
Dynamic SDN Controller Assignment in Data
Center Networks: Stable Matching with Transfers

Tao Wang1 Fangming Liu∗1 Jian Guo1 Hong Xu2
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
2NetX Lab @ City University of Hong Kong

Abstract—Software defined networking is becoming increas-
ingly prevalent in data center networks for its programmability
that enables centralized network configuration and management.
However, since switches are statically assigned to controllers,
traffic dynamics may cause load imbalance among the controllers.
As a result, some controllers are not fully utilized, while switches
connected to overloaded controllers experience long response
times. In this paper, we consider dynamic controller assignment
so as to minimize the average response time of the control
plane. We formulate this problem as a stable matching problem
with transfers, and propose a hierarchically two-phase algorithm
that integrates key concepts from both matching theory and
coalitional games to solve it efficiently. Theoretical analysis proves
that our algorithm converges to a near-optimal Nash stable
solution within tens of iterations. Extensive simulations show
that our approach reduces response time by about 86%, and
achieves better load balancing among controllers compared to
static assignment.

I. INTRODUCTION

Software defined networking (SDN) has emerged as a new
paradigm that shifts network control from distributed protocols
to a logically centralized control plane. With its support of
flexible network management and rapid deployment of new
functionalities, there is an increasing interest in deploying
SDN in both inter-data center (e.g., Google B4 [14]) and intra-
data center (e.g., Hedera [2]) scenarios.

To improve scalability and avoid a single point of failure
[23], the control plane is typically implemented as a distributed
system with a cluster of controllers (e.g., Onix [17], DIFANE
[27], NVP [16]). Switches are then statically assigned to one
or multiple controllers in these systems [17].

However, static assignment between switches and con-
trollers results in long and highly varying controller response
times, simply because traffic in data center networks (DCN)
fluctuates frequently. Spatially, switches in different layers
of the topology experience significantly different flow arrival
rates [4], [22]. Temporally, the aggregate traffic usually peaks
in daytime and falls at night [12], [22]. Moreover, traffic
variability also exists in shorter time scales even when the total
traffic remains the same [15]. All these factors cause hot spots

∗The Corresponding Author is Fangming Liu (fmliu@hust.edu.cn). The re-
search was supported in part by a grant from National Basic Research Program
(973 program) under grant No.2014CB347800, by a grant from The National
Natural Science Foundation of China (NSFC) under grant No.61520106005,
by a grant from National High Technology Research and Development
Program of China (863 program) under grant No.2013AA01A208.

among some controllers, leading to excessively long response
times for the switches they manage. Although the controller
response time may not be significant for elephant flows [2], it
fundamentally limits the network’s ability to quickly react to
changes such as failures and may cause transient congestion
to last for a long time [19].

Hence, it is critical to apply dynamic switch assignment to
a software defined DCN, for lower controller response time
and better utilization of controller resources. Dixit et al. [7]
propose an efficient protocol to enable switch migration across
multiple controllers without message loss or observable delay.
However, the problem of how to determine the assignment
remains open. From the switch’s perspective, it prefers a
controller with low response time to improve performance.
From the controller’s perspective, it is more willing to manage
topologically closer switches to reduce the control traffic over-
head. This is important as communication between switches
and controllers is frequent and occupies scarce bandwidth
resources. These preferences are always intertwined, making
the problem especially challenging.

To address these issues, we formulate the dynamic controller
assignment (DCA) problem as an optimization problem aiming
at minimizing the controller response time and control traffic
overhead. In this problem, each controller has a capacity
in terms of the request rate it can manage. The switches
are dynamically mapped to different controllers when traffic
varies. One key challenge is then to develop an efficient
solution algorithm to the DCA problem, so that switches can
be timely re-assigned in response to variations of network
conditions, even in a large-scale DCN.

To this end, we propose a novel two-phase algorithm by
casting DCA as a stable matching problem with transfers. In
the first phase, we transform the problem into the classical
college admissions problem. We define a switch’s preference
over controllers based on the worst response time that the con-
troller can provide, and a controller’s preference based on the
control traffic overhead caused by the communication between
them. We then obtain a stable matching which guarantees the
worst-case response time for switches. This is then used as the
initial partition for the coalitional game in the second phase.
By breaking from the initial matching and connecting to an
underloaded controller, switches participate in the game to
achieve a Nash stable solution, where none of them has an
incentive to change to a different controller that can lower its

Server A Server B Server C

Control plane

Data plane

1) New flow arrival

Send requests
Install flow

entries

Controller processes

incoming requests

2) Logical topology

change
3) Link failure

Fig. 1. The DCN model with SDN deployment. The requests sent by switches
to controllers come from: 1) new flow arrivals, 2) logical topology changes
[16], 3) link failures [19]. Controllers work both reactively and proactively to
handle these requests.

response time while not harming others’ performance.
The advantages of the two-phase algorithm are two-fold:

First, stable matching is competitive of its outcome and effi-
ciency. The deferred acceptance algorithm to generate a stable
matching [20] can be easily implemented in a centralized
manner with low time complexity, which is suitable for large-
scale DCN. Second, the two phases are complementary. The
solution of the stable matching phase servers as the input of
the coalitional game and accelerates the convergence of the
second phase while the coalitional game makes transfers to
further improve response time.

Our contributions are as follows:
• We formulate the controller assignment problem as a

many-to-one stable matching problem with transfers to
reduce both response time and control traffic overhead.

• The proposed two-phase algorithm connects stable
matching with utility-based game theoretic solutions.
Theoretical analysis proves that the algorithm yields a
stable matching in the first phase. In tens of iterations,
the second phase can quickly converge to a Nash stable
solution that is proved to be within a small constant gap
of the optimal solution.

• We carry out trace-driven simulations to show that the
two-phase algorithm reduces the convergence steps from
above 10000 to 90 compared with directly using coali-
tional game technique. Our proposed algorithm can re-
duce response time by 86% and control traffic overhead
by 2% on average compared with static assignment. It
also achieves near-optimal load balancing among multiple
controllers.

