option as the default by setting the STOP_ALL variable
to thread. See dset on page 167 for more information.

-llang
Sets the programming language used when you are entering expression expr. Enter either: c, c++, f7, f9, or
asm (for C, C++, FORTRAN 77, Fortran 9x, and assembler, respectively). If you do not specify a language, To-
talView assumes the language in which the routine at the breakpoint was written.

-e expr
When the breakpoint is hit, TotalView evaluates expression expr in the context of the thread that hit the break-
point. See Breakpoint Expressions.

-pending

If TotalView cannot find a location to set the breakpoint, adding this option creates the breakpoint anyway. As
shared libraries are read, TotalView checks to see if it can be set in the newly loaded library.

dbreak Other Commands 48

CLI Commands

Description
The dbreak command defines a breakpoint or evaluation point triggered when execution arrives at the specified
location, stopping each thread that arrives at a breakpoint. This command returns the ID of the new breakpoint. If
a line does not contain an executable statement, the CLI cannot set a breakpoint.

If you try to set a breakpoint at a line at which TotalView cannot stop execution, it sets one at the nearest follow-
ing line where it can halt execution.

Specifying a procedure name without a line number sets an action point at the beginning of the procedure. If you
do not name a file, the default is the file associated with the current source location.

The -pending Option

If, after evaluating the breakpoint expression, TotalView determines the location represented by the expression
does not exist, it can still set a breakpoint if you use the -pending option. This option allows a breakpoint to be
created when the breakpoint expression does not currently match any program locations. For example, a com-
mon use case is to create a pending function breakpoint with a breakpoint expression that matches the name of
a function that will be loaded at runtime via dlopen(), CUDA kernel launch, or anything that dynamically loads
executable code.

When displaying information on a pending breakpoint’s status, TotalView displays the breakpoint expression fol-
lowed by "(pending)" indicating that the breakpoint currently contains no valid addresses.

Note that using this option doesn’t catch typos or errors in the user's input. For example, if you want to set a
breakpoint on a function foo, but you typed voo instead, a pending breakpoint is immediately created for the
function voo, which would not be your intention.

To set dbreak to always use the -pending option, use the TV::default_breakpoints_pending state variable.

A stop group Breakpoint

If the CLI encounters a stop group breakpoint, it suspends each process in the group as well as the process that
contains the triggering thread. The CLI then shows the identifier of the triggering thread, the breakpoint location,
and the action point identifier.

Default Focus Width

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If set
to true, the default is group. Otherwise, it is process.

Breakpoint Expressions

Breakpoint expressions, also called breakpoint specifications, are used in both breakpoints and barrier points, so
this discussion is relevant to both.

dbreak Other Commands 49

CLI Commands

One possibly confusing aspect of using expressions is that their syntax differs from that of Tcl. This is because you
need to embed code written in Fortran, C, or assembler in Tcl commands. In addition, your expressions often
include TotalView built-in functions. For example, if you want to use the TotalView $tidbuilt-in function, you need
to type it as \$tid.

A breakpoint expression can evaluate to more than one source line. If the expression evaluates to a function that
has multiple overloaded implementations, TotalView sets a breakpoint on each of the overloaded functions.

Set a breakpoint at the line specified by breakpoint-expr or the absolute address addr. You can enter a break-
point expression that are sets of addresses at which the breakpoint is placed, and are as follows:

 [[##image#]filename#]line_number

Indicates all addresses at this line number.

 A function signature; this can be a partial signature.

Indicates all addresses that are the addresses of functions matching signature. If parts of a function signa-
ture are missing, this expression can match more than one signature. For example, “f” matches “f(void)” and
“A::f(int)“. You cannot specify a return type in a signature.

 class class_name

Specifies that the breakpoint should be planted in all member functions of class class_name.

 virtual class::signature

Specifies that the breakpoint should be planted in all virtual member functions that match signature and
are in the class or derived from the class.

Command alias

Examples
For all examples, assume that the current process set is d2.<when the breakpoint is defined.
dbreak 12

Suspends process 2 when it reaches line 12. However, if the STOP_ALL variable is set to group, all other pro-
cesses in the group are stopped. In addition, if SHARE_ACTION_POINT is true, the breakpoint is placed in every
process in the group.

dbreak -address 0x1000764
Suspends process 2 when execution reaches address 0x1000764.

Alias Definition Description

b break Sets a breakpoint

bt {dbreak t} Sets a breakpoint only on the thread of interest

dbreak Other Commands 50

CLI Commands

b 12 -g
Suspends all processes in the current control group when execution reaches line 12.

dbreak 57 -l f9 -e {goto $63}
Causes the thread that reaches the breakpoint to transfer to line 63. The host language for this statement is
Fortran 90 or Fortran 95.

dfocus p3 b 57 -e {goto $63}
In process 3, sets the same evaluation point as the previous example.

RELATED TOPICS

Barrier Points in the TotalView User Guide

 Creating Conditional Breakpoints in the TotalView User Guide

Groups in TotalView in the TotalView User Guide

dactions Command

dbreak Command

denable Command

ddisable Command

dcache Other Commands 51

CLI Commands

dcache Clears the remote library cache

Format
dcache -flush

Arguments
-flush

Deletes all files from the library cache that are not currently being used.

Description
The dcache -flush command removes the library files that it places in your cache, located in the .TotalView/lib_-
cache subdirectory in your home directory.

When you are debugging programs on remote systems that use libraries that either do not exist on the host or
whose version differ, TotalView copies the library files into your cache. This cache can become large.

TotalView automatically deletes cached library files that it hasn't used in the last week. If you need to reclaim addi-
tional space at any time, use this command to remove files not currently being used.

dcalltree Other Commands 52

CLI Commands

dcalltree Displays parallel backtrace data

Format
dcalltree [-datapbv_data_array] [-show_details] [-sortcolumns] [-hide_backtrace] [-save_as_csvfilename]
[-save_as_dotfilename]

Arguments
-datapbv_data_array

Captures the data from calling dcalltree in an associative Tcl array rather than writing the data to the console.

-show_details

Displays the data with all processes and threads displayed.

-hide_backtrace

Displays the data with only root and leaf nodes displayed.

-sort column
Sorts the data display based on the data in a particular column. The possible arguments are Processes, Loca-
tion, PC, Host, Rank, ID, and Status.

-save_as_csvfilename
Saves the backtrace data as a file of comma-separated values under the name filename.

-save_as_dotfilename
Saves the backtrace data as a dot file under the name filename. Dot is a plain text graph description language.

Description
The dcalltree command shows the state of processes and threads in a parallel job. Normally the output is writ-
ten to the console, but the -data subcommand makes the data available as a Tcl associative array. The associative
array has the following format:
{
{
Key <value>
Level <value>
Processes <value>
Location <value>
PC <value>
Host <value>
Rank <value>
ID <value>
Status <value>
}
{
...
}
}

dcalltree Other Commands 53

CLI Commands

If you are using the Classic TotalView UI, the data displayed by this command is similar to the data displayed in the
Parallel Backtrace View window.

The -show_details and -hide_backtrace switches pull in opposite directions. The -show_details switch shows
the maximum data, including all processes and threads. The -hide_backtrace command hides any intermediate
nodes, displaying only the root and leaf nodes. If used together, this results in a display of root and leaf nodes
and all threads. This reduction can help to de-clutter the data display if the number of processes and threads is
large.

Command alias

Examples
dfocus group dcalltree

This example first changes the focus to the group using dfocus, then calls dcalltree with no switches. Note
that the ID column is a compressed ptlist describing process and thread count, range, and IDs. See Com-
pressed List Syntax (ptlist) for more information.

Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
4 _start 0x004011b9 <local> -1 4:4[p1-4.1] ...
4 __libc_start_main 0x2b3425358184 <local> -1 4:4[p1-4.1] ...
4 main 0x004035bf <local> -1 4:4[p1-4.1] ...
4 fork_wrapper 0x00402790 <local> -1 4:4[p1-4.1] ...
4 forker 0x0040274b <local> -1 4:4[p1-4.1] ...
4 snore 0x00401c11 <local> -1 4:4[p1-4.1] ...
1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
2 wait_a_while 0x00401a09 <local> -1 2:2[p1.1, p3.1] Stopped
2 __select_nocancel 0x2b34253f56e2 <local> -1 2:2[p1.1, p3.1] Stopped
8 start_thread 0x2b3424db1143 <local> -1 4:12[p1-4.1-3] ...
8 snore_or_leave 0x004021cb <local> -1 4:8[p1-4.2-3] ...
8 snore ... <local> -1 4:8[p1-4.2-3] ...
1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
2 wait_a_while ... <local> -1 1:2[p3.2-3] ...

Alias Definition Description

ct dcalltree Prints data to console

ctd dcalltree -data Puts data in a Tcl associative array

ctsd dcalltree -show_details Prints more complete data

ctshb dcalltree -hide_backtrace Prints data only on root and leaf nodes

dcalltree Other Commands 54

CLI Commands

--
dcalltree -show_details

By adding the -show_details, switch, you get more complete output:
Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
4 _start 0x004011b9 <local> -1 4:4[p1-4.1] ...
4 __libc_start_main 0x2b3425358184 <local> -1 4:4[p1-4.1] ...
4 main 0x004035bf <local> -1 4:4[p1-4.1] ...
4 fork_wrapper 0x00402790 <local> -1 4:4[p1-4.1] ...
4 forker 0x0040274b <local> -1 4:4[p1-4.1] ...
4 snore 0x00401c11 <local> -1 4:4[p1-4.1] ...
1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
2 wait_a_while 0x00401a09 <local> -1 2:2[p1.1, p3.1] Stopped
2 __select_nocancel 0x2b34253f56e2 <local> -1 2:2[p1.1, p3.1] Stopped
1 __select_nocancel 0x2b34253f56e2 <local> -1 1.1 - 47502964801120 Stopped
1 __select_nocancel 0x2b34253f56e2 <local> -1 3.1 - 47502964801120 Stopped
8 start_thread 0x2b3424db1143 <local> -1 4:12[p1-4.1-3] ...
8 snore_or_leave 0x004021cb <local> -1 4:8[p1-4.2-3] ...
8 snore ... <local> -1 4:8[p1-4.2-3] ...
1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
2 wait_a_while ... <local> -1 1:2[p3.2-3] ...
1 __select_nocancel 0x2b34253f56e2 <local> -1 3.3 - 1090525504 Stopped
1 wait_a_while#580 0x004019e9 <local> -1 3.2 - 1082132800 Breakpoint

--
dcalltree -show_details -hide_backtrace

Adding the -hide_backtrace switch reduces the clutter somewhat:
Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
1 __select_nocancel 0x2b34253f56e2 <local> -1 3.3 - 1090525504 Stopped
1 __select_nocancel 0x2b34253f56e2 <local> -1 1.1 - 47502964801120 Stopped
1 __select_nocancel 0x2b34253f56e2 <local> -1 3.1 - 47502964801120 Stopped
1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
1 wait_a_while#580 0x004019e9 <local> -1 3.2 - 1082132800 Breakpoint

--

Here is code to get the location of all threads that are at a breakpoint:
dcalltree -data pbv_data_array -show_details

dcalltree Other Commands 55

CLI Commands

foreach { data_record } [array get pbv_data_array] {
set print_location 0
set break_location
foreach {title value} $data_record {
if {$title == "Location"} {
set break_location $value
}
if {$value == "Breakpoint"} {
set print_location 1
}
if {1 == $print_location} {
puts stdout "Breakpoint found at $break_location"
set print_location 0
}
}
}

RELATED TOPICS

Parallel Backtrace View in the Classic TotalView User Guide

dcheckpoint Other Commands 56

CLI Commands

dcheckpoint Creates a checkpoint image of processes (IBM RS6000 only)

Format
Creates a checkpoint on IBM RS6000 machines.

dcheckpoint[-byprocess_set] [-delete | -halt]

Arguments
-by process_set

This option can take two possible values:

pe

Checkpoint the Parallel Environment job. This value is the default.

pid

Checkpoint the focus process.

-delete

Processes exit after the checkpoint occurs.

-halt

Processes halt after the checkpoint occurs.

Description
The dcheckpoint command saves program and process information to a file. This information includes process
and group IDs. Later, use the drestart command to restart the program.

NOTE: This command does not save TotalView breakpoint information. To save breakpoints, use the
dactions command.

By default, TotalView checkpoints the Parallel Environment job. To checkpoint a particular process, make that pro-
cess the focus and use the pid argument to -by. If the focus is a group that contains more than one process, the
CLI displays an error -message.

By default, the checkpointed processes stop, allowing you to investigate a -program’s state at the checkpointed
position. You can modify this behavior with the -delete and -halt options.

When you request a checkpoint:

 TotalView temporarily stops (that is, parks) the processes that are being checkpointed. Parking
ensures that the processes do not run freely after a dcheckpoint or drestart operation. (If they
did, your code would begin running before you could control it.)

dcheckpoint Other Commands 57

CLI Commands

 The CLI detaches from processes before they are checkpointed. After checkpointing, the CLI
automatically reattaches to them.

Examples
dcheckpoint

Checkpoints the Parallel Environment job. All associated processes stop.
f3 dcheckpoint -by pid

Checkpoints process 3. Process 3 stops.
dcheckpoint -by pe -halt

Checkpoints the Parallel Environment job. All associated processes halt.

RELATED TOPICS

drestart Command

dcont Other Commands 58

CLI Commands

dcont Continues execution and waits for execution to stop

Format
dcont

Arguments
This command has no arguments

Description
The dcont command continues all processes and threads in the current focus, and then waits for all of them to
stop.

NOTE: You can interrupt this action using Ctrl+Cto stop process execution.

A dcont command completes when all threads in the focus set of processes stop executing. If you do not indi-
cate a focus, the default focus is the process of interest (POI).

This command is a Tcl macro, with the following definition:
proc dcont {args} {uplevel dgo; "dwait $args" }

You often want this behavior in scripts. You seldom want to do it interactively.

Command alias

Examples
dcont

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (This command does not affect threads that are held at barriers.) The command blocks further input
until all threads in all target processes stop. After the CLI displays its prompt, you can enter additional com-
mands.

dfocus p1 dcont
Resumes execution of all stopped threads that are not held and that belong to process 1. The CLI does not
accept additional commands until the process stops.

dfocus {p1 p2 p3} co

Alias Definition Description

co dcont Resume

CO {dfocus g dcont} Resume at group-level

dcont Other Commands 59

CLI Commands

Resumes execution of all stopped threads that are not held and that belong to processes 1, 2, and 3.
CO

Resumes execution of all stopped threads that are not held and that belong to the current group.

RELATED TOPICS

Starting Processes and Threads in the Classic TotalView User Guide

dgoCommand

dwaitCommand

dcuda Other Commands 60

CLI Commands

dcuda Manages GPU threads

Format
dcuda block [(Bx,By,Bz)]
dcuda thread [(Tx,Ty, Tz)]
dcuda kernel
dcuda device [<n>]
dcuda sm [<n>]
dcuda warp [<n>]
dcuda lane [<n>]
dcuda info-system
dcuda info-device
dcuda info-sm
dcuda info-warp
dcuda info-lane
dcuda focus (Bx,By,Bz),(Tx,Ty, Tz)
dcuda hwfocus <D/S/W/L>

Arguments
Bx, By, Bz

The x, y and z block indices

Tx, Ty, Tz
The x, y, and z thread indices

D/S/W/L
The coordinates defining the physical space of the hardware:

D: device number
S: streaming multiprocessor (SM)
W: warp (WP) number on the SM
L: lane (LN) number on the warp

Description
The dcuda commands allow you to manage and view GPU threads, in either the logical coordinate space of block
and thread indices (<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>) or the physical coordinate space that defines the hardware (the
device number, the streaming multiprocessor number on the device, the warp number on the SM, and lane num-
ber on the warp).

dcuda block [(Bx,By,Bz)]

 With no arguments, shows the current CUDA block

dcuda Other Commands 61

CLI Commands

 With a block argument of the form (Bx,By,Bz), changes the CUDA focus to that block. Parameters to
the right (By and Bz, or just Bz) may be omitted; these are unchanged.

dcuda thread [(Tx,Ty,Tz)]

 With no arguments, shows the current CUDA thread.

 With a thread argument of the form (Tx,Ty,Tz), changes the CUDA focus to that thread. Parameters
to the right (Ty and Tz, or just Tz) may be omitted; these are unchanged.

dcuda kernel

Displays the logical and hardware coordinates of the current CUDA context.

dcuda device [<n>]

 With no arguments, shows the current CUDA device.

 With a numeric argument, changes the CUDA device focus to that device.

dcuda sm [<n>]

 With no arguments, shows the current CUDA SM (streaming multiprocessor).

 With a numeric argument, changes the CUDA SM focus to that SM.

dcuda warp [<n>]

 With no arguments, shows the current CUDA warp.

 With a numeric argument, changes the CUDA warp focus to that warp.

dcuda lane [<n>]

 With no arguments, shows the current CUDA lane.

 With a numeric argument, changes the CUDA lane focus to that lane.

dcuda info-system

Displays the CUDA devices in the system.

dcuda info-device

Displays currently running SMs in the current device.

dcuda info-sm

Displays valid warps in the current SM.

dcuda Other Commands 62

CLI Commands

dcuda info-warp

Displays valid lanes in the current warp.

dcuda info-lane

Displays the current lane.

dcuda focus (Bx,By, Bz),(Tx,Ty,Tz)

Changes the focus via CUDA logical coordinates of the form <<<(Bx,By,Bz),(Tx,Ty,Tz)>>>.

The following abbreviations are also accepted:
<<<Tx>>>
<<<(Tx)>>>
<<<(Tx,Ty)>>>
<<<(Tx,Ty,Tz)>>>
<<<(Bx),(Tx)>>>
<<<(Bx),(Tx,Ty)>>>
<<<(Bx),(Tx,Ty,Tz)>>>
<<<(Bx,By),(Tx)>>>
<<<(Bx,By),(Tx,Ty)>>>
<<<(Bx,By),(Tx,Ty,Tz)>>>
<<<(Bx,By,Bz),(Tx)>>>
<<<(Bx,By,Bz),(Tx,Ty)>>>
<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>

Angle brackets are optional, but must be balanced.

dcuda hwfocus <D/S/W/L>

Changes the focus via CUDA hardware coordinates of the form D/S/W/L, S/W/L, W/L, or L.

Command alias

Examples

Displaying device information
dcuda info-device

Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001

dcuda info-sm
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001

Alias Definition Description

cuda dcuda Writes out the focus thread, as in dcuda kernel.

dcuda Other Commands 63

CLI Commands

WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

dcuda info-warp
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)
LN: 0/32 pc=0x000000001ef2efa8 thread: (0,0,0)
LN: 1/32 pc=0x000000001ef2efa8 thread: (1,0,0)
LN: 2/32 pc=0x000000001ef2efa8 thread: (0,1,0)
LN: 3/32 pc=0x000000001ef2efa8 thread: (1,1,0)

dcuda info-lane
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

Displaying the focus
dcuda warp sm

Output:
sm 0 warp 0

dcuda lane device
Output:
device 0 lane 3

dcuda thread
Output:
thread (1,1,0)

dcuda kernel
Output:
device 0, sm 0, warp 0, lane 3, block (0,0,0), thread (1,1,0)

Changing the focus

In these commands, note that TotalView assigns CUDA threads a negative thread ID. In the examples here, the
CUDA thread is labeled "1.-1".

dcuda thread (1,1,0)
Changes the CUDA focus to the thread represented by logical coordinates 1,1,0.

dcuda Other Commands 64

CLI Commands

New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 3, block (0,0,0), thread
(1,1,0)

dcuda lane 2
Changes the CUDA focus to lane 2.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 2, block (0,0,0), thread
(0,1,0)

dcuda lane 1 sm 0
Changes the CUDA focus to lane 1 and to SM 0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

dcuda thread 0,0,0
Changes the CUDA focus to thread 0,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 0, block (0,0,0), thread
(0,0,0)

dcuda thread 1
Changes the CUDA focus to thread 1,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

RELATED TOPICS

Using the CUDA Debugger in the TotalView User Guide

ddelete Other Commands 65

CLI Commands

ddelete Deletes action points

Format
Deletes the specified action points

ddelete action-point-list

Deletes all action points
ddelete -a

Arguments
action-point-list

A list of the action points to delete.

-a

Deletes all action points in the current focus.

Description
The ddelete command permanently removes one or more action points. If you delete a barrier point, the CLI
releases the processes and threads held at it.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
ddelete 1 2 3

Deletes action points 1, 2, and 3.
ddelete -a

Deletes all action points associated with processes in the current focus.
dfocus {p1 p2 p3 p4} ddelete -a

Deletes all the breakpoints associated with processes 1 through 4. Breakpoints associated with other threads
are not affected.

dfocus a de -a
Deletes all action points known to the CLI.

Alias Definition Description

de ddelete Deletes action points

ddetach Other Commands 66

CLI Commands

ddetach Detaches from processes

Format
ddetach

Arguments
This command has no arguments.

Description
The ddetach command detaches the CLI from all processes in the current focus. This undoes the effects of
attaching the CLI to a running process; that is, the CLI releases all control over the process, eliminates all debug-
ger state information related to it (including action points), and allows the process to continue executing in the
normal runtime environment.

You can detach any process controlled by the CLI; the process being detached need not have been loaded with a
dattachcommand.

After this command executes, you are no longer able to access program variables, source location, action point
settings, or other information related to the detached process.

If a single thread serves as the set, the CLI detaches the process that contains the thread. If you do not indicate a
focus, the default focus is the process of interest (POI).

Command alias

Examples
ddetach

Detaches the process or processes that are in the current focus.
dfocus {p4 p5 p6} det

Detaches processes 4, 5, and 6.
dfocus g2 det

Detaches all processes in the control group associated with process 2.

Alias Definition Description

det ddetach Detaches from processes

ddetach Other Commands 67

CLI Commands

RELATED TOPICS

Detaching from Processes in the Classic TotalView User Guide

dattachCommand

ddisable Other Commands 68

CLI Commands

ddisable Temporarily disables action points

Format
Disables the specified action points

ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a

Arguments
action-point-list

A list of the action points to disable.

-block number-list
If you set a breakpoint on a line that is ambiguous, use this option to identify the instances to disable. Obtain a
list of these numbers using the dactionscommand.

-a

Disables all action points.

Description
The ddisable command temporarily deactivates action points. To delete an action point, use ddelete.

You can explicitly name the IDs of the action points to disable or you can disable all action points.

If you do not indicate a focus, the default focus is the process of interest (POI).

Note that you cannot disable a nullified action point, i.e., one that points to an invalid address block.

Command alias

Examples
ddisable 3 7

Disables the action points with IDs 3 and 7.
di -a

Disables all action points in the current focus.
dfocus {p1 p2 p3 p4} ddisable -a

Alias Definition Description

di ddisable Temporarily disables action points

ddisable Other Commands 69

CLI Commands

Disables all action points associated with processes 1 through 4. Action points associated with other processes
are not affected.

di 1 -block 3 4
Disables the action points associated with blocks 3 and 4. That is, one logical action point can map to more
than one actual action point if you set the action point at an ambiguous location.

ddisable 1 2 -block 3 4
Disables the action points associated with blocks 3 and 4 in action points 1 and 2.

ddisable 1 -block 0
ddisable: Actionpoint 1 block 0 is nullified and cannot be disabled

Disabling an action point that is nullified, i.e., one that points to an invalid address block, returns an error mes-
sage.

ddlopen Other Commands 70

CLI Commands

ddlopen Dynamically loads shared object libraries

Format
Dynamically loads a shared object library

ddlopen [-now| -lazy] [-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen -list [dll-ids ... | -all]

Arguments
-now

Includes RTLD_NOW in the dlopen command’s mode argument. (Now immediately resolves all undefined
symbols.)

-lazy

Includes RTLD_LAZY in the dlopen command’s mode argument. (Lazy tries to resolve unresolved symbols as
code is executed, rather than now.)

-local

Includes RTLD_GLOBAL in the dlopen command’s mode argument. (Local makes library symbols unavailable
to libraries that the program subsequently loads.) This argument is the default.

-global

Includes RTLD_LOCAL in the dlopen command’s mode argument. (Global makes library symbols available to li-
braries that the program subsequently loads.)

-mode int
The integer arguments are ORed into the other mode flags passed to the dlopen() function. (See your operat-
ing system’s documentation for information on these flags.)

filespec
The shared library to load.

-list

Displays information about the listed DLL IDs. If you use ddlopen without arguments or use the -list option
without a DLL ID list (ddlopen -list), TotalView displays information about all DLL IDs.

dll-ids
A list of one or more DLL IDs. DLL IDs are the return values when you use the ddlopen command to load DLLs.

Description
The ddlopen command dynamically loads shared object libraries, or lists the shared object libraries loaded using
this or the Tools > Debugger Loaded Libraries command, available in Classic TotalView.

ddlopen Other Commands 71

CLI Commands

For a filespec argument, TotalView performs a dlopen operation on this file in each process in the current P/T
set. On the IBM AIX operating system, you can add a parenthesized library module name to the end of the
filespec argument.

NOTE: dlopen(3), dlerror(3), and other related routines are not part of the default runtime libraries
on AIX, Solaris, and Red Hat Linux. Instead, they are in the libdl system library. Consequently,
you must link your program using the-ldloption if you want to use the ddlopen command.

Also, the ddlopen command operates by calling dlopen(3). This can alter the string returned
by dlerror(3). Thus, issuing a ddlopen command can change the values returned to the appli-
cation by any of its subsequent dlerror(3) calls.

The -now and -lazy options indicate whether dlopen immediately resolves unresolved symbol references or
defers resolving them until the target program references them. If you don’t use either option, TotalView uses
your operating system’s default. (Not all platforms support both alternatives. For example, AIX treats RTLD_LAZY
the same as RTLD_NOW).

The -local and-global options determine if symbols from the newly loaded library are available to resolve refer-
ences. If you don’t use either option, TotalView uses the target operating system's default. (Linux supports only
the -global option. If you don’t specify an option, the default is the -local option.)

After entering this command, the CLI waits until all dlopen calls complete across the current focus. The CLI then
returns a unique dll-id and displays its prompt, which means that you can enter additional CLI commands. How-
ever, if an event occurs (for example, a $stop, a breakpoint in user function called by static object constructors, a
SEGV, and so on), the ddlopen command throws an exception that describes the event. The first exception sub-
code in the errorCode variable is the DLL IDfor the suspended dlopen() function call.

If an error occurs while executing the dlopen() function, TotalView calls the dlerror()function in the target pro-
cess, and then prints the returned string.

A DLL ID represents a shareable object that was dynamically loaded by the ddlopen command. Use the TV:dll
command to obtain information about and delete these objects. If all dlopen() calls return immediately, the
ddlopen command returns a unique DLL ID that you can also use with the TV::dll command.

Every DLL ID is also a valid breakpoint ID, representing the expressions used to load and unload DLLs. You can
manipulate these breakpoints using the TV::expr command.

To obtain a listing of all objects loaded using ddlopen, enter just ddlopen without a filespec argument, or
ddlopen -list.

The ddlopen command prints its output directly to the console.

ddlopen Other Commands 72

CLI Commands

Examples
ddlopen "mpistat.so"
1

Loads the mpistat.so library file. The return value (1) indicates the process into which TotalView loaded the
library.

dfocus g ddlopen "mpistat.so(mpistat.o)"
2

Loads the module mpistat.o in the AIX DLL library mpistat.so into all members of the current process’s con-
trol group.

ddlopen -lazy -global "mpistat.so"
Loads mpistat.so into process 1, and does not resolve outstanding application symbol requests to point to
mpistat. However, TotalView uses the symbols in this library if it needs them.

ddlopen
dll-id susp-eval-id [Switches] DLL name p.t dlopen handle (TV::expr get p.t status)
1 2 -lazy tx_shared_lib.so 1.1 3

Prints the list of shared objects dynamically loaded by the ddlopen command.

ddlopen prints its output directly to the console. Type “help output” for more information.

RELATED TOPICS

Preloading Shared Libraries in the Classic TotalView User Guide

TV::dllCommand

ddown Other Commands 73

CLI Commands

ddown Moves down the call stack

Format
ddown [num-levels]

Arguments
num-levels

Number of levels to move down. The default is 1.

Description
The ddown command moves the selected stack frame down one or more levels and prints the new frame’s num-
ber and function name.

Call stack movements are all relative, so using the ddown command effectively moves down in the call stack. (If
up is in the direction of the main() function, then down is back to where you were before you moved through
stack frames.)

Frame 0 is the most recent—that is, the currently executing—frame in the call stack, frame 1 corresponds to the
procedure that invoked the currently executing frame, and so on. The call stack’s depth is increased by one each
time a procedure is entered, and decreased by one when it is exited.

The command affects each thread in the focus. That is, if the current width is process, the ddown command acts
on each thread in the process. You can specify any collection of processes and threads as the target set.

In addition, the ddown command modifies the current list location to be the current execution location for the
new frame; this means that a dlist command displays the code that surrounds this new location.

The context and scope changes made by this command remain in effect until the CLI executes a command that
modifies the current execution location (for example, the dstep command), or until you enter either a dup or
ddown command.

If you tell the CLI to move down more levels than exist, the CLI simply moves down to the lowest level in the stack,
which was the place where you began moving through the stack frames.

Command alias

Examples
ddown

Alias Definition Description

d ddown Moves down the call stack

ddown Other Commands 74

CLI Commands

Moves down one level in the call stack. As a result, for example, dlist commands that follow refers to the pro-
cedure that invoked this one. The following example shows what prints after you enter this command:
0 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

d 5
Moves the current frame down five levels in the call stack.

RELATED TOPICS

dup Command

denable Other Commands 75

CLI Commands

denable Enables action points

Format
Enables some action points

denable action-point-list [-block number-list]

Enables all disabled action points in the current focus
denable -a

Arguments
action-point-list

The identifiers of the action points being enabled.

-a

Enables all action points.

-block number-list
If you set a breakpoint on a line that is ambiguous, this option names which instances to enable. Use the
dactions command to obtain a list of these numbers.

Description
The denable command reactivates action points that you previously disabled with the ddisable command. The -
a option enables all action points in the current focus.

Note that you cannot enable an action point with nullified blocks, i.e. those that point to an invalid address block.

If you did not save the ID values of disabled action points, use dactions to obtain a list of this information.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
denable 3 4

Enables two previously identified action points.
dfocus {p1 p2} denable -a

Enables all action points associated with processes 1 and 2. This command does not affect settings associated
with other processes.

en -a

Alias Definition Description

en denable Enables action points

denable Other Commands 76

CLI Commands

Enables all action points associated with the current focus.
f a en -a

Enables all action points in all processes.
en 1 -block 3 4

Enables the action points associated with blocks 3 and 4. That is, one logical action point can map to more than
one actual action point if you set the action point at an ambiguous location.

denable 1 2 -block 3 4
Enables the action points associated with blocks 3 and 4 in action points 1 and 2.

denable 1 -block 0
denable: Actionpoint 1 block 0 is nullified and cannot be enabled

Enabling an action point that is nullified, i.e. that points to an invalid address block, returns an error message.

RELATED TOPICS

Enabling Action Pointsin the TotalView User Guide

ddisableCommand

dbarrierCommand

dbreakCommand

dwatchCommand

dexamine Other Commands 77

CLI Commands

dexamine Displays memory contents

Format
dexamine [-column_count cnt] [-countcnt] [-data_only] [-show_chars] [-string_length len] [-format fmt
] [-memory_info] [-wordsize size] variable_or_expression

Arguments
-cols| -column_count cnt

Specifies the number of columns to display. Without this option, the CLI determines this number of columns
based on the data’s wordactid size and format.

-c | -count cnt
Specifies the number of elements to examine. Without this option, the CLI displays the entire object. This num-
ber is determined by the object’s datatype. If no type is available, the default value for cnt is 1 element.

-d | -data_only

Does not display memory values with a prefixed address: field or address annotations. This option is incompati-
ble with -memory_info.

-f | -format fmt
Specifies the format to use when displaying memory. The default format is hex. You can abbreviate each of
these to the first character in the format’s name.

a | address

Interprets memory as addresses; the word size is always the size of a pointer

b | binary

Binary; this can also be abbreviated to t

c | char

Unsigned character

d | dec

Signed decimal value of size 1, 2, 4, or 8 bytes

f | float

Signed float value, either 4 or 8 byte word size

h | hex

Unsigned hexadecimal value of size 1, 2, 4, or 8 bytes

i | instruction

Sequence of instructions

o | oct

Unsigned octal value of size 1, 2, 4, or 8 bytes

dexamine Other Commands 78

CLI Commands

s | string

String

-m | -memory_info

Shows information about the type of memory associated with the address. Without this option, the CLI does not
display this information. This argument is incompatible with -data_only. When you use this option, the CLI an-
notates address each line in the dump as follows:

[d]: .data
[t]: .text
[p]: .plt
[b]: .bss
[?]: Another type of memory (such as stack address)

If you have enabled memory debugging, the following annotations can also appear:

[A]: Allocated block of memory
[D]: Deallocated block of memory
[G]: Address is a guard region
[C]: Address is a corrupted guard region

If the address being examined is within an allocated block, this option tells the Memory Debugger to automati-
cally include the pre-guard region if the user specified guards in the memory debugging configuration.

-sc | -show_chars

Shows a trailing character dump for each line. Without this option, the CLI does not show the trailing characters.

-sl | -string_length len
Specifies the maximum size string to display. Without this option, the length is all characters up to the first null
character.

-w | -wordsize size
Specifies the “word size” to apply to the format. The default word size is '1' for most formats. For 'address' format,
the word size is always the size of a target pointer. The values can be 1, 2, 4, 8 or one of the following: b (byte), h
(half word), w (word), or g (giant).

variable_or_expression
A variable or an expression that can be resolved into a memory address.

Description
Examines memory at the address of the specified variable or the address resulting from the evaluation of an
expression. If you specify an expression, the result of the evaluation must be an lvalue.

In most cases, you will enclose the expression in {} symbols.

dexamine Other Commands 79

CLI Commands

NOTE: Instead of using the listed dexamine options, you can instead use the gdb examine command
syntax.

Command alias

Examples
d1.<> dexamine -f b {dbl_array[1]}
0x7fffff0d70e8: 0100000000000011001100110011001100110011001100110011001100110011
0x7fffff0d70f0:

Examines the memory of element one of dbl_array in binary format.
d1.<> dexamine -wordsize 8 {dbl_array[1]}
0x7fffff0d70e8: 0x4003333333333333
0x7fffff0d70f0:

Examines the memory of element one of dbl_array and applies an eight-bit word size to the formatting out-
put.

d1.<> dexamine -data_only {dbl_array[1]}
0x4003333333333333

Examines the memory of element one of dbl_array and displays only the memory values and not the
address field or address annotations.

d1.<> dexamine -format oct {dbl_array[1]}
0x7fffff0d70e8: 00400031463146314631463
0x7fffff0d70f0:

Examines the memory of element one of dbl_array and formats the output in octal.

Alias Definition Description

x dexamine Examines (dumps) memory

dflush Other Commands 80

CLI Commands

dflush Unwinds stack from suspended computations

Format
Removes the top-most suspended expression evaluation.

dflush

Removes the computation indicated by a suspended evaluation ID and all those that precede it
dflush susp-eval-id

Removes all suspended computations
dflush -all

Arguments
susp-eval-id

The ID returned or thrown by the dprintcommand or which is printed by the dwherecommand.

-all

Flushes all suspended evaluations in the current focus.

Description
The dflushcommand unwinds the stack to eliminate frames generated by suspended computations. Typically,
these frames can occur when using the dprint -nowait command. Other possibilities are if an error occurred in a
function call in an eval point, in an expression in a Tools > Evaluate window (available in Classic TotalView), or if
you use a $stopfunction.

Use this command as follows:

 If you don’t use an argument, the CLI unwinds the top-most suspended evaluation in all threads in
the current focus.

 If you use a susp-eval-id, the CLI unwinds each stack of all threads in the current focus, flushing all
pending computations up to and including the frame associated with the ID.

 If you use the-all option, the CLI flushes all suspended evaluations in all threads in the current
focus.

If no evaluations are suspended, the CLI ignores this command. If you do not indicate a focus, the default focus is
the thread of interest.

Examples
The following example uses the dprint command to place five suspended routines on the stack. It then uses the
dflush command to remove them. This example uses the dflush command in three different ways.
#

dflush Other Commands 81

CLI Commands

Create 5 suspended functions
#
d1.<> dprint -nowait nothing2(7)
7
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(8)
8
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(9)
9
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(10)
10
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(11)
11
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
...
#
The top of the call stack looks like:
#
d1.<> dwhere 0 nothing2 PC=0x00012520, FP=0xffbef130 [fork.cxx#310]
1 ***** Eval Function Call (11) ****************
2 nothing2 PC=0x00012520, FP=0xffbef220 [fork.cxx#310]
3 ***** Eval Function Call (10) ****************
4 nothing2 PC=0x00012520, FP=0xffbef310 [fork.cxx#310]
5 ***** Eval Function Call (9) ***************
6 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]
7 ***** Eval Function Call (8) ****************
8 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
9 ***** Eval Function Call (7) ****************
10 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
11 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278] ...
#
Use the dflush command to remove the last item pushed
onto the stack. Notice the frame associated with "11"
is no longer there.
#
d1.<> dflush
d1.<> dwhere
0 nothing2 PC=0x00012520, FP=0xffbef220 [fork.cxx#310]
1 ***** Eval Function Call (10) ****************
2 nothing2 PC=0x00012520, FP=0xffbef310 [fork.cxx#310]
3 ***** Eval Function Call (9) ****************
4 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]
5 ***** Eval Function Call (8) ****************
6 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
7 ***** Eval Function Call (7) ****************
8 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
9 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]
#
Use the dflush command with a suspened ID argument to remove
all frames up to and including the one associated with
suspended ID 9. This means that IDs 7 and 8 remain.
#
d1.<> dflush 9
Top of call stack after dflush 9
d1.<> dwhere
0 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]

dflush Other Commands 82

CLI Commands

1 ***** Eval Function Call (8) ****************
2 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
3 ***** Eval Function Call (7) ****************
4 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
5 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]
#
Use dflush -all to remove all frames. Only the frames
associated with the program remain.
#
d1.<> dflush -all
Top of call stack after dflush -all
d1.<> dwhere
0 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
1 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

dfocus Other Commands 83

CLI Commands

dfocus Changes the current (Process/Thread P/T) set

Format
Changes the target of future CLI commands to this P/T set or returns the value of the current P/T set

dfocus [p/t-set]

Executes a command in this P/T set
dfocus p/t-set command

Arguments
p/t-set

A set of processes and threads to be the target of subsequent CLI commands.

command
A CLI command that operates on its own local focus. This argument may be a single command or a list.

Description
The dfocus command changes the set of processes, threads, and groups upon which a command acts. This com-
mand can change the focus for all commands that follow, or just the command that immediately follows.

If a command argument is provided, the focus is set temporarily, command is executed in the new focus, and
then the focus is restored to its old value.

For example, to continue the TotalView group containing the focus process, you could type:

dfocus g dgo
To stop process 3 and display backtraces for each of its threads, type:

dfocus p3 { dhalt ; dwhere }
Summary

 If ptset is provided but not command: The default focus for subsequent commands is changed to
ptset.

 If neither command nor ptset are provided: The current default focus is returned as a string value.

 If no argument is provided: dfocus returns the focus as a string value.

 If any argument is provided: dfocus returns the result of the command.

For more information on command output, enter "help output".

For more information on P/T sets, see “Group, Process and Thread Control” of the Classic TotalView User Guide.

dfocus Other Commands 84

CLI Commands

Command alias

Examples
dfocus g dgo

Continues the TotalView group that contains the focus process.
dfocus p3 {dhalt; dwhere}

Stops process 3 and displays backtraces for each of its threads.
dfocus 2.3

Sets the focus to thread 3 of process 2, where 2 and 3 are TotalView process and thread identifier values. The
focus becomes d2.3.

dfocus 3.2
dfocus .5

Sets and then resets command focus. A focus command that includes a dot and omits the process value uses
the current process. Thus, this sequence of commands changes the focus to process 3, thread 5 (d3.5).

dfocus g dstep
Steps the current group. Although the thread of interest (TOI) is determined by the current focus, this command
acts on the entire group that contains that thread.

dfocus {p2 p3} {dwhere ; dgo}
Performs a backtrace on all threads in processes 2 and 3, and then tells these processes to execute.

f 2.3 {f p w; f t s; g}
Executes a backtrace (dwhere) on all the threads in process 2, steps thread 3 in process 2 (without running
any other threads in the process), and continues the process.

dfocus p1
Changes the current focus to include just those threads currently in process 1. The width is set to process. The
CLI sets the prompt to p1.<.

dfocus a
Changes the current set to include all threads in all processes. After you execute this command, your prompt
changes to a1.<. This command alters CLI behavior so that actions that previously operated on a thread now
apply to all threads in all processes.

dfocus gW dstatus
Displays the status of all worker threads in the control group. The width is group level and the target is the
workers group.

dfocus pW dstatus
Displays the status of all worker threads in the current focus process. The width is process level and the target
is the workers group.

Alias Definition Description

f dfocus Changes the object upon which a command acts

dfocus Other Commands 85

CLI Commands

f {breakpoint(a) | watchpoint(a)} st
Shows all threads that are stopped at breakpoints or watchpoints.

f {stopped(a) - breakpoint(a)} st
Shows all stopped threads that are not stopped at breakpoints.

“Group, Process, and Thread Control” in the Classic TotalView User Guide contains additional dfocus examples.

RELATED TOPICS

Groups in TotalView in the TotalView User Guide

dga Other Commands 86

CLI Commands

dga Displays Global Array variables

Format
dga [-lang lang_type] [handle_or_name] [slice]

Arguments
-lang

Specifies the language conventions to use. Without this option, TotalView uses the language used by the thread
of interest (TOI).

lang_type
Specifies the language type to use when displaying a global array. The type must be either “c” or “f”.

handle_or_name
Displays an array. This can be either a numeric handle or the name of the array. Without this argument, To-
talView displays a list of all Global Arrays.

slice
Displays only a slice (that is, part of an array). If you are using C, you must place the array designators within
braces {} because square brackets ([]) have special meaning in Tcl.

Description
The dga command displays information about Global Arrays.

If the focus includes more than one process, TotalView prints a list for each process in the focus. Because the
arrays are global, each list is identical. If there is more than one thread in the focus, the CLI prints the value of the
array as seen from that thread.

In almost all cases, you should change the focus tod2.<so that you don’t include a starter process such as prun.

Examples
dga

Displays a list of Global Arrays, for example:
lb_dist

Handle -1000
Ghosts yes
C type $double[129][129][27]
Fortran Type \

$double_precision(27,129,129)
bc_mask

Handle -999
Ghosts yes
C type long[129][129]
Fortran Type $integer(129,129)

dga bc_mask (:2,:2)

dga Other Commands 87

CLI Commands

Displays a slice of the bc_mask variable, for example:
bc_mask(:2,:2) = {

(1,1) = 1 (0x00000001)
(2,1) = 1 (0x00000001)
(1,2) = 1 (0x00000001)
(2,2) = 0 (0x00000000)

}
dga -lang c -998 {[:1]{:1]}

Displays the same bc_mask variable as in the previous example in C format. In this case, the command refers
to the variable by its handle.

RELATED TOPICS

Debugging Global Arrays Applications in the Classic TotalView User Guide

dgo Other Commands 88

CLI Commands

dgo Resumes execution of processes

Format
dgo

Arguments
-back | -b

(ReplayEngine only). Runs the nonheld process in the current focus backward until it hits some action point or
the beginning of recorded Replay history. This option can be abbreviated to --b.

Description
The dgo command resumes execution of all nonheld processes and threads in the current focus. If the process
does not exist, this command creates it, passing it the default command arguments. These can be arguments
passed into the CLI, or they can be the arguments set with the drerun command. If you are also using the
TotalView GUI, you can set this value by using the Process > Startup Parameterscommand.

You cannot use a dgo command when you are debugging a core file, nor can you use it before the CLI loads an
executable and starts executing it.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
dgo

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (Threads held at barriers are not affected.)

G
Resumes execution of all threads in the current control group.

f p g
Continues the current process. Only threads that are not held can run.

f g g
Continues all processes in the control group. Only processes and threads that are not held are allowed to run.

f gL g
Continues all threads in the share group that are at the same PC as the thread of interest(TOI).

f pL g

Alias Definition Description

g dgo Resumes execution

G {dfocus g dgo} Resumes group

dgo Other Commands 89

CLI Commands

Continues all threads in the current process that are at the same PC as the TOI.
f t g

Continues a single thread.

RELATED TOPICS

Starting Processes and Threads in the Classic TotalView User Guide

dcontCommand

dgpu_status Other Commands 90

CLI Commands

dgpu_status Manages GPU threads

Format
dcuda block [(Bx,By,Bz)]
dcuda thread [(Tx,Ty, Tz)]
dcuda kernel
dcuda device [<n>]
dcuda sm [<n>]
dcuda warp [<n>]
dcuda lane [<n>]
dcuda info-system
dcuda info-device
dcuda info-sm
dcuda info-warp
dcuda info-lane
dcuda focus (Bx,By,Bz),(Tx,Ty, Tz)
dcuda hwfocus <D/S/W/L>

Arguments
Bx, By, Bz

The x, y and z block indices

Tx, Ty, Tz
The x, y, and z thread indices

D/S/W/L
The coordinates defining the physical space of the hardware:

D: device number
S: streaming multiprocessor (SM)
W: warp (WP) number on the SM
L: lane (LN) number on the warp

Description
The dcuda commands allow you to manage and view GPU threads, in either the logical coordinate space of block
and thread indices (<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>) or the physical coordinate space that defines the hardware (the
device number, the streaming multiprocessor number on the device, the warp number on the SM, and lane num-
ber on the warp).

dcuda block [(Bx,By,Bz)]

 With no arguments, shows the current CUDA block

dgpu_status Other Commands 91

CLI Commands

 With a block argument of the form (Bx,By,Bz), changes the CUDA focus to that block. Parameters to
the right (By and Bz, or just Bz) may be omitted; these are unchanged.

dcuda thread [(Tx,Ty,Tz)]

 With no arguments, shows the current CUDA thread.

 With a thread argument of the form (Tx,Ty,Tz), changes the CUDA focus to that thread. Parameters
to the right (Ty and Tz, or just Tz) may be omitted; these are unchanged.

dcuda kernel

Displays the logical and hardware coordinates of the current CUDA context.

dcuda device [<n>]

 With no arguments, shows the current CUDA device.

 With a numeric argument, changes the CUDA device focus to that device.

dcuda sm [<n>]

 With no arguments, shows the current CUDA SM (streaming multiprocessor).

 With a numeric argument, changes the CUDA SM focus to that SM.

dcuda warp [<n>]

 With no arguments, shows the current CUDA warp.

 With a numeric argument, changes the CUDA warp focus to that warp.

dcuda lane [<n>]

 With no arguments, shows the current CUDA lane.

 With a numeric argument, changes the CUDA lane focus to that lane.

dcuda info-system

Displays the CUDA devices in the system.

dcuda info-device

Displays currently running SMs in the current device.

dcuda info-sm

Displays valid warps in the current SM.

dgpu_status Other Commands 92

CLI Commands

dcuda info-warp

Displays valid lanes in the current warp.

dcuda info-lane

Displays the current lane.

dcuda focus (Bx,By, Bz),(Tx,Ty,Tz)

Changes the focus via CUDA logical coordinates of the form <<<(Bx,By,Bz),(Tx,Ty,Tz)>>>.

The following abbreviations are also accepted:
<<<Tx>>>
<<<(Tx)>>>
<<<(Tx,Ty)>>>
<<<(Tx,Ty,Tz)>>>
<<<(Bx),(Tx)>>>
<<<(Bx),(Tx,Ty)>>>
<<<(Bx),(Tx,Ty,Tz)>>>
<<<(Bx,By),(Tx)>>>
<<<(Bx,By),(Tx,Ty)>>>
<<<(Bx,By),(Tx,Ty,Tz)>>>
<<<(Bx,By,Bz),(Tx)>>>
<<<(Bx,By,Bz),(Tx,Ty)>>>
<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>

Angle brackets are optional, but must be balanced.

dcuda hwfocus <D/S/W/L>

Changes the focus via CUDA hardware coordinates of the form D/S/W/L, S/W/L, W/L, or L.

Command alias

Examples

Displaying device information
dcuda info-device

Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001

dcuda info-sm
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001

Alias Definition Description

cuda dcuda Writes out the focus thread, as in dcuda kernel.

dgpu_status Other Commands 93

CLI Commands

WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

dcuda info-warp
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)
LN: 0/32 pc=0x000000001ef2efa8 thread: (0,0,0)
LN: 1/32 pc=0x000000001ef2efa8 thread: (1,0,0)
LN: 2/32 pc=0x000000001ef2efa8 thread: (0,1,0)
LN: 3/32 pc=0x000000001ef2efa8 thread: (1,1,0)

dcuda info-lane
Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

Displaying the focus
dcuda warp sm

Output:
sm 0 warp 0

dcuda lane device
Output:
device 0 lane 3

dcuda thread
Output:
thread (1,1,0)

dcuda kernel
Output:
device 0, sm 0, warp 0, lane 3, block (0,0,0), thread (1,1,0)

Changing the focus

In these commands, note that TotalView assigns CUDA threads a negative thread ID. In the examples here, the
CUDA thread is labeled "1.-1".

dcuda thread (1,1,0)
Changes the CUDA focus to the thread represented by logical coordinates 1,1,0.

dgpu_status Other Commands 94

CLI Commands

New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 3, block (0,0,0), thread
(1,1,0)

dcuda lane 2
Changes the CUDA focus to lane 2.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 2, block (0,0,0), thread
(0,1,0)

dcuda lane 1 sm 0
Changes the CUDA focus to lane 1 and to SM 0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

dcuda thread 0,0,0
Changes the CUDA focus to thread 0,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 0, block (0,0,0), thread
(0,0,0)

dcuda thread 1
Changes the CUDA focus to thread 1,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

RELATED TOPICS

Using the CUDA Debugger in the TotalView User Guide

dgroups Other Commands 95

CLI Commands

dgroups Manipulates and manages groups

Format
Adds members to thread and process groups

dgroups[-add | -a] [-g gid] [id-list]

Deletes groups
dgroups -delete[-g gid]

Intersects a group with a list of processes and threads
dgroups [-intersect | -i] [-ggid] [id-list]

Prints process and thread group information
dgroups [-list | -l] [pattern-list]

Creates a new thread or process group
dgroups[-new | -n] [thread | t | process | p] [-g gid] [id-list]

Removes members from thread or process groups
dgroups [-remove | -r] [-g gid] [id-list]

Arguments
-g gid

The group ID on which the command operates. The gid value can be an existing numeric group ID, an existing
group name, or, if you are using the -newoption, a new group name.

id-list
A Tcl list that contains process and thread IDs. Process IDs are integers; for example, 2 indicates process 2.
Thread IDs define a pid.tid pair and look like decimal numbers; for example, 2.3 indicates process 2, thread 3. If
the first element of this list is a group tag, such as the word control, the CLI ignores it. This makes it easy to in-
sert all members of an existing group as the items to be used in any of these operations. (See the dsetcom-
mand’s discussion of the GROUP(gid) variable for information on group designators.) These words appear in
some circumstances when the CLI returns lists of elements in P/T sets.

pattern-list
A pattern to be matched against group names. The pattern is a Tcl regular expression.

Description
The dgroupscommand supports the following functions:

 Adding members to process and thread groups.

 Creating a group.

 Intersecting a group with a set of processes and threads.

dgroups Other Commands 96

CLI Commands

 Deleting groups.

 Displaying the name and contents of groups.

 Removing members from a group.

dgroups [-add | -a] [-g gid] [id-list]

Adds members to one or more thread or process groups. The CLI adds each of these threads and processes to
the group. If you add a:

 Process to a thread group, the CLI adds all of its threads.

 Thread to a process group, the CLI adds the thread’s parent process.

You can abbreviate the -addoption to -a.

The CLI returns the ID of this group.

You can explicitly name the items being added by using an id-list argument. Without an id-list argument, the CLI
adds the threads and processes in the current focus. Similarly, you can name the group using the -goption. With-
out the -goption, the CLI uses the groups in the current focus.

If the id-list argument contains processes, and the target is a thread group, the CLI adds all threads from these
processes. If it contains threads and the target is a process group, the CLI adds the parent process for each
thread.

NOTE: If you specify an id-list argument and you also use the -g option, the CLI ignores the focus. You
can use two dgroups -add commands instead.

If you try to add the same object more than once to a group, the CLI adds it only once.

You cannot use this command to add a process to a control group. Instead, use the CGROUP(dpid) variable; for
example:
dset CGROUP($mypid) $new_group_id

dgroups -delete [-g gid]

Deletes the target group. You can delete only groups that you create; you cannot delete groups that TotalView
creates.

dgroups [-intersect | -i] [-g gid] [id-list]

Intersects a group with a set of processes and threads. If you intersect a thread group with a process, the CLI
includes all of the process’s threads. If you intersect a process group with a thread, the CLI uses the thread’s
process.

dgroups Other Commands 97

CLI Commands

After this command executes, the group no longer contains members that were not in this intersection.

You can abbreviate the -intersectoption to -i.

dgroups [-list | -l] [pattern-list]

Prints the name and contents of process and thread groups. If you specify a pattern-list as an argument, the CLI
only prints information about groups whose names match this pattern. When entering a list, you can specify a
pattern. The CLI matches this pattern against the list of group names by using the Tcl regex command.

NOTE: If you do not enter a pattern, the CLI displays only groups that you have created with nonnu-
meric names.

You can abbreviate -listto -l.

dgroups [-new | -n] [thread | t | process | p] [-g gid] [id-list]

Creates a new thread or process group and adds threads and processes to it. If you use a name with the -g
option, the CLI uses that name for the group ID; otherwise, it assigns a new numeric ID. If the group you name
already exists, the CLI replaces it with the newly created group.

The CLI returns the ID of the newly created group.

You can explicitly name the items being added with an id-list argument. If you do not use an id-list argument, the
CLI adds the threads and processes in the current focus.

If the id-list argument contains processes, and the target is a thread group, the CLI adds all threads from these
processes. If it contains threads and the target is a process group, TotalView adds the parent process for each
thread.

NOTE: If you use an id-list argument and also use the-g option, the CLI ignores the focus.You can use
two dgroups -add commands instead.

If you are adding more than one object and one of these objects is a duplicate, The CLI adds the nonduplicate
objects to the group.

You can abbreviate the -newoption to -n.

dgroups [-remove | -r] [-g gid] [id-list]

Removes members from one or more thread or process groups. If you remove a process from a thread group,
The CLI removes all of its threads. If remove a thread from a process group, The CLI removes its parent process.

dgroups Other Commands 98

CLI Commands

You cannot remove processes from a control group. You can, however, move a process from one control group to
another by using the dset command to assign it to the CGROUP(dpid) variable group.

Also, you cannot use this command on read-only groups, such as share groups.

You can abbreviate the -removeoption to -r.

Command alias

Examples
dgroups -add
dgroups -add
Adds the current focus thread to the current focus group.

dfocus tW gr -add
Adds the focus thread to its workers group.

set gid [dgroups -new thread ($CGROUP(1))]
Creates a new thread group that contains all threads from all processes in the control group for process 1.

f $a_group/9 dgroups -add
Adds process 9 to a user-defined group.

dgroups -delete
dgroups -delete -g mygroup
Deletes the mygroup group.

dgroups -intersect
dgroups -intersect -g 3 3.2
Intersects thread 3.2 with group 3. If group 3 is a thread group, this command removes all threads except 3.2
from the group; if it is a process group, this command removes all processes except process 3 from it.

dfocus tW dgroups -i
Intersects the focus thread with the threads in its workers group.

f gW gr -i -g mygroup
Removes all nonworker threads from the mygroup group.

dgroups -list

Alias Definition Description

gr dgroups Manipulates a group

dgroups Other Commands 99

CLI Commands

dgroups -list
Displays information about all named groups; for example:
ODD_P: {process 1 3}
EVEN_P: {process 2 4}
gr -l *
Displays information about groups in the current focus.
1: {control 1 2 3 4}
2: {workers 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1

3.2 3.3 3.4 4.1 4.2 4.3 4.4}
3: {share 1 2 3 4}
ODD_P: {process 1 3}
EVEN_P: {process 2 4}

dgroups -new
dgroups -new thread -g mygroup $GROUP($CGROUP(1))
Creates a new thread group named mygroup that contains all threads from all processes in the control group
for process 1.

set mygroup [dgroups -new]
Creates a new process group that contains the current focus process.

dgroups -remove
dgroups -remove -g 3 3.2
Removes thread 3.2 from group 3.

dfocus W dgroups -add
Marks the current thread as being a worker thread.

f W dgroups -r
Indicates that the current thread is not a worker thread.

RELATED TOPICS

Setting and Creating Custom Groups in the TotalView User Guide

Groups in TotalView in the TotalView User Guide

dhalt Other Commands 100

CLI Commands

dhalt Suspends execution of processes

Format
dhalt

Arguments
This command has no arguments

Description
The dhalt command stops all processes and threads in the current focus.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
dhalt

Suspends execution of all running threads belonging to processes in the current focus. (This command does
not affect threads held at barriers.)

f t 1.1 h
Suspends execution of thread 1 in process 1. Note the difference between this command and f 1.< dhalt. If
the focus is set as thread level, this command halts the first user thread, which is probably thread 1.

RELATED TOPICS

Holding and Releasing Processes and Threads in the TotalView User Guide

The Processes and Threads View in the TotalView User Guide

Alias Definition Description

h dhalt Suspends execution

H {dfocus g dhalt} Suspends group execution

dheap Other Commands 101

CLI Commands

dheap Controls memory heap debugging behavior

Format
Shows Memory Debugger state

dheap [-status]

Enables or disables the Memory Debugger
dheap { -enable | -disable }

Applies a saved configuration file
dheap -apply_config { default| filename }

Shows information about a backtrace
dheap -backtrace [subcommands]

Compares memory states
dheap -compare subcommands [optional_subcommands]
[process | filename [process | filename]]

Enables or disables event notification
dheap -event_filter subcommands

Writes memory information
dheap -export subcommands

Specifies the filters the Memory Debugger uses
dheap -filter subcommands

Displays or increments the generation number given to memory allocations
dheap -generation [subcommands]

Writes guard blocks (memory before and after an allocation)
dheap -guard [subcommands]

Enables or disables the retaining (hoarding) of freed memory blocks
dheap -hoard [subcommands]

Displays Memory Debugger information
dheap -info [subcommands]

Indicates whether an address is in a deallocated block
dheap -is_dangling address

Locates memory leaks
dheap -leaks [-check_interior]

Enables or disables Memory Debugger event notification

dheap Other Commands 102

CLI Commands

dheap -[no]notify

Paints memory with a distinct pattern
dheap -paint [subcommands]

Enables or disables the ability to catch bounds errors and use-after-free errors retaining freed memory blocks
dheap -red_zones [subcommands]

Enables or disables allocation and reallocation notification
dheap -tag_alloc subcommands [start_address [end_address]]

Displays or specifies the verbosity level for the Heap Interposition Agent () output
dheap -verbosity [subcommands]

Displays the Memory Debugger version number
dheap -version

Arguments
-status

Returns memory debugging status, reporting if a process is capable of having its heap operations traced, and
whether TotalView will notify you if a notifiable heap event occurs. If TotalView stops a thread because one of
these events occur, it displays information about this event.

Entering dheap with no arguments is the same as using this option.

-enable / -disable

The option -enable enables the so that heap events are recorded the next time you start the program. The -
disable option disables the HIA the next time you start your program.

-apply_config { default | filename }

Applies configuration settings from a file to TotalView. If you type default, TotalView looks first in the current di-
rectory and then in your .totalview/hia/ directory for a file named default.hiarc. Otherwise, it uses the name
of the file entered here. If you do not specify an extension, TotalView assumes that the extension is .hiarc. That
is, while you can specify a file named foo.foobar, you cannot specify a file named simply foo as TotalView would
then assume that the file is actually named foo.hiarc.

-backtrace subcommands
Shows the current settings for the backtraces associated with a memory allocation. This information includes
the depth and the trim, a s described below.

Subcommands

-status

Displays backtrace information. If you do not use other backtrace options, you can omit this option.

dheap Other Commands 103

CLI Commands

-set_depth depth / -reset_depth

Set or reset the depth. The depth is the maximum number of PCs that TotalView includes when it cre-
ates a backtrace. (The backtrace is created when your program allocates or reallocates a memory
block.) The depth value starts after the trim value. That is, the number of excluded frames does not
include the trimmed frames.

When you use the -reset_depth option, TotalView either restores its default setting or the setting you
set using the TVHEAP_ARGS environment variable.

-set_trim trim / -reset_trim

Sets or resets the trim. The trim describes the number of PCs from the top of the stack that TotalView
ignores when it creates a backtrace. As the backtrace includes procedure calls from within TotalView,
setting a trim value removes them from the backtrace.

The default is to exclude TotalView procedures. Similarly, your program might call the heap manager
from within library code. If you do not want to see call frames showing a library, you can exclude
them.

When you use the -reset_trim option, TotalView either restores its default setting or the setting you
set using the TVHEAP_ARGS environment variable.

-display backtrace_id
Displays the stack frames associated with the backtrace identified by backtrace_id.

-compare required_subcommands [optional_subcommands]
[process | filename [process | filename]]

Required_Subcommands (both are required)

-data { alloc | dealloc | hoard | leaks }

Names the data to be written into the exported compare file, as follows:

alloc: heap allocations

dealloc: heap deallocations

hoard: deallocations currently held in the hoard

leaks: leaked heap allocations

-output { directory | filename }

Names the location for writing memory information. If the name ends with a slash (/), TotalView writes
information into a directory, with the filenames being the TotalView defaults.

Optional_Subcommands

-reverse_diff

Changes the order in which TotalView makes its comparison. That is, TotalView normally compares
the first named file to the second. This compares the second to the first.

dheap Other Commands 104

CLI Commands

-format { html | txt }
Specifies the format to use when it writes information to disk. If you do not use this command, To-
talView writes the information as HTML.

process | filename [process | filename]

Specifies if the comparison uses a process or a memory debugging export (.mdbg) file. Your choices
are:

No arguments: Compare the two processes in the current focus.

One argument: Compare the process in the current focus with the process/filename you specify.

Two arguments: Compare the two processes/filenames named as arguments.

-event_filter subcommands
These subcommands control which HIA events cause TotalView to stop program execution.

Subcommands

-status (optional)

Displays the current event filter settings. If you do not use other event filter options, you can omit this
option.

-set { on | off }

Enables or disables event filtering. If you disable event filtering, TotalView displays all events. If you
enable event filtering, then you can control which events TotalView displays.

-show_supported

Lists the set of events that is supported by the HIA in use. Any of these events can be specified in a
space-delimited list as the argument to the -notify, -nonotify, and -reset_notify options.

-reset

Resets the event filter to TotalView’s default value. You can create your own default in a configuration
file or by specifying an environment variable setting.

-[no]notify event-list
Enables or disables one or more events. Use the -show_supported command to list the events sup-
ported by the HIA in use.

-reset_notify event-list
Resets the event filter to TotalView’s default value for the filters named in the list. Use the -show_sup-
ported command to list the events supported by the HIA in use.

-export required_subcommands [optional_subcommands]

Writes information to a file.

Required_Subcommands

-data { alloc | alloc_leaks | dealloc | hoard | leaks | raw }

Specifies the data being written, as follows:

dheap Other Commands 105

CLI Commands

alloc: Shows all heap allocations.

alloc_leaks: Shows all heap allocations and perform leak detection. This differs from the alloc argu-
ment in that TotalView annotates leaked allocations.

dealloc: Shows deallocation data.

hoard: Shows deallocations currently held in the hoard.

leaks: Shows leaked heap allocations.

raw: Exports all heap information for the process using .mdbg format. This format’s only purpose is
to be imported back into TotalView.

-output filename
Names the file to which TotalView writes memory information.

Optional_Subcommands

You can optionally use any of the following options with dheap -export:

-[no]check_interior

When the no prefix is omitted, a memory block is not considered as leaked if a pointer is pointing
anywhere within the block. TotalView ignores this option unless you also use the -data leaks option.

-format { html| text }

Specifies the format used to write a view’s data to a file. The default is html.

There are some limitations regarding the html format. The only supported browser is Firefox, run-
ning versions 1.0 or greater. In addition, you must have Javascript turned on. (While information dis-
plays correctly in other browsers such as Internet Explorer 6.0 and Safari, isolated problems can
occur.) This file can be quite large and can take a while to load.

When TotalView writes an HTML file, it also creates a subdirectory with a related name containing ad-
ditional information. For example, if the output file name is foo.html, TotalView creates a subdirec-
tory named foo_files.

If you need to move the output file, you must also move the related subdirectory to the same direc-
tory.

-relative_to_baseline

If used, TotalView limits the information it writes to those created since the last time you created a
baseline. If you also use the -data raw option, TotalView ignores this option.

-set_show_backtraces { on | off }

When set to on, TotalView includes backtrace information within the data being written. As on is the
default, you only need to use this option with the off argument.

-set_show_code { on | off }

When set to on, TotalView includes the source code for the place where the memory was allocated
with the data being written. As on is the default, you only need to use this option with the off argu-
ment.

dheap Other Commands 106

CLI Commands

-view backtrace

Exports a backtrace view instead of a source view. If you also use the -data raw option, TotalView ig-
nores this option.

-filter subcommands
Use the -filter options to enable, disable, and show information about filtering.

Subcommands

-enable [filter-name-list | all]

Enables filtering of dheap commands. If you do not use an argument with this option, this option is
equivalent to selecting Enable Filtering in the TotalView UI.

Using a filter name simply defines where to locate filter information; you still need to enable filtering.
For example, here is how you would enable filtering and enable the use of a filter named MyFilter:

dheap -filter -enable MyFilter
dheap -filter -enable
If you did not enter the second command, no filtering would occur.

-disable [filter-name-list | all]

Disables filtering or disables an individual filter. The way that you use this command is similar to
dheap -filter -enable.

-list [[-full] filter-name-list]
Displays a filter description and its enabled state. If you do not use a filter-name-list argument, the
CLI displays all defined filters and their enabled states.

If you include the full argument, the information includes all of the filter’s criteria.

-generation [-status | -increment]

The HIA gives each allocation a generation number. The -status option displays the current value of the gener-
ation number. This is the default option.

The -increment option increments the generation number in the HIA.

-guard subcommands [start_address [end_address]]

Use the-guard options to enable, disable, set characteristics, and show information about guard blocks.

Subcommands

-status

Displays guard settings. If you do not use other guard options, you can omit the -status option when
you want to see status information.

-check [subcommands]

Checks the guards to see if they have been violated. If it finds a violated guard, TotalView displays in-
formation. The information displayed can be modified through the following subcommands:

-[no]show_backtrace: Displays (or not) backtrace information. This list can be very long.

dheap Other Commands 107

CLI Commands

-[no]show_backtrace_id: Displays (or not) backtrace IDs.

-[no]show_generation_id: Displays (or not) generation IDs.

-[no]show_guard_settings: Displays (or not) information about guards settings.

-set { on | off }

Enables or disables the writing of guards. If you disable this feature after it is enabled, TotalView does
not remove existing guard blocks.

-reset

Resets the guards to the TotalView’s default values. You can create your own defaults in a configura-
tion file or by specifying an environment variable setting.

-reset_max_size / -reset_post_pattern / -reset_pre_pattern / -reset_post_size / -reset_pre_size

Removes all changes you have made and restores guard settings to what they were when you first in-
voked TotalView.

