
Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

 Ahmed Mohamed Abdelhaffiez Hussein

Doctor of Philosophy

EFFECTIVE MEMORY MANAGEMENT FOR MOBILE ENVIRONMENTS

 Antony L. Hosking

Mathias Payer

Suresh Jagannathan

Xiangyu Zhang

11/10/2016

Antony L. Hosking and Mathias Payer

William Gorman

EFFECTIVE MEMORY MANAGEMENT

FOR MOBILE ENVIRONMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ahmed Mohamed Abd-elhaffiez Hussein

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10244784

10244784

2017

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 The Double Edged Sword in Fast Mobile Advances 1
1.2 Thesis Statement . 2
1.3 Choice of Platform . 3
1.4 Work Plan . 4
1.5 Results . 7
1.6 Thesis Organization . 8

2 BACKGROUND AND RELATED WORK 9
2.1 The Android Software Stack . 10
2.2 Kernel Layer . 11

2.2.1 Power management . 11
2.2.2 Memory management . 13

2.3 Android Virtual Machine . 15
2.3.1 App isolation . 15
2.3.2 Garbage collection in Dalvik 16
2.3.3 Garbage collection in Android Runtime 18
2.3.4 Android compiler . 18

2.4 GC Evaluations . 19
2.5 Mobile Application Behavior . 21

2.5.1 Security . 21
2.5.2 Usage patterns and context-aware approaches 22
2.5.3 Managed runtime and microarchitecture evaluation 22

3 RIGOROUS EXPERIMENTATION ON MOBILE PLATFORMS 24
3.1 Motivation . 24
3.2 Experimental Challenges on Mobile Platforms 26

3.2.1 System complexity . 26
3.2.2 Characterizing suitable benchmarks and workloads 29

3.3 The Etalon Benchmark Suite . 30

iii

Page
3.3.1 Specifications . 31
3.3.2 Origins of the source code . 33
3.3.3 Android apps . 35

3.4 Experimental Environment . 37
3.5 VM Profiling . 39

3.5.1 Gathering memory events . 39
3.5.2 Power measurements . 40

3.6 Summary . 43

4 IMPACT OF GC DESIGN ON POWER AND PERFORMANCE 45
4.1 GC Extensions . 46

4.1.1 Generational CMS . 46
4.1.2 On-the-fly . 47
4.1.3 Concurrency policies . 48

4.2 Results . 48
4.3 Summary . 51

5 CONTROLLING THE GC POWER CONSUMPTION 52
5.1 Objective . 52
5.2 Approach . 53
5.3 Results . 55

5.3.1 Energy and throughput . 58
5.3.2 Responsiveness . 60

5.4 Discussion . 62
5.4.1 Choice criterion to characterize workload 62
5.4.2 Android runtime extension . 63

5.5 Summary . 64

6 GARBAGE COLLECTION AS A SERVICE 65
6.1 Motivation . 65
6.2 Design and Architecture . 68

6.2.1 Challenges . 70
6.2.2 Global collector and energy optimization 71
6.2.3 global GC service vs. global GC policy 73

6.3 Service Implementation . 73
6.3.1 System startup . 74
6.3.2 Communication with applications 74
6.3.3 Energy optimization . 75
6.3.4 Memory layout . 76
6.3.5 Heap size management . 78

6.4 Experimental Results . 80
6.4.1 Workload . 81
6.4.2 Global evaluation . 81
6.4.3 Local per-VM evaluation . 84

iv

Page
6.4.4 Interprocess overhead . 88

6.5 Summary . 88

7 FUTURE WORK . 91
7.1 Tuning the GC Service . 91
7.2 Code Optimization Service . 92
7.3 Security . 92

8 CONCLUSIONS . 94
8.1 GC Impact on Android devices . 94
8.2 GC As A Service . 94
8.3 Benchmarking and Evaluation Methodology 95

REFERENCES . 97

A HARDWARE SCHEMATICS . 108

B IMPACT OF POWER MANAGER ON THE VM 112
B.1 Power Measurements . 112
B.2 Time Execution . 117

VITA . 119

v

LIST OF TABLES

Table Page

2.1 Android versions . 10

3.1 Benchmark characteristics for Dalvik CMS (ignoring zygote process) 37

3.2 Build properties in our experimental environment 38

6.1 App execution time in foreground and background modes (Background OF-
F/ON respectively) . 84

6.2 Context switching overhead . 88

B.1 Impact of the governor and the thermal-engine on the throughput experiments 118

vi

LIST OF FIGURES

Figure Page

2.1 Android system architecture . 9

2.2 Android architecture (left) and mainstream Linux (right) 11

2.3 Interaction between VM and power mechanisms on Android 13

2.4 Low memory killer configurations . 13

2.5 Dalvik tracing Just-in-time compiler . 19

3.1 Profiler sequence diagram . 38

3.2 CPU power measurement . 41

4.1 Effect of targetutil on CPU cycles (bottom) & frequency transitions (top)
normalized to default CMS . 49

4.2 Effect of targetutil on energy (bottom) & throughput (top) normalized to
default CMS . 49

4.3 xalan (top), lusearch (bottom): Core frequency distribution (as fraction of time) 50

5.1 Timeline of frequency transitions for lusearch (top), xalan, javac and jack
(bottom) respectively . 56

5.2 Cumulative average GC daemon CPI . 57

5.3 Total consumed energy . 57

5.4 Average overall CPI . 59

5.5 Effect on energy and throughput . 59

5.6 Minimum mutator utilization . 60

5.7 Effect of targetutil on CPI . 62

5.8 Cumulative average GC daemon CPI varying targetutil 63

6.1 Comparing default Android stack and GCService 69

6.2 Shared heap layout in the GC service . 76

6.3 Control flow of tasks in the GC service 76

6.4 Heap growth procedure following a GC task 78

vii

Figure Page

6.5 Object size histograms and loaded classes 81

6.6 Power trends when launching apps for first time (new) vs. cached apps . . . 82

6.7 Memory stats vs. time in seconds . 83

6.8 Stacked trim counts per app during runtime: GCService trims more apps . . 84

6.9 App exec. time & energy in foreground and background modes compared to
the default execution . 85

6.10 Worst case and average pauses (WCPT and AvgPT) in GC service as % of
respective ART pauses . 86

6.11 The impact of trimming on power when running Spotify in the background
normalized to the steady state . 87

6.12 Heap characteristics of Spotify vs. time measured in bytes allocated 89

A.1 High-level PM8841 functional block diagram 108

A.2 Ground and input pins of the PM8441 . 110

A.3 Switch and regulator pins of the PM8441 111

B.1 xalan: Power readings over execution time 113

B.2 Core frequencies during execution time 114

B.3 Frequency transitions trade-offs with governor 115

B.4 Energy versus target heap utilization with GC variants 116

viii

ABBREVIATIONS

ART Android runtime

ASLR address space layout randomization

DVFS dynamic voltage and frequency scaling

CMS concurrent mark-sweep

CPI cycles per instruction

GC garbage collection

HAL hardware abstraction layer

JIT just in time

LMK low memory killer

OOM out of memory

SoC system on chip

VM virtual machine

WCPT worst case pause time

ix

ABSTRACT

Hussein, Ahmed Mohamed Abd-elhaffiez PhD, Purdue University, December 2016. Ef-
fective Memory Managementfor Mobile Environments. Major Professors: Antony L.
Hosking and Mathias Payer.

Smartphones, tablets, and other mobile devices exhibit vastly different constraints com-

pared to regular or classic computing environments like desktops, laptops, or servers. Mo-

bile devices run dozens of so-called “apps” hosted by independent virtual machines (VM).

All these VMs run concurrently and each VM deploys purely local heuristics to organize

resources like memory, performance, and power. Such a design causes conflicts across

all layers of the software stack, calling for the evaluation of VMs and the optimization

techniques specific for mobile frameworks.

In this dissertation, we study the design of managed runtime systems for mobile plat-

forms. More specifically, we deepen the understanding of interactions between garbage

collection (GC) and system layers. We develop tools to monitor the memory behavior

of Android-based apps and to characterize GC performance, leading to the development

of new techniques for memory management that address energy constraints, time perfor-

mance, and responsiveness.

We implement a GC-aware frequency scaling governor for Android devices. We also

explore the tradeoffs of power and performance in vivo for a range of realistic GC vari-

ants, with established benchmarks and real applications running on Android virtual ma-

chines. We control for variation due to dynamic voltage and frequency scaling (DVFS),

Just-in-time (JIT) compilation, and across established dimensions of heap memory size

and concurrency. Finally, we provision GC as a global service that collects statistics from

all running VMs and then makes an informed decision that optimizes across all them (and

not just locally), and across all layers of the stack.

x

Our evaluation illustrates the power of such a central coordination service and garbage

collection mechanism in improving memory utilization, throughput, and adaptability to

user activities. In fact, our techniques aim at a sweet spot, where total on-chip energy is

reduced (20-30%) with minimal impact on throughput and responsiveness (5-10%). The

simplicity and efficacy of our approach reaches well beyond the usual optimization tech-

niques.

1

1 INTRODUCTION

The mobile telecommunications industry has grown rapidly over recent decades, fuelled

by immense shift to mobile broadband technologies (i.e., 2G, 4G, LTE, etc.) [54]. Expand-

ing broadband coverage lead to an economic shift, providing unique subscribers all over

the world with affordable devices and services centralized around the digital ecosystem.

Modern mobile devices are shipped as systems on a chip (SoC), featuring heterogeneous

multi-core hardware with on-die hardware peripherals such as WiFi, GPS, and cameras.

To enrich the set of software applications on mobile platforms, each vendor provides a

software distribution platform for software applications (“mobile apps”) written to deliver

specific functions for a specific operating system.

Such a rapid spike of innovation in the mobile industry owes its existence in large

part to the design interfaces between different sub-modules. In particular, the abstract

interfaces serving as abstract layers play a major role in enabling contributors to develop

and experiment with the design of a single component without interfering with other layers.

1.1 The Double Edged Sword in Fast Mobile Advances

Modern mobile platforms run complete operating systems (OS). A Mobile device com-

bines features of general purpose computing platforms with those of other popular con-

sumer devices, such as digital camera, GPS navigation, WiFi, and a vast set of sensors. To

support faster, more powerful, and richer apps, hardware vendors compete in providing het-

erogeneous multicore devices shipping with hardware level optimizations and computation

offloading to assure power and time efficiency. These devices often exploit vendor-specific

libraries and customized drivers that increase the diversity and heterogeneity of the mobile

eco-system.

2

On the software side, mobile platforms typically run apps using a managed run-time

system, Virtual Machine (VM), that includes services such as garbage collection and dy-

namic “just-in-time” (JIT) compilation.

Conserving power on mobile platforms requires optimizations across all levels of the

stack, from hardware, operating system, and VM. However, modularity and abstraction

create a fragmentation of work between different communities. This ties the scope of the

analysis to a single component, without a thorough understanding of how each influences

the global system performance.

In the course of delivering product releases, several software methodologies in mobile

platforms were adopted from server platforms. The incentive is driven by the fact that

porting well-studied and refined components over decades has shown to cut software de-

velopment time. However, several components were not redefined to better fit the mobile

platform. For example, a computation-heavy server application is evaluated by minimiz-

ing the environment overhead (i.e., running in single user mode) and by building statistical

methods to generate consistent results across different runs [71]. Mobile platforms, on the

other hand, introduce additional dimensions of environment that are not principal compo-

nents of the design—i.e., user interaction, application response to events, and restrictions

on available resources.

1.2 Thesis Statement

Modern mobile platforms run complete operating systems to manage fea-

tures that combine those of general purpose computing and those of other pop-

ular consumer devices, such as digital camera, GPS navigation, WiFi, and a

vast set of sensors. These platforms run apps using a managed run-time sys-

tem, Virtual Machine (VM), to provide abstraction over hardware specifica-

tions. Mobile devices must conserve power while still providing the desired

responsiveness and throughput. This offers new dimensions for the evaluation

of the VM for devices that rely on a managed run-time. These dimensions

3

offer not just the usual tradeoffs, but also a sweet spot where the energy cost

of a single run-time service (i.e., garbage collection, or just-in-time compiler)

can be lowered with minimal impact on throughput and responsiveness. In

addition, coordination between heuristics across several non-adjacent software

layers and dozens of concurrent VMs empowers informed decisions and opti-

mization across all of the VMs.

We claim that different VM implementations have different energy requirements that

do not always correlate with their app’s throughput. Varying policies, such as memory al-

location or concurrency, can significantly reduce the energy consumed and the worst-case

pause time. Moreover, app throughput does not necessarily correlate with power consump-

tion. In addition, integrating VM components with power mechanisms on mobile devices

leads to significant and efficient performance and power savings.

While our study explores a wide variety of software techniques, we identify the miss-

ing coordination between several software components as an opportunity for optimization

of mobile systems along the different evaluation criterion: (i) throughput, (ii) energy con-

sumption, and (iii) responsiveness. We illustrate the power of combining vertical cross-

layered heuristics to achieve efficient adaptive decisions.

The dissertation focuses on analyzing the effect of garbage collection (GC) behavior

on the Android system performance including power, execution time, and response time to

user actions.

1.3 Choice of Platform

Perhaps the most important milestone is the selection of the platform and the VM ser-

vice. Of equal importance is the demonstration of a need for refining the software evalua-

tion and design of the service of choice.

We targeted the Android run-time [50] and its automatic memory manager as infras-

tructure for our study. Since Android is available as open source, it has allowed us to easily

extend and modify the virtual machine. We also considered the wide availability of hard-

4

ware platforms that runs Android, including both commercial devices and development

kits. This has allowed us to apply new techniques in vivo.

We have carefully considered the possibility of adopting other VM components (i.e.,

compiler or class loader), but we concluded that there were several limitations tying those

components. For example, Android up to JellyBean run a VM that uses a JIT to produce

dynamically optimized code for frequently executed methods. The substantial energy and

performance overhead of the optimization reaches its peak in the early phases of launching

the app. The cost degrades over time once all possible optimizations are performed.

We explor several extensions to the default GC configuration of Android, including a

generational collector, spreading the GC load to different cores, and adjusting the speed

of different cores during GC collection. Beyond extending stock Android platorm, we

implement a new GC-aware frequency scaling governor for Android devices. In addition,

we explore the tradeoffs of power and performance in vivo for a range of realistic GC

variants, with established benchmarks and real applications running on Android virtual

machines. We control for variation due to dynamic voltage and frequency scaling (DVFS),

JIT compilation, and across established dimensions of heap memory size and concurrency.

Moreover, we introduce a VM design that allows a central service to observe perfor-

mance critical parameters of concurrent yet independent VMs and carry out decisions op-

timized across the whole system instead of just locally. Our prototype then addresses a

major resource bottleneck (i.e., memory) by presenting a central GC service that executes

GC decisions across all running VMs and optimizes for a global set of heuristics. Here, we

present a first set of sensible heuristics although further research and tuning is necessary.

1.4 Work Plan

In order to validate the dissertation claims, we aim to answer the following research

questions:

Q1: What are the challenges offered by the new mobile devices?

Q2: What is the methodology to evaluate VM services on mobile devices?

5

Q3: Why is the GC important?

Q4: What is the impact of disjoint heuristics across dozens of concurrent VMs?

Q1: Challenges

Mobile platforms are sensitive to thermal issues (using only passive heat sinks) and

are more aggressive in the power management of sub-systems to save power compared to

laptop, desktop, or server systems. Answering these questions is challenging: (i) we have

migrated the VM profiling spanning four major Android versions from HoneyComb, Ice

Cream Sandwich, JellyBean to KitKat; (ii) we have carefully examined several parameters

and configurations in order to deduce correct conclusions; and (iii) we have built a back-

ground knowledge of the heuristics and interactions throughout the whole platform stack

starting from hardware and up to the user level.

The endeavor proved to be much deeper and challenging than an engineering task.

Reevaluating the software components design from the overall system perspective raised re-

search questions, leading to the production of superior virtual machine performance across

all running applications.

Q2: Software evaluation

We develop a benchmark suite Etalon that combines both Android and stock Java ap-

plications. The Java ports aid in differentiating the apps running on Android VM from

standard desktop programs. Our goal is to experiment with common Android apps avail-

able on Google Play, in addition to a set of ported Java applications from SPECjvm98 [105]

and DaCapo [12].

We develop and apply a memory profiling framework for measuring the platform-

independent memory behavior of applications running on Android. Validation of the re-

sulting profiling framework is achieved through the Java ports. The profiling framework

6

thus allows for the evaluation of industry-standard Android benchmarks to be done with

confidence.

We run a VM profiler as a daemon thread inside the Android VM. Profiling is only

enabled to gather execution statistics, but not to capture measurements that are sensitive

to timing or scheduling, such as total execution time or OS context switching. The profil-

ing periodically gathers per-mutator statistics, without synchronization to avoid perturbing

them. Large-volume traces (such as lifetime statistics) are buffered to avoid imposing I/O

costs at every sample point, and are periodically dumped to Flash RAM.

We measure a complete Android development platform in-vivo, avoiding emulation.

We use the APQ8074 DragonBoard development kit, based on Qualcomm’s Snapdragon

S4 SoC using the quad-core 2.3 GHz Krait CPU. We measure current flow at the circuit

level between the Krait application microprocessors and the voltage regulator.

Q3: GC significance

The garbage collection, which is common task between all apps, is characterized as

memory-bound workload that runs in phases. The garbage collector traverses all the ref-

erences starting from the “root” to reclaim memory occupied by non-reachable objects.

As a result, There is a lot of inter-thread communication, there is a high amount of mem-

ory operations, and a lot of processing power needed for automated memory management,

making it a perfect opportunity to study any effects.

We discuss alternative GC designs that extend Dalvik’s default mostly concurrent,

mark-sweep collector with generations, and on-the-fly scanning of thread roots. We per-

form an extensive evaluation of the different GC configurations using the Java benchmarks

and other Android apps. We correlate energy consumption with GC, showing tradeoffs

with other performance metrics to understand how GC overhead affects different system

layers.

We analyze the GC within the system scope to serve as a guide of how to evaluate

the coordination between design decisions across all the layers of the system stacks (soft-

7

ware and hardware). Our correlation between GC and system stacks reveal that GC has a

significant impact on energy consumption due to implicit scheduling decisions by the OS

with respect to CPU cores. We present a modified frequency governor that exploits phase

changes of the app running in the VM and adapts the frequency of individual cores during

garbage collection.

Q4: Centralized system service for memory management

We identify the lack of coordination between dozens of parallel virtual machines as

an opportunity for optimization for mobile systems over: (i) memory usage, (ii) runtime

performance, and (iii) power consumption.

We implement a global service that can collect statistics from all running virtual ma-

chines and can then make an informed decision that optimizes across all the virtual ma-

chines (and not just locally). The new system is a complete running mobile platform based

on Android that distributes GC sub-tasks between applications and an OS-like control unit.

These heuristics include: heap growth management, compaction, trimming, and context-

aware task-killing mechanisms.

1.5 Results

We show that GC has significant impact on energy consumption, not only from its

explicit overhead in CPU and memory cycles, but also because of implicit scheduling de-

cisions by the OS with respect to CPU cores [63]. Our results show that existing DVFS

policies should be informed of GC events by the VM to make more informed hotplugging

and frequency scaling decisions. Similarly, app developers need a range of GC strategies

to choose from, so they can tune for responsiveness, utilization, and power consumption.

We present a full Android system, evaluated in vivo. Our techniques reduce total on-

chip energy (up to 30%) for throughput tradeoff of 10%. [62; 64] We also present a new

benchmark suite that builds the foundation for a robust evaluation methodology for mobile

platforms. Our work quantifies the direct impact of GC on mobile systems, enumerates the

8

main factors and layers of this impact, and offers a guide for analysis of memory behavior

in understanding and tuning system performance.

1.6 Thesis Organization

Chapter 2 describes the architecture and the internals of the Android platform along

with the related work. Chapter 3 lists in details the challenges imposed by the mobile

frameworks and our recommendations in building a robust methodology to evaluate the

mobile systems followed by a brief description of the Etalon benchmark.

Chapters 4 and 5 describe the implementation of our GC extensions, the integration

with frequency governor, and the analysis performed to reach our conclusions. Chapter 6

presents a new Android virtual machine design that allows the garbage collection to be

performed as a centralized service for all the parallel virtual machines. Finally, Chapters 7

and 8 present future directions and conclusions.

9

2 BACKGROUND AND RELATED WORK

Modern mobile devices combine features of general purpose computing platforms with

those of other popular consumer devices, such as digital camera, GPS navigation, wifi, and

a vast set of sensors. Users install third party applications (apps) on a managed run-time

system through digital distribution platforms such as the Apple store, the windows phone

store, or Google play. In addition, mobile devices feature a wide range of self-adaptive

systems that continuously adapt run-time parameters according to environmental inputs

and to achieve local goals (e.g., reducing power by enabling/disabling cores).

In this chapter we will explain the Android architecture, and give a high level feedback

on the main Android components.

