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Abstract. Recent advances in differentiable modeling, a
genre of physics-informed machine learning that trains neu-
ral networks (NNs) together with process-based equations,
have shown promise in enhancing hydrological models’ ac-
curacy, interpretability, and knowledge-discovery potential.
Current differentiable models are efficient for NN-based pa-
rameter regionalization, but the simple explicit numerical
schemes paired with sequential calculations (operator split-
ting) can incur numerical errors whose impacts on mod-
els’ representation power and learned parameters are not
clear. Implicit schemes, however, cannot rely on automatic
differentiation to calculate gradients due to potential issues
of gradient vanishing and memory demand. Here we pro-
pose a “discretize-then-optimize” adjoint method to enable
differentiable implicit numerical schemes for the first time
for large-scale hydrological modeling. The adjoint model
demonstrates comprehensively improved performance, with
Kling–Gupta efficiency coefficients, peak-flow and low-flow
metrics, and evapotranspiration that moderately surpass the
already-competitive explicit model. Therefore, the previous
sequential-calculation approach had a detrimental impact on
the model’s ability to represent hydrological dynamics. Fur-
thermore, with a structural update that describes capillary
rise, the adjoint model can better describe baseflow in arid re-
gions and also produce low flows that outperform even pure
machine learning methods such as long short-term memory
networks. The adjoint model rectified some parameter distor-
tions but did not alter spatial parameter distributions, demon-

strating the robustness of regionalized parameterization. De-
spite higher computational expenses and modest improve-
ments, the adjoint model’s success removes the barrier for
complex implicit schemes to enrich differentiable modeling
in hydrology.

1 Background

Accurate hydrological predictions are crucial for effective
water resource management around the world under a chang-
ing climate (Hannah et al., 2011; Sivapalan et al., 2003). In
recent years, deep learning models such as long short-term
memory (LSTM) networks have gained traction in hydrology
due to their high predictive performance in various applica-
tions, including streamflow prediction, soil moisture estima-
tion, and the modeling of stream temperature and dissolved
oxygen (Fang et al., 2017; Feng et al., 2020; Kratzert et al.,
2019; Ouyang et al., 2021; Rahmani et al., 2021a, b; Zhi et
al., 2023). Despite their impressive capabilities, deep learn-
ing models are often criticized for their limited interpretabil-
ity and dependence on extensive observations. Additionally,
they are unable to provide outputs for untrained variables
(those not trained using observations as targets), e.g., evapo-
transpiration (ET), water storage, or snow water equivalent,
which are of great interest to stakeholders but are not exten-
sively observed.
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Figure 1. A schematic view of the HBV model. gw is a parameterization neural network that seeks to capture the prevalent relationship
between raw input data and the HBV parameters (w represents the weights of the neural network). θ and θ t are the static and dynamic HBV
parameters, respectively. Isnow is the snowmelt infiltration to soil moisture, Rfz is the refreezing of liquid snow, and smelt is the snowmelt as
water equivalent. ET is the actual evapotranspiration, Peff is the effective flow to the upper subsurface zone, and Ex is the rainfall excess.
Q0, Q1, and Q2 are the near-surface flow, interflow, and baseflow, respectively. Q is the simulated streamflow at the catchment outlet.

In response to these limitations, alternative approaches
that merge the process-based understanding of hydrologi-
cal systems with various genres of physics-informed ma-
chine learning techniques have been explored. These ap-
proaches include differentiable modeling (DM), interpretable
machine learning approaches (Wang et al., 2021), postpro-
cessing (Frame et al., 2021), and embedding trained net-
works into existing models (Bennett and Nijssen, 2021). No-
tably, the neural networks must be pretrained using either
observations or model simulations as the target. Not many
approaches allow interpretability, continued updating of the
neural networks, and knowledge discovery at the same time.

Recently, differentiable modeling (DM) (Shen et al., 2023)
was proposed as a pathway to train neural networks (NNs)
together with physical equations in an “end-to-end” fash-
ion (Fig. 1), where the NNs can provide parameters or un-
known relationships for the process-based components (Tsai
et al., 2021; Feng et al., 2022, 2023; Aboelyazeed et al.,
2023; Bindas et al., 2024). When the model is “differen-
tiable” (explained in the next paragraph), we have a “credit
assignment path” (Schmidhuber, 2015) between tunable pa-
rameters and the objective function, which enables efficient
training of massive amounts of weights on big data based on
outputs of the combined system. It also removes the need for

direct supervising data for the output of the NN (although
such data can be used as additional constraints when avail-
able) and enables the discovery of knowledge from data. To
make the model differentiable, we prefer translating physical
models onto differentiable platforms, which would guaran-
tee the desired sensitivity as the physics are baked into the
model, over training an NN as a physical model surrogate.
As the models are interpretable, they can be used to provide a
full narrative of the physical processes and have the potential
to discover scientific knowledge and unrecognized linkages
from data. They also extrapolate better in space, especially in
data-sparse regions, due to using process-based equations as
the backbone of calculations and respecting assumed physi-
cal laws like conservation of mass (Feng et al., 2023).

Essentially, differentiable models aim to train coupled
NNs (by optimizing their weights, w, in Fig. 1) using gra-
dient descent. In the end-to-end fashion, we must be able to
calculate the gradients of model outputs with respect to NN
weights along all the steps (physical equations and NN lay-
ers) in the model. Models supporting such gradient calcu-
lations are called differentiable models (Shen et al., 2023).
Gradient descent is the only currently known way to train
NNs with massive amounts of weights on big data, and such
a computational infrastructure is very efficient, especially
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when paired with parallel GPU (graphics processing unit)
processing and automatic differentiation (AD, explained fur-
ther below). Modern machine learning platforms are built to
support differentiability and NN training using AD, but there
are other options as well. For example, while not the focus
of DM, we can train NNs as surrogate models for physical
models (minding all the complexities with maintaining the
accuracy of a surrogate model as well as the fact that we can-
not modify the internal functions of a surrogate model) and
place them alongside a parameterization network (Tsai et al.,
2021). As another example, adjoint state methods have been
developed to solve an accompanying equation to produce
gradients of an equation-solving step (Chen et al., 2018).

While there have been significant advances in differen-
tiable models, certain numerical approximations have been
introduced to facilitate their easy implementation on ma-
chine learning platforms utilizing AD. These approximations
can result in numerical errors, colloquially termed the “an-
cient numerical demon” (Clark and Kavetski, 2010; Kavet-
ski and Clark, 2010), with implications for the calibrated
parameter values. Such approximations encompass, but are
not limited to, ad hoc operator splitting (sequential opera-
tions), explicit numerical schemes without error control, and
the use of threshold-like functions to avoid negative state
variables, all of which can degrade the quality of gradi-
ent calculations for parameter optimization. Recently pub-
lished differentiable hydrological models (Feng et al., 2022,
2023) mostly used these numerical approximations because
of their straightforward implementation and a long legacy
of usage (Aghakouchak and Habib, 2010; Beck et al., 2020;
Bergström, 1976, 1992; Seibert and Vis, 2012). The numeri-
cal errors can be compensated for by pushing the calibrated
parameters to a different part of the parameter space (Clark
and Kavetski, 2010; Kavetski and Clark, 2010). With such
compensation, the performance metrics such as the Nash–
Sutcliffe model efficiency coefficient (NSE) can be kept high,
but the interpretation of the results and the physical signifi-
cance of the calibrated parameters are obscured. The impli-
cations of numerical errors were examined in detail before,
where Kavetski and Clark (2010) addressed the issues us-
ing implicit schemes. However, the issue of explicit versus
implicit solvers has not been examined in the context of a re-
gionalized parameterization scheme, especially a novel dif-
ferentiable model relying on regionalized parameter learning
with NNs, which applies implicit regional constraints. The
extent to which numerical schemes can impact regionalized
parameter distributions is unclear.

As an underpinning of deep learning, AD decomposes
complex calculations into a sequence of elementary arith-
metic operations and then applies the chain rule of differ-
entiation to compute the derivative of the output with re-
spect to its input variables. AD often needs to store some
intermediate results or instructions, thus consuming mem-
ory. AD typically requires very little effort on the modeler’s
side besides writing the model in a forward mode (no need

to provide gradient functions) on a machine learning plat-
form like PyTorch, Tensorflow, JAX, or Julia and is the ob-
vious tool to calculate gradients for explicit models. How-
ever, if we want to improve a model’s accuracy and stability
using implicit solvers that require iterative steps, AD could
run into the issue of having high overhead and excessive
memory usage. Memory use is a significant issue for GPUs,
which are crucial to modern machine learning. Furthermore,
tracking the gradients of the many iterative steps with AD
may lead to the dreaded vanishing gradient problem (Hochre-
iter and Schmidhuber, 1997) facing recurrent neural net-
work training, where the gradients become exceedingly small
and prevent the NN weights from being effectively updated.
These issues, unfortunately, make it challenging for differ-
entiable models to employ implicit solvers that encompass
a wealth of powerful and essential tools for solving some
equations, e.g., those containing elliptic operators (ground-
water equations, Todd and Mays, 2004; Richards’ equation,
Richards, 1931; shallow water equations, Sadourny, 1975;
heat equation, Bergman, 2011) or systems of nonlinear equa-
tions (Aboelyazeed et al., 2023).

