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Hydrologic model development 

The RCM assumes water excess available for surface runoff (es) is proportional to 

precipitation rate (P). The proportion is represented by a coefficient value (e.g., 0 to 100%) and 

is dependent on land cover, soil and topographic characteristics. The coefficient value is smaller 

for dry and flat areas with permeable soils and vegetated surfaces, as compared to that for wet 

and steep areas with more impervious areas (e.g., roads, parking lots, roofs).  In this work, a dual 

runoff-coefficient method is used, which assigns a larger runoff coefficient (C2) to wet soils 

(relative soil moisture at upper soil layer U ≥ threshold t) and smaller runoff coefficient (C1) to 

dry soils (relative soil moisture U < threshold t) (Eq. (S1)). The water excess available for 

subsurface runoff (ess) is a function of saturated hydraulic conductivity (ksat) and relative soil 

moisture in lower soil layer (L) (Eq. (S2)). 

 𝑒𝑠 = 𝐶1 × 𝑃       𝑓𝑜𝑟 𝜃𝑈 < 𝜃𝑡 

     = 𝐶2 × 𝑃       𝑓𝑜𝑟 𝜃𝑈 ≥ 𝜃𝑡 
(S1) 

 
𝑒𝑠𝑠 = 𝐾𝑠𝑎𝑡_𝑎𝑙𝑙𝑘𝑠𝑎𝑡 × (

𝜃𝐿

𝑛
)𝑏 (S2) 

where es and ess are water excess available for surface and subsurface runoff, respectively, (m d-

1); P is precipitation rate (m d-1); C1 is dry runoff coefficient; C2 is wet runoff coefficient; U and 

L are relative soil moisture at upper and lower soil layer, respectively; t is relative soil moisture 

threshold differentiating dry and wet soil conditions; 𝑘𝑠𝑎𝑡 is saturated hydraulic conductivity (m 

d-1); 𝐾𝑠𝑎𝑡_𝑎𝑙𝑙 is a scaler; b is Clapp-Hornberger parameter and n is soil porosity. C1, C2, t and 

𝐾𝑠𝑎𝑡_𝑎𝑙𝑙 are parameters needing calibration.  

 In the VIC algorithm, surface runoff is generated as infiltration excess where the 

infiltration rate is characterized by the variable infiltration curve (Wood et al., 1992). In this 

work, the framework of modified 2-layer VIC model (VIC-2L) (Liang et al., 1996) is used. The 

water excess available for surface runoff is calculated as shown in Eq. (S3)-(S4). The water 

excess available for subsurface runoff is a function of soil moisture in lower soil layer (Eq. (S5)), 

which is a linear function of soil moisture when the soil is relatively dry and quadratic when the 

soil is close to saturation: 

 𝑒𝑠 = 𝑃 − 𝑧(𝜃𝑠 − 𝜃𝑈)/∆𝑡 − 𝑧𝜃𝑠 (𝑚𝑎𝑥 |0, [1 −
𝑖𝑜 + 𝑃∆𝑡

𝑖𝑚
]|)

1+𝑏𝑖

/∆𝑡 (S3) 

 𝑖𝑜 = 𝑖𝑚[1 − (1 − 𝐴)1 𝑏𝑖⁄ ] (S4) 

 𝑒𝑠𝑠 =
𝐷𝑆𝐷𝑀

𝑊𝑆𝜃𝑆
𝜃L + (𝐷𝑀 −

𝐷𝑆𝐷𝑀

𝑊𝑆
) (

𝑚𝑎𝑥|0, 𝜃L − 𝑊𝑆𝜃𝑆|

𝜃𝑆 − 𝑊𝑆𝜃𝑆
)

2

 (S5) 

where z is soil depth in upper layers (m); s is relative soil moisture at saturation; im is maximum 

infiltration capacity (m); i0 is infiltration capacity (m); bi is infiltration curve parameter; A is the 

fraction of saturation; DM is maximum base flow (m d-1); DS is the fraction of DM at which the 

non-linear base flow begins; WS is the fraction of saturation at which the non-linear base flow 

occurs; ∆𝑡 is time step (d). bi, DM, DS and WS are parameters which need calibration. 
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In STP algorithm, the surface runoff is generated as saturation excess overland flow (Eq. 