Linux Kernel

camera driver audio driverdisplay driver other drivers

HAL

camera HAL audio HALdisplay HAL other HAL

Android System Services
Media Server

audioFlinger camera service

media player
service

other media
services

System Server
Search ServiceActivity Manager

Window
Manager

Other system
service &
manager

Binder IPC Proxies
Application Framework

Figure 2.1.: Android system architecture

10

Table 2.1.: Android versions

Code name Date API Release Kernel
Honeycomb 02/2011 11-13 3.0, 3.1 and 3.2-3.2.6 2.6.36
Ice Cream Sandwich 10/2011 14-15 4.0-4.0.2, and 4.0.3-4.04 3.0.1 - 3.0.31
JellyBean 07/2012 16-18 4.1-4.1.1, 4.2-4.2.2 and 4.3 3.0.31 and 3.4
KitKat 10/2013 19-20 4.4-4.4.4 3.4
Lollipop 11/2014 21-22 5.0-5.0.2, and 5.1-5.1.1 3.4(armv7); 3.10(arm64)

2.1 The Android Software Stack

The Android platform is designed in the form of a software stack comprising vari-

ous layers running on top of each other in a way that the lower-level layers are providing

services to upper-level components. Figure 2.1 shows the applications, services, and the

operating system in android architecture. Both native and third party applications are lo-

cated at the top of the Android software stack. Application framework provides services

to apps. The most important parts of the framework are as follows: (i) activity manager:

manages the app life cycle, (ii) content provider: provides encapsulation of data that needs

to be shared between applications, and (iii) notification manager: handles events such as

arriving messages and alerts.

Over the course of our study Android has already undergone several versions. Table 2.1

shows the Android history since we started our research while mapping the official release

version to that of the API and the kernel.

Honeycomb introduced multi-core support into Android1.

Ice Cream Sandwich introduced ontrimMemory callback to reduce the memory pressure.

JellyBean introduced SELinux to Android.

KitKat introduced several APIs to read the available RAM, and the low RAM compo-

nents. It also added procstat and memory swapping. Kitkat was the first release

that allows optional switch between two different Android runtimes (Dalvik and An-

droid Runtime).
1Android Honeycomb was not made available.

11

Hardware Hardware
Linux Kernel Linux Kernel

Bionic GlibC

Native
Binaries

Native Libraries

X-Windows

Gnome..etc

Applications

Framework

HAL Daemons WebKit Init

JNI
Runtime

Dalvik - Android Runtime

Power Activity Battery Package

Applications

Figure 2.2.: Android architecture (left) and mainstream Linux (right)

Lollipop replaced the just intime compiling virtual machine Dalvik with Ahead of Time

runtime (Android Runtime). Beside supporting 64 bits, the new version introduced

several enhancements to the garbage collector implementation.

2.2 Kernel Layer

Android is built on Linux, providing a software stack of kernel, drivers, GUI platform

and a set of frameworks. Android introduces a Java runtime to support the framework al-

lowing the developers to write their mobile applications in Java. Android modifications to

mainstream Linux are referred to Androidisms. Among those modifications: ARM plat-

form, drivers, interprocess communication, and memory. At the user level, Android intro-

duces runtime componen and hardware abstraction. Figure 2.2 shows the main differences

between Linux and Android [78; 116].

2.2.1 Power management

Mobile platforms employ aggressive power management of sub-systems to improve

battery life and to control thermal conditions (mobile platforms only have passive heat sinks

and components like the CPU cannot be run at full power continuously). The OS relies on

dynamic voltage and frequency scaling (DVFS) in software controlled by a global governor

[18]. The governor collects runtime statistics (e.g., system load and core temperature) and

then applies complex heuristics to meet optimization criteria [23; 65; 85]. This feedback

12

relation between the OS modules and the workload imposes challenges to the system design

due to the dependency between the device performance and the non-deterministic response

of these software modules.

Most policies adopt an approach known as race-to-idle: reacting to a growing workload

by enabling more cores and/or increasing their speed; when the workload decreases, the

cores are disabled and/or the frequencies are lowered.

Some mobile multi-cores provide asynchronous multiprocessing that allows to vary op-

erating frequencies per core as a function of the workload. Thus, coarsely measuring high-

level throughput and execution time yields different results, especially in multithreaded

apps, as the results depend on the core frequency on which the evaluated task was sched-

uled.

The OS kernel reacts to the app workload by adjusting the core frequency and the volt-

age (DVFS) to meet the performance requirements at ideal power and thermal levels. The

policy by which the scaling decisions are taken is defined by the governor configuration.

In addition to the governor module, vendors usually ship their own proprietary software

to increase the efficiency of core hotplugging and to manage other peripherals such as the

GPU. For example, the mpdecision is a proprietary binary component shipped with the

Snapdragon processors.

The power mechanisms can be represented as a discrete model. For simplicity, we

consider that the time stamps of all events are multiples of a predefined time interval,

sampling_rate (parameter of the ondemand governor). The values between the sampling

events are found by transforming the discrete model to the continuous model.

Figure 2.3 illustrates the discrete model in which the kernel tasks are run each sample

period of time (sampling_rate) to inquire the per-core workload w to decide on the opera-

tion frequency f , followed by a zero-order hold (ZOH) to convert the discrete time values

into continuous time values. The mpdecision reads the data generated by the thermal sen-

sors h to integrate the thermal conditions with the workload. The impact of the mpdecision

on the governor policy is captured by signal p. We use the energy signal e as an input to

the governor superblock G for the following two reasons: (i) reduce the non-determinism

13

sampler governor

ZOH

w(k)
f(k)

mpdecision

f(t)

f(t)

e(t)

e(k)
p(k)

thermal
sensor h(k)

G
VMw(t)

f(k)
F

Figure 2.3.: Interaction between VM and power mechanisms on Android

FOREGROUND
APP

VISIBLE
APP

480

SECONDARY
SERVER

HIDDEN
APP CONTENT

PROVIDER

EMPTY
APP

60 72 84 96 120
total
RAM

Exp.1
Exp.2Exp.3

available RAM (MiB)
steady
state

killing
precedence

Figure 2.4.: Low memory killer configurations

by omitting the thermal environment (room temperature is a factor influencing the device

thermal efficiency), and (ii) reduce the domain input, because the device temperature is an

implicit function of the amount of energy consumed by the app.

2.2.2 Memory management

Modern mobile platforms run dozens of concurrent VMs. Those concurrent VMs share

a set of constrained and over-committed resources such as memory. Mobile system rely

mostly on caching the processes in order to reduce the latency of loading the applications

[47]; hence mobile systems increase their own responsiveness.

2.2.2.1 Low memory killer

When an Android app is closed, the process stays in memory in order to reduce the

start-up overhead when the application is used again. To clean up the physical memory,

14

Android uses a controlled low-memory-killer (LMK) which kills processes when the avail-

able free RAM reaches a low threshold. The LMK allows specifying a set of “out of

memory thresholds (OOM)” to decide on which and how many processes to kill.

Figure 2.4 shows an example of low-memory regions in MiB. When free memory

(RAM) in a system is less than 120 MiB, the LMK starts killing “empty apps” in the back-

ground. The app in exp.1 runs in a stable steady state while the app in exp.2 causes the free

memory to drop below 120 MiB, triggering the LMK which will start killing background

tasks. Finally, the app in exp.3 executes in a stressed environment with low memory, caus-

ing side effects from potentially both the LMK and the OOM.

2.2.2.2 Memory usage characterization

There are main four categories to classify physical memory usages: process VMs, OS

file caches, device I/O buffer, and kernel memory [76].

Process VM pages. VM pages constitute the largest portion of memory usage [76]. The

VM pages specifies the maximum amount of memory available to allocate the heap and the

stacks of a single VM. The memory driver lazily brings the page into physical memory in

a discontiguous address range.

File pages. The OS maintains caches of data buffers and data to reduce the overhead of

accessing the main memory. Page caches are managed at the page granularity [76].

Kernel memory. The kernel uses slabs to allocate kernel objects—i.e., page tables and

stack. Slabs are contiguous physical memory pages. The granularity of management varies

based on the allocated object. For example, small objects such as semaphores are allocated

as a small virtual memory [76].

15

2.3 Android Virtual Machine

Android is designed for rich user interaction via a touch screen on mobile devices. The

Android software layers include runtime component (Dalvik VM or Android Runtime) and

core java libraries. The application framework provides the required interface to build

Android apps, which belong to the top applications layer. The main components of Dalvik

include the garbage collector, the just-in-time (JIT) compiler, the debugger, and the main

thread.

2.3.1 App isolation

Android applications run in their own VM instances within separate os processes. The

access of each instance to the platform API and other system resources is defined by a mani-

fest configuration. Since each VM is a process, switching between apps requires swapping

the memory addresses and page tables, and flushing processor caches. To guarantee ap-

plication responsiveness, the scheduler assigns higher priorities to user interface threads,

while background threads are given lower priorities. In addition, android moves all low-

priority background threads to cgroups, where they are limited to a small percentage of

CPU time. This ensures that the foreground application does not starve, regardless of the

number of running background tasks.

When an app is started, it skips the initialization steps by inheriting the preloaded

classes and resources created by the “Zygote” template process. Zygote reduces the global

memory usage by keeping copy-on-write space of common resources. Once the process is

forked, the VM heap is managed by a per-app garbage collector.

Up to Android 4.4, Android ran a register based Java VM “Dalvik VM”, optimized for

memory constrained devices. Dalvik runs a register-based byte code format called Dalvik

executable (DEX) [50; 51] through a JIT. The Android runtime (ART) replaced the Dalvik

JIT compiler through ahead-of-time compilation. During installation, ART translates dex

files into native code.

16

Android binder is a simple subset of an open binder, 2which allows binding functions

or data from one execution process to another. In Android, the binder is used for every flow

across processes.

2.3.2 Garbage collection in Dalvik

The Dalvik garbage collector runs in its own background daemon, with the application

level Java threads. The default Dalvik collector is mostly concurrent in that it periodically

stops all the Java (mutator) threads, but otherwise runs concurrently in the background

and synchronizes only occasionally. It operates as a marksweep collector, tracing refer-

ences from roots, which include both thread stacks and other global variables, marking

objects reachable via those references, and recursively via the references stored in reach-

able objects. when all the reachable objects have been reached it sweeps the heap to free

up unmarked objects.

The default Dalvik collector suspends all the mutator threads as a batch at the beginning

of each collection cycle, scans their stacks for heap roots, and then restarts them all before

continuing to mark reachable objects concurrently. Concurrent marking is supported by

a write barrier that records dirty objects that have been modified by any mutator thread

during the mark phase. When concurrent marking is finished, the collector once more

suspends all the mutator threads as a batch, marks any remaining unmarked objects that are

reachable from the dirty objects, and then restarts the mutator threads. It can then safely

(and concurrently) sweep up and free the remaining unmarked objects as garbage.

The Dalvik collector uses simple heuristics to balance the tension between frequency

of garbage collection and heap size Brecht et al. [16]. The primary parameter controlling

heap size and garbage collection is the target heap utilization (targetutil) ratio, used to

resize the heap after each GC cycle. The threshold softLimit is set such that the ratio of the

volume of live data (live) to the softLimit is equal to the target utilization. Thus, the bigger

the target utilization, the tighter the heap allocated to the app. The available space (room) is
2openbinder is a system for IPC for BEOS, windows, and Palmos cobalt: http://www.angryredplanet.
com/~hackbod/openbinder/

http://www.angryredplanet.com/~hackbod/openbinder/
http://www.angryredplanet.com/~hackbod/openbinder/

17

constrained to the range 2-8 MiB. The threshold concurrentstartbytes (CSB) is set at some

delta (d = 128kib) below the softLimit. The relationship among these parameters, at time

t, is given by the following equation:

room(t) = (1� targetutil)⇥ live(t)

softlimit(t) = live(t)+min(max(room(t), 2mib), 8mib)

csb = softlimit(t)�d

(2.1)

Memory events in Dalvik GC can be grouped into (i) GC triggers, and (ii) heap resizing

decisions. GC triggers include:

GC-CONC after any successful allocation, if the allocation exceeds the CSB threshold,

then the mutator signals the GC daemon to start a new background GC cycle, if it is

not already active.

GC-ALLOC when allocation would exceed the softLimit threshold, or if allocation other-

wise fails, then the mutator directly performs a foreground GC cycle, so long as the

gc daemon is not already active in which case it waits for it to finish. the mutator

boosts its priority while performing the foreground GC cycle. in the case of a failing

allocation the mutator retries the allocation after the GC cycle ends.

GC-EXPLICIT the mutator directly performs a foreground collection cycle in response to

an explicit call to System.gc(), so long as the GC daemon is not already active. the

mutator does not boost its priority to perform the explicit GC.

In the absence of mutator signals, the GC daemon does not remain idle forever. the time

it waits for a mutator signal is limited to five seconds, after which it performs a spontaneous

concurrent collection cycle; this also trims excess virtual pages from the heap, returning

them to the operating system.

18

2.3.3 Garbage collection in Android Runtime

The Android runtime (ART) replaced the Dalvik JIT compiler through ahead-of-time

compilation introducing several enhancements to the Android GC [51]: (i) parallel pro-

cessing during marking of mutator roots, (ii) a separate heap for large objects, and (iii) a

pseudo-generational sticky collector to deal with short-lived objects.

In recent releases, ART introduced compacting GC to reduce memory usage and frag-

mentation.

2.3.4 Android compiler

Starting from Android 2.2, Android Dalvik introduced Just-in-time compiler to increase

the performance of the Android platform. Dalvik JIT is trace based that records a linear

sequence of frequently executed operations and translated them to faster form of native

machine code.

Dalvik defines an Low Level IR (LIR) that closely resembles the target machine dubbed

“ArmLIR” (for ARM). The Dalvik instructions are pulled from the trace to perform the first

stage of code generation that is to convert Machine Level IR (MIR) to LIR. The Machine

Level IR (MIR) stream is build by wrapping an MIR structure around each Dalvik instruc-

tion. Basic Blocks are created, linked together, and added to the Compilation Unit. At this

level, the generated code is highly portable amongst different ARM and x86 architectures.

The Assembler generates a block of ARM instructions for each LIR instruction. This

second phase of code generation outputs the ARM instructions from LIR. Figure 2.5 shows

the flow of the interpreter and the compiler JIT in the Dalvik VM.

Android Runtime Compiler

Android Lollipop 5.0 replaced the JIT Dalvik compiler with an Ahead-of-Time com-

piler that compiles the Dalvik code into native code during the installation. Even though

Dalvik JIT is replaced, the applications are still packaged with Dalvik bytecode. Android

19

Fetch Instruction

branch?
No

Yes

start

Add trace to
compiler queue

Execute InstructionAdd instruction to
trace

(a) Interpreter flow

Pull item from work
queue

Generate MIR
stream

Create basic blocks
out of trace

Inline any getters/
setters

SSA conversion Simple register
allocation

MIR to LIR
conversion

LIR to ARM code
conversion

Add code to cache

(b) Compiler thread flow

Figure 2.5.: Dalvik tracing Just-in-time compiler

Runtime (ART) compiles the classes.dex to native code leaving the optimization phase to

dexopt.

2.4 GC Evaluations

Several studies have addressed GC requirements when deployed in restricted environ-

ments. Chen et al. [25, 26] tune the collector to enable shutting down memory banks that

hold only garbage objects. Griffin et al. [53] implement a hybrid mark-sweep/reference-

counting collector to reduce power consumption. The three major sources of energy leak-

age of the GC are identified as: (i) instructions executed by the CPU core, (ii) cache access

(data and instruction), and (iii) memory access due to misses.

Sartor and Eeckhout [96] explored tradeoffs with separating JVM threads (e.g., garbage

collector) and its effect on performance for a multi-socket server environment (8-core Intel

Nehalem). For managed run-time systems on general purpose platforms, there is much re-

cent interest in fine-grained power and to understand the energy needs of VM components

[20; 110]. Occasionally, GC has been evaluated as an asymmetric activity that can be iso-

20

lated on a separate core [20; 96]. However, the presented methodology relies on dedicated

hardware which is not practical for modern mobile devices.

For mobile devices, several power studies involve software and hardware layers leading

to fine-grained tools to profile the system level to detect power bugs and to determine the

application blocks that leak large amounts of energy [89; 90]. Hao et al. [58] presented

an approach for power estimation based on off-line program analysis. The responsiveness

of embedded systems was throughly studied and evaluated by estimating the Worst-Case

Execution Time (WCET) of individual tasks leading to the existence of several commercial

tools and research prototypes [113]. However, the relation between the WCET analysis

and power consumption is less understood, because of the challenge in assuming a direct

correlation between execution bounds that involve different components such as compiler,

scheduler, and hardware specifications [2; 7; 113].

In this dissertation, we demonstrate that it is necessary to define GC requirements as

a function of system mechanisms such as the governor and scheduling policies. While

Schwarzer et al. [97] suggest methods to estimate performance requirements of software

tasks using simulation, our approach is based on the observation made by Sherwood et al.

[99] that a program’s execution changes over time in phases. Our work characterizes the

GC workload, which is common between all apps, as having a lower CPI compared to the

average mutator workload.

Taking advantage of DVFS [65], we cap the speed of the collector thread in order to

reduce the power consumption within each collection cycle. Our study is characterized

by its unique contribution in evaluating the GC design and configurations as an integrated

system component on mobile devices, in the spirit of Kambadur and Kim [73]. We show

that the energy bill for GC can be reduced by simple integration across system layers (i.e.,

managed run-time system and governor).

Our results differ from the work of Hao et al. [58] in fitting the run-time performance

within the whole system stack (i.e., hardware, kernel, and power management). The results

generated in this dissertation reflect real executions involving synchronization overhead,

induced by spin-locks and context-switching as noted by others [46; 88].

21

The efforts to efficiently manage the independent Java VM heaps turned to be fruitful to

update the shared memory resources between the running virtual machines [19; 84]. These

studies differ from our study in the following: (i) our system focuses on restricted mobile

platform hosting dozens of parallel virtual machines, and (ii) the GCService performs GC

phases on all virtual machines (not just locally).

Our work is the first to present a runtime service on mobile platform that can manage

the heap of all the running VMs while keeping each instance in its own process which is

different from other approaches like Multi-tasking VM [31; 117].

2.5 Mobile Application Behavior

We considered adopting existing evaluation methodologies in our platform evaluation.

First, we surveyed existing set of characteristics that label any application available on the

app stores. Then, we surveyed existing benchmark suites used in industry and academia to

evaluate the system. We concluded that none of the existing techniques serves our needs as

we aimed at evaluating the whole system by analyzing the interaction between the system

components. In this section we summarize the three major categories of studies interested

in analyzing the application behavior.

2.5.1 Security

One of the most active research areas in mobile platforms taming all possible vulnera-

bilities. Security oriented studies focus on combining static and dynamic analyses in order

to detect control and data flows in mobile applications. This is achieved by evaluating the

app call graph and I/O operations behavior from the API perspective [15; 21; 29; 32; 52;

59; 69; 118; 119]. Unauthorized access, or suspicious functionality is reported as a possible

threat to the device security.

This category of studies do not consider performance or implicit impact and interaction

between non-adjacent layers. Therefore, it did not fit our needs in studying the managed

runtime design choices and their impact on the system performance.

22

2.5.2 Usage patterns and context-aware approaches

With millions of applications on the software stores, it becomes challenging for users to

select the right set of applications to install. This urged the interest in analyzing the usage

pattern of applications among a group of users in order to provide better choice for instal-

lations [6; 37; 43; 60; 74; 75; 98; 101; 104]. The analysis does not just include the daily

usage of each individual to his device, but it may extend to monitor inter-communication

and dependency between different applications [80; 107].

More recent studies extended the usage pattern methodology to optimize the mobile

framework [115; 120]. This is achieved by offering app usage prediction model constructed

through logging the following events: (i) observed app preferences; (ii) user triggered

events and readings as observed through environmental sensor-based contextual signals;

and (iii) the common patterns of app behavior among different group of users

Apparently, this inspired other researchers to take one step further applying the pre-

diction module in analyzing and optimizing the energy profile [82; 86; 100; 108]. The

methodology is an event based model that captures the relevant power consumption using

monitoring tools.

While we found many of studies belonging to that criteria are interesting, they are more

suitable for package and device management. For example, app prediction can be used

in better device management to reduce launch overhead. However, they do not provide

metrics, or answers to our research questions.

2.5.3 Managed runtime and microarchitecture evaluation

The third category in our survey is composed of studies analyzing the performance of

a single app. The vast majority of evaluation are based on hardware counters as evaluation

metrics [39; 55; 56; 57; 61; 106]. Given the complexity of the system stacks on mobile

devices, we found that it is nearly impossible to attribute a certain profile behavior to in-

dividual hardware counters. Eventually, we concluded that hardware metrics are strongly

bound to the VM implementation.

23

The most relevant study that focuses on mobile device responsiveness consists of ana-

lyzing critical path of the application code [94]. Blocking tasks within this path are labeled

to degrade the system responsiveness. Our approach in analyzing the impact of managed

runtime service on responsiveness focuses on measuring the time spent in by the runtime

system within the critical path.

24

3 RIGOROUS EXPERIMENTATION ON MOBILE PLATFORMS

Evaluating performance of modern mobile platforms, comprising complex hardware and

software stacks, is notoriously difficult. These complex layers include feedback mecha-

nisms that adapt to the power and performance profile of the application, as well as the

environment. Thus, obtaining deterministic and repeatable experimental results requires

care. It is not sufficient to repeat measurements to eliminate noise, because the platform

itself exhibits widely variable behavior. Nor is it sufficient to control and measure the ap-

plication layer alone, without also controlling lower layers of the software and hardware

stack. These cause non-deterministic behaviors dependent on the environment, configura-

tion of hardware (e.g., power status, temperature, peripherals), and software (e.g., services,

scheduler, power-governor, networking).

In this chapter, we consider metrics for evaluating Android apps running on a real de-

vice (the Snapdragon multi-core platform), and steps needed to obtain controlled results

for those metrics, like limiting interference from non-salient layers, and controlling vari-

ability due to adaptive components that perturb the target metric. Understanding results

requires correlating metrics with underlying platform (e.g., hardware, OS, run-time, and

application) events. The metrics we consider include power, performance (throughput and

utilization), and responsiveness, within a study of the memory management behavior of

the Android virtual machine. For each metric we describe the techniques and controls used

to obtain reliable and meaningful results. We also characterize the variability that ensues

when controls are not carefully applied.