The adjoint method has been widely used for equation-
constrained optimization (Cao et al., 2002) in various fields
such as meteorology, oceanography, and geophysics, but
only in recent years has it been applied for neural network
training with differential equations (Rackauckas et al., 2021).
Hydrological modelers have also used the adjoint for data as-
similation (Fisher and Andersson, 2001; White et al., 2003;
Neupauer and Wilson, 2001; Liu and Gupta, 2007; Castaings
et al., 2009; Jay-Allemand et al., 2020; Bandai, 2022). In-
stead of automatically working through the elementary oper-
ations as AD does, the adjoint solves another accompanying
equation (derived by the modeler based on the chain rule and
the associative property of matrix multiplication) to rapidly
produce the gradients of outputs with respect to inputs – more
precisely, it computes the vector-Jacobian product. However,
the adjoint method has not yet been extensively explored in
the context of large-scale, regionalized hydrological simula-
tions (White et al., 2003; Colleoni et al., 2022), which require
mini batch processing, high data throughput, and a long time
for integration. It is unclear whether the adjoint method is
applicable in this scenario.

Adjoint methods can be defined at different levels. Sim-
ply put, the adjoint state method is defined at the differ-
ential equation level (called “optimize-then-discretize”), in-
volving the solution of a separate differential equation for
the adjoint (Chen et al., 2018). However, we can also de-
fine it at lower functional levels, e.g., solving an adjoint
equation for a specific operator inside a discretized numer-
ical model (called “discretize-then-optimize”) (Onken and
Ruthotto, 2020). The latter is more naturally implemented
along with the numerical algorithms to solve the forward
problem.

In both machine learning and process-based modeling, an
important point for consideration is whether the basic ar-
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chitecture has the expressive power to represent the phe-
nomenon of interest. Deep networks can approximate ex-
tremely complex functions, due to the enormous number of
weights that can be trained, along with their generic architec-
ture (Hornik et al., 1989). For process-based models (or hy-
brid differentiable models), structural deficiencies may lead
to problematic behaviors that cannot be remediated (even
with the help of highly flexible NNs for parameterization).
It is unclear whether the difference between implicit and ex-
plicit solvers can lead to differences in representation and
whether differentiable models can help us identify structural
deficiencies.

In this work, we proposed the application of the discretize-
then-optimize adjoint method to implement implicit numer-
ical schemes in differentiable hydrological models (referred
to as implicit adjoint-based models or “adjoint models” for
brevity, also denoted as δHBV.adj). We then compared them
to the existing differentiable models with explicit Euler time
stepping and sequential operations (referred to as explicit se-
quential models or “sequential models” for brevity and de-
noted as δHBV). We investigated the impacts of these meth-
ods on hydrological model performance and parameter dis-
tributions. Furthermore, we examined the potential for these
adjoint-based methods to enhance the performance of differ-
entiable models, bringing them closer to or surpassing the
performance of state-of-the-art LSTM models. We sought
answers for the following questions.

1. Can we support implicit numerical solvers in large-scale
differentiable hydrological modeling, and what are their
implications for performance and computational effi-
ciency?

2. Do implicit and sequential models have different
representation power? That is, does the sequential-
calculation approach result in errors that prevent it from
accurately representing certain aspects of hydrological
dynamics?

3. Do we get very different parameter distributions with
the implicit (adjoint) model than with the sequential
model at the regional and local scales?

The full version name of the adjoint model is δHBV.adj-
CAMELS-hydroDL, where “δ” indicates differentiable mod-
eling, “adj” represents the adjoint, “CAMELS” represents
the training dataset, and “hydroDL” represents the software
implementation.

2 Data and methods

As a high-level summary, the differentiable model couples
an LSTM network to a conceptual hydrological model, Hy-
drologiska Byråns Vattenbalansavdelning (HBV), and trains
them together in an end-to-end fashion (from the input of
LSTM to the output of HBV) on daily discharge data from

671 basins in the conterminous United States (CONUS).
The LSTM, which provides static or dynamic parameters for
HBV, is not trained directly with pre-calibrated parameters
but is jointly trained with HBV using the discharge observa-
tions. This joint training, where the LSTM weights are up-
dated, is supported by either AD for the explicit HBV model
or the adjoint method for the implicit HBV model. The con-
ceptual frameworks of the two models are similar, and the
differences between AD and the adjoint only pertain to how
the gradients are obtained during backpropagation through
the solving of HBV’s equations. However, due to gradient
vanishing and memory issues arising from the required nu-
merical iterations, the implicit model simply cannot be sup-
ported by AD for backpropagation. In addition to the imple-
mentation of the implicit scheme, this work also evaluated
a structural change (incorporating capillary rise) to HBV,
based on insights acquired during joint training. We com-
pare the explicit (sequential), implicit, improved explicit (se-
quential), and improved implicit differentiable models and a
direct LSTM simulation of streamflow in terms of various
streamflow metrics, and the differentiable models are also
benchmarked in terms of ET and baseflow fraction simula-
tions. In the following, we describe the different parts of the
framework and discuss the differences between AD and the
adjoint method in more detail.

2.1 Datasets

We utilized the Catchment Attributes and Meteorology for
Large-sample Studies (CAMELS) dataset (Addor et al.,
2017; Newman et al., 2014) for this study. This dataset
comprises basin-averaged hydrometeorological time series,
catchment attributes, and streamflow observations from the
United States Geological Survey (USGS) for 671 catch-
ments across the CONUS. The majority of its daily stream-
flow observations span from 1980 to 2014. For our study,
the meteorological forcing data were sourced from Daily
Surface Weather Data on a 1 km Grid for North Amer-
ica (Daymet) Version 4 (Thornton et al., 2020). From the
CAMELS dataset, we incorporated catchment attributes such
as topography, climate patterns, land cover, soil, and geolog-
ical characteristics as inputs to our models (Table A1).

We compared our model simulations with the streamflow
observations as well as the streamflow simulations from a tra-
ditional process-based model, SAC-SMA (Sacramento Soil
Moisture Accounting), which was calibrated by the National
Weather Service. The simulation results of SAC-SMA are
provided in CAMELS. To assess the accuracy of predicted
intermediate variables, we also employed the Baseflow In-
dex (BFI) from the CAMELS dataset and ET data from the
MOD16A2 dataset (Running et al., 2017). The BFI is ob-
tained by applying Lyne and Hollick filters with warm-up
periods to streamflow hydrographs (Ladson et al., 2013). The
MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux
product provides 8 d composites at a 500 m pixel resolution
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and is aggregated to the average values at the basin levels.
The algorithm used for the MOD16A2 dataset relies on the
Penman–Monteith equation logic, incorporating daily mete-
orological reanalysis data and Moderate Resolution Imaging
Spectroradiometer (MODIS) remote sensing inputs like veg-
etation dynamics, albedo, and land cover (Monteith, 1965;
Mu et al., 2011; Running et al., 2017).

2.2 Models

2.2.1 Differentiable, learnable, regionalized
process-based model

This study utilized the differentiable regionalized process-
based model framework presented in Feng et al. (2022),
which employs the HBV model as its backbone and uti-
lizes LSTM for parameter regionalization. The motivation
for making the model differentiable is so that it can train
connected NNs in an end-to-end manner to learn robust and
complex relationships from big data, which can provide in-
direct supervision to the NNs. As stated above, the model
was already made programmatically differentiable because it
was implemented on the PyTorch ML platform, so gradient
information can backpropagate through it. However, it was
previously only integrated in time using the explicit Euler
method with no error control. The HBV model is a concep-
tual model that uses a set of linked storage components rep-
resenting processes like snow accumulation and melt, soil
moisture dynamics, and river routing to forecast river dis-
charge. To summarize the NN–HBV coupling succinctly, the
differentiable model based on HBV can be written as

θ = gw(x,A), (1)

where θ represents HBV physical parameters; A contains
35 static attributes such as topography, climate, soil texture,
land cover, and geology (Table A1); x represents the mete-
orological forcings; and gw is a parameterization neural net-
work that seeks to capture the prevalent relationship between
the input data and the HBV parameters (w represents the
weights of the neural network). θ can be formulated as being
either static-in-time or time-dependent, where new values are
obtained for every day of the simulation. More details about
the data can be found in Feng et al. (2022). The HBV forward
simulation is succinctly written as

Q= HBV(x,θ), (2)

where Q is the simulated streamflow. The HBV model uti-
lizes three primary forcing variables: precipitation (P ), tem-
perature (T ), and potential evapotranspiration (EP). The Har-
greaves (1994) method, which considers mean, maximum,
and minimum temperatures along with latitudes, is employed
to estimate EP, representing the total evaporative demand.
The same forcings, x (including P , T , and Ep), were used
in gw. It should be noted that HBV only serves as an exam-

ple, and other hydrological models (Knoben et al., 2019) can
be similarly employed.