(S6)). The saturation fraction of the catchment fsat is determined as a function of topographic 

index (Eq. (S7)-(S8)).  

 𝑒𝑠 = 𝑓𝑠𝑎𝑡 ∗ 𝑃 (S6) 

 𝑓𝑠𝑎𝑡 = 𝑓𝑚𝑎𝑥 ∗ ex p( − 0.5 𝑧∇ 𝑓𝑜𝑣𝑒𝑟) (S7) 

where 𝑓𝑠𝑎𝑡 is the fraction of saturated area;  𝑓𝑜𝑣𝑒𝑟 is a decay factor for surface runoff water excess 

(m-1); 𝑧∇  is groundwater table depth (m); 𝑓𝑚𝑎𝑥 is the maximum saturated fraction and is defined 

as the percent of grid cells in each sub-basin with a topographic index () that is ≥ the mean  

determined by averaging all grid cell  values: 

 𝜏 = ln (
𝑎

𝑡𝑎𝑛 (𝛽)
) (S8) 

where 𝑎 is the specific catchment area (i.e.,upslope area per unit contour length) and  is the 

pixel slope. The specific catchment area 𝑎 and slope  are calculated for grid cell using the 

gridded elevation data and the TauDEM tools (Tarboton, 2003). 

The water excess available for subsurface runoff is a function of maximum base flow rate 

and groundwater table depth:  

 𝑒𝑠𝑠 = 𝑄𝑚 ∗ ex p( − 𝑓𝑑𝑟𝑎𝑖𝑛 ∗ 𝑧∇) (S9) 

where  𝑓𝑑𝑟𝑎𝑖𝑛 is a decay factor for subsurface runoff water excess (m-1), and 𝑄𝑚is the maximum 

baseflow rate (m d-1). Water excess for both surface and subsurface runoff are dependent of the 

groundwater table depth 𝑧∇. Here, the water table depth 𝑧∇ is determined by applying the method 

used in (Niu et al., 2005), which assumes the water head at depth z is in equilibrium with that at 

ground water depth 𝑧∇ (Eq. (S10)-(S13)). 

 𝜑(𝑧) − 𝑧 = 𝜑𝑠𝑎𝑡 − 𝑧∇ (S10) 

where 𝜑(𝑧) and 𝜑𝑠𝑎𝑡 are the matric potentials at depth z and at groundwater table depth 𝑧∇ (m). 

The soil at the groundwater table depth is assumed to be saturated. Based on Clapp-Hornberger 

relationship (Clapp and Hornberger, 1978), 𝜑(𝑧) can be expressed as: 

 𝜑(𝑧) = 𝜑𝑠𝑎𝑡(
𝜃(𝑧)

𝜃𝑠𝑎𝑡
)−𝑏 (S11) 

where θ(z) and θsat are soil moisture content at depth z and groundwater table depth 𝑧∇, 

respectively, b is a Clapp-Hornberger parameter. By substituting Eq. (S10) with Eq. (S11), the 

soil matric profile at depth z can be expressed as: 

 𝜃(𝑧) = 𝜃𝑠𝑎𝑡(
𝜑𝑠𝑎𝑡 − (𝑧∇ − 𝑧)

𝜑𝑠𝑎𝑡
)−1/𝑏 (S12) 

Then, the groundwater table depth (𝑧∇) can be determined by solving Eq.S13 iteratively. 

 𝐷𝜃 = ∫ (𝜃𝑠𝑎𝑡 − 𝜃(𝑧))𝑑𝑧
𝑧∇

0

 (S13) 

where Dθ is the soil moisture deficit, which can be calculated in Eq.S14: 
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 𝐷𝜃 = ∑(

𝑚

𝑖=1

𝜃𝑠𝑎𝑡 − 𝜃𝑖)∇𝑧𝑖 (S14) 

where 𝜃𝑖 is the soil moisture content at the ith soil layer; ∇𝑧𝑖 is the soil thickness of ith soil layer, 

m is the number of soil layer, m=2 in this study. In STP algorithm, fover, fdrain, Qm and φsat are 

parameters to be calibrated. 