3.1 Motivation

To support faster, more powerful, and richer apps, hardware vendors compete in pro-

viding heterogeneous multi-core devices shipping with hardware level optimizations and

25

computation offloading to assure power and time efficiency. These devices often exploit

vendor-specific libraries and customized drivers that increase the diversity and heterogene-

ity of the mobile eco-system.

Benchmarking on general purpose computing devices is a well-studied problem and

has been refined over decades. For example, a computation-heavy server application is

evaluated by minimizing the environment overhead (i.e., running in single user mode) and

building statistical methods to generate consistent results across different runs [71]. Com-

pared to this well-studied problem, mobile platforms introduce additional dimensions of

environment such as user interaction, application response to events, and restrictions on

available resources. In addition, mobile devices feature a wide range of self-adaptive sys-

tems that continuously adapt run-time parameters according to environmental inputs and to

achieve local goals (e.g., reducing power by enabling/disabling cores).

Metrics used to experiment on mobile platforms must prioritize factors that affect user

interaction. For example, server benchmarks have thoroughly studied throughput, execu-

tion time, and response time. Recently, with the emergence of highly parallelized hardware,

more attention has been paid to other metrics such as power efficiency and scalability. For a

mobile device, scalability may be of secondary concern so long as the user is satisfied with

the response time and the device reliability (e.g., battery lifetime). Thus, it is necessary

to qualify the overall system along three dimensions: (i) responsiveness to user actions;

(ii) power efficiency throughout the system stack; and (iii) performance over time, space,

and thermal profile.

We address the challenges one faces in performing consistent and meaningful experi-

mental evaluation of mobile devices across these dimensions. We discuss how to reduce

non-determinism across these dimensions and how they correlate with each other.

Our contributions are as follows: (i) we explain the challenges of controlled experimental

evaluation on mobile platforms; (ii) we survey metrics affecting user experience; (iii) we

develop a sound methodology for reliable measurement of the suggested metrics; (iv) we

characterize the resulting improvements in accuracy compared to naïve experimentation;

and (v) we present a benchmark suite that captures the mobile applications behaviors.

26

3.2 Experimental Challenges on Mobile Platforms

Mobile devices are event-based systems. Users interact with mobile systems through a

set of touch events and gestures. These events propagate across the complete hardware and

software stack. The device’s response is nondeterministic, considering side effects of the

mechanisms, shaping the hardware and software behavior. For example, the system assures

that the highest priority task, the foreground process, has enough resources to proceed

within reasonable response times. This may include killing background processes when

the device runs out of physical memory.

The unpredictable nature of such asynchronous actions taken by the adaptive layers of

the system makes teasing out the salient performance impact of candidate implementation

alternatives particularly difficult. Such conditions demand new techniques for controlled

experiments to reduce and filter noise efficiently, and to devise better policies to adapt to

usage profiles.

We develop techniques to tame variability and non-determinisim across the system lay-

ers to demonstrate the relationship between non-adjacent layers in the evaluation of garbage

collection (GC) for the Android VM [50].

3.2.1 System complexity

3.2.1.1 Architecture

Shipped as systems on a chip (SoC), mobile platforms feature heterogeneous multi-

core hardware with on-die hardware peripherals such as WiFi and GPS, increasing the

level of complexity in functional and architectural aspects. Evaluating performance on

such devices must consider non-deterministic behavior caused by architecture functionality

such as cache tuning and branch prediction which yield to different results across multiple

runs. The complexity of the functionality in dealing with a SoC comes from the fact that

many SoC features are managed by proprietary software components so as to increase

27

productivity and code reusability of systems. Software and hardware are in this way closely

intertwined.

Mobile multi-cores can run asymmetrically at varying frequencies per core depending

on their workload. As a result, coarsely measuring high-level throughput and execution

time will yield different results depending on the core frequency on which the evaluated

task was scheduled. Obtaining valid results is even more complicated when considering

that varying core frequencies also have an impact on concurrent apps. Dynamic voltage

and frequency scaling (DVFS) adjusts voltage and core frequencies to meet optimization

criteria that are not always self-evident. These policies are often managed through an OS

kernel module or governor [18].

The OS can selectively disable separate components to reduce leakage power. Most

policies adopt an approach known as race-to-idle: reacting to a growing workload by en-

abling more cores and/or increasing their speed; when the workload decreases they disable

cores and/or lower frequencies. Yet, even only adapting a single parameter may result in

nondeterminism and disturb measurements.

Moreover, some DVFS policies are implemented as proprietary, vendor-specific bina-

ries. Such inscrutable adaptive components make the challenge of understanding perfor-

mance behavior even harder.

In addition, device services — such as for location, phone, and networking — run as

background services that compete for resources with apps. These device services cannot

easily be disabled, making it impossible to use “single-user” mode for experiments on mo-

bile platforms. Interference from these background services can also lead to experimental

variability.

3.2.1.2 VM configuration

Mobile platforms typically run apps using a managed run-time system that includes

services such as garbage collection and dynamic “just-in-time” (JIT) compilation. These

28

services also have side effects on power efficiency by inserting idle periods and changing

the way memory is accessed by the app.

The policy by which the VM manages the heap has an impact on the overall app perfor-

mance. Defining the heap size and the frequency of the GC introduces a tension between

memory utilizations and the responsiveness of the app. Frequent GC pauses increase pause

times of mutators, reducing the app efficiency. Another dimension is introduced by per-

forming concurrent GCs which cannot be analyzed by static techniques. The efficiency of

the GC is determined by the interaction of several layers: allocation rate, trade-off between

scheduling overhead and the live set size, memory bandwidth and the core speed.

3.2.1.3 Application level

Mobile apps are characterized by their event based behavior, adapting to user actions.

Developers use available cores through the API concurrent libraries provided by the man-

aged runtime system. The efficiency of the execution relies on the scalability of the byte

code and the VM’s success to execute the code efficiently on the underlying chip. There

are many sources of non-determinism at the application level, e.g., interference through

shared data for concurrent computational tasks, tasks racing to access peripheral devices,

or interference from scheduled background tasks.

3.2.1.4 Tools

The OS kernel allows users to access hardware performance counters on the CPU. Gath-

ering hardware counters may help to build analytical models and to correlate between the

efficiency and the hardware events. However, hardware counters are limited on mobile

devices [111]. For example, L2 memory counters are not available on some ARM proces-

sors and commercial devices often disable access to the hardware registers. This limitation

prevents importing existing analytical models relying entirely on hardware performance

counters.

29

3.2.2 Characterizing suitable benchmarks and workloads

Characterizing programs is key to system development. Java programs can be charac-

terized by set of continuous metrics including: memory use, polymorphism, and the level

of concurrency [12; 40]. With the arrival of highly parallel hardware architectures concur-

rency and scalability became one of the most important metrics to provide insight on the

concurrency pattern of the individual programs and the scalability of the VM [72].

While many of the standard metrics are still relevant for mobile development, the

weight of the metrics may be different. For example, while energy consumption and secu-

rity are crucial for mobile platforms, scalability on mobile devices is not as critical as for

server applications. Mobile devices are still a young platform and standard mobile bench-

marks have yet to emerge. Hence, there is a lack of accurate analysis on the interfaces and

system calls widely used by the developers. Such questions are important for the system

designers to prioritize their optimizations and their evaluations.

It is important to consider to consider that shared libraries are main factors in app be-

haviors. Dong et al. [39] found that 72% of the instruction fetches are from native-code

shared libraries. Moreover, 62% of Android apps use Android Support Library [5]. Hence,

it is necessary to provide a variety set of applications that use several shared native libraries.

Previous studies relied on micro-architecture metrics (i.e., hardware performance coun-

ters) to characterize a suitable mobile benchmark [56; 106]. However, we show that archi-

tectural metrics is challenging given the depth of the software stack. For example, each

app exhibits different characteristics under different Android releases. The most common

Performance metrics are the following: (i) Performance: Cycles, instructions, cycles per

instruction (CPI), and stalled cycle per component; (ii) Branch misprediction rate: The

branch predictor plays an important role in ensuring efficient out-of-order execution and

exploiting instruction level parallelism; (iii) Cache: L1, L2 and TLB instruction/data cache;

and (iv) Core Utilization.

30

3.2.2.1 Using existing apps as benchmarks

Mobile apps differ from server applications by an adaptive behavior. Measuring their

performance requires a clear definition of executed functionality that is missing in the ma-

jority of commercial apps. Instead, they function as background services that adapt to user

requests. Hence, comparing time execution is not applicable on the vast majority of mobile

applications.

Given that applications are provided by third parties, they represent a black-box to the

system designer and deciding on their suitability for evaluating the new system requires a

detailed analysis of their programming pattern. Some apps are designed for benchmarking

but we note that they provide a scoring formula that may not be relevant or representative

for mobile systems (or the current aspect under test). A majority of these apps runs with

phase behavior with each phase focusing on a specific system feature, limiting generality.

Furthermore, during the execution of well-known commercial benchmarks, the vendor-

specific daemon enables all cores and locks them to their maximum speed, shadowing the

effect of the system changes.

Mobile apps have inconsistent workloads due to the variety of downloaded data through

the network which makes their memory usages vary across different runs. Interestingly, the

impact of the workload is not limited to memory profiling. Pathak et al. [90] show that free

mobile apps using third-party services to display advertising consume considerably more

battery. For example, an app spends 75% of its total power consumption on advertisements.

The latter behavior suggests that many apps are not actually engineered with power effi-

ciency considerations. In other contexts, app developers may explicitly force components

to stay awake introducing more drains to battery since the individual app is not aware of

the global system utilization [89].

3.3 The Etalon Benchmark Suite

In this section, we introduce Etalon, a benchmark suite designed to make it easier to

evaluate mobile applications on real devices (the Snapdragon multi-core platform) con-

31

sidering metrics that are relevant to user interaction and simplify correlation between un-

derlying platform (e.g., hardware, OS, run-time, and application) events. Etalon contains

popular Android applications. We characterize the features compared to previous method-

ologies. Our results show that Etalon exhibits various behaviors, and deterministic replays.

The platform is useful for both system and application developers.

3.3.1 Specifications

Popular mobile applications are commercial, which complicates instrumentation be-

cause their source codes are unavailable. Also, customizing a benchmark to stress a spe-

cific system module is not feasible. While, we include commercial applications in the

benchmark suite, we considered applications available as open source. In that way, the

benchmark suite provides flexibility to fit any evaluation target.

3.3.1.1 Memory behavior

Objects allocation rate on apps determines the garbage collection overhead on the de-

vice. The latter impacts the energy consumption, app throughput, and system responsive-

ness to user events [62; 63]. Allocation rate, object demographics and reference distances

are strongly bound to the app workload which make them a good fit to characterize the

app. Etalon allows configuring the memory workload in order to cover more benchmark-

ing needs.

3.3.1.2 Responsiveness

On mobile devices responsiveness is a primary virtue in providing usable user inter-

faces. A simple user request triggers multiple asynchronous calls, with complex synchro-

nization between threads. Identifying performance bottlenecks in such code requires cor-

rectly tracking causality across asynchronous boundaries.

32

Execution time of the tasks performed across the UI stacks has to meet a target which is

less than the user perception. To evaluate a software module within the platform layers, it is

important to study the distributions of pause times to statistically estimate the efficiency and

utilization. Hence, a benchmark used to evaluate responsiveness needs to exploit sensitivity

to hot path. A hot path is the bottleneck path in a user transaction, such that changing the

length of any part of the critical path will change the user-perceived latency.

Therefore, it is important to have a set of applications that exhibits different patterns to

evaluate the responsiveness under stress. Etalon allows different configurations in which

the user can force the app to execute extended tasks blocking the system from responding

to user events.

The suite benchmark provides consistent steps to capture user events to allow precise

record and replay. The most important events include:

Press-and-Release represents a simple press;

Press-and-Hold used to open menus;

Swipe switching between screens;

Zoom-and-pinch multitouch input commonly used in maps and photos applications.

In all applications, we used Monkeyrunner tool to automate user inputs [3]. On the

other hand, we avoid events that are provided through systeem services (e.g., camera, GPS

and WiFi). Instead, all applications (including browsers) must access local files. Our intu-

ition is that delays caused by the environment does not provide helpful analysis for system

designers.

3.3.1.3 Execution time

Mobile apps differ from server applications by an adaptive behavior. Measuring their

performance requires a clear definition of executed functionality that is missing in the ma-

jority of commercial apps. Instead, they function as background services that adapt to user

33

requests. Hence, comparing time execution is not applicable on the vast majority of mobile

applications. Etalon offers a subset of applications or subcomponents that can be evaluated

as end-to-end points.

3.3.1.4 Microarchitecture characterization

Our aim is to offer a set of applications that exhibit different behaviors on michroarchi-

tectural level. Therefore, we include a large set of apps with different functionality making

the benchmark suite a good fit for high level evaluation.

3.3.2 Origins of the source code

3.3.2.1 Porting Java benchmark to mobile platform

We established a subset of applications from Java benchmarks that are already well

understood, at least in the desktop and server space. These apps are helpful for system

developers interested in evaluating VM componenets (e.g., garbage collection or compiler

optimizations). They also may exhibit behaviors (e.g., scalability and concurrency) that

existing Android apps do not (yet) display.

Android supports many Java packages while some libraries are unavailable. To port

Java benchmarks unsupported libraries must be replaced by equivalent or comparable mo-

bile API calls. Clearly, the new port will have different behavior since the supporting

libraries are different. Although, ported Java benchmarks may offer a clearer indication

of performance compared to using commercial apps, we still note that more standardized

benchmarks are needed on mobile platforms.

We have faithfully ported all eight SPECjvm98 [105] applications. Due to API incom-

patibilities between Android and Java (Android apps are written in Java but use different

standard libraries) we have restricted the port of DaCapo 9.12 [12; 13] benchmarks to luse-

arch, xalan and pmd benchmarks1.
1we maintained luindex up until the relase of Android KitKat.

34

While there are complete studies on Java benchmarks suites [12; 35; 72], porting them

to the mobile platform requires extending the characteristics and prioritizing them to con-

sider user interaction, responsiveness and power efficiency. Our experiments show that our

Android ports exhibit similar behaviors to standard Android applications. For example,

Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or

other XML document types which is not supported by default on Android platforms. This

makes xalan a good fit for the benchmark suite since its workload is identical to typical

Android applications.

3.3.2.2 Considering real world mobile apps

We call the set of Android apps in our benchmarks smart-benchmarks. Using Android

apps in profiling is challenging and requires refinements. Our methodology is to invoke the

smart-benchmarks from the Android-Runtime, avoiding the standalone invocation (per-

formed through command line). Hence, the profiler runs the app from the same context

experienced by the user. The first run is excluded because it has a bigger workload due to

initializations and user profiling. The Smart-Benchmarks used in our study are:

Quadrant provides an overall of 21 tests covering the processor, memory, input, output,

2D graphics and 3D graphics performance. Our results are generated from running

version Professional 2.1.

AnTuTu evaluates the device based on various tests: user experience, CPU, RAM, GPU

Tests and I/O.

Pandora automatically recommends music based on the Music Genome Project. It is ad

supported, which makes the amount of memory allocated by the app non-determ-

inistic. We show results running version of 5.4 in the experiments section.

Spotify music streaming app.

35

3.3.3 Android apps

In addition to app store, we developed a set of Android apps that provide common

mobile functionalities while exhibiting a deterministic behavior.

3.3.3.1 SQliteEtalon

Android comes with SQLite for data persistence. The SQliteEtalon is a multithreaded

app that executes in-memory a number of transactions against a model of a banking ap-

plication to measure how fast a device processes SQL queries. Each thread in the app

represents a client performing multiple transaction.

3.3.3.2 JSONEtalon

JavaScript Object Notation, JSON is wdiely used nowadays on mobile applications to

transmit data objects. At least 12% of Android applications use JSON libraries to convert

Java Objects into their JSON representation [5]. These libraries can also be used to convert

a JSON string to an equivalent Java object.

Based on the benchmark source code provided from LoganSquare [14], the JSONEtalon

parses and serializes a set of input streams using four different JSON libraries: (i) Jackson:

a suite of data-processing tools for Java (and JVM platform) [44]; (ii) Gson: most popular

library to process JSON data [49]; and (iii) Moshi: a modern JSON library for Android

and Java [103]. (iv) LoganSquare: based on Jackson’s streaming API and Butter-Knife

annotation library.

3.3.3.3 SVGEtalon

Based on AndroidSVG [4], it is a SVG parser and renderer for Android. It has almost

complete support for the static visual elements of the SVG-1.1 and SVG-1.2 tiny specifica-

tions (except for filters).

36

The application loads a list of SVG files into an imageviewer. The workload varies

based on the size of the files loaded from memory. Best way to demonstrate the app is to

load a list of SVG saved maps downloaded from Wikimedia.

3.3.3.4 Vellamo

We consider Qualcomm’s Vellamo open-source [93] for offline benchmarking of the

browser tasks. The tests are entirely HTML and JavaScript and run inside Android WebView

views which use the Android WebKit browser. Vellamo runs the mongoose webserver [24]

to access the pages from localhost. modified to be compatible with Android KK. The

benchmark is executed offline using mongoose webserver [24].

The application allows the user to select which test to be performed: (i) Image Scroller:

to measure image decoding and rendering; (ii) SurfWax Binder: long series of nested calls

to Javascript functions to evaluate the VM; (iii) Inline Video: tests the core video support;

(iv) Ocean Scroller: tests the smoothness of scrolling; and (v) Ocean Zoomer: tests the

browser’s zooming capabilities.

Table 3.1 summarizes the execution characteristics of these benchmarks. We obtain the

GC events and overhead columns when running the default Dalvik CMS collector. The

allocation statistics (Heap, Objects, and Threads) are obtained by running the default CMS

collector in a mode where it performs GC at very frequent fine-grained intervals (every

64KiB of allocation) to obtain tight estimates of their value. Similarly, the lifetime column

reports the percentage of objects collected within the corresponding nursery size. Thus, it is

a rough estimate of the extent to which the benchmark follows the generational hypothesis.

The degree of concurrent allocation occurring within the benchmarks is represented by the

heap contentions column.

The maximum pause time is measured as the worst-case pause time experienced by

any of the mutator threads when responding to GC-safepoint suspension requests or when

performing a foreground GC. The CPU overhead of GC records the percentage of CPU

cycles over the execution of the benchmark that are spent performing GC, measured using

37

the hardware CPU performance counters. Finally, the last columns show the following

statistics about the code and the compiler: loaded classes, declared, methods, fields, count

of compiled unit in the code cache (count), and the size of the compiled code (in KiB).

We invoke the benchmarks directly from the Android Runtime, which spawns each

Dalvik VM instance from the pre-initialized zygote VM (as opposed to spawning a new

Dalvik VM process from the command line). This ensures that our results mirror actual

Dalvik app behavior. The Heap and Objects results for the ported Java benchmarks are

similar to those reported by others using different VMs [12; 35].

Table 3.1.: Benchmark characteristics for Dalvik CMS (ignoring zygote process)

Heap (MiB) Objects (M) Lifetime (%) Threads GC events GC overhead Code Compilations

Be
nc

hm
ar

k

A
llo

c

Li
ve

A
llo

c

Li
ve

12
8K

iB

25
6K

iB

51
2K

iB

To
ta

l

H
ea

p
C

on
te

nt
io

ns

G
C

-C
O

N
C

G
C

-A
LL

O
C

G
C

-E
X

P
LI

C
IT

tri
m

s

M
ax

.P
au

se
(m

s)

G
C

C
PU

(%
)

C
la

ss
es

M
et

ho
ds

St
at

ic
Fi

el
ds

In
st

.F
ie

ld
s

C
ou

nt

Si
ze

(K
iB

)

Android
Quadrant 28.71 8.23 0.46 0.22 9.50 20.49 40.71 16 448 6 4 42 3 30.5 2.8 1721 11,891 895 2,582 3,961 41.80
Pandora 48.91 18.76 0.28 0.06 13.01 24.89 46.03 77 829 7 18 0 4 33.1 6.2 1596 14,419 4,402 3,701 6,302 97.10
SPECjvm98
javac 217.47 10.19 6.15 0.27 7.60 15.78 32.68 7 276 55 42 6 1 99.0 19.7 227 1,464 674 320 5,308 68.90
jack 180.22 0.87 5.52 0.02 11.74 23.83 48.16 8 4133 105 0 2 1 24.0 8.0 131 717 275 199 2,018 41.80
DaCapo
lusearch 686.75 1.22 11.65 0.01 10.27 22.45 47.17 26 2.63e6 356 0 5 1 35.0 5.4 326 3,016 615 781 3,473 56.20
xalan 395.06 2.26 4.14 0.02 9.46 19.28 39.01 26 4.38e5 199 1 5 1 37.2 3.5 489 5,287 915 1,029 5,449 67.60

3.4 Experimental Environment

We measure a complete Android development platform in-vivo, avoiding emulation.

We use the APQ8074 DragonBoard development kit, based on Qualcomm’s Snapdragon

S4 SoC using the quad-core 2.3 GHz Krait CPU, which has 4 KiB + 4 KiB direct mapped

L0 cache, 16 KiB + 16 KiB 4-way set associative L1 cache, and 2 MiB 8-way set associative

L2 cache. Importantly, Krait allows cores to run asymmetrically at different frequencies, or

different voltages. Software calls can change both frequency and voltage for each core.