-set_max_size size / -set_post_size size / -set_pre_size size
Specify a size in bytes. You can set the sizes of the pre- and post- guards independently. The actual
size of a guard can differ from these settings if TotalView needs to adjust the size to meet alignment
and allocation unit size constraints. In addition, you can set the maximum guard size. If the guard size
will be greater than this maximum, TotalView does not create a guard.

The default sizes are 8 bytes.

A maximum size of zero (0) does not limit guard sizes. Zero is the default value.

-set_post_pattern pattern / -set_pre_pattern pattern
Defines the pattern TotalView uses when it writes guard blocks.The default pre-allocation pattern is
0x77777777 and the default post-allocation pattern is 0x99999999.

start_address
If you only specify a start_address, TotalView either tags or removes the tag from the block that con-
tains this address. The action it performs depends on the subcommand you use.

end_address
If you also specify an end_address, TotalView either tags all blocks beginning with the block contain-
ing the start_address and ending with the block containing the end_address, or removes the tag.
The action it performs depends on the subcommand you use. If end_address is 0 (zero) or you do
not specify an end_address, TotalView tags or removes the tag from all addresses beginning with
start_address to the end of the heap.

-hoard [subcommands]

Do not surrender allocated blocks back to your program’s heap manager. If you do not specify a subcommand,
TotalView displays information about the hoarded blocks.

Subcommands

dheap Other Commands 108

CLI Commands

-status

Displays hoard settings. Information displayed indicates whether hoarding is enabled, whether deal-
located blocks are added to the hoard (or only those that are tagged), the maximum size of the
hoard, and the hoard’s current size.If you do not use other hoarding options, you can omit the -sta-
tus option when you want to see status information.

-display [start_address [end_address]]

Displays the contents of the hoard. You can restrict the display by specifying start_address and
end_address. If you omit end_address or use a value of 0, TotalView displays all contents beginning
at start_address and going to the end of the hoard.

The CLI displays hoarded blocks in the order in which your program deallocated them.

-set { on | off }

Enables and disables hoarding.

-reset

Resets TotalView settings for hoarding back to their initial values.

-set_all_deallocs { on | off }

Determines whether to hoard deallocated blocks.

-reset_all_deallocs

Resets TotalView settings for hoarding of deallocated blocks to their initial values.

-set_max_kb num_kb
Sets the maximum size of the hoarded information.

-set_max_blocks num_blocks
Sets the maximum number of hoarded blocks.

-reset_max_kb / -reset_max_blocks

Resets a hoarding size value back to its default.

-autoshrink [subcommands]

The autoshrink feature attemps to avoid the failure of memory allocations because memory is run-
ning short by reducing the size of the hoard to free enough memory for the allocation. If hoarding is
enabled and this feature is turned on, blocks are removed from the hoard until either there is suffi-
cient memory for the allocation, or the hoard is exhausted. If the hoard is exhausted and the alloca-
tion still fails, the normal “allocation operation returned null” event is raised.

There are subcommands to control this feature, as follows:

-status: Displays information about the current status of autoshrinking.

-set { on | off }: Turns the feature on and off.

-reset: Resets autoshrinking to its default values, obtained from the TVHEAP_ARGS environment
variable, the HIA configuration file, or the TotalView default values.

dheap Other Commands 109

CLI Commands

-set_threshold_kb integer | -reset_threshold_kb: Defines a size in kilobytes for the hoard such that
if autoshrinking causes the hoard to fall below this value, you are notified. This can be a useful way to
know when memory is running short. Use the reset option to return this setting to its default value.

-set_threshold_trigger integer | -reset_threshold_trigger: If you set a threshold, it can happen that
the size of the hoard starts crossing over and under the threshold size again and again, resulting in
continuous notifications. This option sets a limit to the number of notifications by decrementing the
specified number each time a notification occurs until the number reaches zero, at which time notifi-
cations stop. To start them again, use this option to set a new number. The reset option resets the
default value, which normally is 1, meaning you receive just a single notification and then no more.

-info [subcommands] [-generation x:y] [start_address [end_address]]

Displays information about the heap or regions of the heap within a range of addresses. If you do not use the
address arguments, the CLI displays information about all heap allocations.

The information that TotalView displays includes the start address, a block’s length, and other information such
as flags or attributes.

Subcommands

-[no]show_backtrace

Displays (or not) backtrace information. This list can be very long.

-[no]show_backtrace_id

Displays (or not) backtrace IDs.

-[no]show_generation_id

Displays (or not) information about generation IDs.

-[no]show_guard_settings

Displays (or not) information about guards settings.

-generation x:y

Limits the reporting to leaked heap regions with a HIA generation ID satisfying the range condition
x:y. The range condition is specified as follows:

Specifier Condition
x:y x <= id <= y
x x <= id
x: x <= id
x:0 x <= id
:y 1 <= id <= y
where id identifies the HIA generation of the heap region, and x and y are positive integers.

start_address

If you just type a start_address, the CLI reports on all allocations beginning at and following this ad-
dress. If you also type an end_address, the CLI limits the display to those allocations between the
start_address and the end_address.

dheap Other Commands 110

CLI Commands

end_address

If you also specify an end_address, the CLI reports on all allocations between start_address and
end_address. If you type 0, it’s the same as omitting this argument; that is, TotalView displays infor-
mation from the start_address to the end of the address space.

-is_dangling address
Indicates if an address that was once allocated and not yet recycled by the heap manager is now deallocated.

-leaks [subcommands]

Locates all memory blocks that your program has allocated and that are no longer referenced. That is, using this
command tells TotalView to locate all dangling memory.

If neither of the subcommands -check_interior and -no_check_interior are specified, the default behavior is
based on the TotalView variable TV::GUI::leak_check_interior_pointers, whose default value is true.

A leak report is generated as a result of the command. The report shows the total number of leaks and total
bytes leaked for the processes. It also consolidates leaks occurring at the same lines and reports the total num-
ber of leaks and total bytes leaked. Some additional statistics such as the smallest, largest and average leak size
are also displayed.

Subcommands

-check_interior

TotalView considers a memory block as being referenced if the beginning or an interior portion of the
block is referenced.

-no_check_interior

TotalView considers a memory block as being referenced only if a reference points to the beginning
of the allocated block.

-generation x:y

Limits the reporting to leaked heap regions with a HIA generation ID satisfying the range condition
x:y. The range condition is specified as follows:

Specifier Condition
x:y x <= id <= y
x x <= id
x: x <= id
x:0 x <= id
:y 1 <= id <= y
where id identifies the HIA generation of the heap region, and x and y are positive integers.

-[no]notify

Using the-notify option stops your program’s execution when TotalView detects a notifiable event, and then
prints a message (or display a dialog box if you are also using the UI) that explains what just occurred. TotalView
can notify you when heap memory errors occur or when your program deallocates or reallocates tagged blocks.

The -nonotify option does not stop execution. Even if you specify the -nonotify option, TotalView tracks heap
events.

dheap Other Commands 111

CLI Commands

-paint [subcommands]

The painting feature fills, or paints, blocks as they are allocated and deallocated. The pattern used to fill the
blocks may be specified, and different patterns may be used for allocations and deallocations.

Painting is useful in cases where it is suspected that the application is not initializing memory it acquires from the
heap manager before using it. The allocation pattern can be set to something easily recognizable, and to some-
thing that may provoke an error if the memory is used before it is initialized. For example, if the memory is being
used for floating point numbers, the pattern could be set to something that is not a legal floating point number.
Should an element in the block be used in a floating point operation without being initialized, a floating point er-
ror should be raised. Similarly, certain “use-after-free” errors can be found by using a deallocation pattern.

Subcommands

-status

Shows the current paint settings. These are either the values you set using other painting options or
their default values. This is the default behavior if -paint is entered without arguments.

-set_alloc {on | off } / -set_dealloc { on | off } / -set_zalloc { on | off }

Controls block painting. When set to on, TotalView paints a block when your program’s heap manager
allocates, deallocates, or uses a memory function that sets memory blocks to zero.

You can only paint zero-allocated blocks if you are also painting regular allocations.

The off options disable block painting.

-reset_alloc / -reset_dealloc / -reset_zalloc

Resets TotalView settings for block painting to their initial values or to values specified in a startup file.

-set_alloc_pattern pattern / -set_dealloc_pattern pattern
Sets the pattern that TotalView uses the next time it paints a block of memory. The maximum width
of pattern can differ between operating systems. However, your pattern can be shorter.

-reset_alloc_pattern / -reset_dealloc_pattern

Resets the patterns used when TotalView paints memory to the default values.

-red_zones [subcommands]

The Red Zones feature help catch bounds errors and use-after-free errors. The basic idea is that each allocation
is placed in its own page. An allocation is positioned so that if an overrun, that is, an access beyond the end of
the allocation, is to be detected, the end of allocation corresponds to the end of the page.

The page following that in which the allocation lies is also allocated, though access to this page is disabled. This
page is termed the fence. Should the application attempt to access a location beyond the end of the allocation,
that is, in the fence, the operating system sends the target a segment violation signal. This is caught by a signal
handler installed by the HIA. The HIA examines the address that caused the violation. If it lies in the fence, then
the HIA raises an overrun bounds error using the normal event mechanism.

dheap Other Commands 112

CLI Commands

If, however, the address does not lie in any region the HIA ̀ owns', then the HIA attempts to replicate what would
have happened if the HIA’s signal handler were not in place. If the application had installed a signal handler, then
this handler is called. Otherwise, the HIA attempts to perform the default action for the signal. It should be clear
from this that the HIA needs to interpose the signals API to ensure that it always remains the installed handler as
far as the operating system is concerned. At the same time, it needs to present the application with what it ex-
pects.

Underruns, or errors where the application attempts to read before the start of an allocation are handled in a
similar way. Here, though, the allocation is positioned so that its start lies at the start of the page, and fence is po-
sitioned to precede the allocation.

One complication that arises concerns overrun detection. The architecture or definition of the allocation rou-
tines may require that certain addresses conform to alignment constraints. As a consequence, there may be a
conflict between ensuring that the allocation's start address has the correct alignment, and ensuring that the al-
location ends at the end of the page.

Use-after-free errors can also be detected. In this case, when the block is deallocated, the pages are not re-
turned to the operating system. Instead, the HIA changes the state of the allocation's table entry to indicate that
it's now in the deallocated state, and then disables access to the page in which the allocation lies. This time,
should the application attempt to access the block now that it's been deallocated, a signal will be raised. Again,
the HIA examines the faulting address to see what it knows about the address, and then either raises an appro-
priate event for TV, or forwards the signal on.

The key features that distinguishes Red Zones is that it can be engaged and disengaged at will during the course
of the target's execution. The settings can be adjusted, so that new allocations have different properties from ex-
isting allocations. Red Zones can be turned on or off, so that some of the application's requests are satisfied by
the Red Zones allocator, and others by the standard heap manager. The HIA keeps track of which allocator is re-
sponsible for, or owns, each block.

Note that -rz is an alias for -red_zones.

Subcommands

-status [-all]

Shows the current HIA red zone settings. By default, dheap -red_zones displays only those settings
that can vary in the current mode, so that, for example, in overrun mode the settings for fences and
end positioning are not shown. The dheap -red_zones -status -all command causes all settings to
be shown, including those that are overridden for the current mode.

-stats [start_addr [end_addr]]

Displays statistics relating to the HIA’s Red Zones allocator for the optionally specified address range.
If no range is specified, the following statistics are shown for the entire address space:

Number of allocated blocks.

Sum of the space requests received by the Red Zones allocator for allocated blocks.

Sum of the space used for fences for allocated blocks.

dheap Other Commands 113

CLI Commands

Overall space used for allocated blocks.

The same set of statistics are also shown for deallocated blocks. In addition, the space used for each
category is shown as a percentage of the overall space used for Red Zones.

-info [start_addr [end_addr]]

Displays the Red Zone entries for allocations (and deallocations) lying in the optionally specified
range. If no range is specified, the entries for the entire address space are displayed.

-set { on | off } / -reset

Enables or disables Red Zones. The -reset option allows the HIA to determine its setting using the
usual rules.

-set_mode { overrun | underrun | unfenced | manual }

Sets the HIA in one of several Red Zone modes. When a new allocation is requested, the HIA will over-
ride the actual settings for some of the individual controls, and will instead use values that corre-
spond to that mode. The settings that are affected are: pre-fence, post-fence, and end-positioning.
The other settings, like use-after-free, exit value, and alignment, take their values from the actual set-
tings of those controls.The modes are:

overrun: The settings used are those that allow overruns to be detected. These are: no for pre-fence,
yes for post-fence, and yes for end-positioned.

underrun: The settings used are those that allow underruns to be detected. These are: yes for pre-
fence, no for post-fence, and no for end-positioned.

unfenced: The settings used are those that allow use_after_frees to be detected. These are: no for
pre-fence, no for post-fence. End-positioned is determined from the control's setting.

manual: All settings are determined from their actual values.

-set_pre_fence { on | off }

Enables or disables the pre-fence control. However, the setting is ignored unless the mode is manual.

-set_post_fence { on | off }

Enables or disables the post-fence control. However, the setting is ignored unless the mode is man-
ual.

-set_use_after_free { on | off }

Enables or disables the use_after_free control. If enabled, any subsequent allocations will be tagged
such that the allocation and its fences are retained when the block is deallocated. Access to the block
is disabled when it is deallocated to allow attempts to access the block to be detected.

-set_alignment integer
Regulates the alignment of the start address of a block issued by the Red Zones allocator. An align-
ment of 0 indicates that the default alignment for the platform should be used. An alignment of 2 en-
sures that any address returned by the Red Zones allocator is a multiple of two. In this case, if the

dheap Other Commands 114

CLI Commands

length of the block is odd, the end of the block will not line up with the end of the page containing
the allocation. An alignment of 1 is necessary for the end of the block to always correspond to the
end of the page.

-set_fence_size integer
Adjusts the fence size used by Red Zones. A fence size of 0 indicates that the default fence size of
one page should be used. If necessary, the fence size is rounded up to the next multiple of the page
size. In most cases it should not be necessary to adjust this control. One instance where it may be
useful, however, is where it is suspected that a bounds error is a consequence of a badly coded loop,
and the stride of the loop is large. In such a case, a larger fence may be helpful.

-set_end_aligned { on | off }

Controls whether the allocation is positioned at the end or the start of the containing page. The con-
trol in the HIA is always updated, though the actual value is ignored in overrun and underrun modes.

-set_exit_value integer
Adjusts the exit value used if the HIA terminates the target following detection of a Red Zones error.
Generally, the application fails if it is allowed to continue after a Red Zone error has been detected. In
order to allow some control over the application's exit code, the HIA will call exit when an error is de-
tected. The value it passes to exit as a termination code can be controlled so that if the application is
run from scripts, the cause for the termination can be determined.

-size_ranges [subcommands]

Restricts the use of Red Zones to allocations of particular sizes. With size ranges enabled, the Red
Zones allocator is used if the size of the request lies in one of the defined ranges. A value is deemed
to lie in a range if start <= size <= end.Note that -sr is an alias to -size_ranges. A range having an end
of 0 is interpreted as having no upper limit. Thus if the end is 0, the size matches the range if it is at
least as large as the start.This feature allows the HIA to enable Red Zones for specific allocation sizes.
The Red Zones allocator will be used if the size of the request lies in any one of these ranges. The HIA
does not check to see that ranges do not overlap or are otherwise consistent.The determination of
whether the Red Zones allocator should be used is made at the time of the original allocation. Thus,
once an allocator has taken ownership of a block, that allocator will be used for the remainder of the
block's life. In particular, all realloc operations will be handled by the same allocator, irrespective of
the size range settings at the time of reallocation.There are two attributes associated with each
range. The first is the “in_use” attribute. This is ignored by the HIA, and is provided for the benefit of
TotalView. The motivation here is to allow TotalView to keep a state that would otherwise be lost if the
target is detached, and then reattached to later.The second attribute is the “active” attribute. This in-
dicates if the size range is active, and therefore whether it is used by the HIA when determining
whether the Red Zones allocator should be used.

Subcommands

-set { on | off }

Enables and disables size ranges. If size ranges are disabled, but Red Zones are enabled, the Red
Zones allocator is used for all allocations.

dheap Other Commands 115

CLI Commands

-reset

Unsets the TotalView setting for the enable/disable control.

-status [-all] id_range

Shows the current settings of the size ranges. The absence of an id_range is equivalent to an
id_range of 0:0” By default, only “in_use” size ranges are displayed. To display all known ranges, spec-
ify -all. id_range must be in one of the following formats:

x:y = IDs from x to y
:y = IDs from 1 to y
x: = IDs of x and higher
x = ID is x

-set_range id size_range

Sets a size range identified by id to a particular size range. size_range must be in one of the following
formats:

x:y = allocations from x to y
:y = allocations from 1 to y
x: = allocations of x and higher
x = allocation is x

-reset_range id_range

Resets an id or range of ids. For id_range formats, see -status above.

-set_in_use { on | off } id_range

Adjusts the “in_use” attribute of all the size ranges whose IDs lie within id_range. For id_range for-
mats, see -status above.

-set_active { on | off } id_range

Adjusts the “active” attribute of all the size ranges whose ids lie within id_range. For id_range for-
mats, see -status above.

-reset_mode / -reset_pre_fence / -reset_post_fence / -reset_use_after_free / -reset_alignment / -
reset_fence_size / -reset_exit_value / -reset_end_aligned

Unsets the TotalView settings for the above controls.

-tag_alloc subcommand [start_address [end_address]]

Marks a block so that it can notify you when your program deallocates or reallocates a memory block.

When tagging memory, if you do not specify address arguments, TotalView either tags all allocated blocks or re-
moves the tag from all tagged blocks.

Subcommands

dheap Other Commands 116

CLI Commands

-[no]hoard_on_dealloc

Does not release tagged memory back to your program’s heap manager for reuse when it is deallo-
cated. This is used in conjunction with hoarding. To re-enable memory reuse, use the -
no-hoard_on_dealloc subcommand.

If you use this option, the memory tracker only hoards tagged blocks. In contrast, if you use the
dheap -hoard -set_all_deallocs on command, TotalView hoards all deallocated blocks.

-[no]notify_dealloc / -[no]notify_realloc

Enable or disable notification when your program deallocates or reallocates a memory block.

start_address

If you only specify a start_address, TotalView either tags or removes the tag from the block that con-
tains this address. The action it performs depends on the subcommand you use.

end_address
If you also specify an end_address, TotalView either tags all blocks beginning with the block contain-
ing the start_address and ending with the block containing the end_address, or removes the tag.
The action it performs depends on the subcommand you use. If end_address is 0 (zero) or you do
not specify an end_address, TotalView tags or removes the tag from all addresses beginning with
start_address to the end of the heap.

-verbosity [subcommands]

The subcommands to this option let you control how much information TotalView displays as it executes.

Subcommands

-status

Displays the current verbosity setting. This is the default if no arguments are specified.

-reset

Restores the verbosity setting to its default.

-set verbosity
Controls how much output TotalView writes to its output file. By default, this is file descriptor 1.
Higher verbosity values tell TotalView to write more information. Setting verbosity to zero (0) sup-
presses output.

-version

Displays the version number of the HIA. If it is available, the distribution number of the version of TotalView with
which the HIA was released is also shown.

Description
The dheap command controls memory debugging from the command line. For full information on memory
debugging in TotalView, see Memory Debugging in the TotalView User Guide.

Here are some of the things you can do when debugging memory problems:

dheap Other Commands 117

CLI Commands

 Use the Heap Interposition Agent () to track memory errors.

 Stop execution when a free() error occurs, and display information you need to analyze the error.

 Hoard freed memory so that it is not released to the heap manager.

 Write heap information to a file.

 Control how much information is written to displays.

 Use guard blocks. After TotalView writes guard blocks, you can run a report to see if blocks are
violated.

 Detect leaked memory by analyzing whether a memory block is reachable.

 Compare memory states. You can compare the current state against a saved state or compare two
saved states.

 Paint memory with a bit pattern when your program allocate and deallocates it.

 Receive notification when your program deallocates or reallocates a memory block.

The first step when debugging memory problems is to type the dheap -enable command. This command acti-
vates TotalView. You must do this before your program begins executing. If you try to do this after execution
starts, TotalView tells you that it will enable TotalView when you restart your program. For example:

d1.<> n
64 > int num_reds = 15;
d1.<> dheap -enable
process 1 (30100): This will only take effect on restart
You can tell TotalView to stop execution if:

 A free() problem occurs (dheap -notify)

 A block is deallocated (dheap -tag_alloc -notify_dealloc)

 A block is reallocated (dheap -tag_alloc -notify_realloc)

If you enable notification, TotalView stops the process when it detects one of these events. TotalView is always
monitoring heap events even if you turned notification off, but TotalView does not stop the program when events
occur or tell you that the events occurred.

While you can separately enable and disable notification in any group, process, or thread, you probably want to
activate notification only on the control group’s master process. Because this is the only process that TotalView
creates, it is the only process where TotalView can control TotalView’s environment variable. For example, slave
processes are normally created by an MPI starter process or as a result of using the fork() and exec() functions.
In these cases, TotalView simply attaches to them. For more information, see “Preparing Programs for Memory
Debugging”, in the TotalView User Guide.

dheap Other Commands 118

CLI Commands

If you do not use a dheap subcommand, the CLI displays memory status information. You need to use the
-status option only when you want the CLI to display status information in addition to doing something else.

The information that the dheap command displays can contain a flag containing additional information about
the memory location. The following table describes these flags:

Examples
The following example shows a scenario of finding and debugging a memory problem with dheap.
d1.<> dheap
process: Enable Notify Available
1 (18993): yes yes yes
1.1 realloc: Address does not match any allocated block.: 0xbfffd87c
d1.<> dheap -info -backtrace
process 1 (18993):
0x8049e88 -- 0x8049e98 0x10 [16]
flags: 0x0 (none)
: realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
: argz_append PC=0x401ae025 [/lib/i686/libc.so.6]
: __newlocale PC=0x4014b3c7 [/lib/i686/libc.so.6]
:
...
.../malloc_wrappers_dlopen.c]
: main PC=0x080487c4 [../realloc_prob.c]
: __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
: _start PC=0x08048621 [/.../realloc_prob]

0x8049f18 -- 0x8049f3a 0x22 [34]
flags: 0x0 (none)
: realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
: main PC=0x0804883e [../realloc_prob.c]
: __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
: _start PC=0x08048621 [/.../realloc_prob]

Flag Value Meaning

0x0001 Operation in progress

0x0002 notify_dealloc: you will be notified if the block is deallocated

0x0004 notify_realloc: you will be notified if the block is reallocated

0x0008 paint_on_dealloc: TotalView will paint the block when it is deallocated

0x0010 dont_free_on_dealloc: TotalView will not free the tagged block when it is deallocated

0x0020 hoarded: TotalView is hoarding the block

dheap Other Commands 119

CLI Commands

Here is an example of a reported free error:
d1.<> dheap
process: Enable Notify Available
1 (30420): yes yes yes
1.1 free: Address is not the start of any allocated block.:
free: existing allocated block:
free: start=0x08049b00 length=(17 [0x11])
free: flags: 0x0 (none)
free: malloc PC=0x40021739 [/.../malloc_wrappers_dlopen.c]
free: main PC=0x0804871b [../free_prob.c]
free: __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
free: _start PC=0x080485e1 [/.../free_prob]
free: address passed to heap manager: 0x08049b08

dhistory Other Commands 120

CLI Commands

dhistory Performs actions upon ReplayEngine

Format
Enable or disable recording mode

dhistory { -enable | -disable }

Get information about the current state of Replay
dhistory -info

Create a bookmark so you can return to a point in the execution history. The command returns an ID for refer-
encing the bookmark.

dhistory { -create_bookmark [comment]|-cb [comment] }

Go to a bookmark
dhistory { -goto_bookmark ID | -gb ID }

Return to the live execution point, that is, the end of the current recording, and continue recording
dhistory -go_live

List the bookmarks currently set, with IDs and comments
dhistory { -show_bookmarks | -sb }

Remove a bookmark, or all bookmarks
dhistory { { -delete_bookmark ID | -db ID }| -clear_bookmarks }

Save a recording file
dhistory -save [recording-file]

Deprecated arguments for setting and going to a bookmark (use the new ‘bookmark’ arguments)
dhistory { -get_time | -go_time time }

Arguments
-enable

Enables Replay immediately. Once replay is enabled and recording has started, it cannot be disabled until re-
start.

-disable

Disables Replay for next restart. Once enabled, replay cannot be disabled for a live process.

-info

Displays ReplayEngine information including the current time, the live time, and whether the process is in Replay
or Record mode. If you enter dhistory without arguments, -info is the default.

dhistory Other Commands 121

CLI Commands

-create_bookmark comment
Creates a Replay bookmark at the current execution location so you can return to it later. You can specify an op-
tional comment to this command and it will be stored with the bookmark for display when you use the
show_bookmarks command. A bookmark is created with a unique numeric ID, which is the return value.

-goto_bookmark ID
Goes to the bookmark with the specified ID. This returns the focus process to the execution location where the
bookmark was first created.

-go_live

Returns the process to the PC and back into Record mode. You can resume your “regular” debugging session.

-show_bookmarks

Displays all Replay bookmarks. This command shows the bookmark ID along with information about what line
number, PC and function the bookmark is on. If you added a comment to help you remember the significance of
the bookmark, it displays this as well.

-delete_bookmark ID
Deletes the bookmark with the given ID.

-clear_bookmarks

Deletes all Replay bookmarks.

-save recording-file
Saves the current replay history to a file. There is an optional argument to specify the name of the file to save to.
The file specification can be a path or a simple file name, in which case it is saved in the current working direc-
tory. If no file is specified, the recording is saved in the current working directory with the file name
replay_pid_hostname.recording.

To reload the recording file, use one of the following commands based on the functionality for loading core files.
TotalView recognizes the recording file for what it is and acts appropriately.

To reload a recording at startup:

totalview executable recording-file
To reload a recording file when TotalView is running:

dattach filename -c recording-file
The recording-file argument can be either a path or a simple file name, in which case the current working di-
rectory is assumed.

-get_time — deprecated: use create_bookmark

Returns an integer value representing the program execution location at the current time. The integer value is a
virtual timestamp. This virtual timestamp does not refer to the exact point in time; it has a granularity that is typ-
ically a few lines of code.

dhistory Other Commands 122

CLI Commands

-go_time time — deprecated: use goto_bookmark

Places the process back to the virtual time specified by the time integer argument. The time argument is a virtual
timestamp as reported by dhistory -get_time. You cannot use this command to move to a specific instruction
but you can use it to get to within a small block of code (usually within a few lines of your intended point in exe-
cution history). This command is typically used either for roughly bookmarking a point in code or for searching
execution history. It may need to be combined with stepping and duntilcommands to return to an exact posi-
tion.

Description
The dhistory command displays information about the current process either by default or when using the -
infoargument. In addition, options to this command can obtain a debugging time, which can be stored in a vari-
able to go back to a particular time.

In addition, you can enable and display ReplayEngine as well as put it back into regular debugging mode using
the-go_live option. You’ll need to do this after your program is placed into replay mode. This occurs whenever
you use any GUI or CLI command that moves to replay mode. For example, in the CLI, this can occur when you
execute such commands as dnext or dout.

Command alias

Examples
dhistory [-info]

Typing dhistory with no arguments or with the -info argument displays the following information:
History info for process 1
Live time: 421 0x80485d6
Current time: 421 0x80485d6
Live PC: 0x80485d6
Record Mode: True
Replay Wanted: True
Stop Reason: Normal result [waitpid, search, or goto_time
Temp directory: /tmp/replay_jsm_local/replay_session_pZikY9
Event log mode: circular
Event log size: 268435456
replay -create_bookmark “This is where the crash occurs”
3

Creates a bookmark at the current execution location and returns an ID. The comment appears in the list of
bookmarks displayed with -show_bookmarks (see below). Note the use of the replay alias for this com-
mand, which might be easier to remember than dhistory.

replay -show_bookmarks

Alias Definition Description

replay dhistory Performs actions upon ReplayEngine.

dhistory Other Commands 123

CLI Commands

Displays a list of the currently defined bookmarks:
bookmark: 1: pc: 0x004005df, function: main, line: 59, comment:
bookmark: 2: pc: 0x004006b6, function: main, line: 69, comment:
bookmark: 3: pc: 0x004006fb, function: main, line: 75, comment: This is where the
crash occurs
replay -delete_bookmark 2
deleted bookmark: 2

Deletes the bookmark with the given ID, and returns a confirmation of the deleted bookmark.

dhold Other Commands 124

CLI Commands

dhold Holds threads or processes

Format
Holds processes

dhold -process

Holds threads
dhold -thread

Arguments
-process

Holds processes in the current focus. Can be abbreviated to -p.

-thread

Holds threads in the current focus. Can be abbreviated to -t.

Description
The dhold command holds the threads or processes in the current focus. With "-thread", the threads in the
thread of interest (TOI) are held. With "-process", the processes in the focus set are held.

NOTE: You cannot hold system manager threads. In all cases, holding threads that aren’t part of your
program always involves some risk.

Command alias

Examples
f W HT

Holds all worker threads in the focus group.
f s HP

Holds all processes in the share group.
f $mygroup/ HP

Alias Definition Description

hp {dhold -process} Holds the focus process

HP {f g dhold -process} Holds all processes in the focus group

ht {f t dhold -thread} Holds the focus thread

HT {f g dhold -thread} Holds all threads in the focus group

htp {f p dhold -thread} Holds all threads in the focus process

dhold Other Commands 125

CLI Commands

Holds all processes in the group identified by the contents of mygroup.

RELATED TOPICS

Holding and Releasing Processes and Threads in the Classic TotalView User Guide

dunholdCommand

dkill Other Commands 126

CLI Commands

dkill Terminates execution of processes

Format
dkill [-remove]

Arguments
-remove

Removes all knowledge of the process from its internal tables. If you are using TotalView Team, this frees a token
so that you can reuse it.

Description
The dkill command terminates all processes in the current focus.

Because the executables associated with the defined processes are still loaded, using the drun command
restarts the processes.

The dkillcommand alters program state by terminating all processes in the affected set. In addition, TotalView
destroys any spawned processes when the process that created them is killed. The drun command can restart
only the initial process.

If you do not indicate a focus, the default focus is the process of interest (POI). If, however, you kill the primary
process for a control group, all of the slave processes are killed.

Command alias

Examples
dkill

Terminates all threads belonging to processes in the current focus.
dfocus {p1 p3} dkill

Terminates all threads belonging to processes 1 and 3.

RELATED TOPICS

Starting Your Program in the TotalView User Guide

Restarting and Deleting Programs in the Classic TotalView User Guide

Alias Definition Description

k dkill Terminates a process’s execution

dlappend Other Commands 127

CLI Commands

dlappend Appends list elements to a TotalView variable

Format
dlappend variable-name value [...]

Arguments
variable-name

The variable to which values are appended.

value
The values to append.

Description
The dlappend command appends list elements to a TotalView variable. This command performs the same func-
tion as the Tcl lappend command, differing in that dlappend does not create a new debugger variable. That is,
the following Tcl command creates a variable named foo:
lappend foo 1 3 5

In contrast, the CLI command displays an error message:
dlappend foo 1 3 5

Examples
dlappend TV::process_load_callbacks my_load_callback

Adds the my_load_callback function to the list of functions in the TV::process_load_callbacks variable.

RELATED TOPICS

dset Command

dlist Other Commands 128

CLI Commands

dlist Displays source code lines

Format
Displays source code relative to the current list location

dlist [-n num-lines]

Displays source code relative to a named place
dlist breakpoint-expr [-n num-lines]

Displays source code relative to the current execution location
dlist -e [-n num-lines]

Arguments
-n num-lines

Displays this number of lines rather than the default number. (The default is the value of the MAX_LIST variable.)
If num-lines is negative, the CLI displays lines before the current location, and additional dlist commands show
preceding lines in the file rather than following lines.

This option also sets the value of the MAX_LIST variable to num-lines.

breakpoint-expr
The location at which the CLI begins displaying information. In most cases, specify this location as a line number
or as a string that contains a file name, function name, and line number, each separated by # characters; for ex-
ample: file#func#line.

For more information, see “Qualifying Symbol Names” in the Classic TotalView User Guide.) The CLI creates de-
faults if you omit parts of this specification.

If you enter a different file, it is used for future display. This means that if you want to display information relative
to the current thread’s execution point, use the -e option to dlist.

If the breakpoint expression evaluates to more than one location, TotalView chooses one.

For other ways to enter these expressions, see Breakpoint Expressions on page 48. If you name more than
one address, TotalView picks one.

-e

Sets the display location to include the current execution point of the thread of interest (TOI). If you use dup and
ddown commands to select a buried stack frame, this location includes the PC (program counter) for that stack
frame.

Description
The dlist command displays source code lines relative to a source code location, called the list location. The CLI
prints this information; it is not returned. If you do not specify source-loc or -e, the command continues where
the previous list command stopped. To display the thread’s execution point, use the dlist -e command.

dlist Other Commands 129

CLI Commands

If you enter a file or procedure name, the listing begins at the file or procedure’s first line.

The default focus for this command is thread level. If your focus is at process level, TotalView acts on each thread
in the process.

The first time you use the dlist command after you focus on a different thread—or after the focus thread runs
and stops again—the location changes to include the current execution point of the new focus thread.

Tabs in the source file are expanded as blanks in the output. The TAB_WIDTH variable controls the tab stop width,
which defaults to 8. If TAB_WIDTH is set to -1, no tab processing is performed, and the CLI displays tabs using
their ASCII value.

All lines appear with a line number and the source text for the line. The following symbols are also used:

@

An action point is set at this line.

>

The PC for the current stack frame is at the indicated line and this is the leaf frame.

=

The PC for the current stack frame is at the indicated line and this is a buried frame; this frame has called an-
other function so that this frame is not the active frame.

These correspond to the marks shown in the backtrace displayed by the dwhere command that indicates the
selected frame.

Here are some general rules:

 The initial display location is main().

 The CLI sets the display location to the current execution location when the focus is on a different
thread.

If the source-loc argument is not fully qualified, the CLI looks for it in the directories named in the
 CLI EXECUTABLE_PATH variable.

Command alias

Examples
The following examples assume that the MAX_LIST variables equals 20, which is its initial value.

Alias Definition Description

l dlist Displays lines

dlist Other Commands 130

CLI Commands

dlist
Displays 20 lines of source code, beginning at the current list location. The list location is incremented by 20
when the command completes.

dlist 10
Displays 20 lines, starting with line 10 of the file that corresponds to the current list location. Because this uses
an explicit value, the CLI ignores the previous command. The list location is changed to line 30.

dlist -n 10
Displays 10 lines, starting with the current list location. The value of the list location is incremented by 10.

dlist -n -50
Displays source code preceding the current list location; shows 50 lines, ending with the current source code
location. The list location is decremented by 50.

dlist do_it
Displays 20 lines in procedure do_it. Changes the list location to be the 20th line of the procedure.

dfocus 2.< dlist do_it
Displays 20 lines in the do_it routine associated with process 2. If the current source file is named foo, you can
also specify this as dlist foo#do_it, naming the executable for process 2.

dlist -e
Displays 20 lines starting 10 lines above the current execution location.

f 1.2 l -e
Lists the lines around the current execution location of thread 2 in process 1.

dfocus 1.2 dlist -e -n 10
Produces essentially the same listing as the previous example, differing in that it displays 10 lines.

dlist do_it.f#80 -n 10
Displays 10 lines, starting with line 80 in file do_it.f. Updates the list location to line 90.

dload Other Commands 131

CLI Commands

dload Loads debugging information

Format
dload [-g gid] [-r hname]
[{ -np | -procs | -tasks } num]
[-nodes num]
[-replay | -no_replay]
[-mpi starter]
[-starter_args argument]
[-env variable=value] ...
[-e executable]
[-parallel_attach_subset subset_specification]
[-list_reverse_connect]
[-reject_reverse_connect [ID | all]]
[-accept_reverse_connect [ID]]

Arguments
-g gid

Sets the control group for the process being added to the group ID specified by gid. This group must already ex-
ist. (The CLI GROUPS variable contains a list of all groups.)

{ -np | -procs | -tasks } num
Indicates the number of processes or tasks that the starter program creates.

-nodes num
Indicates the number of nodes upon which your program will execute.

-replay | -no_replay

These options enable and disable the ReplayEngine the next time the program is restarted. To enable, the fea-
ture must be supported and licensed on the current platform.

-starter_args argument
Indicates additional arguments to be passed to the starter program.

-env variable=value
Sets a variable that is added to the program’s environment.

Adds, changes, or removes an environment variable in the target process. A target process inherits its environ-
ment from its parent process, but this option allows you to modify the environment passed to target processes
created by the debugger. If the variable does not exist in the inherited environment, it is inserted with the given
value. If the variable already exists in the inherited environment, it is replaced with the given value. In either
case, value can be an empty string. If the string contains no equal sign, then variable is removed from the in-
herited environment.

Multiple -env options may be specified.

dload Other Commands 132

CLI Commands

-e

Indicates that the next argument is an executable file name. You need to use -e if the executable name begins
with a dash (-) or consists of only numeric characters. Otherwise, just provide the executable file name.

executable
A fully or partially qualified file name for the file corresponding to the program.

-parallel_attach_subset subset_specification
Defines a list of MPI ranks to attach to when an MPI job is created or attached to. The list is space-separated;
each element can have one of three forms:

rank: specifies that rank only

rank1-rank2: specifies all ranks between rank1 and rank2, inclusive

rank1-rank2:stride: specifies every strideth rank between rank1 and rank2

A rank must be either a positive decimal integer or max (the last rank in the MPI job).

A subset_specification that is the empty string ("") is equivalent to 0-max.

For example:
dload -parallel_attach_subset {1 2 4-6 7-max:2} mpirun

will attach to ranks 1, 2, 4, 5, 6, 7, 9, 11, 13,...

-list_reverse_connect

Lists all the available reverse connect requests that are found. Each request is preceded by the reverse connect
ID.

-reject_reverse_connect [ID | all]

Rejects a reverse connection.

If an ID is specified, then that specific request is rejected. The waiting back end initiating the request will be ter-
minated. If "all" is specified, then all requests found will be rejected. If no ID is specified, the first request seen will
be rejected.

-accept_reverse_connect [ID]

Accepts a reverse connection.

If an ID is specified, then that specific request is accepted. If no ID is specified, the first request seen will be ac-
cepted.

Description
The dload command creates a new TotalView process object for the executable file and returns its TotalView ID.

NOTE: Your license may limit the number of processes that you can run at the same time. For specif-
ics regarding your license, see the TotalView Installation and Licensing Guide.

dload Other Commands 133

CLI Commands

Command alias

Examples
dload do_this

Loads the debugging information for the do_this executable into the CLI. After this command completes, the
process does not yet exist and no address space or memory is allocated to it.

dload -mpi POE -starter_args "hfile=~/my_hosts" \
-np 2 -nodes

Loads an MPI job using the POE configuration. Two processes will be used across nodes. The hfiles starter
argument is used.

lo -g 3 -r other_computer do_this
Loads the debugging information for the do_this executable that is executing on the other_computer
machine into the CLI. This process is placed into group 3.

f g3 lo -r other_computer do_this
Does not do what you would expect it to do because the dload command ignores the focus command.
Instead, this does exactly the same thing as the previous example.

dload -g $CGROUP(2) -r slowhost foo
Loads another process based on image foo on machine slowhost. The CLI places this process in the same
group as process 2.

dload -env DISPLAY=aurora:0.0
-env STARTER=~/starter myprog

Sets up two environment variables $DISPLAY and $STARTER for the program myprog and loads myprog's
debugging information.

RELATED TOPICS

Loading Executables in the TotalView User Guide

dattach Command

drun Command

Alias Definition Description

lo dload Loads debugging information

lo -list_rc dload -list_reverse_connect Lists any reverse connection requests found

lo -reject_rc dload -reject_reverse_connect Reject either all or one reverse connection requests

dload -accept_rc dload -accept_reverse_connect Accept either all or one reverse connection requests

dmstat Other Commands 134

CLI Commands

dmstat Displays memory use information

Format
dmstat

Arguments
This command has no arguments

Description
The dmstat command displays information on your program’s memory use, returning information in three parts:

 Memory usage summary: The minimum and maximum amounts of memory used by the text and
data segments, the heap, and the stack, as well as the virtual memory stack usage and the virtual
memory size.

 Individual process statistics: The amount of memory that each process is currently using.

 Image information: The name of the image, the image’s text size, the image’s data size, and the
set of processes using the image.

The following table describes the displayed columns:

Column Description

text The amount of memory used to store your program’s machine code instructions. The text
segment is sometimes called the code segment.

data The amount of memory used to store initialized and uninitialized data.

heap The amount of memory currently used for data created at run time; for example, calls to
the malloc() function allocate space on the heap while the free() function releases it.

stack The amount of memory used by the currently executing routine and all the routines in its
backtrace. If this is a multithreaded process, TotalView shows only information for the main
thread’s stack. Note that the stacks of other threads might not change over time on some
architectures. On some systems, the space allocated for a thread is considered part of the
heap. For example, if your main routine invokes function foo(), the stack contains two
groups of information—these groups are called frames. The first frame contains the infor-
mation required for the execution of your main routine, and the second, which is the
current frame, contains the information needed by the foo() function. If foo() invokes the
bar() function, the stack contains three frames. When foo() finishes executing, the stack
contains only one frame.

dmstat Other Commands 135

CLI Commands

Examples
dmstat
dmstat is sensitive to the focus. Note this four-process program:
process: text data heap stack [stack_vm] vm_size
1 (9271): 1128.54K 16.15M 9976 10432 [16384]
image information:
image_name text data dpids
....ry/forked_mem_exampleLINUX 2524 16778479 1
/lib/i686/libpthread.so.0 32172 27948 1
/lib/i686/libc.so.6 1050688 122338 1
/lib/ld-linux.so.2 70240 10813 1

dfocus a dmstat
The CLI prints the following for a four-process program:
process: text data heap stack [stack_vm] vm_size
1 (9979): 1128.54K 16.15M 14072 273168 [278528] 17.69M
5 (9982): 1128.54K 16.15M 9976 10944 [16384] 17.44M
6 (9983): 1128.54K 16.15M 9976 10944 [16384] 17.44M
7 (9984): 1128.54K 16.15M 9976 10944 [16384] 17.44M
maximum:
1 (9979): 1128.54K 16.15M 14072 273168 [278528] 17.69M
minimum
5 (9982): 1128.54K 16.15M 9976 10944 [16384] 17.44M
image information:
image_name text data dpids
....ry/forked_mem_exampleLINUX 2524 16778479 1 5 6 7
/lib/i686/libpthread.so.0 32172 27948 1 5 6 7
/lib/i686/libc.so.6 1050688 122338 1 5 6 7

 /lib/ld-linux.so.2 70240 10813 1 5 6 7

stack_vm The logical size of the stack is the difference between the current value of the stack pointer
and the address from which the stack originally grew. This value can differ from the size of
the virtual memory mapping in which the stack resides. For example, the mapping can be
larger than the logical size of the stack if the process previously had a deeper nesting of
procedure calls or made memory allocations on the stack, or it can be smaller if the stack
pointer has advanced but the intermediate memory has not been touched. The stack_vm
value is this size difference.

vm_size The sum of the sizes of the mappings in the process’s address space.

Column Description

dmstat Other Commands 136

CLI Commands

RELATED TOPICS

For information on memory debugging, see Memory Debugging in the TotalView User Guide.

dnext Other Commands 137

CLI Commands

dnext Steps source lines, stepping over subroutines

Format
dnext [-back][num-steps]

Arguments
-back

(ReplayEngine only) Steps to the previous source line, stepping over subroutines. This option can be abbreviated
to -b.

num-steps
An integer greater than 0, indicating the number of source lines to be executed.

Description
The dnext command executes source lines; that is, it advances the program by steps (source line statements).
However, if a statement in a source line invokes a routine, the dnext command executes the routine as if it were
one statement; that is, it steps over the call.

The optional num-steps argument defines how many dnext operations to perform. If you do not specify num-
steps, the default is 1.

The dnext command iterates over the arenas in its focus set, performing a thread-level, process-level, or group-
level step in each arena, depending on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page 185.

dnext Other Commands 138

CLI Commands

Command alias

Examples
dnext

Steps one source line.
n 10

Steps ten source lines.
N

Steps one source line. It also runs all other processes in the group that are in the same lockstep group to the
same line.

f t n
Steps the thread one statement.

dfocus 3. dnext
Steps process 3 one step.

Alias Definition Description

n dnext Runs the thread of interest (TOI) one statement, while allowing other threads
in the process to run.

N {dfocus g dnext} A group stepping command. This searches for threads in the share group
that are at the same PC as the TOI, and steps one such aligned thread in
each member one statement. The rest of the control group runs freely.

nl {dfocus L dnext} Steps the process threads in lockstep. This steps the TOI one statement and
runs all threads in the process that are at the same PC as the TOI to the
same statement. Other threads in the process run freely. The group of
threads that is at the same PC is called the lockstep group.This alias does
not force process width. If the default focus is set to group, this steps the
group.

NL {dfocus gL dnext} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one statement. Other threads in
the control group run freely.

nw {dfocus W dnext} Steps worker threads in the process. This steps the TOI one statement, and
runs all worker threads in the process to the same (goal) statement. The
nonworker threads in the process run freely. This alias does not force pro-
cess width. If the default focus is set to group, this steps the group.

NW {dfocus gW dnext} Steps worker threads in the group. This steps the TOI one statement, and
runs all worker threads in the same share group to the same statement. All
other threads in the control group run freely.

dnext Other Commands 139

CLI Commands

RELATED TOPICS

Debugging Using Group Width in the TotalView User Guide

Debugging Using Process Width in the TotalView User Guide

Debugging Using Thread Width in the TotalView User Guide

dnexti Command

dstep Command

dfocus Command

dnexti Other Commands 140

CLI Commands

dnexti Steps machine instructions, stepping over subroutines

Format
dnexti [-back][num-steps]

Arguments
-back

(ReplayEngine only) Steps a machine instruction back to the previous instruction, stepping over subroutines.
This option can be abbreviated to -b.

num-steps
An integer greater than 0, indicating the number of instructions to be executed.

Description
The dnexti command executes machine-level instructions; that is, it advances the program by a single instruc-
tion. However, if the instruction invokes a subfunction, the dnexticommand executes the subfunction as if it were
one instruction; that is, it steps over the call. This command steps the thread of interest (TOI) while allowing other
threads in the process to run.

The optional num-steps argument defines how many dnexti operations to perform. If you do not specify num-
steps, the default is 1.

The dnexti command iterates over the arenas in the focus set, performing a thread-level, process-level, or group-
level step in each arena, depending on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page 185.

dnexti Other Commands 141

CLI Commands

Command alias

Examples
dnexti

Steps one machine-level instruction.
ni 10

Steps ten machine-level instructions.
NI

Steps one instruction and runs all other processes in the group that were executing at that instruction to the
next instruction.

f t n
Steps the thread one machine-level instruction.

dfocus 3. dnexti

Alias Definition Description

ni dnexti Runs the TOI one instruction while allowing other threads in the process to
run.

NI {dfocus g dnexti} A group stepping command. This searches for threads in the share group
that are at the same PC as the TOI, and steps one such aligned thread in
each member one instruction. The rest of the control group runs freely.

nil {dfocus L dnexti} Steps the process threads in lockstep. This steps the TOI one instruction,
and runs all threads in the process that are at the same PC as the TOI to
the same statement. Other threads in the process run freely. The group of
threads that is at the same PC is called the lockstep group.This alias does
not force process width. If the default focus is set to group, this steps the
group.

NIL {dfocus gL dnexti} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one instruction. Other threads in
the control group run freely.

niw {dfocus W dnexti} Steps worker threads in the process. This steps the TOI one instruction,
and runs all worker threads in the process to the same (goal) statement.
The nonworker threads in the process run freely. This alias does not force
process width. If the default focus is set to group, this steps the group.

NIW {dfocus gW dnexti} Steps worker threads in the group. This steps the TOI one instruction, and
runs all worker threads in the same share group to the same statement. All
other threads in the control group run freely.

dnexti Other Commands 142

CLI Commands

Steps process 3 one machine-level instruction.

RELATED TOPICS

Debugging Using Group Width in the TotalView User Guide

Debugging Using Process Width in the TotalView User Guide

Debugging Using Thread Width in the TotalView User Guide

dnexti Command

dstep Command

dfocus Command

domp Other Commands 143

CLI Commands

domp Displays OpenMP information using the OMPD API

Format
domp [-parallel_regions] [-task_regions] [-control_vars] [-ompd] [-threads {-regions | -functions | -
stack}][-send_symbols]

Arguments
-parallel_regions

Displays information about the parallel regions in the focus, including how the regions are nested. This com-
mand uses the standard ptset notation to identify which threads are in which regions. TotalView attempts to
find the source location of each region shown in the aggregated display.
Default focus: thread

-task_regions

Displays information about the task regions in the focus, including how the regions are nested. This command
uses the standard ptset notation to identify which threads are in which regions. TotalView attempts to find the
source location of each region shown in the aggregated display.
Default focus: thread

-control_vars

Displays the settings of the OpenMP display control variables.
Default focus: process

-ompd

Displays information about the OMPD plugin support library being used by TotalView for each process in the fo-
cus:

Default focus: process

Table 1: Information displayed by domp -ompd

Entry Description

API Version The version of the OMPD API supported by the DLL, which is returned by omp-
d_get_api_version(). For OMPD v5.0, that value is 201811.

DLL Version The string returned by ompd_get_version_string()
DLL Name The location of the OMPD DLL loaded by TotalView to handle that process. A specific

DLL is loaded once into TotalView and then used for as many processes that specify
it via the ompd_dll_locations variable in the process.

domp Other Commands 144

CLI Commands

-threads

Displays thread-centric information about the threads in the focus, including:

The domp -threads command also has these sub-options:

-regions

Lists the thread's nest of parallel and task regions.

-functions

Reports the source location of the code corresponding to the regions. The name of the function, its
line number, and the file are displayed.

-stack

Reports the stack addresses corresponding to where: 1) control exited the OpenMP runtime to exe-
cute the task user code; and 2) control reentered the runtime from the user task code. The exit ad-
dress is 0 for the root region, and for a leaf, the reentry address is 0.

Default focus: thread

-send_symbols

Sends the OMPD symbols to the TotalView tracers. These symbols are referenced by the OMPD library and their
addresses are resolved by the tracers.

Table 2: Properties displayed by domp -threads

The TotalView ID for this thread

The operating system id for this thread

The OpenMP thread number within its team, i.e., the value returned to the thread by
omp_get_thread_num()
The OpenMP state for this thread

OpenMP flags:

i: The task is an implicit task. No corresponding routine in the OpenMP
runtime reports this information.
p: The thread is in an active parallel region. This corresponds to the om-
p_in_parallel() predicate in the OpenMP runtime.
f : The task is a final task. This corresponds to the omp_in_final() in
the OpenMP runtime.

When true, the flag is displayed by just its letter. If false, a hyphen (“-”) displays. If the flag
could not be fetched, a “?” is displayed.

For example, a value of ip- identifies a thread as implicit, in an active parallel region, and
reports that it’s not the final task, while -pf identifies a thread as explicit, in a parallel
region, and the final task.

domp Other Commands 145

CLI Commands

Classic UI only: For the Classic UI and the CLI only, explicitly sending the OMPD symbols to the tracers for each
address space (process or CUDA context) by invoking domp -send_symbols is required. For the new UI, the To-
talView client broadcasts the symbols required by the OMPD library to the tracers, allowing symbol lookup with-
out requiring the access or storage of full symbol information in the servers.
Default focus: process

Description
The domp command displays OpenMP information in an OpenMP program. The information displayed here is
used to populate the OpenMP view in the new UI.

Command alias

Examples
d1.<> domp -threads

Displays detail about the thread in focus. The “i” flag indicates that this thread is performing an implicit task,
while “p” reports that this thread is in an active parallel region, while “-” means it is not the final task. The state
“work_parallel” is an OMPD runtime flag indicating that the thread is executing code within the scope of a par-
allel region.

Output:

1 (216921): 1 OpenMP thread
tv_id os_thread_id thread_num state flags
==
 1 0x7f9679894740 0 work_parallel ip-

d1.<> dfocus p1 domp -tr
First, changes the focus to the entire process, then calls domp -tr to display the nest of task regions for all the
threads in process p1.

Here, the program has a single process with eight threads and an overall task region identified by the compiler-
created outlined function omp_outlined..13, also identified by its line in the code (#91). This region in turn
contains a single nested region omp_outlined..6 which itself has two nested regions, one of which contains
a task, omp_task_entry.

Alias Definition Description

-pr {domp -parallel_regions} Displays detail on the parallel regions in focus

-tr {domp -task_regions} Displays detail on the task regions in focus

-cv {domp -control_vars} Displays the OpenMP display control variables settings

-ss {domp -send_symbols} Sends symbols to the TotalView tracers

domp Other Commands 146

CLI Commands

Output:
 +- / 1:8[p1.1-8]
 +- omp_outlined..13 [/tests/openmp#91] 1:8[p1.1-8]
 +- omp_outlined..6 [/tests/openmp#55] 1:8[p1.1-8]
 +- omp_outlined. [/tests/openmp#29] 1:2[p1.1, p1.5]
 +- omp_outlined..3 [/tests/openmp#38] 1:6[p1.2-4, p1.6-8]
 +- omp_task_entry. [/tests/openmp#42] 1:6[p1.2-4, p1.6-8]

d1.<> domp -threads -regions
Displays the nest of parallel and task regions for the thread in focus.

Output:

1 (216921): 1 OpenMP thread
tv_id os_thread_id thread_num state flags
==
 1 0x7f9679894740 0 work_parallel ip-
 1 ip-
 2 i--
 3 i--

To show all the threads for the process, enter: dfocus p domp -threads -regions.

RELATED TOPICS

Debugging OpenMP Applications in the TotalView User Guide

dout Other Commands 147

CLI Commands

dout Executes until just after the place that called the current routine

Format
dout [-back] [frame-count]

Arguments
-back

(ReplayEngine only) Returns to the function call that placed the PC into the current routine. This option can be
abbreviated to -b.

frame-count
An integer that specifies that the thread returns out of this many levels of subroutine calls. Without this number,
the thread returns from the current level.

Description
The dout command runs a thread until it returns from either of the following:

 The current subroutine

 One or more nested subroutines

When you specify process width, TotalView allows all threads in the process that are not running to this goal to
run free. (Specifying process width is the default.)

dout Other Commands 148

CLI Commands

Command alias

For additional information on the different kinds of stepping, see the dstep on page 185command information.

Examples
f t ou

Runs the current TOI out of the current -subroutine.
f p dout 3

Unwinds the process in the current focus out of the current subroutine to the routine three levels above it in
the call stack.

Alias Definition Description

ou dout Runs the thread of interest (TOI) out of the current function, while allow-
ing other threads in the process to run.

OU {dfocus g dout} Searches for threads in the share group that are at the same PC as the
TOI, and runs one such aligned thread in each member out of the cur-
rent function. The rest of the control group runs freely. This is a group
stepping command.

oul {dfocus L dout} Runs the process threads in lockstep. This runs the TOI out of the cur-
rent function, and also runs all threads in the process that are at the
same PC as the TOI out of the current function. Other threads in the
process run freely. The group of threads that is at the same PC is called
the lockstep group.This alias does not force process width. If the default
focus is set to group, this steps the group.

OUL {dfocus gL dout} Runs lockstep threads in the group. This runs all threads in the share
group that are at the same PC as the TOI out of the current function.
Other threads in the control group run freely.

ouw {dfocus W dout} Runs worker threads in the process. This runs the TOI out of the current
function and runs all worker threads in the process to the same (goal)
statement. The nonworker threads in the process run freely. This alias
does not force process width. If the default focus is set to group, this
steps the group.

OUW {dfocus gW dout} Runs worker threads in the group. This runs the TOI out of the current
function and also runs all worker threads in the same share group out
of the current function. All other threads in the control group run freely.

dout Other Commands 149

CLI Commands

RELATED TOPICS

Executing Out of a Function in the “Stepping through and Executing your Program” chapter of the
Classic TotalView User Guide

dprint Other Commands 150

CLI Commands

dprint Evaluates and displays information

Format
Prints the value of a variable or expression.

dprint [-wait | -nowait] [-group_by] [-slice “slice_expr”] [-timeout seconds] [-stats [-data]]
{ variable | expression }

Arguments
-wait

The default. TotalView waits until the expression is evaluated across the current focus, prints the values, and only
then prompts for more interactive commands.

-nowait

Evaluates expressions (i.e., those that call functions in the target process) in the background. Use TV::expr to
obtain the results, as they are not displayed.

-group_by

Aggregates data across a group rather than showing each individual process or thread's data value. The
variable's value will be displayed with the ptlist (a compressed syntax for the process and thread list) alongside.

See Compressed List Syntax (ptlist)for a description of a ptlist.

-slice “slice_expr”

Defines an array slice—that is, a portion of the array—to print. If the programming language is C or C++, use a
backslash (\) when you enter the array subscripts. For example, "\[100:110\]".

-timeout seconds
Times out after the given number of seconds and returns an error if printing is not finished. If timeout is 0,
dprint runs until it has completed, is interrupted, or encounters an error.

-stats

Displays statistical data about an array. When using this switch, the expression provided to dprint must resolve
to an array. The -slice switch may be used with -stats to select a subset of values from the array to calculate sta-
tistics on.

-data

Returns the results of dprint-stats as data in the form of a Tcl nested associative array rather than as output to
the console. See the description section for the structure of the array.

Note: This switch can be used only in conjunction with the -stats switch.

variable
A variable whose value is displayed. The variable can be local to the current stack frame or it can be global. If the
displayed variable is an array, you can qualify the variable’s name with a slice that displays a portion of the array.

dprint Other Commands 151

CLI Commands

expression
A source-language expression to evaluate and print. Because expression must also conform to Tcl syntax, you
must enclose it within quotation marks it if it includes any blanks, and in braces ({}) if it includes brackets ([]), dol-
lar signs ($), quotation marks ("), or other Tcl special characters.

Description
The dprint command evaluates and displays a variable or an expression. The CLI interprets the expression by
looking up the values associated with each symbol and applying the operators. The result of an expression can be
a scalar value or an aggregate (array, array slice, or structure).

For the option -wait, which is the default, if an event such as a $stop, SEGV, or breakpoint occurs, the dprint
command throws an exception that describes the event. The first exception subcode returned by TV::errorCodes
is the susp-eval-id (a suspension-evaluation-ID). You can use this to manipulate suspended evaluations with the
dflushand TV::expr -commands. For example:
dfocus tdpid.dtid TV::expr get susp-eval-id

NOTE: If the expression calls a function, the focus must not specify more than one thread for each
process.

For the -nowait option, TotalView evaluates the expression in the background. It also returns a susp-eval-id that
you can use to obtain the results of the evaluation using TV::expr.

For the -slice option, TotalView uses the argument after -slice to select the values from the array to be printed,
similar to the Slice field in the Data window. If the last argument does not result in an array value, the -slice switch
is ignored.

For the -timeout option, a seconds argument of 0 turns off a previously set timeout value:
dprint -timeout 0
As the CLI displays data, it passes the data through a simple more processor that prompts you after it displays
each screen of text. Press the Enter key to tell the CLI to continue displaying information. Entering q stops
printing.

Since the dprint command can generate a considerable amount of output, you might want to use the capture
command to save the output to a variable.

Structure output appears with one field printed per line; for example:
sbfo = {
f3 = 0x03 (3)
f4 = 0x04 (4)
f5 = 0x05 (5)
f20 = 0x000014 (20)
f32 = 0x00000020 (32)
}

dprint Other Commands 152

CLI Commands

Arrays print in a similar manner; for example:
foo = {
[0][0] = 0x00000000 (0)
[0][1] = 0x00000004 (4)
[1][0] = 0x00000001 (1)
[1][1] = 0x00000005 (5)
[2][0] = 0x00000002 (2)
[2][1] = 0x00000006 (6)
[3][0] = 0x00000003 (3)
[3][1] = 0x00000007 (7)
}

You can append a slice to the variable’s name to display a portion of an array; for example:
d.1<> p -slice "\[10:20\]" random
random slice:(10:30) = {
(10) = 0.479426
(11) = 0.877583
(12) = 0.564642
(13) = 0.825336
(14) = 0.644218
(15) = 0.764842
(16) = 0.717356
(17) = 0.696707
(18) = 0.783327
(19) = 0.62161
(20) = 0.841471
}

The following is an another way of specifying the same slice:
d.1<> set my_var \[10:20\]
d.1<> p -slice $my_var random
random slice:(10:30) = {

The following example illustrates the output from dprint -stats command:
d1.<> dprint -stats twod_array
Count: 2500
Zero Count: 1
Sum: 122500
Minimum: 0
Maximum: 98
Median: 49
Mean: 49
Standard Deviation: 20.4124145231932
First Quartile: 34
Third Quartile: 64
Lower Adjacent: 0
Upper Adjacent: 98
NaN Count: N/A
Infinity Count: N/A
Denormalized Count: N/A
Checksum: 41071

By adding the -data switch,

dprint Other Commands 153

CLI Commands

d1.<> dprint -stats -data twod_array

the statistics are returned in a Tcl nested associative array, which has the following structure:
{
<dpid.dtid>
{
Count <value>
ZeroCount <value>
Sum <value>
Minimum <value>
Maximum <value>
Median <value>
Mean <value>
StandardDeviation <value>
FirstQuartile <value>
ThirdQuartile <value>
LowerAdjacent <value>
UpperAdjacent <value>
NaNCount <value>
InfinityCount <value>
DenormalizedCount <value>
Checksum <value>
}
<dpid.dtid>
{
...
}
}
The following example illustrates the output from dprint -group_by command, showing the value of a variable
random_int across a group of 10 processes:
d1.<> dfocus g dprint -group_by random_int
Focus: 10:10[0-9.1]
0x00000000 (0) : 1:1[2.1]
0x00000001 (1) : 2:2[4.1, 6.1]
0x00000003 (3) : 2:2[0-1.1]
0x00000005 (5) : 2:2[5.1, 9.1]
0x00000006 (6) : 2:2[3.1, 8.1]
0x00000007 (7) : 1:1[7.1]
To access data for a single process/thread, use the following Tcl commands:
array set stats_data [dprint -stats -data <array-expression>]
array set stats $stats_data([lindex [array names stats_data] 0])
puts "Array Sum: $stats(Sum)"
The CLI evaluates the expression or variable in the context of each thread in the target focus. Thus, the overall
format of dprint output is as follows:
first process or thread:
expression result
second process or thread:
expression result
...
last process or thread:
expression result

dprint Other Commands 154

CLI Commands

TotalView lets you cast variables and cast a variable to an array. If you are casting a variable, the first array address
is the address of the variable. For example, assume the following declaration:
float bint;

The following statement displays the variable as an array of one integer:
dprint {(int \[1\])bint:

If the expression is a pointer, the first addresses is the value of the pointer. Here is an array declaration:
float bing[2], *bp = bint;

TotalView assumes the first array address is the address of what bp is pointing to. So, the following command dis-
plays the array:
dprint {(int \[2\])bp}

You can also use the dprint command to obtain values for your computer’s registers. For example, on most
architectures,$r1 is register 1. To obtain the contents of this register, type:
dprint \$r1

NOTE: Do not use a $when asking the dprint command to display your program’s variables.

Command alias

Examples
dprint scalar_y

Displays the values of variable scalar_y in all processes and threads in the current focus.
p argc

Displays the value of argc.
p argv

Displays the value of argv, along with the first string to which it points.
p {argv[argc-1]}

Prints the value of argv[argc-1]. If the execution point is inmain(), this is the last argument passed to main().
dfocus p1 dprint scalar_y

Displays the values of variable scalar_y for the threads in process 1.
f 1.2 p arrayx

Displays the values of the array arrayx for the second thread in process 1.
for {set i 0} {$i < 100} {incr i} {p argv\[$i\]}

Alias Definition Description

p dprint Evaluates and displays information

dprint Other Commands 155

CLI Commands

If main() is in the current scope, prints the program’s arguments followed by the program’s environment
strings.

f {t1.1 t2.1 t3.1} dprint {f()}
Evaluates a function contained in three threads. Each thread is in a different process:
Thread 1.1:
f(): 2 Thread 2.1:
f(): 3
Thread 3.1:
f(): 5

f {t1.1 t2.1 t3.1} dprint -nowait {f()}
1

Evaluates a function without waiting. Later, you can obtain the results using TV::expr. The number displayed
immediately after the command, which is “1”, is the susp-eval-id. The following example shows how to get this
result:
f t1.1 TV::expr get 1 result
2
f t2.1 TV::expr get 1 result
Thread 1.1:
f(): 2
Thread 2.1:
f(): 3
Thread 3.1:
f(): 5
3
f t3.1 TV::expr get 1 result
5

RELATED TOPICS

Examining and Editing Data in the TotalView User Guide

Entering Expressions in the TotalView User Guide

TV::errorCodesCommand

TV::exprCommand

dptsets Other Commands 156

CLI Commands

dptsets Shows the status of processes and threads

Format
dptsets [ptset_array] ...

Arguments
ptset_array

An optional array that indicates the P/T sets to show. An element of the array can be a number or it can be a
more complicated P/T expression. (For more information, see “Using P/T Set Operators” in “Group, Process, and
Thread Control” of the Classic TotalView User Guide.)

Description
The dptsets command shows the status of each process and thread in a Tcl array of P/T expressions. These array
elements are P/T expressions (see “Group, Process and Thread Control” in the Classic TotalView User Guide), and
the elements’ array indices are strings that label each element's section in the output.

If you do not use the optional ptset_array argument, the CLI supplies a default array that contains all P/T set des-
ignators: error, existent, held, running, stopped, unheld, and watchpoint.

Examples
The following example displays information about processes and threads in the current focus:
d.1<> dptsets
unheld:
1: 808694 Stopped [fork_loopSGI]
1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64
existent:
1: 808694 Stopped [fork_loopSGI]
1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64
watchpoint:
running:
held:
error:
stopped: 1: 808694 Stopped [fork_loopSGI]
1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64
...

dptsets Other Commands 157

CLI Commands

The following example creates a two-element P/T set array, and then displays the results. Notice the labels in this
example.
d1.<> set set_info(0) breakpoint(1)
breakpoint(1)
d1.<> set set_info(1) stopped(1)
stopped(1)
d1.<> dptsets set_info
0:
1: 892484 Breakpoint [arraySGI]
1.1: 892484.1 Breakpoint PC=0x10001544, [array.F#81]
1:
1: 892484 Breakpoint [arraySGI]
1.1: 892484.1 Breakpoint PC=0x10001544, [array.F#81]

The array index to set_info becomes a label identifying the type of information being displayed. In contrast, the
information within parentheses in the breakpoint and stopped functions identifies the arena for which the func-
tion returns -information.

If you use a number as an array index, you might not remember what is being printed. The following very similar
example shows a better way to use these array indices:
d1.<> set set_info(my_breakpoints) breakpoint(1)
breakpoint(1)
d1.<> set set_info(my_stopped) stopped(1)
stopped(1)
d1.<> dptsets set_info
my_stopped:
1: 882547 Breakpoint [arraysSGI]
1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]
my_breakpoints:
1: 882547 Breakpoint [arraysSGI]
1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]

The following commands also create a two-element array. This example differs in that the second element is the
difference between three P/T sets.
d.1<> set mystat(system) a-gW
d.1<> set mystat(reallystopped) \
stopped(a)-breakpoint(a)-watchpoint(a)
d.1<> dptsets t mystat
system:
Threads in process 1 [regress/fork_loop]:
1.-1: 21587.[-1] Running PC=0x3ff805c6998
1.-2: 21587.[-2] Running PC=0x3ff805c669c
...
Threads in process 2 [regress/fork_loop.1]:
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...
reallystopped:
2.2 224.2 Stopped PC=0x3ff800d5758
2.-1 5224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...

drerun Other Commands 158

CLI Commands

drerun Restarts processes

Format
drerun [cmd_args] [in_operation] [out_operations] [error_operations]

Arguments
cmd_args

The arguments to be used for restarting a process.

in_operation
Names the file from which the CLI reads input.