 

𝐸𝑇 = min (PET, W − Wmin)   (S15) 

where PET is the potential evapotranspiration estimated using the method proposed by 

Raoufi and Beighley (2017); W is water content in the upper soil layers; Wmin is the 

minimum water content in the soil, defined as 0.15× Ws; Ws is soil water content as 

saturation. 

 

 

 𝐾 = 𝑘𝑠𝑎𝑡 × (
𝜃𝑈

𝑛
)𝑐 (S16) 

 𝐷 = 𝑘𝑠𝑎𝑡 × (
𝜃𝐿

𝑛
)𝑐 (S17) 

where K is the water flux from the upper soil layer to the lower soil layer (m d-1); and D is the 

water flux transported from the lower soil layer to the upper soil layer due to diffusion (m d-1).  

Plane Routing: 

 
𝜕𝑦𝑠

𝑑𝑡
+

𝜕𝑞𝑠

𝑑𝑥𝑝
= 𝑒𝑠 (S18) 

 
𝜕𝑦𝑠𝑠

𝑑𝑡
+

𝜕𝑞𝑠𝑠

𝑑𝑥𝑝
= 𝑒𝑠𝑠 (S19) 

Channel Routing:  

 
𝜕𝐴𝑐

𝑑𝑡
+

𝜕𝑄𝑐

𝑑𝑥𝑐
= 𝑞𝑠 + 𝑞𝑠𝑠 (S20) 

where ys and yss are water depth (or thickness) of surface and subsurface runoff, respectively 

(m); qs and qss are surface and subsurface runoff flow rates per unit width of plane (m2 s-1); dxp is 

the distance step along the plane (m); AC is the cross section area of flow in the channel (m2); Qc 

is the flow rate in channel (m3 s-1); dxc is the distance step along the channel (m); and dt is the 

time step (s). 
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Uncertainty Analysis 

 𝑆𝑆𝐻𝑦𝑑 = 𝑁𝑝𝑎𝑟𝑎𝑁𝐺𝐶𝑀𝑁𝑅𝐶𝑃 ∑ (𝑞𝑖𝑜𝑜𝑜 − 𝑞𝑜𝑜𝑜𝑜)2

𝑁𝐻𝑦𝑑

𝑖=1

 (S21) 

 

 

 

𝑆𝑆𝐻𝑦𝑑.𝑝𝑎𝑟𝑎 = 𝑁𝐺𝐶𝑀𝑁𝑅𝐶𝑃 ∑ ∑ (𝑞𝑖𝑗𝑜𝑜 − 𝑞𝑖𝑜𝑜𝑜 − 𝑞𝑜𝑗𝑜𝑜 + 𝑞𝑜𝑜𝑜𝑜)2

𝑁𝐻𝑦𝑑

𝑖=1

𝑁𝑝𝑎𝑟𝑎

𝑗=1

 (S22) 

 

 

𝑆𝑆3.4 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − (𝑆𝑆𝐻𝑦𝑑 + 𝑆𝑆𝑝𝑎𝑟𝑎 + 𝑆𝑆𝐺𝐶𝑀 + 𝑆𝑆𝑅𝐶𝑃 + 𝑆𝑆𝐻𝑦𝑑.𝑝𝑎𝑟𝑎

+ 𝑆𝑆𝐻𝑦𝑑.𝐺𝐶𝑀 + 𝑆𝑆𝐻𝑦𝑑.𝑅𝐶𝑃 + 𝑆𝑆𝑝𝑎𝑟𝑎.𝐺𝐶𝑀 + 𝑆𝑆𝑝𝑎𝑟𝑎.𝑅𝐶𝑃

+ 𝑆𝑆𝐺𝐶𝑀.𝑅𝐶𝑃) 

(S23) 

where 𝑞𝑖𝑜𝑜𝑜 is the average of all simulations from the ith hydrologic model with all combinations 

of parameter sets, GCMs and RCPs; 𝑞𝑜𝑗𝑜𝑜 𝑖𝑠 the average of all simulations from the jth parameter 

set with all combinations of hydrologic models, GCMs and RCPs; 𝑞𝑖𝑗𝑜𝑜 is the average of all 

simulations from the ith hydrologic model and jth parameter set with all combinations of GCMs 

and RCPs. Other terms in Eq. (3) can be calculated similarly using Eq. (S20)-(S21). 