Our board runs on Android version 4.3-4.4 (JellyBean and KitKat) with Linux kernel

version 3.4. We modified the kernel and Android VM (i) to allow direct access to hardware

performance counters from the VM, (ii) to control enabling/disabling of the cores, and

(iii) to expose the VM profiler to other kernel-level events.

38

Table 3.2.: Build properties in our experimental environment

VM parameter value Governor parameter value
heapstartsize 8 MiB optimal_freq 0.96 GHz
heapgrowthlimit 96 MiB sampling_rate 50 ms
heapsize 256 MiB scaling_max_freq 2.1 GHz
heapmaxfree 8 MiB scaling_min_freq 0.3 GHz
heapminfree 2 MiB sync_freq 0.96 GHz
heaptargetutil 75 % lowmem_minfree (page)
large obj threshold 12 KiB { 12288 15360 18432
trim_threshold 75 % 21504 24576 30720 }

dump

s
y
s
t
r
a
c
e

Runtime App

Prof
Daemon

Signal
Catcher

server

startup

r
u
n

U
I

s
c
r
i
p
t
s

internal
creationforkApp()

SIGUSR2

pid GC
Trigger

GC
Trim

close

P
o
w
e
r

P
r
o
f
i
l
e
r

SIGQUIT

GCDaemon

p
r
o
f
i
l
e

analyze

reset

T
i
m
e

s
i
g
n
a
l

async message
 sync message

Figure 3.1.: Profiler sequence diagram

We capture both events that enable/disable cores and frequency change events due to

DVFS using a modified Android systrace. The default device configurations are shown in

Table 3.2, as shipped in the APQ8074 Android distribution.

39

3.5 VM Profiling

3.5.1 Gathering memory events

Figure 3.1 shows the setup of our measurement platform. The separate server drives

the experiment and measures power of the device cores. The server configures the set

of enabled cores and their frequencies and sets the VM parameters for the experiment

(including thread affinities for individual services). Peripherals like WiFi or Bluetooth are

disabled, as they are not needed to measure GC performance. The Android runtime then

initializes systrace to record core frequency changes and events that enable or disable cores.

The server then orchestrates the execution of the benchmark app inside the VM.

Our VM profiler runs as a separated thread inside Dalvik (the “profDaemon”). This

daemon is disabled when measuring metrics sensitive to timing such as execution time.

Otherwise, the daemon is responsible for gathering per thread statistics such as heap demo-

graphics or performance counters and correlating these values with GC events.

During the app execution, profDaemon waits to be signaled by the mutator to iterate on

all the threads to gather the profiling data (e.g., pause times, and hardware counters) storing

the results in a cyclic buffer. In our experiments, profDaemon is signalled after every 64

KiB of allocation, whereupon it gathers per-mutator statistics, without synchronization to

avoid perturbing them. Gathered data is written to cyclic buffer to reduce I/O costs during

execution. Finally, when a SIGUSR2 is received by the signal-catcher, profDaemon dumps

the buffer to Flash RAM.

Overall we record data that allows us to correlate (i) systrace data, (ii) performance

counters, and (iii) internal GC events, resulting in a fine-grained and detailed picture of

internal VM behavior, including app and GC characteristics.

First, the server script configures the system governor to control core frequencies and

enabling/disabling of cores. The VM with the instrumented code is then pushed to the

device and its time is set to match the server clock. The device is rebooted with VM

parameters to control the heap parameters and thread affinities. Peripherals such as WiFi

and Bluetooth are disabled. After all service initialization has completed, the server scripts

40

start the UI automated events and wait until the end of execution. Finally, measurement

data is pulled from the device and the default governor and VM are restored.

To monitor scheduling events, the profiler starts systrace to account for the core fre-

quencies changes and events that enable or disable cores. The frequency updates are corre-

lated with the GC events and the allocation behavior. Synchronized with the UI scripts, the

power measurements run on the separate server to read the values of the voltage regulators.

VM level allows us to analyze an app along different dimensions, e.g., compiler, class

loading, or memory allocation. We found that controlling general VM parmeters (i.e., heap

utilization) is not enough to run controlled experiments since the parameters are reused

among all VM instances on the device, leading to different initial state conditions in each

independent run. For example, changing the heap utilization changes the total RAM con-

sumed by all the apps that start before launching the benchmark. Thus, it is necessary to

account for the side effects of VM initialization on the remaining services and apps.

One possible approach is to enable the parameterization only for the benchmarks being

evaluated. In addition, tuning the profiler is key for accurate results. For example, the

profiler daemon should change its state before I/O operations so that the VM does not stall

when the profiler writes measurements to disk. Otherwise, the responsiveness evaluation is

governed by the pause times caused by the profiler I/O.

3.5.2 Power measurements

For battery operated devices, the amount of time the device stays on is key for user

satisfaction. The battery life time is relevant only within a specific usage pattern, and it can

be measured by dividing the battery capacity by the total power consumed by the device

subsystems (e.g., CPU, display, GPU, or GPS). Estimating the total energy consumption on

a mobile platform can be performed by dividing the measurements into subsystems [89; 90]

which allows isolating irrelevant components.

Measuring total AC current to the device with a clamp ammeter is not precise enough to

measure the effect of the VM components on the CPU power. Nevertheless, measuring the

41

U2
PM8841

5
V_

+

ACS714
VIOUT

GND
VCC

IP+

IP-
Filter

0.1uF 1.0nF

APQ8074

VR
EG

_K
RA

IT

NI
USB-6009

C1+

C1-

L20

L22

L26

L24

IP- C2-

IP+ C2+

C1: read current (VIOUT)
C2: read voltage (IP+)

Server

cores

replaced
new wiring
diconnected
existing board
added components

(a) Circuit-level power measurement

(b) APQ8074 System-On-Module (SOM) modifications to measure power
for the quad-Krait application processors

Figure 3.2.: CPU power measurement

42

power on the SoC level shadows the GC contribution on the CPU power since it accounts

for the total power consumed by individual components (e.g., modem, GPU, or sensors).

Here, we measure the total physical on-chip energy consumed for each core during the

app execution and we correlate the results and the configurations of several layers con-

sidering different controls. Once the app starts execution, the profiler reads the voltage

drop across microprocessor applications. By controlling system configurations, we reach a

qualitative description of the power behavior.

The power at the circuit level is calculated as the product of the two vectors, I and V ,

where V is the voltage drop across the microprocessors:

P(t) = V (t) · I(t) (3.1)

The energy consumed by n cores is defined [22; 23] as:

PCPU = Puncore + n(Pdynamic + Pstatic) (3.2a)

ECPU µ (Pdynamic) (3.2b)

Pstatic is the static power consumed by an online core while Pdynamic is the power con-

sumed by an active core and is dependent on the workload (instructions executed), i, and

the core frequency (Pdynamic µ i
cycles). The Pdynamic is calculated as a function of the effec-

tive capacitance, the frequency and the voltage as (Ceff fV 2). Although, the Puncore as it is

independent of the number of online cores and the workload. The energy is the integral of

Equation (3.2a) over total execution time T :

ECPU = (Puncore + nPstatic) T +
n

Â
i=1

Z T

0
Pdynamic dt (3.3)

Since the power mechanisms (e.g., governor) react to the workload by adjusting the

core speed, the dynamic energy is affected by these decisions.

We measure overall current flow at the circuit level as shown in Figure 3.2(a), using a

Pololu-ACS714 Hall-effect linear current sensor [1], positioned between the CPU and the

43

voltage regulator. We read the output voltage using a National Instruments NI-6009 data

acquisition device [87]. From these we calculate instantaneous power and thence energy

over time. On the board we replaced the four inductors L20, L22, L24 and L26 PIFE20161T

power-choke inductors (0.24 µH, 20%, DCR = 19 mW, ISAT = 4.7 A ROHS) by four power-

choke WE-TPC-8012 shielded inductors (0.24 µH, DCR = 19 mW, ISAT = 5.8 A) in series

with the hall-effect sensor [30; 114].

Figure 3.2(b) shows the modifications on a real board. The output sensor is connected

to the VREG_KRAIT_0P9 generated from the power manager (PM8841).

The Pololu-ACS714 has total output error of +�1.5% at room temperature with factory

calibration. NI-6009 allows 48 kS/s sampling rate with typical absolute accuracy 1.5 mV

(error 0.9%). We eliminate noise for analog signals using two bias resistors 50 kW to

satisfy the bias current path requirement of the instrumentation to the ground. At sample

rate 2 kS/s, we read the voltage across the voltage regulator and the sensor output using the

differential method and we take simple moving average for each 20 points.

3.6 Summary

Measuring performance on mobile systems is challenging due to the complex hardware

and software stacks. Different feedback mechanisms continuously adapt system parame-

ters, resulting in changed response time, power consumption, and time performance. These

metrics are deeply entangled and must be evaluated in unison in a controlled environment.

Addressing these challenges, we discuss a systematic approach that tames individual

feedback systems, reducing variations across experiments by disabling thermal throttling,

adaptive governors, and unneeded system services. In addition, we ensure stable conditions

by controlling the system image and parameters the experiment runs in.

We capture the discussed metrics by collecting (i) fine grained microprocessors level

power, (ii) detailed performance counters, (iii) system events, and (iv) VM events, corre-

lating all of them across the experiment.

44

Individual collected data is selected based on the target metric, ensuring that measuring

does not influence our experiment. In an in-vivo case study on the Dalvik VM we use both

existing applications and ported benchmarks to measure GC behavior and report precise

results that can be used for future optimizations in response time, power consumption, and

time performance.

45

4 IMPACT OF GC DESIGN ON POWER AND PERFORMANCE

Here we study the impact of GC implementation on the device including its impact on

application throughput, responsiveness, and energy consumption. We explore a range of

different collector implementations (including both the default Dalvik collector and ex-

tensions designed to improve both concurrency and locality), across several dimensions,

including heap sizing, concurrency, multi-core scheduling, and frequency scaling.

We propose several extensions to the default GC configuration of Android, including a

generational collector, spreading the GC load to different cores, and adjusting the speed of

different cores during GC collection. Our evaluation shows that Dalvik’s asynchronous GC

thread consumes a significant amount of energy. Therefore, varying the GC strategy can

reduce total on-chip energy (by 20-30%) whilst slightly impacting application throughput

(by 10-40%) and increasing worst-case pause times (by 20-30%). This leads to the identi-

fication of a sweet spot between reducing energy consumptions with minimal performance

tradeoff.

The contributions are:

• Discussion of alternative GC designs that extend Dalvik’s default mostly-concurrent,

mark-sweep collector with generations, and on-the-fly scanning of thread roots.

• An extensive evaluation of our measurement methodology for the different GC con-

figurations using a set of ported standard Java benchmarks and other Android apps.

• Correlating energy consumption with GC, showing tradeoffs with other performance

metrics to understand how GC overhead affects different system layers.

We refer to the default Dalvik collector as the concurrent mark-sweep (CMS) collector. It

suspends all the mutator threads as a batch (“stop-the-world”) at the beginning of each col-

46

lection cycle, scans their stacks for heap roots, and then restarts them all before continuing

concurrently to mark reachable objects.

4.1 GC Extensions

We consider both generational and on-the-fly variants of the default Dalvik CMS collec-

tor. These allow us to compare tradeoffs among different GC variants for mobile devices.

4.1.1 Generational CMS

We implemented a generational variant of the CMS collector (GenCMS) to study its

effect on app performance, considering metrics that include pause times, throughput, and

energy consumption. Generational collectors [81; 109] assume that recently allocated ob-

jects have a lower probability of surviving collections, splitting the heap into a young and

a mature space. Minor collections only propagate surviving young objects to the mature

space, major collections collect both spaces.

Our extension reuses the dirty object information already maintained for the CMS col-

lector to find references from survivor objects (those that are live after a GC cycle) to new

objects allocated since the previous cycle. This approach treats all surviving objects as old

and newly-allocated objects as young.

The mark phase of a minor generational GC ignores old objects, marking only the

reachable young objects. At the end of marking, the mark bits record the objects that sur-

vived the current GC cycle, which we merge into a survivor bitmap to record old objects.

The survivor bitmap is cleared before each major (whole-heap) GC, but otherwise accu-

mulates the survivors through each successive minor GC.

GenCMS uses complementary heap sizing heuristics to those of CMS, performing mi-

nor collections so long as the accumulated survivors do not exceed the softLimit computed

at the most recent major collection. The size of the young generation is set to the room

in the heap at the last major collection (i.e., the difference between the volume of the last

major collection’s survivors and the softLimit). As a result, GenCMS will use more space

47

than CMS (up to the softLimit plus the room). Concurrent GCs are triggered with a CSB

threshold set slightly below that of the softLimit plus room. Trimming collections always

perform a major GC.

Trigger policies for the generational collector aim to reduce mutator pauses (by hav-

ing mutators never directly perform major GCs), while also respecting the heap heuristics

employed by the CMS collector:

GC-CONC as for CMS, except that the background GC daemon may perform a minor or

major GC depending on the heuristics described above;

GC-ALLOC as for CMS, but the mutator performs a minor GC, noting that the next

GC-CONC should be major;

GC-EXPLICIT as for CMS, but the mutator ignores the explicit GC call, noting that the

next GC-CONC should be major.

4.1.2 On-the-fly

The default CMS collector has brief stop-the-world phases in which all Java threads

are brought together to a halt: (i) while marking the thread stack roots, and (ii) while re-

scanning dirty objects to terminate marking. Each thread is notified to execute until it

reaches a GC-safepoint, whereupon it notifies the collector that it has stopped.

Ideally, stop-the-world phases should be shortened or eliminated to improve application

scalability and minimize mutator pauses. On-the-fly collectors [36; 38] avoid the stop-the-

world phase during the marking phase.

We have extended the default Dalvik CMS collector to address the first of these pauses.

The second remains future work. Once a mutator thread has had its stack roots marked

we immediately signal it to resume execution. Moreover, we process threads in the order

in which they arrive at their GC-safepoint, so early responders receive service before later

responders. We refer to our on-the-fly collector implementation as CMSFly.

48

4.1.3 Concurrency policies

We consider variations regarding the presence, requests to, and core placement of the

background GC daemon threads, as follows:

background (bg) Mutators yield all GC triggers to the GC daemon, without foreground

GC. When an allocation request exceeds the softLimit or fails then the mutator instead

forces allocation, and signals the GC daemon to start a new background GC cycle,

before continuing. GC-EXPLICIT triggers simply signal the GC daemon.

foreground (fg) There is no GC-CONC trigger (the GC daemon is disabled). Mutators per-

form all GC-ALLOC work in foreground, concurrently to other mutators at boosted

priority. GC-EXPLICIT remains the same.

pinned (pin) The GC daemon runs exclusively on one of the cores, with its maximum

frequency limited, while other threads run on the remaining available cores. Pinning

allows direct exploration of the relationship between frequency scaling and GC per-

formance, as well as the impact of OS scheduling (which can otherwise migrate the

GC daemon to a different core).

4.2 Results

Our results show that varying GC policies, such as heap growth or concurrency can

reduce the energy consumed by 20-30% or can reduce the worst-case pause time by 30-

50%. Moreover, app throughput is not necessarily correlated with power. GC work is

inherently memory-bound but current governor heuristics focus on system load and do not

incorporate the execution profile into their decisions.

As described earlier, Dalvik uses dynamic heap sizing heuristics, which size the heap

at some factor of the live set resulting from the most recent (full) heap GC. Thus, both

the benchmark and the targetutil affect the GC workload, in the number of instruc-

tions executed, in the mix of those instructions, and in the scheduling of GC. More fre-

quent GC iterations and a smaller heap typically result in more GC work as a fraction of

49

���

���

�

��

��

��

���

���

���
��
��
��
���
��
��
���
��
��
� ��������

�����
�����
����

��������

���

���

�

��

��

��

�� �� �� �� �� �� �� �� ��

�
��

��
��
��
��
��
�

���������������������������

Figure 4.1.: Effect of targetutil on CPU
cycles (bottom) & frequency transitions
(top) normalized to default CMS

-30

-15

0

15

30

45

60

ex
ec

ut
io

n
tim

e
(%

)

lusearch
xalan

javac
jack

-35

-20

-5

10

10 20 30 40 50 60 70 80 90

co
ns

um
ed

 e
ne

rg
y

(%
)

target heap utilization (%)

Figure 4.2.: Effect of targetutil on
energy (bottom) & throughput (top)
normalized to default CMS

total work, though the smaller heap can have second order effects on app locality. Fig-

ure 4.1 (bottom) shows the total CPU cycles executed by all app threads (normalized to

CMS per benchmark) as targetutil varies. The trend is that the total app workload in-

creases significantly with targetutil, except for Quadrant because of the large number

of GC-EXPLICIT events.

Higher targetutil (smaller heaps but more frequent GC iterations) implies more fre-

quency transitions, since GC workload characteristics are different from the app. Hot-

plugging and DVFS decisions respond to these differences. The app workload also affects

the frequency of GC, so the number of transitions is quite different for each benchmark.

Figure 4.1 (top) illustrates how targetutil affects the number of frequency transitions

(normalized to CMS numbers per benchmark) imposed on the cores due to hotplugging

and DVFS.

We now explore the tradeoff between power and throughput, versus heap size. Tighter

heap imposes more frequent and higher total GC overhead. One expects app throughput to

decrease (i.e., total execution time to increase) as GC overhead increases with targetutil.

One might expect the same for energy consumption. Intriguingly, our results show that

increased execution time does not always correspond to increased energy consumption.

50

 0

 15

 30

 45

 60

fr
ac

ti
on

 o
f

ti
m

e
(%

) targetUtil10 targetUtil50 targetUtil90

 0

 15

 30

 45

 60

0 0.42 0.73 0.96 1.19 1.5 1.73 2.15

fr
ac

ti
on

 o
f

ti
m

e
(%

)

core frequency (GHz)

targetUtil10 targetUtil50 targetUtil90

Figure 4.3.: xalan (top), lusearch (bottom): Core frequency distribution (as fraction of
time)

Figure 4.2 shows both execution time and total energy consumed for each benchmark ver-

sus targetutil with the Dalvik CMS collector. As expected, all four of the benchmarks

shown have longer execution times in tighter heaps. But lusearch, unlike the other bench-

marks, consumes much less energy in tighter heaps.

The explanation for this seemingly anomalous behavior is that lusearch benefits from

the system making more effective frequency transition decisions than the other bench-

marks. Recall that GC work is memory-bound, resulting in increased memory cycles per

instruction (MCPI). Thus, choosing a higher frequency to perform that work (commonly

called “race to idle”) does not necessarily improve throughput; a lower frequency can get

the same work done in the same amount of time at lower energy.

Figure 4.3 shows the distribution of core frequency as a percentage of total execution

time for lusearch and xalan, for targetutil values of 10; 50 and 90%. For lusearch,

running with a tight heap (90%) causes the cores to spend a fraction of the execution time

on a range of lower frequencies (more efficient), and offlined, more than for looser heaps.

In contrast, xalan has more of its execution time spent at (less efficient) higher frequencies

with tighter heaps.

51

Having all GC performed in background (bg) consumes more energy. The perfor-

mance counters (i.e., L1 misses and CPU cycles) suggest that a background GC results

in a higher workload across all the benchmarks due to heap synchronization (i.e., context

switches) and trimming operations triggered when the heap is under utilized. The bg vari-

ant causes threads to wait longer than the other implementations, because they must wait

at GC-safepoints for GC to mark the roots of all mutators. On-the-fly marking (CMSFly)

instead allows the mutators to continue once their own roots have been marked.

4.3 Summary

Our results show that existing DVFS policies should be informed of GC events by the

VM to make more informed hotplugging and frequency scaling decisions. Similarly, app

developers need a range of GC strategies to choose from, so they can tune for responsive-

ness, utilization, and power consumption. This study is a first step to analyze the GC within

the system scope to serve as a guide of how to evaluate the coordination between design

decisions across all the layers of the system stacks (software and hardware).

52

5 CONTROLLING THE GC POWER CONSUMPTION

Dynamic voltage and frequency scaling (DVFS) is ubiquitous on mobile devices as a mech-

anism for saving energy. Reducing the clock frequency of a processor allows a correspond-

ing reduction in power consumption, as does turning off idle cores. Garbage collection

is a canonical example of the sort of memory-bound workload that best responds to such

scaling. Here, we explore the impact of frequency scaling for garbage collection in a real

mobile device running Android’s Dalvik virtual machine, which uses a concurrent collec-

tor. By controlling the frequency of the core on which the concurrent collector thread runs

we can reduce power significantly. Running established multi-threaded benchmarks shows

that total processor energy can be reduced up to 30%, with end-to-end performance loss of

at most 10%.

5.1 Objective

Shipped as systems-on-a-chip (SoC), mobile platforms feature heterogeneous multi-

core hardware with on-die hardware peripherals such as WiFi and GPS. User experience

is strongly based on device responsiveness and battery lifetime. To increase power ef-

ficiency, vendors often install binary-only, vendor-specific thermal engines that manage

the throttling of core frequencies through dynamic voltage and frequency scaling (DVFS).

DVFS heuristics aim for energy savings while maintaining reasonable performance [65;

85]. However, the complexity of modern mobile systems such as Android, with inter-

actions across layers from hardware up through operating system and managed run-time

system to application, makes managing this tradeoff difficult and complex.

Here, we focus on understanding and controlling the power-performance tradeoff of

the garbage collector of Android’s Dalvik virtual machine (DVM) running on a real mobile

device. Prior work has thoroughly explored this tradeoff for general-purpose platforms

53

[20; 42; 91; 96], including surveying energy management across the stack [73], but the

interactions of layers on mobile devices have not been directly addressed even as such

devices are more sensitive to energy and thermal conditions. We focus on Dalvik as the

most widely used mobile managed run-time system, treating it essentially as an opaque

black box, though we observe and correlate significant memory management events with

CPU power, performance, and responsiveness.