2.2.2 Hydrologiska Byråns Vattenbalansavdelning
model

The HBV model employs a framework that includes five
water storages and associated fluxes to encapsulate the pri-
mary hydrological processes within a catchment. It can sim-
ulate hydrological variables, including soil moisture, ground-
water storage, evapotranspiration, quick flow, baseflow, and
streamflow. It consists of four main modules to classify all
storages and fluxes as shown in Fig. 1.

Snow accumulation and melt: this module uses a
temperature-index method to distinguish between rainfall
and snowfall and to simulate the snow accumulation and melt
processes:

dSp

dt
= Ps+Rfz− Ssmelt, (3)

Ps = P if T < θTT, otherwise 0, (4)
Rfz = (θTT− T )θDDθrfz, (5)
smelt = (T − θTT)θDD, (6)

where t is time; Sp is the current snow storage [mm]; Ps is
the precipitation as snow [mm d−1]; Rfz is the refreezing of
liquid snow [mm d−1]; Ssmelt is the snowmelt as water equiv-
alent [mm d−1]; and θTT, θDD, and θrfz are the threshold tem-
perature for snowfall [°C], degree-day factor [mm °C−1 d−1],
and refreezing coefficient [–], respectively.

dSliq

dt
= Ssmelt−Rfz− Isnow, (7)

Isnow = sliq− θCWHSp, (8)

where Isnow is the snowmelt infiltration to soil mois-
ture [mm d−1]; Sliq is the liquid water content in the snow-
pack [mm]; and θCWH is the water-holding capacity as a frac-
tion of the current snowpack [–].

Soil moisture and evapotranspiration: the model features a
simple soil moisture accounting scheme where precipitation
and snowmelt infiltration can contribute to either evapotran-
spiration or runoff. Potential evapotranspiration, typically
calculated externally (e.g., using the Hargreaves method;
Hargreaves, 1994), limits the actual evapotranspiration from
the soil storage.

dSS

dt
= Isnow+Pr−Peff−Ex −ET (+Cr) , (9)

Pr = P if T > θTT, otherwise 0, (10)

Peff =min

((
SS

θFC

)β
,1

)
(Pr+ Isnow) , (11)

Ex = (SS− θFC)/dt, (12)
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ET =min
((

SS

θFCθLP

)γ
,1
)
EP, (13)

Cr = θC · SLZ ·

(
1−

SS

θNDC · θFC

)
, (14)

where SS is the current storage in soil moisture [mm]; SLZ is
the current storage in the lower subsurface zone [mm d−1];
Pr is the precipitation as rain [mm d−1]; Peff is the effec-
tive flow to the upper subsurface zone [mm d−1]; Ex is the
rainfall excess [mm d−1]; ET is the actual evapotranspira-
tion [mm d−1]; Cr is the capillary rise from the lower subsur-
face zone; θC is a time parameter [d−1]; θFC is the maximum
soil moisture (field capacity) [mm]; θNDC is the fraction ratio
of the field capacity [–] and is set to a constant value of 1 in
the discrete model to prevent gradient explosion, while in the
adjoint model it is treated as a static parameter to be learned;
θLP is the vegetation wilting point [–]; β is a parameter influ-
encing the shape of the soil moisture function [–]; and γ is
a parameter influencing the shape of the evapotranspiration
function [–].

Runoff generation: runoff in the HBV model is repre-
sented by three components – two quick flows (near-surface
flow and interflow) and delayed runoff (or baseflow).

dSUZ

dt
= Peff+Ex −Perc−Q0−Q1, (15)

Perc=min
(
θpercSUZ/dt

)
, (16)

Q0 = θK0 (SUZ− θUZL) , (17)
Q1 = θK1SUZ, (18)
dSLZ

dt
= Perc−Q2 (−Cr) , (19)

Q2 = θK0SLZ, (20)

where SUZ is the current storage in the upper subsurface
zone [mm]; Perc is the percolation to the lower subsur-
face zone [mm d−1]; Q0, Q1, and Q2 are the near-surface
flow [mm d−1], interflow [mm d−1], and baseflow [mm d−1],
respectively; θperc is the percolation flow rate [mm d−1]; and
θK0 , θK1 , and θK2 are the recession coefficients [d−1].

Basin-scale routing: we employ a gamma function to sim-
ulate the flow routing through rivers and lakes within the
catchment, leading to the simulated discharge at the catch-
ment outlet.

Q(t)=

t∫
0

ξ(s)Q′(t − s)ds, (21)

ξ(s)=
1

0(θa)θ
θa
b

sθa−1e
−

1
θb , (22)

where Q′ =Q0+Q1+Q2; Q is the simulated streamflow
at the catchment outlet; and θa [–] and θb [–] are two routing
parameters.

In this work, we investigated two distinct HBV structures.
The first structure replicates the structure employed in Feng
et al. (2022), adapted from the HBV structure used in Beck et
al. (2020). A primary limitation of this structure is its inabil-
ity to represent the depletion of storages and the occurrence
of zero flow. In scenarios where precipitation events are min-
imal and soil moisture is not entirely depleted, there always
exists a recharge flow directed into the groundwater com-
partments, consequently producing a baseflow. To alleviate
this limitation, according to previous experiences (Knoben
et al., 2019), various strategies can be employed: (1) apply-
ing a threshold-based function to Q1 and Q2, (2) constrain-
ing the effective rainfall and excess volume, (3) adapting the
ET functions, (4) introducing a sink flux into the lower sub-
surface zone to directly remove water, or (5) incorporating
a capillary flux to redistribute water among the soil zones.
Among these strategies, we chose to incorporate a capillary
flux from the lower subsurface zone to the surface soil, as
illustrated by the dashed arrow in Fig. 1, in order to avoid in-
troducing threshold-like functions, which would complicate
gradient calculations. Notably, this is not the typical capillary
flux from the upper subsurface zone. Similarly, the recipro-
cal flux between different soil zones is profoundly influenced
by the operation order, making it more susceptible to nu-
merical errors in the sequential models. The capillary flux
can increase the evapotranspiration, especially when surface
soil moisture is at a diminished level, thereby moderating
the baseflow. This flux (Eq. 14) is mathematically accounted
for by additional terms in the brackets of Eqs. (9) and (19),
whereby it is subtracted from the lower subsurface soil zone
and added to the upper soil zone. The sequential and adjoint
models incorporating the capillary flux are referred to as “the
sequential improved model (δHBV improved model)” and
“the adjoint improved model (δHBV.adj improved model)”,
respectively.

2.2.3 Long short-term memory network

LSTM is a recurrent neural network (RNN) designed for
identifying patterns in long time series. While traditional
RNNs face challenges like vanishing or exploding gradients
(Hochreiter and Schmidhuber, 1997), LSTM alleviates these
issues using a distinct cell architecture with input, forget, and
output gates. These gates modulate information flow, render-
ing LSTM especially effective for tasks like time series fore-
casting and sequence-to-sequence modeling. Given LSTM’s
proficiency in capturing temporal dynamics, it serves two pri-
mary functions in this study: direct streamflow prediction and
regionalized parameterization.

Direct streamflow prediction using LSTM:

Q= LSTM(x,A,w). (23)

This model serves as a benchmark. The meteorological forc-
ings, x, used in the pure LSTM include precipitation, solar
radiation, maximum and minimum temperature, and vapor

Hydrol. Earth Syst. Sci., 28, 3051–3077, 2024 https://doi.org/10.5194/hess-28-3051-2024



Y. Song et al.: When ancient numerical demons meet physics-informed machine learning 3057

pressure. Attributes, A, include topography, climate, soil tex-
ture, land cover, and geology. w are the LSTM weights to
be trained for streamflow prediction. More details about the
pure LSTM streamflow model can be found in Kratzert et
al. (2019), and it is referred to here as the LSTM model. We
used the code from Kratzert et al. (2019) and ran the model in
the same training and testing periods as the HBV models. Al-
though we have a separate implementation that generated a
similar performance (Feng et al., 2020), here we include just
one LSTM model from a third party for cross-comparability.
While LSTM offers exceptional accuracy in streamflow pre-
diction, its application in hydrological modeling presents in-
terpretability challenges, and it does not produce intermedi-
ate physical states or fluxes.