< infile
Reads from infile instead of stdin. infile indicates a file from which the launched process reads infor-
mation.

out_operations
Names the file to which the CLI writes output. In the following, outfile indicates the file into which the launched
processes writes information.

> outfile
Sends output to outfile instead of stdout.

>& outfile
Sends output and error messages to outfile instead of stdout and stderr.

>>& outfile
Appends output and error messages to outfile.

>> outfile
Appends output to outfile.

error_operations
Names the file to which the CLI writes error output. In the following, errfile indicates the file into which the
launched processes writes error information.

2> errfile
Sends error messages to errfile instead of stderr.

2>>errfile
Appends error messages to errfile.

drerun Other Commands 159

CLI Commands

Description
The drerun command restarts the process that is in the current focus set from its beginning. The drerun com-
mand uses the arguments stored in the ARGS(dpmid) and ARGS_DEFAULT variables. These are set every time
you run the process with different arguments. Consequently, if you do not specify the arguments that the CLI
uses when restarting the process, it uses the arguments you used when the CLI previously ran the process. (See
drun on page 163for more information.)

The drerun command differs from the drun command in that:

 If you do not specify an argument, the drerun command uses the default values. In contrast, the
drun command clears the argument list for the program. This means that you cannot use an
empty argument list with the drerun command to tell the CLI to restart a process and expect that it
does not use any arguments.

 If the process already exists, the drun command does not restart it. (If you must use the drun
command, you must first kill the process.) In contrast, the drerun command kills and then restarts
the process.

The arguments to this command are similar to the arguments used in the Bourne shell.

Issues When Using Starter Programs

Starter programs such as poe or aprun and the CLI can interfere with one another because each believes that it
owns stdin. Because the starter program is trying to manage stdin on behalf of your processes, it continually
reads from stdin, acquiring all characters that it sees. This means that the CLI never sees these characters. If your
target process does not use stdin, you can use the -stdinmode noneoption. Unfortunately, this option is incom-
patible with poe -cmdfileoption that is used when specifying -pgmmodel mpmd.

If you encounter these problems, try redirecting stdin within the CLI; for example:
drun < in.txt

Command alias

Examples
drerun

Reruns the current process. Because it doesn’t use arguments, the process restarts using its previous values.
rr -firstArg an_argument -aSecondArg a_second_argument

Alias Definition Description

rr {drerun} Restarts processes

drerun Other Commands 160

CLI Commands

Reruns the current process. The CLI does not use the process’s default arguments because replacement argu-
ments exist.

RELATED TOPICS

Using Command Arguments in the TotalView User Guide

drunCommand

dgoCommand

captureCommand

drestart Other Commands 161

CLI Commands

drestart Restarts a checkpoint (IBM RS6000 machines only)

Format
Restarts a checkpoint on IBM AIX

drestart [-halt] [-g gid] [-r host] [-no_same_hosts]

Arguments
-halt

TotalView stops checkpointed processes after it restarts them.

-g gid
Names the control group into which TotalView places all created processes.

-r host
Names the remote host upon which the restart occurs.

-no_same_hosts

Restart can use any available hosts. If you do not use this option, the restart occurs on the same hosts upon
which the program was executing when the checkpoint file was made. If these hosts are not available, the restart
operation fails.

Description
The drestart command restores and restarts all of the checkpointed processes. The CLI attaches to the base
process, and if there are parallel processes related to this base process, TotalView then attaches to them.

Restarting using LoadLeveler

If you checkpointed a LoadLeveler POE job, you cannot restart it with this command. You must resubmit the pro-
gram as a LoadLeveler job to restart the checkpoint. You also need to set the MP_POE_RESTART_SLEEP
environment variable to an appropriate number of seconds. After you restart POE, start TotalView and attach to
POE. POE tells TotalView when it is time to attach to the parallel task so that it can complete the restart operation.

NOTE: When attaching to POE, parallel tasks will not have been created yet, so you should avoid try-
ing to attach to them. Therefore, use the-no_attach_paralleloption when using the dattach
command to attach to POE.

Examples
drestart

Restarts the checkpointed processes. The CLI automatically attaches to parallel processes.

drestart Other Commands 162

CLI Commands

drestart -halt -no_same_hosts
Restarts the checkpointed processes using available hosts. Stops checkpointed processes after restoring
them.

RELATED TOPICS

dcalltree Command

drun Other Commands 163

CLI Commands

drun Starts or restarts processes

Format
drun [cmd_arguments] [in_operation infile] [out_operations outfile] [error_operations errfile]

Arguments
cmd_arguments

The argument list passed to the process.

in_operation
Names the file from which the CLI reads input.

< infile
Reads from infile instead of stdin. infile indicates a file from which the launched process reads infor-
mation.

out_operations
Names the file to which the CLI writes output. In the following, outfile indicates the file into which the launched
processes writes information.

> outfile
Sends output to outfile instead of stdout.

>& outfile
Sends output and error messages to outfile instead of stdout and stderr.

>>& outfile
Appends output and error messages to outfile.

>> outfile
Appends output to outfile.

error_operations
Names the file to which the CLI writes error output. In the following, errfile indicates the file into which the
launched processes writes error information.

2> errfile
Sends error messages to errfile instead of stderr.

2>> errfile
Appends error messages to errfile.

Description
The drun command launches each process in the current focus and starts it running. The CLI passes the com-
mand arguments to the processes. You can also indicate I/O redirection for input and output information. Later
in the session, you can use the drerun command to restart the program.

drun Other Commands 164

CLI Commands

The arguments to this command are similar to the arguments used in the Bourne shell.

In addition, the CLI uses the following variables to hold the default argument list for each process:

ARGS_DEFAULT

The CLI sets this variable if you use the -a command-line option when you started the CLI or TotalView. (This op-
tion passes command-line arguments that TotalView uses when it invokes a process.) This variable holds the de-
fault arguments that TotalView passes to a process when the process has no default arguments of its own.

ARGS(dpid)

An array variable that contains the command-line arguments. The index dpid is the process ID. This variable
holds a process’s default arguments. It is always set by the drun command, and it also contains any arguments
you used when executing a drerun command.

If more than one process is launched with a single drun command, each receives the same command-line
arguments.

In addition to setting these variables by using the -a command-line option or specifying cmd_arguments when
you use this or the drerun command, you can modify these variables directly with the dset and dunset
commands.

You can only use this command to tell TotalView to execute initial processes, because TotalView cannot directly
run processes that your program spawns. When you enter this command, the initial process must have termi-
nated; if it was not terminated, you are told to kill it and retry. (You could, use the drerun command instead
because the drerun commands first kills the process.)

The first time you use the drun command, TotalView copies arguments to program variables. It also sets up any
requested I/O redirection. If you re-enter this command for processes that TotalView previously started—or use it
when you use the dattach command to attach to a process—the CLI reinitializes your program.

Issues When Using Starter Programs

Starter programs such as poe or aprun and the CLI can interfere with one another because each believes that it
owns stdin. Because the starter program is trying to manage stdin on behalf of your processes, it continually
reads from stdin, acquiring all characters that it sees. This means that the CLI never sees these characters. If your
target process does not use stdin, you can use the -stdinmode noneoption. Unfortunately, this option is incom-
patible with poe -cmdfileoption that is used when specifying -pgmmodel mpmd.

If you encounter these problems, try redirecting stdin within the CLI; for example:
drun < in.txt

drun Other Commands 165

CLI Commands

Command alias

Examples
drun

Begins executing processes represented in the current focus.
f {p2 p3} drun

Begins execution of processes 2 and 3.
f 4.2 r

Begins execution of process 4. This is the same as f 4 drun.
dfocus a drun

Restarts execution of all processes known to the CLI. If they were not previously killed, you are told to use the
dkill command and then try again.

drun < in.txt
Restarts execution of all processes in the current focus, setting them up to get standard input from in.txt file.

RELATED TOPICS

Using Command Arguments in the TotalView User Guide

Starting Processes and Threads in the “Manipulating Processes and Threads” chapter of the Classic
TotalView User Guide

drerun Command

dgo Command

Alias Definition Description

r drun Starts or restarts processes

dsession Other Commands 166

CLI Commands

dsession Loads a session

Format
Loads a session.

dsession [-load session_name]

Arguments
-load session_name

Loads the session with the given session_name.

Description

Loads a previously created session. The session attributes are applied to the TotalView process object created for
the executable named in the session. Returns the TotalView ID for the new object as a string value. A ses-
sion_name that contains a space must be surrounded by quotes.

Sessions that attach to an existing process cannot be loaded this way; use the dattachcommand instead.

RELATED TOPICS

Loading a Session Using the Sessions Managerin the TotalView User Guide

Managing Sessions in the TotalView User Guide

dattach Command

dset Other Commands 167

CLI Commands

dset Changes or views CLI variables

Format
Sets a CLI variable

dset debugger-var value

Displays the current value of a CLI variable
dset debugger-var

Sets the default for a CLI variable
dset -set_as_default debugger-var value

Displays the current values of all the CLI variables in a debugger namespace. Using dset with no argument dis-
plays all the CLI variables in the global name space.

dset debugger-namespace

Arguments
debugger-var

Name of a CLI variable.

value
Value to be assigned to debugger-var.

debugger-namespace
Name of a CLI namespace. E.g., TV::GUI::. Note that you need to type the double colons at the end of the name-
space name to indicate to Tcl that this is a namespace name rather than a variable name.

-set_as_default

Sets the value to use as the variable’s default. This option is most often used by system administrators to set site-
specific defaults in the global .tvdrc startup script. Values set using this option replace the CLI built-in default.

Description
The dset command sets the value of a CLI variable to a string. With no new value, the current value is returned. If
no variable is specified, all variables in the global namespace are displayed with their values.

For a list of ProductNameGeneric variables and their meanings, type help variables in the Command Line win-
dow. ProductNameGeneric variables are described in more depth in TotalView Variables on page 297.

The TotalView state variables are divided into several TCL namespaces. The most commonly used variables are in
the global namespace. So to view the LINES_PER_SCREEN variable, for example, which is in the global name-
space, you simply enter:
d1.<> dset LINES_PER_SCREEN
AUTO

dset Other Commands 168

CLI Commands

For the other namespaces, the namespace for a variable must be included in the name. So to view the platform
variable, which is in the TV:: namespace, you would enter:
d1.<> dset TV::platform
linux-x86-64
To view all variables in a namespace, enter the namespace name including the trailing ::. For example:
d1.<> dset TV::
TV::ask_on_dlopen true
TV::auto_array_cast_bounds {[10]}
TV::auto_array_cast_enabled false
...
Wild cards can be used to view a subset of the variables. The * wildcard matches any string, including “:”, so to
view all variables in all namespaces, you could enter:
d1.<> dset *
To view all variables with the string “font” in them you could enter:
d1.<> dset *font*
TV::GUI::display_font_dpi {}
TV::GUI::fixed_font fixed
TV::GUI::fixed_font_family {}
TV::GUI::fixed_font_size {}
TV::GUI::font 7x13bold
...
Using -set_as_default

When you press a default button in one of the tabs of the File > Preferences dialog box, TotalView reinitializes
the settings to their default values. This happens even if you have set oneor more values in your tvdrc file. Set-
tings in tvdrc do not change what TotalView thinks the default is, so it still changes the settings back to their
defaults for the current session. However, the next time you invoke TotalView, TotalView will again use the values
in your tvdrc.

You can tell TotalView that the values set in your tvdrc file are the defaults if you use the -set_as_default option.
Now when you press a default button, TotalView will use the tvdrc value instead of the product-defined defaults.

If your TotalView administrator sets up a global .tvdrc file, TotalView reads values from that file and merges them
with your preferences and other settings. If the value in the .tvdrc file changes, TotalView ignores the change
because it has already set a value in your local preferences file. If the administrator uses the -set_as_default
option, you can be told to press the default button to get the changes. If, however, the administrator doesn't use
this option, the only way to get changes is by deleting your preferences file.

Examples
dset PROMPT "Fixme% "

Sets the prompt to Fixme% followed by a space.

dset VERBOSE
Displays the current setting for output verbosity.

dset Other Commands 169

CLI Commands

dset EXECUTABLE_PATH ../test_dir;$EXECUTABLE_PATH
Places ../test_dir at the beginning of the previous value for the executable path.

dset -set_as_default TV::server_launch_string {/use/this/one/tvdsvr}
Sets the default value of the TV::server_launch_string. If you change this value, you can later select the
Defaults button within the File > Preferences Launch String page to reset it to its original value.

dset TV::GUI::fixed_font_size 12
Sets the TotalView GUI to display information using a 12-point, fixed-width font. Commands such as this are
often found in a startup file.

RELATED TOPICS

dunset Command

dlappend Command

dskip Other Commands 170

CLI Commands

dskip Creates and manages single-stepper skip rules

Format
Create a rule to skip over or through a function

dskip [over | through] [function | -function | -fu] function-name

Create a rule to skip over or through a file
dskip [over | through] [file | -file | -fi] filename

Create a rule to skip over or through functions that are also contained in specific source files
dskip [over | through] { { -function | -fu } function-name | { -rfunction | -rfu } function-regexp } { { -file
| -fi } filename | { -gfile | -gfi } file-glob }

Enable or disable skipping of a list of IDs
dskip [enable | disable] [id]

Delete a list of skip IDs
dskip delete [id]

Print information about a list of skip IDs
dskip info [id]

Arguments
function-name

The name of the function for the skip rule. If function-name matches the base name or the fully qualified name
of the subroutine symbol, then the rule matches the subroutine. However, if function-name does not match
the base name, TotalView attempts to do a partial name match by demangling function-name using the de-
mangler in the subroutine's containing file, or splitting an already demangled name into its components (base
name, class name, overload string, etc.). If the base name and the specified name components in function-
name match the subroutine's name components, then the rule matches the subroutine. Otherwise, the rule
does not match the subroutine.

For example, all of the following function-name strings match the subroutine name
EnumS<Color>::EnumS(Color) on Linux: EnumS, EnumS(Color), EnumS<Color>::EnumS, and of
course, EnumS<Color>::EnumS(Color). Since the function-name is demangled (if necessary),
ZN5EnumSI5ColorEC1ES0 (the G++ mangled name of the subroutine) also matches.

function-regexp
The function name regular expression for the skip rule. If function-regexp matches the fully qualified name of
the subroutine symbol using Tcl's “advanced” regular expression matching, then the rule matches the subrou-
tine.

Otherwise, the rule does not match the subroutine.

dskip Other Commands 171

CLI Commands

Using a function-regexp can be useful when matching complex C++ function names, matching several func-
tions with one rule, or to accommodate demangling differences across compilers or platforms. For example, the
following function-regexp string matches all instances of template<class T> EnumS<T>::EnumS(T):

^EnumS<(.*)>::EnumS\(\1\)
Note that it is best to wrap all Tcl regexp arguments in curly braces to prevent any expansion within the regexp
string. For example, create the above rule as follows:

dskip -rfu {^EnumS<(.*)>::EnumS\(\1\)}
filename

The name of the file for the skip rule. If filename matches the base name or the compilation directory joined
with the base name of the file symbol, then the rule matches the file.

Otherwise, the rule does not match the file.

For example, the following two filename strings match the file name /user/smith/build/linux/
test.cxx:

test.cxx
/user/smith/build/linux/test.cxx

Note the match is performed purely on the contents of the file name strings. No attempt is made to resolve the
filename string or the file symbol's name in the file system, for example, via realpath.

file-glob
The file name glob pattern for the skip rule. If file-glob contains a directory path delimiter ('/') and it matches the
compilation directory joined with the base name of the file symbol using Tcl's string match, then the rule
matches the file. However, if file-glob does not contain a directory path delimiter ('/') and it matches the base
name of the file symbol using Tcl's string match, then the rule matches the file. Otherwise, the rule does not
match the file.

For example, the following file-glob strings match the file name /user/smith/build/linux/test.cxx:
*.cxx
/user/*

Note the match is performed purely on the file name strings. No attempt is made to resolve the filename string
or the file symbol's name in the file system. Also, unlike the shell's glob matching (which does access the file sys-
tem), the directory path delimiter ('/') matches the glob special characters “*” and “?”.

id
The skip ID or list of skip IDs on which the command operates. If one or more skip IDs are given, at least one skip
ID from the list must match an existing rule. However, additional skip IDs that do match an existing rule are ig-
nored. For example, if exactly one skip rule with ID “1” exists, then dskip info 1 2 is not an error, but dskip info
2 is an error.

dskip Other Commands 172

CLI Commands

Description
The dskip command allows you to create and manage single-stepper “skip” rules that modify the way source-level
single stepping works. You can add rules that match a function, all functions in a source file, or a specific function
in a specific source file. Functions can be matched by the function name or a regular expression (Tcl “regexp”).
Files can be matched by the file name or a glob pattern (Tcl “string match”).

When a rule is created its skip ID is returned, which starts at 1, is incremented by 1, and is never reused. The
dskip command creates skip over rules by default, unless the through qualifier is specified.

The skip rules allow you to identify functions that you are not interested in debugging. TotalView implements two
skip rule variants, over and through, as follows:

1. A matching and enabled skip over rule changes the behavior of all source-level step-into operations, such
as the dstep command or the Step button or menu items in the graphical user interface.

A skip over rule tells TotalView to not step into the function, but instead step over the function. Skip over is
most useful to avoid stepping into library functions, such as C++ STL code.

For example, consider the code fragment:
10 void MyFunc()
11 {
12 EnumS<Color> v (Red);
13 if (v == Blue || OtherFunc())
14 std::cout << "Hello, world" << std::endl;
15 }
If a skip over rule existed for EnumS<Color>::EnumS(Color), then a dstep at line 12 would step over the
call to the constructor (not into it) and the program would stop at line 13.

2. A matching and enabled skip through rule changes the behavior of all source-level single-stepping opera-
tions, such as the dstep and dnext commands or the Step and Next buttons or menu items in the
graphical user interface.

A skip through rule tells TotalView to ignore any source-line information for the function, so that single step-
ping does not stop at source lines within the function. However, if the function being skipped through calls
another function, that call is handled according to original single-stepping operation. Skip through is most
useful for callback or thunk functions.

For example, consider the code fragment:
20 template<class Func>
21 inline void Callback(Func func)
22 {
23 func();
24 }
30 void MainFunc()
31 {
32 Callback(MyFunc);
33 }

dskip Other Commands 173

CLI Commands

If a skip through rule existed for Callback, then a dstep at line 32 would step through the code in Call-
back and the program would stop inside MyFunc.

Enabling, Disabling, Deleting, and Printing Skip Rules

The dskip command enable, disable, delete and info subcommands take an optional list of skip IDs.

When a skip rule is disabled, it is completely ignored during single-stepping operations.

The dskip info command is the only command that generates output. It prints details about the specified rules in
tabular format with the following column headings:

Name Matching

Each skip rule contains a function name or function regular expression, and/or a file name or file glob pattern.
During certain single-stepping operations, TotalView attempts to map program locations to symbol objects in the
symbol table for the program, specifically subroutine and file symbols. If the symbols are found, it then attempts
to match the names of the symbols against the names, regular expressions, and glob patterns contained within
the skip rules.

For example, when executing a source-level step-into operation, if a call instruction is encountered, TotalView
maps the address of the function that is being called to a subroutine and file symbol, and attempts to match the
symbol names' against the skip rules. If an enabled skip over rule is matched, the call instruction is stepped over
instead of stepped into.

The way in which TotalView matches the symbol names against the rules depends on a how the rule was created.
Further, the rule might be matched against symbol name variations.

 When matching subroutine symbols against function skip rules, TotalView uses either the
subroutine symbol's base name or fully qualified name.

A fully qualified subroutine name contains any combination namespace, class name, template types, base
name, and function signature.

Column Description

Id The skip rule ID number.

Enb Enabled or disabled.

How Skip over or skip through.

Glob File is a file-glob or filename.

File The filename, file-glob, or none.

RE Function is a function-regexp or function-name.

Function The function-name, function-regexp, or none.

dskip Other Commands 174

CLI Commands

 When matching file symbols against file skip rules, TotalView uses either the file symbol's base
name or compilation directory joined with the base name.

The compilation directory is a canonicalized version of the directory hint and directory path information in
the symbol table. For example, if the compiler path was ../../src and the directory hint (the compiler's
“pwd”) was /user/smith/build/linux, the compilation directory would be /user/smith/src.

Examples
dskip through function Callback

Skip through functions named “Callback”.
dskip -rfunction {^EnumS<(.*)>::EnumS\(\1\)}

Skip over functions with names that match the regular expression.
dskip file /user/smith/build/linux/test.cxx

Skip over all functions contained in the source file named /user/smith/build/linux/test.cxx.
dskip over -gfile *.cxx

Skip over all functions contained in source files with names that match the file glob pattern, in this case all files
with a .cxxextension.

dskip through -rfunction {^EnumS<(.*)>::EnumS\(\1\)} -gfile *.cxx
Skip through functions that match the regular expression that are also contained in source files with a .cxx
extension.

dstacktransform Other Commands 175

CLI Commands

dstacktransform Maintains rules that change the displayed stack frames

Format
Enables or disables the stack transform facility.

dstacktransform [enable | disableid | transform_name]

Prints the current state of rules and transforms.
dstacktransform [list]

Prints the enabled/disabled state of the stack transform facility.
dstacktransform [status]

Removes the rule with the given id from the stack transform facility.
dstacktransform [remove id]

Adds a new transform.
dstacktransform add [-name | -n string] [-implementation | -ipath]

Adds a new transform rule.
dstacktransform add [-filter test_function_list] [-transform | -t name] [-operation | -o operation_name
[-position | -p integer] [-before | -b integer]

Arguments
id

A rule’s ID number.

transform_name
A transform’s name.

-filter | -f test_function_list
Required argument for all rules. Its value test_function_list is a comma-separated list of filter functions.

-implementation | -i path
The path of a script or shared library that supports the modify operation.

NOTE: This is not implemented in the current release. The only implemented trans-
forms are provided by the debugger and are listed as built-in using
dstacktransform list.

-name | -n string
A transform’s name.

dstacktransform Other Commands 176

CLI Commands

-transform | -t name
Indicates the transform name that provides the implementation of the modify operation. This name can also
be used to enable and disable groups of rules.

-operation | -o operation_name
The action to be invoked if the filter matches the current frame. The allowed operations are remove, modify,
and next:

remove: Hides the current stack frame.
modify: Invokes a transform function to change the name and behavior of the stack frame.
Currently, user transforms cannot use the modify operation.
next: Ends processing of the current stack frame without changes. Rules lower in the trans-
form list are not evaluated, and processing the stack continues with the next stack frame.

The default is remove, which is used if no -operation option is provided.

-position | -p integer
Puts the new rule at the given ordinal position in the transform's list of rules.

-before |-b integer
Puts the new rule before the rule with the given id. If no -position or -beforeoption is given, the new rule is
placed at the end of the transform's rule list.

Description
The stack transform facility (STF) maintains a list of rules that modify the list of stack frames shown in the stack
trace view and the dwhere command. These rules are tested, starting at the top of the list, until a rule passes the
tests and is applied. The various subcommands of dstacktransform maintain the list of rules.

Each rule has a filter that runs one or more tests on elements of each stack frame. Some tests compare the func-
tion name or image path with a regular expression. Other tests look for a loader symbol in the image associated
with the frame. If the tests pass, an operation is run that controls the application of rules or modifies the stack by
adding, removing, or re-writing one or more frames on the stack. If the tests pass and an operation is run, no fur-
ther action is taken on that frame and processing continues to the next stack frame.

Rules can refer to transforms. Transforms contain code that is run when modify operations are invoked by rules.

NOTE: Currently, you cannot load your own transforms, and the debugger supplies a default trans-
form for Python frames. Although you can define new transforms without implementing code,
these are useful only to group a number of rules under a common name for enabling and
disabling.

dstacktransform Other Commands 177

CLI Commands

About a Rule’s Filter

The -filter or -fargument is required for all rules. The value of the filter is a comma-separated list of filter func-
tions. Each function can be one of:

function(<regular_expression>): This matches the function name in the stack frame against the given
regular expression.

image(<regular_expression>): This matches the image path in the stack frame against the given regular
expression.

symbol(<string>): Looks for the string in the list of loader symbols defined in the image associated with the
stack frame.

All the filter functions must match for a rule's operation to be invoked.

NOTE: The TCL interpreter that reads these commands will try to interpret common regular expres-
sion syntax. For example, TCL considers text inside square brackets as a function to be
evaluated. To prevent TCL from trying to evaluate regular expression character sets as func-
tions, surround either the regular expression or the entire filter function in double-quotes " or
curly braces {}.

About a Rule’s ID

When a rule is created, it is assigned a unique id by the debugger. This id is returned by the dstacktransform
addcommand. Use this id to manage the rule, for instance, to disable it:
> set id [dstacktransform add -filter "function('_start')"]
> dstacktransform disable $id
The List Subcommand

The list subcommand prints the current state of rules and transforms. The rules are applied to each stack frame
in the order shown in the list.

This example adds a rule and then prints the list of rules followed by the list of transforms:

> sta -f function('_init') -p 1
4
> dstacktransform list
Transformation Status: Enabled
Rules
ID Transform Operation Filter
4 remove function('_init')
1 RW_Python modify function('PyEval_EvalFrameEx')
2 RW_Python remove symbol('Py_DebugFlag')

dstacktransform Other Commands 178

CLI Commands

Transforms
Name Implementation
RW_Python <built-in>
Command alias

Examples
dstacktransform enable 10
ste 10

Enables the rule identified by the id 10.
dstacktransform disable 10
std 10

Disables the rule identified by the id 10.
dstacktransform add -t MY_PYTHON -f "function('_start')" -o remove -p 0

Adds a new rule associated with the MY_PYTHON transform. The rule has a filter named
function('_start'), which tries to match the pattern _start with the function name in the current stack
frame. If they match, the frame is removed. This new rule is placed at the top of the list of rules.

After adding the rule above, enter dstacktransform list to view it and other rules:

> dstacktransform list
Transformation Status: Enabled
Rules
ID Transform Operation Filter
5 MY_PYTHON remove function('_start')
4 remove function('_init')
1 RW_Python modify function('PyEval_EvalFrameEx'),symbol('Py_DebugFlag')
2 RW_Python remove symbol('Py_DebugFlag')
3 RW_Python remove function('wrap'),symbol('SWIG_globals')
Transforms
Name Implementation
RW_Python <built-in>

Alias Definition Description

ste dstacktransform enable Enables the stack transform facility.

std dstacktransform disable Disables the stack transform facility.

sta dstacktransform add Adds a new transform or rule.

str dstacktransform remove Removes a transform.

stl dstacktransform list Prints the current rules and transforms and their states.

sts dstacktransform status Prints the enabled/disabled state of the stack transform facility.

dstacktransform Other Commands 179

CLI Commands

RELATED TOPICS

dwhereCommand

Transforming the Stack in the TotalView User Guide

dstatus Other Commands 180

CLI Commands

dstatus Shows current status of processes and threads

Format
dstatus

dstatus [-g]
dstatus [-group_by { control_group | share_group | process_state | hostname | replay | pheld
| thread_state | pc | function | line | dpid | dtid | apid | theld | stop_reason | sysid | utid_ktid |
tname }

Arguments
-group_by | -g

Displays an aggregated view of the processes and threads in the current focus. The processes and threads are
aggregated based on the order of the properties chosen in the comma-separated list of properties in the prop-
erty list.

The aggregation is shown using either a compressed process list for process-level properties (plist) or a com-
pressed thread list for thread-level properties (ptlist). See Compressed List Syntax (ptlist) for a description of
a ptlist.

Process level properties:

control_group (abbreviated as cgroup)

The control group of the process

share_group (abbreviated as sgroup)

The share group of the process

process_state (abbreviated as pstate)

The state of the process

replay

The replay mode of the process. A process can be in three replay states: Replay Unavailable,
Replay, or -Record.

pheld

Process hold state: Held or UnHeld.

dpid

The debugger-assigned process ID

hostname

The hostname of the process

Thread level properties:

thread_state (abbreviated as tstate)

The state of the thread

dstatus Other Commands 181

CLI Commands

pc

The Program Counter of the thread

function

The function where the thread’s pc is currently

line

The line number for the current thread’s pc

dtid

The debugger-assigned thread ID

apid

The action point identifier that the thread’s pc is on. If the thread is not at an action point, it is
grouped as No Action

theld

The thread’s held state, either Held or Not Held
stop_reason

The stop code and stop message for a stopped thread

systid

Either the user thread ID (utid) or the kernel thread ID (ktid) if no utid exists

utid_ktid

"utid / ktid" or just ktid if no utid exists. User level thread IDs are assigned by a runtime library such
as a pthreads implementation. Kernel thread IDs are assigned by the operating system.

tname

Thread name or "<unnamed>" if no thread name has been defined. Some runtime implementations,
such as pthreads, allow the user to programmatically assign a name to a thread.

-pcount

Alias for the -ptlist_element_count argument

-ptlist_element_count number
Displays, at maximum, number elements (comma separated plists or ptlists) in the process/thread com-
pressed list that is shown in a reduced dstatus display. If a reduction results in exceeding the ptlist_ele-
ment_count, an ellipsis is appended. For instance, if ptlist_element_count is set to 5:

[p1-4.1, p2.2, p3-4.3, p5.4, p6.1-2, ...]
To change the default value, use the TotalView State variable ptlist_element_threshold. For example:

dset TV::ptlist_element_threshold 10
-levels

The number of levels to show for a set of properties. If no levels are specified, then each property is reduced on
a new line with indentation. If the number of levels is less than the number of specified properties, then the re-
maining properties are shown in a single reduction on one line.

dstatus Other Commands 182

CLI Commands

-v

Show verbose output in the reduced display. Without -v, full paths of filenames and line numbers are not dis-
played.

-detail

Force full detailed information for the current state of each process and thread in the current focus. This option
affects the amount of information displayed from grouping by function.

-thread_name

Show a thread’s name, if one exists.

Description
With the -group_by option, the dstatus command displays an aggregated view of the process and thread state in
the current focus. To make the display more useful, you can reduce it based on specific properties, provided as
arguments as described above. The full detail shows the current state of each process and thread in the current
focus. ST is aliased to dfocus g dstatus and acts as a group-status command. Type help ptset for more
information.

If you have not changed the focus, the default is process. In this case, the dstatus command shows the status for
each thread in process 1. In contrast, if you set the focus to g1.<, the CLI displays the status for every thread in
the control group. When you limit thread state display by certain properties, the output is displayed as a com-
pressed thread list, or ptlist.

Compressed List Syntax (ptlist)

A compressed ptlist consists of a process and thread count, followed by square-bracket-enclosed list of process
and thread ranges separated by dot (.). If the thread range is missing, it's merely a compressed list of processes
and it is referred to as a plist.

If the process range starts with the letter p, the process IDs are TotalView DPIDs (debugger unique process iden-
tifiers); otherwise, they are the MPI rank for the process, MPI_COMM_WORLD.

The thread IDs are always TotalView DTIDs (debugger unique thread identifiers). For example, the compressed
ptlist 5:13[0-3.1-3, p1.1] indicates that there are five processes and 13 threads in the list. The process and
thread range 0-3.1-3 indicates MPI rank processes 0 through 3, each with DTIDs 1 through 3. The process
range p1.1 indicates process DPID 1 and thread DTID 1, normally the MPI starter process named mpirun.

Command alias

Alias Definition Description

st dstatus Shows current status

ST {dfocus g dstatus} Shows group status

dstatus Other Commands 183

CLI Commands

Examples
dstatus

Displays the status of all processes and threads in the current focus; for example:
1: 42898 Breakpoint [arraysAIX]

1.1: 42898.1 Breakpoint \
PC=0x100006a0,[./arrays.F#87]

f a st
Displays the status for all threads in all processes.

f p1 st
Displays the status of the threads associated with process 1. If the focus is at its default (d1.<), this is the same
as typing st.

ST
Displays the status of all processes and threads in the control group having the focus process; for example:
1: 773686 Stopped [fork_loop_64]
1.1:773686.1 Stopped PC=0x0d9cae64
1.2:773686.2 Stopped PC=0x0d9cae64
1.3:773686.3 Stopped PC=0x0d9cae64
1.4:773686.4 Stopped PC=0x0d9cae6

2: 779490 Stopped [fork_loop_64.1]
2.1:779490.1 Stopped PC=0x0d9cae64
2.2:779490.2 Stopped PC=0x0d9cae64
2.3:779490.3 Stopped PC=0x0d9cae64
2.4:779490.4 Stopped PC=0x0d9cae64

f W st
Shows status for all worker threads in the focus set. If the focus is set to d1.<, the CLI shows the status of each
worker thread in process 1.

f W ST
Shows status for all worker threads in the control group associated with the current focus.

In this case, TotalView merges the W and gspecifiers in the STalias. The result is the same as if you had entered
f gW st.

f L ST
Shows status for every thread in the share group that is at the same PC as the thread of interest(TOI).

d1.<> dfocus g dstatus -group_by thread_state, function
First reduces the focus by thread_state, then further breaks down and reduces the results according to the
function the threads are in within each thread state. This call might output this reduced display:
Focus: 4:20[p1-4.1-5]
Breakpoint : 4:4[p1.2, p3-4.2, p2.3]
snore : 4:4[p1.2, p3-4.2, p2.3]
Stopped : 4:16[p1-4.1, p2.2, p1.3, p3-4.3, p1-4.4-5]
.___newselect_nocancel : 4:13[p1-4.1, p2.2, p3-4.3, p1.4]
snore : 2:3[p1.3, p2.4-5]

dstatus Other Commands 184

CLI Commands

The above output displays the reduction produced by the group_by command as a series of ptlists. (See
above, Compressed List Syntax (ptlist)).

dfocus group dwhere -group_by function
This dwhere call output shows that all the processes have the first three frames in their backtrace but then
they diverge and one process is in function rank0 while the other three processes are in rankn.
+/ : 10:10[0-9.1]
+_start
+__libc_start_main
+main
+rank0 : 1:1[0.1]
+rankn : 3:3[1.1, 5.1, 8.1]

RELATED TOPICS

Viewing Processes and Threads in the TotalView User Guide

dwhat Command

dwhere Command

dstep Other Commands 185

CLI Commands

dstep Steps lines, stepping into subfunctions

Format
dstep [-back][num-steps]

Arguments
-back

(ReplayEngine only) Steps to the previous source line, moving into subroutines that called the current function.
This option can be abbreviated to -b.

num-steps
An integer greater than 0, indicating the number of source lines to execute.

Description
The dstep command executes source lines; that is, it advances the program by steps (source lines). If a statement
in a source line invokes a subfunction, the dstep command steps into the function.

The optional num-steps argument defines the number of dstep operations to perform. If you do not specify
num-steps, the default is 1.

NOTE: You can use the dskip command to create and manage single-stepper “skip” rules that modify
the way source-level single stepping works. You can add rules that match a function, all func-
tions in a source file, or a specific function in a specific source file.

The dstep command iterates over the arenas in the focus set by doing a thread-level, process-level, or group-level
step in each arena, depending on the width of the arena. The default width is process (p).

If the width is process, the dstep command affects the entire process that contains the thread being stepped.
Thus, although the CLI is only stepping one thread, all other threads in the same process also resume executing.
In contrast, the dfocus t dstep command steps only the thread of interest (TOI).

NOTE: On systems having identifiable manager threads, the dfocus t dstep command allows the
manager threads as well as the TOI to run.

The action taken on each term in the focus list depends on whether its width is thread, process, or group, and on
the group specified in the current focus. (If you do not explicitly specify a group, the default is the control group.)

If some thread hits an action point other than the goal breakpoint during a step operation, that ends the step.

dstep Other Commands 186

CLI Commands

Group Width

The behavior depends on the group specified in the arena:

Process group

TotalView examines that group and identifies each process having a thread stopped at the same location as the
TOI. TotalView selects one matching thread from each matching process. TotalView then runs all processes in
the group and waits until the TOI arrives at its goal location; each selected thread also arrives there.

Thread group

The behavior is similar to process width behavior except that all processes in the program control group run,
rather than just the process of interest (POI). Regardless of which threads are in the group of interest, TotalView
only waits for threads that are in the same share group as the TOI. This is because it is not useful to run threads
executing in different images to the same goal.

Process Width (default)

The behavior depends on the group specified in the arena. Process width is the default.

Process group

TotalView allows the entire process to run, and execution continues until the TOI arrives at its goal location. To-
talView plants a temporary breakpoint at the goal location while this command executes. If another thread
reaches this goal breakpoint first, your program continues to execute until the TOI reaches the goal.

Thread group

TotalView runs all threads in the process that are in that group to the same goal as the TOI. If a thread arrives at
the goal that is not in the group of interest, this thread also stops there. The group of interest specifies the set of
threads for which TotalView waits. This means that the command does not complete until all threads in the
group of interest are at the goal.

Thread Width

Only the TOI is allowed to run. (This is not supported on all systems.)

dstep Other Commands 187

CLI Commands

Command alias

Examples
dstep

Executes the next source line, stepping into any procedure call it encounters. Although the CLI only steps the
current thread, other threads in the process run.

s 15
Executes the next 15 source lines.

f p1.2 dstep
Steps thread 2 in process 1 by one source line. This also resumes execution of all threads in process 1; they
halt as soon as thread 2 in process 1 executes its statement.

f t1.2 s
Steps thread 2 in process 1 by one source line. No other threads in process 1 execute.

Alias Definition Description

s dstep Runs the TOI one statement, while allowing other threads in the pro-
cess to run.

S {dfocus g dstep} Searches for threads in the share group that are at the same PC as the
TOI, and steps one such aligned thread in each member one statement.
The rest of the control group runs freely. This is a group stepping
command.

sl {dfocus L dstep} Steps the process threads in lockstep. This steps the TOI one statement,
and runs all threads in the process that are at the same PC as the TOI to
the same (goal) statement. Other threads in the process run freely. The
group of threads that is at the same PC is called the lockstep group.This
alias does not force process width. If the default focus is set to group,
this steps the group.

SL {dfocus gL dstep} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one statement. Other threads
in the control group run freely.

sw {dfocus W dstep} Steps worker threads in the process. This steps the TOI one statement,
and runs all worker threads in the process to the same (goal) state-
ment. The nonworker threads in the process run freely. This alias does
not force process width. If the default focus is set to group, this steps
the group.

SW {dfocus gW dstep} Steps worker threads in the group. This steps the TOI one statement,
and runs all worker threads in the same share group to the same (goal)
statement. All other threads in the control group run freely.

dstep Other Commands 188

CLI Commands

RELATED TOPICS

Setting Breakpoints in the TotalView User Guide

Creating a Process by Single Stepping in the “Manipulating Processes and Threads” chapter of the
Classic TotalView User Guide

dstepi Command

dnext Command

dfocus Command

dstepi Other Commands 189

CLI Commands

dstepi Steps machine instructions, stepping into subfunctions

Format
dstepi [-back][num-steps]

Arguments
-back

(ReplayEngine only). Steps backward to previously executed instructions, possibly moving into subroutines that
were called before the current function. This option can be abbreviated to -b.

num-steps
An integer greater than 0, indicating the number of instructions to execute.

Description
The dstepi command executes assembler instruction lines; that is, it advances the program by single instructions.

The optional num-steps argument defines the number of dstepi operations to perform. If you do not specify
num-steps, the default is 1.

For more information, see dstep on page 185.

dstepi Other Commands 190

CLI Commands

Command alias

Examples
dstepi

Executes the next machine instruction, stepping into any procedure call it encounters. Although the CLI only
steps the current thread, other threads in the process run.

si 15
Executes the next 15 instructions.

f p1.2 dstepi
Steps thread 2 in process 1 by one instruction, and resumes execution of all other threads in process 1; they
halt as soon as thread 2 in process 1 executes its instruction.

f t1.2 si
Steps thread 2 in process 1 by one instruction. No other threads in process 1 execute.

Alias Definition Description

si dstepi Runs the thread of interest(TOI) one instruction while allowing other
threads in the process to run.

SI {dfocus g dstepi} Searches for threads in the share group that are at the same PC as the
TOI, and steps one such aligned thread in each member one instruction.
The rest of the control group runs freely. This is a group stepping
command.

sil {dfocus L dstepi} Steps the process threads in lockstep. This steps the TOI one instruction,
and runs all threads in the process that are at the same PC as the TOI to
the same instruction. Other threads in the process run freely. The group
of threads that is at the same PC is called the lockstep group.This alias
does not force process width. If the default focus is set to group, this
steps the group.

SIL {dfocus gL dstepi} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one instruction. Other threads in
the control group run freely.

siw {dfocus W dstepi} Steps worker threads in the process. This steps the TOI one instruction,
and runs all worker threads in the process to the same (goal) statement.
The nonworker threads in the process run freely. This alias does not force
process width. If the default focus is set to group, this steps the group.

SIW {dfocus gW dstepi} Steps worker threads in the group. This steps the TOI one instruction, and
runs all worker threads in the same share group to the same statement.
All other threads in the control group run freely.

dstepi Other Commands 191

CLI Commands

RELATED TOPICS

Setting Breakpoints in the TotalView User Guide

Creating a Process by Single Stepping in the “Manipulating Processes and Threads” chapter of the
Classic TotalView User Guide

Stepping and Setting Breakpoints in the “Manipulating Processes and Threads” chapter of the Classic
TotalView User Guide

Using Stepping Commands in the Classic TotalView User Guide

dstep Command

dnext Command

dfocus Command

dunhold Other Commands 192

CLI Commands

dunhold Releases a held process or thread

Format
Releases a process

dunhold -process

Releases a thread
dunhold -thread

Arguments
-process

Releases processes in the current focus. You can abbreviate the -process option argument to -p.

-thread

Releases threads in the current focus. You can abbreviate the -thread option to -t.

Description
The dunhold command releases the threads or processes in the current focus. You cannot hold or release sys-
tem manager threads.

Command alias

Examples
f w uhtp

Releases all worker threads in the focus process.
htp; uht

Holds all threads in the focus process except the TOI.

Alias Definition Description

uhp {dfocus p dunhold -process} Releases the focus process

UHP {dfocus g dunhold -process} Releases the processes in the focus group

uht {dfocus t dunhold -thread} Releases the focus thread

UHT {dfocus g dunhold -thread} Releases all threads in the focus group

uhtp {dfocus p dunhold -thread} Releases the threads in the current process

dunhold Other Commands 193

CLI Commands

RELATED TOPICS

Starting Processes and Threads in the “Manipulating Processes and Threads” chapter of the Classic
TotalView User Guide

Holding and Releasing Processes and Threads in the “Manipulating Processes and Threads” chapter
of the Classic TotalView User Guide

dhold Command

dunset Other Commands 194

CLI Commands

dunset Restores default settings for variables

Format
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values
dunset -all

Arguments
debugger-var

Name of the CLI variable whose default setting is being restored.

-all

Restores the default settings of all CLI variables.

Description
The dunset command reverses the effects of any previous dset commands, restoring CLI variables to their
default settings. See TotalView Variables on page 297for information on these variables.

Tcl variables (those created with the Tcl set command) are not affected by this command.

If you use the -all option, the dunsetcommand affects all changed CLI variables, restoring them to the settings
that existed when the CLI session began. Similarly, specifying debugger-var restores that one variable.

Examples
dunset PROMPT

Restores the prompt string to its default setting; that is, {[dfocus]>}.
dunset -all

Restores all CLI variables to their default settings.

RELATED TOPICS

dset Command

duntil Other Commands 195

CLI Commands

duntil Runs the process until a target place is reached

Format
Runs to a line

duntil [-back] line-number

Runs to an absolute address
duntil [-back] -address addr

Runs into a function
duntil [-back]proc-name

Arguments
-b|-back

(ReplayEngine only). Moves back in execution time to the most recent point at which the other argument (line-
number, address, or proc-name) was executed.

line-number
A line number in your program.

-addressaddr
An absolute address in your program.

proc-name
The name of a procedure, function, or subroutine in your program.

Description
The duntil command runs the threads that are members of the focus group until execution reaches the goal
specified by the line number, absolute address, or function arguments. Threads already stopped at the goal are
not run. Execution ends when a thread reaches the goal or stops for any other reason.

The duntil command differs from other step commands when you apply it to a group, as follows:

Process group

Runs the entire group, and the CLI waits until all processes in the group contain at least one thread that has ar-
rived at the goal. This lets you sync all the processes in a group in preparation for group-stepping them.

Thread group

Runs the process (for p width) or the control group (for g width) and waits until all the running threads in the
group of interest arrive at the goal.

There are some differences in the way processes and threads run using the duntil command and other stepping
commands:

duntil Other Commands 196

CLI Commands

 Process Group Operation: TotalView examines the TOI to see if it is already at the goal. If it is,
TotalView does not run the POI. Similarly, TotalView examines all other processes in the share
group, and runs only processes without a thread at the goal. It also runs members of the control
group not in the share group.

 Group-Width Thread Group Operation: TotalView identifies all threads in the entire control group
that are not at the goal. Only those threads run. Although TotalView runs share group members in
which all worker threads are already at the goal, it does not run the workers. TotalView also runs
processes in the control group outside the share group.

 Process-Width Thread Group Operation: TotalView identifies all threads in the entire focus
process not already at the goal. Only those threads run.

Command alias

Examples
UNW 580

Runs all worker threads to line 580.
un buggy_subr

Runs to the start of the buggy_subr routine.

Alias Definition Description

un duntil Runs the TOI until it reaches a target, while allowing other threads in the
process to run.

UN {dfocus g duntil} Runs the entire control group until every process in the share group has at
least one thread at the goal. Processes that have a thread at the goal do
not run.

unl {dfocus L duntil} Runs the TOI until it reaches the target, and runs all threads in the process
that are at the same PC as the TOI to the same target. Other threads in the
process run freely. The group of threads that is at the same PC is called the
lockstep group. This does not force process width. If the default focus is set
to group, this runs the group.

UNL {dfocus gL duntil} Runs lockstep threads in the share group until they reach the target. Other
threads in the control group run freely.

unw {dfocus W duntil} Runs worker threads in the process to a target. The nonworker threads in
the process run freely. This does not force process width. If the default
focus is set to group, this runs the group.

UNW {dfocus gW duntil} Runs worker threads in the same share group to a target. All other threads
in the control group run freely.

duntil Other Commands 197

CLI Commands

RELATED TOPICS

Executing to a Selected Line in the “Stepping through and Executing your Program” chapter of the
Classic TotalView User Guide

Groups in TotalView in the TotalView User Guide

Using Run To and duntil Commands in the “Stepping (Part I)” section of the Group, Process, and Thread
Control chapter of the Classic TotalView User Guide

dup Other Commands 198

CLI Commands

dup Moves up the call stack

Format
dup [num-levels]

Arguments
num-levels

Number of levels to move up. The default is 1.

Description
The dup command moves the current stack frame up one or more levels. It also prints the new frame number
and function.

Call stack movements are all relative, so dup effectively “moves up” in the call stack. (“Up” is in the direction of
main().)

Frame 0 is the most recent—that is, currently executing—frame in the call stack; frame 1 corresponds to the pro-
cedure that invoked the currently executing frame, and so on. The call stack’s depth is increased by one each time
a program enters a procedure, and decreases by one when the program exits from it. The effect of the dup com-
mand is to change the context of commands that follow. For example, moving up one level allows access to
variables that are local to the procedure that called the current routine.

Each dup command updates the frame location by adding the appropriate number of levels.

The dupcommand also modifies the current list location to be the current execution location for the new frame,
so a subsequent dlist command displays the code surrounding this location. Entering the dup 2 command (while
in frame 0) followed by a dlist command, for instance, displays source lines centered around the location from
which the current routine’s parent was invoked. These lines are in frame 2.

Command alias

Examples
dup

Moves up one level in the call stack. As a result, subsequent dlist commands refer to the procedure that
invoked this one. After this command executes, it displays information about the new frame; for example:
1 check_fortran_arrays_ PC=0x10001254,

FP=0x7fff2ed0 [arrays.F#48]
dfocus p1 u 5

Alias Definition Description

u dup Moves up the call stack

dup Other Commands 199

CLI Commands

Moves up five levels in the call stack for each thread involved in process 1. If fewer than five levels exist, the CLI
moves up as far as it can.

RELATED TOPICS

ddown Command

dwait Other Commands 200

CLI Commands

dwait Blocks command input until the target processes stop

Format
dwait

Arguments
This command has no arguments.

Description
The dwait command waits for all threads in the current focus to stop or exit. Generally, this command treats the
focus the same as other CLI -commands.

If you interrupt this command—typically by entering Ctrl+C—the CLI manually stops all processes in the current
focus before it returns.

Unlike most other CLI commands, this command blocks additional CLI input until the blocking action is complete.

Examples
dwait

Blocks further command input until all processes in the current focus have stopped (that is, none of their
threads are still running).

dfocus {p1 p2} dwait
Blocks command input until processes 1 and 2 stop.

dwatch Other Commands 201

CLI Commands

dwatch Defines a watchpoint

Format
Defines a watchpoint for a variable

dwatch variable [-length byte-count] [-g |-p] [[-llang] -e expr] [-typetype]

Defines a watchpoint for an absolute address
dwatch -address addr-length byte-count [-g| -p] [[-llang] -eexpr] [-type type]

Arguments
variable

A symbol name corresponding to a scalar or aggregate identifier, an element of an aggregate, or a dereferenced
pointer.

-address addr
An absolute address in the file.

-length byte-count
The number of bytes to watch. If you enter a variable, the default is the variable’s byte length.

If you are watching a variable, you need to specify only the amount of storage to watch if you want to override
the default value.

-g

Stops all processes in the process’s control group when the watchpoint triggers.

-p

Stops the process that hit this watchpoint.

-t

Stops the thread that hit this watchpoint.

-l lang
Specifies the language in which you are writing an expression. The values you can use for lang are c, c++, f7, f9,
and asm, for C, C++, FORTRAN 77, Fortran-9x, and assembler, respectively. If you do not use a language code,
TotalView picks one based on the variable's type. If you specify only an address, TotalView uses the C language.

Not all languages are supported on all systems.

-eexpr
When the watchpoint is triggered, evaluates expr in the context of the thread that hit the watchpoint. In most
cases, you need to enclose the expression in braces ({ }).

-typetype
The data type of $oldval/$newvalin the expression. If you do not use this option, TotalView uses the variable’s
datatype. If you specify an address and you also use an expression, you must use this option.

dwatch Other Commands 202

CLI Commands

Description
The dwatch command defines a watchpoint on a memory location where the specified variables are stored. The
watchpoint triggers whenever the value of the variable changes. The CLI returns the ID of the newly created
watchpoint.

NOTE: Watchpoints are not available on Macintosh computers running macOS.

The value set in the STOP_ALL variable indicates which processes and threads stop executing.

The watched variable can be a scalar, array, record, or structure object, or a reference to a particular element in
an array, record, or structure. It can also be a dereferenced pointer variable.

To obtain a variable’s address if your application demands that you specify a watchpoint with an address instead
of a variable name:

 dprint &variable

 dwhat variable

The dprint command displays an error message if the variable is in a register.

See Watchpoints in the TotalView User Guide for additional information on watchpoints.

If you do not use the -length option, the CLI uses the length attribute from the program’s symbol table. This
means that the watchpoint applies to the data object named; that is, specifying the name of an array lets you
watch all elements of the array. Alternatively, you can watch a certain number of bytes, starting at the named
location.

NOTE: In all cases, the CLI watches addresses. If you specify a variable as the target of a watchpoint,
the CLI resolves the variable to an absolute address. If you are watching a local stack variable,
the position being watched is just where the variable happened to be when space for the vari-
able was allocated.

The focus establishes the processes (not individual threads) for which the watchpoint is in effect.

The CLI prints a message showing the action point identifier, the location being watched, the current execution
location of the triggering thread, and the identifier of the triggering threads.

One possibly confusing aspect of using expressions is that their syntax differs from that of Tcl. This is because you
need to embed code written in Fortran, C, or assembler within Tcl commands. In addition, your expressions often
include TotalView built-in functions.

dwatch Other Commands 203

CLI Commands

Command alias

Examples
For these examples, assume that the current process set at the time of the dwatch command consists only of
process 2, and that ptr is a global variable that is a pointer.
dwatch *ptr

Watches the address stored in pointer ptr at the time the watchpoint is defined, for changes made by process
2. Only process 2 is stopped. The watchpoint location does not change when the value of ptr changes.

dwatch {*ptr}
Performs the same action as the previous example. Because the argument to the dwatch command contains
a space, Tcl requires you to place the argument within braces.

dfocus {p2 p3} wa *ptr
Watches the address pointed to by ptr in processes 2 and 3. Because this example does not contain either a -p
or -g option, the value of the STOP_ALL variable lets the CLI know if it should stop processes or groups.

dfocus {p2 p3 p4} dwatch -p *ptr
Watches the address pointed to by ptr in processes 2, 3, and 4. The-poption indicates that TotalView only stops
the process triggering the watchpoint.

wa * aString -length 30 -e {goto $447}
Watches 30 bytes of data beginning at the location pointed to by aString. If any of these bytes change, execu-
tion control transfers to line 447.

wa my_vbl -type long
-e {if ($newval == 0x11ffff38) $stop;}

Watches the my_vbl variable and triggers when 0x11ffff38 is stored in it.
wa my_vbl -e {if (my_vbl == 0x11ffff38) $stop;}

Performs the same function as the previous example. This example tests the variable directly rather than by
using the $newval variable.

RELATED TOPICS

Watchpoints in the TotalView User Guide.
Writing Code Fragments in the “Evaluating Expressions” chapter of the Classic TotalView User Guide

dactions Command

Alias Definition Description

wa dwatch Defines a watchpoint

dwhat Other Commands 204

CLI Commands

dwhat Determines what a name refers to

Format
dwhat symbol-name

Arguments
symbol-name

Fully or partially qualified name specifying a variable, procedure, or other source code symbol.

Description
The dwhat command displays information about a symbol. For a variable name, dwhat displays the type, loca-
tion, storage class, and other relevant information for each variable of that name in the scope of the current
focus. For a type name, dwhat displays general information about the data type.

NOTE: To view information on CLI variables or aliases, use the dset or alias commands.

The focus constrains the query to a particular context.

The default width for this command is thread (t).

Command alias

Examples
The following examples the CLI display for various commands.
dprint timeout
timeout = {

tv_sec = 0xc0089540 (-1073179328)
tv_usec = 0x000003ff (1023)

}
dwhat timeout

In thread 1.1:
Name: timeout; Type: struct timeval; Size: 8 bytes; Addr: 0x11fffefc0

Scope: #fork_loop.cxx#snore \
(Scope class: Any) Address class: auto_var \
(Local variable)

wh timeval
In process 1: Type name: struct timeval; Size: 8 bytes; \

Category: Structure

Alias Definition Description

wh dwhat Determines what a name refers to

dwhat Other Commands 205

CLI Commands

Fields in type:
{ tv_sectime_t(32 bits)

tv_usecint(32 bits)
}

dlist
20 float field3_float;
21 double field3_double;
22 en_check en1;
23
24 };
25
26 main ()
27 {
28 en_check vbl;
29 check_struct s_vbl;
30 vbl = big;
31 s_vbl.field2_char = 3;
32 return (vbl + s_vbl.field2_char);
33 }

p vbl
vbl = big (0)

wh vbl
In thread 2.3:
Name: vbl; Type: enum en_check; \

Size: 4 bytes; Addr: Register 01
Scope: #check_structs.cxx#main \
(Scope class: Any)
Address class: register_var (Register \

variable)
wh en_check

In process 2:
Type name: enum en_check; Size: 4 bytes; \

Category: Enumeration
Enumerated values:

big = 0
little = 1
fat = 2
thin = 3

p s_vbl
s_vbl = { field1_int = 0x800164dc (-2147392292) field2_char = '\377'
(0xff, or -1) field2_chars = "\003" <padding> = '\000' (0x00, or 0)
field3_int = 0xc0006140 (-1073716928) field2_uchar = '\377' (0xff, or 255)
<padding> = '\003' (0x03, or 3) <padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)

field_sub = {
field1_int = 0xc0002980 (-1073731200)
<padding> = '\377' (0xff, or -1)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
field2_long = 0x0000000000000000 (0)

dwhat Other Commands 206

CLI Commands

...
}

wh s_vbl
In thread 2.3
Name: s_vbl; Type: struct check_struct; \

Size: 80 bytes; Addr: 0x11ffff240
Scope: #check_structs.cxx#main \

Scope class: Any)
Address class: auto_var (Local variable)

wh check_struct

In process 2:
Type name: struct check_struct; \

Size: 80 bytes; Category: Structure
Fields in type:
{
field1_intint(32 bits)
field2_charchar(8 bits)
field2_chars$string[2](16 bits)
<padding>$char(8 bits)
field3_intint(32 bits)
field2_uchar unsigned char(8 bits)
<padding>$char[3](24 bits)
field_substruct sub_st(320 bits){

field1_intint(32 bits)
<padding>$char[4](32 bits)
field2_longlong(64 bits)
field2_ulongunsigned long(64 bits)
field3_uintunsigned int(32 bits)
en1enum en_check (32 bits)
field3_doubledouble(64 bits)

}
...
}

RELATED TOPICS

dstatus Command

dwhere Command

dwhere Other Commands 207

CLI Commands

dwhere Displays the current execution location and call stack

Format
Displays locations in the call stack

dwhere [-level start-level] [num-levels | -all] [-a | -args] [-no_args [-locals] [-no_locals] [-registers] [-
no_registers] [-fp_registers] [-no_fp_registers] [-show_pc] [-noshow_pc] [-show_fp] [-noshow_fp][-
show_image] [-noshow_image] [-group_by property]

Displays all locations in the call stack
dwhere -all[-args] [-locals] [-registers] [-noshow_pc][-noshow_fp][-show_image]

Arguments
-all

Shows all levels of the call stack. This is the default.

-level | -l start-level
Sets the level at which dwhere starts displaying information. Frame levels start from 0, and this is the default.

num-levels
Restricts output to this number of levels of the call stack. Defaults to the value of debugger state variable MAX-
_LEVELS.

-args | -a

Displays argument names and values in addition to program location information. By default, the arguments are
not shown.

-no_args

Does not display argument names and values with program location information. This is the default.

-locals

Displays each frame’s local variables as well as program location information. This option also displays the argu-
ments to the function as well unless the -no_args option is specified. By default, the local variable information is
not shown.

-no_locals

Does not display each frame’s local variables with program location information. This is the default.

-show_pc

Displays the program counter (PC) value in the program location information. This is the default.

-no_show_pc

Does not show the PC. By default, the PC value is shown.

-show_fp

Displays the frame pointer (FP) value in the program location information. This is the default.

dwhere Other Commands 208

CLI Commands

-no_show_fp

Does not show the FP. This may be useful when comparing dwhere output. By default, the FP value is shown.

-registers

Displays each frame’s registers with program location information. By default, the register information is not
shown.

-no_registers

Does not display each frame’s registers. This is the default.

-fp_registers

Displays the floating point registers and their values as well as program location information. By default, the
floating point register information is not shown.

-no_fp_registers

Does not display the floating point registers. This is the default.

-show_image

Displays the associated image at the location, if the source line cannot be found. This is the default.

-no_show_image

Does not display the associated image at the location when the source line cannot be found. This may be useful
when comparing dwhere output. By default, dwhere displays the associated image information if the source
line cannot be found.

-group_by| -g property
Aggregates stack backtraces of the focus threads, outputting a compressed ptlist that identifies the processes
and threads containing equivalent stack frames in the backtrace. For information on the ptlist syntax, see Com-
pressed List Syntax (ptlist)or type “help ptlist” in the CLI.

This option requires a property argument to control the “equivalence” relationship of stack frames across the
threads. See “The -group_by Option” below for more information.

Description
The dwhere command prints the current execution locations and the call stacks—or sequences of procedure
calls—that led to that point. The CLI shows information for threads in the current focus; the default shows infor-
mation at the thread level.

Arguments control the amount of command output in two ways:

 The num-levels argument determines how many levels of the call stacks are displayed, counting
from the uppermost (most recent) level. Without this argument, the CLI shows all levels in the call
stack, which is the default.

 The -a option displays procedure argument names and values for each stack level.

A dwhere command with no arguments or options displays the call stacks for all threads in the target set.

dwhere Other Commands 209

CLI Commands

The MAX_LEVELSvariable contains the default maximum number of levels displayed when you do not use the
num-levels argument.

The dwhere command displays the current execution location(s) and the backtrace(s) for the threads in the cur-
rent focus, defaulting to thread level. If backtraces for multiple threads are requested, the stack displays are
aggregated.

Lines denoting evaluation frames for compiled expressions or interpreted function calls are labeled with a sus-
pended evaluation id. This id can be used to manipulate suspended evaluations with dflush and TV::expr.

Output is generated for each thread in the target focus. The output is printed directly to the console.

The -group_by Option

The -group_by option requires a property argument, which controls the “equivalence” relationship of stack
frames across the threads. When you use the --group_by option, dwhere aggregates the stack frames of each of
the focus threads, forming a tree of equivalent stack frames.

Starting at the base of the stack (closest to main() or the thread's start function), the dwhere command assigns
each frame a distance from a synthetic root frame indicated by /. Two frames are equivalent only if all of the fol-
lowing apply:

 Their distance from the root is equal.

 They have the same parent frame.

 The selected property of frames is equivalent.

The following property values are supported, with their abbreviations in parentheses:

 function (f): Equivalence based on the name of the function containing the PC for the frame.

 function+line (f+l): Equivalence based on the name of the function and the file and line number
containing the PC for the frame.

 function+offset (f+o): Equivalence based on the name of the function containing the PC for the
frame and offset from the beginning of the function to the PC for the frame.

Looking at backtraces purely by the function property is the most coarse grained grouping of threads. Choosing
a more fine-grained grouping, such as a line number within the function, provides more detail about where in the
code a given thread is executing, but it may also result in a much larger set of equivalent frames.

dwhere Other Commands 210

CLI Commands

Command alias

Examples
dwhere

Displays the call stacks for all threads in the current focus.
dfocus 2.1 dwhere 1

Displays just the most recent level of the call stack corresponding to thread 1 in process 2. This shows just the
immediate execution location of a thread or threads.

f p1.< w 5
Displays the most recent five levels of the call stacks for all threads involved in process 1. If the depth of any
call stack is less than five levels, all of its levels are shown.

This command is a slightly more complicated way of saying f p1 w 5 because specifying a process width tells
the dwhere command to ignore the thread indicator.

w 1 -a
Displays the current execution locations (one level only) of threads in the current focus, together with the
names and values of any arguments that were passed into the current process.

RELATED TOPICS

dwhat Command

dstatus Command

Alias Definition Description

w dwhere Displays the current location in the call stack

dworker Other Commands 211

CLI Commands

dworker Adds or removes a thread from a workers group

Format
dworker{ number | boolean }

Arguments
number

If positive, marks the thread of interest (TOI) as a worker thread by inserting it into the workers group.

boolean
If true, marks the TOI as a worker thread by inserting it into the workers group. If false, marks the thread as a
nonworker thread by removing it from the workers group.

Description
The dworker command inserts or removes a thread from the workers group.

If number is 0 or false, this command marks the TOI as a nonworker thread by removing it from the workers
group. If number is true or is a positive value or boolean is true, this command marks the TOI as a worker
thread by inserting it in the workers group.

Moving a thread into or out of the workers group has no effect on whether the thread is a manager thread. Man-
ager threads are threads that are created by the pthreads package to manage other threads; they never execute
user code, and cannot normally be controlled individually. TotalView automatically inserts all threads that are not
manager threads into the workers group.

Command alias

RELATED TOPICS

Organizing Chaos and Creating Groups in the “About Groups, Processes, and Threads” chapter of
the Classic TotalView User Guide

Setting Group Focus in the “Group, Process, and Thread Control” chapter of the Classic TotalView User
Guide

dgroups Command

Alias Definition Description

wof {dworker false} Removes the focus thread from the workers group

wot {dworker true} Inserts the focus thread into the workers group

exit Other Commands 212

CLI Commands

exit Terminates the debugging session

Format
exit [-force]

Arguments
-force

Exits without asking permission. This is most often used in scripts.

Description
The exit command ends the debugging session.

After you enter this command, the CLI confirms that you wish to exit, then exits. If you entered the CLI from the
TotalView GUI, this command also closes the GUI window.

NOTE: If you invoked the CLI from within the TotalView GUI, pressing Ctrl+D closes the CLI window
without exiting from TotalView.

TotalView destroys all processes and threads that it makes. Any processes that existed prior to the debugging
session (that is, TotalView attached to them because you used the dattach command) are detached and left
executing.

The exit and quit commands are interchangeable and do the same thing.

Examples
exit

Exits TotalView, leaving any attached processes running.

RELATED TOPICS

quit Command

help Other Commands 213

CLI Commands

help Displays help information

Format
help [topic]

Arguments
topic

A CLI topic or command.

Description
The help command prints information about the specified topic or command. With no argument, the CLI displays
a list of the topics for which help is available.

If the CLI needs more than one screen to display the help information, it fills the screen with data and then dis-
plays a more prompt. Press Enter to see more data or q to return to the CLI prompt.

When you enter a topic name, the CLI attempts to complete an entry. You can also enter one of the CLI built-in
aliases; for example:
d1.<> he a
Ambiguous help topic "a". Possible matches:
alias accessors arguments addressing_expressions
d1.<> he ac
"ac" has been aliased to "dactions":
dactions [bp-ids ...] [-at <source-loc>] [-disabled | \
-enabled]
Default alias: ac
...
d1.<> he acc
The following commands provide access to the properties
of TotalView objects:
...

Use the capture command to place help information into a variable.

Command alias

Examples
help help

Prints information about the help command.

Alias Definition Description

he help Displays help information

quit Other Commands 214

CLI Commands

quit Terminates the debugging session

Format
quit [-force]

Arguments
-force

Closes all TotalView processes without asking permission.

Description
The quit command terminates the TotalView session.

After you enter this command, the CLI confirms that you wish to exit, then exits. If you entered the CLI from the
TotalView GUI, this command also closes the GUI window.

NOTE: If you invoked the CLI from within the TotalView GUI, pressing Ctrl+D closes the CLI window
without exiting from TotalView.

TotalView destroys all processes and threads that it makes. Any processes that existed prior to the debugging
session (that is, TotalView attached to them because you used the dattach command) are detached and left
executing.

The exit and quit commands are interchangeable and do the same thing.

Examples
quit

Exits TotalView, leaving any attached processes running.

RELATED TOPICS

exit Command

stty Other Commands 215

CLI Commands

stty Sets terminal properties

Format
stty [stty-args]

Arguments
stty-args

One or more UNIX stty command arguments as defined in the man page for your operating system.

Description
The CLI stty command executes a UNIX stty command on the tty associated with the CLI window, allowing you
to set all your terminal’s properties. However, this is most often used to set erase and kill characters.

If you start the CLI from a terminal using the totalviewcli command, the stty command alters this terminal’s envi-
ronment. Consequently, the changes you make using this command are retained in the terminal after you exit.

If you omit the stty-args argument, the CLI returns help information on your current settings.

The output from this command is returned as a string.

Examples
stty

Prints information about your terminal settings, equivalent to having entered stty while interacting with a shell.
stty -a

Prints information on all your terminal settings.
stty erase ^H

Sets the erase key to Backspace.
stty sane

Resets the terminal’s settings to values that the shell thinks they should be. For problems with command-line
editing, use this command. (The sane argument is not available in all environments.)

unalias Other Commands 216

CLI Commands

unalias Removes a previously defined alias

Format
Removes an alias

unalias alias-name

Removes all aliases
unalias -all

Arguments
alias-name

The name of the alias to delete.

-all

Removes all aliases.