II. MODEL AND FORMULATION

We start by presenting the system model and our problem
formulation.

A. Data Center Network Model

Though the physical topology of software defined DCN
varies (e.g., Fat-tree, VL2), communication between switches
and controllers can be logically viewed as taking place in a
two-tier structure between the control and data plane, as shown
in Fig. 1.

TABLE I
KEY NOTATIONS

Symbol Semantics
si ith switch
cj jth controller
αj processing capacity of jth controller
βj decay factor of jth controller
λ(t)i request rate of ith switch in time slot t
dij the hop distance between ith switch and

jth controller
x(t)ij whether ith switch is connected to jth

controller in time slot t

The control plane consists of M controllers, denoted as
C = {c1, c2, · · · , cM}. Their processing capacities are denoted
as α = {α1, α2, · · · , αM} in terms of the number of requests
it can handle in one time unit. The data plane consists of N
switches, S = {s1, s2, · · · , sN}. Virtual machines (VMs) and
controllers are hosted on servers. The hop distance between
ith switch and jth controller is denoted as dij . To handle the
bursty traffic in DCN, there is a decay factor for each controller
(denoted as {β1, β2, · · · , βM} , βi ∈ (0, 1), i = 1, 2, · · · ,M)
to model the spare capacity. The problem of how to provision
enough controllers to satisfy the traffic demand has been
studied in [7] and [18]. Here we simply assume that M
controllers are sufficient for handling the maximal request rate
in a DCN.

The assignment between switches and controllers is denoted
as a binary N×M matrix X . To satisfy the liveness constraint
[7], a switch must be exactly connected to one controller as
its master. Hence, the sum of the elements in a row of matrix
X is equal to 1. Table I summarizes the key notations for the
ease of reference.

B. Controller Response Time Model

Since today’s data center topology (e.g., Fat-tree, VL2)can
provide high bisection bandwidth, the propagation delay (in
µs) in dispatching forwarding rules is less significant than the
controller CPU processing time (in ms) [7]. Thus we only
model the request processing time on the controller.

We consider a discrete time model where the length of time
slot matches the timescale at which switch requests can be
precisely recorded. The request demand of the ith switch in
slot t is denoted by λ(t)i. We assume that the request arrivals
follow a Poisson process with λ(t)i < αj , ∀ j.

Switch requests are aggregated at the processing queue of
the connected controllers. The load of the jth controller can
be represented as:

θ(t)j =

N∑
i=1

λ(t)ix(t)ij . (1)

We make the following assumptions: (1) λ(t)i are mutually
independent. (2) A controller can be modeled as an M/M/1
queue. By applying the Little’s law, the average sojourn time

is 1
αj−θ(t)j . Given that the time of computing single source

route is subject to the network size [6], the average processing
time of the jth controller can be calculated as below:

ϑ(t)j =
1

αj − θ(t)j
O(V 2), (2)

where V denotes the number of network nodes (i.e., switches).
The average controller response time in time slot t can be

represented as the weighted average of {ϑ(t)j}:

ζ(t) =

M∑
j=1

θ(t)jϑ(t)j

M∑
j=1

θ(t)j

. (3)

C. Control Traffic Overhead

Since most SDN deployment uses in-band communications,
control traffic competes for the scarce bandwidth [9], [10] with
data flows in the network. The default Openflow setting has
the switches send asynchronous messages to all controllers
that are in the master or equal state. We assume that each
request needs to be sent to at least one controller [7]. The
control traffic overhead in time slot t can be quantified as:

η(t) =

M∑
j

N∑
i

dijx(t)ijλ(t)i. (4)

D. Dynamic Controller Assignment Problem

Given a fixed number of controllers, one needs to periodi-
cally re-assign switches to controllers to balance the workload
according to the dynamic traffic demands.

We now formulate the DCA problem. Our goal is to
minimize controller response time while keeping the control
traffic overhead low. Hence, we apply a weight factor δ ∈ [0, 1]
to the response time in the objective function. Mathematically,
we have the following formulation:

min δζ(t) + (1− δ)η(t) (5)
s.t. θ(t)j ≤ βjαj , ∀j (6)

M∑
j=1

x(t)ij = 1, ∀i (7)

x(t)ij ∈ {0, 1} , ∀i, j (8)
(1), (2), (3), (4).

Inequality (6) ensures that no controller is overloaded. The
decay factor βj on the right side forces some capacity to be left
aside to handle burst traffic as described before. Constraint (7)
ensures that each switch is connected to exactly one master
controller at the given time.

This problem is a variant of the multi-objective generalized
assignment problem [5] which is NP-hard. Moreover, the
problem is large scale in the context of DCN. As the algorithm
needs to be computationally efficient for dynamic assignment
whenever the network conditions change, traditional meth-
ods [3] for solving large-scale multi-objective optimization
are computationally prohibitive. In this paper we resort to

stable matching and game theory techniques which have
been regarded as efficient alternatives for tackling networking
problems [25].

III. DCA AS A STABLE MATCHING WITH TRANSFERS

In this section, we show how to transform the DCA problem
in two phases: In the first phase, we transform it to a
stable matching problem whose solution provides worst-case
response time guarantees for each switch. In the second phase,
we transform problem to a coalitional game that further re-
duces the response time. We also discuss about the connections
between these two phases, and advantages of using this two-
phase model in optimizing the overall performance.

A. The Stable Matching Phase

To formally study the DCA problem, we use the framework
of stable matching problem [8] (e.g., college admissions
problem) which can be efficiently solved by the deferred
acceptance algorithm (DAA) [20]. There are two disjoint sets,
namely controllers C (acting as colleges) that have different ca-
pacities to serve requests, and switches S (acting as students)
with distinct request demands. By applying the key concepts
of stable matching, namely preferences over the other set and
blocking pairs, we deduce the first phase of DCA problem as
a many-to-one stable matching problem. Conventionally, we
take the notation that a �c b means c prefers a to b.