Regionalized parameterization using LSTM: LSTM can
also serve as a parameter learning function, referred to as gw
in the DM framework:

θ or θ t = LSTM(x,A,w), (24)

where the parameters learned can be either static (θ ) or time-
dynamic (θ t ). The forcings, x, only include the precipitation,
temperature, and potential evapotranspiration used in HBV
(same as Feng et al., 2022). A includes the same 35 static at-
tributes used in the pure LSTM model and listed in Table A1.
w represents the LSTM weights to be trained for HBV pa-
rameter estimation.

When employed for regionalized parameterization (in this
context, this means that all available training sites are em-
ployed to train one network), LSTM establishes a correlation
between input data and HBV parameters. By learning from
a dataset with 671 basins, it tries to learn the implications
of basin characteristics, making it applicable to ungauged
basins. The HBV parameters used in Eqs. (3)–(22) can be
treated as static (θ ) or dynamic parameters (θ t ). When treated
as static, the same parameter value is used throughout the
HBV simulation, whereas dynamic parameterization (DP)
provides a time series of parameters that differ for each basin
and each day. In Feng et al. (2022), the DP approach was
adopted for parameter γ and β. In the adjoint model, be-
sides γ and β, the field capacity θFC is also treated as dy-
namic to enhance the adaptability of the model.

2.2.4 Backpropagation with a coupled NN and a
process-based model

Within the framework of the differentiable model, the HBV
model’s parameterization is achieved by optimizing the
weights, wi , of the LSTM. This process learns the relation-
ship between the input big data and the optimal parameteri-
zation using gradient descent:

wn+1
= wn−α

dL
dwn

, (25)

where α is the learning rate (a model hyperparameter) and
can be updated automatically by the optimizer, AdaDelta
(Zeiler, 2012); L is the loss function that evaluates the dis-
crepancy between the simulated and observed streamflow
based on the root-mean-square error (RMSE), conducted on
a mini batch of basins during the training process; and n is
the iteration number.

The gradient dL
dw can be decomposed into multiple terms

using the chain rule:

dL
dw
=
∂L

∂w
+
∂L

∂θ

dθ
dw
=
∂L

∂w
+

(
∂L

∂Q

∂Q

∂S

dS
dθ

)
dθ
dw
, (26)

where ∂L
∂w

represents the gradient of regularization terms ap-
plied to the weights in the loss function and ∂L

∂θ
represents

the gradient of the loss function with respect to the HBV pa-
rameters (θ ), which encompasses the backpropagation steps
through the loss function associated with the streamflow(
∂L
∂Q

)
and HBV functions

(
∂Q
∂S

dS
dθ

)
. dθ

dw represents the gra-
dient of the HBV parameters with respect to the LSTM
weights. During backpropagation, we automatically obtain
the gradient dL

dw as the program tracks through each function
and resolves the gradients from left to right of the chain rule
terms in Eq. (26).

2.2.5 Adjoint-based implicit scheme

The HBV model, like many hydrological models, relies on
a set of ordinary differential equations (ODEs) to simulate
processes. Following many previous hydrological modeling
studies, Feng et al. (2022) solved the HBV model by describ-
ing each process in a sequential manner with a daily time step
(sequential model). They managed the fluxes by sequentially
adding to or subtracting from the water storages, limiting the
depletion or saturation of storages with threshold functions
and ensuring that the storages were updated following each
individual process. It remains unclear how the explicit and
sequential approach to solving ODEs influences the param-
eter estimation and internal fluxes, subsequently altering the
prediction of streamflow.

To enhance numerical accuracy, this study utilized an
adjoint-based implicit numerical scheme to solve the ODEs
simultaneously and implicitly. The gradient components, ∂L

∂Q
,

∂Q
∂S

, and dθ
dw in Eq. (26), can be easily handled by AD. The

other gradient component, dS
dθ , is challenging for an implicit

solver due to the numerous iterations and matrix solving re-
quired (Eq. 2).

Consistent with the approach adopted in MARRMoT
(Knoben et al., 2019), in one time step, the time derivatives of
all ODEs are discretized using a first-order backward Euler
implicit scheme:
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St − St−1

1t
= f

(
St ,θ t

)
. (27)

This can be reformulated as a nonlinear equation:

F
(
St ,θ t

)
= f

(
St ,θ t

)
−
St − St−1

1t
= 0. (28)

The Newton–Raphson method is used to solve Eq. (28):

St,n = St,n−1
−
F
(
St,n−1,θ t,n−1)

F ′S
(
St,n−1,θ t,n−1

) , (29)

where n is the iteration number and S simply refers to a
generic storage. Typically, Eq. (29) is computed for many it-
erations until convergence, but the number of iterations poses
a challenge to AD (due to gradient vanishing) and GPU
memory as discussed above. To avoid applying AD through-
out the iterations, we differentiate F(S,θ)= 0 with respect
to θ :
∂F

∂θ
+
∂F

∂S

dS
dθ
= 0. (30)

Thus, we obtain the following equation:

dS
dθ
=−

(
∂F

∂S

)−1
∂F

∂θ
. (31)

Substituting Eq. (31) into Eq. (26), the gradient of weights of
LSTM becomes

dL
dw
=
∂L

∂w
+

dL
dθ

dθ
dw
=
∂L

∂w
−

(
∂L

∂S

(
∂F

∂S

)−1
∂F

∂θ

)
dθ
dw
. (32)

We seek to solve for the adjoint, λ, which satisfies(
∂F

∂S

)T
λ=−

(
∂L

∂S

)T
. (33)

Here the adjoint is a so-called “vector-Jacobian product”,

where
(
∂L
∂S

)T
is the vector and

((
∂F
∂S

)T )−1
is the Jacobian

matrix.
Upon obtaining the adjoint λ, we substitute it into Eq. (32):

dL
dw
=
∂L

∂w
+

dL
dθ

dθ
dw
=
∂L

∂w
+

(
λT
∂F

∂θ

)
dθ
dw
. (34)

While solving for the adjoint requires solving a matrix, the
adjoint method bypasses the need for direct AD through all
Newton iterations. Only after the Newton iteration converges
and the solution is obtained do we need to compute the vec-
tor and the Jacobian and solve the Jacobian matrix, thus
greatly reducing the amount of information that requires AD.
Furthermore, in our implementation, the adjoints for all the
basins in the mini batch are computed in parallel to permit
rapid training on the GPU. The forward processes and the
backward processes via backpropagation are summarized in
Fig. 2. In the backward mode, we only need to customize
the backward function of the Newton solver and pass dL

dθ for
backpropagation to the subsequent steps. The other parts are
automatically supported by PyTorch with AD.

2.2.6 Metrics, model training, and hyperparameters

The training phase employed data spanning 15 years, from
1 October 1980 to 30 September 1995, while the perfor-
mance evaluation was conducted on data spanning another
15 years, from 1 October 1995 to 30 September 2010. In all
the cases, one neural network was trained on all the training
basins with all the training data. The hyperparameters of the
LSTM unit were inherited from Feng et al. (2022). A hid-
den state of 256, a mini batch size of 100, and a time series
length of 365 d were used to train the models. The model
was trained to minimize an objective function (loss function)
based on the RMSE across all basins in a mini batch:

Loss= (1.0−αl)

√√√√√ B∑
b=1

T∑
t=1
(Q−Q∗)2

B · T

+αl

√√√√√ B∑
b=1

T∑
t=1

(
Q̂− Q̂∗

)2

B · T
, (35)

Q̂= log10

(√
Q+ ε+ 0.1

)
, (36)

where B is the number of basins (mini batch size), T is
the number of days involved in the training (time series
length), and Q̂ is the log-transformed streamflow (transfor-
mation done to better represent the low flows in the training
data). ε is a small value (1× 10−6) to stabilize the gradient
calculation. αl is a weight parameter to balance the model’s
performance between high flow and low flow, where a large
value of αl intends to improve the low-flow performance.
Here we set αl to 0.25, which was manually tuned in Feng
et al. (2022).

To evaluate model performance, the NSE (Nash and
Sutcliffe, 1970), the Kling–Gupta model efficiency coeffi-
cient (KGE; Gupta et al., 2009), and the low-flow- and
peak-flow-related hydrological signatures were computed for
streamflow as well as for other hydrological variables such
as ET and baseflow. The metrics used to evaluate all model
performances were the following.

– NSE: the NSE metric was derived from the ratio of the
error variance of the modeled time series to the variance
of the observed time series, with a value of 1 indicating a
perfect model and 0 indicating a performance equivalent
to using the long-term mean value as the prediction.

– KGE: the KGE metric considers correlation, bias, and
flow variability error, with a perfect simulation having a
value of 1.

– Low-flow RMSE: the low-flow RMSE represents the
RMSE of the bottom 30 % of the streamflow range.

– Peak-flow RMSE: the peak-flow RMSE represents the
RMSE of the top 2 % of the streamflow range.
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Figure 2. Schematic view of the forward code for streamflow prediction and backward code for gradient backpropagation. In the backprop-
agation process, the steps utilizing automatic differentiation (AD) can be automatically executed by PyTorch. We only need to address the
adjoint calculation and pass dL

dθ for backpropagation to the subsequent step. The bolded derivatives represent the outputs of each step in the
backward mode.