Description
The unalias command removes a previously defined alias. You can delete all aliases using the -all option. Aliases
defined in the tvdinit.tvdfile are also deleted.

Examples
unalias step2

Removes the step2 alias; step2 is undefined and can no longer be used. If step2 was included as part of the
definition of another command, that command no longer works correctly. However, the CLI only displays an
error message when you try to execute the alias that contains this removed alias.

unalias -all
Removes all aliases.

RELATED TOPICS

alias Command

217

CLI Namespace Commands

This chapter lists all CLI commands that are not in the top-level namespace.

 Commands by Category on page 218

 Accessor Functions on page 218

 Helper Functions on page 218

 All Commands on page 220

Commands by Category Accessor Functions 218

CLI Namespace Commands

Commands by Category

NOTE: This chapter describes some functionality that exists in the underlying debugging engine
TotalView, but may not be supported in the TotalView user interface. To access these features,
use the Command Line view. See on page 1for more details.

Accessor Functions
The following functions, all within the TV:: namespace, access and set TotalView properties:

 actionpoint: Accesses and sets action point properties.

 expr: Manipulates values created by the dprint -nowait command.

 focus_groups: Returns a list containing the groups in the current focus.

 focus_processes: Returns a list of processes in the current focus.

 focus_threads: Returns a list of threads in the current focus.

 group: Accesses and sets group properties.

 process: Accesses and sets process properties.

 scope: Accesses and sets scope properties.

 symbol: Accesses and sets symbol properties.

 thread: Accesses and sets thread properties.

 type: Accesses and sets data type properties.

 type_transformation: Accesses and defines type transformations.

Helper Functions
The following functions, all within the TV:: namespace, are most often used in scripts:

 dec2hex:Converts a decimal number into hexadecimal format.

 dll: Manages shared libraries.

Commands by Category Helper Functions 219

CLI Namespace Commands

 errorCodes: Returns or raises TotalView error information.

 hex2dec: Converts a hexadecimal number into decimal format.

 read_symbols: Reads shared library symbols.

 respond: Sends a response to a command.

 source_process_startup: Reads and executes a .tvd file when TotalView loads a process.

All Commands Helper Functions 220

CLI Namespace Commands

All Commands

actionpoint Helper Functions 221

CLI Namespace Commands

actionpoint Sets and gets action point properties

Format
TV::actionpointaction[object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. There are no arguments to this subcommand.

get

Retrieves the values of one or more action point properties. The other-argsargument can include
one or more property names. The CLI returns values for these properties in a list whose order is the
same as the names you enter.

If you use the -all option instead of the object-id, the CLI returns a list containing one (sublist) ele-
ment for each object.

properties

Lists the action point properties that TotalView can access. There are no arguments to this subcom-
mand.

set

Sets the values of one or more properties. The other-args argument contains property name and
value pairs.

object-id
An identifier for the action point.

other-args
Arguments that the get and set actions use.

Description
The TV::actionpointcommand examines and sets the following action point properties and states:

address

The provisional and relocated block address pair of the action point. The command focus is used to relocate the
provisional address. If the action point is planted in multiple locations (for instance, when it’s in both host CPU
code and GPU CUDA code), this is a list of pairs, where each pair is the provisional and relocated block address.

For example, this breakpoint is planted in three locations, two of which appear as “not mapped” because the
command’s focus is not on those threads:

actionpoint Helper Functions 222

CLI Namespace Commands

address: {0xff00000090003998 0x00403998} {0xff000000911f6550 <NotMapped>}
{0xff000000911f7d50 <NotMapped>}

block_count

The number of address blocks associated with an action point.

A single line of code can generate multiple instruction sequences. For example, there may be several entry
points to a subroutine, depending on where the caller is. This means that an action point can be set at many ad-
dresses even if you are placing it on a single line.

Internally, an address block represents one of these addresses.

block_enabled

Each block can be enabled or disabled separately. This property type returns a list within which 1 indicates if the
block is enabled and 0 if disabled.

This is the only property that can be set from within TotalView. All others are read-only.

conflicted

Indicates that another action point shares at least one of the action point blocks. If this condition exists, the
block is conflicted. If a block is conflicted, TotalView completely disables the action point.

The conflicted property is 1 if the action point is conflicted, and 0 if it is not.

context

A string that represents the scope in which the action point was created.

The location of every action point is represented by a string. Even action points set by clicking on a line number
are represented by strings. (In this case, the string is the line number.)

Sometimes, this string is all that is needed. Usually, however, more context is needed. For example, a line num-
ber needs a file name.

enabled

A value (either 1 or 0) indicating if the action point is enabled. A value of 1 means enabled. (settable)

expression

The expression to execute at an action point. (settable)

function

A list of soids (symbol object ID) indexed by block id, where the soid is for a subroutine or loader symbol.

id

The ID of the action point.

language

The language in which the action point expression is written.

length

The length in bytes of a watched area. This property is only valid for watchpoints. (settable)

actionpoint Helper Functions 223

CLI Namespace Commands

line

A list of soids indexed by block id, where the soid is identifies a line number symbol where the action point is set.
This property is not valid for watchpoints.

location

The string representing the breakpoint expression.

pending

A value (either 1 or 0) identifying whether the action point has at least one valid block (0) or no valid blocks (1).

pending_eval

A value (either 1 or 0) identifying whether the action point is a pending eval point (1) or is not a pending eval
point. This property applies to eval points only.

pending_in_address_space

A value (either 1 or 0) identifying whether the action point has at least one relocatable block (0) or no relocatable
blocks (1).

satisfaction_group

The group that must arrive at a barrier for the barrier to be satisfied. (settable)

share

A value (either 1 or 0) indicating if the action point is active in the entire share group. A value of 1 means that it is.
(settable)

shaded_by_better_match

A list of values (either 1 or 0) indexed by block id, indicating whether the block is not shaded (0) or shaded (1) by
a better match. (A shaded block is one that has been marked as nullified by TotalView.).

stop_when_done

A value that indicates what is stopped when a barrier is satisfied (in addition to the satisfaction set). Values are
process, group, or none. (settable)

stop_when_hit

A value that indicates what is stopped when an action point is hit (in addition to the thread that hit the action
point). Values are process, group, or none. (settable)

type

The object’s type. (See type_valuesfor a list of possible types.)

type_values

Lists values that can TotalView can assign to the typeproperty: break, eval, process_barrier, thread_barrier,
and watch.

value_type

A string that represents the type of the value being watched. Valid for watch points only.

actionpoint Helper Functions 224

CLI Namespace Commands

Examples
TV::actionpoint set 5 share 1 enable 1

Shares and enables action point 5.
f p3 TV::actionpoint set -all enable 0

Disables all the action points in process 3.
foreach p [TV::actionpoint properties] {
puts [format “%20s %s” $p: \
[TV::actionpoint get 1 $p]] }

Dumps all the properties for action point 1. Here is what your output might look like:

RELATED TOPICS

dactions Command

dec2hex Helper Functions 225

CLI Namespace Commands

dec2hex Converts a decimal number into hexadecimal

Format
TV::dec2hexnumber

Arguments
number

A decimal number to convert.

Description
The TV::dec2hex command converts a decimal number into hexadecimal. This command correctly manipulates
64-bit values, regardless of the size of a long value on the host system.

RELATED TOPICS

hex2decCommand

dll Helper Functions 226

CLI Namespace Commands

dll Manages shared libraries

Format
TV::dll action [dll-id-list |-all] [other-args]

Arguments
action

The action to perform, as follows:

close

Dynamically unloads the shared object libraries that were dynamically loaded by the ddlopen com-
mands corresponding to the list of dll-ids.

If you use the -all option, TotalView closes all libraries that it opened.

commands

Displays available subcommands. The CLI responds by displaying these four action subcommands.
There are no arguments to this subcommand.

get

Retrieves the values of one or more TV::dll properties. The other-args argument can include one or
more property names.

If you use the -all option as the dll-id-list, the CLI returns a list containing one (sublist) element for
each object.

properties

Lists the TV::dll properties that TotalView can access. This subcommand takes no arguments.

resolution_urgency_values

Returns a list of values that this property can take. This list is operating-system specific, but always in-
cludes {lazy now}.

symbol_availability_values

Returns a list of values that this property can take. This list is operating system specific, but always in-
cludes {lazy now}.

dll-id-list

A list of one or more dll-ids. These are the IDs returned by the ddlopen command.

-all

Performs the specified action for all libraries opened with the ddlopen command.

Description
The TV::dll command either closes shared libraries that were dynamically loaded with the ddlopen command or
obtains information about loaded shared libraries.

dll Helper Functions 227

CLI Namespace Commands

Examples
TV::dll close 1

Closes the first shared library that you opened.

d1.<> ddlopen /usr/lib64/libnuma.so
Process 1 has loaded the library /usr/lib64/libnuma.so
1
d1.<> ddlopen /usr/lib64/libz.so
Process 1 has loaded the library /usr/lib64/libz.so
2
d1.<> TV::dll get -all id
1 2
d1.<> TV::dll get 2 name
/usr/lib64/libz.so

First opens two shared libraries, then retrieves some properties: first, the id for both; then the name of the
second library.

RELATED TOPICS

ddlopenCommand

errorCodes Helper Functions 228

CLI Namespace Commands

errorCodes Returns or raises TotalView error information

Format
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information
TV::errorCodes number_or_tag [-raise [message]]

Arguments
number_or_tag

An error code mnemonic tag or its numeric value.

-raise

Raises the corresponding error. If you append a message, TotalView returns this string. Otherwise, TotalView
uses the human-readable string for the error.

message
An optional string used when raising an error.

Description
The TV::errorCodes command lets you manipulate the TotalView error code information placed in the Tcl
errorCodes variable. The CLI sets this variable after every command error. Its value is intended to be easy to
parse in a Tcl script.

When the CLI or TotalView returns an error, errorCodesis set to a list with the following format:

TOTALVIEW error-code subcodes... string

where:

 The first list element is always TOTALVIEW.

 The second list element is always the error code.

 Thesubcodes argument is not used at this time.

 The last list element is a string describing the error.

With a tag or number, this command returns a list containing the mnemonic tag, the numeric value of the tag,
and the string associated with the error.

The -raise option raises an error. If you add a message, that message is used as the return value; otherwise, the
CLI uses its textual explanation for the error code. This provides an easy way to return errors from a script.

errorCodes Helper Functions 229

CLI Namespace Commands

Examples
foreach e [TV::errorCodes] {
puts [eval format {"%20s %2d %s"} \
[TV::errorCodes $e]]}

Displays a list of all TotalView error codes.

RELATED TOPICS

dprintCommand

TV::exprCommand

expr Helper Functions 230

CLI Namespace Commands

expr Manipulates values created by the dprint -nowait command

Format
TV::expraction[susp-eval-id][other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

delete

Deletes all data associated with a suspended ID. If you use this command, you can specify an other-
args argument. If you use the -done option, the CLI deletes the data for all completed expressions;
that is, those expressions for which TV::expr get susp-eval-iddone returns 1. If you specify-all, the
CLI deletes all data for all expressions.

get

Gets the values of one or more expr properties. The other-argsargument can include one or more
values. The CLI returns these values in a list whose order is the same as the property names.

If you use the -all option instead of susp-eval-id, the CLI returns a list containing one (sublist) ele-
ment for each object.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.

susp-eval-id
The ID returned or thrown by the dprint command, or printed by the dwhere command.

other-args
Arguments required by the delete subcommand.

Description
The TV::expr command, in addition to showing you command information, returns and deletes values returned
by adprint -nowaitcommand. You can use the following properties for this command:

done

TV::expr returns 1 if the process associated with susp-eval-idhas finished in all focus threads. Otherwise, it re-
turns 0.

expression

The expression to execute.

expr Helper Functions 231

CLI Namespace Commands

focus_threads

A list of dpid.dtid values in which the expression is being -executed.

id

The susp-eval-idof the object.

initially_suspended_process

A list of dpid IDs for the target processes that received control because they executed the function calls or com-
piled code. You can wait for processes to complete by entering the following:

dfocus p dfocus [TV::expr get \
susp-eval-id \
initially_suspended_processes] dwait

result

A list of pairs for each thread in the current focus. Each pair contains the thread as the first element and that
thread’s result string as the second element; for example:

d1.<> dfocus {1.1 2.1} TV::expr \
get susp-eval-id result

{{1.1 2} {2.1 3}} d1.<>
The result of expression susp-eval-idin thread 1.1 is 2, and in thread 2.1 is 3.

status

A list of pairs for each thread in the current focus. Each pair contains the thread ID as the first element and that
thread’s status string as the second element. The possible status strings are done, suspended, and {error-
diag}.

For example, if expression susp-eval-idfinished in thread 1.1, suspended on a breakpoint in thread 2.1, and re-
ceived a syntax error in thread 3.1, that expression’s status property has the following value when TV::expris fo-
cused on threads 1.1, 2.1, and 3.1:

d1.<> dfocus {t1.1 t2.1 t3.1} \
TV::expr get 1 status

{1.1 done} {2.1 suspended} {3.1 {error {Symbol nothing2 not found}}}
d1.<>

RELATED TOPICS

dprintCommand

focus_groups Helper Functions 232

CLI Namespace Commands

focus_groups Returns a list of groups in the current focus

Format
TV::focus_groups

Arguments
This command has no arguments

Description
The TV::focus_groupscommand returns a list of all groups in the current focus.

Examples
f d1.< TV::focus_groups

Returns a list containing one entry, which is the ID of the control group for process 1.

RELATED TOPICS

focus_processesCommand

focus_threadsCommand

dfocusCommand

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

focus_processes Helper Functions 233

CLI Namespace Commands

focus_processes Returns a list of processes in the current focus

Format
TV::focus_processes [-all| -group | -process |-thread]

Arguments
-all

Changes the default width to all.

-group

Changes the default width to group.

-process

Changes the default width to process.

-thread

Changes the default width to thread.

Description
The TV::focus_processes command returns a list of all processes in the current focus. If the focus width is some-
thing other than d (default), the focus width determines the set of processes returned. If the focus width is d, the
TV::focus_processes command returns process width. Using any of the options changes the default width.

Examples
f g1.< TV::focus_processes

Returns a list containing all processes in the same control as process 1.

RELATED TOPICS

focus_processesCommand

focus_threadsCommand

dfocusCommand

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

focus_threads Helper Functions 234

CLI Namespace Commands

focus_threads Returns a list of threads in the current focus

Format
TV::focus_threads [-all | -group | -process | -thread]

Arguments
-all

Changes the default width to all.

-group

Changes the default width to group.

-process

Changes the default width to process.

-thread

Changes the default width to thread.

Description
The TV::focus_threads command returns a list of all threads in the current focus. If the focus width is something
other than d(default), the focus width determines the set of threads returned. If the focus width is d, the
TV::focus_threads command returns thread width. Using any of the options changes the default width.

Examples
f p1.< TV::focus_threads

Returns a list containing all threads in process 1.

RELATED TOPICS

focus_processesCommand

focus_threadsCommand

dfocusCommand

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

group Helper Functions 235

CLI Namespace Commands

group Sets and gets group properties

Format
TV::groupaction[object-id][other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use additional arguments with this subcommand.

get

Gets the values of one or more group properties. The other-argsargument can include one or more
property names. The CLI returns the values for these properties in a list in the same order as you en-
tered the property names.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element
for each group.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.

set

Sets the values of one or more properties. The other-args argument is a sequence of property name
and value pairs.

object-id
The group ID. If you use the -all option, TotalView executes this operation on all groups in the current focus.

other-args
Arguments required by the get and set subcommands.

Description
The TV::group command lets you examine and set the following group properties and states:

actionpoint_count

The number of shared action points planted in the group. This is only valid for share groups and shared action
points that are associated with the share group containing the process, rather than with the process itself.

When you obtain the results of this read-only value, the number may not look correct as this number also in-
cludes “magic breakpoints”. These are breakpoints that TotalView sets behind the scene; they are not usually vis-
ible. In addition, these magic breakpoints seldom appear when you use the dactions command.

group Helper Functions 236

CLI Namespace Commands

canonical_execution_name

The absolute file name of the program being debugged. If you had entered a relative name, TotalView finds this
absolute name.

count

The number of members in a group.

executable

Like canonical_execution_name, this is the absolute file name of the program being debugged. It differs in
that it contains symbolic links and the like that exist for the program.

id

The ID of the object.

member_type

The type of the group’s members, either process or thread.

member_type_values

A list of all possible values for the member_type -property. For all groups, this is a two-item list with the first be-
ing the number of proess groups and the second being the number of thread groups. In many ways, this is re-
lated to the type_values property, which is a list values the type property may take.

members

A list of a group’s processes or threads.

type

The group’s type. Possible values are control, lockstep, share, user, and workers.

type_values

A list of all possible values for the type property.

Examples
TV::group get 1 count

Returns the number of objects in group 1.

RELATED TOPICS

focus_groupsCommand

dworkerCommand

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

processCommand

threadCommand

group Helper Functions 237

CLI Namespace Commands

hex2dec Helper Functions 238

CLI Namespace Commands

hex2dec Converts a hexadecimal number to decimal

Format
TV::hex2dec number

Arguments
number

A hexadecimal number to convert.

Description
TheTV::hex2deccommand converts a hexadecimal number to decimal. You can type 0x before this value. The CLI
correctly manipulates 64-bit values, regardless of the size of a long value.

RELATED TOPICS

dec2hexCommand

process Helper Functions 239

CLI Namespace Commands

process Sets and gets process properties

Format
TV::processaction[object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this subcommand.

get

Gets the values of one or more process properties. The other-argsargument can include one or
more property names. The CLI returns these property values in a list whose order is the same as the
names you enter. If you use the -all option instead of object-id, the CLI returns a list containing one
(sublist) element for each object.

properties

Displays the properties that the CLI can access. Do not use other arguments with this subcommand.

set

Sets the values of one or more properties. The other-args arguments contains pairs of property
names and values.

object-id
An identifier for a process. For example, 1 represents process 1. If you use the -all option, the operation exe-
cutes upon all objects of this class in the current focus.

other-args
Arguments required by the get and set subcommands.

Description
The TV::process command lets you examine and set process properties and states, as the following list
describes:

cannonical_executable_name

The full pathname of the current executable.

clusterid

The ID of the cluster containing the process. This is a number uniquely identifying the TotalView server that owns
the process. The ID for the cluster TotalView is running in is always 0 (zero).

data_size

The size of the process’s data segment.

process Helper Functions 240

CLI Namespace Commands

duid

The internal unique ID associated with an object.

executable

Like canonical_execution_name, this is the absolute file name of the program being debugged. It differs in
that it contains an symbolic links and the like that exist for the program.

heap_size

The amount of memory currently being used for data created at runtime. Stated in a different way, the heap is
an area of memory that your program uses when it needs to dynamically allocate memory. For example, calls to
the malloc()function allocate space on the heap while the free() function releases the space.

held

A Boolean value (either 1 or 0) indicating if the process is held. (1 means that the process is held.)

hia_guard_max_size

The value set for the maximum size for guard blocks that surround a memory allocation. See the Debugging
Memory Problems with MemoryScape™ for information on what this size represents.

hia_guard_payload_alignment

The number of bits the guard block is aligned to.

hia_guard_pre_pattern

The numerical value of the bit pattern written into the guard block preceding an allocated memory block.

hia_guard_pre_size

The number of bits into which the guard block preceding an allocated memory block is written.

hia_guard_post_pattern

The numerical value of the bit pattern written into the guard block following an allocated memory block.

hia_guard_post_size

The number of bits into which the guard block following an allocated memory block is written.

hia_paint_pattern_width

Deprecated

hostname

A name of the process’s host computer and operating system (if needed).

is_parallel

Contains a value indicating if the current process is a parallel process. If it is, its value is 1. Otherwise, its value is
0.

id

The process ID.

process Helper Functions 241

CLI Namespace Commands

image_ids

A list of the IDs of all the images currently loaded into the process both statically and dynamically. The first ele-
ment of the list is the current executable.

is_parallel

Contains a value indicating if the current process is a parallel process. If it is, its value is 1. Otherwise, its value is
0.

nodeid

The ID of the node upon which the process is running. The ID of each processor node is unique within a cluster.

parallel_attach_subset

Contains the specification for MPI ranks to be attached to when an MPI job is created or attached to. See
-parallel_attach_subset subset_specification.

proc_name

The name of the process currently being executed.

rank

The rank of the currently selected process.

stack_size

The amount of memory used by the currently executing block or routines, and all the routines that have invoked
it. For example, if your main routines invokes the foo() function, the stack contains two groups of information—
these groups are called frames. The first frame contains the information required for the execution of your main
routine and the second, which is the current frame, contains the information needed by the foo() function. If
foo() invokes the bar() function, the stack contains three frames. Whenfoo()finishes executing, the stack only
contains one frame.

stack_vm_size

The logical size of the stack is the difference between the current value of the stack pointer and the address
from which the stack originally grew. This value can be different from the size of the virtual memory mapping in
which the stack resides. For example, the mapping can be larger than the logical size of the stack if the process
previously had a deeper nest of procedure calls or made memory allocations on the stack, or it can be smaller if
the stack pointer has advanced but the intermediate memory has not been touched.

The stack_vm_size value is this difference in size.

state

Current state of the process. See state_valuesfor a list of states.

state_values

A list of all possible values for the stateproperty: break, error, exited, running, stopped, or watch.

syspid

The system process ID.

process Helper Functions 242

CLI Namespace Commands

target_architecture

The machine architecture upon which the current process is executing.

target_byte_ordering

The bit ordering of the current machine. This is either little_endian or big_endian.

target_processor

The kind of processor upon which the program is executing. For example, this could be x86-64.

text_size

The amount of memory used to store your program’s machine code instructions. The text segment is some-
times called the code segment.

threadcount

The number of threads in the process.

threads

A list of threads in the process.

vm_size

The sum of the mapping sizes in the process’s address space.

Examples
f g TV::process get -all id threads

For each process in the group, creates a list with the process ID followed by the list of threads; for example:
{1 {1.1 1.2 1.4}} {2 {2.3 2.5}} {3 {3.1 3.7 3.9}}

TV::process get 3 threads
Gets the list of threads for process 3; for example:
1.1 1.2 1.4

TV::process get 1 image_ids
Returns a list of image IDs in process 1; for example:
1|1 1|2 1|3 1|4

RELATED TOPICS

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

focus_processesCommand

groupCommand

threadCommand

read_symbols Helper Functions 243

CLI Namespace Commands

read_symbols Reads shared library symbols

Format
Reads symbols from libraries

TV::read_symbols -lib lib-name-list

Reads symbols from libraries associated with a stack frame
TV::read_symbols -frame[number]

Reads symbols for all stack frames in the backtrace
TV::read_symbols -stack

Arguments
-lib [lib-name-list]

Tells TotalView to read symbols for all libraries whose names are contained within thelib-name-list argument.
Each name can include the asterisk (*) and question mark (?) wildcard characters.

This command ignores the current focus; libraries for any process can be affected.

-frame [number]

Tells TotalView to read the symbols for the library associated with the current stack frame. If you also enter a
frame number, TotalView reads the symbols for the library associated with that frame.

-stack

Reads the symbols for every frame in the backtrace. This is the same as right-clicking in the Stack Trace Pane and
selecting the Load All Symbols in Stack command. If, while reading in a library, TotalView may also need to
read in the symbols from additional libraries.

Description
The TV::read_symbols command reads debugging symbols from one or more libraries that TotalView has
already loaded but whose symbols have not yet been read. They are not yet read because the libraries were
included within either the TV::dll_read_loader_symbols_onlyor TV::dll_read_no_symbolslists.

For more information, see “Preloading Shared Libraries” in the “Debugging Programs” chapter of the Classic
TotalView User Guide.

respond Helper Functions 244

CLI Namespace Commands

respond Provides responses to commands

Format
TV::respond response command

Arguments
response

The response to one or more commands. If you include more than one response, separate the responses with
newline -characters.

command
One or more commands that the CLI executes.

Description
TheTV::respond command executes a command. The command argument can be a single command or a list of
commands. In most cases, you place this information in braces ({}). If the CLI asks questions while command is
executing, you are not asked for the answer. Instead, the CLI uses the characters in the response string for the
argument. If more than one question is asked and strings within the response argument have all been used, The
TV::respond command starts over at the beginning of the response string. If response does not end with a new-
line, the TV::respondcommand appends one.

Do not use this command to suppress the MORE prompt in macros. Instead, use the following command:
dset LINES_PER_SCREEN 0

The most common values for response are y and n.

NOTE: If you are using the TotalView GUI and the CLI at the same time, your CLI command might
cause dialog boxes to appear. You cannot use the TV::respondcommand to close or interact
with these dialog boxes.

Examples
TV::respond {y} {exit}

Exits from TotalView. This command automatically answers the “Do you really wish to exit TotalView” question
that the exit command asks.

set f1 y
set f2 exit
TV::respond $f1 $f2

A way to exit from TotalView without seeing the “Do you really wish to exit TotalView” question. This example
and the one that preceded are not really what you would do as you would use the exit -force command.

scope Helper Functions 245

CLI Namespace Commands

scope Sets and gets internal scope properties

Format
TV::scope action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

cast

Attempts to find or create the type named by the other-args argument in the given scope.

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

create

Allows you to create blocks, enum_type, named_constant, typedef, upc_shared_type, and variable
symbols. The type of symbol determines the properties you meed to specify. In all cases, you must
specify the kind property. If you are creating a located symbol such as a block, you need to provide a
location. If you are creating a upc_shared_type, you need a target_type index.

dump

Dump all properties of all symbols in the scope and in the enclosed scope.

get

Returns properties of the symbols whose soids are specified. Specify the kinds of properties using
theother-argsargument.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element
for each object.

lookup

Look up a symbol by name. Specify the kind of lookup using the other-args argument. The values
you can enter are:

by_language_rules: Use the language rules of the language of the scope to find a single name.

by_path: Look up a symbol using a pathname.

by_properties [proptery_regexp_pair]: TotalView recurses down the scope tree after it visits a sym-
bol. This means TotalView will search for matching symbols in the specified scope and any nested
scope. The walk property shows an example.

by_type_index: Look up a symbol using a type index.

in_scope: Look up a name in the given scope and in all enclosing scopes, and in the global scope.

scope Helper Functions 246

CLI Namespace Commands

loader_sym_by_regexp: Look up loader symbols using a regular expression to match the base
name. For example:

TV::scope lookup $scope_id loader_sym_by_regexp {print$}
finds all of the loader symbols ending in "print" contained in the given scope.

lookup_keys

Displays the kinds of lookup operations that you can perform.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
The arguments displayed are those that are displayed for the scope of all types. Additional properties
also exist but are not shown.(Only the ones used by all are visible.) For more information, see
TV::symbol.

walk

Walk the scope, calling Tcl commands at particular points in the walk. The commands are named us-
ing the following options:

by_properties [proptery_regexp_pair]: TotalView recurses down the scope tree after it visits a sym-
bol. This means TotalView will search for matching symbols in the specified scope and any nested
scope. For example:

TV::scope walk $scope_id by_properties \
kind typedef base_name "^__BMN_.*$"
-pre_scope tcl_cmd: Names the commands called before walking a scope.

-pre_sym tcl_cmd: Names the commands called before walking a symbol.

-post_scope tcl_cmd: Names the commands called after walking a scope.

-post_symboltcl_cmd: Names the commands called after walking a symbol.

tcl_cmd: Names the commands called for each symbol.

object-id

The ID of a scope.

other-args
Arguments required by the get subcommand.

Description
The TV::scope command lets you examine and set a scope’s properties and states.

Examples
TV::scope create $scope kind [kind] \
[required_property_regexp_pair]...
[non-required_property_regexp_pair]...

This is the general specification for creating a symbol
TV::scope create 1|31 kind block location {ldam 0x12}

scope Helper Functions 247

CLI Namespace Commands

Create a block. A block should have a length. However, you can set the length later using the set property.

source_process_startup Helper Functions 248

CLI Namespace Commands

source_process_startup Reads, then executes a .tvd file when a process is loaded

Format
TV::source_proccess_startup process_id

Arguments
process_id

The PID of the current process.

Description
The TV::source_process_startup command loads and interprets the .tvd file associated with the current pro-
cess. That is, if a file named executable.tvd exists, the CLI reads and then executes the commands in it.

RELATED TOPICS

Initializing TotalView in the “Loading and Managing Sessions” chapter of the Classic TotalView User
Guide

symbol Helper Functions 249

CLI Namespace Commands

symbol Gets and sets symbol properties

Format
TV::symbol action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

code_unit_by_soid

Returns the containing scope of a line number. For example:

TV::symbol code_unit_by_soid $start_line
commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

dump

Dumps all properties of the symbol whose soid (symbol object ID) is named. Do not use additional
arguments with this command.

get

Returns properties of the symbols whose soids are specified here. The other-argsargument names
the properties to be returned.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
These properties are discussed later in this section.

read_delayed

Only global symbols are initially read; other symbols are only partially read. This command forces
complete symbol processing for the compilation units that contain the named symbols.

resolve_final

Performs a sequence of resolve_next operations until the symbol is no longer undiscovered. If you
apply this operation to a symbol that is not undiscovered, it returns the symbol itself.

resolve_next

Some symbols only serve to hold a reference to another symbol. For example, a typedef is a refer-
ence to the aliased type, or a const-qualified type is a reference to the non-consts qualified type.
These reference types are called undiscovered symbols. This operation, when performed on an un-
discovered symbol, returns the symbol the type refers to. When this is performed on a symbol, it re-
turns the symbol itself.

symbol Helper Functions 250

CLI Namespace Commands

rebind

Changes one or more structural properties of a symbol. These operations can crash TotalView or
cause it to produce inconsistent results. The properties that you can change are:

address: the new address:
base_name: the new base name. The symbol must be a base name.
line_number: the new line number. The symbol must be a line number symbol.
loader_name: the new loader name and a file name.
scope: the soid of a new scope owner.
type_index: the new type index, in the form <n, m, p>. The symbol must be a type.

set

Sets a symbol’s property. Not all properties can be set. Determine which properties can be set using
the writable_properties property. For example,

TV::symbol set $new_upc_type \
type_index $old_idx

writable_properties

Returns a list of writable properties. For example:

TV::symbol writable_properties $symbol_id
object-id

The ID of a symbol.

other-args
Arguments required by the get subcommand.

Description
The TV::symbol command lets you examine and set the symbol properties and states.

symbol Helper Functions 251

CLI Namespace Commands

Symbol Properties

Table 3lists the properties associated with the symbols information that TotalView stores. Not all of this informa-
tion will be useful when creating transformations. However, it is possible to come across some of these
properties and this information will help you decide if you need to use it in your transformation. In general, the
properties used in the transformation files that Perforce Software provided will be the ones that you will use.

Table 3: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

aggregate_-
type

X X aggregate_kind
artificial
external_name

full_pathname
id
kind

length
logical_scope_owner
scope_owner

array_type X X artificial
data_addressing
element_addressing
external_name
full_pathnameid

index_type_index
kind
logical_scope_owner
lower_bound
scope_owner
stride_bound

submembers
target_type_index
upper_bound
validator

block X address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

char_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

code_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

ds_ undis-
covered_
type

X X artificial

id

kind
logical_scope_owner
scope_owner

target_type_index

enum_type X X artificial
enumerators
external_name

full_pathname
id
kind

logical_scope_owner
scope_owner
value_size

file X artificial
compiler_kind
delayed_symbol
demangler

full_pathname
idkind
language

logical_scope_owner
scope_owner

symbol Helper Functions 252

CLI Namespace Commands

float_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

function_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

image X artificial
full_pathname

id kind

int_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

label X address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

linenumber address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

loader_sym-
bol

address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

member X address_class
artificial
full_pathname
id

inheritance
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

module X artificial
full_pathname

id
kind

logical_scope_owner
scope_owner

named_-
constant

X artificial
full_pathname
id

kind
length
logical_scope_owner

scope_owner
type_index
value

namespace X artificial
full_pathname

idkind logical_scope_owner
scope_owner

Table 3: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

symbol Helper Functions 253

CLI Namespace Commands

opaque_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

pathname_-
reference_sy
mbol

X artificial
id
full_pathname

kind
lookup_scope
logical_scope_owner

resolved_symbol_-
pathname
scope_owner

pointer_type X artificial
external_name
full_pathname
id

kind
length
logical_scope_owner
scope_owner

target_type_index
validator

qualified_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

qualification
scope_owner
target_type_index

soid_referen
ce_symbol

X artificial
full_pathname
id

kind
logical_scope_owner
resolved_symbol_id

scope_owner

stringchar_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

subroutine X address_class
artificial
full_pathname
id

kind
length
location
logical_scope_owner

return_type_index
scope_owner
static_chain
static_chain_height

typedef X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner
target_type_index

variable X address_class
artificial
full_pathname
id

is_argument
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

Table 3: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

symbol Helper Functions 254

CLI Namespace Commands

Figure 1 on page 255 shows how these symbols are related.

void_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

wchar_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

Table 3: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

symbol Helper Functions 255

CLI Namespace Commands

Here are definitions of the properties associated with these symbols.

address_class

contains the location for a variety of objects such as a func, global_var, and a tls_global.

aggregate_kind

One of the following: struct, class, or union.

artificial

A Boolean (0 or 1) value where true indicates that the compiler generated the symbol.

compiler_kind

The compiler or family of compiler used to create the file; for example, gnu, xlc, intel, and so on.

Figure 1, Symbols Architecture

symbol Helper Functions 256

CLI Namespace Commands

data_addressing

Contains additional operands to get from the base of an object to its data; for example, a Fortran by-desc array
contains a descriptor data structure. The variable points to the descriptor. If you do an addc operation on the
descriptor, you can then do an indirect operation to locate the data.

delayed_symbol

Indicates if a symbol has been full or partially read-in. The following constants are or’d and returned: skim, in-
dex, line, and full.

demangler

The name of demangler used by your compiler.

element_addressing

The location containing additional operands that let you go from the data’s base location to an element.

enumerators

Name of the enumerator tags. For example, if you have something like enum[R,G,B], the tags would be R, G,
and B.

external_name

When used in data types, it translates the object structure to the type name for the language. For example, if you
have a pointer that points to an int, the external name is int *.

full_pathname

This is the # separated static path to the variable; for example, ##image#file#externalname....

id

The internal object handle for the symbol. These symbols always take the form number|number.

index_type_index

The array type’s index type_index; for example, this indicates if the index is a 16-, 32-, 64-bit, and so on.

inheritance

For C++ variables, this string is as follows: [virtual] [{ private | protected | public }] [base class]

is_argument

A true/false value indicating if a variable was a parameter (dummy variable) passed into the function.

Figure 2, Data Addressing

symbol Helper Functions 257

CLI Namespace Commands

kind

One of the symbol types listed in the first column of the previous table.

language

A string containing a value such as C, C++, or Fortran.

length

The byte size of the object. For example, this might represent the size of an array or a subroutine.

location

The location in memory where an object’s storage begins.

logical_scope_owner

The current scope’s owner as defined by the language’s rules.

lookup_scope

This is a pathname reference symbol that refers to the scope in which to look up a pathname.

lower_bound

The location containing the array’s lower bound. This is a numeric value, not the location of the first array item.

ordinal

The order in which a member or variable occurred within a scope.

Figure 3, Logical Scope Owner

symbol Helper Functions 258

CLI Namespace Commands

qualification

A qualifier to a data type such as const or volatile. These can be chained together if there is more than one
qualifier.

resolved_symbol_id

The soid to lookup in a soid reference symbol.

resolved_symbol_pathname

The pathname to lookup in a Fortran reference symbol.

return_type_index

The data type of the value returned by a function.

scope_owner

The ID of the symbol’s scope owner. (This is illustrated by the figure within the logical_scope_owner defini-
tion.)

static_chain

The location of a static link for nested subroutines.

static_chain_height

For nested subroutines, this indicates the nesting level.

stride_bound

Location of the value indicating an array’s stride.

submembers

If you have an array of aggregates or pointers and you have already dived on it, this property gives you a list of
{name type} tuples where nameis the name of the member of the array (or *if it's an array of pointers), and ty-
peis the soid of the type that should be used to dive in all into that field.

target_type_index

The type of the following entities: array, ds_undiscovered_type, pointer, and typedef.

type_index

One of the following: member, variable, or named_constant.

upper_bound

The location of the value indicating an array’s upper bound or extent.

Figure 4, Qualification

symbol Helper Functions 259

CLI Namespace Commands

validator

The name of an array or pointer validator. This looks at an array descriptor or pointer to determine if it is allo-
cated and associated.

value

For enumerators, this indicates the item’s value in hexadecimal bytes.

value_size

For enumerators, this indicates the length in bytes

Symbol Namespaces

The symbols described in the previous section all reside within namespaces. Like symbols, namespaces also have
properties. Table 1 lists the properties associated with a namespace. Figure 5 on page 261illustrates how these
namespaces are related.

Table 4: Namespace Properties

Symbol Namespaces Properties

block_symname base_name

c_global_symname base_name loader_name

loader_file_path

c_local_symname base_name

c_type_symname base_name type_index

cplus_global_symname base_name cplus_template_types

cplus_class_name cplus_type_name

cplus_local_name loader_file_path

cplus_overload_list loader_name

cplus_local_symname base_name cplus_overload_list

cplus_class_name cplus_template_types

cplus_local_name cplus_type_name

cplus_type_symname base_name cplus_template_types

cplus_class_name cplus_type_name

cplus_local_name type_index

cplus_overload_list

file_symname base_name directory_path

directory_hint

fortran_global_symname base_name loader_file_path

symbol Helper Functions 260

CLI Namespace Commands

fortran_module_name loader_name

fortran_parent_function_name

fortran_local_symname base_namefortran_parent_func-
tion_name

fortran_module_name

fortran_type_symname base_name fortran_parent_function_name

fortran_module_name type_index

image_symname base_name member_name

directory_path node_name

label_symname base_name

linenumber_symname linenumber

loader_symname loader_file_path loader_name

module_symname base_name

type_symname type_index

Table 4: Namespace Properties

Symbol Namespaces Properties

symbol Helper Functions 261

CLI Namespace Commands

Many of the following properties are used in more than one namespace. The explanations for these properties
will assume a limited context as their use is similar. Some of these definitions assume that you’re are looking at
the following function prototype:
void c::foo<int>(int &)

base_name

The name of the function; for example, foo.

cplus_class_name

The C++ class name; for example, c.

cplus_local_name

Not used.

cplus_overload_list

The function’s signature; for example,int &.

Figure 5, Namespace Architecture

symbol Helper Functions 262

CLI Namespace Commands

cplus_template_types

The template used to instantiate the function; for example: <int>.

cplus_type_name

The data type of the returned value; for example, void.

directory_hint

The directory to which you were attached when you started TotalView.

directory_path

Your file’s pathname as it is named within your program.

fortran_module_name

The name of your module. Typically, this looks like module‘var or module‘subr‘var.

fortran_parent_function_name

The parent of the subroutine. For example, the parent is module in a reference such as module‘subr. If you
have an inner subroutine, the parent is the outer subroutine.

linenumber

The line number at which something occurred.

loader_file_path

The file’s pathname.

loader_name

The mangled name.

member_name

In a library, you might have an object reference; for example, libC.a(foo.so). foo.so is the member name.

node_name

Not used.

type_index

A handle that points to the type definition. Its format is <number,number,number>.

thread Helper Functions 263

CLI Namespace Commands

thread Gets and sets thread properties

Format
TV::thread action[object-id][other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this option.

get

Gets the values of one or more thread properties. The other-argsargument can include one or more
property names. The CLI returns these values in a list, and places them in the same order as the
names you enter.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element
for each object.

properties

Lists an object’s properties. Do not use other arguments with this option.

set

Sets the values of one or more properties. The other-args argument contains paired property
names and values.

object-id
A thread ID. If you use the -all option, the operation is carried out on all threads in the current focus.

other-args
Arguments required by the get and set subcommands.

Description
The TV::thread command examines the following thread properties and states:

canonical_executable_name

The absolute file name of the program being debugged. If you had entered a relative name, TotalView find this
absolute name.

continue_sig

The signal to pass to a thread the next time it runs. On some systems, the thread receiving the signal might not
always be the one for which this property was set.

current_ap_id

The ID of the action point at which the current thread is stopped.

thread Helper Functions 264

CLI Namespace Commands

dpid

The ID of the process associated with a thread.

duid

The internal unique ID associated with the thread.

held

A Boolean value (either 1 or 0) indicating if the thread is held. (1 means that the thread is held.) (settable)

id

The ID of the thread.

manager

A Boolean value (either 1 or 0) indicating if this is a system manger thread. (1 means that it is a system manager
thread.)

pc

The current PC at which the target is executing. (settable)

sp

The value of the stack pointer.

state

The current state of the target. See state_valuesfor a list of states.

state_values

A list of values for the stateproperty: break, error, exited, running, stopped, and watch.

stop_reason_message

The reason why the current thread is stopped; for example, Stop Signal.

systid

The system thread ID.

target_architecture

The machine architecture upon which the current thread is executing.

target_byte_ordering

The bit ordering of the current machine. This is either little_endian or big_endian.

target_processor

The kind of processor upon which the current thread is executing. For example, this could be x86-64.

thread_ktid

The kernel thread ID.

thread_name

The name given to a thread by the application.

thread Helper Functions 265

CLI Namespace Commands

thread_utid

A user thread ID.

Examples
f p3 TV::thread get -all id

Return a list of thread IDs for process 3; for example:
1.1 1.2 1.4

proc set_signal {val} {
TV::thread set \
[f t TV::focus_threads] continue_sig $val
}

Set the starting signal for the focus thread.
proc show_signal {} {
foreach th [TV::focus_threads] {
puts "Continue_sig ($th): \
[TV::thread get $th continue_sig]";
}
}

Show all starting signals

RELATED TOPICS

Using Groups, Processes, and Threads in the Group, Process, and Thread Control chapter of the Classic
TotalView User Guide

focus_threadsCommand

groupCommand

processCommand

type Helper Functions 266

CLI Namespace Commands

type Gets and sets type properties

Format
TV::typeaction[object-id][other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this option.

get

Gets the values of one or more type properties. The other-args argument can include one or more
property names. The CLI returns these values in a list, and places them in the same order as the
names you enter.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element
for each object.

properties

Lists a type’s properties. Do not use other arguments with this option.

set

Sets the values of one or more type properties. The other-args argument contains paired property
names and values.

object-id
An identifier for an object; for example, 1 represents process 1, and 1.1 represents thread 1 in process 1. If you
use the -all option, the operation is carried out on all objects of this class in the current focus.

other-args
Arguments required by the get and set subcommands.

Description
The TV::type command lets you examine and set the following type properties and states:

enum_values

For an enumerated type, a list of {name value} pairs giving the definition of the enumeration. If you apply this
to a non-enumerated type, the CLI returns an empty list.

id

The ID of the object.

image_id

The ID of the image in which this type is defined.

type Helper Functions 267

CLI Namespace Commands

language

The language of the type.

length

The length of the type.

name

The name of the type; for example, class foo.

prototype

The ID for the prototype. If the object is not prototyped, the returned value is {}.

rank

(array types only) The rank of the array.

struct_fields

(class/struct/union types only). A list of lists that contains descriptions of all the type’s fields. Each sublist con-
tains the following fields:

{ name type_id addressing properties}

where:

name is the name of the field.
type_id is simply the type_id of the field.
addressing contains additional addressing information that points to the base of the field.
properties contains an additional list of properties in the following format:
“[virtual] [public|private|protected] base class”

If no properties apply, this string is null.

If you use get struct_fields for a type that is not a class, struct, or union, the CLI returns an empty list.

target

For an array or pointer type, returns the ID of the array member or target of the pointer. For commands without
this argument applied to one of these types, the CLI returns an empty list.

type

Returns a string describing this type; for example, signed integer.

type_values

Returns all possible values for the type property.

Examples
TV::type get 1|25 length target

Finds the length of a type and, assuming it is a pointer or an array type, the target type. The result might look
something like:

4 1|12

type Helper Functions 268

CLI Namespace Commands

The following example uses the TV::type propertiescommand to obtain the list of properties. It begins by defin-
ing a procedure:
proc print_type {id} {
foreach p [TV::type properties] {
puts [format "%13s %s" $p [TV::type get $id $p]]
}
}

You then display information with the following command:
print_type 1|6

enum_values
id 1|6
image_id 1|1
language f77
length 4
name <integer>
prototype
rank 0
struct_fields
target
type Signed Integer
type_values {Array} {Array of characters} {Enumeration}...

type_transformation Helper Functions 269

CLI Namespace Commands

type_transformation Creates type transformations and examines properties

Format
TV::type_transformationaction [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

create

Creates a new transformation object. The object-idargument is not used; other-argsis Array, List,
Map, Set, Umap, Uset or Struct, indicating the type of transformation being created. You can
change a transformation’s properties up to the time you install it. After being installed, you can longer
change them.

get

Gets the values of one or more transformation properties. The other-argsargument can include one
or more property names. The CLI returns these property values in a list whose order is the same as
the property names you entered.

If you use the -alloption instead of object-id, the CLI returns a list containing one (sublist) element
for the object.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
These properties are discussed later in this section.

set

Sets the values of one or more properties. Theother-argsargument consists of pairs of property
names and values. The argument pairs that you can set are listed later in this section.

object-id

The type transformation ID. This value is returned when you create a new transformation; for example, 1rep-
resents process 1. If you use the-all option, the operation executes upon all objects of this class in the current
focus.

other-args
Arguments required by get and set subcommands.

Description
The TV::type_transformation command lets you define and examine properties of a type transformation. The
states and properties you can set are:

type_transformation Helper Functions 270

CLI Namespace Commands

Common Properties

id

The type transformation ID returned from a create operation.

language

The language property specifies source language for the code of the aggregate type (class) to transform. This is
always C++.

name

Contains a regular expression that checks to see if a symbol is eligible for type transformation. This regular ex-
pression must match the definition of the aggregate type (class) being transformed.

type_callback

The type_callback property is used in two ways.

(1) When it is used within a list or vector transformation, it names the procedure that determines the type of the
list or vector element. The callback procedure takes one parameter, the symbol ID of the symbol that was vali-
dated during the callback to the procedure specified by the validate_callback. The call structure for this call-
back is:

type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

(2) When it is used within a struct transformation, it names the procedure that specifies the data type to be used
when displaying the struct.

type_transformation_description

A string containing a description of what is being transformed; for example, you might enter “GNU Vector”.

validate_callback

Names a procedure that is called when a data type matches the regular expression specified in the name prop-
erty. The call structure for this callback is:

validate_callback id

where id is the symbol ID of the symbol being validated.

Your callback procedure should check the symbol’s structure to insure that it should be transformed. While not
required, most users will extract symbol information such as its type and its data members while validating the
datatype. The callback procedure must return a Boolean value, where true means the symbol is valid and can
be transformed.

compiler

Reserved for future use.

type_transformation Helper Functions 271

CLI Namespace Commands

Array Properties

addressing_callback

Names the procedure that locates the address of the start of an array. The call structure for this callback is:

addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines a TotalView addressing expression that computes the starting address of an array’s first el-
ement.

lower_bounds_callback

Names the procedure that obtains a lower bound value for the array type being transformed. For C/C++ arrays,
this value is always 0. The call structure for this callback is:

lower_bounds_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

upper_bounds_callback

Names the procedure that defines an addressing expression that computes the extent (number of elements) in
an array. The call structure for this callback is:

upper_bounds_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

List Properties

list_element_count_addressing_callback

Names the procedure that determines the total number of elements in a list. The call structure for this callback
is:

list_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the list.

If your data structure does not have this element, you still must use this callback. In this case, simply return
{nop}as the addressing expression and the transformation will count the elements by following all the pointers.
This can be very time consuming.

list_element_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the data member of a
list element. The call structure for this callback is:

list_element_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

type_transformation Helper Functions 272

CLI Namespace Commands

list_element_next_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the next element of a
list. The call structure for this callback is:

list_element_next_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

list_element_prev_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the previous element
of a list. The call structure for this callback is:

list_element_prev_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This property is optional. For example, you would not use it in a singly linked list.

list_end_value

Specifies if a list is terminated by NULL or the head of the list. Enter one of the following: NULL or ListHead

list_first_element_addressing_callback

Names the procedure that defines an addressing expression that specifies how to go from the head element of
the list to the first element of the list. It is not always the case that the head element of the list is the first element
of the list. The call structure for this callback is:

list_first_element_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

list_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the linked list. The
call structure for this callback is:

list_head_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Struct Properties

struct_member_count_callback

Names the procedure that obtains the total number of members in a struct. The call structure for this callback
is:

struct_member_count_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

struct_member_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the specified member
of a struct. The call structure for this callback is:

type_transformation Helper Functions 273

CLI Namespace Commands

struct_member_addressing_callback id index

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

struct_member_type_callback

Names the procedure that obtains the type id of the specified member of a struct. The call structure for this call-
back is:

struct_member_type_callback id index

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

struct_member_name_callback

Names the procedure that obtains the name of the specified member of a struct. The call structure for this call-
back is:

struct_member_name_callback id index

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

Red/Black Tree Properties

The implementation of map/multimap and set/multiset STL types uses red/black trees. These properties are com-
mon to all these types.

rbtree_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the map. The call
structure for this callback is:

rbtree_head_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_head_type_callback

Names the procedure that obtains the type id of the head of a map. The call structure for this callback is:

rbtree_head_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_left_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the left sub-tree of the
current element of a map. The call structure for this callback is:

rbtree_element_left_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

type_transformation Helper Functions 274

CLI Namespace Commands

rbtree_element_right_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the right sub-tree of
the current element of a map. The call structure for this callback is:

rbtree_element_right_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_parent_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the parent of the cur-
rent element of a map. The call structure for this callback is:

rbtree_element_parent_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_count_addressing_callback

Names the procedure that determines the total number of elements in a map. The call structure for this call-
back is:

rbtree_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the map.

If your data structure does not have this element, you still must use this callback. In this case, simply return
{nop} as the addressing expression and the transformation will count the elements by following all the pointers.
Unfortunately, this can be very time consuming.

rbtree_element_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of elements in the map.
The call structure for this callback is:

rbtree_element_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

If your data structure does not have a count element, this property is not required.

rbtree_left_most_addressing_callback

Names the procedure that defines an addressing expression to obtain the left-most element of the map. The
call structure for this callback is:

rbtree_left_most_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Map/Multimap Properties

For map and multimap STL types these properties are used in combination with those for red/black trees above.

type_transformation Helper Functions 275

CLI Namespace Commands

map_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the key of an element
of a map. The call structure for this callback is:

map_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_key_type_callback

Names the procedure that obtains the type id of the key of a map. The call structure for this callback is:

map_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_type_callback

Names the procedure that obtains the type id of the element in the red/black tree that contains the key/value
pair. The call structure for this callback is:

map_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_value_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the value of an ele-
ment of a map. The call structure for this callback is:

map_element_value_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_value_type_callback

Names the procedure that obtains the type id of the value of a map. The call structure for this callback is:

map_element_value_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_iterator_end_value

Specifies if a map is terminated by NULL or the head of the map. Enter one of the following: NULL or MapHead

Set/Multiset Properties

For set and multiset STL types these properties are used in combination with those for red/black trees above.
set_element_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access an element of a set.
The call structure for this callback is:

set_element_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

type_transformation Helper Functions 276

CLI Namespace Commands

set_element_type_callback

Names the procedure that obtains the type id of an element in the set. The call structure for this callback is:

set_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

set_iterator_end_value

Specifies if a set is terminated by NULL or the head of the set. Enter one of the following: NULL or SetHead

Hashtable Properties

The implementations of unordered map/multimap and unordered set/multiset STL types use hash tables. These
properties are common to all these types.

hashtable_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the map. Depending
on the implementation, this element may be the address of the bucket list or the beginning element of a forward
list. The call structure for this callback is:

hashtable_head_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_element_count_addressing_callback

Names the procedure that determines the total number of elements in a hashtable. The call structure for this
callback is:

hashtable_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the map.

hashtable_element_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of elements in the map.
The call structure for this callback is:

hashtable_element_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_element_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the next element. The
call structure for this callback is:

hashtable_element_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

type_transformation Helper Functions 277

CLI Namespace Commands

hashtable_begin_index_addressing_callback

Names the procedure that determines the index of the first used bucket in a hashtable. The call structure for
this callback is:

hashtable_begin_index_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the first used bucket in the hashtable. This allows a small optimization since the transformation can skip
empty buckets at the start of the bucket table. If your data does not supply this value you can use {nop}.

hashtable_begin_index_type_callback

Names the procedure that determines the type of the value that contains the index of the first used bucket in a
hashtable. The call structure for this callback is:

hashtable_begin_index_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_bucket_count_addressing_callback

Names the procedure that determines the total number of buckets in a hash table. The call structure for this
callback is:

hashtable_bucket_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of buckets in a hashtable.

This property can be {nop} when the hash table elements can be found without scanning the bucket list, for ex-
ample, when the elements are also stored in a forward list.

hashtable_bucket_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of buckets in a hash ta-
ble. The call structure for this callback is:

hashtable_bucket_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

If you are not scanning the bucket list for the hashed values, this property is not required.

Unordered Map/Multimap Properties

For unordered map and unordered multimap STL types these properties are used in combination with those for
hash tables above.

type_transformation Helper Functions 278

CLI Namespace Commands

umap_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the key of an element
of a map. The call structure for this callback is:

umap_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_key_type_callback

Names the procedure that obtains the type id of the key of a map. The call structure for this callback is:

umap_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_type_callback

Names the procedure that obtains the type id of the element in the hashtable that contains the key/value pair.
The call structure for this callback is:

umap_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_value_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the value of an ele-
ment of a map. The call structure for this callback is:

umap_element_value_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_value_type_callback

Names the procedure that obtains the type id of the value of a map. The call structure for this callback is:

umap_element_value_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Unordered Set/Multiset Properties

For unordered set and unordered multiset STL types these properties are used in combination with those for
hash tables above.

uset_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access an element of a set.
The call structure for this callback is:

uset_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

uset_element_key_type_callback

Names the procedure that obtains the type id of an element in the set. The call structure for this callback is:

type_transformation Helper Functions 279

CLI Namespace Commands

uset_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

280

Batch Debugging Using tvscript

TotalView supports batch debugging using the tvscript command.

 About tvscript on page 281

 tvscript Command Syntax on page 282

 tvscript Options on page 284

 tvscript External Script Files on page 291

 Logging Functions API on page 291

 Process Functions API on page 291

 Thread Functions API on page 291

 Action Point API on page 291

 Event API on page 293

 tvscript External Script Files on page 291

About tvscript 281

Batch Debugging Using tvscript

About tvscript
Batch debug programs by starting TotalView using the tvscript command, which allows TotalView to run unat-
tended. If you invoke tvscript using cron, you can schedule debugging for a certain time, for instance in the
evening, so reports are available in the morning.

To perform complex actions, use a script file, which can contain CLI and Tcl commands.

Here, for example, is how tvscript is invoked on a program:
tvscript \
-create_actionpoint "method1=>display_backtrace -show_arguments" \ -
create_actionpoint "method2#37=>display_backtrace \ -show_locals -level 1" \ -
display_specifiers "noshow_pid,noshow_tid" \ -maxruntime "00:00:30" \ filterapp -a
20

You can also execute MPI programs using tvscript. Here is a small example:
tvscript -mpi "Open MP" -tasks 4 \
-create_actionpoint \
"hello.c#14=>display_backtrace" \
~/tests/MPI_hello

tvscript Command Syntax 282

Batch Debugging Using tvscript

tvscript Command Syntax
The syntax for the tvscript command is:

tvscript [options] [filename] [-a program_args]

options
TotalView and tvscript command-line options. You can use any options described in TotalView Command
Syntax on page 386.

filename
The program being debugged.

-a program_args
Program arguments.

The command-line options most often used with tvscript are:

 -mpi(The MPI environments supported are those listed in the Parallel tab of the File > New
Program dialog box.)

 -starter_args

 -nodes

 -np or -procsor -tasks

For more information on these command-line options, see TotalView Command Syntax on page 386.

Cray Xeon Phi

The syntax for using tvscript on Cray Xeon Phi Knights Corner (KNC) native nodes is:

tvscript [options] -mpi CrayKNC-aprun -npnumber-of-processes-starter_args "[aprun-
arguments]filename[program_args]"aprun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for aprun.

aprun-arguments
The command arguments for aprun (except the -k argument).

tvscript Command Syntax 283

Batch Debugging Using tvscript

filename
The program being debugged.

program_args

The arguments for the program being debugged.

aprun

Required; the executable at the end of the command line.

For example:
tvscript \
-create_actionpoint "tx_basic_mpi.c#98=>display_backtrace
-show_arguments, print myid" \
-mpi CrayKNC-aprun -np 16 \
-starter_args "tx_basic_mpi" \
aprun

Cray XK7

The syntax for using tvscript on Cray XK7 is:

tvscript [options] -mpi CrayXK7-aprun -npnumber-of-processes-starter_args
 "[aprun-arguments]filename[program_args]"aprun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for aprun.

aprun-arguments
The command arguments for aprun.

filename
The program being debugged.

program_args

The arguments for the program being debugged.

aprun

Required; the executable at the end of the command line.

For example:
tvscript \
-create_actionpoint "tx_basic_mpi.c#98=>display_backtrace
-show_arguments, print myid" \
-mpi CrayXK7-aprun -np 16 \
-starter_args "tx_basic_mpi" \
aprun

tvscript Options 284

Batch Debugging Using tvscript

tvscript Options
-create_actionpoint "source_location_expr [=>action1[, action2]...]"

Creates an action point at a source location using an expression. (See Action Point API on page 291for writing
expressions.) When the action point is hit, tvscript can trigger one or more actions. Add one
-create_actionpoint command-line option for each action point.

See -event_action for information about actions.

-event_action "event_action_list"
Performs an action when an event occurs. Events represent an unanticipated condition, such as
free_not_allocated in the Memory Debugger. You can use more than one -event_action command-line op-
tion when invoking tvscript.

Here is how you enter an event_action_list :

event1=action1,event2=action2

or

event1=>action1,action2,action3

Table 5: Supported tvscript Events

Event Type Event Definition

General event any_event A generated event occurred.

Memory debug-
ging event

addr_not_at_start Program attempted to free a block using an incorrect
address.

alloc_not_in_heap The memory allocator returned a block not in the
heap; the heap may be corrupt.

alloc_null An allocation either failed or returned NULL; this usu-
ally means that the system is out of memory.

alloc_returned_bad_alignment The memory allocator returned a misaligned block;
the heap may be corrupt.

any_memory_event A memory event occurred.

bad_alignment_argument Program supplied an invalid alignment argument to
the heap manager.

double_alloc The memory allocator returned a block currently
being used; the heap may be corrupt.

double_dealloc Program attempted to free an already freed block.

tvscript Options 285

Batch Debugging Using tvscript

free_not_allocated Program attempted to free an address that is not in
the heap.

guard_corruption Program overwrote the guard areas around a block.

hoard_low_memory_threshold Hoard low memory threshold crossed.

realloc_not_allocated Program attempted to reallocate an address that is
not in the heap.

rz_overrun Program attempted to access memory beyond the
end of an allocated block.

rz_underrun Program attempted to access memory before the
start of an allocated block.

rz_use_after_free Program attempted to access a block of memory after
it has been deallocated.

rz_use_after_free_overrun Program attempted to access memory beyond the
end of a deallocated block.

rz_use_after_free_underrun Program attempted to access memory before the
start of a deallocated block.

termination_notification The target is terminating.

Source code
debugging event

actionpoint A thread hit an action point.

error An error occurred.

Reverse debugging stopped_at_end The program is stopped at the end of execution and is
about to exit.

Table 5: Supported tvscript Events

Event Type Event Definition

tvscript Options 286

Batch Debugging Using tvscript

For each occurring event, define the action to perform:

Action Type Action Definition

Memory debug-
ging actions

check_guard_blocks Checks all guard blocks and write violations
into the log file.

list_allocations Writes a list of all memory allocations into the
log file.

list_leaks Writes a list of all memory leaks into the log
file.

save_html_heap_status_source_view Generates and saves an HTML version of the
Heap Status Source View Report.

save_memory_debugging_file Generates and saves a memory debugging
file.

save_text_heap_status_source_view Generates and saves a text version of the
Heap Status Source View Report.

Source code
debugging actions

 display_backtrace
[-levellevel-num]
[num_levels]
[options]

Writes the current stack backtrace into the log
file.

-level level-num sets the level at which infor-
mation starts being logged.

num_levels restricts output to this number of
levels in the call stack.

If you do not set a level, tvscript displays all
levels in the call stack.

options is one or more of the following:
-[no]show_arguments
-[no]show_fp
-[no]show_fp_registers
-[no]show_image
-[no]show_locals
-[no]show_pc
-[no]show_registers

tvscript Options 287

Batch Debugging Using tvscript

-display_specifiers "display_specifiers_list"
By default, tvscript writes all of the information in the following table to the log file. You can exclude information
by using one of the following specifiers:

print [-slice {slice_exp}]
{variable | exp}

Writes the value of a variable or an expression
into the log file. If the variable is an array, the -
slice option limits the amount of data defined
by slice_exp. A slice expression is a way to
define the slice, such as var[100:130]in C and
C++. (This displays all values from var[100]to
var[130].) To display every fourth value, add
an additional argument; for exam-
ple,var[100:130:4]. For additional
information, see “Examining Arrays”in the Clas-
sic TotalView User Guide.

Reverse debug-
ging actions

enable_reverse_debugging Turns on ReplayEngine reverse debugging
and begins recording the execution of the
program.

 save_replay_recording_file Saves a ReplayEngine recording file. The file-
name is of the form <ProcessName>-
<PID>_<DATE>.<INDEX>.recording.

Type of
Specifier Specifier Display ...

General display
specifiers

noshow_fp Does not show the frame pointer (FP)

noshow_image Does not show the process/library in backtrace

noshow_pc Does not show the program counter (PC)

noshow_pid Does not show the system process ID with process
information

noshow_rank Does not show the rank of a process, which is shown
only for a parallel process

noshow_tid Does not show the thread ID with process information

Action Type Action Definition

tvscript Options 288

Batch Debugging Using tvscript

-memory_debugging

Enables memory debugging and memory event notification. This option is required with any option that begins
with -mem. These options are TotalView command line options, as they can be invoked directly by TotalView.

-mem_detect_leaks

Performs leak detection before generating memory information.

-mem_detect_use_after_free

Tests for use after memory is freed.

-mem_guard_blocks

Adds guard blocks to an allocated memory block.

-mem_hoard_freed_memory

Holds onto freed memory rather than returning it to the heap.

-mem_hoard_low_memory_threshold nnnn

Sets the low memory threshold amount. When memory falls below this amount, an event is fired.

-mem_paint_all

Paints memory blocks with a bit pattern when a memory is allocated or deallocated.

-mem_paint_on_alloc

Paints memory blocks with a bit pattern when a memory block is allocated.

-mem_paint_on_dealloc

Paints memory blocks with a bit pattern when a memory block is deallocated.

Memory debug-
ging display
specifiers

noshow_allocator Does not show the allocator for the address space

noshow_backtrace Does not show the backtraces for memory blocks

noshow_backtrace_id Does not show the backtrace ID for memory blocks

noshow_block_address Does not show the memory block start and end
addresses

noshow_flags Does not show the memory block flags

noshow_guard_id Does not show the guard ID for memory blocks

noshow_guard_settings Does not show the guard settings for memory blocks

noshow_leak_stats Does not show the leaked memory block statistics

noshow_owner Does not show the owner of the allocation

noshow_red_zones_settings Does not show the Red Zone entries for allocations
(and deallocations) for the address space

Type of
Specifier Specifier Display ...

tvscript Options 289

Batch Debugging Using tvscript

-mem_red_zones_overruns

Turns on testing for Red Zone overruns.

-mem_red_zones_size_ranges min:max,min:max,...

Defines the memory allocations ranges for which Red Zones are in effect. Ranges can be specified as follows:

x:y allocations from x to y

:y allocations from 1 to y

x: allocations of x and higher

x allocation of x

-mem_red_zones_underruns

Turns on testing for Red Zone underruns.

-maxruntime "hh:mm:ss"

Specifies how long the script can run.

-script_filescript_file
Names a file containing tvscript API calls and Tcl callback procedures that you create.

-script_log_filename logFilename
Overrides the name of the TVScript log file.

WARNING: Previous log files of the same name are overwritten.

-script_summary_log_filename summaryLogFilename
Overrides the name of the TVScript summary log file.

WARNING: Previous summary log files with the same name are overwritten.

-replay

Enables reverse debugging with ReplayEngine on the process through tvscript. The entire program’s execution
is recorded. To turn on recording for a tvscript event, use the enable_reverse_debugging action.

tvscript Example:

The following example is similar to that shown in Batch Debugging Using tvscript on page 280.
tvscript \
-create_actionpoint "method1=>display_backtrace -show_arguments" \
-create_actionpoint "method2#37=>display_backtrace \
-show_locals -level 1" \
-event_action "error=>display_backtrace -show_arguments \
-show_locals" \
-display_specifiers "noshow_pid,noshow_tid" \
-maxruntime "00:00:30" \
filterapp -a 20

This script performs the following actions:

tvscript Options 290

Batch Debugging Using tvscript

 Creates an action point at the beginning of method1. When tvscript reaches that breakpoint, it
logs a backtrace and the method’s arguments.

 Creates an action point at line 37 of method2. When tvscript reaches this line, it logs a backtrace
and the local variables. The backtrace information starts at level 1.

 Logs the backtrace, the current routine’s arguments, and its local variables when an error event
occurs.

 Excludes the process ID and thread ID from the information that tvscript logs.

 Limits tvscript execution time to 30 seconds.

 Names the program being debugged and passes a value of 20 to the application.

tvscript Reverse Debugging Example:
tvscript \
-create_actionpoint "main=>enable_reverse_debugging" \
-event_action "stopped_at_end=>save_replay_recording_file" \
filterapp

This script performs the following actions:

 Creates an action point on method main. When the action point is hit, reverse debugging is
enabled and recording of the program begins.

 Specifies that the recording file is to be saved if the stopped_at_end event is raised.

tvscript External Script Files Logging Functions API 291

Batch Debugging Using tvscript

tvscript External Script Files
The section tvscript Command Syntaxdiscussed the command-line options used when invoking the tvscript
command. You can also place commands in a file and provide them to tvscript using the-script_file command-
line option. Using a script file supports the use of Tcl to create more complex actions when events occur. The fol-
lowing sections describe the functions that you can use within a CLI file.

Logging Functions API
tvscript_log msg

Logs a message to the log file set up by tvscript.

tvscript_slog msg
Logs a message to the summary log file set up by tvscript.

Process Functions API
tvscript_get_process_property process_id property

Gets the value of a property about the process.

The properties you can name are the same as those used with the TV::process command. See process on
page 239for more information.

Thread Functions API
tvscript_get_thread_property thread_id property

Gets the value of a property about the thread.

The properties you can name are the same as those used with the TV::thread command. See thread on
page 263for more information.

Action Point API
tvscript_add_actionpoint_handler actionpoint_id actionpoint_handler

Registers a procedure handler to call when the action point associated with actionpoint_id is hit. This
actionpoint_id is the value returned from the tvscript_create_actionpoint routine. The value of
actionpoint_handler is the string naming the procedure.

tvscript External Script Files Action Point API 292

Batch Debugging Using tvscript

When tvscript calls an action point handler procedure, it passes one argument. This argument contains a list
that you must convert into an array. The array indices are as follows:

event—The event that occurred, which is the action point

process_id—The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

actionpoint_id—The ID of the action point that was hit

actionpoint_source_loc_expr—The initial source location expression used to create the action point

tvscript_create_actionpoint source_loc_expr
Creates an action point using a source location expression.