5.2 Approach

Tracing garbage collectors traverse heap references starting from the mutator roots to

determine all the reachable objects [70]. The collector reclaims memory occupied by non-

reachable objects. As a result, garbage collector instructions are dominated by memory

operations to load and trace the references, making it primarily memory bound, and incur

more memory cycles per instruction than compute-bound mutator workloads. Motivated

by this specialized GC workload, several studies have explored offloading the GC workload

to: (i) dedicated slow cores [20; 96], (ii) GPUs [83], and (iii) even specialized hardware

[9; 10].

Here, we explore the direct power impact of Dalvik’s concurrent garbage collector

on the Android mobile platform. Mobile devices use sophisticated power management

strategies in both hardware and software, with only simple communication among the lay-

ers. The DragonBoard APQ8074 development kit for Qualcomm’s mobile platforms de-

ploys a proprietary thermal engine to monitor temperature and workload which provides

feedback to Android’s Linux ondemand governor [18] to influence DVFS decisions. The

DragonBoard’s quad-core SnapDragon S4 processor supports asymmetric SMP with sep-

arate power domains for each core, so that each can be brought online, and its frequency

controlled, independently of the other cores. Primary core 0 is always kept online (to ser-

vice the OS as well as applications), though it may be throttled back to a very low idle

frequency based on workload and demand.

54

Dalvik’s concurrent garbage collector runs as a daemon thread in the Dalvik virtual

machine. When triggered, it may be scheduled on any available core, at whatever frequency

the governor sets for that core. The default governor has no special knowledge about the

activity of the collector daemon. The default governor applies the same workload feedback

mechanisms to the collector daemon as it does for all other threads. To isolate and control

the impact of the collector daemon we make the following modifications to Android and

Dalvik:

1. Pin the Dalvik collector daemon to primary core 0 so that we know which core it will

run on. This core is always online, so we do not affect decisions for onlining cores

for other threads. Moreover, we do not reserve a core and keep it online solely for

the collector daemon, which runs only intermittently; this would otherwise result in

unnecessary power consumption to keep a core online unnecessarily.

2. Modify the Dalvik virtual machine so that the ondemand governor knows when the

concurrent collector daemon is active, by marking the beginning and end of each

cycle of garbage collection.

3. Modify the ondemand governor to cap the frequency of primary core 0, only for

the duration of the concurrent GC cycle. The governor may choose to lower the

frequency below this cap as it chooses. When the concurrent collector daemon is not

active (i.e., outside the GC cycle), the governor is also free to adjust the frequency at

will above the cap.

Given the memory-bound nature of garbage collection we expect lower frequencies to

achieve the same work (instructions executed) without significantly degrading throughput,

because at high frequencies many processor cycles (i.e., energy) will be wasted waiting

for memory. Thus, one measure of garbage collector efficiency is cycles per instruction

executed (CPI). The SnapDragon S4 allows the sampling of per-thread hardware counters,

so we can directly measure CPI for the collector daemon. Our results demonstrate how CPI

improves for the collector daemon when the frequency of its core is capped.

55

Of course, slowing the collector core also indirectly slows down the application because

any attempt by the application to allocate will force it to wait for the collector daemon to

finish the GC cycle. Thus, application throughput can be expected to decrease with a slower

collector core. This tradeoff between application throughput and frequency of the collector

core is the relationship we are interested in, because there turns out to be a sweet spot

where slowing the collector core saves power without significantly reducing application

throughput.

5.3 Results

The power profile of an application is dictated by the core frequency transition and

onlining/offlining DVFS events that occur during its execution. Moreover, when we cap

the GC daemon’s core frequency it will result in different feedback to the governor and

different decisions about these events. To understand the impact of this for each of our

benchmarks we compare the DVFS events and frequency values for the original Dalvik

system with those of the GC-aware governor, for various values of GC core frequency

caps. The profiles appear in Fig. 5.1. Figure 5.1(a) plots the frequency transitions of the

apps running on the default Dalvik system. For DaCapo benchmarks, cores 2 and 3 are

disabled between iterations, while the second core is disabled outside the main control

loop for the iterations. The single threaded benchmarks (i.e., SPECjvm98) use only two

cores. Figures 5.1(b) to 5.1(d) demonstrate the difference between the default and the GC-

aware governors; each plots the frequency transitions at a different GC core frequency cap

(0.96, 1.5, and 2.15GHz, respectively). Notice how capping affects not only the transitions

for the GC core 0, but also the other cores servicing mutator threads. The reason for this

is that changing the GC core 0 frequency affects the latency of stalls the mutator threads

experience during stop-the-world phases or while waiting for the GC cycle to finish so they

can allocate. This in turn changes their performance profiles that feed into the governor in

its transition decisions for the other cores.

56

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
��

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
��

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
��

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
��

��
��

��
��

��
��

��
��

��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
�

��
��

��
��

��
��

��
��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

(a
)

de
fa

ul
tD

al
vi

k

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
�

��
��

��
��

��
��

��
��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

(b
)

0.
96

G
H

z

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
�

��
��

��
��

��
��

��
��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

(c
)

1.
50

G
H

z

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
�

��
��

��
��

��
��

��
��

��������������

���
��
��
�

�
��
��

�
��
��

�
��
��

�
��
��

(d
)

2.
15

G
H

z

Fi
gu

re
5.

1.
:T

im
el

in
e

of
fr

eq
ue

nc
y

tra
ns

iti
on

s
fo

rl
us

ea
rc

h
(to

p)
,x

al
an

,j
av

ac
an

d
ja

ck
(b

ot
to

m
)r

es
pe

ct
iv

el
y

57

���

���

���

���

���

���

� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
�������

������
������

������
������

������

(a) lusearch

���

���

���

���

���

���

� �� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
�������

������
������

������
������

������

(b) xalan

���

���

���

���

���

���

� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
�������

������
������

������
������

������

(c) javac

���

���

���

���

���

���

� �� �� �� �� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
�������

������
������

������
������

������

(d) jack

Figure 5.2.: Cumulative average GC
daemon CPI

��

��

��

��

��

��

���� ���� ��� ���� ���� ����

��
��
��

��
��
��
��
��
��
�

��

(a) lusearch

��

��

��

��

��

��

���� ���� ��� ���� ���� ����

��
��
��

��
��
��
��
��
��
�

��

(b) xalan

���

���

���

���

���

���

���� ���� ��� ���� ���� ����

��
��
��

��
��
��
��
��
��
�

��

(c) javac

���

���

���

���

���

���

���� ���� ��� ���� ���� ����

��
��
��

��
��
��
��
��
��
�

��

(d) jack

Figure 5.3.: Total consumed energy

58

5.3.1 Energy and throughput

GC is a memory bound task so we measured the per-thread CPI of the concurrent GC

daemon for each GC cycle. Figure 5.2 plots the cumulative average CPI (y-axis) for the

GC daemon over time (measured in bytes allocated), for the default Dalvik and GC-aware

capped governors. The clear trend is that the lower GC core cap, the lower the CPI. This

is the primary reason why running the GC daemon at a slower speed can improve power

efficiency without a proportional loss of performance.

In contrast, Fig. 5.4 shows the overall (rather than cumulative) average CPI for each

benchmark while varying the GC core cap. This varies very little across GC core frequency

caps, indicating that GC core CPI has little impact on overall CPI, which is dominated

by the workload rather than GC. Thus, the GC daemon is a good candidate for targeted

frequency capping to improve its efficiency.

The energy impact of capping the GC core frequency by the GC-aware governor is clear.

Figure 5.3 plots the effect on energy consumed for a range of GC core frequency caps for

each benchmark. Energy consumed with the default Dalvik governor for one execution

is shown as a horizontal line. The trend lines are linear fits to the scatter plots (recall

that energy consumed is proportional to frequency for a given fixed workload; computing

more refined statistics such as confidence intervals is not feasible for so few data points).

lusearch has a best energy consumption at 0.96GHz which is 30% lower than capping the

GC core at highest frequency (2.15GHz).

Although both xalan and lusearch are multithreaded apps, xalan shows less energy

savings (10%) than lusearch. The differences are due to the characteristics of the work-

loads exhibited by each benchmark. For example, xalan is known to perform more frequent

memory operations [72], borne out by the higher overall CPI for xalan in Fig. 5.4.

Energy consumed for jack varies least. Referring back to the frequency transition dia-

grams for jack in Fig. 5.1 one notes that the profiles for jack are similar across frequencies

indicating that the ondemand governor makes similar transition decisions regardless of the

GC core frequency cap.

59

�

�

�

�

�

�

���� ���� ��� ���� ���� ����

��
��
��
��
�
��

��

�������� ����� ����� ����

Figure 5.4.: Average overall CPI

����

����

����

����

����

����

����

����

����

����

����

���� ���� ��� ���� ���� ����

��
��
��

��
��
��
��
��
��
��
�
��
��
��
�

��

�������� ����� ����� ����

(a) Energy consumed

��

�

�

�

�

�

��

�������� ����� ����� ���� �������

��
��
��
��
��
���

��
��
��
�
��
��
��
��
��
��
�
��
�
��

���� ���� ���� ���� ���� ����

(b) Slowdown normalized to the default Dalvik

Figure 5.5.: Effect on energy and throughput

Figure 5.5(a) summarizes the effect of dynamic GC core frequency capping on the

energy (normalized to the smallest value per benchmark). The clear trend is that higher

frequency caps (faster collector thread and higher CPI) implies more energy consumption.

We now explore the tradeoff between power and throughput while varying the GC core

frequency cap. One expects that capping core frequencies may affect mutators scheduled

on the slower GC core interleaved with the GC daemon. Slowing the collector threads

may also lead to longer collection windows during which mutators wait for the concurrent

collection cycle to finish. Figure 5.5(b) shows the performance tradeoff with varying GC

core frequency, normalized to the execution time of the default system.

60

��

���

���

���

���

����

����� ���� �� ���

�
�
�
���

�

��������

������
�������
������
������
������

��

���

���

���

���

����

����� ���� �� ���

�
�
�
���

�

��������

������
�������
������
������
������

��

���

���

���

���

����

����� ���� �� ���

�
�
�
���

�

��������

������
�������
������
������
������

(a) DaCapo: lusearch (top); xalan (bottom)

��

���

���

���

���

����

����� ���� �� ���

�
�
�
���

�

��������

������
�������
������
������
������

(b) SPECjvm98: jack (top); javac (bottom)

Figure 5.6.: Minimum mutator utilization

For three benchmarks (lusearch, xalan and javac), the throughput slowdown is at worst

10%. As noted earlier, jack is less sensitive to the value of the GC core frequency cap; its

has throughput penalty at worst 4%.

Importantly, it is possible to obtain significant energy savings for modest reductions in

throughput. For example, at the 1.5GHz cap the performance penalty is only around 4%,

yet energy savings range up to 13%. And for a performance penalty of 10% energy savings

are as high as 30%!

5.3.2 Responsiveness

Slowing down the GC daemon also affects mutator responsiveness by making alloca-

tors wait for the GC cycle to finish and to resume execution after the collector’s relatively

brief stop-the-world phases (to sample the roots and process weak references). On mobile

devices responsiveness is a primary virtue in providing usable user interfaces. This is the

primary reason for Dalvik to use a concurrent collector.

On their own, reporting worst case and average mutator pause times don’t adequately

characterize the impact of different collector implementations. Instead, minimum mutator

61

utilization (MMU) over a range of time intervals yield a better understanding of the distri-

bution and impact of pauses [28; 70; 92]. Our VM profiler records the pauses experienced

by each mutator, classified into three categories: (i) GC-safepoint pauses, when a mutator

stops in response to a suspension request (e.g., for marking mutator roots), (ii) foreground

pauses, when a mutator performs a foreground GC cycle, and (iii) concurrent pauses, when

a mutator waits for a concurrent GC cycle to finish.

Figure 5.6 shows the MMU results for each benchmark with varying GC core frequency

caps. MMU graphs plot the fraction of CPU time spent in the mutator (as opposed to per-

forming GC work) on the y-axis, for a given time window on the x-axis (from zero to total

execution time for the application). The y-asymptote shows total garbage collection time as

a fraction of total execution time (GC overhead), while the x-intercept shows the maximum

pause time (the longest window for which mutator CPU utilization is zero). When compar-

ing GC responsivenesses, those having curves that are higher (better utilization) and to the

left (shorter pauses) can be considered to be better (with respect to mutator utilization).

The GC-aware governor with 2.15GHz cap has the best MMU curve on the DaCapo

benchmarks lusearch and xalan (Fig. 5.6(a)). The explanation for this behavior is that

pinning the GC daemon reduces the number of task migrations on lusearch and xalan by

a factor of 6 and 5%, respectively.

One might consider MMU for jack to be quite unintuitive as 0.96GHz has both smallest

maximum pauses and best overall utilization. However, note that applying the GC-aware

governor with a GC core cap of 0.96GHz, the ondemand governor responds by keeping

core 1 on high frequency for a larger portion of execution time than the default governor, as

illustrated in Fig. 5.1 (bottom). For javac (single threaded), the mutator spends more time

waiting for collecting a relatively large heap (maximum heap size 14MiB). On the other

hand, the GC-aware governor has a better overall utilization than the default Dalvik.

Overall, the GC-aware governor doesn’t markedly degrade maximum pause times, and

generally improves overall utilization.

62

�

�

�

�

�

�

�

�� �� �� �� �� �� �� �� ��

��
��
��
��
�
��

���������������������������

�������� ����� ����� ����

(a) Average overall CPI varying targetutil

���

���

���

���

���

���

���

���

�� �� �� �� �� �� �� �� ��

��
��
��
��
�
��
��
���

�
��
��
�
��

���������������������������

�������� ����� ����� ����

(b) Average GC daemon CPI varying targetutil

Figure 5.7.: Effect of targetutil on CPI

5.4 Discussion

Two items in our evaluation bear further discussion: use of CPI as an leading indicator

for energy needs and the impact on CPI of heap size, plus the arrival of the new Android

Run Time (ART).

5.4.1 Choice criterion to characterize workload

Our study relies on CPI as an indicator for CPU energy requirements. The reported re-

sults do not explore CPI as a function of hardware architecture, which would be interesting

for further study. Also, the number of instructions to run a fixed amount of work varies

between different executions due to concurrency in the mutator threads. Taking into con-

sideration that CPI does not measure I/O, OS interruptions, or GPU executions, our results

show that app performance and energy consumption correlates well with the CPI.

Moreover, heap size can affect frequency scaling decisions and resulting energy effects

and app throughput. Indeed, many GC studies treat heap size as the most important param-

eter to vary since it can have a significant impact on throughput and responsiveness. The

parameter that controls the mix of collector work versus mutator work is the target heap

utilization (targetutil), which affects heap sizing decisions. As described earlier, Dalvik

uses dynamic heap sizing heuristics, which size the heap at some factor of the live set result-

63

���

���

���

���

���

���

� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
��

��
��

��
��

��

���

���

���

���

���

���

���

� �� �� �� �� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
��

��
��

��
��

��

���

���

���

���

���

���

� �� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
��

��
��

��
��

��

(a) DaCapo: lusearch (top); xalan (bottom)

���

���

���

���

���

���

���

���

� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���

�
��
���

�
��
��
�
��
�

������������������������

������
��

��
��

��
��

��

(b) SPECjvm98: jack (top); javac (bottom)

Figure 5.8.: Cumulative average GC daemon CPI varying targetutil

ing from the most recent (full) heap GC. Thus, both the benchmark and the targetutil

affect the GC workload, in the number of instructions executed, in the mix of those in-

structions, and in the scheduling of GC. Figure 5.7(a) shows the average CPI for a range of

targetutil values. The clear trend is that the total CPI does not vary significantly with

heap utilization as long as the mutator workload is consistent. However, the average CPI

of the GC daemon does vary somewhat since the amount of work done by the collector in

each collection is different as illustrated in Figures 5.7(b) and 5.8. But the variation is not

nearly as large as that obtained by capping the GC core frequency, which dominates the

effect of different target heap utilization.

5.4.2 Android runtime extension

Google announced ART, a next-generation run-time system for Android 4.4 that relies

on somewhat aggressive ahead-of-time compilation of apps [51], and which will replace

Dalvik in the future. ART also implements several GC improvements that will impact our

results: (i) the marking phase has one stop-the-world phase for marking the roots instead of

64

two (no longer stop-the-world for weak references); (ii) introducing a pseudo-generational

sticky collector to deal with short-lived objects; (iii) dedicating a separate heap for large

objects; and (iv) enabling parallel processing during marking of mutator roots.

We do not expect the CPI of the GC daemon to change significantly as its work is

dependent on the mutator heap data structures rather than the mutator code generated by

the ahead-of-time compiler (and the daemon is implemented natively). Thus, the merit

of controlling the frequency scaling decisions to reduce the GC daemon CPI still holds.

Moreover, improved concurrency will reduce mutator pauses due to waiting for the col-

lector. Thus, we are confident in advocating integration of governor decisions with GC

activity as an effective mechanism to tune system performance for other systems including

ART. As future work we will port our frequency governor to ART and study and improve

settings for this platform.

5.5 Summary

On mobile devices, GC has significant impact on energy consumption, not only from

its explicit overhead in CPU and memory cycles, but also because of implicit scheduling

decisions by the OS with respect to CPU cores. Motivated by the fact that the kernel has the

power to change core frequencies to adapt the system to changing workloads, we presented

a new GC-aware governor that caps the frequency of the core while the concurrent collector

thread is active. The new governor is evaluated in vivo showing that it reduces total on-

chip energy (up to 30%) for comparably low throughput tradeoff (of at most 10%) on our

workloads. The GC-aware governor has no negative impact on benchmarks experiencing

optimum frequency scaling decisions by the default unmodified system. Our work is the

first to analyze memory management on mobile devices across non-adjacent system layers

(app, kernel and hardware).

65

6 GARBAGE COLLECTION AS A SERVICE

“The way to become rich is to put all your eggs in one basket and then watch that basket.”

— Andrew Carnegie.

Mobile devices run dozens of so-called “apps” in protected managed run-time environ-

ments, also known as virtual machines (VMs). All these VMs run concurrently and each

VM deploys purely local heuristics to organize resources like memory, performance, or

power. Mobile frameworks deploy crude mechanisms to manage the scarcity of memory:

(i) each VM decides locally when to garbage collect and what to collect (e.g., using a mi-

nor or major collection, collecting concurrently, or trimming the heap), (ii) kill background

applications, or (iii) optimize/recompile running applications. We identify the lack of co-

ordination among these VMs as an opportunity for optimization for mobile systems over:

(i) memory usage, (ii) run-time performance, and (iii) power consumption. A global mem-

ory manager service can avoid conflicts across garbage collectors in separate VMs and

make informed decisions based on global resource constraints. Our prototype implemen-

tation collects system-wide statistics from all running VMs, makes centralized decisions

about memory management across all layers, and also collects garbage centrally. Further-

more, the global collector coordinates with the power manager to tune collector scheduling.

In our evaluation we illustrate the power of such a central coordination service and garbage

collection mechanism in reducing total energy consumption (up to 18%), throughput (up

to 12%), improving memory utilization, and adaptability to user activities.

6.1 Motivation

Mobile devices are required to provide the desired performance and responsiveness

while being constrained by energy consumption and thermal dissipation. With perfor-

mance, heat, and power consumption strongly tied together it is common to use dynamic

66

frequency at run-time to reduce power consumption and amount of generated heat (i.e.,

CPU throttling). Mobile platforms come bundled with software components such as kernel

governors [18] and proprietary thermal engines that control power and thermal properties.

The crude decisions made by these engines are orthogonal to resource management heuris-

tics embedded within components in the user space level.

With the number of connected Android [50; 51] devices exceeding a billion1, the dom-

inance of Android’s runtime introduces an interesting challenge: we are faced with devices

that continuously run dozens of managed language environments—also known as virtual

machines (VMs)—in parallel. These VMs run both as “apps” in the foreground and as

services in the background. This situation is vastly different from classic desktop or ap-

plication server systems where VMs use dedicated resources, and where only one or a

handful of VM processes run concurrently. For mobile devices, all concurrent VMs share

a set of constrained and over-committed resources. Without global coordination, each VM

optimizes independently across orthogonal goals: performance, responsiveness, and power

consumption.

VM services such as garbage collection (GC) typically come with a number of op-

timization and scheduling heuristics designed to meet the performance needs of the sup-

ported applications and users. The tuning of GC performance is achieved by designing a

GC policy that uses a set of predefined heuristics and the state of app execution to decide

when and what to collect [66]. Configuring a garbage collector is a tedious task because a

VM often uses tens of parameters when tuning the garbage collector, specific to the needs

of a particular application: i.e., initial heap size, heap resizing, and the mode of collection

to perform [17; 77]. Even for a single VM it is extremely difficult to identify the best

collector and heuristics for all service configurations [66; 70; 102]. Recent interest in fine-

grained power measurement shows that GC has a significant impact on energy consumed

by the apps [20; 96]. This happens not only because of its explicit overhead on CPU and

memory cycles, but also because of implicit scheduling decisions by the OS and hardware

with respect to CPU cores. Therefore, a potential approach to optimize GC cost per single
1http://expandedramblings.com/index.php/android-statistics/

67

VM is to take advantage of GC idleness and control the frequency of the core on which the

concurrent collector thread is running [34; 62]. Although this approach increases the res-

ponsiveness of applications and reduces memory consumption as perceived from a single

VM, it is not feasible to achieve a global optimization criterion with multiple VMs.