Switches’ objective: Switches seek computation resources
to handle the requests. Thus one may build the preference
of switch i based on the controller response times defined
in Eq. (2). This however introduces some technical difficulty.
Particularly, the processing time of controller j in Eq. (2)
depends on not only the requests of ith switch, but also those
from other switches connected to it.

Most previous work on many-to-one stable matching [8]
assumes that the preferences are static and independent of
other members. As discussed in [21], finding a stable matching
with interdependent preferences is complex, and often requires
computing preferences for all of the exponentially many sub-
sets. The sheer complexity of this approach makes it infeasible
for our problem. To address this technical challenge, we define
a switch’s preference over controllers according to the worst
response time that the controller can provide.

Clearly, the maximum response delay of the jth controller
can be estimated by substituting the maximum load (βj · αj)
for θ(t)j in Eq. (2):

ϑ(t)maxj =
1

αj − βj · αj
. (9)

Definition 1. Switch’s preference list over controllers. The
preference list of the ith switch si is Γ(si) = {cj∗ , ..., } which
contains controllers whose processing capacity is at least equal
to i’s request arrival rate. The elements in preference list Γ(si)
are sorted in the ascending order of their worst-case response
time according to Eq. (9).

This implies: (1) A controller with larger capacity can serve
more switches to better utilize its computing resources. (2) A

switch prefers a controller that can provide lower response
time in the worst case.

Controllers’ objective: Considering the overhead brought
by the switch-to-controller communication, naturally a con-
troller is more willing to accept the switch with smaller control
traffic overhead, who will not cause over load of the controller.
We thus define the controllers’ preferences over switches as
below.

Definition 2. Controller’s preference list over switches. The
preference list of the jth controller cj is Γ(cj) = {si∗ , ..., },
with switches whose load does not exceed its capacity, i.e.
θ(t)j + λ(t)i∗ ≤ βj ·αj ,∀si∗ . The elements in the preference
Γ(cj) are ranked in an ascending order according to the
product of request rate and the hop distance between jth

controller and i* switch, namely λ(t)i∗di∗j .

However, different from the traditional college admissions
problem [8], our DCA problem has new dimensions that we
must take into consideration.
• Every switch has different request rates, while a student

only takes up exact one quota.
• Since processing capacity of each controller is not di-

rectly related to the number of switches it can serve,
the controller’s quota depends on which switches it is
assigned to.

Intuitively, in a matching Θ, whenever a switch si prefers
a controller cj to its currently assigned controller Θ(si), and
cj has the vacant capacity; or by rejecting some lower ranked
connected switches, cj has the vacant capacity, the involved
controller and switch then have incentive to break up from its
current matching for lower response time and lower control
traffic overhead, respectively. Formally, we define the blocking
pair as below.

Definition 3. Blocking pair. In a matching Θ, a switch-
controller pair (si, cj) is a blocking pair if it satisfies any
of the following two conditions:
(1) cj �si Θ(si), and θ(t)j + λ(t)i ≤ αjβj .
(2) cj �si Θ(si), and θ(t)j −

∑
i∗ λ(t)i∗ + λ(t)i ≤ αjβj ,

where si �cj si∗ and Θ(si∗) = cj .

Depending on whether a blocking pair satisfies condition
(1) or (2), we call it is a type-1 or type-2 blocking pair.

Following the convention of [8], we define the stable
matching solution:

Definition 4. Stable matching. A matching Θ is said to be
stable if there does not exist any blocking pairs.

Having defined the key concepts, we will show how to
obtain a stable matching in Sec. IV.

B. Combination of Stable Matching and Coalitional Game

The stable matching framework is efficient and practical
to tackle large-scale problems [25], [26]. However, solely ap-
plying stable matching may produce an unbalanced matching.
In the stable matching shown in the Fig. 2, all switches are
connected to controller-2 leaving controller-1 completely idle.

1

2

Capacity

&

Decay Factor

Incoming

requests

15 & 0.8

20 & 0.8

3

5

7

1

2

A

B

C

A

B

C

Stable

Matching

Fig. 2. The distance between switches and controllers is 1 hop. The stable
matching solution yields a unbalanced situation that can be further improved
by a transfer pair 〈switchB → controller1〉 considering response time.

To address this limitation, we leverage coalitional game to
improve the solution quality. One problem with coalitional
game is that the number of feasible partitions of the switch
set S increases exponentially in N . Thus when traffic demand
changes, migrating switches from overloaded controllers needs
thousands of iterations as we will show in Sec. V. Fortunately,
the outcome of the stable matching process is a mapping Θ
defined on the set S

⋃
C. It satisfies the following conditions:

∀s ∈ S,∀c ∈ C 1) Θ(s) ∈ C, and 2) Θ(c) ∈ 2S . In another
word, the stable matching Θ divides S into M subsets, each
of which is associated with one controller. Hence, each subset
can be seen as a coalition of switches that are connected to
the same controller. In this way, the solution obtained form
the stable matching phase can serve as the input of the second
phase, and it is suitable for us to use coalitional game theory
to further mitigated the unbalanced phenomenon.

C. The Coalitional Game Phase

We now leverage the coalitional game theory to ensure the
performance of the mapping between switches and controllers
considering response time and traffic overhead.

Since controllers provide computing resources while
switches generate requests, the coalitional game among
switches is the pair (S,Θ), where S is the set of players
(switches) and the coalition Sc ⊆ S is the set of switches
assigned to the controller c ∈ C that can be maintained from
Θ. We consider the utility of a switch as the response time
from its connected controller as defined in Eq. (2). For lower
response time, switches have incentive to negotiate with each
other to swap switches based on their utilities.