This procedure returns an action point ID that you can use in a tvscript_add_actionpoint_handler proce-
dure.

source_loc_expr

Sets a breakpoint at the line specified by source_loc_expr or an absolute address. For example:

 [[##image#]filename#]line_number

Indicates all addresses at this line number.

 A function signature; this can be a partial signature.

Indicates all addresses that are the addresses of functions matching signature. If parts of a function signature
are missing, this expression can match more than one signature. For example, “f” matches “f(void)” and “A::f(int)“.
You cannot specify a return type in a signature.

You can also enter a source location expression with sets of addresses using the class and virtual keywords. For
example:

classclass_name
Names a set containing the addresses of all member functions of class class_name.

virtualclass::signature
Names the set of addresses of all virtual member functions that match signature, and that are in the classes or
derived from the class.

If the expression evaluates to a function that has multiple overloaded implementations, TotalView sets a barrier
on each of the overloaded functions.

tvscript External Script Files Event API 293

Batch Debugging Using tvscript

Event API
tvscript_add_event_handler event event_handler

Registers a procedure handler to call when the named event occurs. The event is either error or actionpoint.

When tvscript calls an event handler procedure, it passes one argument to it. This argument contains a list that
you must convert into an array.

error

When any error occurs, the array has the following indices:

event—The event, which is set to error

process_id— The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

error_message—A message describing the error that occurred

actionpoint

When any action point is hit, the array has the following indices:

event—The event, which is set to actionpoint

process_id—The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

actionpoint_id—The ID of the action point that was hit

actionpoint_source_loc_expr—The initial source location expression used to create the action point

Example tvscript Script File
The following example tvscript file registers several action point handlers when an action point (breakpoint) is
hit. When the handlers are called, they display information about the action point event. The script also installs an
error handler, which is called if an error occurs during execution of the program. Run the script as follows:

tvscript -script_file script_file program

Where program is the name of the program to run under the control of tvscript. This tvscript example,
tvscript_example.tvd, is available in the TotalView examples directory.

This script installs an error handler and an action point handler. When an error is encountered during execution,
tvscript passes an array of information to the error handler and prints information to the log. Similarly, when an
action point is hit, it passes an array of information to the action point handler and prints information to the log.
These arrays are described in Event API on page 293.
Get the process so we have some information about it
tvscript_log "PID: \

[tvscript_get_process_property 1 "syspid"]";

tvscript External Script Files Example tvscript Script File 294

Batch Debugging Using tvscript

tvscript_log "Status: \
[tvscript_get_process_property 1 "state"]";

tvscript_log "Executable: \
[tvscript_get_process_property 1 "executable"]";

###
proc error_handler {error_data} {
tvscript_log "Inside error_handle: $error_data"
Change the incoming list into an array.
It contains the following indices:
process_id
thread_id
error_message
array set error_data_array $error_data
Get the process so we have some information about it
set temp [tvscript_get_process_property \
$error_data_array(process_id) "syspid"];
tvscript_log " Process ID: $temp";
set temp [tvscript_get_thread_property \
$error_data_array(thread_id) "systid"];
tvscript_log " Thread ID: $temp";
set temp $error_data_array(error_message);
tvscript_log " Error Message: $temp";
}

###
Action point handlers
proc actionpoint_handler {event_data} {
tvscript_log "Inside actionpnt_handler: $event_data"
tvscript_slog "Inside actionpnt_handler: $event_data"
Change the incoming list into an array.
It contains the following indices:
actionpoint_id
actionpoint_source_loc_expr
event
process_id
thread_id
array set event_data_array $event_data
Get the process so we have some information about it
set temp [tvscript_get_process_property \
$event_data_array(process_id) "syspid"];
tvscript_log " Process ID: $temp";
set temp [tvscript_get_thread_property \
$event_data_array(thread_id) "systid"];
tvscript_log " Thread ID: $temp";
set temp [tvscript_get_process_property \
$event_data_array(process_id) "state"];
tvscript_log " Status: $temp";
set temp [tvscript_get_process_property \

tvscript External Script Files Example tvscript Script File 295

Batch Debugging Using tvscript

$event_data_array(process_id) "executable"]
tvscript_log " Executable: $temp";
set temp $event_data_array(actionpoint_source_loc_expr)
tvscript_log "Action point Expression: $temp"
tvscript_log "Value of i:"
set output [capture "dprint i"]
tvscript_log $output
}
###
Event handlers
proc generic_actionpoint_event_handler {actionpoint_data} {
tvscript_log "Inside generic_actionpoint_event_handler: "
tvscript_log $actionpoint_data
tvscript_slog "Inside generic_actionpoint_event_handler: "
tvscript_slog $actionpoint_data
Change the incoming list into an array.
It contains the following indices:
actionpoint_id
actionpoint_source_loc_expr
event
process_id
thread_id
array set actionpnt_data_array $actionpoint_data
set temp $actionpnt_data_array(process_id)
tvscript_log " Process ID: $temp"
set temp $actionpnt_data_array(thread_id)
tvscript_log " Thread ID: $temp"
set temp $actionpnt_data_array(actionpoint_id)
tvscript_log " Action Point ID: $temp"
set temp $actionpnt_data_array(actionpoint_source_loc_expr)
tvscript_log "Action Point Expression: "
}
###
Add event handlers
Create a breakpoint on function main and register
procedure "actionpoint_handler" to be called if the
breakpoint is hit.
set actionpoint_id [tvscript_create_actionpoint "main"]
tvscript_add_actionpoint_handler $actionpoint_id \ "actionpoint_handler"
Set up a generic actionpoint handler that is called
whenever any action point is hit.
tvscript_add_event_handler "actionpoint" \ "generic_actionpoint_event_handler"
###
Add error handler that is called if an error
occurs while running the program.
tvscript_add_event_handler "error" "error_handler"

tvscript External Script Files Example tvscript Script File 296

Batch Debugging Using tvscript

297

TotalView Variables

This chapter contains a list of all CLI and TotalView variables, organized into sections that each correspond to
a CLI namespace.

 Top-Level (::) Namespace

 TV:: Namespace

 TV::MEMDEBUG:: Namespace

 TV::GUI:: Namespace

Top-Level (::) Namespace 298

TotalView Variables

Top-Level (::) Namespace

ARGS(dpmid)

Contains the arguments to be passed the next time the process starts, with TotalView ID dpid.

Permitted Values: A string

Default: None

BARRIER_STOP_ALL

Contains the value for the “stop_when_done” property for newly created action points. This property defines addi-
tional elements to stop when a barrier point is satisfied or a thread encounters this action point. You can also set
this value using the When barrier hit, stop value in the Action Points Page of the File > Preferences dialog box.
The values are:

group

Stops all processes in a thread’s control group when a thread reaches a barrier created using this default.

process

Stops the process in which the thread is running when a thread reaches a barrier created using this default.

none

Stops only the thread that hit a barrier created using this default.

This variable is the same as the TV::barrier_stop_allvariable.

Permitted Values: group, process, or thread

Default: group

ARGS_DEFAULT

Contains the argument passed to a new process when no ARGS(dpid) variable is defined.

Permitted Values: A string

Default: None

BARRIER_STOP_WHEN_DONE
Contains the default value used when a barrier point is satisfied. You can also set this value using the -
stop_when_done command-line option or the When barrier done, stop value in the Action Points Page of the
File > Preferences dialog box. The values are:

group

When a barrier is satisfied, stops all processes in the control group.

Top-Level (::) Namespace 299

TotalView Variables

process

When a barrier is satisfied, stops the processes in the satisfaction set.

none

Stops only the threads in the satisfaction set; other threads are not affected. For process barriers, there is no dif-
ference between process and none.

In all cases, TotalViewreleases the satisfaction set when the barrier is satisfied.

This variable is the same as the TV::barrier_stop_when_done variable.

Permitted Values: group, process, or thread

Default: group

CGROUP(dpid)

Contains the control group for the process with the TotalView ID dpid. Setting this variable moves process dpid
into a different control group. For example, the following command moves process 3 into the same group as pro-
cess 1:
dset CGROUP(3) $CGROUP(1)

Permitted Values: A number

Default: None

COMMAND_EDITING
Enables some Emacs-like commands for use when editing text in the CLI. These editing commands are always
available in the CLI window of the TotalView GUI. However, they are available only in the stand-alone CLI if the ter-
minal in which it is running supports cursor positioning and clear-to-end-of-line. The commands you can use are:

^A: Moves the cursor to the beginning of the line

^B: Moves the cursor one character backward

^D: Deletes the character to the right of cursor

^E: Moves the cursor to the end of the line

^F: Moves the cursor one character forward

^K: Deletes all text to the end of line

^N: Retrieves the next entered command (only works after ^P)

^P: Retrieves the previously entered command

^R or ^L: Redraws the line

^U: Deletes all text from the cursor to the beginning of the line

Top-Level (::) Namespace 300

TotalView Variables

Rubout or Backspace: Deletes the character to the left of the cursor

Permitted Values: true or false

Default: false

EXECUTABLE_PATH
Contains a colon-separated list of the directories searched for source and executable files.

Permitted Values: Any directory or directory path. To include the current setting, use
$EXECUTABLE_PATH.

Default: .(dot)

EXECUTABLE_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement and replacement strings—these replacements are called
mappings—separated by colons. TotalView applies these mappings to the search paths before it looks for source,
object, and program files.

The syntax for mapping strings is:

+regular_exp+=+replacement+ :+regular_exp+=+replacement+

This example shows two pairs, each delimited by a colon (“:”). Each element within a pair is delimited by any char-
acter except a colon. The first character entered is the delimiter. This example uses a “+” as a delimiter.
(Traditionally, forward slashes are used as delimiters but are not used here, as a forward slash is also used to sep-
arate components of a pathname. For example, /home/my_dir contains forward slashes.)

Be aware that special characters must follow standard Tcl rules and conventions, for example:
dset EXECUTABLE_SEARCH_MAPPINGS {+^/nfs/compiled/u2/(.*)$+ = +/nfs/host/u2/\1+ }

This expression applies a mapping so that a directory named /nfs/compiled/u2/project/src1 in the expanded
search path becomes /nfs/host/u2/project/src1.

Default: {}

EXECUTABLE_SEARCH_PATH
Contains a list of paths, separated by a colon, to search for executables. For information, see “Setting Search
Paths Using Classic TotalView Variables” in the Classic TotalView in-product help.

Permitted Values: Any directory or directory path.

Default: ${EXECUTABLE_PATH};${$PATH}:.

GROUP(gid)

Contains a list of the TotalView IDs for all members in group gid.

The first element indicates the type of group:

Top-Level (::) Namespace 301

TotalView Variables

control

The group of all processes in a program

lockstep

A group of threads that share the same PC

process

A user-created process group

share

The group of processes in one program that share the same executable image

thread

A user-created thread group

workers

The group of worker threads in a program

Elements that follow are either pids (for process groups) or pid.tid pairs (for thread groups).

The gid is a simple number for most groups. In contrast, a lockstep group’s ID number is of the form pid.tid.
Thus, GROUP(2.3) contains the lockstep group for thread 3 in process 2. Note, however, that the CLI does not
display lockstep groups when you use dset with no arguments because they are hidden variables.

The GROUP(id) variable is read-only.

Permitted Values: A Tcl array of lists indexed by the group ID. Each entry contains the members of one
group.

Default: None

GROUPS
Contains a list of all TotalView groups IDs. Lockstep groups are not contained in this list. This is a read-only value
and cannot be set.

Permitted Values: A Tcl list of IDs.

LINES_PER_SCREEN
Defines the number of lines shown before the CLI stops printing information and displays its more prompt. The
following values have special meaning:

0

No more processing occurs, and the printing does not stop when the screen fills with data.

NONE

A synonym for 0

Top-Level (::) Namespace 302

TotalView Variables

AUTO

The CLI uses the tty settings to determine the number of lines to display. This may not work in all cases. For ex-
ample, Emacs sets the tty value to 0. If AUTO works improperly, you need to explicitly set a value.

Permitted Values: A positive integer, or the AUTO or NONE strings

Default: Auto

MAX_LEVELS
Defines the maximum number of levels that the dwhere command displays.

Permitted Values: A positive integer

Default: 512

MAX_LIST
Defines the number of lines that the dlist command displays.

Permitted Values: A positive integer

Default: 20

OBJECT_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement and replacement strings (called mappings) separated by
colons. TotalView applies these mappings to the search paths when searching for source, object, and program
files. For more information, see EXECUTABLE_SEARCH_MAPPINGS.

Default: {}

OBJECT_SEARCH_PATH
Contains a list of paths separated by a colon to search for your program’s object files. For information, see
“Search Path Variables That You Can Set” in the Classic TotalView in-product help.

Permitted Values: Any directory or directory path.

Default: ${COMPILATION_DIRECTORY): ${EXECUTABLE_PATH}: ${EXECUTABLE_DIRECTORY}:
$links{${EXECUTABLE_DIRECTORY}}: .:${TOTALVIEW_SRC}

PROCESS(dpid)

Contains a list of information associated with a dpid. This is a read-only value and cannot be set.

Permitted Values: An integer

Default: None

PROMPT
Defines the CLI prompt. Any information within brackets ([]) is assumed to be a Tcl command, so therefore evalu-
ated before the prompt string is created.

Top-Level (::) Namespace 303

TotalView Variables

Permitted Values: Any string. To access the value of PTSET, place the variable within brackets; that is,
[dset PTSET].

Default: {[dfocus]> }

PTSET
Contains the current focus. This is a read-only value and cannot be set.

Permitted Values: A string

Default: d1.<

SGROUP(pid)

Contains the group ID of the share group for process pid. The share group is determined by the control group for
the process and the executable associated with this process. You cannot directly modify this group.

Permitted Values: A number

Default: None

SHARE_ACTION_POINT
Indicates the scope for newly created action points. In the CLI, this is the dbarrier, dbreak, and dwatch com-
mands. If this boolean value is true, newly created action point are shared across the group; if false, a newly
created action point is active only in the process in which it is set.

As an alternative to setting this variable, you can select the Plant in share group check box in the Action Points
Page in the File > Preferences dialog box. To override this value in the GUI, use the Plant in share group check-
box in the Action Point > Properties dialog box.

Permitted Values: true or false

Default: true

SHARED_LIBRARY_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement strings (mappings), separated by colons. TotalView applies
these mappings to the search paths before it looks for shared library files.

Default: {}

SHARED_LIBRARY_SEARCH_PATH
Contains a list of paths, each separated by a colon, to search for your program’s shared library files.

Permitted Values: Any directory or directory path.

Default: ${EXECUTABLE_PATH}:

Top-Level (::) Namespace 304

TotalView Variables

SOURCE_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement strings (mappings) separated by colons. TotalView applies
these mappings to the search paths before it looks for source, object, and program files. For more information,
see EXECUTABLE_SEARCH_MAPPINGS.

Default: {}

SOURCE_SEARCH_PATH
Contains a list of paths, separated by a colon, to search for your program’s source files. For information, see
“Search Path Variables That You Can Set” in the Classic TotalView in-product help.

Permitted Values: Any directory or directory path.

Default: ${COMPILATION_DIRECTORY}: ${EXECUTABLE_PATH}: ${EXECUTABLE_DIRECTORY}:
${links{${EXECUTABLE_DIRECTORY}): .:${TOTALVIEW_SRC}

STOP_ALL
Indicates a default property for newly created action points, defining additional elements to stop when this action
point is encountered

group

Stops the entire control group when the action point is hit

process

Stops the entire process when the action point is hit

thread

Stops only the thread that hit the action point. Note that none is a synonym for thread

Permitted Values: group, process, or thread

Default: process

TAB_WIDTH
Indicates the number of spaces used to simulate a tab character when the CLI displays information.

Permitted Values: A positive number. A value of -1 indicates that the CLI does not simulate tab expan-
sion.

Default: 8

THREADS(pid)

Contains a list of all threads in the process pid, in the form {pid.1 pid.2 ...}. This is a read-only variable and can-
not be set.

Permitted Values: A Tcl list

Default: None

Top-Level (::) Namespace 305

TotalView Variables

TOTALVIEW_ROOT_PATH
Names the directory containing the TotalView executable. This is a read-only variable and cannot be set. This vari-
able is exported as TVROOT, and can be used in launch strings.

Permitted Values: The location of the TotalView installation directory

TOTALVIEW_TCLLIB_PATH
Contains a list of the directories in which the CLI searches for TCL library components.

Permitted Values: Any valid directory or directory path. To include the current setting, use
$TOTALVIEW_TCLLIB_PATH.

Default: The directory containing the CLI’s Tcl libraries

TOTALVIEW_VERSION
Contains the version number and the type of computer architecture upon which TotalView is executing. This is a
read-only variable and cannot be set.

Permitted Values: A string containing the platform and version number

Default: Platform-specific

VERBOSE
Sets the error message information displayed by the CLI:

info

Prints errors, warnings, and informational messages. Informational messages include data on dynamic libraries
and symbols.

warning

Prints only errors and warnings.

error

Prints only error messages.

silent

Does not print error, warning, and informational messages. This also shuts off printing results from CLI com-
mands. This should be used only when the CLI is run in batch mode.

Permitted Values: info, warning, error, and silent

Default: info

WGROUP(pid)

The group ID of the thread group of worker threads associated with the process pid. This variable is read-only.

Permitted Values: A number

Default: None

Top-Level (::) Namespace 306

TotalView Variables

WGROUP(pid.tid)
Contains one of the following:

 The group ID of the workers group in which thread pid.tid is a member

 0 (zero), which indicates that thread pid.tid is not a worker thread

Storing a nonzero value in this variable marks a thread as a worker. In this case, the returned value is the ID of the
workers group associated with the control group, regardless of the actual nonzero value assigned to it.

Permitted Values: A number representing the pid.tid

Default: None

TV:: Namespace 307

TotalView Variables

TV:: Namespace

TV::aix_use_fast_ccw
This variable is defined only on AIX, and is a synonym for the platform-independent variable TV::use_fast_wp,
providing TotalView script backward compatibility. See TV::use_fast_wp for more information.

TV::aix_use_fast_trap
This variable is defined only on AIX, and is a synonym for the platform-independent variable TV::use_fast_trap,
for TotalView script backward compatibility. See TV::use_fast_trap for more information.

TV::ask_on_dlopen
If true, TotalView asks about stopping processes that use the dlopen or load (AIX only) system calls dynamically
load a new shared library.

If false, TotalView does not ask about stopping a process that dynamically loads a shared library.

Permitted Values: true or false

Default: false

TV::auto_array_cast_bounds
Indicates the number of array elements to display when the TV::auto_array_cast_enabledvariable is true. This is
the variable set by the Bounds field of the Pointer Dive Page in the File > Preferences dialog box.

Permitted Values: An array specification

Default: [10]

TV::auto_array_cast_enabled
When true, TotalViewautomatically dereferences a pointer into an array. The number of array elements is indi-
cated in the TV::auto_array_cast_bounds variable. This is the variable set by the Cast to array with bounds
checkbox of the Pointer Dive Page in the File > Preferences dialog box.

Permitted Values: true or false

Default: false

TV::auto_deref_in_all_c
Defines if and how to dereference C and C++ pointers when performing a View > Dive in All operation, as
follows:

TV:: Namespace 308

TotalView Variables

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value when performing a Dive in All operation.

yes

Allows use of the Undive control to see undereferenced values.

no

Does not automatically dereference values when performing a Dive in All operation.

This is the variable set when you select the Dive in All element in the Pointer Dive Page of the File > Prefer-
ences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_in_all_fortran
Tells TotalView if and how it should dereference Fortran pointers when you perform a Dive in All operation, as
follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value when performing a Dive in All operation.

yes

Allows use of the Undive control to see undereferenced values.

no

Does not automatically dereference values when performing a Dive in All operation.

This is the variable set when you select the Dive in All element in the Pointer Dive Page of the File > Prefer-
ences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_initial_c
Defines if and how to dereference C pointers when they are displayed, as follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undeferenced values.

TV:: Namespace 309

TotalView Variables

no

Does not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive Page of the File > Preferences
dialog box.

Permitted Values: no,yes, or yes_dont_push

Default: no

TV::auto_deref_initial_fortran
Defines if and how to dereference Fortran pointers when they are displayed, as follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undereferenced values.

no

Does not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive Page of the File > Preferences
dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_nested_c
Defines if and how to dereference C pointers when you dive on structure elements:

yes_dont_push

While automatic dereferencing will occur, you can’t use the Undive command to see the undereferenced value.

yes

You will be able to use the Undive control to see undereferenced values.

no

Do not automatically dereference values.

This is the variable set when you select the from an aggregate element in the Pointer Dive Page of the File >
Preferences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: yes_dont_push

TV:: Namespace 310

TotalView Variables

TV::auto_deref_nested_fortran
Defines if and how to dereference Fortran pointers when they are displayed:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undereferenced values.

no

Does not automatically dereference values.

This is the variable set when you select the from an aggregate element in the Pointer Dive Page of the File >
Preferences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: yes_dont_push

TV::auto_load_breakpoints

If true, TotalViewautomatically loads action points from the file named filename.TVD.v4breakpoints where file-
name is the name of the file being debugged. If false, breakpoints are not automatically loaded. If you set this to
false, you can still load breakpoints using the dactions -load command.

Permitted Values: true or false

Default: true

TV::auto_read_symbols_at_stop
If false, TotalView does not automatically read symbols if execution stops when the program counter is in a
library whose symbols were not read. If true, TotalView reads in loader and debugging symbols. You would set it
to false if you have prevented symbol reading using either the TV::dll_read_loader_symbols_only or
TV::dll_read_no_symbols variables (or the preference within the GUI) and reading these symbols is both unnec-
essary and would affect performance.

Permitted Values: true or false

Default: true

TV::auto_save_breakpoints

If true, TotalView automatically writes information about breakpoints to a file named filename .TVD.v4break-
points, where filename is the name of the file being debugged. Information about watchpoints is not saved.

TotalView writes this information when you exit from TotalView. If you set this variable to false, you can explicitly
save this information by using the dactions-save command.

Permitted Values: true or false

TV:: Namespace 311

TotalView Variables

Default: false

TV::barrier_stop_all

Contains the value of the “stop_all” property for newly created action points. This property defines additional ele-
ments to stop when a thread encounters this action point. You can also set this value using the -stop_all
command-line option or the When barrier hit, stop value in the Action Points page of the File > Preferences
dialog box. The values that you can use are as follows:

group

Stops all processes in a thread’s control group when a thread reaches a barrier created using this as a default.

process

Stops the process in which the thread is running when a thread reaches a barrier created using this default.

thread

Stops only the thread that hit a barrier created using this default.

This variable is the same as the BARRIER_STOP_ALL variable.

Permitted Values: group, process, or thread

Default: group

TV::barrier_stop_when_done
Contains the value for the “stop_when_done” property for newly created action points. This property defines addi-
tional elements to stop when a barrier point is satisfied. You can also set this value using the -stop_when_done
command-line option or the When barrier done, stop value in the Action Points page of the File > Preferences
dialog box. The values you can use are:

group

When a barrier is satisfied, stops all processes in the control group.

process

When a barrier is satisfied, stops the processes in the satisfaction set.

thread

Stops only the threads in the satisfaction set; other threads are not affected. For process barriers, there is no dif-
ference between process and none.

In all cases, TotalView releases the satisfaction set when the barrier is satisfied.

This variable is the same as the BARRIER_STOP_WHEN_DONE variable.

Permitted Values:group, process, or thread

Default: group

Default:

TV:: Namespace 312

TotalView Variables

TV::bulk_launch_base_timeout
Defines the base timeout period used to execute a bulk launch.

Permitted Values: A number from 1 to 3600 (1 hour)

Default: 20

TV::bulk_launch_enabled
If true, uses bulk launch features when automatically launching the TotalView Debugger Server (tvdsvr) for
remote processes.

Permitted Values: true or false

Default: false

TV::bulk_launch_incr_timeout
Defines the incremental timeout period to wait for a process to launch when automatically launching the
TotalView Debugger Server (tvdsvr) using the bulk server feature.

Permitted Values: A number from 1 to 3600 (1 hour)

Default: 10

TV::bulk_launch_tmpfile1_header_line
Defines the header line used in the first temporary file for a bulk server launch operation.

Permitted Values: A string

Default: None

TV::bulk_launch_tmpfile1_host_lines
Defines the host line used in the first temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: %R

TV::bulk_launch_tmpfile1_trailer_line
Defines the trailer line used in the first temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV::bulk_launch_tmpfile2_header_line
Defines the header line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV:: Namespace 313

TotalView Variables

TV::bulk_launch_tmpfile2_host_lines
Defines the host line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: {tvdsvr -working_directory %D -callback %L -set_pw %P -verbosity %V}

TV::bulk_launch_tmpfile2_trailer_line
Defines the trailer line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV::c_type_strings
If true, uses C type string extensions to display character arrays; when false, uses string type extensions.

Permitted Values: true or false

Default: true

TV::check_unique_id
In concert with TV::checksum_libraries, controls whether TotalView checksums an image or uses a unique ID to
determine the uniqueness of images across nodes in a parallel debugging session.

When true (the default), TotalView attempts to extract a unique ID from an image file before checksumming it.The
extracted unique ID is a build ID on Linux, or a UUID on macOS. Note that not all image files contain a unique ID
by default, but linkers can often add one, for example, by using the linker option --build-id. On macOS, a
UUID is added to the image file by default, but the linker can control whether it adds a UUID, a checksum, or a
random value.

When false, or if an image file does not contain a unique ID, or there is an error extracting the unique ID,
TotalView falls back to checksumming to determine image file uniqueness, according to the setting on
TV::checksum_libraries.

Permitted Values:true or false

Default: true

TV::checksum_libraries
Controls image checksumming across nodes in a parallel debugging session. If set to auto (the default) or true,
TotalView checksums on both the server and the client. If false, TotalView checksums the image only on the cli-
ent, which should be used only if all image files across all the nodes in the debug session are known to be
identical. Performing a checksum only on the client can improve startup times in some cases, depending on the
system.

TV:: Namespace 314

TotalView Variables

Even when set to auto or true, whether TotalView performs a checksum to validate images is impacted by the
setting for TV::check_unique_id.

Permitted Values: auto, true or false

Default: auto

TV::comline_patch_area_base

Allocates the patch space dynamically at the given address. See “Allocating Patch Space for Compiled Expres-
sions” in the Classic TotalView User Guide.

Permitted Values: A hexadecimal value indicating space accessible to TotalView

Default: 0xffffffffffffffff

TV::comline_patch_area_length

Sets the length of the dynamically allocated patch space to the specified length. See “Allocating Patch Space for
Compiled Expressions” in the Classic TotalView User Guide.

Permitted Values: A positive number

Default: 0

TV::command_editing
Enables some Emacs-like commands for use while editing text in the CLI. These editing commands are always
available in the CLI window of TotalView UI. However, they are available only within the stand-alone CLI if the ter-
minal in which it is running supports cursor positioning and clear-to-end-of-line. The commands that you can use
are:

^A: Moves the cursor to the beginning of the line.

^B: Moves the cursor one character backward.

^D: Deletes the character to the right of cursor.

^E: Moves the cursor to the end of the line.

^F: Moves the cursor one character forward.

^K: Deletes all text to the end of line.

^N: Retrieves the next entered command (only works after ^P).

^P: Retrieves the previously entered command.

^R or ^L: Redraws the line.

^U: Deletes all text from the cursor to the beginning of the line.

Rubout or Backspace: Deletes the character to the left of the cursor.

TV:: Namespace 315

TotalView Variables

Permitted Values: true or false

Default: false

TV::compile_expressions
When true, TotalViewenables compiled expressions. If false, TotalView interprets your expression.

On an IBM AIX system, you can use the -aix_use_fast_trap command line option to speed up the performance of
compiled expressions. Check the TotalView Release Notes to determine if your version of the operating system sup-
ports this feature.

Permitted Values: true or false

Default: false

TV::compiler_vars
(SGI only) When true, TotalView shows variables created by your Fortran compiler as well as the variables in your
program. When false (which is the default), TotalView does not show the variables created by your compiler.

SGI 7.2 Fortran compilers write debugging information that describes variables the compiler created to assist in
some operations. For example, it could create a variable used to pass the length of character*(*) variables. You
might want to set this variable to true if you are looking for a corrupted runtime descriptor.

You can override the value set to this variable in a startup file with these command-line options:
-compiler_vars: sets this variable to true
-no_compiler_vars: sets this variable to false

Permitted Values: true or false

Default: false

TV::control_c_quick_shutdown
When true, TotalViewkills attached processes and exits. When false, TotalView can sometimes better manage the
way it kills parallel jobs when it works with management systems. This has been tested only with SLURM and may
not work with other systems.

If you set the TV::ignore_control_c variable to true, TotalView ignores this variable.

Permitted Values: true or false

Default: true

TV::copyright_string
A read-only string containing the copyright information displayed when you start the CLI and TotalView.

TV:: Namespace 316

TotalView Variables

TV::cppview
If true, the C++View facility allows the formatting of program data in a more useful or meaningful form than the
concrete representation visible by default when you inspect data in a running program. For more information on
using C++View, see C++View on page 371.

Permitted Values:true or false

Default: true

TV::cuda_debugger
Indicates whether cuda debugging is currently enabled. This is a read-only variable.

Permitted Values: true or false

Default: true

TV::current_cplus_demangler
Setting this variable overrides the C++demangler used by default. Note that this value is ignored unless you also
set the value of the TV::force_default_cplus_demangler variable. The following values are supported:

 gnu_dot: GNU C++ Linux x86

 gnu_v3: GNU C++ Linux x86

 kai: KAI C++

 kai3_n: KAI C++ version 3.n

 kai_4_0: KAI C++

 spro: SunPro C++ 4.0 or 5.2

 spro5: SunPro C++ 5.0 or later

 sun: Sun CFRONT C++

 xlc: IBM XLC/VAC++ compilers

Permitted Values: A string naming the compiler

Default: Derived from your platform and information within your program

TV::current_fortran_demangler
Setting this variable overrides the Fortran demangler used by default. Note that this value is ignored unless you
also set the value of the TV::force_default_f9x_demangler variable. The following values are supported:

 intel: Intel Fortran 9x

Permitted Values: A string naming the compiler

TV:: Namespace 317

TotalView Variables

Default: Derived from your platform and information within your program

TV::data_format_double
Defines the format to use when displaying double-precision values. This is one of a series of variables that define
how to display data. The format of each is similar:

{presentation format-1 format-2 format 3}

presentation
Selects which format to use when displaying -information. Note that you can display floating point information
using dec, hex, and oct formats. You can display integers using auto, dec, and sci formats.

auto

Equivalent to the C language’s printf() function’s %g specifier. You can use this with integer and float-
ing-point numbers. This format is either hexdec or dechex, depending upon the programming lan-
guage being used.

dec

Equivalent to the printf() function’s %d specifier. You can use this with integer and floating-point
numbers.

dechex

Displays information using the dec and hex formats. You can use this with integers.

hex

Equivalent to the printf() function’s %x specifier. You can use this with integer and floating-point
numbers.

hexdec

Displays information using the hex and dec formats. You can use this with integer numbers.

oct

Equivalent to the printf() function’s %o specifier. You can use this with integer and floating-point
numbers.

sci

Equivalent to the printf() function’s %e specifier. You can use this with floating-point numbers.

format
For integers, format-1 defines the decimal format, format-2 defines the hexadecimal format, and format-3
defines the octal format.

For floating point numbers, format-1 defines the fixed point display format, format-2 defines the scientific for-
mat, and format-3 defines the auto (printf()’s %g) format.

The format string is a combination of the following specifiers:

%

A signal indicating the beginning of a format.

TV:: Namespace 318

TotalView Variables

width
A positive integer. This is the same width specifier used in the printf() function.

.(period)

A punctuation mark separating the width from the precision.

precision
A positive integer. This is the same precision specifier used in the printf() function.

(pound)

Displays a 0x prefix for hexadecimal and 0 for octal formats. This isn’t used within floating-point for-
mats.

0 (zero)

Pads a value with zeros. This is ignored if the number is left-justified. If you omit this character, To-
talView pads the value with spaces.

- (hyphen)

Left-justifies the value within the field’s width.

Permitted Values: A value in the described format

Default: {auto %-1.15 %-1.15 %-20.2}

TV::data_format_ext
Defines the format to use when displaying extended floating point values such as long doubles.For a description
of the contents of this variable, see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %-1.15 %-1.15 %-1.15}

TV::data_format_int8
Defines the format to use when displaying 8-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#4.2 %#4.3}

TV::data_format_int16
Defines the format to use when displaying 16-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#6.4 %#7.6}

TV:: Namespace 319

TotalView Variables

TV::data_format_int32
Defines the format to use when displaying 32-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#10.8 %#12.11}

TV::data_format_int64
Defines the format to use when displaying 64-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#18.16 %#23.22}

TV::data_format_int128
Defines the format to use when displaying 128-bit integer values. For a description of the contents of this vari-
able, see TV::data_format_double.

Permitted Values: A value of the described format.

Default: {auto %1.1 %#34.32 %#44.43}

TV::data_format_long_stringlen
Defines the number of characters allowed in a long string.

Permitted Values: A positive integer number

Default: 8000

TV::data_format_single
Defines the format to use when displaying single precision, floating-point values. For a description of the contents
of this variable, see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %-1.6 %-1.6 %-1.6}

TV::data_format_stringlen
Defines the maximum number of characters displayed for a string.

Permitted Values: A positive integer number

Default: 100

TV::dbfork
When true, TotalView catches thefork(), vfork(), and execve() system calls if your executable is linked with the
dbfork library. See Linking with the dbfork Library on page 416.

TV:: Namespace 320

TotalView Variables

Permitted Values: true or false

Default: true

TV::default_breakpoints_pending
When true, dbreak and dbarrier create pending action points, as if the -pending option had been set. The
default is false. It is not recommended to set it to true because it suppresses catching input user errors.

For example, if you want to set a breakpoint on a function foo, but you typed voo instead, a pending breakpoint
is immediately set on the function voo, which would not be your intention.

Permitted Values: true or false

Default: false

TV::default_launch_command
Names the compiled-in launch command appropriate for the platform.

Permitted Values: A string indicating the default compiled-in launch command value.

Default: ssh -x

TV::default_parallel_attach_subset
Names the default subset specification listing MPI ranks to attach to when an MPI job is created or attached to.

Permitted Values: A string indicating the default subset specification.

Default: Initialized to the value specified with the -default_parallel_attach_subset command line
option.

TV::default_stderr_append
When true, TotalView appends the target program’s stderr information to the file set in the GUI, by the -stderr
command-line option, or in the TV::default_stderr_filename variable. If no pathname is set, the value of this
variable is ignored. If the file does not exist, TotalView creates it.

Permitted Values: true or false

Default: false

TV::default_stderr_filename
Names the file to which to write the target program’s stderr information. If the file exists, TotalView overwrites it.
If the file does not exist, TotalView creates it.

Permitted Values: A string indicating a pathname

Default: None

TV::default_stderr_is_stdout
When true, TotalView writes the target program’s stderr information to the same location as stdout.

TV:: Namespace 321

TotalView Variables

Permitted Values: true or false

Default: false

TV::default_stdin_filename
Names the file from which the target program reads stdin information.

Permitted Values: A string indicating a pathname

Default: None

TV::default_stdout_append
When true, TotalView appends the target program’s stdout information to the file set in the GUI, by the -stdout
command-line option, or in the TV::default_stdout_filename variable. If no pathname is set, the value of this
variable is ignored. If the file does not exist, TotalView creates it.

Permitted Values: true or false

Default: false

TV::default_stdout_filename
Names the file to which to write the target program’s stdout information. If the file exists, TotalView overwrites it.
If the file does not exist, TotalView creates it.

Permitted Values: A string indicating a pathname

Default: None

TV::display_assembler_symbolically
When true, TotalView displays assembler locations as label+offset. When false, these locations are displayed as
hexadecimal addresses.

Permitted Values: true or false

Default: false

TV::dll_ignore_prefix
Defines a list of library files that will not result in a query to stop the process when loaded. This list contains a
colon-separated list of prefixes. Also, TotalView will not ask if you would like to stop a process if:

 You also set the TV::ask_on_dlopen variable to true.

 The suffix of the library being loaded does not match a suffix contained in the TV::dll_stop_suffix
variable.

 One or more of the prefixes in this list match the name of the library being loaded.

Permitted Values: A list of path names, each item of which is separated from another by a colon

Default: /lib/:/usr/lib/:/usr/lpp/:/usr/ccs/lib/:/usr/dt/lib/:/tmp/

TV:: Namespace 322

TotalView Variables

TV::dll_read_all_symbols
Always reads loader and debugging symbols of libraries named within this variable.

This variable is set to a colon-separated list of library names. A name can contain the * (asterisk) and ? (question
mark) wildcard characters, which have their usual meaning:

 *: zero or more characters.

 ?: a single character.

Because this is the default behavior, include only library names here that would be excluded because they are
selected by a wildcard match within the TV:dll_read_loader_symbols_only and TV::dll_read_no_symbols
variables.

Permitted Values: One or more library names separated by colons

Default: None

TV::dll_read_loader_symbols_only
When TotalViewloads libraries named in this variable, it reads only loader symbols. Because TotalView checks and
processes the names in TV::dll_read_all_symbols list before it processes this list, it ignores names that are in
that list and in this one.

This variable is set to a colon-separated list of strings. Any string can contain the * (asterisk) and ? (question mark)
wildcard characters, which have their usual meaning:

 *: zero or more characters.

 ?: a single character.

If you do not need to debug most of your shared libraries, set this variable to * and then put the names of any
libraries you wish to debug on the TV::dll_read_all_symbols list.

Permitted Values: One or more library names separated by colons

Default: None

TV::dll_read_no_symbols
When TotalView loads libraries named in this variable, it does not read in either loader or debugging symbols.
Because TotalView checks and processes the names in the TV::dll_read_loader_symbols_only lists before it pro-
cesses this list, it ignores names that are in those lists and in this one.

This variable is set to a colon-separated list of strings. Any string can contain the * (asterisk) and ? (question mark)
wildcard characters having their usual meaning:

 *, which means zero or more characters

 ?, which means a single character.

TV:: Namespace 323

TotalView Variables

Because information about subroutines, variables, and file names are not known for these libraries, stack back-
traces may be truncated. However, if your program uses large shared libraries and it’s time consuming to read
even their loader symbols, you may want to put those libraries on this list.

Permitted Values: One or more library names separated by colons

Default: None

TV::dll_stop_suffix
Contains a colon-separated list of suffixes that stop the current process when it loads a library file with this suffix.

You must confirm that you want to stop the process:

 If TV::ask_on_dlopen variable is set to true

 If one or more of the suffixes in this list match the name of the library being loaded.

Permitted Values: A Tcl list of suffixes

Default: None

TV::dlopen_always_recalculate
When true, breakpoint specifications are reevaluated on every dlopen call (the default). When false, this variable
enables dlopen event filtering in combination with the optional use of TV::dlopen_recalculate_on_match. For
details on dlopen event filtering, see dlopen Options for Scalability on page 429.

Permitted Values:true or false

Default: true

TV::dlopen_recalculate_on_match
Contains a glob-list of patterns used to match against the path name of a dlopened library. If
TV::dlopen_always_recalculate is set to true, the value of this variable is ignored.

For a complete explanation of dlopen event filtering, including use-case examples, please refer to dlopen
Options for Scalability on page 429.

Permitted Values:String

Default: "", the empty string

TV::dlopen_read_libraries_in_parallel
When false, (the default), TotalView handles dlopen events in the target application serially. (Note that for parallel
applications, handling dlopen events serially can degrade debugger performance.)

When true, TotalView attempts to handle dlopen events in parallel.

On non-MRNet platforms, or if MRNet is not enabled, then the value of this variable is ignored. For more informa-
tion, see “Handling dlopen Events in Parallel”.

TV:: Namespace 324

TotalView Variables

Permitted Values: true or false

Default: false

TV::dump_core
When true, a core file is created when an internal TotalView error occurs. This is used only when debugging
TotalView problems. You can override this variable’s value by using the following command-line options:

-dump_core sets this variable to true
-no_dumpcore sets this variable to false

Permitted Values: true or false

Default: false

TV::dwarf_global_index
When true, TotalView can use the DWARF global index sections (.debug_pubnames, .debug_pubtypes,
.debug_typenames, etc.) in executable and shared library image files. It may be useful to set this flag to false if
you have an image file that has incomplete global index sections, and you want to force TotalView to skim the
DWARF instead, which may cause TotalView to slow down when indexing symbol tables. You can override this
variable’s value by using the following command-line options:

-dwarf_global_index sets this variable to true
-no_dwarf_global_index sets this variable to false

Permitted Values: true or false

Default: true

TV::dwhere_qualification_level
Controls the amount of information displayed when you use the dwhere command. Here are three examples:
dset TV::dwhere_qualification_level +overload_list
dset TV::dwhere_qualification_level -class_name
dset TV::dwhere_qualification_level -parent_function

You could combine these arguments into one command. For example:
dset TV::dwhere_qualification_level +overload_list \ -class_name -parent_function

In these examples “+” means that the information should be displayed and “-” means the information should not
be displayed.

The arguments to this command are:

 all

 class_name

 file_directory

 hint

TV:: Namespace 325

TotalView Variables

 image_directory

 loader_directory

 member

 module

 node

 overload_list

 parent_function

 template_args

 type_name

The all argument is often used as follows:
dset TV::dwhere_qualification_level all-parent_function

This states that all elements are displayed except for a parent function. For more information on these argu-
ments, see symbol on page 249.

Permitted Values: One or more of the arguments listed above.

Default: class_name+template_args+module+ parent_function+member+node

TV::dynamic
When true, TotalViewloads symbols from shared libraries. This variable is available on all platforms supported by
Perforce Software. (This may not be true for platforms ported by others. For example, this feature is not available
for Hitachi computers.) Setting this value to false can cause the dbfork library to fail because TotalView might not
find the fork(), vfork(), and execve() system calls.

Permitted Values: true or false

Default: true

TV::editor_launch_string
Defines the editor launch string command. The launch string substitution characters you can use are:

%E: The editor

%F: The display font

%N: The line number

%S: The source file

Permitted Values: Any string value—as this is a Tcl variable, you’ll need to enclose the string within {}
(braces) if the string contains spaces

TV:: Namespace 326

TotalView Variables

Default: {xterm -e %E +%N %S}

TV::env
Names a variable that is already contained within your program’s environment. This is a read-only variable and is
set by using the -env command-line option.For more information, see -env variable=value on page 391.

To set this variable from within TotalView, use the File > New Program or Process > Startup dialog boxes.

Permitted Values: None. The variable is read-only.

Default: None

TV::exec_handling
Defines how TotalView responds when a process being debugged calls execve(). This variable is comprised of an
Tcl list of regexp and action pairs, called an exec-handling-list. The regexp contains the name of the parent pro-
cess, and action defines an action for TotalView to take. For more information, see “Controlling fork, vfork, and
execve Handling” in the TotalView User Guide.

 regexp: A regular expression. The regular expression is not anchored, so use "^" and "$" to match
the beginning or end of the process name.

 action: The action to take, as follows:

Permitted Values:exec-handling-list

Default: None

TV::follow_clone
When a value greater than 0, allows TotalView to pickup threads created using the clone() system call. The sup-
ported values are:

0: TotalView does not follow clone() calls. This is most often used if problems occur.

1: TotalView follows clone() calls until the first pthread_create() call is made. This value is then set to 0.

2: TotalView follows clone() calls whenever they occur. Calls to clone() and pthread_create() can be interleaved.
This may affect performance if the program has many threads.

3: (default) Like 2, TotalView follows clone() calls whenever they occur. However, TotalView uses a feature avail-
able on newer Linux systems to reduce the overhead.

Action Description

halt Stop the process

go Continue the process

ask Ask whether to stop the process

TV:: Namespace 327

TotalView Variables

NOTE: Linux threads are not affected by this variable. This variable should be left set at 3 unless you
have reason to believe it is malfunctioning on your system.

Permitted Values: 0, 1, 2, or 3

Default: 3

TV::force_default_cplus_demangler
When true, TotalView uses the demangler set in the TV::current_cplus_demangler variable. Set this variable only
if TotalView uses the wrong demangler which may occur if you are using an unsupported compiler, an unsup-
ported language preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false

Default: false

TV::force_default_f9x_demangler
When true, TotalView uses the demangler set in the TV::current_fortran_demangler variable. Set this variable
only if TotalView uses the wrong demangler which may occur if you are using an unsupported compiler, an
unsupported language preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false

Default: false

TV::fork_handling
Defines how TotalView responds when a process being debugged calls fork() or vfork() to attach to new pro-
cesses. This variable is comprised of a Tcl list fork-handling-list of regexp and action pairs. The regexp contains
the name of the parent process, and action defines an action for TotalView to take. For more information, see
“Controlling fork, vfork, and execve Handling” in the TotalView User Guide.

 regexp: A regular expression. The regular expression is not anchored, so use "^" and "$" to match
the beginning or end of the process name.

 action: The action to take, as follows:

Permitted Values: fork-handling-list

Default: None

Action Description

attach Attach to the new child processes.

detach Detach from the new child processes.

TV:: Namespace 328

TotalView Variables

TV::gdb_index
When true, TotalView can use the .gdb_index section in executable and shared library image files. It may be use-
ful to set this to false if you have an image file that has an incomplete .gdb_index section and you want to force
TotalView to skim the DWARF instead. You can override this variable’s value by using the following command-line
options:

-gdb_index sets this variable to true
-no_gdb_index sets this variable to false

Permitted Values: true or false

Default: true

TV::global_typenames
When true, TotalView assumes that type names are globally unique within a program and that all type definitions
with the same name are identical. This must be true for standard-conforming C++ compilers.

If you set this option to true, TotalView attempts to replace an opaque type (struct foo *p;) declared in one mod-
ule with an identically named defined type (struct foo { … };) in a different module.

If TotalView has read the symbols for the module containing the non-opaque type definition, it automatically dis-
plays the variable by using the non-opaque type definition when displaying variables declared with the opaque
type.

If false, TotalView does not assume that type names are globally unique within a program. Use this variable only
if your code has different definitions of the same named type, since TotalView can pick the wrong definition when
it substitutes for an opaque type in this case.

Permitted Values: true or false

Default: true

TV::gnu_debuglink
When true, TotalView checks for a .note.gnu.build-id NOTE section and a .gnu_debuglink section within your
image files, in that order. If found, it looks for the file named in these sections. If false, TotalView ignores the con-
tents of these sections, meaning that debug information from a separate file will not be loaded.

For more information, see the section “Maintaining Debug Information Separate from an Executable” in the
TotalView User Guide.

Permitted Values: true or false

Default: true

TV::gnu_debuglink_build_id_search_path
This state variable contains a colon-separated search path that TotalView uses to search for separate debug
information files using the build ID method.

TV:: Namespace 329

TotalView Variables

Each component of this search path is expanded similarly to TV::gnu_debuglink_search_path. However, this vari-
able is used only when searching for separate debug information files using the build ID method, and does not
affect searching for separate debug information files using the debug link method.

A build ID is created using the --build-id option passed to the ld linker. By default, it is a SHA1,160-bit string (40
hex characters) stored in a .note.gnu.build-id NOTE section in an image file.

See the following URL for details: https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html

For a build ID such as:

be0e052ddd73fd5f3f15975ac02f4ca903d9bf77

TotalView searches for:

.build-id/be/0e052ddd73fd5f3f15975ac02f4ca903d9bf77.debug relative to each expanded path
component.

You can set or override this variable value in a startup file or with the command-line option
-gnu_debuglink_build_id_search_path.

 For more information, see the section “Using gnu_debuglink Files” in the TotalView User Guide.

Permitted Values: A colon-separated build ID search path

TV::gnu_debuglink_check_build_id
TV::gnu_debuglink_checksum
These two boolean variables work in concert to define how to validate a separate debug info file, if one exists,
against a base image file that references it. (See the appendix section “Using gnu_debuglink Files” in the TotalView
User Guide.) These settings may impact performance, depending on the system: Checksumming generally uses
more resources than comparing build IDs, so the default setting attempts to compare the build IDs first before
falling back and checksumming the separate debug info file.

Table 6 details how these settings work together.

Permitted Values: true or false

Default: Both settings default to true.

https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html

TV:: Namespace 330

TotalView Variables

TV::gnu_debuglink_global_directory
Names the global directory containing separate debug files. For more information, see the appendix section
“Using gnu_debuglink Files” in the TotalView User Guide.

Permitted Values: A pathname within your file system. While this path can be relative, it is usually a full
pathname.

Default: /usr/lib/debug

TV::gnu_debuglink_search_path
Defines the search path to use when searching for debug files. You can use substituting variables when assigning
values:

Table 6: Validating separate debug files

TV::gnu_debuglink_check
_build_id

TV::gnu_debuglink
_checksum Result

True True The default. Compare build IDs if the base image file con-
tains a build ID; otherwise, compare checksums.

This option never compares both the build ID and the
checksum.

True False Compare build IDs if the base image file contains a build ID. If
the base image file has no build ID, then no comparison
occurs, and TotalView uses the separate debug info file.

If the base image file has a build ID but there is no match, or
the separate debug info file has no build ID, the debug info
file is rejected.

Choose this option only if you know that the base image files
contain a build ID or that the separate debug info files
match.

False True Compare checksums only; never compare build IDs. This
option may be useful if the build IDs are considered
unreliable.

False False Compare neither build IDs nor checksums, and uncondition-
ally use the separate debug info files.

Choose this option only if you know that the separate debug
info files match.

TV:: Namespace 331

TotalView Variables

 %D: The directory containing the image file. Note that the directory ends in the target directory
delimiter, for example "/".

 %G: The contents of the TV::gnu_debuglink_global_directory variable.

 %/: The target directory delimiter; for example “/”.

 %%: A '%' character.

You can set or override this variable value in a startup file or with the command-line option
-gnu_debuglink_search_path.

For more information, see the section “Using gnu_debuglink Files” in the TotalView User Guide.

Permitted Values: A string containing directory paths.

Default: %D:%D.debug:%G%/%D

TV::hia_local_dir
This variable affects only those cases where TotalView preloads the agent. It names the directory in which
TotalView will look for the hia for a local job. The default is the value of TV::hia_local_installation_dir. Change
this variable if you want TotalView to look for the agent in a different directory.

TV::hia_local_installation_dir
A read-only variable that names the directory where the hia distributed with the executing instance of TotalView
is found.

TV::hia_remote_dir
This variable affects only those cases where TotalView preloads the agent. It names the directory on a remote
host where TotalView will look for the hia that is to be used by the remote job. If the variable is not set, the server
uses its default, which is the same as the default value of the server’s TV::hia_local_dir but is interpreted in the
remote file system.

TV::hpf
Deprecated.

TV::hpf_node
Deprecated.

TV::host_platform
A read-only value that returns the architecture upon which TotalView is running.

TV:: Namespace 332

TotalView Variables

TV::ignore_control_c
When true, TotalView ignores Ctrl+C. This prevents you from inadvertently terminating the TotalView process. You
would set this option to true when your program catches the Ctrl+C (SIGINT) signal. You may want to set File >
Signals so that TotalView resends the SIGINT signal, instead of just stopping the program.

Permitted Values: true or false

Default: false

TV::image_load_callbacks
Contains a Tcl list of procedure names. TotalView invokes the procedures named in this list whenever it loads a
new program. This could occur when:

 A user invokes a command such as dload.

 TotalView resolves dynamic library dependencies.

 User code uses dlopen() to load a new image.

TotalView invokes the functions in order, beginning at the first function in this list.

Permitted Values: A Tcl list of procedure names

Default: {::TV::S2S::handle_image_load}

TV::in_setup
Contains a true value if called while TotalView is being initialized. Your procedures would read the value of this
variable so that code can be conditionally executed based on whether TotalView is being initialized. In most cases,
this is used for code that should be invoked only while TotalView is being initialized. This is a read-only variable.

Permitted Values: true or false

Default: false

TV::ipv6_support
When true, ipv6 support is enabled. If false, ipv6 support is disabled.

Permitted Values: true or false

Default: false

TV::jit_debugging
When true, Clang / LLVM JIT (just-in-time compiled) code support is enabled through the GDB JIT debugging
interface.

https://llvm.org/docs/DebuggingJITedCode.html
https://sourceware.org/gdb/current/onlinedocs/gdb/JIT-Interface.html
https://sourceware.org/gdb/current/onlinedocs/gdb/JIT-Interface.html

TV:: Namespace 333

TotalView Variables

When JIT code is dynamically loaded into a process, TotalView reads the symbol table information for the JIT code
and places it into a separate symbol table image. JIT images are handled similarly to dynamically loaded shared
libraries, except that they are given a synthetic name starting with "@TEMP@JIT@". The JIT images appear after the
executable and shared library images in the process' image list.

When JIT code is dynamically unloaded from a process, TotalView removes the corresponding JIT image from the
process' image list.

Pending breakpoints can be created for the JIT code before it is dynamically loaded into the process. For example,
if a pending breakpoint exists for a JIT code function called “compute_factorial”, execution stops when that JIT
function is reached.

When false, Clang / LLVM JIT code support is disabled and TotalView does not hook JIT events or read JIT code
symbol tables.

NOTE: Support for JIT debugging is limited to CLANG LLVM on Linux-x86_64.

You can override this variable’s value by using the following command-line options:
-jit_debugging sets this variable to true
-no_jit_debugging sets this variable to false

Permitted Values: true or false

Default: true

TV::jnibridge
Internal use only.

TV::kcc_classes
When true, TotalView converts structure definitions created by the KCC compiler into classes that show base
classes and virtual base classes in the same way as other C++ compilers. When false, TotalView does not perform
this conversion. In this case, TotalView displays virtual bases as pointers rather than as the data.

TotalView converts structure definitions by matching the names given to structure members. This means that
TotalView may not convert definitions correctly if your structure component names look like KCC processed
classes. However, TotalView never converts these definitions unless it believes that the code was compiled with
KCC. (It does this when it sees one of the tag strings that KCC outputs, or when you use the KCC name deman-
gler.) Because all recognized structure component names start with “_ _” and the C standard forbids this use, your
code should not contain names with this prefix.

TV:: Namespace 334

TotalView Variables

Under some circumstances, TotalView may not be able to convert the original type names because type definition
are not available. For example, it may not be able to convert “struct __SO_foo” to “struct foo”. In this case,
TotalView shows the “__SO_foo” type. This is just a cosmetic problem. (The “__SO__” prefix denotes a type defini-
tion for the nonvirtual components of a class with virtual bases).

Since KCC output does not contain information on the accessibility of base classes (private, protected, or pub-
lic), TotalView cannot provide this information.

Permitted Values: true or false

Default: true

TV::kernel_launch_string
This is not currently used.

TV::kill_callbacks
Names a Tcl function to run before TotalView kills a process. The contents of this variable is a list of pairs. For
example:
dset TV::kill_callbacks {
{^srun$ TV::destroy_srun}
}

The first element in the pair is a regular expression, and the second is the name of a Tcl function. If the process’s
name matches the regular expression, TotalView runs the Tcl procedure, giving it the DPID of the process as its
argument. This procedure can do anything that needs to be done for orderly process termination.

If your Tcl procedure returns false, TotalView kills your process as you would expect. If the procedure returns
true, TotalView takes no further action to terminate the process.

Any slave processes are killed before the master process is killed. If there is a kill_callback for the master pro-
cess, it is called after the slave processes are killed. If there are kill_callbacks for the slave processes, they will be
called before the slave is killed.

Permitted Values: List of one or more list of pairs

Default: {}

TV::library_cache_directory
Specifies the directory to write library cache data.

Permitted Values: A string indicating a path

Default: $USERNAME/.totalview/lib_cache

TV::launch_command
Specifies the launch command.

Permitted Values: A string indicating the launch command

TV:: Namespace 335

TotalView Variables

Default: The value of TVDSVRLAUNCHCMD, if set; otherwise, the value of
TV::default_launch_command. Note: changing the value of TVDSVRLAUNCHCMD in the
environment after starting TotalView does not affect this variable or how %C is expanded.

TV::local_interface
Sets the interface name that the server uses when it makes a callback. For example, on an IBM PS2 machine, you
would set this to css0. However, you can use any legal inet interface name. (You can obtain a list of the interfaces
if you use the netstat -i command.)

Permitted Values: A string

Default: {}

TV::local_server
(Sun only) This variable tells TotalView which local server it should launch. By default, TotalView finds the local
server in the same place as the remote server. On Sun platforms, TotalView can launch a 32- and 64-bit version.

Permitted Values: A file or path name to the local server

Default: tvdsvr

TV::local_server_launch_string
(Sun only) If TotalView will not be using the server contained in the same working directory as the TotalView exe-
cutable, the contents of this string indicate the shell command that TotalView uses to launch this alternate server.

Permitted Values: A string enclosed with {} (braces) if it has embedded spaces

Default: {%M -working_directory %D -local %U -set_pw %P -verbosity %V}

TV::message_queue
When true, TotalView displays MPI message queues when you are debugging an MPI program. When false, these
queues are not displayed. Disable these queues only if something is overwriting the message queues, thereby
confusing TotalView.

Permitted Values: true or false

Default: true

TV::mrnet_enabled
When true, TotalView enables MRNet on platforms where it is supported (Linux-x86_64, Linux PowerLE, and
Cray). To disable the MRNet infrastructure when debugging an MPI job, set this variable to false.

Permitted Values: true or false

Default: true

TV:: Namespace 336

TotalView Variables

TV::mrnet_port_base
The start of the port range that MRNet attempts to use for listening sockets on Cray systems. This string is passed
to MRNet instead of using the MRNET_PORT_BASE environment variable. This value is only used when TotalView
uses MRNet on Cray systems.

Permitted Values: A port number

Default: {}

TV::mrnet_proxy_server
Controls the use of an MRNet proxy server.

 auto: Use an MRNet proxy server only if necessary. Default

 true: Use an MRNet proxy server, even if unnecessary. Useful for testing and debugging the proxy
server.

 false: Do not use an MRNet proxy server, even if necessary. Likely to cause a fatal error if using a
proxy server is necessary.

Permitted Values: auto, true or false

Default: auto

TV::mrnet_super_bushy
When true, TotalView creates a "super bushy" MRNet tree by launching one MRNet tvdsvr process per target MPI
process, instead of the default in which it launches one tvdsvr process per node.

This option addresses the CUDA debug API limitation that allows a debugger process (such as the tvdsvr) to
debug at most one target process using a GPU. Set this option to true if you are debugging an MPI job in which
more than one CUDA process is running on a node.

Permitted Values: true or false

Default: false

TV::native_platform
A read-only state variable that identifies the native (host) platform on which the TotalView client (GUI or CLI) is
running. This variable’s value is the same as the value of TV::platform.

Permitted Values: A string indicating a platform

Default: platform-specific

TV::nptl_threads
When set to auto, TotalView determines which threads package your program is using. A value of true identifies
use of NPTL threads, while false means that the program is not using this package.

TV:: Namespace 337

TotalView Variables

Permitted Values: true, false, or auto

Default: auto

TV::open_cli_window_callback
Contains the string that the CLI executes after you open the CLI by selecting the Tools > Command Line com-
mand. It is ignored when you open the CLI from the command line.

This variable is most commonly used to set the terminal characteristics of the (pseudo) tty that the CLI is using,
since these are inherited from the tty on which TotalView was started. Therefore, if you start TotalView from a
shell running inside an Emacs buffer, the CLI uses the raw terminal modes that Emacs is using. You can change
your terminal mode by adding the following command to your .tvdrc file:
dset TV::open_cli_window_callback "stty sane"

Permitted Values:A string representing a Tcl or CLI command

Default: Null

TV::openmp_debug_enabled
When true, TotalView enables runtime support for OpenMP OMPD.

This variable can also be set in a TotalView .tvdrc file within your .totalview directory.

Permitted Values: true or false

Default: false

TV::parallel
When true, enables TotalView support for parallel program runtime libraries such as MPI, PE, and UPC. You might
set this to false if you need to debug a parallel program as if it were a single-process program.

Permitted Values: true or false

Default: true

TV::parallel_attach
Automatically attaches to processes. Your choices are:

 yes: Attach to all started processes.

 no: Do not attach to any started processes.

 ask: Display a dialog box listing the processes to which TotalView can attach, and let the user
decide to which ones TotalView should attach.

Permitted Values: yes, no, or ask

Default: yes

TV:: Namespace 338

TotalView Variables

TV::parallel_stop
Tells TotalView if it should automatically run processes when your program launches them. Your choices are:

 yes: Stop the processes before they begin executing.

 no: Do not interfere with the processes; that is, let them run.

 ask: Display a question box asking if it should stop before executing.

Permitted Values: yes, no, or ask

Default: ask

TV::platform
Indicates the platform on which you are running TotalView. This is a read-only variable.

Permitted Values: A string indicating a platform, such as sun5

Default: Platform-specific

TV::process_load_callbacks
Names the procedures that TotalView runs after it loads or attaches to a program and just before it runs the pro-
gram. TotalView executes these procedures after it invokes the procedures in the TV::image_load_callbacks list.

The procedures in this list are called at most once per process load or attach, even though your executable may
use many shared libraries. After attaching to the processes in a parallel job, the callback procedures listed in
TV::process_load_callbacks are invoked on one representative process in each share group, and only when the
share group is first created. If the parallel job is restarted, the callback procedures are not invoked because the
share groups are not recreated. All processes in a parallel job are attached before calling the procedures. The
calls to the procedures are queued and executed at a later time, and are not guaranteed to be during the lifetime
of the processes.

Permitted Values: A list of Tcl procedures

Default: TV::source_process_startup. The default procedure looks for a file with the same name as
the newly loaded process’s executable image that has a .tvd suffix appended to it. If it
exists, TotalView executes the commands contained within it. This function is passed an
argument that is the ID for the newly created process.

TV::proxy_server_server_launch_string
Defines the launch string used when launching a proxy server.

Permitted Values: A string

Default: %B/tvdsvr%K -callback %L -set_pw %P -verbosity %V %F %X

TV:: Namespace 339

TotalView Variables

TV::recurse_subroutines:
Determines whether a data window displaying the subroutines associated with a source file initially displays just
the subroutine names, or also the data values in the subroutine scopes. This situation most commonly occurs in
the Program Browser, available in the Classic UI.

 true: Displays both the subroutine names and the data in their scope.

 false: Displays only the subroutine names.

For complex applications, determining the state of the data values in the scope of all subroutines can significantly
slow down TotalView. If set to false so only the subroutine names appear, data values for a particular subroutine
can still be viewed by explicitly diving into the subroutine.

Permitted Values: true or false

Default: true

TV::replay_history_mode
Controls how ReplayEngine handles the history buffer when it is full, as follows:

 1: Discards the oldest history and continue.

 2: Stops the process.

Permitted Values: 1 or 2

Default: 1

TV::replay_history_size
Specifies the size of ReplayEngine’s buffer for recorded history, in either bytes, kilobytes (K) or megabytes (M). To
specify kilobytes or megabytes, append a K or M to the number, as follows: 10000K or 1024M

Permitted Values: An integer or an integer followed by K or M

Default: 0 (Limited only by available memory)

TV::restart_threshold
When killing a multi-threaded or multiprocess program, specifies the number of threads or processes that must
be running before a prompt launches confirming that you wish to kill the program. By default, this prompt
appears if there is more than one thread or process running.

Permitted Values: A positive integer

Default: 1

TV::reverse_connect_wanted
Controls whether TotalView listens for reverse connection requests.

Permitted Values: true or false

TV:: Namespace 340

TotalView Variables

Default: true

TV::save_global_dialog_defaults
Obsolete.

TV::save_search_path
Obsolete.

TV::save_window_pipe_or_filename
Names the file to which TotalView writes or pipes the contents of the current window or pane when you select
the File > Save Pane command.

Permitted Values: A string naming a file or pipe

Default: None, until something is saved. Afterward, the saved string is the default.

TV::search_case_sensitive
When true, text searches are case-sensitive, succeeding only for an exact match for the entry in the Edit > Find
dialog box. For example, searching Foo won’t find foo if this variable is set to true. It will be found if this variable
is set to false.

Permitted Values: true or false

Default: false

TV::server_launch_enabled
When true, TotalView uses its single-process server launch procedure when launching remote tvdsvr processes.
When false, tvdsvr is not automatically launched.

Permitted Values: true or false

Default: true

TV::server_launch_string
Names the command string that TotalView uses to automatically launch the TotalView Debugger Server (tvdsvr)
when debugging a remote process. This command string is executed by /bin/sh. By default, TotalView uses the
command ssh -x to start the server, but you can use any other command that can invoke tvdsvr on a remote
host. If no command is available for invoking a remote process, you can’t automatically launch the server; there-
fore, you should set this variable to /bin/false. If you cannot automatically launch a server, you should also set
the TV::server_launch_enabled variable to false.

Permitted Values: A string

Default: {%C %R -n "%B/tvdsvr -working_directory %D -callback %L -set_pw %P -verbosity %V
%F"}

TV:: Namespace 341

TotalView Variables

TV::server_launch_timeout
Specifies the number of seconds to wait for a response from the TotalView Debugger Server (tvdsvr) that it has
launched.

Permitted Values:An integer from 1 to 3600 (1 hour)

Default: 30

TV::server_response_wait_timeout
Specifies how long to wait for a response from the TotalView Debugger Server (tvdsvr). Using a higher value may
help avoid server timeouts if you are debugging across multiple nodes that are heavily loaded.

Permitted Values: An integer from 1 to 3600 (1 hour)

Default: 30

TV::share_action_point
Indicates the scope in which TotalView places newly created action points. In the CLI, this is the dbarrier, dbreak,
and dwatch commands. If true, newly created action points are shared across the group. If false, a newly created
action point is active only in the process in which it is set.

As an alternative to setting this variable, you can select the Plant in share group check box in the Action Points
Page in the File > Preferences dialog box. You can override this value in the GUI by selecting the Plant in share
group checkbox in the Action Point > Properties dialog box.

Permitted Values: true or false

Default: true

TV::signal_handling_mode

A list that modifies the way in which TotalView handles signals. This list consists of a list of signal_action descrip-
tions, separated by spaces:
signal_action[signal_action] ...

A signal_action description consists of an action, an equal sign (=), and a list of signals:
action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard.

A signal_list is a list of one or more signal specifiers, separated by commas:
signal_specifier[,signal_specifier] ...

A signal_specifier can be a signal name (such as SIGSEGV), a signal number (such as 11), or a star (*), which
specifies all signals. We recommend using the signal name rather than the number because number assignments
vary across UNIX versions.

The following rules apply when you are specifying an action_list:

TV:: Namespace 342

TotalView Variables

 If you specify an action for a signal in an action_list, TotalView changes the default action for that
signal.

 If you do not specify a signal in the action_list, TotalView does not change its default action for the
signal.

 If you specify a signal that does not exist for the platform, TotalView ignores it.

 If you specify an action for a signal twice, TotalView uses the last action specified. In other words,
TotalView applies the actions from left to right.

If you need to revert the settings for signal handling to built-in defaults, use the Defaults button in the File > Sig-
nals dialog box.

For example, to set the default action for the SIGTERM signal to Resend, you specify the following action list:
{Resend=SIGTERM}

As another example, to set the action for SIGSEGV and SIGBUS to Error, the action for SIGHUP and SIGTERM to
Resend, and all remaining signals to Stop, you specify the following action list:
{Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM}

This action list shows how TotalView applies the actions from left to right.

1. Sets the action for all signals to Stop.

2. Changes the action for SIGSEGV and SIGBUS from Stop to Error.

3. Changes the action for SIGHUP and SIGTERM from Stop to Resend.

Permitted Values: A list of signals, as was just described

Default: This differs from platform to platform; type dset TV::signal_handling_mode to see what
a platform’s default values are

TV::source_pane_tab_width
Sets the width of the tab character that is displayed in the Process Window’s Source Pane. You may want to set
this value to the same value as you use in your text editor.