– Absolute FLV: the percent of the absolute bias of the
bottom 30 % (“low”) flow range, i.e., the sum of the ab-
solute bias of the low flow divided by the sum of low-
flow values.

– Absolute FHV: the percent of the absolute bias of the
top 2 % (“peak”) flow range, i.e., the sum of the absolute
bias of the peak flow divided by the sum of peak-flow
values.

– Baseflow Index spatial correlation: the correlation be-
tween the simulated BFI (Q2/Q) and the BFI from the
CAMELS derived from Ladson et al. (2013) across all
basins in a spatial context.

– Temporal ET simulation NSE: NSE of the ET time se-
ries from the models compared against ET data from the
MODIS satellite mission.

3 Results and discussion

In this section, we first examine the overall performance of
the adjoint model in comparison with the sequential model
and direct LSTM simulation. Then, we examine the impact
of a structural change (adding capillary rise to improve base-
flow performance) on the sequential and adjoint models. Fi-
nally, we examine how using an explicit sequential solution
or implicit solution impacts the spatial distribution of param-
eters produced by the regionalized parameterization network.

3.1 Adjoint model

Before making any structural changes, the adjoint model al-
ready demonstrated a highly competitive streamflow predic-
tion performance overall – its KGE, high-flow, and low-flow
metrics are all modestly better than those of the sequen-
tial model (Table 1). For KGE, the adjoint model (0.75)
was higher than the sequential model (0.73) but lower than
LSTM (0.77). In terms of peak-flow RMSE (lower is bet-
ter), the adjoint model scored 2.47 mm d−1, lower (and thus

better) than the 2.56 mm d−1 scored by both the sequen-
tial model and LSTM, which was in turn noticeably lower
than SAC-SMA’s 3.19 mm d−1. In terms of low-flow RMSE,
the adjoint model’s performance (0.048 mm d−1) was lower
than that of the sequential model (0.074 mm d−1) and LSTM
(0.055 mm d−1).

Surprisingly, the adjoint model (δHBV.adj) even slightly
surpassed the LSTM in peak-flow accuracy, reducing the me-
dian high-flow RMSE by 0.1 mm d−1 and the median FHV
by 0.2 %. While this difference is small, we remind the read-
ers that the metrics are extremely difficult to improve at this
level, and we have not noticed better high-flow metrics else-
where for this benchmark. The advance may be attributable
to δHBV.adj’s mass balance preservation (achieved by avoid-
ing the thresholds for negative state values) and reduction
of numerical errors, which forces the model to more accu-
rately represent extreme values. It is worthwhile mentioning
that, while δHBV.adj is competitive with LSTM at the me-
dian on CAMELS basins, as illustrated earlier, it was out-
performed by LSTM for the low-KGE basins (lower part in
Fig. 3, where NSE or KGE is in [0, 0.5]). One possibility is
that rainfall data have significant predictable bias and errors
for these basins (see more discussion in Sect. 4). On a side
note, this comparison also highlights that a single metric like
the median KGE or NSE may not tell the full story.

The adjoint model improved predictions for other hydro-
logical variables not employed as training targets (and thus
cannot be directly simulated by LSTM), including baseflow
and ET. The spatial correlation of the simulated BFI (Q2/Q)
was enhanced to 0.83, in comparison with the sequential
model’s correlation of 0.76 (Table 2). This improvement is
consistent with the adjoint model’s superior ability to cap-
ture low flows. The correlation of simulated ET with the
MODIS product was increased from 0.59 with the sequen-
tial model to 0.61 with the implicit (adjoint) model. Both the
BFI and the MODIS products are only alternative estimates,
but they are derived using different methods and MODIS uti-
lizes independent information, and thus a better agreement is
nonetheless an indication of better model behavior.
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Table 1. Summary of the statistical streamflow metrics for all the models in the testing period using Daymet meteorological forcing data. We
used the code from Kratzert et al. (2019) for cross-group comparability. Bold values denote the best metrics in each column.

Model Median Median Median Median Median Median Dynamic
NSE KGE absolute absolute low-flow peak-flow parameters

(non-absolute) (non-absolute) RMSE RMSE
FLV (%) FHV (%) (mm d−1) (mm d−1)

LSTM 0.73 0.77 40.59 13.46 0.055 2.56
(29.70) (−4.19)

SAC-SMA 0.66 0.73 59.40 17.55 0.081 3.19 –
(46.96) (−9.79)

δHBV 0.73 0.73 56.53 15.29 0.074 2.56 γ,β

(50.93) (−8.89)

δHBV.adj 0.72 0.75 43.29 13.25 0.048 2.47 γ,β,θFC
(37.61) (–4.33)

δHBV 0.73 0.75 35.69 15.45 0.049 2.72 γ,β

improved (21.09) (−10.61)

δHBV.adj 0.73 0.76 37.63 14.36 0.047 2.59 γ,β,θFC
improved (28.63) (−6.04)

Figure 3. Empirical cumulative distribution function of the test performance metrics for all the models: Nash–Sutcliffe efficiency (NSE, a)
and Kling–Gupta efficiency (KGE, b). LSTM represents a fully data-driven deep learning model previously used in Kratzert et al. (2019),
and SAC-SMA is a purely process-based model for which the simulation results are provided in CAMELS. δHBV represents the original
differentiable explicit “sequential” HBV model, and δHBV.adj is the implicit adjoint-based HBV model. “Improved” indicates models where
a capillary flux was added from the lower subsurface zone to the surface soil to mitigate issues with zero and low flows.

As the implicit model comprehensively improved the
streamflow simulation (high and low flows, uncalibrated
variables), we conclude that the numerical errors of the se-
quential model, introduced by the dependence on the order
of calculations, have a negative impact on the model’s ability
to represent hydrological dynamics and fit observations. The
differences are admittedly small, but one should not expect
major gaps here because the sequential model was already
highly competitive and did not leave too much room for im-
provement (Feng et al., 2022, 2023). It is also worthwhile
mentioning that the small differences in the median metrics
could manifest as larger differences in capturing some peak
events (Fig. 6).

Probing the low-flow issue further, the sequential model
seemed to have significant structural deficiencies in repre-

senting low flows, which were remediated by using the im-
plicit solver. The sequential model’s FLV values were much
larger than LSTM’s (Fig. 4a and c). With the implicit solver,
the adjoint model reduced FLV for a number of regions:
(i) on the Great Plains; (ii) in Indiana/Ohio (south of Lake
Michigan); and (iii) in some basins in the southeast, includ-
ing Florida (Fig. 4e). Therefore, the numerical errors with
the sequential model exerted a substantial negative impact
on the model’s ability to accurately represent baseflow. The
adjoint model mitigated the overestimation of zero and near-
zero flows in arid areas (as seen in Fig. 6, site i) and also
corrected the underestimation of the recession limb (refer to
Fig. 6, site ii).

We suspect the above-highlighted regions are where ef-
fective flow strongly competes with runoff and ET, and thus
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Figure 4. Maps of the percent of the absolute bias of the bottom 30 % (“low”) flow range (absolute FLV, %) of (a) the LSTM model, (b) the
sequential model, (c) the adjoint model, and (d) the adjoint improved model, together with maps of differences in FLV between (e) the adjoint
model and the sequential model, (f) the adjoint improved model and the adjoint model, (g) the sequential improved model and the LSTM
model, and (h) the adjoint improved model and the LSTM model. In panels (e)–(h), dark color indicates an improvement in the baseflow
representation. The sites annotated in the maps and represented by star-shaped points (and labeled with i, ii, and iii in panel a) represent the
locations for the plots in Fig. 6.

the order of calculations has large impacts on the separation
of fluxes. On the Great Plains, the precipitation tended to be
in sync with potential ET, and both were high in summer
months (Fang and Shen, 2017) – when the sequential HBV
calculates ET before effective flow, there can be significantly
less effective flow than if effective flow was computed first.
The belt of Indiana/Ohio has compacted soil with high bulk
density and difficulty with drainage and thus a shallow wa-
ter table, which also exists for Florida due to the low relief.
In all of these cases, there is competition between effective
flow and other processes (ET or excess rainfall): calculating
excess first could generate more excess volume than there

would be if ET is calculated first. In the arid southwest, the
competition between effective flow and ET is also important.
The implicit scheme mitigates this problem by solving two
operators simultaneously while avoiding overshooting fluxes
or stability issues, which enables a better fit to the data.

3.2 The impact of structural changes in HBV

Although the implicit scheme improved the simulations, all
the models, including the LSTM, exhibited significant under-
performance within the geographical expanse of the Great
Plains (Fig. 5), which was particularly pronounced in areas

https://doi.org/10.5194/hess-28-3051-2024 Hydrol. Earth Syst. Sci., 28, 3051–3077, 2024



3062 Y. Song et al.: When ancient numerical demons meet physics-informed machine learning

Table 2. Summary of the statistical hydrological signatures of all
the models in the testing period. Bold values denote the best metrics
in each column.