Note that all switches cannot form a grand coalition due
to the limited controller capacity. The switches will form
disjoint partitions that are connected to different controllers.
This phase can be seen as a coalition formation game [11] in
which switches can change their coalitions based on the utility
they can get, thus yielding a Nash stable solution in which no
switch can improve its utility without harming others’. In order
to obtain such a solution, we formally define the transfer rule
as below.

Definition 5. Transfer rule. In a matching Θ, a switch s has
incentive to transfer from coalition Sa to Sb (forming the new
coalitions Sa∗ = Sa\{s} and Sb∗ = Sb

⋃
{s}) if it satisfies

both of the following:
(1) The transfer does not violate the capacity constraint (6)

of controller b∗.
(2) As defined in Eq. (2) and Eq. (4), transfer value satisfies

TV (s, a, b) ={(1− φ) · [ϑ(t)a∗ + ϑ(t)b∗] + φ · η(t)new}-

{
(1− φ) · [ϑ(t)a + ϑ(t)b] + φ · η(t)old

}
< 0. φ ∈ [0, 1]

is a weight factor between response time and overhead.

That is, a transfer is only possible if the controller has
enough capacity for handling the requests, and the transfer
will enhance the performance of the assignment between
switches and controllers considering both response time and
traffic overhead as indicated in Eq. (5) has been taken into
consideration. Given the matching from the first phase and the
transfer rule, the transfer process of the second phase leads to
a Nash stable mapping between switches and controllers.

IV. ALGORITHM DESIGN

So far, we have transformed the DCA problem into a two-
phase problem. In this section, we first propose our algorithm
based on the famous DAA [20] to solve the first phase and
theoretically demonstrate that the algorithm can produce a
stable matching. Then based on the transfer rule defined in
Definition 5, we devise an algorithm to solve the second
phase to improve both response time and overhead. At last,
we analyze its optimality and complexity, respectively.

A. Solution for the First Phase

We use the DAA method to generate a stable matching
between switches and controllers. We choose switches as the
proposing side, which yields a stable matching with the best
controller response time for switches among all possible stable
matchings.

The algorithm is described in Algorithm 1. Specifically,
after each side constructs the preference list based on Defini-
tion 1 and 2, switches begin to propose to their most favorable
controllers. Each controller receives the proposals, chooses
its most preferred switches under the capacity constraint, and
reject the rest. The procedure is repeated until no proposal can
be made anymore.

Algorithm 1 Stable Matching Phase Procedure
Input: Request rate of each switch during time slot t: λ(t)i

Processing capacity of each controller: ∀j, αj

Decay factor of each controller: ∀j, βj
Output: Mapping between switches and controllers: x(t)ij , ∀i, j

1: function StableMatching(measured request arrival rate ∀i, λ(t)i,
controller capacity ∀j, αj , decay factor ∀j, βj)

2: Each switch and controller builds its own preference list as
in Eq. (9) and Definition 2: ∀i, Γ(si), ∀j, Γ(cj)

3: repeat
4: Each switch proposes to its most preferred controller

according to its preference list.
5: if All the proposals will not violate the capacity constraint

as in Eq. (6) then
6: The controller temporarily holds all the proposals.
7: else
8: Based on the controller’s preference list, the controller

holds the most preferred proposals that will not violate the
capacity constraint.

9: The controller reject other unacceptable proposals.
10: end if
11: until No proposals have been made by the switches.
12: Transform matching Θ to xij , ∀i, j.
13: end function

Theorem 1. Algorithm 1 yields a stable matching solution.

Proof: Following the method in [26], we prove the
stability of the outcome by contradiction. Since the switch
preferences over controllers are only related to processing
capacity αj and decay factor βj as presented in Eq. (9), the
switches’ preference lists are the same. In each round, all the
switches propose to the same controller, then the controller
decides to accept the most preferred switches.
(1) If there exists the type-1 blocking pair (si∗ , cj∗), there

must be vacancy in cj∗ which contracts the procedure of
admitting switches till the processing capacity.

(2) If there exists the type-2 blocking pair, it means that the
controller admits less preferred switches in the iterative
rounds. However, in each round, the exact one controller
receives all the proposals and admits the most preferred
ones. Thus the above situation will not happen.

Therefore, the procedure will not cause any blocking pair.
The solution obtained by Algorithm 1 is a stable matching as
defined in Definition 4. Thus the proof.

B. Solution for the Second Phase

Once Algorithm 1 terminates with a stable matching Θ, the
corresponding partition P = {S1,S2, · · · ,SM} over S is used
as an initial partition Pinitial for the coalitional game in the
second phase.

To solve the second phase as a coalitional game, we
iteratively find the transfer pair with minimum transfer value
which means the lowest social welfare we can get as shown
in Algorithm 2.

Algorithm 2 Coalitional Game Phase Procedure
Input: Partition P = {S1,S2, ...,SM} obtained from Algorithm 1

Processing capacity of each controller: ∀j, αj

Decay factor of each controller: ∀j, βj
Output: Mapping between switches and controllers: x(t)ij , ∀i, j

1: function CoalitionalFormation(initial partition P , controller ca-
pacity ∀j, αj , decay factor ∀j, βj)

2: repeat
3: Each switch computes its most preferred transfer.
4: Initial transfer pair (s, a, b) with infinity TV (s, a, b)

defined in Definition 5.
5: for all controllers, ∀j, cj do
6: Find the transfer pair (s∗,Θ(s∗), j) with minimum
TV (s∗,Θ(s∗), j).

7: if TV (s, a, b) > TV (s∗,Θ(s∗), j) then
8: Update (s, a, b) = (s∗,Θ(s∗), j).
9: end if

10: end for
11: Accept the transfer (s, a, b) and update the partition P .
12: until Partition P converges to a Nash stable partition.
13: end function

Theorem 2. Given Pinitial obtained from Algorithm 1, Al-
gorithm 2 converges to a Nash stable partition Pfinal.