Permitted Values: An integer

Default: 8

TV::spell_correction
When you use the View > Lookup Function or View > Lookup Variable commands in the Process Window or
edit a type string in a Variable Window, TotalView checks the spelling of your entries. By default (verbose),
TotalView displays a dialog box before it corrects spelling. You can set this resource to brief to run the spelling
corrector silently. (TotalView makes the spelling correction without displaying it in a dialog box first.) You can also
set this resource to none to disable the spelling corrector.

TV:: Namespace 343

TotalView Variables

Permitted Values: verbose, brief, or none

Default: verbose

TV::stack_trace_expand_inlined_subroutines
Controls the behavior of reading delayed symbols while building a stack backtrace in order to find inlined subrou-
tines. By default, this variable is set to auto, so that TotalView attempts to automatically detect whether the
subroutine associated with a stack frame might contain inlined subroutines; if so, it reads the delayed symbols for
the file containing the subroutine.

If you are sure your subroutines contain no inlined subroutines or you are experiencing debugging performance
issues during stack backtraces, you can set this value to false. However, doing so might result in stack backtraces
that are missing inlined subroutines.

A setting of true means that TotalView will always attempt to read delayed symbols for inlined subroutines, but
this could result in poorer debugger performance when building a stack backtrace. However, doing so will ensure
that stack backtraces always contain all inlined subroutines.

Permitted Values: true, false, or auto

Default: auto

TV::stack_trace_qualification_level
Controls the amount of information displayed in stack traces. For more information, see
TV::dwhere_qualification_level.

Permitted Values: One or more of the following arguments: all, class_name, file_directory, hint,
image_directory, loader_directory, member, module, node, overload_list, parent_-
function, template_args, type_name.

Default: class_name+template_args+module+ parent_function+member+node

TV::stack_trace_transform_enabled
Controls whether TotalView filters the stack. Because not all applications can benefit from stack filtering, this vari-
able is false by default.

NOTE: If TotalView detects that an application has a feature that can benefit from stack filtering, it
enables this variable.

Permitted Values: true or false

Default: false

TV:: Namespace 344

TotalView Variables

TV::stop_all
Indicates a default property for newly created action points. This property tells TotalView what else it should stop
when it encounters this action point. The values you can set are:

group

Stops the entire control group when the action point is hit.

process

Stops the entire process when the action point is hit.

thread

Only stops the thread that hit the action point. Note that none is a synonym for thread.

Permitted Values:group, process, or thread

Default: group

TV::stop_relatives_on_proc_error
When true, TotalView stops the control group when an error signal is raised. .

Permitted Values: true or false

Default: true

TV::suffixes
Use a space separated list of items to identify the contents of a file. Each item on this list has the form: suf-
fix:lang[:include]. You can set more than suffix for an item. If you want to remove an item from the default list,
set its value to unknown.

Permitted Values: A list identifying how suffixes are used

Default: {:c:include s:asm S:asm c:c h:c:include lex:c:include y:c:include bmap:c:include f:f77
F:f77 f90:f9x F90:f9x hpf:hpf HPF:hpf cxx:c++ cpp:c++ cc:c++ c++:c++ C:c++ C++:c++
hxx:c++:include hpp:c++:include hh:c++:include h++:c++:include HXX:c++:include
HPP:c++:include HH:c++:include H:c++:include ih:c++:include th:c++}

TV::target_platform
A read-only variable that displays a list of the platforms on which you can debug from the native (host) platform,
usually in the format os-cpu. For example, from a native platform of Linux-x86-64, the list is “linux-x86_64.” The
platform names may be listed differently than in TV::platform and TV::native_platform. For example, for AIX,
TV::target_platform is “aix-power” but TV::platform and TV::native_platform are “rs6000.”

Permitted Values: A list of platform names

Default: Platform-dependent

TV:: Namespace 345

TotalView Variables

TV::ttf
When true, TotalView uses registered type transformations to change the appearance of data types that have
been registered using the TV::type_transformation command.

Permitted Values: true or false

Default: true

TV::ttf_max_length
When transforming STL structures, TotalView must chase through pointers to obtain values. This number indi-
cates how many of these pointers it should follow.

Permitted Values: An integer number

Default: 10000

TV::use_fast_trap
Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled condi-
tional breakpoints, also known as EVAL points. You cannot interactively use this variable. Instead, you must set it
within a TotalView startup file; for example, set its value with a .tvdrc file.

Your operating system may not be configured correctly to support this option. See the TotalView Release Notes on
our web site for more information.

Permitted Values: true or false

Default: true

TV::use_fast_wp
Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled condi-
tional watchpoints, also known as CDWP points. You cannot interactively use this variable. Instead, you must set it
within a TotalView startup file; for example, set its value with a .tvdrc file.

Your operating system may not be configured correctly to support this option. See the TotalView Release Notes on
our web site for more information.

Permitted Values: true or false

Default: false

TV::use_interface
This variable is a synonym for TV::local_interface.

TV::user_threads
When true, it enables TotalView support for handling user-level (M:N) thread packages on systems that support
two-level (kernel and user) thread scheduling.

TV:: Namespace 346

TotalView Variables

Permitted Values:true or false

Default: true

TV::version
Indicates the current TotalView version. This is a read-only variable.

Permitted Values: A string

Default: Varies from release to release

TV::visualizer_launch_enabled
When true, TotalView automatically launches the Visualizer when you first visualize something. If you set this vari-
able to false, TotalView disables visualization. This is most often used to stop evaluation points containing a
$visualize directive from invoking the Visualizer.

Permitted Values: true or false

Default: true

TV::visualizer_launch_string
Specifies the command string that TotalView uses when it launches a visualizer. Because the text is actually used
as a shell command, you can use a shell redirection command to write visualization datasets to a file (for exam-
ple, “cat > your_file”).

Permitted Values: A string

Default: %B/visualize

TV::visualizer_max_rank
Specifies the default value used in the Maximum permissible rank field in the Launch Strings Page of the File
> Preferences dialog box. This field sets the maximum rank of the array that TotalView will export to a visualizer.
The Visualizer cannot visualize arrays of rank greater than 2. If you are using another visualizer or just dumping
binary data, you can set this value to a larger number.

Permitted Values: An integer

Default: 2

TV::warn_step_throw
If this is set to true and your program throws an exception during a single-step operation, TotalView asks if you
wish to stop the step operation. The process will be left stopped at the C++ run-time library’s “throw” routine. If
this is set to false, TotalView will not catch C++ exception throws during single-step operations. Setting it to false
may mean that TotalView will lose control of the process, and you may not be able to control the program.

Permitted Values: true or false

Default: true

TV:: Namespace 347

TotalView Variables

TV::wrap_on_search
When true, TotalViewwill continue searching from either the beginning (if Down is also selected in the Edit > Find
dialog box) or the end (if Up is also selected) if it doesn’t find what you’re looking for. For example, you search for
foo and select the Down button. If TotalView doesn’t find it in the text between the current position and the end
of the file, TotalView will continue searching from the beginning of the file if you set this option.

Permitted Values: true or false

Default: true

TV::xplat_remcmd
A command that needs to be executed before executing a process on a remote host, e.g., runauth. This string is
passed to MRNet instead of using the XPLAT_REMCMD environment variable. This value is only used when
TotalView uses MRNet.

Permitted Values: A command

Default: {}

TV::xplat_rsh
An rsh command that is passed to MRNet instead of using the XPLAT_RSH environment variable. This command
is used to launch remote processes. If this variable isn't explicitly set and the XPLAT_RSH environment variable is
empty, TotalView uses the value of TV::launch_command. This value is used only when Classic TotalView uses
MRNet.

Permitted Values: A remote launch command

Default: {}

TV::xplat_rsh_args
A list of arguments that need to be given to the remote launch command. This string is passed to MRNet instead
of using the XPLAT_RSH_ARGS environment variable. This value is only used when TotalView uses MRNet.

Permitted Values: A space-separated list of remote launch arguments

Default: {}

TV::xterm_name
The name of the program that TotalView should use when spawning the CLI. In most cases, you will set this using
the -xterm_name command-line option.

Permitted Values: A string

Default: xterm

TV::MEMDEBUG:: Namespace 348

TotalView Variables

TV::MEMDEBUG:: Namespace

TV::MEMDEBUG::default_snippet_extent
Defines the number of code lines above and below point of allocation that the Memory Debugger saves when it
is adding code snippets to saved output.

You can also set this value using a Memory Debugger preference.

Permitted Values: A positive integer number

Default: 5

TV::MEMDEBUG::do_not_apply_hia_defaults
If set to true, tells the Memory Debugger that it should use settings it finds in a default .hiarc file. Otherwise, the
Memory Debuggers sets all options to off.

You can also set this value using a Memory Debugger preference.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::hia_allow_ibm_poe
Tells the Memory Debugger if you can enable memory debugging on poe. As the default value is false, set this
variable if you want memory debugging to be on by default. This variable is hardly ever used.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::ignore_snippets
When true, the Memory Debugger ignores code snippets that it saved and instead locates the information from
your program's files.

You can also set this value using Memory Debugger preference.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::leak_check_interior_pointers
When true, the Memory Debugger considers a block as being referenced if a pointer is pointing anywhere within
the block instead of just at the block’s starting location. In most programs, the code should be keeping track of
the block’s boundary. However, if your C++ program is using multiple inheritance, you may be pointing into the
middle of the block without knowing it.

TV::MEMDEBUG:: Namespace 349

TotalView Variables

Permitted Values: true or false

Default: true

TV::MEMDEBUG::leak_detection_alignment
Specifies the alignment and stride TotalView uses as it steps through memory looking for pointers during leak
detection. If 0 (the default value), then TotalView defaults to using the size of a pointer, which varies according to
platform and programming model. In normal circumstances you should not need to adjust the alignment.

Permitted Values: A non-negative integer number

Default: 0

TV::MEMDEBUG::leak_max_cache
Sets the size of the Memory Debugger's cache. We urge you not to change this value unless your program is
exceptionally large or are asked to make the change by someone on the TotalView support team.

Permitted Values: A positive integer number

Default: 4194304

TV::MEMDEBUG::leak_max_chunk
Tells the Memory Debugger how much memory it should obtain when it obtains memory from your operating
system. You shouldn't change this value unless asked to by someone on the TotalView support team.

Permitted Values: A positive integer number

Default: 4194304

TV::MEMDEBUG::shared_data_filters
Names a filter definition file that is not located in the default directory. (The default directory is the lib subdirec-
tory within the TotalView installation directory.) The contents of this variable are read when TotalView begins
executing. Consequently, TotalView ignores any changes you make during the debugging session. The following
example names the directory in which the filter file resides. This example assumes that filter has the default
name, which is tv_filters.tvd.

dset TV::MEMDEBUG::shared_data_filters {/home/projects/filters/}

Use brackets so that Tcl doesn’t interpret the “/” as a mathematical operator. If you wish to use a specific file, just
use its name in this command. For example:

dset TV::MEMDEBUG::shared_data_filters \ {/home/projects/filters/filter.tvd}

The file must have a .tvd extension.

Permitted Values: A string naming the path to the filter directory.

Default: none

TV::GUI:: Namespace 350

TotalView Variables

TV::GUI:: Namespace

NOTE: The variables in this section have meaning (and in some cases, a value) only when you are
using the TotalView GUI. Note that some are specific to the Classic UI only.

TV::GUI::chase_mouse
When this variable is set to true, TotalView displays dialog boxes at the location of the mouse cursor. If this is set
to false, TotalView displays them centered in the upper third of the screen.

Permitted Values: true or false

Default: true

TV::GUI::display_bytes_kb_mb
When true, the Memory Debugger displays memory block sizes in megabytes. If set to false, it displays memory
blocks sizes in kilobytes.

Permitted Values: true or false

Default: true

TV::GUI::display_font_dpi
Indicates the video monitor DPI (dots per inch) at which fonts are displayed.

Permitted Values: An integer

Default: 75

TV::GUI::enabled
When true, you invoked the CLI from the GUI or a startup script. Otherwise, this read-only value is false.

Permitted Values: true or false

Default: true if you are running the GUI even though you are seeing this in a CLI window; false if
you are only running the CLI

TV::GUI::fixed_font
Indicates the specific font TotalView uses when displaying program information such as source code in the Pro-
cess Window or data in the Variable Window. This variable contains the value set when you select a Code and
Data Fontentry in the Fonts Page of the File > Preferences dialog box.

This is a read-only variable.

Permitted Values: A string naming a fixed font residing on your system

TV::GUI:: Namespace 351

TotalView Variables

Default: While this is platform specific, here is a representative value:-adobe-courier-medium-r-
normal--12-120-75-75-m-70-iso8859-1

TV::GUI::fixed_font_family
Indicates the specific font TotalView uses when displaying program information such as source code in the Pro-
cess Window or data in the Variable Window. This variable contains the value set when you select a Code and
Data Font entry of the Fonts Page of the File > Preferences dialog box.

Permitted Values: A string representing an installed font family

Default: fixed

TV::GUI::fixed_font_size
Indicates the point size at which TotalView displays fixed font text. This is only useful if you have set a fixed font
family because if you set a fixed font, the value entered contains the point size.

Font sizes are indicated using printer points.

Permitted Values:An integer

Default: 12

TV::GUI::font
Indicates the specific font used when TotalView writes information as the text in dialog boxes and in menu bars.
This variable contains the information set when you select a Select by full name entry in the Fonts Page of the
File > Preferences dialog box.

Permitted Values:A string naming a fixed font residing on your system. While this is platform specific,
here is a representative value:-adobe-helvetica-medium-r-normal--12-120-75-75-p-
67-iso8859-1

Default: helvetica

TV::GUI::force_window_positions
Setting this variable to true tells TotalView that it should use the version 4 window layout algorithm. This algo-
rithm tells the window manager where to set the window. It also cascades windows from a base location for each
window type. If this is not set, which is the default, newer window managers such as kwm or Enlightenment can
use their smart placement modes.

Dialog boxes still chase the pointer as needed and are unaffected by this setting.

Permitted Values: true or false

Default: false

TV::GUI::frame_offset_x
Not implemented.

TV::GUI:: Namespace 352

TotalView Variables

TV::GUI::frame_offset_y
Not implemented.

TV::GUI::geometry_call_tree
Specifies the position at which TotalView displays the Tools > Call Tree Window. This position is set using a list
containing four values: the window’s x and y coordinates. These are followed by two more values specifying the
window’s width and height.

If you set any of these values to 0 (zero), TotalView uses its default value. This means, however, you cannot place
a window at x, y coordinates of 0, 0. Instead, you’ll need to place the window at 1, 1.

If you specify negative x and y coordinates, TotalView aligns the window to the opposite edge of the screen.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_cli
Specifies the position at which TotalView displays the Tools > CLI Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_expressions
Specifies the position at which TotalView displays the Tools > Expression List Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_globals
Specifies the position at which TotalView displays the Tools > Program Browser Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI:: Namespace 353

TotalView Variables

TV::GUI::geometry_help
Specifies the position at which TotalView displays the Help Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_memory_stats
Specifies the position at which TotalView displays the Tools > Memory Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinate’s and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_message_queue
Specifies the position at which TotalView displays the Tools > Message Queue Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_message_queue_graph
Specifies the position at which TotalView displays the Tools > Message Queue Graph Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_process
Specifies the position at which TotalView displays the Process Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI:: Namespace 354

TotalView Variables

TV::GUI::geometry_ptset
No longer used.

TV::GUI::geometry_root
Specifies the position at which TotalView displays the Root Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_thread_objects
Specifies the position at which TotalView displays the Tools > Thread Objects Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_variable
Specifies the position at which TotalView displays the Variable Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_variable_stats
Specifies the position at which TotalView displays the Tools > Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the
window’s width and height

Default: {0 0 0 0}

TV::GUI::hand_cursor_enabled
Specifies whether the cursor should change to a hand cursor when hovering over an element you can dive into in
the source pane of the process window.

Permitted Values: true or false

Default: true

TV::GUI:: Namespace 355

TotalView Variables

TV::GUI::heap_summary_refresh
Not user settable.

TV::GUI::inverse_video
Not implemented.

TV::GUI::keep_expressions
Deprecated.

TV::GUI::keep_search_dialog
When true, TotalView doesn’t remove the Edit > Find dialog box after you select that dialog box’s Find button. If
you select this option, you will need to select the Close button to dismiss the Edit > Find box.

Permitted Values: true or false

Default: true

TV::GUI::old_root_window
When true, TotalView replaces the Root Window with the Root Window used in versions prior to Classic TotalView
8.15. You can override this value using the following command-line options:

 -oldroot sets this variable to true

 -newrootsets this variable to false

NOTE: Using the previous-version Root Window may affect performance of applications
containing thousands of threads/processes.

Permitted Values: true or false

Default: false

TV::GUI::pop_at_breakpoint

When true, TotalView sets the Open (or raise) process window at breakpoint check box to be selected by
default. If this variable is set to false, this check box is unselected by default.

Permitted Values: true or false

Default: true

TV::GUI:: Namespace 356

TotalView Variables

TV::GUI::pop_on_error
(Classic UI only) When true, TotalView sets the Open process window on error signalcheck box in the File >
Preferences’s Option Page to be selected by default. If you set this to false, TotalView sets that check box to be
deselected by default.

Permitted Values: true or false

Default: true

TV::GUI::process_grid_wanted
When true, TotalView enables the Processes/Ranks Tab in the Process Window. Enabling this tab can significantly
affect performance, particularly for large, massively parallel applications.

Permitted Values: true or false

Default: false

TV::GUI::show_startup_parameters
Setting this value to true tells TotalView to display that it should display the Process > Startup dialog box when
you use a program name as an argument to the TotalView command.

Permitted Values:true or false

Default: true

TV:GUI:show_sys_thread_id
Displays the current thread’s system thread ID within the TotalView GUI.

Permitted Values: true or false

Default: true

TV::GUI::single_click_dive_enabled
When set, you can perform dive operations using the middle mouse button. Diving using a left-double-click still
works. If you are editing a field, clicking the middle mouse performs a paste operation.

Permitted Values: true or false

Default: true

TV::GUI::toolbar_style
This value set defines toolbar display.

Permitted Values: icons_above_text,icons_besides_text,icons,or text

Default: icons_above_text

TV::GUI::tooltips_enabled
When true, variable tooltips are displayed in the Process Window Source Pane.

TV::GUI:: Namespace 357

TotalView Variables

Permitted Values: true or false

Default: true

TV::GUI::ui_font
Indicates the specific font used when TotalView writes information as the text in dialog boxes and in menu bars.
This variable contains the information set when you select a Select by full name entry in the Fonts Page of the
File > Preferences dialog box.

Permitted Values: While this is platform specific, here is a representative value:-adobe-helvetica-
medium-r-normal--12-120-75-75-p-67-iso8859-1

Default: helvetica

TV::GUI::ui_font_family
Indicates the family of fonts that TotalView uses when displaying such information as the text in dialog boxes and
menu bars. This variable contains the information set when you select a Family in the Fonts Page of the File >
Preferences dialog box.

Permitted Values: A string

Default: helvetica

TV::GUI::ui_font_size
Indicates the point size at which TotalView writes the font used for displaying such information as the text in dia-
log boxes and menu bars. This variable contains the information set when you select a User Interface Size in the
Fonts Page of the File > Preferences dialog box.

Permitted Values: An integer

Default: 12

TV::GUI::using_color
Not implemented.

TV::GUI::using_text_color
Not implemented.

TV::GUI::using_title_color
Not implemented.

TV::GUI::version
This number indicates which version of the TotalView GUI is being displayed. This is a read-only variable.

Permitted Values: A number

 358

PART II Transformations

This part of the TotalView Reference Guide discusses formatting and transformations that display data in a clear
and concise format to facilitate easier debugging sessions.

 Creating Type Transformations on page 359

Discusses how to customize data display using CLI routines. This is useful if you do not wish to see all
the members of a class or structure or would like to alter the way TotalView displays these elements.

359

 Creating Type Transformations

The Type Transformation Facility (TTF) lets you define the way TotalView displays aggregate data. Aggregate
data is simply a collection of data elements from within one class or structure. These elements can also be
other aggregated elements. In most cases, you will create transformations that model data that your program
stores in an array- or list-like way. You can also transform arrays of structures.

This chapter describes the TTF and includes information on how you create your own. Creating transforma-
tions can be quite complicated. This chapter looks at transformations for which TotalView can automatically
create an addressing expression.

The chapter also describes C++View (CV), a facility that allows you to format program data in a more useful or
meaningful form than the concrete representation that you see in TotalView when you inspect data in a run-
ning program.

 About the Type Transformation Facility on page 360

 Why Type Transformations on page 361

 Creating Structure and Class Transformations on page 363

 C++View on page 371

About the Type Transformation Facility 360

Creating Type Transformations

About the Type Transformation Facility
The Type Transformation Facility (TTF) customizes how TotalView displays aggregate data. Aggregate data is simply
a collection of data elements from within one class or structure. These elements can also be other aggregated
elements. In most cases, you will create transformations that model data that your program stores in an array or
list-like way. You can also transform arrays of structures.

Why Type Transformations 361

Creating Type Transformations

Why Type Transformations
Modern programming languages allow you to use abstractions such as structures, class, and STL data types such
as lists, maps, multimaps, sets, multisets, and vectors to model the data that your program uses. For example, the
STL (Standard Template Library) allows you to create vectors of the data contained within a class. These abstrac-
tions simplify the way in which you think of and manipulate program’s data. These abstractions can also
complicate the way in which you debug your program because it may be nearly impossible or very inconvenient
to examine your program’s data. For example, Figure 6 shows a vector transformation.

Figure 6, A Vector Transformation

Why Type Transformations 362

Creating Type Transformations

The upper left window shows untransformed information. In this example, TotalView displays the complete struc-
ture of this GNU C++ STL structure. This means that you are seeing the data exactly as your compiler created it.

The logical model that is the reason for using an STL vector is buried within this information. Neither TotalView
nor your compiler has this information. This is where type transformations come in. They give TotalView knowl-
edge of how the data is structured and how it can access data elements. The bottom Variable Window shows
how TotalView reorganizes this information.

NOTE: By default, TotalView transforms STL strings, vectors, lists, maps, multimaps, sets, and multi-
sets. The unordered STL types, unordered_map, unordered_multimap, unordered_set and
unordered_multiset, are transformed for recent g++ compilers. If you do not want TotalView
to transform your information, select the Options Tab within the File > Preferences Dialog Box
and remove the check mark from View simplified STL containers (and user-defined
transformations).

Creating Structure and Class Transformations Transforming Structures 363

Creating Type Transformations

Creating Structure and Class Transformations
The procedure for transforming a structure or a class requires that create a mapping between the elements of
the structure or class and the way in which you want this information to appear.

This section contains the following topics:

 Transforming Structures on page 363

 build_struct_transform Function on page 365

 Type Transformation Expressions on page 365

 Using Type Transformations on page 370

Transforming Structures
The following small program contains a structure and the statements necessary to initialize it:
#include <stdio.h>
int main () {
 struct stuff {
 int month;
 int day;
 int year;
 char * pName;
 char * pStreet;
 char CityState[30];
 };
 struct stuff info;
 char my_name[] = "John Smith";
 char my_street[] = "24 Prime Parkway, Suite 106";
 char my_CityState[] = "Natick, MA 01760";
 info.month = 6;
 info.day = 20;
 info.year = 2004;
 info.pName = my_name;
 info.pStreet = my_street;
 strcpy(info.CityState, my_CityState);
 printf("The year is %d\n", info.year);
}

Suppose that you do not want to see the month and day components. You can do this by creating a transforma-
tion that names just the elements you want to include:
::TV::TTF::RTF::build_struct_transform {
 name {^struct stuff$}
 members {

Creating Structure and Class Transformations Transforming Structures 364

Creating Type Transformations

 { year { year } }
 { pName { * pName } }
 { pStreet { * pStreet } }
 }
}

You can apply this transformation to your data in the following ways:

 After opening the program, use the Tools > Command Line command to open a CLI Window.
Next, type this function call.

 If you write the function call into a file, use the Tcl source command. If the name of the file is
stuff.tvd, enter the following command into a CLI Window:

source stuff.tvd

 You can place the transformation source file into the same directory as the executable, giving it the
same root name as the executable. If the executable file has the name stuff, TotalView will
automatically execute all commands within a file named stuff.tvd when it loads your executable.

After TotalView processes your transformation, it displays the Variable Window when you dive on the info
structure:

Figure 7, Transforming a Structure

Creating Structure and Class Transformations build_struct_transform Function 365

Creating Type Transformations

build_struct_transform Function
The build_struct_transform routine used in the example in the previous section is a Tcl helper function that
builds the callbacks and addressing expressions that TotalView needs when it transforms data. It has two
required arguments: name and members.

name Argument

The name argument contains a regular expression that identifies the structure or class. In this example, struct is
part of the identifier’s name. It does not mean that you are creating a structure. In contrast, if stuff is class, you
would type:
name {^class stuff$}

If you use a wildcard such as asterisk (*) or question mark (?), TotalView can match more than one thing. In some
cases, this is what you want. If it isn’t, you need to be more precise in your wildcard.

members Argument

The members argument names the elements that TotalView will include in the information it will display. This
argument contains one or more lists. The example in the previous section contained three lists: year, pName,
and pStreet. Here again is the pName list:
{ pName { * pName } }

The first element in the list is the display name. In most cases, this is the name that exists in the structure or class.
However, you can use another name. For example, since the transformation dereferences the pointer, you might
want to change its name to Name:
{ Name { * pName } }

The sublist within the list defines a type transformation expression. These expressions are discussed in the next
section.

Type Transformation Expressions
The list that defines a member has a name component and sublist within the list. This sublist defines a type trans-
formation expression. This expression tells TotalView what it needs to know to locate the member. The example in
the previous section used two of the six possible expressions. The following list describes these expressions:

{member}

No transformation occurs. The structure or class member that TotalView displays is the same as it displays if you
hadn’t used a transformation. This is most often used for simple data types such as ints and floats.

{* expr}

Dereferences a pointer. If the data element is a pointer to an element, this expression tells TotalView to derefer-
ence the pointer and display the dereferenced information.

Creating Structure and Class Transformations Type Transformation Expressions 366

Creating Type Transformations

{expr . expr}

Names a subelement of a structure. This is used in the same way as the dot operator that exists in C and C++.
You must type a space before and after the dot operator.

{expr + offset}

Use the data whose location is an offset away from expr. This behaves just like pointer arithmetic in C and C++.
The result is calculated based on the size of the type that expr points to:
result = expr + sizeof(*expr) * offset

{expr -> expr}

Names a subelement in a structure accessed using a pointer. This is used in the same way as the -> operator in
C and C++. You must type a space before and after the -> operator.

{datatype cast expr}

Casts a data type. For example:

{double cast national_debt}

{N upcast expr}

Converts the current class type into one of its base classes. For example:

{base_class upcast expr }

You can nest expressions within expressions. For example, here is the list for adding an int member that is
defined as int **pfoo:

{foo { * {* pfoo}}

Example

The example in this section changes the structure elements of the example in the previous section so that they
are now class members. In addition, this example contains a class that is derived from a second class:
#include <stdio.h>
#include <string.h>
class xbase
{

public:
char * pName;
char * pStreet;
char CityState[30];

};
class x1 : public xbase
{

public:
int month;
int day;
int year;
void *v;
void *q;

};

Creating Structure and Class Transformations Type Transformation Expressions 367

Creating Type Transformations

class x2
{

public:
int q1;
int q2;

};
int main () {

class x1 info;
char my_name[] = “John Smith”;
char my_street[] = “24 Prime Parkway, Suite 106”;
char my_CityState[] = “Natick, MA 01760”;
info.month = 6;
info.day = 20;
info.year = 2004;
info.pName = my_name;
info.pStreet = my_street;
info.v = (void *) my_name;
strcpy(info.CityState, my_CityState);
class x2 x;
x.q1 = 100;
x.q2 = 200;
info.q = (void *) &x;
printf(“The year is %d\n”, info.year);

}
Figure 8 shows the Variables Windows that TotalView displays for the info class and the x struct.

Creating Structure and Class Transformations Type Transformation Expressions 368

Creating Type Transformations

The following transformation remaps this information:
::TV::TTF::RTF::build_struct_transform {

name {^(class|struct) x1$}
members {

{ pmonth { month } }
{ pName { xbase upcast { * pName } } }
{ pStreet { xbase upcast { * pStreet } } }
{ pVoid1 { “$string *” cast v } }
{ pVoid2 { * { “class x2 *” cast q } } }

}
}

After you remap the information, TotalView displays the x1 class.

Figure 8, Untransformed Data

Creating Structure and Class Transformations Type Transformation Expressions 369

Creating Type Transformations

The members of this transformation are as follows:

 pmonth: The month member is added to the transformed structure without making any changes
to the way TotalView displays its data. This member, however, changes the display name of the
data element. That is, the name that TotalView uses to display a member within the remapped
structure does not have to be the same as it is in the actual structure.

 pName: The pName member is added. The transformation contains two operations. The first
dereferences the pointer. In addition, as x1 is derived from xbase, you need to upcast the variable
when you want to include it.

Notice that one expression is nested within another.

 pStreet: The pStreet member is added. The operations that are performed are the same as for
pName.

 pVoid1: The v member is added. Because the application’s definition of the data is void *, casting
tells TotalView how it should interpret the information. In this example, the data is being cast into a
pointer to a string.

 pVoid2: The q member is added. The transformation contains two operations. The first casts q into
a pointer to the x2 class. The second dereferences the pointer.

Figure 9, Transformed Class

Creating Structure and Class Transformations Using Type Transformations 370

Creating Type Transformations

Using Type Transformations
When TotalView begins executing, it loads its built-in transformations. To locate the directory in which these files
are stored, use the following CLI command:
dset TOTALVIEW_TCLLIB_PATH

Type transformations are always loaded. By default, they are turned on. From the GUI, you can control whether
transformations are turned on or off by going to the Options Page of the File > Preferences Dialog Box and
changing the View simplified STL containers (and user-defined transformations) item. For example, the fol-
lowing turns on type transformations:
dset TV::ttf true

C++View Using Type Transformations 371

Creating Type Transformations

C++View
C++View (CV) is a facility that allows you to format program data in a more useful or meaningful form than the
concrete representation that you see in TotalView when you inspect data in a running program. To use C++View,
you must write a function for each type whose format you would like to control.

This section contains the following topics:

 Writing a Data Display Function on page 372

 Templates on page 374

 Precedence - Searching for TV_ttf_display_type on page 375

 TV_ttf_add_row on page 375

 Return values from TV_ttf_display_type on page 376

 Elision on page 377

 Other Constraints on page 377

 Safety on page 378

 Memory Management on page 379

 Multithreading on page 379

 Tips and Tricks on page 379

 Core Files on page 380

 Using C++View with ReplayEngine on page 380

 C on page 382

 Compiling and linking tv_data_display.c on page 382

 C++View Example Files on page 383

 Limitations on page 384

 Licensing on page 384

C++View Writing a Data Display Function 372

Creating Type Transformations

Writing a Data Display Function
The frame of reference in describing this is C++.

In order for C++View to work correctly, the code you write and TotalView must cooperate. There are two key
issues here. The first is registering your function so that TotalView can find it when it needs to format data for dis-
play. This is straightforward: all you need to do is to define your function to have the right name and prototype.
When TotalView needs to format the data of type T, it will look for a function with this signature:
int TV_ttf_display_type (const T *);

The const is deliberate to remind you that changes should not be made to the object being formatted for display.
Many real-world applications are not entirely const-correct, and in cases where you must cast away the const,
extreme caution is advised.

You will need to define a TV_ttf_display_type function for each type you want to format. A TV_ttf_display_type
function may be at global scope, or it may be a class (static) method. It cannot be a member function.

The second issue concerns how the TV_ttf_display_type function which you will write communicates with
TotalView. The API you will need to use is given in the header file tv_data_display.h included with your TotalView
distribution in the <totalview-installation>/src directory.

Your TV_ttf_display_type will use the provided function TV_ttf_add_row to tell TotalView what information
should be displayed. Its prototype is:
 int TV_ttf_add_row (const char *field_name,
 const char *type_name,
 const char *address);

The field_name parameter is the descriptive name of the data field being computed. It will be shown by
TotalView in a form similar to that of the name of a structure's field. The type_name parameter is the type of the
data to be displayed. It must be the name of a legal type name in the program, or one of TotalView's types.

As a convenience, the header file provides these symbols for you:

TV_ttf_type_ascii_string

This tells TotalView to format a character array as a string (i.e., left to right) instead of an array (top to bottom).

TV_ttf_type_int

This is an alias for TotalView integer type $int.

The third parameter, address, is the address in your program's address space of the object to be displayed.

TV_ttf_add_row should be called only as a result of TotalView invoking your TV_ttf_display_type function. It may
be called by a TV_ttf_display_type called by TotalView, or by one of the descendant callees of that
TV_ttf_display_type.

C++View Writing a Data Display Function 373

Creating Type Transformations

Example

Here are the definitions of a couple of classes:
class A {
 int i;
 char *s;
};
class B {
 A a;
 double d;
};
We can define the display callback functions as follows:
int TV_ttf_display_type (const A *a)
{
 /* NOTE: error checking of value returned from TV ttf add_row \
 omitted */
 (void) TV_ttf_add_row ("i", TV_ttf_type_int, &(a->i));
 (void) TV_ttf_add_row ("s", TV_ttf_type_ascii_string, a->s);
 /* indicate success to TotalView */
 TV_ttf_format_ok;
}
int TV_ttf_display_type (const B *b)
{
 /* NOTE: error checking of value returned from TV ttf add_row \
 omitted */
 (void) TV_ttf_add_row ("a", "A", &(b->a));
 (void) TV_ttf_add_row ("d", "double", &(b->d));
 /* indicate success to TotalView */
 return TV_ttf_format_ok;
}
For brevity and clarity, we have omitted all error checking of the value returned from TV_ttf_add_row. We will dis-
cuss the possible values that a TV_ttf_display_type may return later.

For now, we just return a simple success.

We could have made one or both of the display callbacks a class method:
class A {
 int i;
 char *s;
public:
 static int TV_ttf_display_type (const A *a);
};
int A::TV_ttf_display_type (const A *a)
{
 /* as before */
}
and similarly for class B.

C++View Templates 374

Creating Type Transformations

Templates
C++View can also be used with template classes. Consider this container class:
template <class T> class BoundsCheckedArray {
private:
 int size;
 T *array;
public:
 typedef T value_type;
 T (int s) { ... }
 ...
};
Writing a collection of overloaded display functions for each instantiated BoundsCheckedArray can rapidly
become an overwhelming maintenance burden. Instead, consider whether you can write a template function.

One potential difficulty is getting the name of the type parameter to pass to TV_ttf_add_row. Here we follow the
convention used by the container classes in the standard library which typedefs the template type parameter to
the standard name value_type.

We can construct our template function like this:
template <class T>
int TV_ttf_display_type (const BoundsCheckedArray<T> *a)
{
 char type [4096];
 snprintf (type, sizeof (type), "value_type[%d]", \
 a->get_size ());
 TV_ttf_add_row ("array_values", type, a->get_array ());
 return TV_ttf_format_ok;
}
What we've done here is constructed the type of a fixed-sized array of the type named by the template type
parameter. (In some cases you may need to use the compiler's demangler to get the name of the type. See also
Tips and Tricks on page 379.)

This one definition can be used for any instance of the template class. In some cases, however, you may want a
specialized implementation of the display function. As an illustration, consider this:
int TV_ttf_display_type (const BoundsCheckedArray<char> *s)
{
 TV_ttf_add_row ("string", TV_ttf_type_ascii_string, \
 s->get_array ());
 return TV_ttf_format_ok;
 }
Here we want to tell TotalView to display the array horizontally as a string instead of vertically as an array. For this
reason, we want to pass TV_ttf_type_ascii_string to TV_ttf_add_row as the name of the type instead of the
name constructed by the implementation of the general template display function. We therefore define a special
version of the display function to handle BoundsCheckedArray<char>.

C++View Precedence - Searching for TV_ttf_display_type 375

Creating Type Transformations

One remaining issue relating to templates is arranging for the various template display function instances to be
instantiated. It is unlikely that display functions will be called directly by your program. (Indeed, we mentioned ear-
lier that TV_ttf_add_row should not be called other than as a result of a call initiated by TotalView.) Consequently,
the template functions may well not be generated automatically. You can either arrange for functions to be refer-
enced, such as by calling them in a controlled manner, or by explicit template instantiation:

template int TV_ttf_display_type \
 (const BoundsCheckedArray<int> *);
template int TV_ttf_display_type \
 (const BoundsCheckedArray<double> *);
.
.

Precedence - Searching for TV_ttf_display_type
Only one call to a TV_ttf_display_type will be attempted per object to be displayed, even if multiple candidates
are defined. For a type T, TotalView will look for the function in this order:

1. A class-qualified class (static) function returning int and taking a single const T * as its only argument.

2. A function at file scope, returning int and taking a single const T * as its only argument.

3. A global function, returning int and taking a single const T * as its only argument.

4. A TCL transformation

Namespace qualifications are not directly considered.

TV_ttf_add_row
TV_ttf_add_row will return one of the following values defined in the enum TV_ttf_error_codes given in the file
tv_data_display.h, located in the <totalview-installation>/include directory in your distribution of TotalView.

The values returned by TV_ttf_add_row are:

TV_ttf_ec_ok

Indicates that the operation succeeded.

TV_ttf_ec_not_ active

Indicates that TV_ttf_add_row was called when the type formatting facility is not active. This is most likely to occur
if TV_ttf_add_row is called other than as a result of a call to a TV_ttf_display_type initiated by TotalView.

C++View Return values from TV_ttf_display_type 376

Creating Type Transformations

TV_ttf_ec_invalid_characters

Indicates that either the field name or the type name contained illegal characters, such as newline or tab.

TV_ttf_ec_buffer_exhausted

Indicates that the internal buffer used by TV_ttf_add_row to marshal your formatted data for onward transmis-
sion to TotalView is full. See Tips and Tricks on page 379 for suggestions for reducing the number of calls to
TV_ttf_add_row.

Return values from TV_ttf_display_type
The set of values your TV_ttf_display_function may return to TotalView is defined in the enum TV_ttf_for-
mat_result given in the file tv_data_display.h included with your distribution of TotalView. These values are:

TV_ttf_format_ok

Your function should return this value if it has successfully formatted the data and successfully registered its out-
put using TV_ttf_add_row.

TV_ttf_format_ok_elide

As TV_ttf_format_ok but indicates that the output may be subject to type elision (see below).

TV_ttf_format_ failed

Return this if your function was unable to format the data. When displaying the data, TotalView will indicate that
an error occurred.

TV_ttf_format_ raw

Use this to have your function tell TotalView to display the raw data as it would normally do, that is, as if there
were no TV_ttf_display_type present for that type.

TV_ttf_format_ never

As TV_ttf_format_raw. In addition, this value tells TotalView never to call the display function again.

C++View Elision 377

Creating Type Transformations

Elision
Elision is a feature that allows you to simplify how your data are presented. Consider the BoundsCheckedAr-
ray<char> class and the specialized TV_ttf_display_type function we defined earlier:
int TV_ttf_display_type (const BoundsCheckedArray<char> *s)
{
 (void) TV_ttf_add_row ("string", TV_ttf_type_ascii_string, \
 s->get_array ());
 return TV_ttf_format_ok;
}
We used TV_ttf_type_ascii_string so that the array of characters is presented horizontally as a string, rather than
vertically as an array. If our program declares a variable BoundsCheckedArray<char> var1, we will see output
like this in the CLI:
d1.<> dprint var1
 var1 = {
 string = "Hello World!"
}
d1.<>
Note, however, that the variable var1 is still presented as an aggregate or class. Conceptually this is unnecessary,
and in this arrangement an extra dive may be necessary to examine the data. Additionally, more screen space is
needed than is necessary.

You can use elision to promote the member of a class out one level. With elision, we will get output that looks like
this:
d1.<> dprint var1
 string = "Hello World!"
d1.<>
TotalView will engage elision if your TV_ttf_display_type function returns TV_ttf_format_ok_elide (in place of
TV_ttf_format_ok). In addition, for elision to occur, the object being presented must have only one field.

Other Constraints
An aggregate type cannot contain itself. (An attempt to do so would result in an infinite sized aggregate.) When
generating a field of an aggregate T using TV_ttf_add_row, the named type may not be T, or anything which
directly or indirectly contains a T as a member. If you do need to do something like that, use a pointer or
reference.

As an illustration, consider this:
class A { ... };
class B { A a; ... };
int TV_ttf_display_type (const A *a)
{
 (void) TV_ttf_add_row (...);
 return TV_ttf_format_ok;
}

C++View Safety 378

Creating Type Transformations

int TV_ttf_display_type (const B *b)
{
 (void) TV_ttf_add_row (...);
 (void) TV_ttf_add_row ("a", "A", &(b->a));
 return TV_ttf_format_ok;
}
Note the following:

 TV_ttf_display_type (const A *a) may not add an object of type A (direct inclusion) nor one of
type B (indirect inclusion).

 When viewing an object of type B, TotalView will invoke TV_ttf_add_row (const B *), and then
TV_ttf_add_row (const *A).

Safety
When you stop your program to inspect data, objects might not be in a fully consistent state. This may happen in
a number of circumstances, such as:

 Stopping in a the middle of a constructor or destructor.

 Displaying an object in scope, but before its constructor has been called.

 Viewing a dangling pointer to an object, that is, a pointer to an object in memory that has been
released by the program. This may be stack memory, but also heap memory. (If the target is
running with memory debugging enabled, then TotalView does check that the object to be
displayed does not lie in a deallocated region. If it does, then it does not call your
TV_ttf_display_type, and will display the data in their raw form You should not, however, rely on
this check.)

In the absence of C++View, this is not a problem, as displaying the data is just a matter of reading memory. How-
ever, with C++View, displaying data now involves executing functions in the target code. Your functions should be
careful to check that the object to be displayed is in a consistent state. If you can't establish that with certainty,
then it should not attempt to format the data, and instead it should return TV_ttf_format_failed.

Otherwise, your target program may crash when you attempt to display an object at an inappropriate time. As
with any function call made from TotalView (expression list, evaluation window, etc.), TotalView recovers from this
in a limited manner by posting an error message and restoring the stack to its original state. However, the target
code may be left in an inconsistent or corrupted state, and further progress may not be possible or useful.

You may not place a breakpoint in a TV_ttf_display_type function. If you do, the callback will be aborted similarly,
and TotalView will display an error.

C++View Memory Management 379

Creating Type Transformations

Memory Management
You must make sure that the formatted data you want displayed by TotalView (the data whose address you sup-
ply as the third parameter to TV_ttf_add_row) remains allocated after the call to your TV_ttf_display_type
returns. In practice this means that you shouldn't allocate these data on the stack. Your TV_ttf_display_type
function may be called at anytime, including when your target program may be in the memory manager. For this
reason it is inadvisable to allocate or deallocate dynamic memory in your TV_ttf_display_type functions. If the
formatted data are manufactured, that is, generated by TV_ttf_display_type rather than already existing, then
the memory for those data should be allocated during the target's normal course of execution.

You may find it convenient to have your program format data as part of its normal operations.That way there are
no side-effects to worry about when TotalView calls your TV_ttf_display_type callback function.

The field_name and type_name string parameters to TV_ttf_add_row do not need to remain allocated after the
call to TV_ttf_add_row.

Multithreading
Accessing shared data in multithreaded environments will usually need some sort of access control mechanism
to protect its consistency and correctness. Your TV_ttf_display_type functions must be coded carefully if they
need to access data that are usually protected by a lock or mutex. Attempting to take the lock or mutex may
result in deadlock if the mutex is already locked.

Usually the threads in the program will have been stopped when TotalView calls the TV_ttf_display_type func-
tion. If the mutex is locked before TotalView calls TV_ttf_display_type, then an attempt by TV_ttf_display_type to
lock the mutex will result in deadlock.

If you are designing a TV_ttf_display_type that needs to access data usually protected by a lock or mutex, con-
sider whether you are able to determine whether the data are in a consistent state without having to take the
lock. It might be enough to be able to determine whether the mutex is locked. If the data cannot be accessed
safely, have the TV_ttf_display_type return TV_ttf_format_failed or TV_ttf_format_raw according to what fits
best with your requirements.

Tips and Tricks
Consider constructing the type name on-the-fly. This can save time and memory. As an example, consider the
TV_ttf_display_type for BoundsCheckedArray<T> we discussed earlier:
template <class T>
int TV_ttf_display_type (const BoundsCheckedArray<T> *a)
{
 char type [4096];
 snprintf (type, sizeof (type), "value_type[%d]", a->get_size ());

C++View Core Files 380

Creating Type Transformations

 (void) TV_ttf_add_row ("array_values", type, a->get_array ());
 return TV_ttf_format_ok;
}
Note how we constructed an array type. The alternative would be to iterate a->get_size () times calling TV_ttf_ad-
d_row (). Depending on the number of elements, this could exhaust the API's buffer. In addition, there is a time
penalty since TotalView will need to handle each line added by TV_ttf_add_row separately.

Constructing the array type as we did not only eliminates these disadvantages, it also provides other advantages.
For example, as TotalView now knows that what is being presented is really an array, all the normal operations on
arrays such as sorting, filtering, etc. are available.

Core Files
Because C++View needs to call a function in your program, C++View does not work with core files.

Using C++View with ReplayEngine
In general, C++View can be used with ReplayEngine just as with normal TotalView debugging. However, there are
some differences you should be aware of. In both record mode and replay mode, TotalView switches your pro-
cess into ReplayEngine’s volatile mode before calling your TV_ttf_display_type function. When the call
finishes, TotalView switches the process out of volatile mode. On entering volatile mode, ReplayEngine saves the
state of the process, and on exiting volatile mode, ReplayEngine restores the saved status.

In most cases, executing TV_ttf_display_type in volatile mode behaves as you would expect. However,
because ReplayEngine restores the earlier process state when it leaves volatile mode, any changes to process
memory, such as writing to a variable, made while in volatile mode are lost.

This fact has implications for your program if your TV_ttf_display_type function modifies global or static
data upon which either the function or the program relies. If TV_ttf_display_type does not change any
global state, you will see no change in behavior when you engage ReplayEngine. However, if you generate syn-
thetic values, such as the average, maximum or minimum values in an array, you cannot compute these in your
TV_ttf_display_type function as the results will be lost when the function call terminates. Instead, consider
generating them as a by-product of the program’s normal execution as described in the section on Memory
Management.

For more information on ReplayEngine, see The ReplayEngine User Guide.

The following code demonstrates how engaging ReplayEngine might affect calls to TV_ttf_display_type. This
example is shipped with the ReplayEngine example files as cppview_example_5.cc.

/* Example program demonstrating TotalView's C++View with ReplayEngine. */
/* Run with (in both record and replay modes) and without ReplayEngine. */

C++View Using C++View with ReplayEngine 381

Creating Type Transformations

/* Note how c in main is displayed in the various cases. */
#include <stdio.h>
#include "tv_data_display.h"
static int counter;
class C {
 public:
 int value;
 C () : value (0) {};
}; /* C */
int
TV_ttf_display_type(const C *c)
{
 int ret_val = TV_ttf_format_ok;
 int err;
 // if Replay is engaged, this write to the global is lost because
 // the ttf function is evaluated in volatile mode
 counter++;
 // error checking omitted for brevity
 (void) TV_ttf_add_row ("value", "int", &(c->value));
 // show how many times we've been called. Will always be zero
 // with Replay engaged because the update is lost when the
 // call to TV_ttf_display_type returns.
 (void) TV_ttf_add_row ("number_of_times_called", "int", &counter);
 return ret_val ;
} /* TV_ttf_display_type */
int main(int argc, char *argv[])
{
 C c;
 c.value = 1;
 c.value++; // should be 1 **before** this line is executed
 c.value++; // should be 2 **before** this line is executed
 /* c.value should be 3 */
 return 0;
} /* main */

Compile and link the program with tv_data_display.c (see Compiling and linking tv_data_display.c). Follow
this procedure:

1. Start the program under TotalView and enter the function main.

2. Dive on the local variable c, and note how the synthetic member number_of_times_called changes as
you step through the program.

C++View C 382

Creating Type Transformations

3. Restart, but this time with ReplayEngine engaged.

4. Notice the changes to the value member as you move forwards and backwards, and that the synthetic
member number_of_times_called remains 0 because the increment in TV_ttf_display_type is
lost when the function returns.

C
Although primarily intended for C++, C++View may be usable with C. C does not allow overloading so there may
be at most one TV_ttf_display_type function with external linkage present. If you are interested in formatting
only one type, then this restriction will not be constraining.

You may be able to work around this problem by defining separate TV_ttf_display_type functions as before, but
placing each in a different file, and defining them to be static. Since the visibility of each definition is limited to the
translation unit in which it appears, multiple functions can coexist.

This work-around, however, depends on the nature of the debug information emitted by the compiler. Some
compilers do not place static functions in an indexable section in the debug information, or may try to optimize
them out. If TotalView cannot find the function, it will not be called. TotalView cannot traverse the entire resolved
symbol table to find these functions, as it would incur significant performance problems.

Compiling and linking tv_data_display.c
Your distribution includes the file tv_data_display.c. in the <totalview-installation>/src directory. This file con-
tains the implementation of the interface between your TV_ttf_display_type functions and TotalView. This is
distributed as source. You will need to compile this file and link it with your application.

You should take care to ensure that there is only one instance of tv_data_display.c present in your running appli-
cation. One way in which multiple instances could creep in is if you link separate copies of the tv_data_display.c
into independent shared libraries that your program uses. To avoid this type of problem, we strongly suggest that
you build tv_data_display.c into its own separate shared library that can be shared by all the libraries your appli-
cation uses. For example:

setenv TVSOURCE /usr/local/toolworks/totalview2020.01/src

setenv TVINCLUDE /usr/local/toolworks/totalview2020.01/include

gcc -g -Wall -fPIC -c $TVSOURCE/tv_data_display.c -I$TVINCLUDE gcc -g \

-shared -Wl,-soname,libtv_data_display.so -o libtv_data_display.so tv_data_display.o

Some compilers or linkers will perform a type of garbage collection step and eliminate code or data that your
application does not use. This affects C++View in two ways:

C++View C++View Example Files 383

Creating Type Transformations

1. Your TV_ttf_display_type functions are unlikely to be called by your program.

2. Leading on from this, some of the entities in tv_data_display.c may not be reachable from your program.

As a result, the compiler or linker may identify your TV_ttf_display_type or tv_data_display.c as candidates for
garbage collection and elimination. You can try to work around this problem by trying to create references to the
TV_ttf_display_type functions.

Better still, we suggest identifying the flags for your compiler or linker that disable garbage collection. On AIX, for
example, the linker flag -bkeepfile:<filename> tells the linker not to perform garbage collection in the file named
<filename>.

C++View Example Files
Your TotalView distribution includes an examples directory, <totalview-installation>/examples, which includes
the following C++View example files:

NOTE: Some compilers, such as some versions of gcc, do not emit debug information for typedefs in
class scopes, and therefore TotalView cannot find the type underlying value_type so C++View
may not work with those compilers.

cppview_example_1

A simple example showing two TV_ttf_display_type functions, one a function at global scope, the other a class
function. It also demonstrates elision.

cppview_example_2

A simple example using templates, showing how the type named in the template can be passed to TV_ttf_ad-
d_row.

cppview_example_3

A more complex example using templates, showing how a TV_ttf_display_type function can be either generic
or specialized for a particular instantiation of a template class. It also demonstrates elision.

cppview_example_4

A more complex example showing the use of STL container classes, elision, and the different values that
TV_ttf_display_type can return.

cppview_example_5

This example adds a synthetic member to a class, and can be used to explore how C++View behaves under Re-
playEngine.

C++View Limitations 384

Creating Type Transformations

Limitations
With the exception of Sun, compilers that emit STABS debug information do not handle C++ namespaces. This
affects TotalView in general and C++View in particular, in that references to entities in namespaces are not always
resolved.

Licensing
The C++View API library is distributed as two files. The first is tv_data_display.c, an ANSI C file that contains the
implementation of the API used by your TV_ttf_display_type functions. The other is tv_data_display.h, which is
a matching header file.

These files are licensed so as to permit unlimited embedding and redistribution.

 385

PART III Running TotalView

This part of the TotalView Reference Guide contains information about command-line options used when start-
ing TotalView and the TotalView Debugger Server.

 TotalView Command Syntax on page 386

TotalView contains a great number of command-line options. Many of these options allow you to over-
ride default behavior or a behavior that you’ve set in a preference or a startup file.

 TotalView Debugger Server Command Syntax on page 400
This chapter describes how you modify the behavior of the tvdsvr. These options are most often used if a prob-
lem occurs in launching the server or if you have some very specialized need. In most cases, you can ignore the
information in this chapter.

386

 TotalView Command Syntax

This chapter describes the syntax of the totalview command. Topics in this chapter are:

 Command-Line Syntax

 Command-Line Options

Command-Line Syntax 387

TotalView Command Syntax

Command-Line Syntax

Format
totalview [options] [executable [core-file | recording-file]] [-a[args]]

or

totalview [options] -args executable [args]

Arguments
options

TotalView options.

executable
Specifies the path name of the executable being debugged. This can be an absolute or relative path name. The
executable must be compiled with debugging symbols turned on, normally the -g compiler option. Any multi-
process programs that call fork(), vfork(), or execve() should be linked with the dbfork library.

core-file
Specifies the name of a core file. Use this argument in addition to executable when you want to examine a core
file with TotalView.

recording-file
Specifies the name of a saved replay recording session file. Use this argument in addition to executable when
you want to replay the recording session with TotalView.

args
Default target program arguments.

Description
TotalView is a source-level debugger with features for debugging multiprocess programs and multithreaded pro-
grams, with multiple source files, executables, and shared libraries.

If you specify mutually exclusive options on the same command line (for example, ---dynamic and -no_dynamic),
the last option listed is used.

Command-Line Options 388

TotalView Command Syntax

Command-Line Options
-a args

Pass all subsequent arguments (specified by args) to the program specified by filename. This option must be
the last one on the command line.

-args filename [args]

Specifies filename as the executable to debug, with args as optional arguments to pass to your program. This
option must be listed last on the command line. You can also use --args instead of-args, for compatibility with
other debuggers.

-background color
Sets the general background color to color.

-bg color
Same as -background.

Default: light blue

-check_unique_id

(Default). TotalView attempts to extract a unique ID from an image file before checksumming it. For detail, see
the state variable TV::check_unique_id.

-no_check_unique_id

TotalView does not try to extract a unique ID from an image file and instead relies on the setting
for -checksum_libraries.

-checksum_libraries

(Default). TotalView checksums image files across nodes in a parallel debugging session. This setting is impacted
by the setting for -check_unique_id. For detail, see the state variable TV::checksum_libraries.

-no_checksum_libraries

TotalView does not checksum image files across nodes in a parallel debugging session.

-classicUI

Launches the Classic TotalView UI rather than the modern UI

-control_c_quick_shutdown-ccq

(Default) Kills attached processes and exits.

-no_control_c_quick_shutdown -nccq

Invokes code that sometimes allows TotalView to better manage the way it kills parallel jobs when it works with
management systems. This has only been tested with SLURM. It may not work with other systems.

-cuda

(Default) Enables CUDA debugging with TotalView.

Command-Line Options 389

TotalView Command Syntax

-no_cuda

Disables CUDA debugging. Any CUDA kernels launched on a GPU device are not seen by the debug-
ger, so the debugger can only debug the host code. -nocuda is the identical option.

-dbfork

(Default) Catches the fork(), vfork(), and execve() system calls if your executable is linked with the dbfork li-
brary.

-no_dbfork

Do not catch fork(), vfork(), and execve() system calls even if your executable is linked with the db-
fork library.

-debug_file console_outputfile
Redirects TotalViewconsole output to a file namedconsole_outputfile.

If consoleoutputfile is the string UNIQUE, the filename tv_dump.hostname.pid is used. If console_out-
putfile contains the string '$$' (note the escaping single quotes), hostname.pid is substituted. UNIQUE and
'$$' are useful for separating the console output when running multiple tvdsvr processes.

All TotalView console output is written to stderr.

-demangler= compiler
Overrides the demangler and mangler TotalView uses by default. The following indicate override options.

-demangler=gnu_dot:GNU C++ on Linux x86

-demangler=gnu_v3: GNU C++ Linux x86

-demangler=kai:KAI C++

-demangler=kai3_n:KAI C++ version 3.n

-demangler=kai_4_0: KAI C++

-demangler=spro:SunPro C++ 4.0 or 4.2

-demangler=spro5:SunPro C++ 5.0 or later

-demangler=sun:Sun CFRONT C++

-demangler=xlc:IBM XLC/VAC++ compilers

-display displayname
Sets the name of the X Windows display to displayname. For example, -display vinnie:0.0 displays TotalView
on the machine named “vinnie.”

Default: The value of your DISPLAY environment variable.

-dll_ignore_prefix list
The colon-separated argument to this option sets TotalView to ignore files having this prefix when making a de-
cision to ask about stopping the process when it dlopens a dynamic library. If the DLL being opened has any of
the entries on this list as a prefix, the question is not asked.

Command-Line Options 390

TotalView Command Syntax

-dll_stop_suffix list
The colon-separated argument to this option sets TotalView to ask if it should open a library that has any of the
entries on this list as a suffix.

-dlopen_always_recalculate

(Default). Reevaluates breakpoint specifications on every dlopen call.

-no_dlopen_always_recalculate

Enables dlopen event filtering, deferring the evaluation of breakpoint specifications based on the
value of the option -dlopen_recalculate_on_match).

This setting impacts scalability in HPC computing environments. For details, see Filtering dlopen Events on
page 429.

-dlopen_recalculate_on_match glob-list
Default: "" (the empty string)

Contains a glob-list of patterns used to match against the path name of a dlopened library. If
-dlopen_always_recalculate is set (the default), the value of this variable is ignored. When
-no_dlopen_always_recalculate is set and a dlopen event occurs, TotalView matches the name of the
dlopened library against the glob-list. Be careful to quote the glob-list to prevent shell expansion. For example,
if a glob-list contains special characters such as *, ?, [,], and !, be sure to quote the characters to prevent the
shell from interpreting them. Note that some shells, like tcsh, will expand ! even when it is enclosed in double or
single quotes, which requires escaping the ! with a backslash. For example, '\!*/libfoo*' will prevent a tcsh
shell from expanding !* from history, and result in the glob-list being set to '!*/libfoo*'.

For a complete explanation of dlopen event filtering, including use-case examples, please refer to Filtering
dlopen Events on page 429.

-dlopen_read_libraries_in_parallel

Enables dlopen events to be handled in parallel, reducing client/server communication overhead by using
MRNet to fetch the library information.

-no_dlopen_read_libraries_in_parallel

(Default). Disables handling dlopened events in parallel.

This setting impacts scalability in HPC computing environments. For details, see Filtering dlopen Events on
page 429.

-dump_core

Allows TotalView to dump a core file of itself when an internal error occurs. This is used to help Perforce Soft-
ware debug problems.

-dwarf_global_index

(Default). Allows TotalView to use the DWARF global index sections (.debug_pubnames, .debug_pubtypes,
.debug_typenames, etc.) in executable and shared library image files.

Command-Line Options 391

TotalView Command Syntax

-no_dwarf_global_index

Forces TotalView to skim the DWARF instead of using them, which may cause TotalView to slow down
when indexing symbol tables.

-e commands
Immediately executes the CLI commands named within this argument. All information you enter here is sent di-
rectly to the CLI’s Tcl interpreter. For example, the following writes a string to stdout:

cli -e 'puts hello'
You can have more than one-e option on a command line.

-ent

Uses only an Enterprise license.

-no_ent

Does not use an Enterprise license. You may combine this with -no_team or --noteamplus.

-env variable=value
Adds an environment variable to the environment variables passed to your program by the shell. If the variable
already exists, it effectively replaces the previous value. You need to use this command for each variable being
added; that is, you cannot add more than one variable with an env command.

-exec_handling exec-handling-list
Default: "" (the empty string)

Controls how TotalView responds when a process being debugged calls execve().

This option’s argument, exec-handling-list, is a Tcl list of regexp and action pairs. The regexp contains the
name of the parent process, and action defines an action for TotalView to take.

regexp: A regular expression. The regular expression is not anchored, so use "^" and "$" to
match the beginning or end of the process name.
action: The action to take, as follows:

When a process that is being debugged execs a new executable, TotalView iterates over exec-handling-list to
match the original process name (that is, the name of the process before the exec happened) against each reg-
exp in the list. If it finds a match, it uses the corresponding action.

If a matching process name is not found in the exec-handling-list, the value of the TV::parallel_stop CLI state
variable preference is used.

For more information, see “Controlling fork, vfork, and execve Handling” in the TotalView User Guide.

Action Description

halt Stop the process

go Continue the process

ask Ask whether to stop the process

Command-Line Options 392

TotalView Command Syntax

-fork_handling fork-handling-list
Default: "" (the empty string)

Controls how TotalView launches or attaches to new processes.

This option’s argument, fork-handling-list, is a Tcl list of regexp and action pairs. The regexp contains the
name of the parent process, and action defines how future fork system calls will be handled for this process.

regexp: A regular expression. The regular expression is not anchored, so use "^" and "$" to
match the beginning or end of the process name.
action: The action to take, as follows:

When first launching or attaching to a process, TotalView iterates over fork-handling-list to match the process
name against each regexp in the list. When it finds a match, it uses the corresponding action to determine how
future fork system calls will be handled

If a matching process name is not found in fork-handling-list, TotalView handles fork() based on whether the
process was linked with the dbfork library and the setting of the TV::dbforkCLI state variable preference.

For more information, see “Controlling fork, vfork, and execve Handling” in the TotalView User Guide.

-foreground color
Sets the general foreground color (that is, the text color) to color.

-fg color
Same as -foreground.

Default: black

-gdb_index

(Default). Allows TotalView to use the .gdb_index section in executable and shared library image files.

-no_gdb_index

Forces TotalView to skim the DWARF instead.

-global_types

(Default) Sets TotalView to assume that type names are globally unique within a program and that all type defini-
tions with the same name are identical. The C++ standard asserts that this must be true for standard-conform-
ing code.

If this option is set, TotalView attempts to replace an opaque type (struct foo *p;) declared in one module, with
an identically named defined type in a different module.

Action Description

attach Attach to the new child processes.

detach Detach from the new child processes.

Command-Line Options 393

TotalView Command Syntax

If TotalView has read the symbols for the module containing the non-opaque type definition, then when display-
ing variables declared with the opaque type, TotalView will automatically display the variable by using the non-
opaque type definition.

-no_global_types

Specifies that TotalView cannot assume that type names are globally unique in a program. You should
specify this option if your code has multiple different definitions of the same named type, since oth-
erwise TotalView can use the wrong definition for an opaque type.

-gnu_debuglink

For a program or library with either (or both) a build ID or .gnu_debug_link section, TotalView looks for a sepa-
rate debug file. If found, TotalView reads this file’s debugging information. The related state variable is
TV::gnu_debuglink.

-no_gnu_debuglink

Do not load information from a separate debug file even if the file has a build ID or .gnu_debug_link
section.

-gnu_debuglink_build_id_search_path

Sets the TV::gnu_debuglink_build_id_search_path variable to specify a build ID search path string.

-gnu_debuglink_check_build_id

For a program or library with either (or both) a build ID or .gnu_debug_link section, compare build IDs if the
base image file contains a build ID.

Works in concert with -gnu_debuglink_checksum to define how to validate a separate debug info file, if one
exists, against a base image file that references it. See the variables TV::gnu_debuglink_check_build_id and
TV::gnu_debuglink_checksum for detail on how these options’ settings impact one another.

-no_gnu_debuglink_check_build_id

Do not check build IDs. Whether a separate debug info file is validated or not also depends on the
setting for -gnu_debuglink_checksum.

-gnu_debuglink_checksum

Validates the debug file’s checksum against the checksum contained in the image’s .gnu_debuglink section.

Works in concert with -gnu_debuglink_check_build_id to define how to validate a separate debug info file, if
one exists, against a base image file that references it. See the variables TV::gnu_debuglink_check_build_id
and TV::gnu_debuglink_checksum for detail on how these options’ settings impact one another.

-no_gnu_debuglink_checksum

Do not compare checksums. Whether a separate debug info file is validated or not also depends on
the setting for -gnu_debuglink_check_build_id. Set this only if you are absolutely certain that the
debug file matches.

-gnu_debuglink_global_directory

Sets the TV::gnu_debuglink_global_directory variable that names the global directory that stores debug files.

Command-Line Options 394

TotalView Command Syntax

-gnu_debuglink_search_path

Sets the TV::gnu_debuglink_search_path variable to specify a search path string.

-ipv6_support

Directs TotalView to support IPv6 addresses.

-no_ipv6_support

(Default) Do not support IPv6 addresses.

-jit_debugging

Enables Clang / LLVM JIT debugging. See TV::jit_debugging for details.

-no_jit_debugging

Disables Clang / LLVM JIT debugging.

-kcc_classes

(Default) Converts structure definitions output by the KCC compiler into classes that show base classes and vir-
tual base classes in the same way as other C++ compilers. See the description of theTV::kcc_classes variable for
a description of the conversions that TotalView performs.

-no_kcc_classes

Does not convert structure definitions output by the KCC compiler into classes. Virtual bases will
show up as pointers, rather than as data.

-lb

(Default) Loads action points automatically from the filename.TVD.v4breakpoints file, providing the file ex-
ists.

-nlb

Does not automatically load action points from an action points file.

-load_session session_name
Loads into TotalView the session named in session_name. Session names with spaces must be enclosed in
quotes, for example, "my debug session". Sessions that attach to an existing process cannot be loaded using this
option; rather, use the -pid option instead.

-local_interface string
Sets the interface name that the server uses when it makes a callback. For example, on an IBM PS2 machine, you
would set this to css0. However, you can use any legal inet interface name. (You can obtain a list of the inter-
faces if you use the netstat -i command.)

-mrnet_super_bushy

Sets the state variable TV::mrnet_super_bushy to true. When set, TotalView creates a "super bushy" MRNet
tree. For detail, see the state variable TV::mrnet_super_bushy.

-no_mrnet_super_bushy

Sets the state variable to false.

Command-Line Options 395

TotalView Command Syntax

-nodes

Specifies the number of nodes upon which the MPI job will run.

-no_startup_scripts

Sets TotalView to not reference any initialization files during startup. Note that this negates all settings in all ini-
tialization files. Aliases are -nostartupscripts and -nss.

-nohand_cursor

By default, the cursor in the source pane of the process window turns into a hand cursor when hovering over an
element you can dive on (a red box is also drawn around the applicable code). Specify this option to override this
behavior and retain the usual arrow cursor.

-np

Specifies how many tasks that TotalView should launch for the job. This argument usually follows a -mpi com-
mand-line option.

-nptl_threads

Sets your application to use NPTL threads. You need use this option only if TotalView cannot determine that you
are using this threads package.

-no_nptl_threads

Does not use the NPTL threads package. Use this option if TotalView thinks your application is using it and it isn’t.

-openmp_debug

Enables or disables OpenMP runtime support by setting the variable TV::openmp_debug_enabled.

-patch_area_base address
Allocates the patch space dynamically at address. See “Allocating Patch Space for Compiled Expressions” in the
Classic TotalView User Guide.

-patch_area_length length
Sets the length of the dynamically allocated patch space to this length. See “Allocating Patch Space for Com-
piled Expressions” in the Classic TotalView User Guide.

-pid pid filename
Attaches to process pid for executable filename when TotalView starts executing.

-procs

Specifies how many tasks that TotalView should launch for the job. This argument usually follows a -mpi com-
mand-line option.

-replay

Enables the ReplayEngine when TotalView begins. This command-line option is ignored if you do not have a li-
cense for ReplayEngine. You may also use the alias -reverse_debugging.

-reverse_connect

Enables listening for reverse connections when TotalView launches. This is the default.