Methods Baseflow Median
Index NSE of the
spatial temporal ET

correlation simulation

LSTM – –
SAC-SMA – –
δHBV 0.76 0.59
δHBV.adj 0.83 0.61
δHBV improved 0.80 0.54
δHBV.adj improved 0.86 0.6

marked by low, or even zero, baseflow conditions (Fig. A1d).
In particular, the original HBV model encountered chal-
lenges in accurately simulating instances of zero flow due
to its structural limitations, resulting in high FLV values
(Fig. 4b and c). Specifically, even a minimal precipitation
event leads to the creation of a recharge flow in HBV from
the soil moisture zone to the subsurface soil zone, which sub-
sequently contributes to the baseflow.

As we enhanced the HBV model by adding a capillary
rise from the lower subsurface zone to the soil zone, the
baseflow simulations were improved for both the sequential
and adjoint models (Table 1 and Fig. 4c and d), with im-
provements over the default adjoint model in both the ab-
solute FLV (from 43.29 to 37.63 mm d−1) and Baseflow In-
dex (from 0.83 to 0.86). This means that a decent description
of baseflow in arid regions needs a mechanism to help the
model produce zero or near-zero baseflow, such as returning
water from the lower zones to the upper zone (though mul-
tiple other structural changes may have similar effects – see
Sect. 2.2.2). The structural change mostly continued to im-
prove FLV, substantially reducing FLV within the western
coastal regions, the southwestern region, the Great Plains,
and the Gulf Coastal Plain, characterized by relatively flat
topography and where groundwater-driven flow contributes
proportionally less to the overall streamflow dynamics, as
evident from the associated low Baseflow Index (Figs. 4f
and A1d).

The improvements with baseflows come with a penalty
in the high flows. The best adjoint improved model has a
low-flow RMSE of 0.047 mm d−1, better than the sequential
model, the adjoint model without capillary rise, or LSTM
(Table 1). However, the high-flow RMSE did see a slight in-
crease from 2.47 to 2.59 mm d−1, but this was still better than
the sequential models (Table 1 and Fig. 6, site iii). A critical
divergence in the absolute FLV of δHBV improved models
and LSTM appears in the central US (Fig. 4g and h), where
accurate flow predictions depend significantly on the fidelity
of actual ET simulations.

3.3 Analysis of impacts on parameterization

The adjoint and sequential models achieved optimal perfor-
mance with different dynamic parameterizations in this tem-
poral test (trained and tested on the same basins but in differ-
ent periods). The sequential model used γ and β as dynamic
parameters, while the adjoint model used dynamic γ , β, and
field capacity, θFC. θFC plays a significant role in computing
effective rainfall, excess, ET, and capillary rise, exerting a
substantial influence on the infiltration and recharge mecha-
nisms. Implicit schemes, involving more intricate computa-
tions like solving nonlinear equations, enable greater adapt-
ability to data. Adapting θFC dynamically can improve the
model’s ability to represent real-world hydrological behav-
ior, such as soil shrink and swell, frozen ground, soil surface
sealing, and expansion of the saturation excess areas (or vari-
able source area) (Schneiderman et al., 2007), which are not
directly considered in the default HBV.

The spatial patterns of the regionalized HBV parameter
values demonstrate moderate differences but still a signifi-
cant level of consistency between the sequential and adjoint
models, suggesting that our regionalization is robust. These
patterns also exhibit similarities to the parameter values esti-
mated by Beck et al. (2016) (Fig. A2, reprinted with permis-
sion) and also conform well to large-scale climate patterns
across the CONUS (Fig. 7a and b). It was known previously
that explicit and implicit schemes arrive at very different op-
timal parameters (Kavetski and Clark, 2010), so we had ex-
pected larger discrepancies, but the results show only moder-
ate shifts. Such consistency is likely due to the strong implicit
constraints imposed by parameter regionalization using data
from the whole CONUS. Since all the basins are served by
the same neural network for the mapping, θ = gw(xA), it en-
sures autocorrelation in the parameter fields due to autocor-
relation in the used predictors and thus suppresses overfitting
to local noise and numerical errors. As a result, the existence
of numerical errors alone did not lead to a noisy metric sur-
face for even the explicit model (as shown in Kavetski and
Clark, 2010). Previously, it was difficult to efficiently impose
such strong constraints and nearly optimally learn the param-
eters, but the differentiable modeling framework can enable
regionalization at low cost and high parallel efficiency.

Delving deeper into the parameter field changes due to em-
ploying the implicit solver, we found that the adjoint model
seems to have reduced some large (close-to-bound) parame-
ter values, which suggests that parameter compensation for
the numerical error is mitigated. The shape coefficient, β,
exhibits larger values (> 4) within warm climate regions,
while lower values (< 3) characterize cold and mountain-
ous regions (Figs. 7 and A1a). In North Dakota, the Gulf
Coastal Plain, and Florida, the adjoint model predicts a re-
duced β compared to the sequential model. β can influence
the flashiness of the peaks, and a larger β tends to cause more
threshold-like behaviors. Since the sequential model calcu-
lates ET after effective runoff and excess, the available wa-
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Figure 5. Maps of the KGE for (a) LSTM, (b) SAC-SMA, (c) the sequential model, (d) the adjoint model, (e) the sequential improved
model, and (f) the adjoint improved model. The sites annotated in the maps represented by the star-shaped points labeled with (i), (ii), and
(iii) represent the locations for the plots in Fig. 6.

ter for runoff is more than that for the adjoint model, which
solves the equation implicitly and thus needs such a large β
to generate the same amount of effective flow. A similar pat-
tern is observed for the field capacity, θFC, of the sequential
model. However, the adjoint model’s field capacity estima-
tion for the northeastern US is notably reduced compared to
the sequential model, attributed to a smaller clay fraction and
forest fraction (Fig. A1b and c), crudely aligning with the es-
timated θFC reported by Beck et al. (2016).

The adjoint model provided a reasonable estimation for
other key parameters, including the recession coefficient of
the lower subsurface zone (θK2 ) and the wilting point (θLP).
θK2 usually exhibits a pattern correlated with the BFI
(Fig. A1d). A higher BFI indicates greater groundwater-
based baseflow, corresponding to a lower θK2 value that leads
to diminished groundwater discharge during low-flow peri-
ods. Both the sequential and adjoint models exhibited a con-
sistent θK2 pattern that contrasts the BFI pattern (Figs. 7
and A1d). Overall, the estimated wilting point, θLP, of the se-
quential model is lower than that of the adjoint model, lead-
ing to increased ET. As mentioned, ET being underestimated
arises from the sequential solving approach of the sequential
model, and a smaller θLP compensates for such numerical er-
rors.

The sequential and adjoint models exhibit similar sen-
sitivity patterns across varying HBV parameters in high-
performance basins (as illustrated in Fig. 8a and b and the ge-
ographical locations in Fig. 7). This consistency again high-
lights the stability of the regionalization scheme, in con-
trast to the noisy metric surface shown in Kavetski and
Clark (2010) for single basins. For these two basins, we
see a smooth contour where the NN-predicted values (an-
notated by the symbol “o”) were not too far from the optimal
value. However, in basins exhibiting poor performance (as
depicted in Fig. 8c and d), their differences enlarged and ap-
parently numerical errors shifted the parameter distributions.
Although the overall contour patterns remain similar, the val-
ues of the contours have changed quite significantly, due to
the dependence on the calculation order.

The process of parameter regionalization introduces a
tradeoff between performance and spatial coherence, lead-
ing to parameters that might not be optimal for each spe-
cific basin; when this gap is too large, it suggests that there
might be some structural issues or missing information. Take
basin (D) (Fig. 8d) as an example, where the optimal val-
ues for θFC and β fall within the ranges of 100–200 mm
and 1.0–4.0, respectively, but the NN-predicted parameter
values (centers of the KGE contours in Fig. 8) deviate signif-
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Figure 6. The time series of streamflow simulations from the models and observations at the locations annotated in Figs. 4 and 5. The KGE
values of the models in the whole testing period are listed in the subfigures.

icantly from these optimal ranges. The regionalized parame-
ters thus produced a rather low KGE of −0.3. This tradeoff
could mean that some key processes are not well represented
and the parameters could potentially compensate for these
processes, but the compensation was prevented by region-
alization. A notable example is the absence of topographic
information and subbasin-scale spatial heterogeneity, which
are crucial for modeling arid basins but were not fully con-
sidered by the present parameterization network. These pa-
rameter gaps give us hints for the next stage of model im-
provements.