Proof: Denote the partition after k iterations as Pk.
Algorithm 2 can be seen as a sequence of partitions:

P0 = Pinitial → P1 → P2 → · · ·

TABLE II
KEY SYMBOLS

Symbol Semantics
ξ processing capacity of a controller
θ(t) average request rate on each controller in

time slot t
ϕ(t)minj minimal request rate of switches connected

to the jth controller in time slot t
CU set of controllers with load larger than θ(t)
CL set of controllers with load smaller than θ(t)

Since a transfer pair (s, a, b) only influences the partition set
Sa and Sb (forming the new coalitions Sa∗ = Sa\{s} and
Sb∗ = Sb

⋃
{s}), every adjacent transfer, e.g., Pl → Pl+1,

forms an order:

(1− φ) · [ϑ(t)a∗ + ϑ(t)b∗] + φ · η(t)new

< (1− φ) · [ϑ(t)a + ϑ(t)b] + φ · η(t)old

which is transitive and irreflexive. As the number of partitions
of set S is finite, Algorithm 2 converges to a final partition
Pfinal.

Moreover, suppose that Pfinal is not Nash stable, and
there exists a transfer pair (s, a, b) that can result in better
social welfare. Algorithm 2 will then continue, and Pfinal
does not converge. However, this contradicts the previous
demonstration of Algorithm 2’s convergence.

Therefore, Algorithm 2 converges to a Nash stable partition.

C. Optimality Analysis

We now theoretically prove SMT’s performance on response
time compared with the optimal solution. We consider a simple
situation where the capacity of controllers is identical. Key
symbols are listed in Table II.

Since Eq. (3) is convex for each controller, according to
Jensen’s inequality, it is easily can be proved that the minimal
response time is achieved when the incoming requests are
equally distributed among all the controllers:

ζ(t)min =
O(V 2) ·M · θ(t)

ξ−θ(t)
M∑
i=1

θ(t)i

. (10)

For simplicity, let ϕ(t)minj denote the minimal request rate
of switches connected to jth controller. Hence, when SMT
terminates, the difference of load between any two controllers
is less than the load caused by switch with the minimal request
rate on the higher-loaded controller, mathematically,

θ(t)j − θ(t)i < ϕ(t)minj ,∀ i, j.

For such controllers that θ(t)j > θ(t) > θ(t)i, we have
θ(t)j < θ(t)i + ϕ(t)minj < θ(t) + ϕ(t)minj . Hence, θ(t)j −
θ(t) < ϕ(t)minj is established.

When SMT converges to a Nash stable solution, we divide
the C into two mutually complementary subsets, CU in which
θ(t)i ≥ θ(t), ∀ i ∈ CU and CL in which θ(t)i∗ < θ(t), ∀ i∗ ∈
CL, respectively.

We now derive the gap between SMT’s solution and the
optimal one in Eq. (10) as follows:

∆(ζ(t)) =
O(V 2)
M∑
i=1

θ(t)i

{
M∑
i=1

[
θ(t)i

ξ − θ(t)i
− θ(t)

ξ − θ(t)

]}

<
O(V 2)
M∑
i=1

θ(t)i

∑
i∈CU

ξ(θ(t)i − θ(t))
(ξ − θ(t)i)(ξ − θ(t))

.

Denote θ(t)i − θ(t) as τ(t)i which satisfies τ(t)i < ϕ(t)mini .

∆(ζ(t)) <
O(V 2)
M∑
i=1

θ(t)i

∑
i∈CU

ξτ(t)i

(ξ − θ(t)− τ(t)i)(ξ − θ(t))
.

Note that the function on the right side of the above inequality
is monotone increasing as τ(t)i increases. Hence,

∆(ζ(t)) <
O(V 2)
M∑
i=1

θ(t)i

∑
i∈CU

ξϕ(t)mini

(ξ − θ(t)− ϕ(t)mini)(ξ − θ(t))

<
O(V 2)
M∑
i=1

θ(t)i

· M · ξ · ϕ(t)max

(ξ − θ(t)− ϕ(t)max)(ξ − θ(t))

, ϕ(t)max = max(ϕ(t)mini , i ∈ CU).

Thus, the performance on response time of SMT is within a
factor (1 + ∆(ζ(t))

ζ(t)min = 1 + ξ·ϕ(t)max

θ(t)·(ξ−θ(t)−ϕ(t)max)
) of the optimal

value.
Remark: The bound above is relevant to the request de-

mands on the controllers in the time slot t where ξ and θ(t) are
known. Since the request rates of switches are far smaller than
the processing capacity of controllers, ϕ(t)max in Eq. (11) can
be regarded as a small number, which means that the bound
is a small constant in each time slot.

D. Complexity Analysis

We now give a brief complexity analysis for both algorithms
presented above. Note that the statistical states collected from
the data plane can be stored in the control plane. Thus, both
algorithms can be executed in the control plane with little
synchronization overhead.

For Algorithm 1, as we have discussed in Sec. IV, all the
switches have the same preferences over controllers. Thus,
Algorithm 1 terminates in M iterations. In each iteration,
one controller accepts its most preferred switches. Sorting the
switches need O(Nlog2(N)) computation. Therefore the time
complexity of Algorithm 1 is O(MNlog2(N)).

For Algorithm 2, the complexity comes from searching for
necessary transfers where, from the switches’ perspective, the
search space is O(NM) in each round.

Considering that M , the number of controllers, is far smaller
than the number of switches N and the upper-bound proven
in previous subsection, our proposed two-phase algorithm can
find a near-optimal solution in efficient time which grows
nearly linearly with the size of network increasing as we will
shown in Sec. V.

V. EVALUATION AND ANALYSIS

In this section, we conduct trace-driven simulations to
evaluate the performance of our proposed algorithms, hereafter
referred to as the Stable Matching with Transfers (SMT)
algorithm.