With dozens of VMs running concurrently on constrained devices, tuning memory con-

figurations for mobile platforms is even more challenging due to interference between VMs

across the layers of the hardware and software stack. Among these layers, which are usu-

ally not tuned in harmony with the VM implementation, are:

1. Device Configurations: The mobile system has globally fixed VM configurations

such as the initial and the maximum heap sizes. These configurations are device-

specific and are based on several factors like RAM size and screen dimensions.

2. OS: Some heuristics and configurations may be applied on their own, without co-

ordinating with the VM [67; 76]. Android employs the low memory killer (LMK)

operating system module to monitor the available memory, and to kill arbitrary pro-

cesses when memory runs short to reclaim memory for the system.

Here we consider the impact of just a single aspect of managed run-time environments,

namely memory management (GC) on the device overall performance. We identify the

missing coordination between concurrent VMs as an opportunity for optimization on mo-

bile systems along (i) memory usage, (ii) run-time performance, and (iii) power consump-

tion. A global service that collects statistics from all running VMs can optimize across

them., and it allows for coordination with power managers to achieve global energy op-

timization. The service can prioritize GC operations based on the estimated freed bytes,

reducing the total work required by individual VMs. The benefits of a global service in-

clude efficient resource management, feasible methodology to analyze system behavior,

fine control over tuning parameters, and excluded redundancy across the parallel VMs.

We show that a global memory management service provides control over GC costs and

memory utilization. Unlike the existing execution mode, where each collector runs within

its own VM, the new platform has a single GCService process that serves all running VMs.

68

The GCService unifies interactions between nonadjacent system layers (i.e., the low-level

OS power manager) and GC tasks. The service has OS-like access, capable of scanning

and collecting per-process VM heaps remotely and gathering statistics about all the running

VMs in the system, including: process priority, allocation rate, and heap demographics.

This allows for a fine-grained control over the GC tasks being executed and their scheduling

compared to just coarsely signaling individual VMs to start GC collections.

Contributions. We illustrate the power of combining vertical cross-layered heuristics to

achieve efficient heap decisions such as compaction, collection, and trimming. GCService

efficiency is not limited to local heuristics, resulting in better utilization of system resources

based on the workload. We make the following contributions:

• We identify a unique opportunity for optimization on mobile systems by coordinating

and orchestrating all the concurrently running VMs.

• We design a global service that collects statistics from all VMs, and we implement a

prototype that centralizes GC, including global GC heuristics that optimize memory

usage across VMs and the actual collection tasks.

• We develop, implement, and evaluate in vivo a complete running mobile platform

based on Android that distributes GC sub-tasks between applications and an OS-

like control unit. These heuristics include: heap growth management, compaction,

trimming, context-aware task-killing mechanisms, and energy optimization.

6.2 Design and Architecture

Android. The Android platform is designed in the form of a software stack that comprises

various layers running on top of each other in a way that the lower-level layers are providing

services to upper-level components. Figure 6.1(a) shows the following layers: (i) Android

is built on a modified Linux (Androidism), providing a layer of drivers, shared memory,

and interprocess communication (binder); (ii) Native libraries and system daemons (i.e.,

bionic, and thermal engines); (iii) Android runtime, which is the core VM library that hosts

69

VMiVMiVMi

threadnGCDaemon notify
threshold

private
heap

governor CPU driverFreq

work(t) LMKProc stats/RAM

threadnthreadn

Ke
rn

el

System
Daemons

An
dr

oi
d

R
un

tim
e

AppA AppB AppCApps

Framework locationnotification

(a) Default Android stack

proxy

GCService

governor CPU driverFreq

work(t) LMKProc stats/RAM

cap
frequency

VMiVMi VMi

threadnGCAgent notify
threshold

heap

threadnthreadn

mmap

handshake

read
stats

post
request

workernworkerk

pull
request

Async task queue

1
2

3

4

5

AppA AppB AppC

locationnotification

(b) GCService system overview: new components are
shaded

Figure 6.1.: Comparing default Android stack and GCService

an app; (iv) framework layer that provides services to apps—i.e., location manager; and

(v) application layer that compromises the third party applications installed by the user and

the native applications (i.e., browser).

We introduce a service that runs as a separate VM and collects information from run-

ning applications and runtime services—i.e., RAM and workload. Based on these statistics

it then performs global decisions across all running applications. Building on this central

service that runs as its own separate Linux process, we design a GCService component

that maps the VM heaps of all running apps into the central service and carries out all

GC decisions using global (not local) heuristics, allowing for more informed decisions.

Figure 6.1(b) shows the high-level interaction between the components of our system:

1. The client VM performs all necessary initialization including the heap initialization.

The VM instance is augmented by a native daemon called GC agent. The agent

daemon connects to the server, allowing it to synchronize on the client heap.

2. The server process maps the client heap into its private virtual address space. In

addition, the server manages all coordination and synchronization with other system

layers–i.e., power managers.

70

3. A GC-aware governor that communicates GC activities to CPU throttling decisions

in order to control the power efficiency of the GC.

4. A platform-specific proxy that abstracts the mechanism of sharing the client’s heap.

5. An asynchronous task queue that allows the GC agent to post requests to the GCSer-

vice.

6.2.1 Challenges

There are many challenges that need to be addressed when implementing a centralized

GCService.

Reliability. It is essential that the GCService provides a uniform mechanism for manag-

ing apps’ life cycles in isolation from each other [68]. Therefore, it must be feasible to

change the status of a VM without affecting the remaining VMs. This requires separating

the internal structure of a client’s VM (i.e., static objects). In addition, it is essential that

failures in the GCService do not bring the system down.

Android apps are designed to tolerate random restarts. Stock Android-runtime restarts

apps when they become unresponsive. Like all other Android services, the GCService

is designed to restart after crashing. When the GCService is offline, clients perform GC

locally until the server is back online. A client engaged in a GC cycle may hang depending

on the lock status. The client will be restarted when it becomes unresponsive.

Security. Since Android allows execution of native code, serious security issues arise

with previous approaches like Multi-tasking VMs (MVMs) that let a single VM to run

multiple applications [31; 117]. Such approach consists of sharing one heap across all

running apps, making the system highly vulnerable to security exploits. Our design, on the

other hand, offers a secure approach where the code of the central GCService is trusted, and

each VM has access to only its own local heap. In the GCService, the heap layout must not

be identical across all the VMs (including the zygote), supporting the shuffling introduced

71

by techniques such as address space layout randomization (ASLR). This reduces the risk

of memory attacks.

Performance. Our system aims at reducing the latency of app responses while assuring

better performance and longer (battery) lifetimes. However, with a centralized GCService,

a slow process of GC requests can introduce a new bottleneck. Therefore, the new sys-

tem has to provide a robust asynchronous mechanism to (i) allow for fast communication

between the client and the server, and (ii) reduce the context switching overheads..

Portability. Placing the GCService in the VM layer enhances portability while keeping

the OS unmodified. The communication model between the GCService and the clients

must not be platform-specific.

6.2.2 Global collector and energy optimization

In theory, an optimal GC policy leads to optimal GC scheduling. The latter is the trace

of GC events throughout the program execution that produces the lowest GC cost [66].

However, with the introduction of other system components into the cost equation (i.e.,

CPU scheduling and CPU throttling), the GC scheduling can be tuned by hiding expensive

garbage collection operations inside of small, otherwise unused idle portions of application

execution, which results in better overall execution [34].

For mobile devices, tuning the GC implementation to meet performance and power

goals is exceptionally difficult, because per-app GC cost is defined as a function of several

controls [34; 62] such as: (i) the power manager reacting to CPU idle-time during memo-

ry-bound GC phases; (ii) VM configurations, GC algorithm and the heuristics controlling

the heap size; and (iii) the workload and memory stress at run-time.

During a GC cycle, the mutators are unlikely to make a full use of fast cores because

(i) threads are more likely to stall due to stop-the-world phases, and when they are waiting

for the collector to finish so they can allocate, and (ii) GC is inherently memory bound,

72

which is subject to total memory bandwidth. Thus, GC scheduling can be tuned using the

following mechanisms:

1. The prioritization of GC tasks across dozens of simultaneously running VMs, which

need fine-grained control over scheduling. Put another way, given a set of parallel

VMs and a global state of execution, define the selection criteria to pick a VM and

the GC task to apply next.

2. The reduction of GC energy cost while allowing for a better responsiveness and

throughput [34]. This works as a GC-aware governor that caps the frequency of

the core.

A global GC policy cannot achieve energy goal on its own. Therefore, the GCService

works as a global collector that handles several GC phases on behalf of other VMs. In

this way, the coordination between the power manager and a single process is feasible and

practical.

Having a single process to handle the launch of GC tasks allows for a more fine-grained

control of estimating the memory management overhead and coordinating with other sys-

tem components. At a high level, the GC service aims to make the most effective decision

in a specific situation. For e.g., the GCService does not (necessarily) collect the heap of the

app that is currently running (and is likely requesting memory), but the heap that contains

the most garbage.

Executing GC tasks by a single process also reduces code footprint and code cache

pressure from individual threads that are running per-app GC and from negative interactions

with the scheduler. This results in better cache performance and locality, in addition to

reducing the VM footprint and abstracting memory management from the rest of the VM

implementation.

Therefore, the GCService coordinates with a power manager and a scheduler to hide

the cost of the GC idleness [34] across all VMs–and not only for a single VM [62]. The

GCService feeds the power managers with information about the GC tasks, capping the

maximum frequency of the core on which the collector thread is running.

73

6.2.3 global GC service vs. global GC policy

Some studies investigate auto-tuning of the GC policy locally per single VM [102; 112].

Yet, to date there is no published work on a global tuning methodology that combines both

the GC configuration policy and the global scheduling decisions on the system.

Global Heuristic Manager. Our service allows holistic and central control of (i) de-

tecting conflicts and overlaps between heuristics of components scattered across non-adja-

cent layers of the system stack, (ii) removing redundant functionality that exists between

non-adjacent software layers, and (iii) identifying unhandled scenarios that result from dis-

tributing the memory tuning task across several libraries.

We augment the GC service with the following extensions: (i) global device stats—i.e.,

available RAM, and workload, (ii) per-process system stats—i.e., priority, (iii) per-heap

stats such as heap variable, fragments distribution, and allocation rate, and (iv) the ability

to perform GC phases remotely on behalf of other processes. With global system informa-

tion the centralized GC service makes more efficient decisions such as trimming the heap

that contains the highest fragmentation first, delaying collections when unused memory is

available, and even adjusting the heap thresholds based on allocation rates rather then static

thresholds.

6.3 Service Implementation

Our prototype GC service implementation is based on Android 4.4 (KitKat) ART.

KitKat is the latest release that runs on our development hardware platform and uses Linux

kernel 3.4. We start our modification based on the open-source SDK and the default con-

figuration. We extend the Android VM and the Linux kernel (with 6K and 1K LoC, respec-

tively) to allow direct access to hardware performance counters from the VM (to measure

precise run-time statistics when running on the development board).

74

6.3.1 System startup

System boot follows the standard steps of loading hardware-dependent components and

initializing subsystems and drivers. We extend these steps by launching the proxy to guar-

antee that the daemon is ready to receive requests. Then, the booting process forks the

GC service which initializes the communication queues and the pool of worker threads.

The server has a singleton listener thread that fetches tasks from the task queues and in-

serts them into local queues to be handled by the worker threads. Occasionally, the server

updates the global statistics to adjust its decisions.

When forking a new VM instance, the native system agent daemon connects to the GC

service. The agent inserts all GC events into the global queue, waiting for a message from

the server that defines actions to be executed (i.e., GC or trimming).

6.3.2 Communication with applications

Although Android provides the binder as an Interprocess communication (IPC) mecha-

nism, we implement our communication model on top of shared memory for the following

reasons: (i) Binder provides synchronous calling, which increases the possibility of context

switching between the sender and the receiver, leading to performance degradation [33; 79];

(ii) Binder restricts the maximum number of calls that can be handled concurrently (cur-

rently 16); and (iii) Shared memory makes our system portable and independent of platfor-

m-specific features.

IPC between the server and the client is based on asynchronous message queues to

achieve efficient handshaking with a minimum overhead. IPC messages and signals are

implemented using futexes [45] to synchronize in user space. The server utilizes a pool of

work-stealing threads to reduce the overhead of thread creation.

IPC Overhead. IPC between the GC service and VMs is based on priority queues. This

communication mechanism is an efficient way to support various heuristics—i.e., process-

ing the foreground application with higher priority. The longest duration of time a request

75

stays pending can be represented as a function latency(IPC) = f (u ,h ,r), where h is the

number of requests with higher priority, u is the total time overhead in context switching,

and r is the duration spent processing one request. In the GCService, latency is measured

by the time difference between posting the request and responding to it. This value is used

to add an extra heap room to allow enough time to respond to concurrent requests.

Although process context switching overhead is known to be high compared to thread

switching, profiling of scheduling statistics on Android ART with the GC service shows

this to be negligible. A possible explanation is that each GC loads completely different

code into the caches and touches a lot of memory pages, so the cost of switching processes

is in the noise.

6.3.3 Energy optimization

Power governors (e.g., ondemand) control the energy consumption of the multicore

processor based on observed workload. The governor collects run-time statistics and ap-

plies heuristics in an attempt to meet optimization criteria. We integrate between the GC

service and the CPU power driver making the governor aware of GC activities (a user-space

activity). This allows the governor policy to account for distinct phases of GC behavior in

the application workload. By monitoring the workload, the GC service makes informed

decisions to schedule background tasks with lower GC costs [34].

Furthermore, at the beginning of a GC cycle, the modified ondemand governor caps the

maximum frequency of the core on which the collector daemon is scheduled. We calculate

the capped maximum frequency as the median between the current core frequency and the

governor optimal_freq (see Table 3.2). Following the collection cycle, the governor is free

to adjust the frequency according to the observed workload and the default settings. GC

service coordination with power managers differs from local power optimizations that may

inherit conflicting GC scheduling decisions across concurrent VMs [62].

76

Private memoryShared memory

Heap Meta
mark-stack

GC Policy

heap growth

heuristics
GC-type

Spaces

Zygote
stats

live-bitmap
mark-bitmap

Allocation
stats

live-bitmap
mark-bitmap

Heap Meta
intern-tables card-tables

Heap growth

image-zygote
zygote-alloc

live-stack
mark-stack

Spaces
Image live-bitmap

Figure 6.2.: Shared heap layout in the GC service

Task

heap volume

start

mark
bitmaps

done

GCAgent

GCService

assign worker

decide task type

mark
roots

GC

 recursive mark
 sweep
 calc heap size

local
trim

finalize

done

GC/trim

new heap limits

thread signal
send signal
blocked for signal

Y
Y

Compact

N

remote
trim

trim NY
N

Figure 6.3.: Control flow of tasks in the GC service

6.3.4 Memory layout

The heap layout of a single ART VM comprises the following main blocks: (i) image-s-

pace: an immutable contiguous memory region created from an image file, (ii) zygote-s-

pace: a contiguous memory space inherited from the zygote process (the zygote space is

occasionally collected during full GC events), (iii) allocation-space: the active contigu-

ous space used by the app, (iv) large-object-space (LOS): contains all objects larger than

LOS-threshold. The space is a linked list of memory mapped pages.

77

ART keeps two bitmaps (live and mark) for each individual space, and a global allo-

cation stack to keep track of newly allocated objects. Card table records dirty objects.

Inter-space references are stored in internal tables to reduce the overhead of tracing the

reachable objects in the active space. Finally, the mark-stack stores the marked objects that

need to be scanned during the concurrent marking.

The client VM starts by creating a GC agent daemon, which registers the VM with the

service by sending the VM process id (PID) and the continuous space addresses. Thus, a

subset of heap metadata, zygote, and allocation spaces become accessible to the service.

Figure 6.2 shows the shared memory layout in the new system.

Figure 6.3 shows how collection is handled in the GC service. The app-local agent first

marks the heap roots including those from thread stacks and globals. The shared mark-

bitmap is then used by the server to mark the reachable objects recursively. The agent takes

control once more at the end of the mark phase to stop-the-world and revisit any remaining

dirty objects pushed on the mark-stack due to concurrent updates by the client application

threads (mutators).

The server sweeps the space to create the list of free objects, computes fragment dis-

tributions, and calculates the new size of the heap. Finally, the agent enforces the new

heap threshold before finalizing the GC cycle. Since handling the dirty objects requires a

stop-the-world step, we avoid IPC between the agent and the server to assure that the Java

threads are resumed in a short period of time.

On the server side, the collector recalculates the reference fields based on the base

address of the mapped heap. The server scans the reachable objects except for a small set

allocated in the client’s private memory range. If the adjusted address does not belong to

the mapped range (shared space), the server decides to add the object to a “delayed” list.

The GC agent processes the delayed list as a subset of the dirty objects.

Space Partitioning Tradeoffs. Android ART puts a new object in the LOS when its ab-

solute size exceeds a predefined large object threshold. The current GC service implemen-

tation limits the heap to contiguous memory regions, causing a slightly higher overhead

78

new
app?

memory
scarce?

label app nursery
resize= RF[nursery]

Pri[t] !=
Pri[t-1]resize= RF[Pri(App)]

allocRate(T)=alloc(T-1)/t u(t) = H * f(allocRate, resize)
H = u(t) + (allocRate(T) * latency(IPC))

Z

update
global state

Y

Y

Y

N

N

N

Figure 6.4.: Heap growth procedure following a GC task

when scanning the heap. Section 6.4.1 shows that very few object allocations (less than

1%) are affected by the removal of LOS.

6.3.5 Heap size management

Mobile apps often exhibit an execution pattern that makes static GC policies ineffective.

For e.g., music players and games tend to allocate large chunks of data at the beginning of

each phase (track/level), causing a spike in the allocation rate and the heap size, followed

by minutes with little allocation. Our profiling data shows clear traces of this behavior

where the heap oscillates indefinitely.

We address this challenge as follows: (i) an app in start-up phase is able to grow the

heap more aggressively; (ii) app priority is a factor for allowed heap growth, resize =

Pri(app); (iii) for each VM, the GC service stores allocation and resizing statistics of the

last 20 events; (iv) the GC service dynamically calculates the heap size using a predefined

controller to prevent heap size [112] oscillation.

Figure 6.4 illustrates the steps followed by the GC service to resize the app’s heap.

The service uses the memory allocation/collection rates to auto-adjust the heap growth

policy dynamically [112]. This allows for identifying the steady state of the heap volume

in smooth steps that eliminate inefficient heap bounds. The GC service updates the global

79

statistics when a new app is created, or when an important app changes status, possibly

being replaced by another app. Whenever spare cycles are available, the server daemon

picks a low priority app labeled to have a sparse heap (fragment ratio) from the process list

to perform an offline compaction.

Offline Compaction vs. Trimming. Due to the scarcity of available memory, following

a GC cycle the Android VM occasionally scans the heap spaces, releasing empty pages

to the system. This trimming event is executed on lower priority VMs where the live set

occupation falls below a given threshold. This periodic trimming comes at a high price with

long-running VMs oscillating indefinitely around the triggering threshold. If the system

needs more memory, Android simply kills inactive apps to release their memory pages.

The efficiency of trimming depends on the distribution of heap fragments. Note that

ART (Android 4.4) does not compact the heap, so any remaining object on a page reduces

trimming effectiveness. Knowing that the space leakage in a tracing collector grows much

faster than linearly with a heap size [95], it is intuitive to see that a live object occupying

just few bytes can prevent the release of a full memory page.

In order to tackle this challenge, the GCService keeps statistics about empty slots fol-

lowing each full GC. When memory becomes scarce, the GCService lazily picks the VM

with the highest fragmentation score in the list of low priority VMs. Once picked, the

inactive app can undergo a safe offline compaction.

It is important to distinguish between the remote compaction mechanism in the GC

service and having a centralized GC manager that signals a specific VM to release the

unused pages. In the latter, each VM needs to perform the compaction task, implying

that the process changes its state from inactive to running. GC compaction also requires

significant per-VM overhead to store the forwarding references (space overhead) and to

synchronize attempts to access the moved objects [11; 27].

Taking advantage of the fact that the VM is already inactive, the GC service performs

the compaction in an offline mode without the need to synchronize on forwarding refer-

80

ences. Since the collector process is already running, the GC service avoids signaling an

inactive process, which would otherwise decrease global CPU and memory utilization.

6.4 Experimental Results

Our centralized framework cuts across multiple layers of the Android 4.4.2 “KitKat”

software stack and touches both hardware and operating system aspects. The default con-

figuration appears in Table 3.2. For all applications, we use the Monkeyrunner tool to auto-

mate user inputs [3]. We leverage our prototype implementation described in Section 6.3.

We use the APQ8074 DragonBoard hardware Development Kit based on Qualcomm’s

Snapdragon S4 SoC. The S4 uses the quad-core 2.3GHz Krait CPU. Caches are 4KiB +

4KiB direct mapped L0 cache, 16KiB + 16KiB 4-way set associative L1 cache, and 2MiB

8-way set associative L2 cache. The total memory available is 2GiB.

Consistent lightweight profiling. The VM profiler runs as a C-coded daemon thread

inside ART and Dalvik. This daemon only runs when we are collecting execution statistics

such as performance counters, or GC events and not for measurements that are sensitive

to timing or scheduling, such as total execution time and OS context switching. The data

from this daemon are not used for our heuristics but to evaluate the system in-vivo.