Command-Line Options 396

TotalView Command Syntax

-no_reverse_connect

Disables listening for reverse connections when TotalView launches.

See the related state variable TV::reverse_connect_wanted.

-rocm

(Default) Enables AMD ROCm debugging with TotalView.

-no_rocm

Disables AMD ROCm debugging. Any AMD kernels launched on a GPU device are not seen by the de-
bugger, so the debugger can only debug the host code. -norocm is the identical option.

-s pathname
Specifies the path name of a startup file that will be loaded and executed. This path name can be either an ab-
solute or relative name.

You can add more than one-s option on a command line.

-serial device[:options]

Debugs an executable that is not running on the same machine as TotalView. For device, specify the device
name of a serial line, such as /dev/com1. Currently, the only option you are allowed to specify is the baud rate,
which defaults to 38400.

For more information on debugging over a serial line, see “Debugging Over a Serial Line” in the Classic TotalView
User Guide.

-search_path pathlist
Specifies a colon-separated list of directories in which TotalView will search when it looks for source files. For ex-
ample:

totalview -search_path proj/bin:proj/util

-signal_handling_mode "action_list"
Modifies the way in which TotalView handles signals. You must enclose the action_list string in quotation marks
to protect it from the shell.

An action_list consists of a list of signal_action descriptions separated by spaces:

signal_action[signal_action] ...

A signal action description consists of an action, an equal sign (=), and a list of signals:

action=signal_list

A signal_specifier can be a signal name (such as SIGSEGV), a signal number (such as 11), or a star (*), which
specifies all signals. We recommend that you use the signal name rather than the number because number as-
signments vary across UNIX sessions.

The following rules apply when you are specifying an action_list:

(1) Specifying an action for a signal in an action_list changes the default action for that signal.

Command-Line Options 397

TotalView Command Syntax

(2) Not specifying a signal in the action_list does not change its default action for the signal.

(3) Specifying a signal that does not exist for the platform results in TotalView ignoring it.

(4) Specifying an action for a signal more than once results in TotalView using the last action specified.

For example, here’s how to set the default action for the SIGTERM signal to resend:
"Resend=SIGTERM"

Here’s how to set the action for SIGSEGV and SIGBUS to error, the action for SIGHUP to resend, and all re-
maining signals to stop:

"Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP"
-shm "action_list"

Same as -signal_handling_mode.

-starter_args "arguments"

Passes arguments to the starter program. You can omit the quotation marks if arguments is just one string
without any embedded spaces.

-stack_trace_expand_inlined_subroutines option
Controls the behavior of reading delayed symbols while building a stack backtrace in order to find inlined sub-
routines. Possible options are auto, true, or false. The default is auto, meaning that TotalView attempts to au-
tomatically detect whether the subroutine associated with a stack frame might contain inlined subroutines; if so,
it reads the delayed symbols for the file containing the subroutine.

For more information, see the state variable TV::stack_trace_expand_inlined_subroutines.

-stderr pathname
Names the file to which TotalView writes the target program’s stderr information while executing within To-
talView. If the file exists, TotalView overwrites it. If the file does not exist, TotalView creates it.

-stderr_append

Appends the target program’s stderr information to the file named in the -stderr command, specified in the
GUI, or in the TotalView TV::default_stderr_filename variable. If the file does not exist, TotalView creates it.

-stderr_is_stdout

Redirects the target program’s stderr to stdout.

-stdin pathname
Names the file from which the target program reads information while executing within TotalView.

-stdout pathname
Names the file to which TotalView writes the target program’s stdout information while executing within To-
talView. If the file exists, TotalView overwrites it. If the file does not exist, TotalView creates it.

-stdout_append

Appends the target program’s stdout information to the file named in the -stdout command, specified in the
GUI, or in the TotalView TV::default_stdout_filename variable. If the file does not exist, TotalView creates it.

Command-Line Options 398

TotalView Command Syntax

-team

Uses only a Team license.

-no_team

Does not use an Enterprise license. You may combine this with -no_ent or -noteamplus.

-teamplus

Uses only a Team Plus license.

-no_teamplus

Does not use a Team PLus license. You may combine this with -no_ent or -noteam.

-theme option
Controls the UI theme. Options are dark or light.

Default: light

-tvhome pathname
The directory from which TotalView reads preferences and other related information and the directory to which
it writes this information.

-use_fast_trap

Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled con-
ditional breakpoints, also known as EVAL points. You must set this option on the command line; you cannot set
it interactively using the CLI.

Your operating system may not be configured correctly to support this option. See the TotalView Release Notes
on the TotalView documentation page for more information.

-use_fast_wp

Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled con-
ditional watchpoints, also known as CDWP points. You must set this option on the command line; you cannot set
it interactively using the CLI.

Your operating system may not be configured correctly to support this option. See the TotalView Release Notes
on the TotalView documentation page for more information.

-user_threads

(Default) Enables handling of user-level (M:N) thread packages on systems where two-level (kernel and user)
thread scheduling is supported.

-no_user_threads

Disables handling of user-level (M:N) thread packages. This option may be useful in situations where
you need to debug kernel-level threads, but in most cases, this option is of little use on systems
where two-level thread scheduling is used.

-verbosity level
Sets the verbosity level of TotalView messages to level, which may be one of silent, error, warning, or info.

https://help.totalview.io/
https://help.totalview.io/

Command-Line Options 399

TotalView Command Syntax

Default: info

-working_directory pathname
Sets the working directory for executing a target program, overwriting the default.

Default: The directory from which TotalView was invoked

-xterm_name pathname
Sets the name of the program used when TotalView needs to create a the CLI. If you do not use this command or
have not set the TV::xterm_name variable, TotalView attempts to create an xterm window.

400

 TotalView Debugger Server
Command Syntax

This chapter summarizes the syntax of the TotalView Debugger Server command, tvdsvr, which is used for
remote debugging. Remote debugging occurs when you explicitly call for it or when you are using disciplines
like MPI that start up processes on remote servers.

For more information on remote debugging, refer to TotalView Remote Connections” in the TotalView User Guide.

Topics in this chapter are:

 The tvdsvr Command and its Options

 Replacement Characters

The tvdsvr Command and its Options Description 401

TotalView Debugger Server Command Syntax

The tvdsvr Command and its Options
tvdsvr {-server | -callback hostname:port | -serial device} [other options]

Description
tvdsvr allows TotalView to control and debug a program on a remote machine. To accomplish this, the tvdsvr
program must run on the remote machine, and it must have access to the executables being debugged. These
executables must have the same absolute path name as the executable that TotalView is debugging, or the PATH
environment variable for tvdsvr must include the directories containing the executables.

You must specify a -server, -callback, or -serial option with the tvdsvr command. By default, TotalView automat-
ically launches tvdsvr using the -callback option, and the server establishes a connection with TotalView.
(Automatically launching the server is called autolaunching.)

If you prefer not to automatically launch the server, you can start tvdsvr manually and specify the -server option.
Be sure to note the password that tvdsvr prints out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr automatically generates a pass-
word that it uses when establishing connections. If desired, you can set your own password by using the -set_pw
option.

To connect to the tvdsvr from TotalView, use the File > Debug a Program menu item and specify the host name
and TCP/IP port number, hostname:portnumber on which tvdsvr is running. Then, TotalView prompts you for
the password for tvdsvr.

Options
The following options name the port numbers and passwords that TotalView uses to connect with tvdsvr.

-callback hostname:port
(Autolaunch feature only) Immediately establishes a connection with a TotalView process running on host-
name and listening on port, where hostname is either a host name or TCP/IP address. If tvdsvr cannot con-
nect with TotalView, it exits.

If you use the -port, -search_port, or -server options with this option, tvdsvr ignores them.

The tvdsvr Command and its Options Options 402

TotalView Debugger Server Command Syntax

-callback_host hostname
Names the host upon which the callback is made. The hostname argument indicates the machine upon which
TotalView is running. This option is most often used with a bulk launch.

-callback_ports port-list
Names the ports on the host machines that are used for callbacks. The port-list argument contains a comma-
separated list of the host names and TCP/IP port numbers (hostname:port,hostname:port...) on which To-
talView is listening for connections from tvdsvr. This option is most often used with a bulk launch.

For more information on remote debugging, refer to TotalView Remote Connections” in the TotalView User Guide.

-debug_file console_outputfile
Redirects TotalView Debugger Server console output to a file named console_outputfile.

If console_outputfile is the string UNIQUE, the filename tv_dump.hostname.pid is used. If console_out-
putfile contains the string '$$' (note the escaping single quotes), hostname.pid is substituted. UNIQUE and
'$$' are useful for separating the console output when running multiple tvdsvr processes.

Default: All console output is written to stderr.

-nodes_allowed num
Explicitly tells tvdsvr how many nodes the server supports and how many licenses it needs. This is only used for
the Cray XT3.

-port number
Sets the TCP/IP port number on which tvdsvr should communicate with TotalView. If this port is busy, tvdsvr
does not select an alternate port number (that is, it won’t communicate with anything) unless you also specify -
search_port.

Default: 4142

-search_port

Searches for an available TCP/IP port number, beginning with the default port (4142) or the port set with the -
port option and continuing until one is found. When the port number is set, tvdsvr displays the chosen port
number with the following message:

port = number

Be sure that you remember this port number, since you will need it when you are connecting to this server from
TotalView.

-serial device[:options]

Waits for a serial line connection from TotalView. For device, specifies the device name of a serial line, such as /
dev/com1. The only option you can specify is the baud rate, which defaults to 38400. For more information on
debugging over a serial line, see “Debugging Over a Serial Line”.

-server

Listens for and accepts network connections on port 4142 (default).

The tvdsvr Command and its Options Options 403

TotalView Debugger Server Command Syntax

Using -server can be a security problem. Consequently, you must explicitly enable this feature by placing an
empty file named tvdsvr.conf in your /etc directory. This file must be owned by user ID 0 (root). When tvdsvr
encounters this option, it checks if this file exists. This file’s contents are ignored.

You can use a different port by using one of the following options: -search_port or -port. To stop tvdsvr from
listening and accepting network connections, you must terminate it by pressing Ctrl+C in the terminal window
from which it was started or by using the kill command.

-set_pw hexnumhigh:hexnumlow
Sets the password to the 64-bit number specified by the hexnumhigh and hexnumlow 32-bit numbers.
When a connection is established between tvdsvr and TotalView, the 64-bit password passed by TotalView
must match this password set with this option. tvdsvr displays the selected number in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connections by other users.

If necessary, you can disable password checking by specifying the “-set_pw 0:0” option with the tvdsvr command.
Disabling password checking is dangerous; it allows anyone to connect to your server and start programs, in-
cluding shell commands, using your UID. Therefore, we do not recommend disabling password checking.

-set_pws password-list
Sets 64-bit passwords. TotalView must supply these passwords when tvdsvr establishes the connection with it.
The argument to this command is a comma-separated list of passwords that TotalView automatically generates.
This option is most often used with a bulk launch.

For more information on remote debugging, refer to TotalView Remote Connections” in the TotalView User Guide.

-verbosity level
Sets the verbosity level of TotalView Debugger Server-generated messages to level, which may be one of silent,
error, warning, or info.

Default: info

-working_directory directory
Makes directory the directory to which TotalView connects.

Note that the command assumes that the host machine and the target machine mount identical file systems.
That is, the path name of the directory to which TotalView is connected must be identical on both the host and
target machines.

After performing this operation, the TotalView Debugger Server is started.

Replacement Characters Options 404

TotalView Debugger Server Command Syntax

Replacement Characters
When placing a tvdsvr command in a Server Launch or Bulk Launch string (see the File > Preferences com-
mand within the online Help for more information), you will need to use special replacement characters. When
your program needs to launch a remote process, TotalView replaces these command characters with what they
represent. Here are the replacement characters:

%A

Expands to the ALPS Application ID (apid), which is a unique identifier for an application started using ALPS
aprun on Cray XT, XE, and XK. The token is used to construct server path references copied onto the compute
nodes' ramdisk under the /var/spool/alps/apid directory by the ALPS Tool Helper library.

%B

Expands to the bin directory where tvdsvr is installed.

%C

Is replaced by the value of the server launch command variable, TV::launch_command. On most platforms,
this is ssh -x. If the TVDSVRLAUNCHCMD environment variable exists, TotalView uses this value instead of its
platform-specific value.

%D

Is replaced by the absolute path name of the directory to which TotalView will be connected.

%F

Contains the “tracer configuration flags” that need to be sent to tvdsvr processes. These are system-specific
startup options that the tvdsvr process needs.

%H

Expands to the host name of the machine upon which TotalView is running. (This replacement character is most
often used in bulk server launch commands. However, it can be used in a regular server launch and within a
tvdsvr command contained within a temporary file.)

%I

Expands to the pid of the MPI starter process. For example, it can contain mpirun, aprun, etc. It can also be the
process to which you manually attach. If no pid is available, %I expands to 0.

%J

Expands to the job ID. For MPICH or poe jobs, is the contents of the totalview_jobid variable contained either
in the starter or first process. If that variable does not exist, it is set to zero (“0”). If it is not appropriate for the kind
of job being launched, its value is -1.

%K

Expands to the tvdsvr platform suffix string in situations where a different server must be used.

Replacement Characters Options 405

TotalView Debugger Server Command Syntax

When MRNet is being used as the debugger infrastructure, _mrnet is appended to the normal %K expansion.
On Cray XT with MRNet enabled, the %K token is expanded to _mrnet. This convention allows MRNet-specific
debugger servers to be launched only when MRNet is being used as the debugger infrastructure.

%L

If TotalView is launching one process, this is replaced by the host name and TCP/IP port number (host-
name:port) on which TotalView is listening for connections from tvdsvr.

If a bulk launch is being performed, TotalView replaces this with a comma-separated list of the host names and
TCP/IP port numbers (hostname:port,hostname:port...) on which TotalView is listening for connections from
tvdsvr.

For more information on remote debugging, refer to TotalView Remote Connections” in the TotalView User Guide.

%M

(Sun) Expands to the command name used for a local server launch.

%N

Is replaced by the number of servers that TotalView will launch. This is only used in a bulk server launch com-
mand.

%P

If TotalView is launching one process, this is replaced by the password that it automatically generated.

If a bulk launch is being performed, TotalView replaces this with a comma-separated list of 64-bit passwords.

%R

Is replaced by the host name of the remote machine specified in the File > New Program command. When
performing a bulk launch, this is replaced by a comma-separated list of the names of the hosts upon which To-
talView will launch tvdsvr processes.

%S

If TotalView is launching one process, it replaces this symbol with the port number on the machine upon which
TotalView is -running.

If a bulk server launch is being performed, TotalView replaces this with a comma-separated list of port numbers.

%t1 and %t2

Is replaced by files that TotalView creates containing information it generates. This is only available in a bulk
launch.

These temporary files have the following structure:

(1) An optional header line containing initialization commands required by your system.

(2) One line for each host being connected to, containing host-specific information.

(3) An optional trailer line containing information needed by your system to terminate the temporary file.

Replacement Characters Options 406

TotalView Debugger Server Command Syntax

The File > Preferences Bulk Server Page allows you to define templates for the contents of temporary files.
These files may use these replacement characters. The %N, %t1, and %t2 replacement characters can only be
used within header and trailer lines of temporary files. All other characters can be used in header or trailer lines
or within a host line defining the command that initiates a single-process server launch. In header or trailer lines,
they behave as defined for a bulk launch within the host line. Otherwise, they behave as defined for a single-
server launch.

%U

(Sun) Expands to the local socket ID.

%V

Is replaced by the current TotalView verbosity setting.

%X

Is replaced with the appropriate proxy server option, which is currently valid only for MRNet proxy servers.
When launching an MRNet proxy server, %X will expand to -mrnet_proxy_fd %U. The -mrnet_proxy_fd op-
tion informs the server that it should run as a proxy server.

The %U is replaced with a Unix domain socket file descriptor by the remote server that is launching the proxy
server. The MRNet proxy server uses the socket to read the MRNet tree instantiation parameters and write the
results. In other contexts, %X is replaced with -invalid_proxy, which will cause a server launch failure.

%Z

Expands to the job ID. For MPICH or poe jobs, is the contents of the totalview_jobid variable contained either
in the starter or first process. If that variable does not exist, it is set to zero (“0”). If it is not appropriate for the kind
of job being launched, its value is -1.

 407

PART IV Platforms and
Operating Systems

This part describes information that is unique to the computers, operating systems, and environments in
which TotalView runs.

 Platforms and Compilers on page 408

Here you will find general information on the compilers and runtime environments that TotalView sup-
ports. This chapter also contains commands for starting TotalView and information on linking with the
dbfork library.

 Operating Systems on page 421

While how you use TotalView is the same on all operating systems, there are some things you will need
to know that are differ from platform to platform.

 Architectures on page 438

When debugging assembly-level functions, you will need to know how TotalView refers to your machines
registers.

408

 Platforms and Compilers

This chapter describes the compilers and parallel runtime environments used on platforms supported by
TotalView. See the TotalView Platforms and Systems Requirement Guide for information on the specific compiler
and runtime environments that TotalView supports.

For information on supported operating systems, please refer to Operating Systems on page 421.

Topics in this chapter are:

 Compiling with Debugging Symbols

 Maintaining Debug Information Separate from an Executable

 Linking with the dbfork Library

 Compiling and Linking Split DWARF

Compiling with Debugging Symbols Apple Running macOS 409

Platforms and Compilers

Compiling with Debugging Symbols
You need to compile programs with the -g option and possibly other compiler options so that debugging symbols
are included. This section shows the specific compiler commands to use for each compiler that TotalView
supports.

NOTE: Please refer to the release notes in your TotalView distribution for the latest information
about supported versions of the compilers and parallel runtime environments listed here.

Apple Running macOS
On macOS, in all cases use the standard compiler invocation, just being sure to include the -g option.

On macOS, you can create 64-bit applications using GCC 4 by adding the -m64 command-line option.

IBM AIX on RS/6000 Systems
The following table lists the procedures to compile programs on IBM RS/6000 systems running AIX.

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program.f
f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

GCC Fortran gfortran -g program.f

IBM xlc C xlc -g program.c

IBM xlC C++ xlC -g program.cxx

IBM xlf Fortran 77 xlf -g program.f

IBM xlf90 Fortran 90 xlf90 -g program.f90

Compiling with Debugging Symbols IBM AIX on RS/6000 Systems 410

Platforms and Compilers

You can set up to seven variables when debugging threaded applications. Here’s how you might set six of these
variables within a C shell:
setenv AIXTHREAD_MNRATIO "1:1"
setenv AIXTHREAD_SLPRATIO "1:1"
setenv AIXTHREAD_SCOPE "S"
setenv AIXTHREAD_COND_DEBUG "ON"
setenv AIXTHREAD_MUTEX_DEBUG "ON"
setenv AIXTHREAD_RWLOCK_DEBUG "ON"

The first three variables must be set. Depending upon what you need to examine, you will also need to set one or
more of the “DEBUG” variables.

The seventh variable, AIXTHREAD_DEBUG, should not be set. If it is, you should unset it before running TotalView

NOTE: Setting these variables can slow down your application’s performance. None of them should
be set when you are running non-debugging versions of your program.

When compiling with KCC, you must specify the -qnofullpath option; KCC is a preprocessor that passes its out-
put to the IBM xlc C compiler. It will discard #line directives necessary for source-level debugging if you do not
use the -qfullpath option. We also recommend that you use the +K0 option and not the -g option.

When compiling with guidef77, the -WG,-cmpo=i option may not be required on all versions because -g can
imply these options.

When compiling Fortran programs with the C preprocessor, pass the -d option to the compiler driver. For exam-
ple: xlf -d - program.F

If you will be moving any program compiled with any of the IBM xl compilers from its creation directory, or you do
not want to set the search directory path during debugging, use the -qfullpath compiler option. For example:
xlf -qfullpath -g -c program.f

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

IBM xlc C xlc -g program.c

IBM xlC C++ xlC -g program.cxx

IBM xlf Fortran 77 xlf -g program.f

IBM xlf90 Fortran 90 xlf90 -g program.f90

Compiling with Debugging Symbols Linux Running on an x86-64 Platform 411

Platforms and Compilers

Linux Running on an x86-64 Platform
The following table lists the procedures to compile programs on Linux x86-64 platforms.

Linux Running on an ARM64 Platform
The following table lists the procedures to compile programs on ARM64 platforms.

Sun Solaris
The following table lists the procedures to compile programs on SunOS 5 SPARC.

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program.f
f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

Absoft Fortran 95 f95 -g program.f95

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

GCC Fortran gfortran -g program.f

Intel C++ Compiler icc -g program.cxx

Intel Fortran Compiler ifc -g program.f

Pathscale EKO C pathcc -g program.f

Pathscale EKO C++ pathCC -g program.f

Lahey/Fujitsu Fortran lf95 -g program.f

PGI C++ pcCC -g program.f

PGI Fortran 77 pgf77 -g program.f

PGI Fortran 90 pgf90 -g program.f

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

GCC Fortran gfortran -g program.f

Compiling with Debugging Symbols Sun Solaris 412

Platforms and Compilers

Compiler Compiler Command Line

Apogee C apcc -g program.c

Apogee C++ apcc -g program.cxx

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

Sun One Studio C cc -g program.c

Sun One Studio C++ CC -g program.cxx

Sun One Studio Fortran 77 f77 -g program.f

Sun One Studio Fortran 90 f90 -g program.f90

Maintaining Debug Information Separate from an Executable Sun Solaris 413

Platforms and Compilers

Maintaining Debug Information Separate
from an Executable
Because debug information embedded in an executable can be very large, some versions of Linux support strip-
ping this information from the executable and placing it into a separate file. This file is then referenced within the
executable using either a build ID section or a debug link section (or both) to identify the location and name of
the separate debug file. The stripped image file will normally take up less space on the disk, and if you want the
debug information, you can also install the corresponding .debug file.

The way this works with TotalView is controlled by a series of state variables and command line options discussed
in Controlling Separate Debug Files.

Create this file on Linux systems that have an objcopy that supports the - -add-gnu-debuglink and
- -only-keep-debug command-line options. If objcopy - -help mentions these options, creating this file is sup-
ported. See man objcopy for more details.

To create a separate file containing debug information:

1. Create a .debug copy of the executable or shared library. This second file is a regular executable but will
contain only debugging symbol table information, with no code or data.

2. Create a stripped copy of the image file, and add to the stripped executable a .gnu_debuglink section that
identifies the .debug file.

NOTE: The technique for creating a build ID separate debug information file is different
and more complex than that for creating a debug link. Consult your system doc-
umentation for how to create a separate debug information file using the build
ID method.

3. Distribute the stripped image and .debug files separately.

For example:

objcopy --only-keep-debug hello hello.debug
objcopy --strip-all hello
objcopy --add-gnu-debuglink=hello.debug hello

The code above uses objcopy to:

1. Create a separate debug file for an executable hello named hello.debug, containing only debug symbols
and information.

Maintaining Debug Information Separate from an Executable Controlling Separate Debug Files 414

Platforms and Compilers

2. Strip the debug information from the hello executable.

3. Add a .gnu_debuglink section to the hello executable.

Controlling Separate Debug Files
The following command line options and CLI variables control how TotalView handles separate debug files.

 Controls whether TotalView looks for either a build ID or a .gnu_debuglink section in image
files:

 Command line options -gnu_debuglink and -no_gnu_debuglink

 State variable TV::gnu_debuglink

This option basically turns on or off the functionality to support separate debug files.

 Sets the search path to use when looking for debug files referenced by a .gnu_debuglink
section:

 Command line option -gnu_debuglink_search_path

 State variable TV::gnu_debuglink_search_path

 Sets the search path to use when looking for debug files referenced by a .note.gnu.build-id
section:

 Command line option -gnu_debuglink_build_id_search_path

 State variable TV::gnu_debuglink_build_id_search_path

 Specifies the global debug directory:

 Command line option -gnu_debuglink_global_directory

 State variable TV::gnu_debuglink_global_directory

 Validates the separate .gnu_debuglink debug file:

 Validate using a build ID, if available

Command line option-gnu_debuglink_check_build_id

State variableTV::gnu_debuglink_check_build_id

 Validate using a checksum

Command line option -gnu_debuglink_checksum

State variable TV::gnu_debuglink_checksum

Maintaining Debug Information Separate from an Executable Searching for the Debug Files 415

Platforms and Compilers

Searching for the Debug Files
If theTV::gnu_debuglink variable is true and if an image file contains either a .note.gnu.build-id or a .gnu_de-
bug_link section, TotalView searches for a separate debug information file that matches the image file. TotalView
will first search for the debug file using the .note.gnu.build-id section in the image file, if it exists. If that search
fails, TotalView will search for the debug file using the .gnu_debuglink section in the image file, if it exists.

For the build ID method:

1. The TV::gnu_debuglink_build_id search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file path named by the .note.gnu.build-id section. The
debug file path follows the pattern ".build-id/xx/yyy...yyy.debug", where xx are the first two hex characters
of the build ID bit string, and yyy...yyy is the rest of the bit string. Build ID bit strings are at least 32 hex
characters.

For separate debug files referenced by a .gnu_debuglink section:

1. The TV::gnu_debuglink_search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file named in the .gnu_debuglink section. If the file is
found, and the checksum matches or TV::gnu_debuglink_checksum is false, then the debug file is used.

For example, assume that the program’s pathname is /A/B/hello_world and the debug filename stored in the
.gnu_debuglink section of this program is hello_world.debug. If the TV::gnu_debuglink_global_directory vari-
able is set to /usr/lib/debug and the TV::gnu_debuglink_search_path is set to its default value, TotalView
searches for the following files:

1. /A/B/hello_world.debug

2. /A/B/.debug/hello_world.debug

3. /usr/lib/debug/A/B/hello_world.debug

Linking with the dbfork Library dbfork on IBM AIX on RS/6000 Systems 416

Platforms and Compilers

Linking with the dbfork Library
If your program uses the fork() and execve() system calls, and you want to debug the child processes, you need
to link programs with the dbfork library.

NOTE: While you must link programs that use fork() and execve() with the TotalView dbfork library so
that TotalView can automatically attach to them when your program creates them, programs
that you attach to need not be linked with this library.

dbfork on IBM AIX on RS/6000 Systems
Add either the -ldbfork or-ldbfork_64 argument to the command that you use to link your programs. If you are
compiling 32-bit code, use the following arguments:

 /usr/totalview/lib/libdbfork.a\ -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

 -L/usr/totalview/lib\ -ldbfork -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

For example:
cc -o program program.c \

-L/usr/totalview/rs6000/lib/ -ldbfork \
-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

If you are compiling 64-bit code, use the following arguments:

 /usr/totalview/lib/libdbfork_64.a \ -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

 -L/usr/totalview/lib -ldbfork_64 \ -bkeepfile:/usr/totalviewrs6000//lib/libdbfork.a

For example:
cc -o program program.c \

-L/usr/totalview/rs6000/lib -ldbfork \
-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

When you use gcc or g++, use the -Wl,-bkeepfile option instead of using the -bkeepfile option, which will pass
the same option to the binder. For example:
gcc -oprogram program.c \

-L/usr/totalview/rs6000/lib -ldbfork -Wl, \
 -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

Linking with the dbfork Library Linux or macOS 417

Platforms and Compilers

Linking C++ Programs with dbfork

You cannot use the -bkeepfile binder option with the IBM xlC C++ compiler. The compiler passes all binder
options to an additional pass called munch, which will not handle the -bkeepfile option.

To work around this problem, we have provided the C++ header file libdbfork.h. You must include this file some-
where in your C++ program. This forces the components of the dbfork library to be kept in your executable. The
file libdbfork.h is included only with the RS/6000 version of TotalView. This means that if you are creating a pro-
gram that will run on more than one platform, you should place the include within an #ifdef statement’s range.
For example:
#ifdef _AIX
#include "/usr/totalview/include/libdbfork.h"
#endif
int main (int argc, char *argv[])
{
}

In this case, you would not use the-bkeepfile option and would instead link your program using one of the fol-
lowing options:

 /usr/totalview/rs6000/lib/libdbfork.a

 -L/usr/totalview/lib -ldbfork

Linux or macOS
Add one of the following arguments or command-line options to the command that you use to link your
programs:

 -L/usr/totalview/platform/lib -L/usr/totalview/platform/lib -ldbfork_64

where platform is one of the following: darwin-x86, linux-x86-64, linux-powerle, or linux-arm64.

For example:
cc -o program program.c \

-L/usr/totalview/linux-x86/lib -ldbfork_64

SunOS 5 SPARC
Add one of the following command line arguments or options to the command that you use to link your
programs:

 /opt/totalview/sun5/lib/libdbfork.a

 -L/opt/totalview/sun5/lib -ldbfork

Linking with the dbfork Library SunOS 5 SPARC 418

Platforms and Compilers

For example:
cc -o program program.c \

-L/opt/totalview/sun5/lib -ldbfork
As an alternative, you can set the LD_LIBRARY_PATH environment variable and omit the -L option on the com-
mand line:
setenv LD_LIBRARY_PATH /opt/totalview/sun5/lib

Compiling and Linking Split DWARF Using GNU DebugFission Split DWARF on Linux 419

Platforms and Compilers

Compiling and Linking Split DWARF
The Split DWARF approach is to split the DWARF into two parts during compilation: One part remains in the object
(.o) file and the other is written to a corresponding DWARF object (.dwo) file. Lightweight “skeleton” DWARF debug
information is included in the .o file, and full DWARF debug information is in the .dwo file. Since the linker pro-
cesses only the .o files the size of the object files processed is greatly reduced.

Using GNU DebugFission Split DWARF on Linux
On Linux, TotalView supports the GNU DebugFission variant of Split DWARF. The DWARF 5 variant of Split DWARF
is not yet supported. For more information, check out the Saving Time and Space with Split DWARF white
paper.

Building your application for GNU DebugFission Split DWARF:

 Compiling:

 Use the -gsplit-dwarf compiler option to generate “.dwo” (DWARF object) files containing the
full DWARF debug information, and an “.o” (object) file containing the code, data, and skeleton
DWARF debug information. Note: the DWARF debug information in the “.o” file points to the
“.dwo” file, therefore the “.dwo” file must not be deleted.

 Linking:

 Use the -fuse-ld=gold compiler option to use the gold linker (ld.gold).

 Use the -Wl, --gdb-index compiler option to pass the --gdb-index option to the gold linker.
Note: The resulting executable or shared library image file contains a .gdb_index section that
the debugger can use for faster startup.

Using Split DWARF on Solaris
Starting with the Solaris Studio 12.4 compilers, Oracle® supports a Split-DWARF variant (also known as excluded
DWARF) that can greatly reduce link time, disk usage, and debugger start-up time for large applications. When
enabled, the full DWARF information remains in the object (.o) file and is excluded from the executable or shared
library file. The compiler generates a lightweight symbol table index in the executable or shared library file.
TotalView uses the symbol table index information to build a skeleton symbol table to locate the source files,
functions, types, and other externally defined objects. The full DWARF information contained in the object file is
read on-demand, only when required during the debug session.

To enable Split DWARF in the Solaris Studio 12.4 (or later) compilers, use the following compiler options:

https://gcc.gnu.org/wiki/DebugFission
https://totalview.io/sites/totalview/files/pdfs/white-paper-totalview-saving-time-space-split-dwarf.pdf
https://totalview.io/sites/totalview/files/pdfs/white-paper-totalview-saving-time-space-split-dwarf.pdf

Compiling and Linking Split DWARF Using Split DWARF on Solaris 420

Platforms and Compilers

-xdebugformat=dwarf -xs=no
For more information on how Oracle implements Split DWARF, please refer to the Oracle documentation.

https://docs.oracle.com/cd/E37069_01/html/E37071/gndap.html

421

 Operating Systems

This chapter describes the operating system features that can be used with TotalView, including the following
topics:

 Supported Operating Systems

 Troubleshooting macOS Installations

 Mounting the /proc File System (SunOS 5 only)

 Swap Space

 Shared Libraries

 Debugging Your Program’s Dynamically Loaded Libraries

 Remapping Keys (Sun Keyboards only)

Supported Operating Systems 422

Operating Systems

Supported Operating Systems
Because support for operating systems, platforms, and compilers changes often, we do not identify support for
these in the main product documentation. For all support questions, please refer to the document TotalView
Supported Platforms in the TotalView distribution, or on the TotalView documentation website.

https://help.totalview.io/

Troubleshooting macOS Installations 423

Operating Systems

Troubleshooting macOS Installations

NOTE: For TotalView installation prerequisites on a Mac, see macOS Installations in the Installation
Guide.

At TotalView startup, the OS checks whether the Mach system call -task_for_pid() is working properly. If the
call returns an error, no debugging is possible, and TotalView outputs an error message that begins “The Mach
system call -task_for_pid() is not working properly.” Because this error is varied and depends on the OS version,
TotalView cannot distinguish the circumstances that lead to it; however, the error is sometimes related to Apple’s
security layer, System Integrity Protection (SIP).

SIP's protections are not limited to protecting the system from file system changes. Some system calls are
restricted in their functionality, which can affect developing and debugging on macOS. For runtime protection the
following restrictions exist:

 task_for_pid() fails with EPERM if called incorrectly, which may cause TotalView to crash

 dyld environment variables are ignore

 DTrace probes are unavailable

However, SIP does not block inspection by developers of their own applications while they are being developed.
TotalView tools will continue to allow applications to be inspected and debugged during the development
process.

For more information about SIP, please see Apple's developer documentation.

Mounting the /proc File System Mounting /proc with SunOS 5 424

Operating Systems

Mounting the /proc File System
(Classic UI Only)

To debug programs on SunOS 5 with TotalView, you need to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file system might not be mounted:

 job_t::launch, creating process: process not found

 Error launching process while trying to read -dynamic symbols

 Creating Process... Process not found Clearing Thrown Flag Operation
Attempted on an unbound process object

To determine whether the /proc file system is mounted, enter the appropriate command from the following
table.

If you receive one of these messages from the mount command, the /proc file system is mounted.

Mounting /proc with SunOS 5
To make sure that the /proc file system is mounted each time your system boots, add the appropriate line from
the following table to the appropriate file.

Then, to mount the /proc file system, enter the following command:
/sbin/mount /proc

Operating
System Command

SunOS 5 % /sbin/mount | grep /proc /proc on /
proc read/write/setuid on ...

Operating
System Name of File Line to add

SunOS 5 /etc/vfstab /proc - /proc proc - no -

Swap Space Swap Space on IBM AIX 425

Operating Systems

Swap Space
Debugging large programs can exhaust the swap space on your machine. If you run out of swap space, TotalView
exits with a fatal error, such as:

 Fatal Error: Out of space trying to allocate

This error indicates that TotalView failed to allocate dynamic memory. It can occur anytime during a debugging
session. It can also indicate that the data size limit in the C shell is too small. You can use the C shell’s limit com-
mand to increase the data size limit. For example:
limit datasize unlimited
 job_t::launch, creating process: Operation failed

This error indicates that the fork() or execve() system call failed while TotalView was creating a process to debug.
It can happen when TotalView tries to create a process.

Swap Space on IBM AIX
To find out how much swap space has been allocated and is currently being used, use the /usr/sbin/pstat -s
command:

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:
totalview executable

Press Ctrl+Z to suspend TotalView.

1. Use the following command to see how much swap space TotalView is using:
ps u

For example, in this case the value in the SZ column is 5476 KB:
USER PID %CPU %MEM SZ RSS TTY ...
smith 15080 0.0 6.0 5476 547 pts/1 ...
To add swap space, use the AIX system management tool, smit. Use the following path through the smit menus:
System Storage Management > Logical Volume Manager >
 Paging Space

Swap Space on Linux
To find out how much swap space has been allocated and is currently being used, use either the swapon or top
commands on Linux:

Swap Space Swap Space on SunOS 5 426

Operating Systems

You can use the mkswap(8) command to create swap space. The swapon(8) command tells Linux that it should
use this space.

Swap Space on SunOS 5
To find out how much swap space has been allocated and is currently being used, use the swap -s command:

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:
totalview executable

Press Ctrl+Z to suspend TotalView.

1. Use the following command to see how much swap space TotalView is using:
/bin/ps -l

To add swap space, use the mkfile(1M) and swap(1M) commands. You must be root to use these commands.
For more information, refer to the online manual pages for these commands.

Shared Libraries Swap Space on SunOS 5 427

Operating Systems

Shared Libraries
TotalView supports dynamically linked executables, that is, executables that are linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView loads an additional set of symbols for
the shared libraries, as indicated in the shell from which you started TotalView. To accomplish this, TotalView:

1. Runs a sample process and discards it.

2. Reads information from the process.

3. Reads the symbol table for each library.

When you create a process without starting it, and the process does not include shared libraries, the PC points to
the entry point of the process, usually the start routine. If the process does include shared libraries, TotalView
takes the following actions:

 Runs the dynamic loader (SunOS 5: ld.so, Linux: /lib/ld-linux.so.?).

 Sets the PC to point to the location after the invocation of the dynamic loader but before the
invocation of C++ static constructors or the main() routine.

When you attach to a process that uses shared libraries, TotalView takes the following actions:

 If you attached to the process after the dynamic loader ran, then TotalView loads the dynamic
symbols for the shared library.

 If you attached to the process before it runs the dynamic loader, TotalView allows the process to
run the dynamic loader to completion. Then, TotalView loads the dynamic symbols for the shared
library.

If desired, you can suppress the recording and use of dynamic symbols for shared libraries by starting TotalView
with the -no_dynamic option. Refer to TotalView Command Syntax on page 386 for details on this TotalView
startup option.

If a shared library has changed since you started a TotalView session, you can use the Group > Rescan Library
command to reload library symbol tables. Be aware that only some systems such as AIX permit you to reload
library information.

Shared Libraries Changing Linkage Table Entries and LD_BIND_NOW 428

Operating Systems

Changing Linkage Table Entries and LD_BIND_NOW
If you are executing a dynamically linked program, calls from the executable into a shared library are made using
the Procedure Linkage Table (PLT). Each function in the dynamic library that is called by the main program has an
entry in this table. Normally, the dynamic linker fills the PLT entries with code that calls the dynamic linker. This
means that the first time that your code calls a function in a dynamic library, the runtime environment calls the
dynamic linker. The linker will then modify the entry so that next time this function is called, it will not be involved.

This is not the behavior you want or expect when debugging a program because TotalView will do one of the
following:

 Place you within the dynamic linker (which you don't want to see).

 Step over the function.

And, because the entry is altered, everything appears to work fine the next time you step into this function.

You can correct this problem by setting the LD_BIND_NOW environment variable. For example:
setenv LD_BIND_NOW 1

This tells the dynamic linker that it should alter the PLT when the program starts executing rather than doing it
when the program calls the function.

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 429

Operating Systems

Debugging Your Program’s Dynamically
Loaded Libraries

dlopen Options for Scalability
When a target process calls dlopen(), a dlopen event is generated and must be handled by TotalView. Because
dlopen event handling can affect debugger performance for a variety of reasons, especially if the application
loads many shared libraries or the debugger is controlling many processes, TotalView provides ways to configure
dlopen for better performance and scalability in HPC computing environments:

 Filtering dlopen events to avoid stopping a process for each event

 Handling dlopen events in parallel to reduce client/server communication overhead with MRNet
enabled

Filtering dlopen Events

Two state variables and their related command line options enable you to filter dlopen events to defer planting
breakpoints in the dlopened libraries until the process stops for some other reason. Deferring dlopen event pro-
cessing allows the debugger to handle all dynamically loaded shared libraries at the same time, which is much
more efficient than handling them serially.

dlopen event filtering is controlled by the settings on two state variables, TV::dlopen_always_recalculate and
TV::dlopen_recalculate_on_match, and their related command line options -dlopen_always_recalculate and
-dlopen_recalculate_on_match.

Three possible dlopen filtering modes are available using these variables: Slow, Medium, and Fast, in which Fast
provides the best performance, although it won’t be suitable for some debugging situations. For detail, see Filter-
ing Modes.

You can configure TotalView to filter dlopen events for all invocations of TotalView using your .tvdrc file. For
example, to use Fast mode by default for every TotalView session, add the following to your .tvdrc file:
dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match ""
Or, launch just an individual instance of TotalView with these settings by entering:
totalview -no_dlopen_always_recalculate -dlopen_recalculate_on_match ""

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 430

Operating Systems

Filtering Modes

Filtering modes for dlopen include Fast, Medium, and Slow. In Fast mode, the process never stops for a dlopen
event, not even "null" dlopen events. Using this option can result in significant performance gains, but may be
impractical for some applications. In Medium mode, some libraries can be specified to either immediately reevalu-
ate or defer evaluation of breakpoint specifications, rather than all or none. In Slow mode, every dlopen event
results in the immediate reevaluation of breakpoint specifications.

 Slow Mode: Reloads libraries on every dlopen event

Option:
dset TV::dlopen_always_recalculate true
Reloads libraries on every dlopen event, retaining TotalView’s traditional breakpoint reevaluation semantics.
This mode is compatible with CUDA and is a good choice when your session has pending breakpoints. How-
ever, this mode does not perform or scale as well as the other modes, because it requires the TotalView cli-
ent to handle every (non-null) dlopen event for every process.

If performance is not the primary concern, or the application or runtime environment does not perform
many dlopen events, then this may be a good choice.

In this mode, when the target stops with a dlopen event, the debugger server reports the event to the
debugger client, where the library list is reloaded and checked to see if any additional breakpoint locations
need to be planted in the newly loaded libraries.

 Medium Mode: Reports or defers libraries that match defined patterns on a dlopen event

Options:
dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match {glob-list}
A glob-list is a colon-separated list of positive or negated Tcl glob match patterns used to determine if the
dlopened library event should be reported or deferred. For example:

Immediately report dlopen events for libraries that match any of the patterns on the glob-list, but defer reporting
other dlopen events:
"*/libcuda.so*:*/libmylib1*:*/libmylib2.so"
Defer reporting dlopen events for libraries that match any of the patterns on the glob-list, but immediately report
other dlopen events:
"!*/libboring.so*:!*/libwhocares1*:!*/libwhocares2.so"

The glob match rules are defined by the standard Tcl string match command. For details and examples, see
glob-list Matching Rules. Note that the library names are typically absolute path names, for example "/lib64/
libc.so", so the glob patterns must take that into account.

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 431

Operating Systems

This mode strikes a balance between performance and enabling breakpoints to be planted in dlopened
libraries, and is useful if you have specific shared libraries that you know you always, or never, want to defer.
For example, Open MPI performs many dlopen calls in parallel programs, however most users are not inter-
ested in planting breakpoints or debugging the Open MPI libraries themselves. Therefore, it makes sense to
defer reporting dlopen events for Open MPI libraries.

In Medium mode, the target process stops on every dlopen event (just as in Slow mode), but:

 If a newly loaded library matches a positive glob-list entry, the event is immediately reported
to the client, but all other libraries are deferred. For example:
dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match {*/libfoo.so:*/libbar.so}
Here, when /home/jones/libfoo.so or /home/jones/libbar.so are loaded, the dlopen event is immedi-
ately reported and breakpoints are reevaluated because their names match a pattern in the glob-list.
However, when /usr/lib64/libompi.so is loaded, breakpoints are deferred because its name does not
match a pattern in the glob-list.

 If a newly loaded library matches a negated glob-list pattern, and the list contains only negated
patterns (i.e., does not contain a combination of negated and positive patterns), the event is
deferred for that library, but all other libraries not matching a negated pattern are immedi-
ately reported.

 If a newly loaded library matches a negated glob-list pattern, and the list contains a combina-
tion of positive and negated patterns, the event might be deferred, depending on other library
names in the library list. See glob-list Matching Rules for details.

This setting requires:

 Adding patterns that match the names of any dlopened libraries to the TV::dlopen_recalcu-
late_on_match list

 Adding "*/libcuda.so*" to the match list if you are debugging CUDA; otherwise TotalView will
miss CUDA kernel launch events.

 Fast Mode: Does not stop for dlopen events

Options:
dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match ""
This mode provides the best performance, deferring planting breakpoints in all dlopened libraries when a
library is loaded. Breakpoints (pending or not) are planted in the dlopened libraries only when the process
stops for some other reason; however, be aware that with this option, an application may have executed
past the point at which you want to start debugging inside the dlopened library.

Because the debugger does not plant the dlopen breakpoint in the process, the process never stops for a
dlopen event, not even "null" dlopen events.

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 432

Operating Systems

While this mode may be impractical for some debugging situations, the performance gains are significant.

Table 7 summarizes the pros and cons of each mode.

Table 7: dlopen Event Filtering Modes

Mode/
Speed Option

Slow TV::dlopen_always_recalculate true
Pros:

 Retains TotalView’s traditional
breakpoint reevaluation
semantics.

 Works best with pending
breakpoints.

 Compatible with CUDA.

Cons:

 Does not perform or scale as
well as the other modes
because the TotalView client
handles every (non-null)
dlopen event for every process.

Medium TV::dlopen_always_recalculate false
TV::dlopen_recalculate_on_match {glob-list}

Pros:

 Performs better by filtering out
dlopen events.

 Allows the TotalView client to
process multiple dlopen events
at a time, which is much more
efficient.

 Compatible with CUDA.

Cons:

 Process stops at the dlopen
breakpoint, even for "null"
dlopen events.

 An application may execute
past the point at which you
want to start debugging inside
the dlopened library.

 Requires adding to glob-list any
libraries that should or should
not cause breakpoint
specifications to be reevaluated
immediately when the library is
loaded.

 Requires adding to the glob-list
/libcuda.so for CUDA
support.

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 433

Operating Systems

glob-list Matching Rules

The glob-list is a colon-separated list of positive or negated Tcl glob match patterns. A glob match is negated if it
starts with an exclamation point (!), which is removed from the pattern before testing for a match. The glob match
rules are defined by the standard Tcl string match command. For example:

 Positive match pattern: /lib/libfoo*

 Negated match pattern: !/lib/libfoo*

Note that:

 The order of positive or negated glob-list patterns matter, if you are mixing positive and negated
patterns.

 Spaces are included in a match, so stray spaces will impact the result.

 Empty patterns (see below) are allowed, but will result in no match.

 A trailing, negated empty pattern is allowed, which affects only the default result.

 Library names are typically absolute path names (e.g., "/lib64/libc.so"), so the glob patterns must
take that into account.

 Tcl string match glob rules are not the same as shell glob rules, in that a "*" will match across
directory boundaries. For example, the glob pattern "*/libfoo.so" will match "/lib/libfoo.so" and "/
usr/lib/libfoo.so".

Fast TV::dlopen_always_recalculate false
TV::dlopen_recalculate_on_match ""

Pros:

 Performs best by never stopping
the process at dlopen events.

 Allows the TotalView client to
process multiple dlopen events
at a time.

Cons:

 Breakpoints are not
recalculated when a particular
library is loaded, which breaks
pending breakpoints and
traditional breakpoint
semantics.

 Breaks CUDA support.

Table 7: dlopen Event Filtering Modes

Mode/
Speed Option

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 434

Operating Systems

Mixed positive and negated patterns

While combining positive and negated patterns is likely to be rare, in some cases it is useful, for example, to defer
reporting dlopen events for all shared libraries in a directory except one.

A glob-list that contains a combination of positive and negated glob patterns can return varied results:

1. When a library name matches a positive match pattern, the dlopen event is reported immediately, even if
there are more library names on the library list that would have resulted in a negated match.

2. When a library name matches a negated match pattern, the reporting of the dlopen event might be
deferred. If there are more library names on the library list (because loading the library resulted in loading
its dependent libraries), they are also checked for a positive match. If a positive match is found for any of
the dependent libraries, the dlopen event is reported immediately.

3. In both cases, once a library name matches a pattern, any remaining patterns on the glob-list are not
checked.

Empty match patterns

The glob-list is allowed to have empty match patterns, which may either be a positive, empty match pattern ("")
or a negated, empty match pattern ("!").

An empty match pattern never matches a library name, but might affect the default result:

 A positive empty match pattern is ignored and does not affect the default result.

 A negated empty match pattern is ignored but might affect the default result.

Results when there is no match

If no match is found in the glob-list for any library name on the library list, the default result is determined as
follows:

1. If the last, non-empty pattern on the pattern list is a positive match pattern, reporting the dlopen event is
deferred.

2. If the last, non-empty pattern on the pattern list is a negated match pattern (empty or not), the dlopen
event is reported.

3. If the pattern list consists solely of positive empty match patterns (e.g., ":::"), reporting the dlopen event is
deferred.

Examples

Defer all libraries except those in a specific directory

A glob-list can contain a path to a directory containing shared libraries:

Debugging Your Program’s Dynamically Loaded Libraries dlopen Options for Scalability 435

Operating Systems

dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match {/home/jones/project/lib*}

In this case, TotalView calculates breakpoint specifications on all shared libraries except those in the /home/
jones/project/lib/ directory.

Negated and positive patterns

You can control the results, based on the combination of negated and positive patterns, the order of the pat-
terns, or the use of negated empty match patterns.

Consider the following glob-list containing both a negated and a positive pattern:

dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match {*/libopen-rte.so*:!/*/mware/*}
For these dlopened libraries:

 /opt/mware/openmpi/lib/libopen-rte.so.4

matches the first positive glob pattern “*/libopen-rte.so*”, so the dlopen event is reported immedi-
ately.

 /opt/mware/openmpi/lib/openmpi/mca_gizmo.so

matches the second negated glob pattern “/*/mware/*”, so reporting the dlopen event is deferred.

 /home/jones/project/lib/libmine.so

does not match either glob pattern, therefore a default result is returned. Since the last glob pattern on the
list is a negated pattern, the dlopen event is reported.

Pattern order

If the glob-list contains both negated and positive patterns, the order in which the patterns appear matters and
can result in unintended behavior. Consider what would happen if the patterns used in the previous example
were swapped:

dset TV::dlopen_always_recalculate false
dset TV::dlopen_recalculate_on_match {!/*/mware/*:*/libopen-rte.so*}
For these dlopened libraries:

 /opt/mware/openmpi/lib/libopen-rte.so.4
matches the first negated glob pattern "/*/mware/*", so the dlopen event is deferred. The second glob pat-
tern "*/libopen-rte.so*" is not checked, because once a library name matches a pattern, any remaining pat-
terns on the glob-list are not checked.

 /opt/mware/openmpi/lib/openmpi/mca_gizmo.so

matches the first negated glob pattern "/*/mware/*", so the dlopen event is deferred.

Debugging Your Program’s Dynamically Loaded Libraries Known Limitations 436

Operating Systems

 /home/jones/project/lib/libmine.so

does not match either glob pattern, therefore a default result is returned. Since the last glob pattern on the
list is a positive pattern, the dlopen event is deferred.

Simply swapping the patterns resulted in deferring every dlopen event, which is probably not the intention.

Handling dlopen Events in Parallel

TotalView’s default behavior is to handle dlopened libraries serially, creating multiple, single-cast client-server
communications. This can degrade performance, depending on the number of libraries a process dlopens, and
the number of processes in the job.

To handle dlopened libraries in parallel, use the TV::dlopen_read_libraries_in_parallel and its related command
line option -dlopen_read_libraries_in_parallel.

This sets the state variable to true. Placing this dset command in the tvdrc file ensures that all instances of
TotalView launch with this option:
dset TV::dlopen_read_libraries_in_parallel true
To set this option on an individual instance of TotalView, use the command line option when you start TotalView:
totalview -dlopen_read_libraries_in_parallel

NOTE: Enabling this option does not guarantee that dlopen performance will improve on all systems
in all scenarios. Be sure to test the impact of this setting on your system and debugging envi-
ronments.

Remember that MRNet must also be enabled for this to work.

Known Limitations
Dynamic library support has the following known limitations:

 TotalView does not deal correctly with parallel programs that call dlopen on different libraries in
different processes. TotalView requires that the processes have a uniform address space, including
all shared libraries.

 TotalView does not yet fully support unloading libraries (using dlclose) and then reloading them at
a different address using dlopen.

Remapping Keys Known Limitations 437

Operating Systems

Remapping Keys
On the SunOS 5 keyboard, you may need to remap the page-up and page-down keys to the prior and next key-
sym so that you can scroll TotalView windows with the page-up and page-down keys. To do so, add the following
lines to your X Window System startup file:
Remap F29/F35 to PgUp/PgDn
xmodmap -e 'keysym F29 = Prior'
xmodmap -e 'keysym F35 = Next'

438

 Architectures

This chapter describes the architectures TotalView supports, including:

 AMD and Intel x86-64 on page 439

 Power Architectures on page 444

 ARM64 on page 450

 Intel x86 on page 453 (Intel 80386, 80486 and Pentium processors)

 Sun SPARC on page 458

AMD and Intel x86-64 x86-64 General Registers 439

Architectures

AMD and Intel x86-64
This section describes AMD's 64-bit processors and the Intel EM64T processors, including:

 x86-64 General Registers on page 439

 x86-64 Floating-Point Registers on page 440

 x86-64 FPCR Register on page 441

 x86-64 FPSR Register on page 442

 x86-64 MXCSR Register on page 443

The x86-64 can be programmed in either 32- or 64-bit mode. TotalView supports both. In 32-bit mode, the pro-
cessor is identical to an x86, and the stack frame is identical to the x86. The information within this section
describes 64-bit mode.

The AMD x86-64 processor supports the IEEE floating-point format.

x86-64 General Registers
The following table describes how TotalView treats each general register, and the actions you can take with each
register.

Register Description Data Type Edit Dive
Specify in
Expression

RAX General registers $long yes yes $rax

RDX $long yes yes $rdx

RCX $long yes yes $rcx

RBX $long yes yes $rbx

RSI $long yes yes $rsi

RDI $long yes yes $rdi

RBP $long yes yes $rbp

RSP $long yes yes $rsp

R8-R15 $long yes yes $r8-$r15

RA Selector registers $int no no $ra

SS $int no no $ss

AMD and Intel x86-64 x86-64 Floating-Point Registers 440

Architectures

x86-64 Floating-Point Registers
The next table describes how TotalView treats each floating-point register, and the actions you can take with each
register.

DS $int no no $ds

ES $int no no $es

FS $int no no $fs

GS $int no no $gs

EFLAGS $int no no $eflags

RIP Instruction pointer $code[] no yes $rip

FS_BASE $long yes yes $fs_base

GS_BASE $long yes yes $gs_base

TEMP $long no no $temp

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) $extended yes yes $st0

ST1 ST(1) $extended yes yes $st1

ST2 ST(2) $extended yes yes $st2

ST3 ST(3) $extended yes yes $st3

ST4 ST(4) $extended yes yes $st4

ST5 ST(5) $extended yes yes $st5

ST6 ST(6) $extended yes yes $st6

ST7 ST(7) $extended yes yes $st7

FPCR Floating-point control
register

$int yes no $fpcr

FPSR Floating-point status
register

$int no no $fpsr

FPTAG Tag word $int no no $fptag

FPOP Floating-point
operation

$int no no $fpop

Register Description Data Type Edit Dive
Specify in
Expression

AMD and Intel x86-64 x86-64 FPCR Register 441

Architectures

NOTE: The x86-64 has 16 128-bit registers that are used by SSE and SSE2 instructions. TotalView dis-
plays these as 32 64-bit registers. These registers can be used in the following ways: 16 bytes,
8 words, 2 longs, 4 floating point, 2 double, or a single 128-bit value. TotalView shows each of
these hardware registers as two $long registers. To change the type, dive and then edit the
type in the data window to be an array of the type you wish. For example, cast it to
“$char[16]”, “$float[4], and so on.

x86-64 FPCR Register
For your convenience, TotalView interprets the bit settings of the FPCR and FPSR registers.

FPI Instruction address $int no no $fpi

FPD Data address $int no no $fpd

MXCSR SSE status and control $int yes no $mxcsr

MXCS-
R_MASK

MXCSR mask $int no no $mxcsr_
mask

XMM0_L
...

XMM7_L

Streaming SIMD -
Extension: left half

$long yes yes $xmm0_l ...
$xmm7_l

XMM0_H
...

XMM7_H

Streaming SIMD -
Extension: right half

$long yes yes $xmm0_h ...
$xmm7_h

XMM8_L
...

XMM15_
L

Streaming SIMD -
Extension: left half

$long yes yes $xmm8_l ...
$xmm15_l

XMM8_H
...

XMM15_
H

Streaming SIMD -
Extension: right half

$long yes yes $xmm8_h ...
$xmm15_h

Register Description Data Type Edit Dive
Specify in
Expression

AMD and Intel x86-64 x86-64 FPSR Register 442

Architectures

You can edit the value of the FPCR and set it to any of the bit settings outlined in the next table.

x86-64 FPSR Register
The bit settings of the x86-64 FPSR register are outlined in the following table.

Value Bit Setting Meaning

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

PC=SGL 0x0000 Single-precision rounding

PC=DBL 0x0080 Double-precision rounding

PC=EXT 0x00c0 Extended-precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero-divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=OE 0x0008 Overflow exception

AMD and Intel x86-64 x86-64 MXCSR Register 443

Architectures

x86-64 MXCSR Register
This register contains control and status information for the SSE registers. Some of the bits in this register are
editable. You cannot dive in these values.

The bit settings of the x86-64 MXCSR register are outlined in the following table.

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception

Value Bit Setting Meaning

FZ 0x8000 Flush to zero

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

EM=PM 0x1000 Precision mask

EM=UM 0x0800 Underflow mask

EM=OM 0x0400 Overflow mask

EM=ZM 0x0200 Divide-by-zero mask

EM=DM 0x0100 Denormal mask

EM=IM 0x0080 Invalid operation mask

DAZ 0x0040 Denormals are zeros

EF=PE 0x0020 Precision flag

EF=UE 0x0010 Underflow flag

EF=OE 0x0008 Overflow flag

EF=ZE 0x0004 Divide-by-zero flag

EF=DE 0x0002 Denormal flag

EF=IE 0x0001 Invalid operation flag

Value Bit Setting Meaning

Power Architectures Power General Registers 444

Architectures

Power Architectures
This section contains the following information:

 Power General Registers

 Power MSR Register

 Power Floating-Point Registers

 Power FPSCR Register

 Using the Power FPSCR Register

NOTE: The Power architecture supports the IEEE floating-point format.

Power General Registers
The following table describes how TotalView treats each general register, and the actions you can take with each
register.

Register Description Data Type Edit Dive
Specify in
Expression

R0 General register 0 $int/$long yes yes $r0

SP Stack pointer $int/$long yes yes $sp

RTOC TOC pointer $int/$long yes yes $rtoc

R3 - R31 General registers 3 - 31 $int/$long yes yes $r3 - $r31

INUM $int/$long yes no $inum

PC Program counter $code[] no yes $pc

SRR1 Machine status save/
restore register

$int/$long yes no $srr1

LR Link register $code[] yes no $lr

CTR Counter register $int/$long yes no $ctr

CR Condition register (see
below)

$int/$long yes no $cr

Power Architectures Power General Registers 445

Architectures

CR Register

TotalView writes information for each of the eight condition sets, appending a a >, <, or = symbol. For example, if
the summary overflow (0x1) bit is set, TotalView might display the following:

0x22424444 (574768196) (0=,1=,2>,3=,4>,5>,6>,7>)

XER Register

Depending upon what was set, TotalView can display up to five kinds of information, as follows:

STD:0x%02x

The string terminator character (bits 25-31)

SL:%d

The string length field (bits 16-23)

S0

Displayed if the summary overflow bit is set (bit 0)

OV

Displayed if the overflow bit is set (bit 1)

CA

Displayed if the carry bit is set (bit 2)

XER Integer exception regis-
ter (see below)

$int/$long yes no $xer

DAR Data address register $int/$long yes no $dar

MQ MQ register $int/$long yes no $mq

MSR Machine state register $int/$long yes no $msr

SEG0 - SEG9 Segment registers 0 - 9 $int/$long yes no $seg0 - $seg9

SG10 - SG15 Segment registers 10 -
15

$int/$long yes no $sg10 - $sg15

SCNT SS_COUNT $int/$long yes no $scnt

SAD1 SS_ADDR 1 $int/$long yes no $sad1

SAD2 SS_ADDR 2 $int/$long yes no $sad2

SCD1 SS_CODE 1 $int/$long yes no $scd1

SCD2 SS_CODE 2 $int/$long yes no $scd2

TID $int/$long yes no

Register Description Data Type Edit Dive
Specify in
Expression

Power Architectures Power MSR Register 446

Architectures

For example:

0x20000002 (536870914) (STD:0x00,SL:2,CA)

Power MSR Register
For your convenience, TotalView interprets the bit settings of the Power MSR register. You can edit the value of
the MSR and set it to any of the bit settings outlined in the following table.

Value Bit Setting Meaning

0x80000000000000000 SF Sixty-four bit mode

0x0000000000040000 POW Power management enable

0x0000000000020000 TGPR Temporary GPR mapping

0x0000000000010000 ILE Exception little-endian mode

0x0000000000008000 EE External interrupt enable

0x0000000000004000 PR Privilege level

0x0000000000002000 FP Floating-point available

0x0000000000001000 ME Machine check enable

0x0000000000000800 FE0 Floating-point exception mode 0

0x0000000000000400 SE Single-step trace enable

0x0000000000000200 BE Branch trace enable

0x0000000000000100 FE1 Floating-point exception mode 1

0x0000000000000040 IP Exception prefix

0x0000000000000020 IR Instruction address translation

0x0000000000000010 DR Data address translation

0x0000000000000002 RI Recoverable exception

0x0000000000000001 LE Little-endian mode enable

Power Architectures Power Floating-Point Registers 447

Architectures

Power Floating-Point Registers
The next table describes how TotalView treats each floating-point register, and the actions you can take with each
register.

Power FPSCR Register
For your convenience, TotalView interprets the bit settings of the Power FPSCR register. You can edit the value of

the FPSCR and set it to any of the bit settings outlined in the following table.

Register Description Data Type Edit Dive
Specify in
Expression

F0 - F31 Floating-point registers
0 - 31

$double yes yes $f0 - $f31

FPSCR Floating-point status
register

$int yes no $fpscr

FPSCR2 Floating-point status
register 2

$int yes no $fpscr2

Value Bit Setting Meaning

0x80000000 FX Floating-point exception summary

0x40000000 FEX Floating-point enabled exception summary

0x20000000 VX Floating-point invalid operation exception summary

0x10000000 OX Floating-point overflow exception

0x08000000 UX Floating-point underflow exception

0x04000000 ZX Floating-point zero divide exception

0x02000000 XX Floating-point inexact exception

0x01000000 VXSNAN Floating-point invalid operation exception for SNaN

0x00800000 VXISI Floating-point invalid operation exception: ¥ - ¥, or
infinity-infinity

0x00400000 VXIDI Floating-point invalid operation exception: ¥ / ¥, or infinity
divided by infinity

0x00200000 VXZDZ Floating-point invalid operation exception: 0 / 0

0x00100000 VXIMZ Floating-point invalid operation exception: ¥ * ¥, or infinity
times infinity

Power Architectures Power FPSCR Register 448

Architectures

0x00080000 VXVC Floating-point invalid operation exception: invalid compare

0x00040000 FR Floating-point fraction rounded

0x00020000 FI Floating-point fraction inexact

0x00010000 FPRF=(C) Floating-point result class descriptor

0x00008000 FPRF=(L) Floating-point less than or negative

0x00004000 FPRF=(G) Floating-point greater than or positive

0x00002000 FPRF=(E) Floating-point equal or zero

0x00001000 FPRF=(U) Floating-point unordered or NaN

0x00011000 FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)

0x00009000 FPRF=(-INF) -Infinity; alias for FPRF=(L+U)

0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)

0x00018000 FPRF=(-DENORM) -Denormalized number; alias for FPRF=(C+L)

0x00012000 FPRF=(-ZERO) -Zero; alias for FPRF=(C+E)

0x00002000 FPRF=(+ZERO) +Zero; alias for FPRF=(E)

0x00014000 FPRF=(+DENORM) +Denormalized number; alias for FPRF=(C+G)

0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)

0x00005000 FPRF=(+INF) +Infinity; alias for FPRF=(G+U)

0x00000400 VXSOFT Floating-point invalid operation exception: software request

0x00000200 VXSQRT Floating-point invalid operation exception: square root

0x00000100 VXCVI Floating-point invalid operation exception: invalid integer
convert

0x00000080 VE Floating-point invalid operation exception enable

0x00000040 OE Floating-point overflow exception enable

0x00000020 UE Floating-point underflow exception enable

0x00000010 ZE Floating-point zero divide exception enable

0x00000008 XE Floating-point inexact exception enable

0x00000004 NI Floating-point non-IEEE mode enable

0x00000000 RN=NEAR Round to nearest

0x00000001 RN=ZERO Round toward zero

Value Bit Setting Meaning

Power Architectures Power FPSCR Register 449

Architectures

0x00000002 RN=PINF Round toward +infinity

0x00000003 RN=NINF Round toward -infinity

Value Bit Setting Meaning

ARM64 ARM64 General Registers 450

Architectures

ARM64
This section contains the following information:

 ARM64 General Registers on page 450

 ARM64 Floating-Point Registers on page 450

 ARM64 FPCR Register on page 451

 ARM64 FPSR Register on page 452

NOTE: The ARM64 processor architecture supports the IEEE floating-point format.

ARM64 General Registers
The following table describes how TotalView treats each general register, and the actions you can take with each
register.

ARM64 Floating-Point Registers
The next table describes how TotalView treats each floating-point register, and the actions you can take with each
register.

Register Description Data Type Edit Dive Specify in Expression

X0-X30 General registers 0 - 30 $long yes yes $x0 -$x30

SP Stack pointer $long no yes $sp

PC Program counter $long no yes $pc

PSTATE Process state $long no yes $pstate

VFP Virtual frame pointer $long no yes $vfp

Register Description Data Type Edit Dive Specify in Expression

F0 - F30 Floating-point registers
0 - 30

$double yes yes $f0 -$f30

ARM64 ARM64 FPCR Register 451

Architectures

ARM64 FPCR Register
For your convenience, TotalView interprets the bit settings of the ARM64 FPCR register. You can edit the value of
the FPCR and set it to any of the bit settings outlined in the following table.

FPSR Floating-point status
register

$int yes yes $fpsr

FPCR Floating-point control
register

$int yes yes $pc

Value Bit setting Meaning

0x100 IOE Invalid operation exception enable

0x200 DZE Division by zero exception enable

0x400 OFE Overflow exception enable

0x800 UFE Underflow exception enable

0x1000 IXE Inexact exception enable

0x8000 IDE Input denormal exception enable

0x0 (bits 23 and 24 clear) RMode=RN Round to nearest

0x400000 RMode=RP Round towards plus infinity

0x800000 RMode=RM Round towards minus infinity

0xC00000 RMode=RZ Round towards zero

0x1000000 RMode=(per above)+FZ Flush-to-zero

0x2000000 RMode=(per above)+DN Operations on NaN return default NaN

0x1000000 RMode=(per above)+AHP Alternative half-precision

Register Description Data Type Edit Dive Specify in Expression

ARM64 ARM64 FPSR Register 452

Architectures

ARM64 FPSR Register
For your convenience, TotalView interprets the bit settings of the ARM64 FPSR register. You can edit the value of
the FPSR and set it to any of the bit settings outlined in the following table.

Value Bit setting Meaning

0x1 IOC Invalid operation exception
occurred

0x2 DZC Division by zero exception
occurred

0x4 OFC Overflow exception occurred

0x8 UFC Underflow exception occurred

0x10 IXC Inexact exception occurred

0x80 IDC Input denormal exception
occurred

0x8000000 QC Saturation occurred

0x10000000 V Overflow condition code

0x20000000 C Carry condition code

0x40000000 Z Zero condition code

0x80000000 N Negative condition code

Intel x86 Intel x86 General Registers 453

Architectures

Intel x86
This section contains the following information:

 Intel x86 General Registers on page 453

 Intel x86 Floating-Point Registers on page 454

 Intel x86 FPCR Register on page 455

 Intel x86 FPSR Register on page 456

 Intel x86 MXCSR Register on page 456

NOTE: The Intel x86 processor supports the IEEE floating-point format.