4 Further discussion

While this work focuses on enabling implicit solvers in dif-
ferentiable modeling, we do not suggest that explicit solvers
are to be discouraged. It has long been explored in the nu-
merical algorithm literature that each type of solver has ad-
vantages and disadvantages and is suitable for different prob-
lems. For example, implicit solvers are not only preferred,

but are also necessary for stiff ODEs, especially those with
dynamics on vastly different timescales and those result-
ing from the discretization of elliptic PDEs. Using explicit
solvers for them could necessitate very small time steps.

Further complications of using explicit schemes with
small time steps include computational expenses, parallel ef-
ficiency, and matching forcing functions. Even though hourly
data are now publicly available, directly training an hourly
model with ML techniques remains computationally expen-
sive and may also cause the problem of gradient vanishing if
the training time steps are too numerous (Gauch et al., 2021;
Greff et al., 2017). The numerical schemes employed in the
physical models within the differentiable modeling frame-
work need to maintain stability for simultaneous large-scale
simulations in each mini batch while also allowing for gra-
dient tracking. Batched learning and parallel efficiency may
prefer uniform operations across basins and challenge the
application of adaptive time-stepping algorithms. We con-
ducted tests on the differentiable HBV model with various
numerical schemes and fixed smaller time steps (Table A2
and Fig. A3). The sequential model and implicit adjoint
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Figure 7. Map of the optimized parameter β, field capacity θFC, recession coefficient of the lower subsurface zone θK2 , and wilting point θLP
from (a) the sequential model and (b) the adjoint model. The sites annotated on the maps as star-shaped points labeled with the letters A–D
represent the locations for the plots in Fig. 8.

model with a 1 d time step presented higher performance
than the explicit Euler schemes with smaller time steps or
the fourth-order Runge–Kutta scheme. The main reason may
be that the daily forcing inputs and daily physical parame-
ters from the neural network do not match the smaller time
steps within a day. Thus, explicit schemes with smaller time
steps may be complicated by the need for matching forcing
functions as well. Some multi-timescale ML techniques have
been used to predict hourly flood hydrographs using daily
flow data to avoid gradient-vanishing issues in the direct
hourly training (Gauch et al., 2021; Sarıgöl and Katipoğlu,
2023). These approaches present possible solutions for fu-
ture investigations.

The parameterization function (the neural network) em-
bedded in the differentiable models demonstrates robustness,

as evidenced by the similarity of parameter patterns and
metric surfaces derived from various numerical schemes in
Figs. 7 and A3. We did not observe a notable macroscale
roughness in the metric surface (Fig. A3) as shown in Kavet-
ski and Clark (2010) when using explicit schemes. Moderate
distortions and roughness were present on the KGE surface
in models employing the RK scheme (sites A and D). As we
reduced the time steps and transitioned to implicit schemes,
these distortions seem to have alleviated and converged to-
ward the metric surface, consistent with the better numerical
solution. That is, the 4-hourly and hourly patterns are more
similar to the implicit results than that of the RK scheme.
The convergence toward the implicit scheme suggests that
the implicit scheme results are more reliable.
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Figure 8. Impact of numerical schemes on the KGE surface of the HBV model: the contour of KGE calculated from the (I) sequential model
and (II) adjoint model on the 2D slice of field capacity (θFC) and parameter β. The predicted parameter values are positioned at the central
point of the contours delineated by circles. The locations of the selected sites are annotated in Fig. 7.

The adjoint method was used in this work to support the
implicit numerical scheme in differentiable models, which
allows for the efficient joint training of the neural networks
with physical models using gradient descent. Such joint and
“online” training on big data is not possible without the
process-based model being differentiable, because the only
presently known way to train such a large number of weights
is via backpropagation. While we utilized a coupled neural
network in this work for regional parameterization, it can
also be used to replace any component of the physical model
for knowledge discovery. For example, the runoff module in
the HBV model could be replaced with a neural network.
Thanks to their ability to train on big data, differentiable
models can be trained on all basins and constrain a common
neural network to learn a universal relationship between the
inputs and the physical parameters. Such relationships can
be used for interpolation and extrapolation at sites lacking
observations.

While the differentiable implicit model outperforms the
sequential one and offers state-of-the-art performance, it
incurs a substantially larger computational cost. Newton’s
method to solve the implicit equation requires a number of
iterations (approximately three to four iterations to solve
Eq. 29) and, for the sake of the adjoint, we need to solve

a matrix (Eq. 33). The calculation of the Jacobian matrix
for multiple basins, depending on the batch size, also con-
sumes time. In addition, the more complicated computational
instructions of the adjoint procedure may encounter higher
CPU overhead and thus a lower GPU utilization rate com-
pared to the forward simulations. For all these reasons, the
computational cost is almost 5–10 times that of the sequential
model. For context, compared to running traditional models
on CPUs, our implementation is already orders of magnitude
more efficient due to parallel efficiency. Nonetheless, the in-
creased computational demand for the implicit solver still
creates challenges for training at large scales, as it requires
thousands of forward simulations. As a potential solution,
based on the parameter consistency between the sequential
and implicit models, it seems we can use the inexpensive se-
quential model as an “explorer model” for model structure
identification, hyperparameter tuning, and neural network
pretraining. Then we can fine-tune the network using the
adjoint model. Hence, both models offer utility for global-
scale applications. Although the adjoint model already out-
performed LSTM in terms of low-flow and high-flow RMSE
values, which is an astounding result, they still fell slightly
behind LSTM at certain basins, with poor performance in the
central and western US (arid regions). In the future, we can
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assess multiple hypotheses that may explain why the adjoint
model’s performance in these regions is not as good as that
of LSTM. (A) The differentiable model is more hampered
by precipitation bias in these regions than is LSTM, which
can internally account for predictable bias. (B) HBV’s base-
flow inadequacy arises from not fully utilizing forcing in-
formation. LSTM can fully utilize information in the inputs,
e.g., solar radiation and vapor pressure, while the present
HBV model only uses temperature in determining PET, apart
from precipitation. The difference in solar radiation and va-
por pressure could have impacted long-term water balance
and baseflow. Future work could use the Penman–Monteith
equation for PET, which considers vapor pressure, or learn
better PET equations from data (Zhao et al., 2019). (C) HBV
faces a larger tradeoff between matching the high- and low-
flow portions of the observed hydrographs, and the adjoint
models sacrificed low-flow performance to some extent in fa-
vor of better overall performance. (D) The model backbone,
HBV, is unable to represent some groundwater dynamics,
e.g., lateral redistribution of moisture from hillslope to val-
ley (Clark et al., 2015; Fan et al., 2019). While LSTM could
internally form a cascade of neurons that transfers mass akin
to lateral groundwater movements, the two-layer groundwa-
ter structure in HBV is too simple to represent such impacts.
These hypotheses will lead us to improved model structures
with the help of data. An unprecedented advantage with dif-
ferentiable modeling is that we can simultaneously learn ro-
bust relationships from large data and find nearly optimal pa-
rameterization schemes. This reduces the complex, iterative
testing between different model structures and parameter op-
timization.

In future research, it would be valuable to evaluate the ad-
vantages and disadvantages of optimize-then-discretize ver-
sus discretize-then-optimize adjoint methods in hydrolog-
ically differentiable models. Generally, the optimize-then-
discretize approach tends to be less accurate because of gra-
dient inaccuracies when the adjoint state differential equa-
tions are not sufficiently resolved. On the other hand, the ad-
joint in the discretize-then-optimize method is solved from
the Jacobian matrix using automatic differentiation, offer-
ing greater efficiency and accuracy compared to numeri-
cally solving the adjoint differential equation (Onken and
Ruthotto, 2020). Nevertheless, more work is required to thor-
oughly compare the two options.

The adjoint used in this work is derived for the gradient
of the Newton solver such that it can theoretically support
any model that can be solved with the Newton solver – not
only bucket models governed by ODEs, but also distributed
models governed by PDEs. However, the challenge may still
exist in calculating the Jacobian matrix for a batch of basins
for PDEs, as the distributed parameters in PDEs are signif-
icantly greater in number than those in ODEs and can slow
down the efficiency of the model in both forward and back-
ward modes.

AD is a tool that we seldom used prior to the prevalence
of deep learning, nor did we have modern GPUs or the soft-
ware to maximize its utilization. The past few years saw sub-
stantial software and hardware investments from the artificial
intelligence community that have made these tools orders of
magnitude more efficient. Utilizing these tools and running
hydrological models on such platforms means the water com-
munity can leverage these investments and can grow with the
AI community at little cost. For example, the model can au-
tomatically become even faster with slight effort to embrace
just-in-time compilation of Torch 2.0 (Wu, 2023).