To avoid perturbing application threads (mutators) the profiling daemon does not syn-

chronize with them. To avoid environmental perturbation, we run experiments that are

sensitive to time and scheduling with the thermal engine disabled. We note that the thermal

engine controls the CPU frequency, increasing non-determinism of the experiments—i.e.,

execution time and power consumption will change because of the temperature.

Power Profiling. We measure the total physical energy consumed during the app exe-

cution and we correlate the results and the configurations of several layers considering

different controls. Once the app starts execution, the profiler reads the voltage drop across

the device at a sample rate of 2 kS/s.

81

�

��

��

��

��

�� �� �� ��� ��� ��� �� �� �� �� ��� ���

��
��
��
��
�
�
��
��
��
��
�

������ ����

�������
��������������

����������
��������

����������
��������

�����

�

���

���

����

����

����

��
��
��

�
��
��
��

Figure 6.5.: Object size histograms and loaded classes

6.4.1 Workload

We developed a set of applications that wrap popular Android libraries allowing various

workload sizes and number of iterations. We profile the object size demographics in the

heap in a perfectly compacted heap (64KiB). Figure 6.5 plots the percentage of objects

(y-axis) in each object size (x-axis) that each app allocates. The number of loaded classes

reflects the variance in object types.

6.4.2 Global evaluation

Here we demonstrate how the GC service meets user requirements, and executes seam-

lessly on real devices. With an increase in memory used by the foreground app, physical

memory may become insufficient. According to the values of minfree in Table 3.2, the

LMK starts killing processes from the lowest priority group.

Microtask Evaluation. The default Android memory system is tuned for single mono-

lithic applications. First, after a collection, the default collector iterates through all allo-

cated heap memory and trims free pages if the app is in the background. This scenario is

82

No
rm

al
ize

d

0.5

1.0

1.5

2.0

2.5

Time starting from � (seconds)

0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power Spotify-trim UI-Trim average

Ch
an

ge
 E

xe
c.

 T
im

e
as

%

 o
f d

ef
au

lt A
RT

-16
-12
-8
-4
0
4
8

12

lusearch xalan sqlite SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

Ch
an

ge
 E

xe
c.

 T
im

e
as

%

 o
f d

ef
au

lt A
RT

-16
-12
-8
-4
0
4
8

12

lusearch xalan sqlite SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

Po
we

r i
nc

re
as

e
as

 %
 o

f
st

ea
dy

 s
ta

te

0

30

60

90

120

Time in seconds
0 0.3 0.5 0.7 0.9 3.6 4.4 4.7 5 5.9 6 6.2 8 9 9.47

cached new

Figure 6.6.: Power trends when launching apps for first time (new) vs. cached apps

inefficient as (i) trimming is executed for every collection (as long as the heap utilization is

less than the trimming threshold) leading to diminishing returns for trimming sparse heaps,

(ii) low priority applications with sparse heaps do not trigger GC and therefore hold on

to empty pages, and (iii) the trimming decision does not consider global state, leading to

unnecessary GC overhead in unstressed environments. Second, the default Android LMK

is aggressive, killing apps even when memory is not exhausted [48]. Killing processes

is especially problematic for apps that are designed to run in the background like music

players.

To analyze the impact of background GC tasks on energy, we calculate the steady state

power consumption (device is idle) as a baseline and we correlate between power measure-

ments and GC events. Killing VM processes has an implicit penalty overhead when the

user reopens the apps. We measure the average power consumed when we launch a set of

apps for the first time and we compare the same power traces when the apps are cached in

background. Figure 6.6 demonstrates that re-launching apps that were killed by the LMK

has a large impact on energy consumption. In addition, our experiments reveal that local

GC trimming tasks increase the power leaks for apps running in the background.

Case-A: Sequential App Execution. Profiling global device resources by running exper-

iments that simulate real world scenarios is difficult due to the non-deterministic execution

of mobile platforms—e.g., some random services may fail during system start-up resulting

in a variable amount of available memory for each run.

83

Figure 6.7.: Memory stats vs. time in seconds: Stacked bars are the total apps memory in
ART (left) and the GC service (right); free VMStat (Free-VM/Srvc); available RAM
(FreeRAM/Srvc); the LMK range; and the current foreground app (vertical guides)

This benchmark launches several apps, switching between them by pressing the home

button. When an app Aia is brought back to the foreground it (i) may have been killed,

triggering a fresh start, or (ii) it is still running, refreshing existing pages. In both cases,

switching to Ai increases memory pressure. Occasionally, Android responds to this increase

by killing processes from the lowest priority group to release their memory.

Throughout execution, the system with ART kills 27 processes including Browser, and

BBCNews-Service. The GC service, on the other hand, reduces the number of killed pro-

cesses to only 14–19 (depending on the individual run) without coordination with the An-

droid run-time manager.

Figure 6.7 shows the variation of memory through the sequence of events. The stacked

bars indicate the total memory used for each app process at a given point of time. Since

we do not have precise control on the number of processes running at the beginning of

the experiment, we present the different memory curves for running with and without the

GC service. The service (right column) reserves more memory for the foreground app as a

result of the heuristics allowing the high priority apps to consume more memory. However,

the service is more effective in releasing memory from apps running in the background by

executing compaction followed by trimming. Default Android ART tends to kill more apps

84
Saved from:
https://live.amcharts.com/M0ZDd/edit/

Saved from:
https://live.amcharts.com/M0ZDd/edit/

Saved from:
https://live.amcharts.com/M0ZDd/edit/

AR
T

Trims

G
C
Se
rv
ic
e

10 20 30 40 50

Figure 6.8.: Stacked trim counts per app during runtime: GCService trims more apps

Table 6.1.: App execution time in foreground and background modes (Background
OFF/ON respectively)

Apps VM

B
ac

kg
ro

un
d

Ite
ra

tio
ns

A
ve

ra
ge

(s
)

G
eo

.
M

ea
n

(s
)

C
on

f.
In

te
rv

al
(m

s,
5%

)

St
an

da
rd

D
ev

.(
m

s)

Tr
im

C
ou

nt

lusearch ART ON 10 7.09 7.08 45.42 208.58 0
OFF 10 6.65 6.65 19.85 50.65 36

GCService ON 10 6.76 6.76 34.42 118.58 0
OFF 10 6.49 6.49 35.47 90.48 0

xalan ART ON 10 11.42 11.38 220.07 1,010.53 0
OFF 10 10.27 10.26 155.05 395.54 48

GCService ON 10 9.60 9.59 65.69 301.64 0
OFF 10 8.79 8.79 22.23 56.71 0

sqllite ART ON 6 155.01 155.01 71.46 182.30 0
OFF 6 153.42 153.42 136.41 347.97 56

GCService ON 6 157.50 157.50 270.32 646.97 0
OFF 6 156.60 156.60 212.59 542.32 0

as a result of not reclaiming memory from inactive apps. Figure 6.8 shows the number of

trims performed by the apps (excluding System processes).

6.4.3 Local per-VM evaluation

Case-B: Sending Top App to Background. This experiment allows for assessing the

efficiency of GC decisions on low priority apps. We evaluate GC behavior when the front

app is pushed to the background during a non-stressed state of execution (i.e., the device

has plenty of free memory). Figure 6.9 shows the execution time and power results, with

confidence interval (5%), of running each benchmark for a given number of iterations fol-

85

No
rm

al
ize

d

0.5

1.0

1.5

2.0

2.5

Time starting from � (seconds)

0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power Spotify-trim UI-Trim Steady-State

-16
-12

-8
-4
0
4
8

12

lusearch
xalan

sqlite
SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

-16
-12

-8
-4
0
4
8

12

lusearch
xalan

sqlite
SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

Po
we

r i
nc

re
as

e
as

 %
 o

f
st

ea
dy

 s
ta

te

0

30

60

90

120

Time in seconds
0 0.3 0.5 0.7 0.9 3.6 4.4 4.7 5 5.9 6 6.2 8 9 9.47

cached new

lusearch
xalan

sqlite
SVG JSON

lusearch
xalan

sqlite
SVG JSON

0

-6

6

12

18

Ch
an

ge
 E

ne
rg

y
as

 %
 o

f d
ef

au
lt A

RT

Ch
an

ge
 E

x.
Ti

m
e

as
 %

 o
f d

ef
au

lt A
RT Exec. Time (smaller is better) Energy (smaller is better)

Figure 6.9.: App exec. time & energy in foreground and background modes compared to
the default execution

lowing warmup under the two different Android systems. For Android ART, apps running

in background exhibit considerable trimming, slowing down app execution and leaking

more energy. Table 6.1 shows the execution time results, with confidence interval (5%), of

running each benchmark for a given number of iterations following the warmup under the

two different Android systems. For Android ART, apps running in background exhibit con-

siderable trimming slowing down app execution. The trim count indicates the frequency of

trimming done by each app during the execution time. Our experiments show that trimming

phase may span up to 0.6s.

The GC service does not perform any trimming because the memory is not stressed, re-

sulting in less GC overhead. Finally, LMK is triggered frequently on Android ART killing

several apps. Using the same LMK configurations, the number of killed apps is reduced

by 70% for the GC service. Note that sqlite exhibits a slow down as a tradeoff between

responsiveness tuning and execution time as we address the responsiveness evaluation.

Responsiveness. GC pauses apps to mark live objects and free unused memory. For

mobile devices, pauses greater than 50 ms can be perceived by the users and degrade the

experience of animation-based frames [34; 41].

We instrumented, for each thread, the pause segments during execution. Figure 6.10

shows the GC pauses on the GC service, normalized to default Android ART. The worst-

86

0

25

50

75

100

lusearch
xalan sqlite spotify

SVG Pandora
JSONAng.Birds

javac jack

WCPT (worst-case) AvgPT (average)

Pa
us

e
tim

e
(n

or
m

al
ize

d
%

)

Figure 6.10.: Worst case and average pauses (WCPT and AvgPT) in GC service as % of
respective ART pauses

case pause time (WCPT) is the maximum pause caused by GC operations that is recorded

by any mutator thread during the execution time. The average pause (AvgPT) represents

the average of all pauses by all the mutator threads.

Pandora and Angrybirds execute several explicit GC calls during execution. This im-

plies that the app mutator executes the GC cycles, increasing the maximum pause times of

that mutator. For the GC service, delegating GC to the service process avoids GC delays

and context switches between threads of the app. The second reason for reduced GC pause

times is the existence of an upper bound on the number of objects to be allocated between

two collection cycles. Finally, special handling for apps in the start-up phase reduces the

average time needed to launch an app.

Case-C: Analyzing App Behavior. Users flag apps as battery and memory drainers when

they cause issues on the device. We analyze the memory behavior of Spotify, frequently

flagged by users as a drain on the battery [8], in order to explore possible causes of the

memory and power leaks.

Our script launches Spotify, enters the login credentials, then listens to the default mu-

sic channel for a specified amount of time. Once Spotify is launched, the VM profiler

collects the memory behavior and heap characteristics as a function of time in two different

settings: (i) Spotify is the foreground app, and (ii) Spotify is sent to the background after

four minutes.

87

No
rm

al
ize

d
0.5

1.0

1.5

2.0

2.5

Time starting from � (seconds)

0 0.23 0.7 1.08 1.34 1.62 1.9 2.13 2.36

Power Spotify-trim UI-Trim Steady-State

-16
-12

-8
-4
0
4
8

12

lusearch
xalan

sqlite
SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

-16
-12

-8
-4
0
4
8

12

lusearch
xalan

sqlite
SVG JSON

ART-Bgd GCService-Fgd GCService-Bgd

Po
we

r i
nc

re
as

e
as

 %
 o

f
st

ea
dy

 s
ta

te

0

30

60

90

120

Time in seconds
0 0.3 0.5 0.7 0.9 3.6 4.4 4.7 5 5.9 6 6.2 8 9 9.47

cached new

lusearch
xalan

sqlite
SVG JSON

lusearch
xalan

sqlite
SVG JSON

0

-6

6

12

18

Ch
an

ge
 E

ne
rg

y
as

 %
 o

f d
ef

au
lt A

RT

Ch
an

ge
 E

x.
Ti

m
e

as
 %

 o
f d

ef
au

lt A
RT Exec. Time (smaller is better) Energy (smaller is better)

Figure 6.11.: The impact of trimming on power when running Spotify in the background
normalized to the steady state

As a foreground app, Spotify executes 58 concurrent garbage collections. These GC

events consume up to 7% of the total app CPU cycles excluding idle cycles (measured

using hardware performance counters). In the background experiment, Spotify executes

60 concurrent collections. However, listening for 5 minutes of music triggers 8 trimming

tasks in the background. This increases the GC overhead to 10% of the total CPU cycles.

Although, the increase of GC overhead looks small, note that Spotify gets less CPU slots

when it falls to the background based on Android scheduling policies.

We calculate the average steady state power consumption as a baseline and we correlate

between the measurements and the GC events. Figure 6.11 shows a time window (starting

at time f) obtained when Spotify is pushed to the background, demonstrating the high

cost of heap trimming. Occasionally, the system-UI executes GC trims following Spotify

trimming events.

To explain the high frequency of trimming tasks, we profile the heap variables and

the distribution of free slots following each concurrent cycle. The results reveal that the

trim operations are not effective as the gaps after collecting small size objects do not form

contiguous memory chunks that can be released to the system (see Figure 6.5). Figure 6.12

shows that the heap characteristics of both settings are very close to each other despite the

extra work done to restrict the heap size in the background mode.

88

Table 6.2.: Context switching overhead

Level Size Miss Lat. Line Replace

TLB 1 32 4.27 ns – –
2 128 33.39ns – –

Cache 1 16 KiB 3.21ns 64B 3.28ns
2 2 MiB 10.03ns 128B 10.63ns

CPU/L1 1.85ns Proc Ctx. 43.41µs Thread Ctx. 9.56µs

Compared to ART, the GC service reduces the total garbage collections to 24 (50%

fewer). Not only the collection overhead is reduced, but the total heap space is also re-

duced by 10%. The main reasons leading to these improvements are: (i) The heap growth

manager improved the resizing decisions by removing steps that reach a local maximum.

(ii) Executing major collections (young and old objects) during the start-up phase reduces

the fragments; hence, the heap utilization is high and the total space occupied is small. For

Android ART, low heap utilization caused by fragmentation occasionally falls below the

trimming threshold.

6.4.4 Interprocess overhead

It is important to get an estimate of the overhead of context switching in order to be able

to do further tuning. For, e.g., our decision to avoid IPC communication while handling

the dirty objects was based on the knowledge of the cost of process context switching.

Table 6.2 shows the results of characterizing OS and HW strengths. The metrics include:

TLB, Cache, and process context switch performance.

6.5 Summary

Mobile devices pose novel challenges to system designers as they juggle access to lim-

ited resources like battery usage against app performance and reactiveness to user requests.

The Android system is running dozens of concurrent VMs, each running an app on a single

89

Figure 6.12.: Heap characteristics of Spotify vs. time measured in bytes allocated: (1) The
heap size in background and foreground modes (Bgd/Fgd-Space) and the free slots
volume (top). (2) The count of free slots (middle). (3) The stacked histogram of empty
slots grouped by their size (bottom).

device in a constrained environment. Unfortunately, the mobile system so far treats each

VM as a monolithic instance.

We have introduced a VM design that allows a central service to observe performance

critical parameters of concurrent but independent VMs and carry out decisions optimized

across the whole system instead of just locally. Our prototype addresses a major resource

90

bottleneck, memory, by presenting a central GC service that evaluates GC decisions across

all running VMs and optimizes for a global set of heuristics. Here, we present a first set

of sensible heuristics but further research and tuning is necessary. The GC service has

the following benefits: (i) it reduces the cost of GC by tuning GC scheduling decisions

and coordinating with the power manager, (ii) apps run in their own processes, ensuring

separation between processes, (iii) it eliminates sparse heaps, releasing more pages back

to the system, (iv) it performs opportunistic compaction and trimming on sparse heaps,

reducing the total overhead needed to release memory from background apps, (v) it reduces

the number of processes killed by the system LMK by returning more pages, (vi) it saves

device resources during memory recycling, and (vii) it reduces the GC space overhead

per VM—for example, instead of allocating internal data structures for each VM, heap

structures are allocated by the global service.

We believe that centrally managing VM services on a mobile device will open up other

research topics such as code optimization. Such a central service has the power to remove

redundancy and orthogonal conflicting local heuristics, replacing them with a globally in-

tegrated alternative.

91

7 FUTURE WORK

We show that GC behavior varies with workload. Our extensions serve as a platform to

understand the implications of some major design decisions such as concurrency. Further

tuning of all GC parameters is left for future work.

7.1 Tuning the GC Service

We described extensions to the default heuristics that we apply in our centralized GC

service to demonstrate the system capabilities. We introduced a sensible first set of heuris-

tics that take advantage of global statistics and improve the status quo. The GC service can

be extended through a plugin-based system that allows for customization of its policies.

Although, the first set of heuristics are satisfying, there are some aspects that can be

enhanced in the future:

1. Consider an efficient scheme to map the memory pages in the GC service. A possible

approach is to directly insert the new pages into the service page table.

2. Analyze the app usage to assist the GC service. Our GC service is capable of pro-

viding several important and useful information about how the user interactions with

the app. Most importantly, the service can predict usage patterns (e.g., which apps

may be used in a certain context).

3. Develop an adaptive formula for the optimal core frequency during garbage collec-

tion.

92

7.2 Code Optimization Service

While JIT is considered expensive as a standalone daemon, having a centralized com-

pilation service that receives requests from other VMs and keeps a cache of the common

used classes and libraries will be significantly powerful.

Moreover, our work can be extended beyond GC. One such example is to manage code

optimization and share the jitted code efficiently between running VMs. A JIT service will

allow sharing of native code between VMs which reduces per-application footprint and

avoids repeated compilation of common code. A service JIT will work as an Ahead-of-

Time (AOT) service for newly loaded applications. With Android ART adopting AOT, a

JIT-service can be used to tune native code across several apps with minimum amortized

cost.

7.3 Security

Security on mobile platforms is a critical point, and we believe that it is important to

deeper evaluate the system from a security perspective. We considered security throughout

the design and implementation phases as we explained earlier.

During the course of building our GCService we have carefully considered different

designs, excluding the ones that comprise the security, e.g., not sharing zygote space over

security. The design of the GC service also carries security implications, because it has

access to all heaps. Thus, the code of the central GC service must be trusted. Each VM, on

the other hand, has access to only its own local heap. Since Android allows for execution of

native code, this becomes an important security property compared to previous approaches

like Multi-tasking VMs (MVMs) that allow a single VM to run multiple applicationson

a single heap [31; 117]. Our approach assures reliability by allowing for individual VM

to revert back to the default standalone GC whenever the GC service fails to respond to

memory requests.

The GCService needs extended system permissions to access the platform API and

other system resources (i.e., power managers and process stats). However, having the GC-

93

Service running as an Android VM, the security and isolation mechanisms still apply to the

new platform. There are two different approaches to manage the Zygote space: (i) to keep

a zygote per application, or (ii) to share immuned objects between different applications.

The second option has an obvious advantage in memory optimization. However, we

have decided to keep a zygote per application to create a platform independent from the

memory layout of the system. Since Android supports layout randomization (ASLR), our

objective has been to create a flexible system, without the assumption of fixed memory

layouts. Hence, the proposed architecture meets the security principles defined for the

stock Android.

94

8 CONCLUSIONS

Mobile devices pose novel challenges to system designers as they compete to limited re-

sources like battery usage against app performance and responsiveness. The Android sys-

tem runs dozens of VMs, each running a different app on a single device in a constrained

environment. Unfortunately, the default Android configuration treats each VM as a mono-

lithic instance. This work is a first step to analyze the GC within the system scope to serve

as a guide to evaluating the coordination between design decisions across all the layers of

the system stack (software and hardware).

8.1 GC Impact on Android devices

We show that different GC strategies have highly varying energy requirements that do

not always correlate with the app throughput. Varying policies, such as heap growth or con-

currency, can either significantly reduce the energy consumed or can reduce the worst-case

pause time, but not at the same time [63]. Moreover, the app throughput is not necessar-

ily correlated with power consumption. GC work is inherently memory-bound but current

governor heuristics focus on the system load and do not incorporate the execution profile

into their decisions. Our results imply that existing DVFS policies should be informed of

GC events by the VM to make more informed hotplugging and frequency scaling decisions

[62]. Similarly, app developers need a range of GC strategies to choose from, so they can

tune for responsiveness, utilization, and power consumption.

8.2 GC As A Service

We introduce a VM design that allows a central service to observe performance critical

parameters of concurrent yet independent VMs and carry out decisions optimized across the

95

whole system, instead of just locally [64]. Our prototype then addresses a major resource

bottleneck (i.e., memory) by presenting a central GC service that evaluates GC decisions

across all running VMs and optimizes for a global set of heuristics. The new system aims

at reducing the latency of app responses while assuring better performance and longer

(battery) lifetimes. This is achieved without compromising the integrity of the platform.

We believe that the central management of VM services on a mobile device will open

up other research topics like code optimization. Such a central removes redundancy and

orthogonal conflicting local heuristics, replacing them with a global alternative.

8.3 Benchmarking and Evaluation Methodology

GC on mobile platforms is challenging due to the adaptive nature, the workload size,

and the environmental restrictions of the programs. Thus, GC evaluations must consider

management mechanisms across the stacks in order to obtain precise and relevant con-

clusions regarding the GC impact on user experience. Controlling GC strategies induces

a large variation of the total on-chip energy consumed by the app, and worst-case pause

times. This shows that GC has a significant impact on battery life and app responsiveness;

in other words, GC directly affects the user experience.