A. Simulation Setup

Topology: We conduct our simulations using the widely
adopted fat-tree and VL2 topologies as shown in Fig. 3 and
Fig. 4, respectively. For fat-tree, the number of pods is 24 with
a total of 3, 456 hosts and 720 switches. For VL2, the degree
of intermediate switch (DI) and the degree of aggregate switch
(DA) are set to 48 with 576 racks each hosting 10 hosts, and
N = 48 · (48 + 6)/4 = 648. These numbers are comparable
to the size of a commercial data center [4]. Hence, we set
the O(V 2) as 104 in Eq. (2). Also, we set the number of
controllers M to 18, and the capacity of each controller is
1800K flows/s [7], which is enough to handle the maximum
request rate in our simulations.

Trace: The request arrival rate follows the flow inter-arrival
time distribution measured in a real-world data center [4] since
a request to the controller is directly triggered by a flow going
through a switch. We use κ as a load factor to evaluate SMT
in different load conditions.

Schemes Compared: (1) SMT: Our algorithm with two
phases. In SMT, unless stated otherwise, φ in Definition 5 is
set to 0 as we regard response time as the sole objective. The
decay factor βj is randomly chosen between 0.9 and 1. (2)
DCP-GK: State-of-the-art algorithm from [3] that combines
Greedy Knapsack with Simulated Annealing heuristic. We
just use the greedy algorithm of DCP-GK since the full
algorithm is designed for controller provisioning in WANs
where time complexity is less of an issue. (3) CG: Directly
solving the DCA problem as a coalitional game using a purely
combinatoric algorithm which follows the second phase of our
SMT but the initial mapping is generated randomly. We will
discuss the connection between our SMT and this algorithm.
(4) SM: Static matching between switches and controllers used
as the baseline. The static matching is obtained by DCP-GK
after the first run.

We derive the distance matrices for the fat-tree and VL2
topologies, respectively. For fat-tree:

dFat-tree
ij =

1, Edge si, directly connected with cj
2, Agg si, same pod with cj
3, Edge si, same pod, not directly connected
3, Core si
4, Agg si, not same pod with cj
5, Edge si, not same pod with cj

For VL2, the traffic which leaves ToR switches always
goes through the intermediate switches due to valiant load
balancing. Thus:

dVL2
ij =

1, ToR si, directly connected with cj
2, Agg si, same ToR connected with cj
3, Intermediate si
4, Agg si, not same ToR connected with cj
5, ToR si, not directly connected with cj

To see whether SMT can balance the load among controllers
and reduce controller response time, we run all algorithms
in discrete time slots during which the request arrival rate
changes according to its distribution over time.

B. Effectiveness of SMT
Response Time. Fig. 5 and 6 plot the comparison of SMT,

DCP-GK and SM in terms of average response time in fat-
tree and VL2. We make the following observations: (1) As
the total request rate increases, response time also increases
since the computing resource on controllers is limited. (2)
Request dynamics may cause a sudden increase of response
time for SM as shown in Fig. 5. In the extreme case, the
response time of SM is 10x that of SMT. It demonstrates that
static controller assignment results in severe load imbalance.
In our simulations such severe phenomenon happens about
4% of the time in all runs. SMT reduces response time by
86% on average compared with SM. (3) SMT outperforms
DCP-GK and reduces the response time by 22% on average.
(4) Compared with the optimal response time, SMT is only
0.35% slower on average.

Control Traffic Overhead. Fig. 7 and Fig. 8 depict the
control traffic overhead of the three algorithms, where all the
overheads are normalized to SM’s performance (approximately
7.4e7). In Fig. 7, it clearly shows that SMT performs the
best. Although we assign zero weight to overhead in SMT,
the procedure of stable matching phase takes overhead into
consideration when controllers evaluate proposals made by
switches. Thus, SMT has about 2% less overhead compared
with SM on average. However, in Fig. 8, SMT does not always
outperform SM in VL2 since control traffic that leaves ToR
switches always goes through the intermediate switches due
to valiant load balancing, making switches communicate in a
longer way with light-loaded controllers.

Load Distribution of Controllers. To show the load dis-
tribution among multiple controllers along time, we plot the
Jain’s fairness index [13] (a value ranges from 1

M to 1) of these
algorithms in Fig. 9 and Fig. 10. It can be seen that SMT
achieves a more balanced distribution under dynamic traffic
loads. While the other three algorithms are highly sensitive
to traffic variations, the fairness index of SMT remains close
to 1, which implies near-optimal load balancing. Fig. 9 and
Fig. 10 also plot the max/average/min loads on controllers for
SMT. It clearly shows that the load differential among multiple
controllers is small.

Traffic Condition and Scalability. Fig. 11 and Fig. 12
show the performance of SMT in terms of response time under

1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

Core

Agg

Edge

Host

Fig. 3. 4-pod fat-tree (4 core, 8 aggre-
gate and 8 edge switches, respectively)
with controllers deployed on the hosts.

1

Intermediate

Aggregate

Top-of-Rack

Host2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

Fig. 4. VL2 (DI=4, DA=8,
4 intermediate, 4 aggregate, 8
ToR switches, respectively) with
controllers deployed on the hosts.

0 10 20 30 40 50
0

0.1

Time Units

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

0 10 20 30 40 50
1.4

1.6

1.8

2

2.2
x 10

7

R
e
q
u
e
s
ts

/s

SMT DCP−GK SM Load

Fig. 5. In fat-tree, SM experiences
about 7x controller response time
compared with SMT.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Time Units

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

SMT DCP−GK SM

Fig. 6. In VL2, SM experiences about
8x controller response time compared
with SMT.

20 30 40 50 60 70
0.94

0.96

0.98

1

1.02

Time Units

T
ra

ff
ic

 O
v
e
rh

e
a
d

(N
o
rm

a
liz

e
d
 t
o
 S

M
)

SMT DCP−GK SM

Fig. 7. Normalized traffic overhead in
fat-tree.