 

 𝛿𝑒 =
1

6075
∑

𝑆𝑆𝑒(𝑚)

𝑆𝑆𝑇𝑜𝑡𝑎𝑙(𝑚)

6075

𝑚=1

 (S24) 

where 𝛿𝑒 is the average fractional effect of term e (i.e, each of 11 terms in Eq. (3)); 𝑆𝑆𝑒(𝑚) is 

the sum of variance of effect e in the mth subsample, and the 𝑆𝑆𝑇𝑜𝑡𝑎𝑙(𝑚) is the total variance in 

the mth subsample. So in this study, there are 11 𝛿𝑒 values in total, representing the uncertainty 

contributions of 11 terms in Eq. (3), with a sum of 1.0. 

 

Probability of estimated changes 

Bayesian model averaging (BMA) has been used to infer the probability of a quantity predicted by 

an ensemble of models(Duan et al. 2007). The BMA scheme can be described as below: 

For a predicted quantity variable y (i.e., the discharge), the probability of predicted y, given the 

observation D = (d1, d2, d3,…, dt) and model ensemble M = (m1,m2,m3,…, mK), 𝑝(𝑦|𝐷) can be 

calculated as: 

 𝑝(𝑦|𝐷) = ∑ 𝑝(𝑚𝑘|𝐷) × 𝑝(𝑦|𝑚𝑘, 𝐷)

𝐾

𝑘=1

 (S25) 

where k is the model ID and K is the number of models (i.e., K=3×3×10=90, note, the BMA is 

performed on historical period (1986-2005), so no RCP is considered); 𝑝(𝑚𝑘|𝐷) is the probability 

of model k to be the correct model given the observation D; 𝑝(𝑚𝑘|𝐷) is also called the weight of 

model k which is determined by the model’s ability for reproducing the observed values of quantity 

y; 𝑝(𝑦|𝑚𝑘, 𝐷) is the probability that model k generates the prediction of y; here, 𝑝(𝑦|𝑚𝑘, 𝐷) is 

assumed to be normal distribution. If model k predicts a value of 𝑓𝑘, then the probability that model 

k generates prediction y is normally distributed with a mean 𝜇 = 𝑓𝑘 (known) and standard 
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deviation 𝜎𝑘 (unknown). Therefore, to get the probability of predicted quantity y, the statistics 𝜎𝑘 

and the weights 𝑝(𝑚𝑘|𝐷) need to be determined. If we denote 𝑝(𝑚𝑘|𝐷) as 𝑤𝑘 and the unknown 

parameters as θ, then  

 𝜃 = {𝜎𝑘 , 𝑤𝑘 , 𝑘 = 1,2,3, … 𝐾} (S26) 

The optimal θ should maximize the probability of prediction y. If we denote the cost function as 

𝑙(𝜃): 

 𝑙(𝜃) = ∑ 𝑤𝑘 × 𝑁(𝑦|𝑓𝑘, 𝜎𝑘)

𝐾

𝑘=1

 (S27) 

To maximize 𝑙(𝜃), the Expectation–Maximization (EM) algorithm is used. Details on EM can be 

found in (Duan et al. 2007).  

In this study, the annual mean discharge and annual maximum daily discharge are the 

considered variables. Since these two variables are not normally distributed, a Box-Cox 

transformation is performed before applying the EM method. Considering the GCMs’ predictions 

are not temporally consistent with reality (i.e., the GCMs’ prediction does not have correct timing), 

the observation and simulation are both ranked from high to low, and then 𝑙(𝜃) is maximized based 

on the ranked series. The procedure is as follows: 

Step I: Calculate the observed annual mean discharge (or annual maximum daily discharge) at 

each watershed of interest for the period 1986-2005 

Step II: Calculate the simulated annual mean discharge (or annual maximum daily discharge) for 

each simulation in the ensemble (3×3×10=90 models) for the same period 

Step III: Rank the observed and simulated annual mean discharge (or annual maximum daily 

discharge) in a descending order 

Step IV: Calculate the Box–Cox coefficient λ for each watershed by using the BoxCox.lambda 

function in R and transform the quantities by using Eq.S26: 

 𝑧𝑡 =
𝑦𝑡

𝜆 − 1

𝜆
 (S28) 