Intel x86 General Registers
The following table describes how TotalView treats each general register, and the actions you can take with each
register.

Register Description Data Type Edit Dive
Specify in
Expression

EAX General registers $long yes yes $eax

ECX $long yes yes $ecx

EDX $long yes yes $edx

EBX $long yes yes $ebx

EBP $long yes yes $ebp

ESP $long yes yes $esp

ESI $long yes yes $esi

EDI $long yes yes $edi

CS Selector registers $int no no $cs

SS $int no no $ss

DS $int no no $ds

ES $int no no $es

Intel x86 Intel x86 Floating-Point Registers 454

Architectures

Intel x86 Floating-Point Registers
The next table describes how TotalView treats each floating-point register, and the actions you can take with each
register.

FS $int no no $fs

GS $int no no $gs

EFLAGS $int no no $eflags

EIP Instruction pointer $code[] no yes $eip

FAULT $long no no $fault

TEMP $long no no $temp

INUM $long no no $inum

ECODE $long no no $ecode

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) $extended yes yes $st0

ST1 ST(1) $extended yes yes $st1

ST2 ST(2) $extended yes yes $st2

ST3 ST(3) $extended yes yes $st3

ST4 ST(4) $extended yes yes $st4

ST5 ST(5) $extended yes yes $st5

ST6 ST(6) $extended yes yes $st6

ST7 ST(7) $extended yes yes $st7

FPCR Floating-point control
register

$int yes no $fpcr

FPSR Floating-point status
register

$int no no $fpsr

FPTAG Tag word $int no no $fptag

FPIOFF Instruction offset $int no no $fpioff

FPISEL Instruction selector $int no no $fpisel

Register Description Data Type Edit Dive
Specify in
Expression

Intel x86 Intel x86 FPCR Register 455

Architectures

NOTE: The Pentium III and 4 have 8 128-bit registers that are used by SSE and SSE2 instructions.
TotalView displays these as 16 64-bit registers. These registers can be used in the following
ways: 16 bytes, 8 words, 2 long longs, 4 floating point, 2 double, or a single 128-bit value.
TotalView shows each of these hardware registers as two $long long registers. To change the
type, dive and then edit the type in the data window to be an array of the type you wish. For
example, cast it to “$char[16]”, “$float[4], and so on.

Intel x86 FPCR Register
For your convenience, TotalView interprets the bit settings of the FPCR and FPSR registers.

You can edit the value of the FPCR and set it to any of the bit settings outlined in the next table.

FPDOFF Data offset $int no no $fpdoff

FPDSEL Data selector $int no no $fpdsel

MXCSR SSE status and control $int yes no $mxcsv

MXCS-
R_MASK

MXCSR mask $int no no $mxcsr_
mask

XMM0_L
...

XMM7_L

Streaming SIMD -Exten-
sion: left half

$long long yes yes $xmm0_l ...
$xmm7_l

XMM0_H
...

XMM7_H

Streaming SIMD -Exten-
sion: right half

$long long yes yes $xmm0_h
...

$xmm7_h

Value Bit Setting Meaning

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

PC=SGL 0x0000 Single-precision rounding

PC=DBL 0x0080 Double-precision rounding

Register Description Data Type Edit Dive
Specify in
Expression

Intel x86 Intel x86 FPSR Register 456

Architectures

Intel x86 FPSR Register
The bit settings of the Intel x86 FPSR register are outlined in the following table.

Intel x86 MXCSR Register
This register contains control and status information for the SSE registers. Some of the bits in this register are
editable. You cannot dive in these values.

PC=EXT 0x00c0 Extended-precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero-divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=OE 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception

Value Bit Setting Meaning

Intel x86 Intel x86 MXCSR Register 457

Architectures

The bit settings of the Intel x86 MXCSR register are outlined in the following table.

Value Bit Setting Meaning

FZ 0x8000 Flush to zero

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

EM=PM 0x1000 Precision mask

EM=UM 0x0800 Underflow mask

EM=OM 0x0400 Overflow mask

EM=ZM 0x0200 Divide-by-zero mask

EM=DM 0x0100 Denormal mask

EM=IM 0x0080 Invalid operation mask

DAZ 0x0040 Denormals are zeros

EF=PE 0x0020 Precision flag

EF=UE 0x0010 Underflow flag

EF=OE 0x0008 Overflow flag

EF=ZE 0x0004 Divide-by-zero flag

EF=DE 0x0002 Denormal flag

EF=IE 0x0001 Invalid operation flag

Sun SPARC SPARC General Registers 458

Architectures

Sun SPARC
This section has the following information:

 SPARC General Registers

 SPARC PSR Register

 SPARC Floating-Point Registers

 SPARC FPSR Register

 Using the SPARC FPSR Register

NOTE: The SPARC processor supports the IEEE floating-point format.

SPARC General Registers
The following table describes how TotalView treats each general register, and the actions you can take with each
register.

Register Description Data Type Edit Dive
Specify in
Expression

G0 Global zero register $int no no $g0

G1 - G7 Global registers $int yes yes $g1 - $g7

O0 - O5 Outgoing parameter
registers

$int yes yes $o0 - $o5

SP Stack pointer $int yes yes $sp

O7 Temporary register $int yes yes $o7

L0 - L7 Local registers $int yes yes $l0 - $l7

I0 - I5 Incoming parameter
registers

$int yes yes $i0 - $i5

FP Frame pointer $int yes yes $fp

I7 Return address $int yes yes $i7

PSR Processor status register $int yes no $psr

Y Y register $int yes yes $y

Sun SPARC SPARC PSR Register 459

Architectures

SPARC PSR Register
For your convenience, TotalView interprets the bit settings of the SPARC PSR register. You can edit the value of
the PSR and set some of the bits outlined in the following table.

SPARC Floating-Point Registers
The next table describes how TotalView treats each floating-point register, and the actions you can take with each
register.

WIM WIM register $int no no

TBR TBR register $int no no

PC Program counter $code[] no yes $pc

nPC Next program counter $code[] no yes $npc

Value Bit Setting Meaning

ET 0x00000020 Traps enabled

PS 0x00000040 Previous supervisor

S 0x00000080 Supervisor mode

EF 0x00001000 Floating-point unit enabled

EC 0x00002000 Coprocessor enabled

C 0x00100000 Carry condition code

V 0x00200000 Overflow condition code

Z 0x00400000 Zero condition code

N 0x00800000 Negative condition code

Register Description Data Type Edit Dive
Specify in
Expression

F0, F1, F0_F1 Floating-point registers (f
registers), used singly

$float no yes $f0, $f1,
$f0_f1

F2 - F31 Floating-point registers (f
registers), used singly

$float yes yes $f2- $f31

Register Description Data Type Edit Dive
Specify in
Expression

Sun SPARC SPARC FPSR Register 460

Architectures

TotalView allows you to use these registers singly or in pairs, depending on how they are used by your program.
For example, if you use F1 by itself, its type is $float, but if you use the F0/F1 pair, its type is $double.

SPARC FPSR Register
For your convenience, TotalView interprets the bit settings of the SPARC FPSR register. You can edit the value of
the FPSR and set it to any of the bit settings outlined in the following table.

F0, F1, F0_F1 Floating-point registers (f
registers), used as pairs

$double no yes $f0, $f1,
$f0_f1

F0/F1 - F30/
F31

Floating-point registers (f
registers), used as pairs

$double yes yes $2 - $f30_f31

FPCR Floating-point control
register

$int no no $fpcr

FPSR Floating-point status
register

$int yes no $fpsr

Value Bit Setting Meaning

CEXC=NX 0x00000001 Current inexact exception

CEXC=DZ 0x00000002 Current divide by zero exception

CEXC=UF 0x00000004 Current underflow exception

CEXC=OF 0x00000008 Current overflow exception

CEXC=NV 0x00000010 Current invalid exception

AEXC=NX 0x00000020 Accrued inexact exception

AEXC=DZ 0x00000040 Accrued divide by zero exception

AEXC=UF 0x00000080 Accrued underflow exception

AEXC=OF 0x00000100 Accrued overflow exception

AEXC=NV 0x00000200 Accrued invalid exception

EQ 0x00000000 Floating-point condition =

LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

QNE 0x00002000 Queue not empty

Register Description Data Type Edit Dive
Specify in
Expression

Sun SPARC SPARC FPSR Register 461

Architectures

Using the SPARC FPSR Register

The SPARC processor does not catch floating-point errors by default. You can change the value of the FPSR within
TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit setting of the FPSR register in the
Stack Frame Pane. In this case, you would change the bit setting for the FPSR to include 0x01000000 so that
TotalView traps the “divide by zero” bit. The string displayed next to the FPSR register should now include
TEM=(DZ). Now, when your program divides by zero, it receives a SIGFPE signal, which you can catch with
TotalView. See “Handling Signals” in the Classic TotalView User Guide for more information. If you did not set the bit
for trapping divide by zero, the processor would ignore the error and set the AEXC=(DZ) bit.

NONE 0x00000000 Floating-point trap type None

IEEE 0x00004000 Floating-point trap type IEEE Exception

UFIN 0x00008000 Floating-point trap type Unfinished FPop

UIMP 0x0000c000 Floating-point trap type Unimplemented FPop

SEQE 0x00010000 Floating-point trap type Sequence Error

NS 0x00400000 Nonstandard floating-point FAST mode

TEM=NX 0x00800000 Trap enable mask - Inexact Trap Mask

TEM=DZ 0x01000000 Trap enable mask - Divide by Zero Trap Mask

TEM=UF 0x02000000 Trap enable mask - Underflow Trap Mask

TEM=OF 0x04000000 Trap enable mask - Overflow Trap Mask

TEM=NV 0x08000000 Trap enable mask - Invalid Operation Trap Mask

EXT 0x00000000 Extended rounding precision - Extended
precision

SGL 0x10000000 Extended rounding precision - Single precision

DBL 0x20000000 Extended rounding precision - Double precision

NEAR 0x00000000 Rounding direction - Round to nearest (tie-even)

ZERO 0x40000000 Rounding direction - Round to 0

PINF 0x80000000 Rounding direction - Round to +Infinity

NINF 0xc0000000 Rounding direction - Round to -Infinity

Value Bit Setting Meaning

 462

Appendix A
TotalView Glossary

This glossary defines terms specific to TotalView.

action point

A breakpoint. TotalView action points include standard breakpoints, watchpoints, eval points, and barriers.

action point identifier

A unique integer ID associated with an action point.

affected p/t set

The set of process and threads that are affected by the command. For most commands, this is identical to the
target P/T set, but in some cases it might include additional threads. (See p/t (process/thread) set for more
information.)

aggregated output

The CLI compresses output from multiple threads when they would be identical except for the P/T identifier.

arena

A specifier that indicates the processes, threads, and groups upon which a command executes. Arena specifi-
ers are p (process), t (thread), g (group), d (default), and a (all).

array slice

A subsection of an array, which is expressed in terms of an upper bound, a lower bound, and a stride. Dis-
playing a slice of an array can be useful when you are working with very large arrays.

autolaunching

When a process begins executing on a remote computer, TotalView can also launch a tvdsvr (TotalView
Debugger Server) process on the computer that will send debugging information back to the TotalView pro-
cess that you are interacting with.

automatic process acquisition

 463

TotalView detects the many processes that parallel and distributed programs run in, and attaches to them auto-
matically so you don’t have to attach to them manually. If the process is on a remote computer, automatic
process acquisition starts the -TotalView Debugger Server (tvdsvr).

barrier point

An action point specifying that processes reaching a particular location in the source code should stop and wait
for other processes to catch up.

command history list

A debugger-maintained list that stores copies of the most recent commands issued by the user.

conditional breakpoint

A breakpoint containing an expression. If the expression evaluates to true, program stops. TotalView does not
have conditional breakpoints. Instead, you must explicitly tell TotalView to end execution by using the $stop
directive.

control group

All the processes that a program creates. These processes can be local or remote. If your program uses pro-
cesses that it did not create, TotalView places them in separate control groups. For example, a client/server
program has two distinct executables that run independently of one another. Each would be in a separate con-
trol group. In contrast, processes created by the fork() function are in the same control group.

debugger server

See tvdsvr process.

debugger state

Information that TotalView or the CLI maintains to interpret and respond to user commands. This includes
debugger modes, user-defined commands, and debugger variables.

dpid

Debugger ID. The ID used for processes.

eval point

A point in the program where TotalView evaluates a code fragment without stopping the execution of the
program.

expression system

 464

A part of TotalView that evaluates C, C++, and Fortran expressions. An expression consists of symbols (possibly
qualified), constants, and operators, arranged in the syntax of a source language. Not all Fortran 90, C, and C++
operators are supported.

focus

The set of groups, processes, and threads upon which a CLI command acts. The current focus is indicated in the
CLI prompt (if you’re using the default prompt).

gid

The TotalView group ID.

GOI

The group of interest. This is the group that TotalView uses when it is trying to determine what to step, stop, and
so on.

group

When TotalView starts processes, it places related processes in families. These families are called “groups.”

group of interest

The primary group that is affected by a command. This is the group that TotalView uses when it is trying to deter-
mine what to step, stop, and so on.

HIA

The Heap Interposition Agent, used when memory debugging. The HIA intercepts calls to heap library functions
that allocate and deallocate memory by using the malloc() and free() functions and related functions such as cal-
loc() and realloc(). In most cases, the HIA is loaded automatically when your program starts. For some platforms,
however, the HIA needs to be explicitly linked to your application. See Linking Your Application with the Agent in
the TotalView User Guide.

host computer

The computer on which TotalView is running.

initial process

The process created as part of a load operation, or that already existed in the runtime environment and was
attached by TotalView or the CLI.

initialization file

An optional file that establishes initial settings for debugger state variables, user-defined commands, and any
commands that should be executed whenever TotalView or the CLI is invoked. Must be called .tvdrc.

 465

lockstep group

All threads that are at the same PC (program counter). This group is a subset of a workers group. A lockstep
group only exists for stopped threads. All threads in the lockstep group are also in a workers group. By definition,
all members of a lockstep group are in the same workers group. That is, a lockstep group cannot have members
in more than one workers group or more than one control group.

manager thread

A thread created by the operating system. In most cases, you do not want to manage or examine manager
threads.

native debugging

The action of debugging a program that is running on the same machine as TotalView.

pid

Depending on the context, this is either the process ID or the program ID. In most cases, this is the process ID.

POI

The process of interest. This is the process that TotalView uses when it is trying to determine what to step, stop,
and so on.

process group

A group of processes associated with a multi-process program. A process group includes program control groups
and share groups.

process/thread identifier

A unique integer ID associated with a particular process and thread.

process of interest

The primary process that TotalView uses when it is trying to determine what to step, stop, and so on.

program control group

A group of processes that includes the parent process and all related processes. A program control group
includes children that were forked (processes that share the same source code as the parent), and children that
were forked with a subsequent call to the execve() function (processes that don’t share the same source code as
the parent). Contrast this with share group.

program event

A program occurrence that is being monitored by TotalView or the CLI, such as a breakpoint.

 466

p/t (process/thread) set

The set of threads drawn from all threads in all processes of the target program.

pthread ID

The ID assigned by the Posix pthreads package. If this differs from the system TID, it is a pointer value that points
to the pthread ID.

satisfaction set

The set of processes and threads that must be held before a barrier can be satisfied.

satisfied

A condition that indicates that all processes or threads in a group have reached a barrier. Prior to this event, all
executing processes and threads are either running because they have not yet hit the barrier, or are being held at
the barrier because not all of the processes or threads have reached it. After the barrier is satisfied, the held
processes or threads are released, which means they can be run. Prior to this event, they could not run.

serial line debugging

A form of remote debugging where TotalView and the tvdsvr communicate over a serial line.

service thread

A thread whose purpose is to service or manage other threads. For example, queue managers and print spoolers
are service threads. There are two kinds of service threads: those created by the operating system or runtime sys-
tem and those created by your program.

share group

All the processes in a control group that share the same code. In most cases, your program has more than one
share group. Share groups, like control groups, can be local or remote.

single process server launch

A TotalView procedure that individually launches tvdsvr processes.

slice

A subsection of an array, which is expressed in terms of a lower bound, upper bound, and stride. Displaying a
slice of an array can be useful when you are working with very large arrays.

stop set

A set of threads that TotalView stops after an action point -triggers.

stride

 467

The interval between array elements in a slice and the order in which TotalView displays these elements. If the
stride is 1, TotalView displays every element between the lower bound and upper bound of the slice. If the stride
is 2, TotalView displays every other element. If the stride is -1, TotalView displays every element between the
upper bound and lower bound (reverse order).

target computer

The computer on which the process to be debugged is running.

target process set

The target set for those occasions when operations can only be applied to entire processes, not to individual
threads in a process.

target program

The executing program that is the target of debugger operations.

target p/t set

The set of processes and threads on which a CLI command acts.

thread of interest (TOI)

The primary thread affected by a command.

tid

The thread ID. On some systems (such as AIX where the threads have no obvious meaning), TotalView uses its
own IDs.

trigger set

The set of threads that can trigger an action point (that is, the threads upon which the action point was defined).

triggers

The effect during execution when program operations cause an event to occur (such as arriving at a breakpoint).

tvdsvr process

The TotalView Debugger Server process, which facilitates remote debugging by running on the same machine as
the executable and communicating with TotalView over a TCP/IP port or serial line.

type transformation facility (TTF)

Abbreviated as TTF. A TotalView subsystem that allows you to change the way information appears. For example,
an STL vector can appear as an array.

user thread

 468

A thread created by your program.

watchpoint

An action point that stops execution when the value of a memory location changes.

worker thread

A thread in a workers group. These are threads created by your program that perform the task for which you’ve
written the program.

workers group

All the worker threads in a control group. Worker threads can reside in more than one share group.

469

-serial device 402

- -add-gnu-debuglink command-
line option 413

Symbols
.totalview/lib_cache

subdirectory 51

.tvd files 248

@ symbol for action point 129

* expr 365

/proc file system 424

scoping separator character 128

%A server launch replacement
character 404

%B server launch replacement
character 404

%C server launch replacement
character 404

%D path name replacement
character 404

%H hostname replacement
character 404

%L host and port replacement
character 405

%N line number replacement
character 405

%P password replacement
character 405

%S source file replacement
character 405

%t1 file replacement character 405

%t2 file replacement character 405

%V verbosity setting replacement
character 406

= symbol for PC of current buried
stack frame 129

> symbol for PC 129

$newval variable in
watchpoints 201

$oldval variable in watchpoints 201

$stop function 80, 151

A
-a option to totalview

command 388

ac, see dactions command
acquiring processes 319

action point
identifiers 28

Action Point > Save All
command 310

action point identifiers 75

action points
autoloading 310
default for newly created 303
default property 304
deleting 65, 221, 235, 239, 266
disabling 28, 30, 68, 143
displaying 28
enabling 28, 30, 143
identifiers 29
information about 28, 29
loading 29
loading automatically 394
loading saved information 30
reenabling 75
saving 29
saving information about 30
scope of what is stopped 304
setting at location 28
sharing 303
stopping when reached 344

actionpoint
properties 221

actionpoint command 221

actions points
list of disabled (ambiguous

context) 29
list of enabled (ambiguous

context) 29

actions, see dactions command
activating type

transformations 370

adding group members 96

adding groups 95

address 250

address property 221

addressing_callback 271

advancing by steps 185

aggregate data 360

AIX
linking C++ to dbfork

library 417
linking to dbfork library 416
swap space 425

aix_use_fast_trap variable 307, 345

alias command 24

aliases
default 24
removing 216

append, see dlappend command
appending to CLI variable lists 127

architectures 305
Intel-x86 439, 453
PowerPC 444, 450
SPARC 458

arenas 83, 140

ARGS variable 298

ARGS_DEFAULT variable 298

arguments
command line 164
default 298
for totalview command 386
for tvdsvr command 401

arrays
automatic dereferencing 307
gathering statistical data 150
number of elements

displayed 307

arriving at barrier 43

as, see dassign command
ask_on_dlopen variable 307

assemble, displaying
symbolically 321

assembler instructions,

 Index

stepping 189

assign, see dassign command
assigning string values 36

assigning values 36

asynchronous execution 80

at, see dattach command
attach, see dattach command
attaching to parallel processes 38

attaching to processes 38

attaching to ranks 39

attaching, using PIDs 39

auto_array_cast_bounds
variable 307

auto_array_cast_enabled
variable 307

auto_deref_in_all_c variable 307

auto_deref_in_all_fortran
variable 308

auto_deref_initial_c variable 308

auto_deref_initial_fortran
variable 309

auto_deref_nested_c variable 309

auto_deref_nested_fortran
variable 310

auto_load_breakpoints
variable 310

auto_read_symbols_at_stop
variable 310

auto_save_breakpoints
variable 310

automatic dereferencing 308

automatic dereferencing of
arrays 307

automatically attaching to
processes 337

B
b, see dbreak command
ba, see dbarrier command
background command-line

option 388

back-tick analogy 26

barrier breakpoint 43

barrier is satisfied 299, 311

BARRIER_STOP_ALL variable 42, 44,
298

barrier_stop_all variable 311

BARRIER_STOP_WHEN_DONE
variable 43, 298

barrier_stop_when_done
variable 311

barrier, see dbarrier command
barriers 42, 43

arriving 43
creating 43
what else is stopped 42

base_name 250

Batch debugging, tvscript 281

baud rate, specifying 402

baw, see dbarrier command
bg command-line option 388

bkeepfile command-line
option 417

blocking command input 200

blocking input 200

break, see dbreak command
breakpoints

automatically loading 310
barrier 42
default file in which set 48
defined 48
file 30, 310
popping Process Window 355
setting at functions 48
setting expression 47
stopping all processes at 47
temporary 195
triggering 48

bt, see dbreak command
build_struct_transform

defined 365
example 363
lists 365
members argument 365
name argument 365

bulk launch 405

bulk_launch_base_timeout
variable 312

bulk_launch_enabled variable 312

bulk_launch_incr_timeout
variable 312

bulk_launch_tmpfile1_header_ line
variable 312

bulk_launch_tmpfile1_host_ lines
variable 312

bulk_launch_tmpfile1_trailer_ line
variable 312

bulk_launch_tmpfile2_ header_line
variable 312

bulk_launch_tmpfile2_host_ lines
variable 313

bulk_launch_tmpfile2_trailer_ line
variable 313

buried stack frame 128

by_language_rules 245

by_path 245

by_type_index 245

C
C language

escape characters 36
using with C++View 382

C shell 425

c_type_strings 313

c_type_strings variable 313

C++
demangler 316, 389
including libdbfork.h 417
STL instantiation 362

C++View
and multithread safety 379
and programming design 378
and template classes 374
compiling and linking 382
described 371
example display function 373
example of use with

ReplayEngine 380
examples 383
use of with ReplayEngine 380
using with C 382

cache, flushing 51

cache, Memory Debugger 349

cache, see dcache command
call stack 198

displaying 176, 208
see also stack frame 12, 14,

175, 207

call tree saved position 352

callback command-line option 401

callback list 334

callback_host 402

callback_ports 402

callbacks 332
after loading a program 338
when opening the CLI 337

capture command 26, 213

case sensitive searching 340

Cast to array with bounds
checkbox 307

casting variables 154

ccq command-line option 388

CGROUP variable 299

changing CLI variables 166, 167

changing dynamic context 198

changing focus 83

changing value of program
variable 36, 56, 124, 147, 161,
192

chase_mouse variable 350

checking interior pointers
variable 348

class transformations 363

classes, transforming 365

CLI
activated from GUI flag 350
sourcing files 363
startup file 364

CLI variables
aix_use_fast_trap 307, 345
ARGS 298
ARGS_DEFAULT 298
ask_on_dlopen 307
auto_array_cast_bounds 307
auto_array_cast_enabled 307
auto_deref_in_all_c 307
auto_deref_in_all_fortran 308
auto_deref_initial_fortran 309
auto_deref_intial_c 308
auto_deref_nested_c 309
auto_deref_nested_fortran 31

0
auto_load_breakpoints 310
auto_read_symbols_at_stop 31

0
auto_save_breakpoints 310
BARRIER_STOP_ALL 42, 44, 298
barrier_stop_all 311

BARRIER_STOP_WHEN_DONE
43, 298

barrier_stop_when_done 311
bulk_launch_base_timeout 312
bulk_launch_enabled 312
bulk_launch_incr_timeout 312
bulk_launch_tmpfile1_header_l

ine 312
bulk_launch_tmpfile1_host_

lines 312
bulk_launch_tmpfile1_trailer_

line 312
bulk_launch_tmpfile2_header_

line 312
bulk_launch_tmpfile2_host_

lines 313
bulk_launch_tmpfile2_trailer_

line 313
c_type_strings 313
CGROUP 299
changing 166, 167
chase_mouse 350
comline_patch_area_ base 314
comline_path_area_

length 314
COMMAND_EDITING 299
command_editing 314
compile_expressions 315
compiler_vars 315
control_c_quick_shutdown 315
copyright_string 315, 316
current_cplus_ demangler 316
current_fortran_

demangler 316
data_format_double 317
data_format_ext 318
data_format_int16 318
data_format_int32 319
data_format_int64 319
data_format_int8 318
data_format_single 319
data_format_singlen 319
dbfork 319
default value for 167
default_snippet_extent 348
default_stderr_append 320
default_stderr_filename 320
default_stderr_is_stdout 320
default_stdin_filename 321
default_stdout_append 321
default_stdout_filename 321

deleting 166, 167
display_assembler_

symbolically 321
display_bytes_kb_mb 350
display_font_dpi 350
dll_ignore_prefix 321
dll_read_all_symbols 322
dll_read_loader_

symbols_only 322
dll_read_no_symbols 322
dll_stop_suffix 323
dump_core 324
dwarf_global_index 324
dwhere_qualification_level 324
dynamic 325
editor_launch_string 325
enabled 350
env 326
errorCodes 151
exec_handling 326
EXECUTABLE_PATH 40, 300
EXECUTABLE_SEARCH_PATH 3

00
fixed_font 350
fixed_font_family 351
fixed_font_size 351
follow_clone 326
font 351
force_default_cplus_demangle

r 327
force_default_f9x_demangler

327
force_window_position 351
fork_handling 327
frame_offset_x 351
frame_offset_y 352
gdb_index 328, 332
geometry_call_tree 352
geometry_cli 352
geometry_globals 352
geometry_help 353
geometry_memory_stats 353
geometry_message_queue 35

3
geometry_message_queue_gra

ph 353
geometry_process 353
geometry_ptset 354
geometry_root 354
geometry_thread_objects 354
geometry_variable 354

geometry_variable_stats 354
global_typenames 328
gnu_debuglink 328, 329, 414
gnu_debuglink_global_director

y 330
gnu_debuglink_search_path 3

30
GROUP 300
GROUPS 131, 301
hia_allow_ibm_poe 348
ignore_control_c 332
ignore_snippets 348
image_load_callbacks 332
in_setup 332
kcc_classes 333
keep_expressions 355
keep_search_dialog 355
kernel_launch_string 334
kill_callbacks 334
leak_check_interior_pointers 3

48, 349
leak_max_cache 349
leak_max_chunk 349
library_cache_directory 334
LINES_PER_SCREEN 301
local_interface 335
local_server 335
local_server_launch_string 335
MAX_LIST 128, 302
message_queue 335, 336, 337
nptl_threads 336
OBJECT_SEARCH_MAPPINGS 3

00, 302
OBJECT_SEARCH_PATH 302
open_cli_callback 337
parallel 337
parallel_attach 337
parallel_stop 338
platform 338
pop_at_breakpoint 355
pop_on_error 356
process_load_callbacks 338
PROMPT 302
PTSET 303
restart_threshold 339
save_window_pipe_or_filenam

e 340
search_case_sensitive 340
server_launch_enabled 340
server_launch_string 340
server_launch_timeout 341

server_response_wait_timeout
341

SGROUP 303
SHARE_ACTION_POINT 303
share_action_point 341
shared_data_filters 349
show_startup_parameters 356
show_sys_thread_id 356
signal_handling_mode 341
single_click_dive_enabled 356
source_pane_tab_width 342
SOURCE_SEARCH_MAPPINGS

303, 304
SOURCE_SEARCH_PATH 303,

304
spell_correction 342
stack_trace_qualification_level

343
STOP_ALL 47, 304
stop_all 344
stop_relatives_on_proc_error

344
suffix 344
TAB_WIDTH 129, 304
THREADS 304
toolbar_style 356
tooltips_enabled 356
TOTAL_VERSION 305
TOTALVIEW_ROOT_PATH 305
TOTALVIEW_TCLLIB_PATH 305
ttf 345
ui_font 357
ui_font_family 357
ui_font_size 357
user_threads 345
using_color 357
using_text_color 357
using_title_color 357
VERBOSE 305
version 346, 357
viewing 166, 167
visualizer_launch_enabled 346
visualizer_launch_string 346
visualizer_max_rank 346
warn_step_throw 346
WGROUP 305
wrap_on_search 347

closed loop, see closed loop
closes shared libraries 226

clusterid property 239

co, see dcont command
code snippets 348

code, displaying 128

color
foreground 392

comand-line options
-ccq 388

comline_patch_area_base
variable 314

comline_path_area_length
variable 314

command arguments 298

command focus 83

command input, blocking 200

command line arguments 164

command output 26

command prompt 302

command summary 4

command verb
actionpoint command 226

COMMAND_EDITING variable 299

command_editing variable 314

command-line options
-background 388
-bg 388
-ccq 388
-check_unique_id 388
-

control_c_quick_shutdown
388

-cuda 388, 396
-dbfork 389
-debug_file 389
-demangler 389
-display 389
-dll_ignore_prefix 389
-dll_stop_suffix 390
-dump_core 390
-dwarf_global_index 390
-e 391
-ent 391
-env 391
-fg 392
-foreground 392
-gdb_index 392
-global_types 392
-gnu_debuglink 393, 394
-gnu_debuglink_checksum 393

-ipv6_support 394
-kcc_classes 394
-lb 394
-nccq 388
-nlb 394
-

no_control_c_quick_shutd
own 388

-no_cuda 389, 396
-no_dbfork 389
-no_dwarf_global_index 391
-no_ent 391
-no_gdb_index 392
-no_global_types 393
-no_gnu_debuglink 393
-

no_gnu_debuglink_checks
um 393

-no_ipv6_support 394
-no_kcc_classes 394
-no_nptl_threads 395
-no_startup_scripts 395
-no_team 398
-no_teamplus 398
-no_user_threads 398
-nptl_threads 395
-patch_area_base 395
-patch_area_length 395
-pid 395
-s 396
-search_path 396
-serial 396
-shm 397
-signal_handling_mode 396
-stderr 397
-stderr_append 397
-stderr_is_stdout 397
-stdin 397
-stdout 397
-stdout_append 397
-team 398
-timeplus 398
-tvhome 398
-user_threads 398
-verbosity 398
-working_directory 399
-xterm_name 399

commands
responding to 244
totalview 386
tvdsvr, syntax and use 400

user-defined 24

commands verb
actionpoint command 221
expr command 230
group command 235
process command 239
thread command 263
type command 266

compile_expressions variable 315

compiler property 270

compiler_vars variable 315

compilers, KCC 333

compiling
AIX on RS/6000

/AIX on RS/6000
compiling with debug-

ging
symbols 409

debugging symbols 409
for C++View 382
-g compiler command-line

option 409
on Linux ARM64 411
on Linux x86-64 411
on SunOS 411
options 409

compressed list of processes, de-
fined. See plist.

Compressed List Syntax,
defined 182

conditional watchpoints 201

connection directory 404

console output for tvdsvr 402

console output redirection 389

cont, see dcont command
continue_sig property 263

continuing execution 88

control group variable 299

control group, stopping 344

control list element 301

control_c_quick_shutdown com-
mand-line option 388

control_c_quick_shutdown
variable 315

copyright_string variable 315, 316

core
dumping for TotalView 390

when needing to debug To-
talView itself 324

core files, loading 39

count property 236

create subcommand 269

creating barrier breakpoints 43

creating commands 24

creating groups 95

creating new process objects 132

creating threads 88

creating type transformations 360

Ctrl+C, ignoring 332

Ctrl+D to exit CLI 212, 214

CUDA
CLI command detail 60, 90
dcuda > block command 60, 90
dcuda CLI command 60
support for GPU threads 22,

60, 90

current list location 73

current_cplus_demangler
variable 316

current_fortran_demangler
variable 316

D
d, see ddown command
dactions command 29

dassign command 36

data format
presentation styles 317
transforming withC++View 371

data representation
simplifying using elision 377

data size 134, 173

data size limit in C shell 425

data_format_double variable 317

data_format_ext variable 318

data_format_int16 variable 318

data_format_int32 variable 319

data_format_int64 variable 319

data_format_int8 variable 318

data_format_single variable 319

data_format_stringlen variable 319

datatype cast expr 366

datatype incompatibilities 36

dattach command 38

dbfork command-line option 389

dbfork library 416
linking with 416
syntax 389

dbfork variable 319

dbreak command 47
setting expression in 47

dcache command 51

dcalltree command 52, 143

dcont command 58

dcuda command 60

ddelete command 65

ddetach command 66

ddisable command 68

ddl_read_all_symbols variable 322

ddlopen command 70

ddown command 73

de, see ddelete command
deactivating action points 68

deadlocks at barriers 44

debug info in separate file 413

debug_file command-line
option 389, 402

debugger server 340, 400

debugging remote systems 51

debugging session, ending 212

dec2hex command 225

default aliases 24

default arguments 164, 298
modifying 164

default preferences, setting 168

default value of variables,
restoring 194

default_snippet_extent 348

default_stderr_append
variable 320

default_stderr_filename
variable 320

default_stderr_is_stdout
variable 320

default_stdin_filename
variable 321

default_stdout_append

variable 321

default_stdout_filename
variable 321

deferred reading, shared library
symbols 243

defining the current focus 303

delete verb, expr command 230

delete, see ddelete command
deleting action points 65, 221, 235,

239, 266

deleting cache 51

deleting CLI variables 166, 167

deleting groups 95, 96

deleting variables 194

demangler 316
C++ 316
forcing use 327
Fortran 316
overriding 389

demangler command-line
option 389

denable command 75

dereferencing 308, 309, 310
C pointers automatically 308
C structure pointers

automatically 309

dereferencing values
automatically 308

det, see ddetach command
detach, see ddetach command
detaching from processes 66

dexamine command 77

dflush command 80, 151

dfocus command 83

dga command 86

dgo command 88

dgroups command 95
-add 96
-delete 96

dhalt command 100

dheap command 101

dheap command, see also heap
debugging

dhold command 124

di, see ddisable command
directory search paths 300

disable, see ddisable command
disabled action points list (ambigu-

ous context) 29

disabling action points 28, 30, 68,
143

display call stack 176, 208

display command-line option 389

display_assembler_ symbolically
variable 321

display_bytes_kb_mb variable 350

display_font_dpi variable 350

displaying
code 128
current execution

location 176, 208
error message

information 305
help information 213
information on a name 204
lines 302
values 150

displaying expressions 150

displaying memory 77

displaying memory values 77

diving, single click 356

dkill command 126

dlappend command 127

dlist command 128, 302

dlist, number of lines
displayed 302

dll command 226

dll_ignore_prefix command-line
option 389

dll_ignore_prefix variable 321

dll_read_loader_symbols_only 322

dll_read_no_symbols variable 322

dll_stop_suffix command-line com-
mand-line option 390

dll_stop_suffix variable 323

dload command 131

dlopen 71
ask when loading 307

dmstat command 134

dnext command 137

dnexti command 140

domp command. See domp

done property 230

double-precision data format 317

dout command 147

down, see ddown command
dpid 299

dpid property 264

dprint timeout option 150

dptsets command 156

drerun - drun differences 159

drerun command 158

drestart command 161

drun - drerun differences 159

drun command 126, 163
poe issues 159, 164
reissuing 164

dsession 166

dset command 166, 167

dstatus command 180

dstep command 185
iterating over focus 185

dstepi command 189

duhtp, see dunhold command
duid property 240, 264

dump subcommand 245, 249

dump_core command-line
option 390

dump_core variable 324

dunhold command 192

dunset command 194

duntil command 195
group operations 196

dup command 198

dwait command 200

dwarf_global_index command-line
option 390

dwarf_global_index variable 324

dwatch command 201

dwhat command 204

dwhere command 12, 175, 207
levels 302

dwhere_qualification_level
variable 324

dworker command 211

dynamic library support
limitations 436

dynamic linker 428

dynamic variable 325

dynamically linked program 428

E
e command-line option 391

editor_launch_string variable 325

eliminating tab processing 129

elision, to simplify data
representation 377

Emacs-like commands 314

en, see denable command
enable, see denable command
enabled action points list (ambigu-

ous context) 29

enabled property 222

enabled variable 350

enabling action points 28, 30, 75,
143

ending debugging session 212

ent command-line option 391

enum_values property 266

env command-line option 391

env variable 326

error message information 305

error state 305

errorCodes command 151, 228

errorCodes variable 228

errors, raising 228

escape characters 36

evaluating functions 151

evaluation points, see dbreak
evaluations, suspended,

flushing 80

examining memory 77, 78
using an expression 78

exception subcodes 151

exception, warning when
thrown 346

exec_handling variable 326

executable property 240

EXECUTABLE_PATH variable 40,
129, 300

EXECUTABLE_SEARCH_PATH
variable 300

executables
removing debug info 413

executing as one instruction 140

executing as one statement 137

executing assembler
instructions 189

executing source lines 185

execution
continuing 88
displaying location 176, 208
halting 100
resuming 58

execve() 416
calling 389
catching 319

exit command 212

expr . expr 366

expr -> expr 366

expr command 151, 230

expression property 222, 230

expression values, printing 150

expressions in breakpoint 47

expressions, compiling 315

expressions, type
transformation 365

extensions for file names 344

F
f, see dfocus command
fast_trap, setting 307, 345

fatal errors 425

fg command-line option 392

File > Preferences command 370

file name extensions 344

files
initialization 364
libdbfork.h 417

filter definition file 349

filtering the stack
variable to enable 343

filters, sharing memory filters 349

fixed_font variable 350

fixed_font_family variable 351

fixed_font_size variable 351

floating point data format
double-precision 317

extended floating point 318
single-precision 319

flush, see dflush command
flushing cache 51

flushing suspended evaluations 80

focus
see also dfocus command
defining 303
temporarily changing 83

focus_groups command 232

focus_processes command 233

focus_threads command 234

focus_threads property 231

follow_clone variable 326

font variable 351

fonts 350
fixed 350, 351
ui 351, 357
ui font family 357
ui font size 357

force_default_cplus_ demangler
variable 327

force_default_f9x_ demangler
variable 327

force_window_position
variable 351

foreground command-line
option 392

fork_handling variable 327

fork()
about 416
calling 389
catching 319

formatting program data using
C++View 371

Fortran
demangler 316

frame_offset_x variable 351

frame_offset_y variable 352

functions
evaluating 151
setting breakpoints at 48

G
g, see dgo command
gdb_index command-line

option 392

gdb_index variable 328, 332

geometry_call_tree variable 352

geometry_cli position 352

geometry_cli variable 352

geometry_globals variable 352

geometry_help variable 353

geometry_memory_stats
variable 353

geometry_message_queue
variable 353

geometry_message_queue_ graph
variable 353

geometry_process variable 353

geometry_ptset variable 354

geometry_root variable 354

geometry_thread_objects
variable 354

geometry_variable variable 354

geometry_variable_stats
variable 354

get subcommand 245

get verb
actionpoint command 221, 226
expr command 230
group command 235
process command 239
thread command 263
type command 266

Global Arrays 86
setting language for display 86

global_typenames variable 328

global_types, command-line
option 392

GNU C++ STL instantiation 362

gnu_debuglink 413

gnu_debuglink command-line
option 393, 394, 415

gnu_debuglink variable 328, 329,
414

gnu_debuglink_check_build_id
command-line option 393

gnu_debuglink_checksum com-
mand-line option 393

gnu_debuglink_checksum
variable 329

gnu_debuglink_global_ directory

variable 330

gnu_debuglink_global_directory
command-line option 414

gnu_debuglink_global_directory
variable 414

gnu_debuglink_search_path
variable 330

go, see dgo command
goal breakpoint 186

GPU threads. See CUDA.
gr, see dgroups command
group command 235

group ID 305

group members, stopping flag 304

group of interest 186

GROUP variable 300

group width stepping behavior 186

groups
accessing properties 235
adding 95
adding members 96
creating 95
deleting 95, 96
intersecting 95
listing 12, 95, 170
naming 96
placing processes in 40
removing members 12, 95, 170
returning list of 232
setting properties 235

GROUPS variable 131, 301

groups, see dgroups command

H
h, see dhalt command
halt, see dhalt command
halting execution 100

handling signals 396

handling user-level (M:N) thread
packages 345

heap size 134, 173

heap_size property 240

held property 240, 264

help command 213

help window position 353

hex2dec command 238

hexadecimal conversion 225

hia_allow_ibm_poe 348

hiarc file 348

hold, see dhold command
holding processes 124

holding threads 43, 124

host ports 402

hostname
expansion 404
for tvdsvr 401
property 240
replacement 405

HP Tru64 UNIX
/proc file system 424

hp, see dhold command
ht, see dhold command
htp, see dhold command

I
I/O redirection 163

id property 222, 231, 236, 240, 264,
266, 270

ignore_control_c variable 332

ignore_snippets false 348

ignoring libraries by prefix 389

image browser window
position 352

image file, stripped copy 413

Image information 134

image_id property 266

image_ids property 241

image_load_ callbacks list 338

image_load_callbacks variable 332

in_setup variable 332

IndextermTEST 387

inet interface name 335, 394

infinite loop, see loop, infinite
info state 305

information on a name 204

initialization file 216, 364

initially_suspended_process
property 231

input, blocking 200

inserting working threads 211

instructions, stepping 189

integer (64-bit) data format 319

integer data format
16-bit 318
32-bit 319
8-bit 318

Intel-x86
architecture 439, 453
floating-point registers 440,

454
FPCR register 441, 455
FPSR register 442, 443, 456
general registers 439, 453

interface name for server 335, 394

interior pointers, checking 348

intersecting groups 95

ipv6_support command-line
option 394

ipv6_support option 394

IRIX
/proc file system 424

J
job_t::launch 424

K
k, see dkill command
-kcc_classes command-line

option 394

kcc_classes command-line
option 394

kcc_classes variable 333

keep_expressions variable 355

keep_search_dialog variable 355

kernel_launch_string variable 334

keys, remapping 437

keysym 437

kill_callbacks variable 334

kill, see dkill command
killing attached processes 315

killing processes 126

L
l, see dlist command
language property 222, 267, 270

languages
C, using with C++View 382

lappend, see dlappend command
launch string

for editor 325
for server (Sun only) 335
for Visualizer 346

Launch Strings page 346

launching
local server 335
processes 163
single process sever launch

string 340
tvdsvr 400
Visualizer 346

lb command-line option 394

LD_BIND_NOW envrionment
variable 428

LD_LIBRARY_PATH 418

-ldbfork linker option 417

-ldbfork option 416, 417

-ldbfork_64 option 416, 417

leak_check_interior_pointers 348,
349

leak_check_interior_pointers
variable 348, 349

leak_max_cache 349

leak_max_chunk 349

length property 222, 267

levels for dwhere 302

levels, moving down 73

libdbfork.a 416, 417

libdbfork.h file 417

libraries
dbfork 389
ignoring by prefix 389
loading by suffix 323
loading symbols from 325
not loading based on

prefix 321
shared 427

library cache data 334

library cache, flushing 51

library_cache_directory
variable 334

line property 223

line_number 250

LINES_PER_SCREEN variable 301

linking
for C++View 382

linking to dbfork library 416
AIX 416
C++ and dbfork 417
SunOS 5 417

Linux ARM64
compiling with debugging sym-

bols
ARM64

compiling with debug-
ging
symbols 411

Linux swap space 425

Linux x86-64
compiling with debugging sym-

bols
x86-64

compiling with debug-
ging
symbols 411

list location 73

list_element_count_addressing_call
back 271

list_element_data_addressing_callb
ack 271

list_element_next_addressing_callb
ack 272

list_element_prev_addressing_callb
ack 272

list_end_value property 272

list_first_element_addressing_callb
ack 272

list_head_addressing_callback 272

list, see dlist command
listing groups 12, 95, 170

using a regular expression 97

listing lines 302

lo, see dload command
load, see dload command
loader_name 250

loading
action point information 30
action points 29, 394
libraries 322
programs 132
shared libraries 226
symbols from shared

libraries 325
tvd files 248

loading sessions
dsession 166

local_interface variable 335

local_server variable 335

local_server_launch_string
variable 335

lockstep list element 301

logical model 362

lookup subcommand 245

lookup_keys subcommand 246

loop, infinite, see infinite loop
lower_bounds_callback 271

M
machine instructions, stepping 189

manager property 264

manager threads, running 185

managing shared libraries 226

mangler, overriding 389

mappings, search path 303, 304

MAX_LIST variable 128, 302

Maximum permissible rank
field 346

mem_detect_leaks memory sub-
option 288

mem_guard_blocks memory sub-
option 288

mem_hoard_freed_memory mem-
ory sub-option 288

mem_paint_all memory sub-
option 288, 289

mem_paint_on_alloc memory sub-
option 288

mem_paint_on_dealloc memory
sub-option 288

member_type property 236

member_type_values property 236

members argument,
build_struct_transform 365

members property 236

memory
data size 134, 173
heap 134, 173
stack 134, 173

text size 134, 173

memory statistics window
position 353

Memory Tracker, see dheap com-
mand

memory use 134

message queue graph window
position 353

message queue window
position 353

message verbosity variable 305

message_queue variable 335, 336,
337

mkswap command 426

more processing 151

more prompt 213, 301

mounting /proc file system 424

MPI message queues 335

mrnet_super_bushy command
option 394

multiprocess programs, attaching
to processes 40

multithread safety
and C++View 379

N
N upcast expr 366

n, see dnext command
name argument,

build_struct_transform 365

name property 267, 270

name, information about 204

Namespaces, Symbol 259

naming the host 402

nccq command-line option 388

nested subroutines, stepping out
of 147

newval variable in watchpoints 201

next, see dnext command
nexti, see dnexti command
ni, see dnexti command
nil, see dnexti command
niw, see dnexti command
nl, see dnext command
nlb command-line option 394

no_control_c_quick_shutdown
command-line option 388

no_dbfork command-line
option 389

no_dwarf_global_index command-
line option 391

no_dynamic command-line
option 427

no_ent command-line option 391

no_gdb_index command-line
option 392

no_global_types command-line
option 393

no_gnu_debuglink command-line
option 393

no_gnu_debuglink_check_build_id
command-line option 393

no_gnu_debuglink_checksum com-
mand-line option 393

no_ipv6_support command-line
option 394

no_kcc_classes command-line
option 394

no_nptl_threads command-line
option 395

no_startup_scripts command line
option 395

no_team command-line
option 398

no_teamplus command-line
option 398

no_user_threads command-line
option 398

nodeid property 241

nodes_allowed command-line
option 402

nptl_threads command-line
option 395

nptl_threads variable 336

NVIDIA. See CUDA
nw, see dnext command

O
OBJECT_SEARCH_MAPPINGS

variable 300, 302

OBJECT_SEARCH_PATH
variable 302

oldval variable in watchpoints 201

Open (or raise) process window at
breakpoint checkbox 355

Open process window on error sig-
nal check box 356

open_cli_window_callback
variable 337

option 402

options
tvdsvr

-callback 401
-serial 401
-server 401
-set_pw 401

-user_threads 398

ou, see dout command
oul, see dout command
out, see dout command
ouw, see dout command

P
p, see dprint command
panes, width 342

parallel backtrace data,
displaying 52

parallel jobs
displaying state of data using

dcalltree command 52,
143

parallel processes
attaching to 38
displaying process and thread

state using dcalltree
command 52

parallel program runtime library
support 337

parallel runtime libraries 337

parallel variable 337

parallel_attach variable 337

parallel_stop variable 338

passwords 403
checking 403
generated by tvdsvr 401

patch space 314

patch_area_base command-line
option 395

patch_area_length command-line

option 395

PATH environment variable
for tvdsvr 401

pc property 264

picking up threads 326

pid command-line option 395

Plant in share group checkbox 303,
341

platform variable 338

plist, defined 182

pop_at_breakpoint variable 355

pop_on_error variable 356

popping Process Window on error
variable 356

port 4142 402

port command-line option 402

port number 402
for tvdsvr 401
replacement 405
searching 402

ports on host 402

post_scope 246

post_symbol 246

PowerPC
architecture 444, 450
floating-point registers 447,

450
FPSCR register 447, 451
general registers 444, 450
MSR register 446

pre_scope 246

pre_sym 246

preferences, setting defaults
for 168

print, see dprint command
printing expression values 150

printing registers 154

printing slices 152

printing variable values 150

proc file system problems 424

Procedure Linkage Table (PLT) 428

Process > Startup command 88

process barrier breakpoint, see
barrier breakpoint

process command 239

process counts, see ptlist

process groups, see groups
process information, saving 56

process list element 301

process objects, creating new 132

process statistics 134

process width stepping
behavior 186

process window position 353

process_load_callbacks
variable 338

process, attaching to existing
CLI dattach command 38
continuing or halting execution

on attach 39

process/thread sets, changing 83

processes
attaching to 38
automatically acquiring 319
automatically attaching to 337
current status 180
destroyed when exiting

CLI 212, 214
detaching from 66
holding 124
killing 126
properties 239
releasing 192
releasing control 66
restarting 158, 163
returning list of 233
starting 158, 163
terminating 126

program control groups, placing
processes in 40

program stepping 185

program variable, changing
value 36, 56, 124, 147, 161, 192

programs, loading 132

PROMPT variable 302

prompting when screen is full 151

properties
address 221
clusterid 239
continuation_sig 263
count 236
done 230
dpid 264
duid 240, 264

enabled 222
enum_values 266
executable 240
expression 222, 230
focus_threads 231
heap_size 240
held 240, 264
hostname 240
id 222, 231, 236, 240, 264, 266
image_id 266
image_ids 241
initially_suspended_process 2

31
language 222, 267
length 222, 267
line 223
manager 264
member_type 236
member_type_values 236
members 236
name 267
nodeid 241
pc 264
prototype 267
rank 267
result 231
satisfaction_group 223
share 223
sp 264
stack_size 241
stack_vm_size 241
state 241, 264
state_values 241, 264
status 231
stop_when_done 223
stop_when_hit 223
struct_fields 267
symbol 251
syspid 241
systid 264
text_size 242
threadcount 242
threads 242
type 236
type_values 223, 236
vm_size 242

properties verb
actionpoint command 221, 226
expr command 230
group command 235
process command 239

thread command 263
type command 266

prototype property 267

ptlist
and dcalltree 53
and dstatus 180
and dwhere group-by

property 208
defined 182
example 184

PTSET variable 303

Q
qnofullpath command-line

option 410

qualifying symbol names 128

quit command 214

quotation marks 36

R
r, see drun command
raising errors 228

rank property 267

ranks, attaching to 39

raw memory display 77

read_delayed subcommand 249

read_symbols command 243

reading action points file 29

reading symbols 243, 310, 322

rebind subcommand 250

reenabling action points 75

registers
floating-point

Intel-x86 440, 454
PowerPC 447, 450
SPARC 459

general
Intel-x86 439, 453
PowerPC 444, 450
SPARC 458

Intel-x86 FPCR 441, 455
Intel-x86 FPSR 442, 443, 456
Power FPSCR 447, 451
Power MSR 446
PowerPC FPSCR 447, 451
PowerPC MSR 446
printing 154
SPARC FPSR 460

SPARC FPSR, using 461
SPARC PSR 459

registers, using in evaluations 48

regular expressions within name
argument 365

release 299

releasing control 66

releasing processes and
threads 42, 192

remapping keys 437

remote debugging, tvdsvr com-
mand syntax 400

remote systems, debugging 51

removing
aliases 216
group member 12, 95, 170
variables 194
worker threads 211

replacement characters 404

replacing tabs with spaces 304

replay, see dhistory command
rerun, see rerun command
resolve_final subcommand 249

resolve_next subcommand 249

respond 244

restart_threshold variable 339

restart, see drestart command
restarting processes 158, 163

restoring variables to default
values 194

result property 231

resuming execution 58, 88, 126

returning error information 228

root path 305
of TotalView 305

Root Window position 354

routines, stepping out of 147

rr, see drerun command
RTLD_GLOBAL 70

RTLD_LAZY 70, 71

RTLD_LOCAL 70

RTLD_NOW 70, 71

run, see drun command
running to an address 195

S
s command-line option 396

s, see dstep command
satisfaction set 43, 298, 299, 311

satisfaction_group property 223

save_window_pipe_or_ filename
variable 340

saved position
Call Tree Window 352
CLI Window 352
Help Window 353
Image Browser Window 352
Memory Statistics Window 353
Message Queue Graph

Window 353
Message Queue window 353
Process Window 353
Root Window 354
Thread Objects Window 354
Variable Window 354

saving action point information 30

saving action points 29

saving process information 56

scope 250

scope command 245

scope of action point 303

screen size 301

search dialog, remaining
displayed 355

search path 300
mappings 303, 304
setting 300, 302, 303, 304

search_case_sensitive variable 340

search_path command-line
option 396

search_port command-line
option 402

searching
case sensitive 340
wrapping 347

serial command-line option 396,
401, 402

serial line connection 402

server command-line option 401,
402

server_launch_enabled
variable 340

server_launch_string variable 340

server_launch_timeout
variable 341

server_response_wait_timeout
variable 341

servers, number of 405

sessions
dsession 166

set verb
actionpoint command 221
group command 235
process command 239
thread command 263
type command 266

set_pw command-line option 401,
403

set_pws command-line option 403

set, see dset command
setting default preferences 168

setting lines between more
prompts 301

setting terminal properties 215

SGROUP variable 303

share groups, share group
variable 303

share list element 301

share property 223

SHARE_ACTION_POINT
variable 303

share_action_point variable 341

share_in_group flag 303

shared libraries 427
closing 226
deferred reading 243
information about 226
loading symbols from 325
managing 226
reading deferred symbols 243
reading symbols 310, 322

shared_data_filters 349

shm command-line option 396,
397

show_startup_parameters 356

show_sys_thread_id variable 356

showing current status 180

showing Fortran compiler
variables 315

si, see dstepi command
SIGINT 332

signal_handling_mode command-
line option 396

signal_handling_mode variable 341

signals, handling in TotalView 396

sil, see dstepi command
SILENT state 305

single process server launch 340

single_click_dive_enabled
variable 356

siw, see dstepi command
sl, see dstep command
slices, printing 152

SLURM, control_c_quick_shutdown
variable 315, 388

source code, displaying 128

source_pane_tab_width
variable 342

source_process_startup 338

source_process_startup
command 248

SOURCE_SEARCH_MAPPINGS
variable 303, 304

SOURCE_SEARCH_PATH
variable 303, 304

sourcing tvd files 248

sp property 264

spaces simulating tabs 304

SPARC
architecture 458
floating-point registers 459
FPSR register 460

using 461
general registers 458
PSR register 459

spell_correction variable 342

st, see dstatus command
stack filtering

variable to enable 343

stack frame 128
moving down through 73
see also call stack 12, 175, 207

stack frame, see also call stack 14

stack memory 134, 173

stack movements 198

stack_size property 241

stack_trace_qualification_level
variable 343

stack_vm size 135, 173

stack_vm_size property 241

stack, unwinding 80

starting a process 158, 163

startup command 88

startup file 364

start-up file, tvdinit.tvd 24

startup options
-no_startup_scripts 395

state property 241, 264

state_values property 241, 264

statistical array data, gathering 150

status property 231

status, see dstatus command
stderr 320

stderr command-line option 397

stderr redirection 163

stderr_append command-line
option 397

stderr_is_stdout command-line
option 397

stdin 321

stdin command-line option 397

stdin redirection 163

stdout 321

stdout command-line option 397

stdout redirection 163

stdout_append command-line
option 397

step, see dstep command
stepi, see dstepi command
stepping

group width behavior 186
machine instructions 140, 189
process width behavior 186
see also dnext command,

dnexti command, dstep
command, and dstepi
command 137

thread width behavior 186
warning when exception

thrown 346

STL instantiation 362

stop group breakpoint 48

stop_all property 311

STOP_ALL variable 47, 298, 304

stop_all variable 344

stop_group flag 304

stop_relatives_on_proc_ error
variable 344

stop_when_done command-line
command-line option 298

stop_when_done property 223, 311

stop_when_hit property 223

stopping execution 100

stopping group members flag 304

stopping the control group 344

string length format 319

strings, assigning values to 36

stripped copy 413

struct_fields property 267

structure definitions in KCC 333

structure transformations 363

structures, transforming 365

stty command 215

suffixes variable 344

SunOS
compiling with debugging

symbols 411

SunOS 5
/proc file system 424
key remapping 437
linking to dbfork library 417
swap space 426

sw, see dstep command
swap command 426

swap space 425
AIX 425
Linux 425
SunOS 426

swapon command 426

symbol command 249

symbol name qualification 128

symbols
namespaces 259
properties 251
reading 322

symbols, interpreting 36

syspid property 241

system variables, see CLI variables
systid property 264

T
tab processing 129

TAB_WIDTH variable 129, 304

tabs, replacing with spaces 304

target processes 100
terminating 126

target property 267

TCL library component search
path 305

team command-line option 398

teamplus command-line
option 398

templates
using with C++View 374

temporarily changing focus 83

terminal properties, setting 215

terminating debugging
session 212

terminating processes 126

text size 134, 173

text_size property 242

thread barrier breakpoint, see bar-
rier breakpoint

thread command 263

thread counts, see ptlist
thread groups, see groups
thread list element 301

thread objects window
position 354

thread of interest 186

thread state display via ptlist 182

thread width stepping
behavior 186

thread_ktid property, or the kernel
thread ID 264

thread_name property 264

thread_utid property, or the user
thread ID 265

threadcount property 242

threads
barriers 44
creating 88
current status 180

destroyed when exiting
CLI 212, 214

getting properties 263
holding 43, 124
list variable 304
picking up 326
property 242
releasing 192
returning list of 234
setting properties 263

THREADS variable 304

timeout, dprint option 150

timeplus command-line
option 398

toolbar_style variable 356

Tools > Command Line
command 337

Tools > Evaluate window 80

tooltips_enabled variable 356

totalview command 386
options 387
synopsis 386
syntax and use 386

TotalView executable 305

TotalView GUI version 357

TotalView version 346

totalview_jobid variable 406

TOTALVIEW_ROOT_PATH
variable 305

TOTALVIEW_TCLLIB_PATH
command 370

TOTALVIEW_TCLLIB_PATH
variable 305

TOTALVIEW_VERSION variable 305

TotalView.breakpoints file 30

totalview/lib_cache
subdirectory 51

transformations
of types using C++View 371
using type 370
why type 361

transforming classes 365

transforming structures 363, 365

triggering breakpoints 48

ttf variable 345

tv_data_display.h, and API for using
C++View 372

TV_ttf_display_type function
with C++View 380

TV_ttf_display_type function, writ-
ing for C++View 372

TV::actionpoint command 221

TV::dll command 71, 226

TV::dll_read_loader_symbols_only
variable 243

TV::dll_read_no_symbols
variable 243

TV::errorCodes command 228

TV::expr command 151, 230

TV::focus_groups command 232

TV::focus_processes
command 233

TV::focus_threads command 234

TV::group command 235

TV::hex2dec command 238

TV::process command 239

TV::read_symbols command 243

TV::respond command 244

TV::scope command 245

TV::source_process_startup
command 248

TV::symbol command 249

TV::thread command 263

TV::ttf variable 370

TV::type command 266

TV::type_transformation
command 269

tvd files 248

TVD.breakpoints file 310

tvdinit.tvd start-up file 24, 216

tvdsvr command 400, 401, 404
description 401
options 401
password 401
PATH environment

variable 401
synopsis 401

tvdsvr.conf 403

TVDSVRLAUNCHCMD environment
variable 404

tvhome command-line option 398

tvscript 280, 281
action point API 291

command syntax 282
create_actionpoint command-

line option 284
display_specifiers command-

line option 287
event actions 286
Event API 293
event_action command-line

option 284
event_action event types 284
example 289
example script file 293
external script files 291
logging functions API 291
maxruntime memory sub-

option 289
memory debugging command-

line options 288
memory debugging command-

line sub-options 288
MPI programs 281
options 284
process functions API 291
replay command-line

option 289
script_file command-line

option 289
script_log_filename command-

line option 289
script_summary_log_filename

command-line option 289
source location expression

syntax 292
thread functions API 291

tvscript syntax for Cray Xeon
Phi 282, 283

type command 266

type names 328

type property 223, 236, 267

type transformation variable 345

Type Transformations
why 361

type transformations
activating 370
creating 360
expressions 365
preference 362
regular expressions 365
structures 363
using 370

using C++View 371

type_callback 270

type_index 250

type_transformation
command 269

type_transformation_description
property 270

type_values property 223, 236, 267

U
u, see dup command
uhp, see dunhold command
uht, see dunhold command
ui_font variable 357

ui_font_family variable 357

ui_font_size variable 357

un, see duntil command
unalias command 216

unconditional watchpoints 201

undefined symbols 70

unhold, see dunhold command
unl, see duntil command
unset, see dunset command
until, see duntil command
unw, see duntil command
unwinding the stack 80

up, see dup command
upper_bounds_callback 271

user_threads command-line
option 388, 398

user_threads variable 345

user-defined commands 24

user-level (M:N) thread
packages 345

using quotation marks 36

using type transformations 370

using_color variable 357

using_text_color variable 357

using_title_color variable 357

V
validate_callback 270

value for newly created action
points 303

values, printing 150

Variable Window position 354

variables
assigning command output

to 26
casting 154
changing values 36, 56, 124,

147, 161, 192
default value for 166, 167
printing 150
removing 194
watched 202
watching 201

vector transformation 361

VERBOSE variable 305

verbosity command-line
option 398, 399, 403

verbosity setting replacement
character 406

version variable 346, 357

version, TotalView 305

vfork()
calling 389
catching 319

viewing CLI variables 166, 167

visualizer_launch_enabled
variable 346

visualizer_launch_string
variable 346

visualizer_max_rank variable 346

vm_size property 242

vm_size size 135, 173

W
w, see dwhere command
wa, see dwatch command
wait, see dwait command
walk subcommand 246

warn_step_throw variable 346

warning state 305

watch, see dwatch command
watchpoints 201

$newval 201
$oldval 201
conditional 201
information not saved 30
length of 202
supported systems 202

-WG,-cmpo=i option 410

WGROUP variable 305

wh, see dwhat command
what, see dwhat command
When barrier done, stop value 298

When barrier hit, stop value 298

where, see dwhere command
why type transformations 361

window position, forcing 351

worker group list variable 305

worker threads 305
inserting 211
removing 211

worker, see dworker command
workers list element 301

working_directory command-line
option 399, 403

wot, see dworker command
wrap_on_search variable 347

X
xterm_name command-line

option 399

	Contents
	About this Guide
	Resources

	Using the CLI
	CLI Command Summary
	CLI Commands
	Commands by Category
	General CLI Commands
	CLI Initialization and Termination Commands
	Program Information Commands
	Execution Control Commands
	Action Points
	Platform-Specific CLI Commands
	Other Commands

	All Commands
	alias
	capture
	dactions
	dassign
	dattach
	dbarrier
	dbreak
	dcache
	dcalltree
	dcheckpoint
	dcont
	dcuda
	ddelete
	ddetach
	ddisable
	ddlopen
	ddown
	denable
	dexamine
	dflush
	dfocus
	dga
	dgo
	dgpu_status
	dgroups
	dhalt
	dheap
	dhistory
	dhold
	dkill
	dlappend
	dlist
	dload
	dmstat
	dnext
	dnexti
	domp
	dout
	dprint
	dptsets
	drerun
	drestart
	drun
	dsession
	dset
	dskip
	dstacktransform
	dstatus
	dstep
	dstepi
	dunhold
	dunset
	duntil
	dup
	dwait
	dwatch
	dwhat
	dwhere
	dworker
	exit
	help
	quit
	stty
	unalias

	CLI Namespace Commands
	Commands by Category
	Accessor Functions
	Helper Functions

	All Commands
	actionpoint
	dec2hex
	dll
	errorCodes
	expr
	focus_groups
	focus_processes
	focus_threads
	group
	hex2dec
	process
	read_symbols
	respond
	scope
	source_process_startup
	symbol
	thread
	type
	type_transformation

	Batch Debugging Using tvscript
	About tvscript
	tvscript Command Syntax
	tvscript Options
	tvscript External Script Files
	Logging Functions API
	Process Functions API
	Thread Functions API
	Action Point API
	Event API
	Example tvscript Script File

	TotalView Variables
	Top-Level (::) Namespace
	TV:: Namespace
	TV::MEMDEBUG:: Namespace
	TV::GUI:: Namespace

	Transformations
	Creating Type Transformations
	About the Type Transformation Facility
	Why Type Transformations
	Creating Structure and Class Transformations
	Transforming Structures
	build_struct_transform Function
	Type Transformation Expressions
	Using Type Transformations

	C++View
	Writing a Data Display Function
	Templates
	Precedence - Searching for TV_ttf_display_type
	TV_ttf_add_row
	Return values from TV_ttf_display_type
	Elision
	Other Constraints
	Safety
	Memory Management
	Multithreading
	Tips and Tricks
	Core Files
	Using C++View with ReplayEngine
	C
	Compiling and linking tv_data_display.c
	C++View Example Files
	Limitations
	Licensing

	Running TotalView
	TotalView Command Syntax
	Command-Line Syntax
	Command-Line Options

	TotalView Debugger Server Command Syntax
	The tvdsvr Command and its Options
	Description
	Options

	Replacement Characters

	Platforms and Operating Systems
	Platforms and Compilers
	Compiling with Debugging Symbols
	Apple Running macOS
	IBM AIX on RS/6000 Systems
	Linux Running on an x86-64 Platform
	Linux Running on an ARM64 Platform
	Sun Solaris

	Maintaining Debug Information Separate from an Executable
	Controlling Separate Debug Files
	Searching for the Debug Files

	Linking with the dbfork Library
	dbfork on IBM AIX on RS/6000 Systems
	Linux or macOS
	SunOS 5 SPARC

	Compiling and Linking Split DWARF
	Using GNU DebugFission Split DWARF on Linux
	Using Split DWARF on Solaris

	Operating Systems
	Supported Operating Systems
	Troubleshooting macOS Installations
	Mounting the /proc File System
	Mounting /proc with SunOS 5

	Swap Space
	Swap Space on IBM AIX
	Swap Space on Linux
	Swap Space on SunOS 5

	Shared Libraries
	Changing Linkage Table Entries and LD_BIND_NOW

	Debugging Your Program’s Dynamically Loaded Libraries
	dlopen Options for Scalability
	Known Limitations

	Remapping Keys

	Architectures
	AMD and Intel x86-64
	x86-64 General Registers
	x86-64 Floating-Point Registers
	x86-64 FPCR Register
	x86-64 FPSR Register
	x86-64 MXCSR Register

	Power Architectures
	Power General Registers
	Power MSR Register
	Power Floating-Point Registers
	Power FPSCR Register

	ARM64
	ARM64 General Registers
	ARM64 Floating-Point Registers
	ARM64 FPCR Register
	ARM64 FPSR Register

	Intel x86
	Intel x86 General Registers
	Intel x86 Floating-Point Registers
	Intel x86 FPCR Register
	Intel x86 FPSR Register
	Intel x86 MXCSR Register

	Sun SPARC
	SPARC General Registers
	SPARC PSR Register
	SPARC Floating-Point Registers
	SPARC FPSR Register

	TotalView Glossary

	Index