0 10 20 30 40 50
0.98

0.99

1

1.01

Time Units

T
ra

ff
ic

 O
v
e
rh

e
a
d

(N
o
rm

a
liz

e
d
 t
o
 S

M
)

SMT DCP−GK SM

Fig. 8. Normalized traffic overhead in
VL2.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Time Units

F
a
ir
n
e
s
s
 I
n
d
e
x

0 10 20 30 40 50
1

1.1

1.2

1.3

1.4

1.5
x 10

6

C
o
n
tr

o
ll
e
r

L
o
a
d

SMT DCP−GK SM Load

Fig. 9. Controller fairness index in
fat-tree.

0 10 20 30 40 50
0.4

0.6

0.8

1

Time Units

F
a
ir
n
e
s
s
 I
n
d
e
x

0 10 20 30 40 50
0.8

1

1.2

1.4
x 10

6

C
o
n
tr

o
ll
e
r

L
o
a
d

SMT DCP−GK SM Load

Fig. 10. Controller fairness index in
VL2.

different traffic loads. It shows that response time of SMT
increases slightly when loads increase, while SM increases
sharply since the overload phenomenon becomes severer. In a
related thread, to show SMT’s scalability, we plot the runtime
of SMT under different topologies in Fig. 13. We set the
number of pods in fat-tree to 24, 16, 8 with 720, 320, 80
switches, respectively, and set the degree of aggregate switches
in VL2 to 48, 32, 24, 16 with 648, 304, 180, 88 switches,
respectively. It shows that the runtime of SMT increases
linearly with the size of the network and only takes 0.2s to
finish in a network with size comparable to a commercial
datacenter.

C. Insights of SMT

Are transfers necessary? One may ask why we need the
second coalitional game phase and whether the transfers are
necessary. Fig. 14 and Fig. 15 plot the difference between SMT
and stable matching with no transfers (denoted as SMNT)
in terms of response time and overhead. For overhead, the
transfers with transfer rule defined in Definition 5 bring about
4% more overhead to the network. However, they reduce the
response time by about 62% compared with SMNT. This
validates transfers’ effectiveness to further reduce response
time while incurring little more overhead to the network.

The impact of the stable matching phase. To quantify
the impact of the stable matching phase on the performance of
SMT, we compare SMT with the one-phase algorithm, namely,
coalitional game (denoted as CG). Fig. 16 plots the response
time normalized to CG’s performance. Since the coalitional
game phase in SMT begins with the matching obtained from
the stable matching phase, its search space is limited, which
hinders SMT’s ability to further reduce response time as we
have shown in Fig. 9 and Fig. 10. In Fig. 16, we do find
that the SMT experiences longer response time compared with
CG, however the maximum difference is only 0.24 ms. In
terms of control traffic overhead, Fig. 17 shows that SMT
incurs up to 20% lower overhead compared with CG, since the
stable matching phase takes overhead into account. Moreover,
the stable matching phase speeds up the convergence of the
coalitional game phase as shown in Fig. 18. Specifically, it

shows that SMT is able to converge within 90 iterations for
80% of the time for over 300 runs, and the fastest run uses
only 44 iterations to converge. CG, on the other hand, takes
over 10000 iterations to converge on average.

VI. RELATED WORK

In this section, we survey the state of the art of SDN
controller assignment, and the use of stable matching and
coalitional game in computer networking.

Dynamic Controller Assignment. To improve robustness
and scalability, several works [17], [27] develop a distributed
control plane across a cluster of controllers. Nevertheless, the
static mapping between switches and controllers may cause hot
spots, which motivates dynamic controller assignment. Based
on OpenFlow v1.3 [1], Dixit et al. [7] firstly propose a live
switch migration protocol which can ensure liveness and safety
of DCA while introducing little overhead to the network. Bari
et al. [3] present an algorithm to dynamically and efficiently
provision controllers in a WAN by periodically reassigning
switches to controllers. However, the proposed heuristic is
time-consuming and can hardly be applied to the highly bursty
DCN. Krishnamurthy et al. [18] propose an elastic controller
assignment mechanism by partitioning application states and
exploring the dependency between switches and applications.
It does not consider the processing time on controllers which
is a major cost in flow setup time [7]. By leveraging the
migration protocol [7], our work aims at mitigating the load
imbalance among controllers and reducing both response time
and control traffic overhead.

Stable Matching and Coalitional Game. Stable matching
is first introduced by Gale et al. [8] in the marriage problem
and has been widely used in the National Resident Matching
Program for medical school students for several decades. In the
field of networking, Xu et al. [25] advocate for applying stable
matching as a general methodology, just like optimization, to
tackle networking problems. They apply the framework for
the VM allocation problem in [24] to improve performance
of VMs and reduce load imbalance on servers. They further
extends the classical matching theory for general resource

0.8 0.9 1.0 1.1
0

0.05

0.1

Load Factor

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

SMT

DCP−GK

SM

Fig. 11. Response time under differ-
ent traffic loads in fat-tree.

0.8 0.9 1.0 1.1
0

0.02

0.04

0.06

0.08

Load Factor

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

SMT

DCP−GK

SM

Fig. 12. Response time under differ-
ent traffic loads in VL2.

80 180 320 648720
0

0.1

0.2

0.3

0.4

Number of Switches

A
lg

o
ri
th

m
 R

u
n
ti
m

e
 (

s
)

SMT

Comparable size with
commercial datacenter

Fig. 13. Runtime of SMT under dif-
ferent topology scales.

20 40 60 80 100
0.01

0.02

0.03

0.04

0.05

Time Units

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

SMT SMNT

Fig. 14. Response time comparison
between SMT and SMNT in fat-tree.