5 Conclusions

Our comparisons show that the numerical errors associated
with the sequential model, and especially its dependence on
the order of computation, had a detrimental impact on its
representation power – it cannot provide high-quality low-
flow, high-flow, and groundwater simulations and can intro-
duce parameter compensations. The adjoint method for gra-
dient calculation enables the use of implicit solvers in dif-
ferentiable modeling, partially mitigating the numerical er-
rors. While not explicitly demonstrated, other hydrological
problems that require implicit solvers can similarly benefit
from the adjoint method. With the implicit solver and with
a structural change (capillary rise), our model comprehen-
sively improved the simulations of low flow and an uncali-
brated variable, baseflow fraction. While some of the differ-
ences in metrics may not seem large, they are already signif-
icant and could result in flood peaks being more accurately
predicted. The comparison of baseflow simulations also im-
plies that the same numerical issue may hamper other mod-
els, so that, in order to achieve top-of-the-line performance
with differentiable models, numerical errors have to be ex-
amined, and the implicit model and adjoint will be needed.

The capacity of differentiable models to outperform
LSTM in low-flow and high-flow metrics at the median of
CAMELS basins proves that structural priors (and physi-
cal interpretability) and state-of-the-art performance are not
mutually exclusive, and pure deep networks are not neces-
sarily the performance ceiling of environmental models (al-
though we do expect them to be close to optimal). In fact, for
rarely observed events or spatial extrapolation, structural pri-
ors may potentially overcome data limitations. The fact that
modifying the structure can result in better physical repre-
sentations hints that we can make further improvements to
baseflow and peak flow and identify better structures from
data.

The regionalization scheme produced overall stable pa-
rameter fields that, on first look, have similar patterns be-
tween sequential and implicit models, but a deeper investi-
gation shows that the implicit scheme reduced large, near-
bound parameter values where competition between fluxes is
likely to occur. This is visual evidence that parameter com-
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pensation occurs more strongly with the sequential model
and can be mitigated. Since it is preferable to remove the
interference of numerical errors prior to interpreting the pa-
rameter fields, the implicit model would be favored when the
interest is in the intermediate parameters or internal fluxes.
The ancient demon of numerical errors remains relevant in
the new era of big data, but may be mitigated by the adaptive
capability of deep networks.

Appendix A

Table A1 shows the forcing and attribute variables used in
the LSTM models.

We provided the maps with four attributes (aridity, forest
fraction, clay fraction, and Baseflow Index) used in the dif-
ferential models to support our analysis (Fig. A1).

We reprinted Fig. 4 of Beck et al. (2016) to facilitate a
comprehensive parameter comparison (Fig. A2).

We conducted tests on the differentiable HBV model
with various numerical schemes and time steps (Table A2,
Fig. A3). The forcing and physical parameters estimated by
the neural network (LSTM) remain constant within a day. In
theory, with smaller time steps, we were supposed to config-
ure the forcing function and LSTM to provide hourly inputs
and physical parameters that match the progression of time
within a day; i.e., the inputs should reflect diurnal changes in
forcing. However, this configuration would greatly increase
the memory usage and complexity and is thus beyond the
scope of this study (Gauch et al., 2021). Here we distinguish
between an explicit scheme and a sequential scheme with
operator splitting: the explicit scheme solves the right-hand
side of the ODE simultaneously, while the sequential scheme
applies an order to the operations, generally from the sur-
face to the subsurface, as directed in the original HBV. The
fixed-step explicit Euler scheme with a 1 d time step caused
divergence in the large-scale simulation due to its instabil-
ity. However, with 4 and 1 h time steps, the explicit Euler
schemes exhibited better performance than the fourth-order
Runge–Kutta (RK) explicit scheme but still lagged behind
the daily sequential scheme that employed ad hoc operation
splitting or the implicit adjoint scheme. The regional parame-
ters learned through various numerical schemes exhibit simi-
larity, indicating the robustness of the parameterization func-
tion (the neural network) embedded within the differentiable
models (Fig. A3). However, parameter distortion and surface
roughness in the KGE models employing explicit schemes,
particularly the RK scheme, were still observed.
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Table A1. Summary of the forcing and attribute variables used in all the models.

Variable Name Unit

Forcings PRCP Precipitation mm d−1

Ep Potential evapotranspiration mm d−1

T Temperature °C

Attributes p_mean Mean daily precipitation mm d−1

pet_mean Mean daily PET mm d−1

p_seasonality Seasonality and timing of –
precipitation

frac_snow Fraction of precipitation –
falling as snow

Aridity PET/P –

high_prec_freq Frequency of high- d yr−1

precipitation days

high_prec_dur Average duration of high- d
precipitation events

low_prec_freq Frequency of dry days d yr−1

low_prec_dur Average duration of dry d
periods

elev_mean Catchment mean elevation m

slope_mean Catchment mean slope m km−1

area_gages2 Catchment area (GAGESII km2

estimate)

frac_forest Forest fraction –

lai_max Maximum monthly mean of –
the leaf area index

lai_diff Difference between the –
maximum and minimum
monthly means of
the leaf area index

gvf_max Maximum monthly mean of –
the green vegetation

gvf_diff Difference between the –
maximum and minimum
monthly mean of the
green vegetation
fraction

dom_land_cover_frac Fraction of the catchment –
area associated with
the dominant land cover

dom_land_cover Dominant land cover type –
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Table A1. Continued.

Variable Name Unit

Attributes root_depth_50 Root depth at the 50th m
percentile, extracted
from a root depth
distribution based on
the International
Geosphere-Biosphere
Programme (IGBP) land
cover

soil_depth_pelletier Depth to bedrock –

soil_depth_statgso Soil depth m

soil_porosity Volumetric soil porosity –
soil_conductivity

soil_conductivity Saturated hydraulic conductivity cm h−1

max_water_content Maximum water content m

sand_frac Sand fraction –

silt_frac Silt fraction –

clay_frac Clay fraction –

geol_class_1st Most common geologic –
class in the catchment basin

geol_class_1st_frac Fraction of the catchment –
area associated with its
most common geologic
class

geol_class_2nd Second most common –
geologic class in the
catchment basin

geol_class_2nd_frac Fraction of the catchment –
area associated with its second
most common geologic class

carbonate_rocks_frac Fraction of the catchment area as –
carbonate sedimentary rocks

geol_porosity Subsurface porosity –

geol_permeability Subsurface permeability m2
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Table A2. Summary of streamflow metrics for models using different numerical schemes and time steps. Timing was obtained on an Nvidia
Tesla V100 GPU.

Model Numerical Time Memory Computational Median Median Median Median
scheme step usage time per batch NSE KGE low flow peak

per batch RMSE flow
(mm d−1) RMSE

(mm d−1)

δHBV Fixed-step 1 day 2274 M 1.6 s – – – –
explicit

δHBV Fourth-order 1 d 2532 M 3.9 s 0.69 0.70 0.061 3.25
Runge–Kutta
explicit

δHBV Fixed-step 4 h 2706 M 6.3 s 0.72 0.71 0.09 2.50
explicit

δHBV Fixed-step 1 h 4146 M 18.1 s 0.72 0.71 0.08 2.63
explicit

δHBV Sequential 1 d 2266 M 1.8 s 0.73 0.73 0.074 2.56

δHBV.adj Implicit 1 d 2788 M 19.5 s 0.72 0.75 0.048 2.47
adjoint

Figure A1. Map of the static attributes: (a) aridity, (b) forest fraction, (c) clay fraction, and (d) Baseflow Index from the CAMELS dataset.
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Figure A2. For HBV, mean values of the regionalized parameters based on the 10 most similar donor catchments for (a) the maximum water
storage in the unsaturated-zone store (FC), (b) the soil moisture value above which actual evaporation reaches potential evaporation (LP),
(c) the shape coefficient of the recharge function (β), and (d) the recession coefficient of the lower groundwater store (K2). Reprinted with
permission from Beck et al. (2016).

Hydrol. Earth Syst. Sci., 28, 3051–3077, 2024 https://doi.org/10.5194/hess-28-3051-2024



Y. Song et al.: When ancient numerical demons meet physics-informed machine learning 3073

Figure A3. Impact of numerical schemes on the KGE surface of the HBV model: the contour of the KGE calculated from the (I) fourth order
Runge–Kutta explicit scheme, (II) fixed-step Euler explicit scheme with a 4 h time step, (III) fixed-step Euler explicit scheme with a 1 h time
step, (IV) sequential scheme, and (V) implicit adjoint scheme, on the 2D slice of the FC and parameter. The predicted parameter values are
positioned at the central point of the contours delineated by circles. The locations of the selected sites are annotated in Fig. 7.
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Data availability. Our code for the adjoint differentiable models
can be downloaded at https://doi.org/10.5281/zenodo.11205309
(Song, 2024a) or https://github.com/mhpi/HydroDLAdj
(Song, 2024b). The CAMELS dataset can be downloaded at
https://doi.org/10.5065/D6MW2F4D (Newman et al., 2014;
Addor et al., 2017). MODIS ET data can be downloaded at
https://doi.org/10.5067/MODIS/MOD16A2.006 (Running et al.,
2017).
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