Step V: Apply the EM process to the transformed series 𝑧𝑡 and estimate the weights and variance 

of all models 

Step VI: Calculate the probability of estimated changes in Qm, Qp and Q100 in the future (2081-

2100) relative to 1986-2005 using the weights obtained in Step V

For Qm, the statistics are: 

 𝜇𝑚 = ∑ 𝑤𝑘,𝑚 × 𝑐𝑘,𝑚

𝐾

𝑘=1

 (S29) 

 

𝜎𝑚
2 = ∑ 𝑤𝑘,𝑚 × (𝑐𝑘,𝑚 − 𝜇𝑚)2

𝐾

𝑘=1

 

(S30) 
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where 𝜇𝑚 and 𝜎𝑚 are the mean and standard deviation of posterior distribution of relative 

changes in Qm;  𝑤𝑘,𝑚 is the weight of model k in terms of Qm; 𝑐𝑘,𝑚 is the relative change in Qm 

predicted by model k; K is the total number of models, and here it is 90. 

For Qp, the statistics are: 

 𝜇𝑝 = ∑ 𝑤𝑘,𝑝 × 𝑐𝑘,𝑝

𝐾

𝑘=1

 (S31) 

 

𝜎𝑝
2 = ∑ 𝑤𝑘,𝑝 × (𝑐𝑘,𝑝 − 𝜇𝑝)2

𝐾

𝑘=1

 

(S32) 

where 𝜇𝑝 and 𝜎𝑝 are the mean and standard deviation of posterior distribution of relative changes 

in Qp;  𝑤𝑘,𝑝 is the weight of model k in terms of Qp; 𝑐𝑘,𝑝 is the relative change in Qp predicted by 

model k. 

For Q100, the statistics are: 

 𝜇100 = ∑ 𝑤𝑘,𝑝 × 𝑐𝑘,100

𝐾

𝑘=1

 (S33) 

 

𝜎100
2 = ∑ 𝑤𝑘,𝑝 × (𝑐𝑘,100 − 𝜇100)2

𝐾

𝑘=1

 

(S34) 

where 𝜇100 and 𝜎100 are the mean and standard deviation of posterior distribution of relative 

changes in Q100;  𝑤𝑘,𝑝 is the weight of model k for Qp; 𝑐𝑘,100 is the relative change in Q100 

predicted by model k. Here, the weights for Qp are used because Q100 is estimated based on the 

statistics of Qp series, so it is reasonable to assume that the model having a better ability in 

reproducing the annual peak discharge should also have a better ability in reproducing the Q100. 
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Figure S4. (a) Projected relative changes (%) in annual mean discharge (Qm) in the major 

SBC watersheds (indicated by the grey watersheds in the map) during 2081-2100 as 

compared to historical period (1986-2005); each bar depicts relative changes in minimum, 

maximum, median, 1st and 3rd quartiles for the ensemble outputs; bars from left to right 

spatially corresponding to watersheds from west to east. For clarity, only watersheds with 

drainage areas larger than 7 km2, which account for roughly 83% of the study area, are 

shown. (b) Relative sources (%) of the uncertainties in the projected changes at each of 

these watersheds; the category “other” is the uncertainty from the 3rd and 4th orders of 

interactions between the 4 major sources (i.e., GCMs, RCPs, Hydrologic models, denoted 

by “Hydro” and parameters denoted by “Para”) 
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Figure S5. (a) Projected relative changes (%) in annual peak discharge (Qp) in the major 

SBC watersheds (indicated by the grey watersheds in the map) during 2081-2100 as 

compared to historical period (1986-2005); each bar depicts relative changes in minimum, 

maximum, median, 1st and 3rd quartiles for the ensemble outputs; bars from left to right 

spatially corresponding to watersheds from west to east. For clarity, only watersheds with 

drainage areas larger than 7 km2, which account for roughly 83% of the study area, are 

shown. (b) Relative sources (%) of the uncertainties in the projected changes at each of 

these watersheds; the category “other” is the uncertainty from the 3rd and 4th orders of 

interactions between the 4 major sources (i.e., GCMs, RCPs, Hydrologic models, denoted 

by “Hydro” and parameters denoted by “Para”) 