1 20 40 60 80 100

1.00

1.02

1.04

1.06

1.08

Time Units

T
ra

ff
ic

 O
v
e
rh

e
a
d

(N
o
rm

a
liz

e
d
 t
o
 S

M
N

T
)

SMT SMNT

Fig. 15. Traffic overhead comparison
between SMT and SMNT in fat-tree.

5 10 15 20 25

1

1.0005

1.001

1.0015

1.002

1.0025

Time Units

R
e
s
p
o
n
s
e
 T

im
e

(N
o
rm

a
liz

e
d
 t
o
 C

G
)

SMT CG

Fig. 16. Response time comparison
between SMT and CG in fat-tree.

5 10 15 20 25

0.8

0.9

1

Time Units

T
ra

ff
ic

 O
v
e
rh

e
a
d

(N
o
rm

a
liz

e
d
 t
o
 C

G
)

SMT

CG

20% enhancement
in extreme situation

Fig. 17. Traffic overhead comparison
between SMT and CG in fat-tree.

0 3000 6000 9000 12000 15000
0

0.2

0.4

0.6

0.8

1

Number of Iterations

C
D

F

SMT

CG

80%

smaller than

1.15e4

iterations

80% smaller than

95 iterations

Fig. 18. The CDF of number of iter-
ations in SMT and CG, respectively.

management in cloud computing with VM size heterogeneity
in [26].

Game theory is one of the most widely used techniques in
networking community. Han et al. [11] present a survey for the
use of game theory in communication networks. Specifically,
the assignment of users to access points in wireless networks
is formulated and solved as a coalitional game. In our work,
we leverage these two theories to formulate the DCA problem
as a stable matching problem with transfers.

VII. CONCLUSION

In this paper, we studied the dynamic controller assignment
(DCA) problem as a stable matching problem with transfers
to minimize the controller response time. The DCA problem
is solved in a two-phase manner. First a stable matching is
efficiently generated between switches and controllers, which
guarantees the response time in worst case. It serves as an
input to the second coalitional game phase to further reduce the
response time. Theoretical analysis proves that the proposed
two-phase algorithm converges to a Nash stable solution.
Trace-driven simulation shows that the stable matching phase
accelerates the convergence of the coalitional game phase,
by reducing the average number of iterations from above
10000 to around 90. The two-phase algorithm, which achieves
near-optimal load balancing among controllers, reduces the
controller response time by about 22% and 86% compared
with state of the art DCP-GK and the simple static assignment,
respectively.

REFERENCES

[1] Openflow specification v1.3.
[2] M. Al-Fares, S. Radhakrishnan, et al. Hedera: Dynamic Flow Scheduling

for Data Center Networks. In Proc. USENIX NSDI, 2010.
[3] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,

R. Ahmed, and R. Boutaba. Dynamic Controller Provisioning in
Software Defined Networks. In Proc. IEEE CNSM, 2013.

[4] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proc. ACM IMC, 2010.

[5] R. Cohen, L. Katzir, and D. Raz. An Efficient Approximation for the
Generalized Assignment Problem. Information Processing Letters, 2006.

[6] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1959.

[7] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards
an elastic distributed SDN controller. In Proc. ACM HotSDN, 2013.

[8] D. Gale and L. S. Shapley. College admissions and the stability of
marriage. American Mathematical Monthly, 1962.

[9] J. Guo, F. Liu, X. Huang, J. Lui, et al. On efficient bandwidth allocation
for traffic variability in datacenters. In Proc. IEEE INFOCOM, 2014.

[10] J. Guo, F. Liu, D. Zeng, et al. A cooperative game based allocation for
sharing data center networks. In Proc. IEEE INFOCOM, 2013.

[11] Z. Han. Game Theory in Wireless and Communication Networks:
Theory, Models, and Applications. Cambridge University Press, 2012.

[12] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. ElasticTree: Saving Energy in Data
Center Networks. In Proc. USENIX NSDI, 2010.

[13] R. K. Jain, D.-M. W. Chiù, and W. R. Hawe. A Quantitative Measure
of Fairness and Discrimination for Resource Allocation in Shared
Computer Systems. 1984.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a
Globally-Deployed Software Defined WAN. In Proc. ACM SIGCOMM,
2013.

[15] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
Nature of Data Center Traffic: Measurements & Analysis. In Proc. ACM
IMC, 2009.

[16] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, et al. Network Virtualization
in Multi-tenant Datacenters. In Proc. USENIX NSDI, 2014.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al. Onix: A Distributed
Control Platform for Large-scale Production Networks. In Proc. USENIX
OSDI, 2010.

[18] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson.
Pratyaastha: An Efficient Elastic Distributed SDN Control Plane. In
Proc. ACM HotSDN, 2014.

[19] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
Engineering with Forward Fault Correction. In Proc. ACM SIGCOMM,
2014.

[20] A. E. Roth. Deferred Acceptance Algorithms: History, Theory, Practice,
and Open Questions. International Journal of Game Theory, 2008.

[21] A. E. Roth and M. A. O. Sotomayor. Two-sided Matching: A Study in
Game-theoretic Modeling and Analysis. Cambridge University Press,
1992.

[22] A. Roy, H. Zeng, J. Bagga, et al. Inside the Social Network’s
(Datacenter) Network. In Proc. ACM SIGCOMM, 2015.

[23] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood. On Controller Performance in Software-Defined Networks. In
Proc. USENIX HotICE, 2012.

[24] H. Xu and B. Li. Egalitarian Stable Matching for VM Migration in
Cloud Computing. In Proc. IEEE INFOCOM Workshop on Cloud
Computing, 2011.

[25] H. Xu and B. Li. Seen as Stable Marriages. In Proc. IEEE INFOCOM,
2011.

[26] H. Xu and B. Li. Anchor: A Versatile and Efficient Framework for
Resource Management in the Cloud. IEEE Transaction on Parallel
Distributed System, 2013.

[27] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with DIFANE. In Proc. ACM SIGCOMM, 2010.