We urge researchers and industry workers to develop a common platform with a trans-

parent access to different system layers. Such a design simplifies the task of evaluating new

techniques.

Writing power-aware source code is not a feasible option due to a widely heteroge-

neous hardware and software. Our results show that code optimizations are specific to

the default system configurations (i.e., heap size, and concurrency). Energy optimizations

can be achieved by simple modifications to both run-time and system layers. For exam-

ple, extending the VM to dynamically enable/disable the GC daemon to balance between

synchronization overhead and the mutator utilization can lead to an adaptively tuned per-

formance. Similarly, heap growth policies need to be integrated with DVFS decisions to

achieve a better energy consumption than heuristics based on only memory footprint.

96

To address these challenges, we describe a systematic approach that tames individual

feedback systems, reducing variations across experiments by disabling thermal throttling,

adaptive governors, and unneeded system services [64]. In addition, we ensure stable con-

ditions by controlling the system image and parameters the experiment runs in. We capture

the discussed metrics by collecting (i) fine-grained measurements of the power at a micro-

processor level, (ii) detailed performance counters data (on demand), (iii) system events,

and (iv) VM events, correlating all of them across the experiment.

There were no standard benchmarks available for mobile platforms. Therefore, we pre-

sented a benchmark suite (Etalon). The apps provided by Etalon are helpful for system

developers interested in evaluating VM components (e.g., garbage collection or compiler

optimizations). In addition, the apps may exhibit behaviors (e.g., scalability and concur-

rency) that existing Android apps do not (yet) display.

REFERENCES

97

REFERENCES

[1] ACS714: Automotive Grade, Fully Integrated, Hall effect-based linear current sen-
sor IC with 2.1 kVRMS Voltage isolation and a low-resistance current conductor. Al-
legro MicroSystems, LLC, 2016. URL http://www.pololu.com/product/1185.

[2] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller. Virtual simple
architecture (VISA): Exceeding the complexity limit in safe real-time systems. In
Proceedings of the International Symposium on Computer Architecture, ISCA’03,
pages 350–361, June 2003. doi: 10.1109/ISCA.2003.1207013.

[3] monkeyrunner tool. Android, 2016. URL https://developer.android.com/
studio/test/monkeyrunner/index.html.

[4] AndroidSVG Github project: SVG rendering library for Android. AndroidSVG,
2015. URL http://bigbadaboom.github.io/androidsvg.

[5] AppBrain Android market. AppTornado GmbH, 2016. URL http://www.
appbrain.com/.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In Proceedings of the ACM SIG-
PLAN International Conference on Programming Language Design and Implemen-
tation, PLDI’14, pages 259–269, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8. doi: 10.1145/2594291.2594299.

[7] I. Assayad, A. Girault, and H. Kalla. Tradeoff exploration between reliability, power
consumption, and execution time. In Proceedings of the International Conference
on Computer Safety, Reliability, and Security, pages 437–451, Naples, Italy, 2011.
doi: 10.1007/978-3-642-24270-0_32.

[8] AVG Android App Performance Report Q3. AVG Now, 2015. URL http://now.
avg.com/avg-android-app-performance-report-q3-2015/.

[9] D. F. Bacon, P. Cheng, and S. Shukla. And then there were none: A stall-free real-
time garbage collector for reconfigurable hardware. In Proceedings of the ACM SIG-
PLAN International Conference on Programming Language Design and Implemen-
tation, PLDI’12, pages 23–34, Beijing, China, June 2012. doi: 10.1145/2254064.
2254068.

[10] D. F. Bacon, P. Cheng, and S. Shukla. Parallel real-time garbage collection of multi-
ple heaps in reconfigurable hardware. In Proceedings of the ACM SIGPLAN Interna-
tional Symposium on Memory Management, ISMM’14, pages 117–127, Edinburgh,
Scotland, June 2014. doi: 10.1145/2602988.2602996.

http://www.pololu.com/product/1185
http://dx.doi.org/10.1109/ISCA.2003.1207013
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
http://bigbadaboom.github.io/androidsvg
http://www.appbrain.com/
http://www.appbrain.com/
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1007/978-3-642-24270-0_32
http://now.avg.com/avg-android-app-performance-report-q3-2015/
http://now.avg.com/avg-android-app-performance-report-q3-2015/
http://dx.doi.org/10.1145/2254064.2254068
http://dx.doi.org/10.1145/2254064.2254068
http://dx.doi.org/10.1145/2602988.2602996

98

[11] A. Bendersky and E. Petrank. Space overhead bounds for dynamic memory manage-
ment with partial compaction. ACM Transactions on Programming Languages and
Systems, 34(3):13:1–13:43, November 2012. doi: 10.1145/2362389.2362392.

[12] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA’06, pages 169–190, Portland, Oregon, October 2006. doi: 10.1145/1167473.
1167488.

[13] S. M. Blackburn, R. Garner, C. Hoffman, A. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, S. Z. Guyer, A. Hosking, M. Jump, J. E. B. Moss, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Widerman. Wake up and smell the
coffee: Evaluation methodology for the 21st century. Communications of the ACM,
51(8):83–89, August 2008. doi: 10.1145/1378704.1378723.

[14] LoganSquare source code. blueline labs, 2015. URL https://github.com/
bluelinelabs/LoganSquare.

[15] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis of Android Ad library
permissions. Mobile Security Technologies, abs/1303.0857, 2013. URL http://
arxiv.org/abs/1303.0857.

[16] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage collection and
heap growth to reduce the execution time of Java applications. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA’01, pages 353–366, Tampa, Florida, November 2001.
doi: 10.1145/504282.504308.

[17] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage collection and
heap growth to reduce the execution time of Java applications. ACM Transactions on
Programming Languages and Systems, 28(5):908–941, September 2006. doi: 10.
1145/1152649.1152652.

[18] D. Brodowski. CPU frequency and voltage scaling code in the Linux kernel. URL
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[19] C. Cameron, J. Singer, and D. Vengerov. The judgment of Forseti: Economic utility
for dynamic heap sizing of multiple runtimes. In Proceedings of the ACM SIGPLAN
International Symposium on Memory Management, ISMM’15, pages 143–156, Port-
land, Oregon, June 2015. doi: 10.1145/2754169.2754180.

[20] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and yang of power
and performance for asymmetric hardware and managed software. In Proceedings of
the International Symposium on Computer Architecture, ISCA’12, pages 225–236,
Portland, Oregon, June 2012. IEEE Computer Society. doi: 10.1109/ISCA.2012.
6237020.

[21] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen.
EdgeMiner: Automatically detecting implicit control flow transitions through the
Android framework. In Proceedings of the ISOC Network and Distributed System
Security Symposium, NDSS’15, 2015.

http://dx.doi.org/10.1145/2362389.2362392
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1378704.1378723
https://github.com/bluelinelabs/LoganSquare
https://github.com/bluelinelabs/LoganSquare
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://dx.doi.org/10.1145/504282.504308
http://dx.doi.org/10.1145/1152649.1152652
http://dx.doi.org/10.1145/1152649.1152652
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://dx.doi.org/10.1145/2754169.2754180
http://dx.doi.org/10.1109/ISCA.2012.6237020
http://dx.doi.org/10.1109/ISCA.2012.6237020

99

[22] A. Carroll and G. Heiser. Mobile multicores: Use them or waste them. In Proceed-
ings of the Workshop on Power-Aware Computing and Systems, HotPower, Novem-
ber 2013. doi: 10.1145/2626401.2626411.

[23] A. Carroll and G. Heiser. Unifying DVFS and offlining in mobile multicores. In
Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS’14, pages 287–296, Berlin, Germany, April 2014. doi: 10.1109/
RTAS.2014.6926010.

[24] mongoose. CESANTA Embedded Communication, 2015. URL https://www.
cesanta.com/products/mongoose.

[25] G. Chen, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko. Adaptive
garbage collection for battery-operated environments. In Proceedings of the USENIX
Java Virtual Machine Research and Technology Symposium, pages 1–12, San Fran-
cisco, California, August 2002. URL https://www.usenix.org/legacy/event/
jvm02/chen_g.html.

[26] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko.
Tuning garbage collection for reducing memory system energy in an embedded Java
environment. ACM Transactions on Embedded Computing Systems, 1(1):27–55,
November 2002. doi: 10.1145/581888.581892.

[27] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677–678, November 1970. doi: 10.1145/362790.362798.

[28] P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector. In Proceedings
of the ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI’01, pages 125–136, Snowbird, Utah, June 2001. doi: 10.
1145/378795.378823.

[29] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in Android. In Proceeding of the ACM International Conference
on Mobile Systems, Applications, and Services, MobiSys’11, pages 239–252, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0643-0. doi: 10.1145/1999995.
2000018. URL http://doi.acm.org/10.1145/1999995.2000018.

[30] Power Choke Coil PIFE20161T Type. CYNTEC Co., Ltd., 2014. URL http:
//www.cyntec.com/product/hp_choke/download/PIFE20161T.pdf.

[31] G. Czajkowski and L. Daynés. Multitasking without compromise: A virtual machine
evolution. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’01, pages 125–138,
Tampa Bay, FL, USA, 2001. doi: 10.1145/504282.504292.

[32] S. K. Datta, C. Bonnet, and N. Nikaein. Usage patterns based security attacks for
smart devices. In Proceedings of the IEEE International Conference on Consumer
Electronics, ICCE’14, pages 284–287, September 2014.

[33] F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch overheads for Linux
on ARM platforms. In Proceedings of the Workshop on Experimental Computer Sci-
ence, ExpCS’07, San Diego, California, 2007. doi: 10.1145/1281700.1281703.

http://dx.doi.org/10.1145/2626401.2626411
http://dx.doi.org/10.1109/RTAS.2014.6926010
http://dx.doi.org/10.1109/RTAS.2014.6926010
https://www.cesanta.com/products/mongoose
https://www.cesanta.com/products/mongoose
https://www.usenix.org/legacy/event/jvm02/chen_g.html
https://www.usenix.org/legacy/event/jvm02/chen_g.html
http://dx.doi.org/10.1145/581888.581892
http://dx.doi.org/10.1145/362790.362798
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://www.cyntec.com/product/hp_choke/download/PIFE20161T.pdf
http://www.cyntec.com/product/hp_choke/download/PIFE20161T.pdf
http://dx.doi.org/10.1145/504282.504292
http://dx.doi.org/10.1145/1281700.1281703

100

[34] U. Degenbaev, J. Eisinger, M. Ernst, R. McIlroy, and H. Payer. Idle time garbage
collection scheduling. In Proceedings of the ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI’16, San Jose,
California, 2016.

[35] S. Dieckmann and U. Hölzle. A study of the allocation behavior of the SPECjvm98
Java benchmarks. In Proceedings of the European Conference on Object-Oriented
Programming, ECOOP’99, pages 92–115, Lisbon, Portugal, July 1999. doi: 10.
1007/3-540-48743-3_5.

[36] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966–975, November 1978. doi: 10.1145/359642.359655.

[37] T. M. T. Do and D. Gatica-Perez. Where and what: Using smartphones to predict
next locations and applications in daily life. Pervasive and Mobile Computing, 12:
79 – 91, 2014. ISSN 1574-1192. doi: 10.1016/j.pmcj.2013.03.006.

[38] T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash, I. Lahan, Y. Lev-
anoni, E. Petrank, and I. Yanorer. Implementing an on-the-fly garbage collector for
Java. In Proceedings of the ACM SIGPLAN International Symposium on Memory
Management, ISMM’00, pages 155–166, Minneapolis, Minnesota, October 2000.
doi: 10.1145/362422.362484.

[39] X. Dong, S. Dwarkadas, and A. Cox. Characterization of shared library access
patterns of Android applications. In proceedings of the IEEE International Sym-
posium on Workload Characterization, IISWC’15, pages 112–113, October 2015.
doi: 10.1109/IISWC.2015.19.

[40] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics for Java. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA’03, pages 149–168, Anaheim, Cal-
ifornia, October 2003. doi: 10.1145/949305.949320.

[41] R. Efron. Conservation of temporal information by perceptual systems. Perception
& Psychophysics, 14(3):518–530, October 1973. doi: 10.3758/BF03211193.

[42] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley. Looking
back on the language and hardware revolutions: Measured power, performance, and
scaling. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 319–332, Newport Beach,
California, March 2011. doi: 10.1145/1950365.1950402.

[43] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in smartphone usage. In Proceeding of the ACM International Conference
on Mobile Systems, Applications, and Services, MobiSys’10, pages 179–194, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-985-5. doi: 10.1145/1814433.
1814453.

[44] Jackson Project. FasterXML, 2015. URL https://github.com/FasterXML/
jackson.

[45] H. Franke and R. Russell. Fuss, futexes and furwocks: Fast userlevel lock-
ing in Linux. In Proceedings of the Linux Symposium, pages 479–495, Ot-
tawa, Canada, June 2002. URL http://www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf.

http://dx.doi.org/10.1007/3-540-48743-3_5
http://dx.doi.org/10.1007/3-540-48743-3_5
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1016/j.pmcj.2013.03.006
http://dx.doi.org/10.1145/362422.362484
http://dx.doi.org/10.1109/IISWC.2015.19
http://dx.doi.org/10.1145/949305.949320
http://dx.doi.org/10.3758/BF03211193
http://dx.doi.org/10.1145/1950365.1950402
http://dx.doi.org/10.1145/1814433.1814453
http://dx.doi.org/10.1145/1814433.1814453
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

101

[46] A. Gautham, K. Korgaonkar, P. Slpsk, S. Balachandran, and K. Veezhi-
nathan. The implications of shared data synchronization techniques on
multi-core energy efficiency. In Proceedings of the USENIX Conference on
Power-Aware Computing and Systems, HotPower, Hollywood, California, Oc-
tober 2012. URL https://www.usenix.org/system/files/conference/
hotpower12/hotpower12-final40.pdf.

[47] Multitasking the Android Way. Google Inc. URL http://android-developers.
blogspot.kr/2010/04/multitasking-android-way.html.

[48] AOSP Issue Tracker. Google Inc., 2015. URL https://code.google.com/p/
android/issues/detail?id=98332.

[49] google-gson. Google Inc., 2015. URL https://github.com/google/gson.

[50] Android Open Source Project. Google Inc., 2016. URL http://source.android.
com.

[51] ART and Dalvik. Google Inc., 2016. URL https://source.android.com/
devices/tech/dalvik/art.html.

[52] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. Cavalli. Detecting control flow
in smartphones: Combining static and dynamic analyses. In Proceedings of the
International Conference on Cyberspace Safety and Security, CSS’12, pages 33–
47, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-35361-1. doi: 10.
1007/978-3-642-35362-8_4.

[53] P. Griffin, W. Srisa-an, and J. M. Chang. An energy efficient garbage collector for
Java embedded devices. In Proceedings of the ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems, LCTES’05, pages 230–
238, Chicago, Illinois, June 2005. doi: 10.1145/1065910.1065943.

[54] The Mobile Economy. GSMA, 2015. URL http://gsmamobileeconomy.com/
global/GSMA_Global_Mobile_Economy_Report_2015.pdf.

[55] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the IEEE International Workshop on Workload Characterization,
WWC’01, pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society. ISBN
0-7803-7315-4. doi: 10.1109/WWC.2001.15.

[56] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and
N. Paver. Full-system analysis and characterization of interactive smartphone appli-
cations. In proceedings of the IEEE International Symposium on Workload Charac-
terization, IISWC’11, pages 81–90, Washington, DC, USA, 2011. IEEE Computer
Society. ISBN 978-1-4577-2063-5. doi: 10.1109/IISWC.2011.6114205.

[57] S. Hao, D. Li, W. G. Halfond, and R. Govindan. SIF: A selective instrumen-
tation framework for mobile applications. In Proceeding of the ACM Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys’13,
pages 167–180, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1672-9.
doi: 10.1145/2462456.2465430.

https://www.usenix.org/system/files/conference/hotpower12/hotpower12-final40.pdf
https://www.usenix.org/system/files/conference/hotpower12/hotpower12-final40.pdf
http://android-developers.blogspot.kr/2010/04/multitasking-android-way.html
http://android-developers.blogspot.kr/2010/04/multitasking-android-way.html
https://code.google.com/p/android/issues/detail?id=98332
https://code.google.com/p/android/issues/detail?id=98332
https://github.com/google/gson
http://source.android.com
http://source.android.com
https://source.android.com/devices/tech/dalvik/art.html
https://source.android.com/devices/tech/dalvik/art.html
http://dx.doi.org/10.1007/978-3-642-35362-8_4
http://dx.doi.org/10.1007/978-3-642-35362-8_4
http://dx.doi.org/10.1145/1065910.1065943
http://gsmamobileeconomy.com/global/GSMA_Global_Mobile_Economy_Report_2015.pdf
http://gsmamobileeconomy.com/global/GSMA_Global_Mobile_Economy_Report_2015.pdf
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/IISWC.2011.6114205
http://dx.doi.org/10.1145/2462456.2465430

102

[58] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application
energy consumption using program analysis. In Proceedings of the International
Conference on Software Engineering, ICSE’13, pages 92–101, San Francisco, Cali-
fornia, May 2013. IEEE Press. doi: 10.1109/ICSE.2013.6606555.

[59] R. Hay, O. Tripp, and M. Pistoia. Dynamic detection of inter-application communi-
cation vulnerabilities in Android. In Proceedings of the 2015 International Sympo-
sium on Software Testing and Analysis, ISSTA’15, pages 118–128, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3620-8. doi: 10.1145/2771783.2771800.

[60] K. Huang, C. Zhang, X. Ma, and G. Chen. Predicting mobile application usage
using contextual information. In Proceedings of the ACM Conference on Ubiquitous
Computing, UbiComp’12, pages 1059–1065, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1224-0. doi: 10.1145/2370216.2370442.

[61] Y. Huang, Z. Zha, M. Chen, and L. Zhang. Moby: A mobile benchmark suite for
architectural simulators. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS’14, pages 45–54, March
2014. doi: 10.1109/ISPASS.2014.6844460.

[62] A. Hussein, A. L. Hosking, M. Payer, and C. A. Vick. Don’t race the memory
bus: Taming the GC leadfoot. In Proceedings of the ACM SIGPLAN International
Symposium on Memory Management, ISMM’15, pages 15–27, Portland, Oregon,
2015. doi: 10.1145/2754169.2754182.

[63] A. Hussein, M. Payer, A. Hosking, and C. A. Vick. Impact of GC design on
power and performance for Android. In Proceedings of the International Sys-
tems and Storage Conference, SYSTOR’15, pages 13:1–13:12, Haifa, Israel, 2015.
doi: 10.1145/2757667.2757674.

[64] A. Hussein, M. Payer, A. Hosking, and C. A. Vick. One process to reap them all.
In Submission to the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’17, 2017.

[65] A. Iyer and D. Marculescu. Power efficiency of voltage scaling in multiple clock,
multiple voltage cores. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD’02, pages 379–386, San Jose, California,
November 2002. doi: 10.1145/774572.774629.

[66] N. Jacek, M.-C. Chiu, B. Marlin, and E. Moss. Assessing the limits of program-
specific garbage collection performance. In Proceedings of the ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI’16, pages 584–598, Santa Barbara, California, June 2016. doi: 10.1145/
2908080.2908120.

[67] M. R. Jantz, F. J. Robinson, P. A. Kulkarni, and K. A. Doshi. Cross-layer
memory management for managed language applications. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA’15, pages 488–504, Pittsburgh, Pennsylvania, 2015.
doi: 10.1145/2814270.2814322.

[68] JSR 121: Application Isolation API Specification. Java Community Process, 2016.
URL https://jcp.org/en/jsr/detail?id=121.

http://dx.doi.org/10.1109/ICSE.2013.6606555
http://dx.doi.org/10.1145/2771783.2771800
http://dx.doi.org/10.1145/2370216.2370442
http://dx.doi.org/10.1109/ISPASS.2014.6844460
http://dx.doi.org/10.1145/2754169.2754182
http://dx.doi.org/10.1145/2757667.2757674
http://dx.doi.org/10.1145/774572.774629
http://dx.doi.org/10.1145/2908080.2908120
http://dx.doi.org/10.1145/2908080.2908120
http://dx.doi.org/10.1145/2814270.2814322
https://jcp.org/en/jsr/detail?id=121

103

[69] Y. Jing, G.-J. Ahn, A. Doupé, and J. H. Yi. Checking intent-based communication in
Android with intent space analysis. In Proceedings of the ACM on Asia Conference
on Computer and Communications Security, ASIA CCS’16, pages 735–746, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4233-9. doi: 10.1145/2897845.
2897904.

[70] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of
Automatic Memory Management. Chapman & Hall/CRC, 2011.

[71] T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time. In Pro-
ceedings of the ACM SIGPLAN International Symposium on Memory Management,
ISMM’13, pages 63–74, Seattle, Washington, June 2013. doi: 10.1145/2464157.
2464160.

[72] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-box approach to understand-
ing concurrency in DaCapo. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA’12, pages 335–354, Tucson, Arizona, October 2012. doi: 10.1145/2384616.
2384641.

[73] M. Kambadur and M. A. Kim. An experimental survey of energy management across
the stack. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’14, pages 329–344,
Portland, Oregon, October 2014. doi: 10.1145/2660193.2660196.

[74] J. M. Kang, S. S. Seo, and J. W. K. Hong. Usage pattern analysis of smartphones. In
Proceedings of the Network Operations and Management Symposium, APNOMS,
pages 1–8, 2011. doi: 10.1109/APNOMS.2011.6077030.

[75] M. Karami, M. Elsabagh, P. Najafiborazjani, and A. Stavrou. Behavioral analysis of
Android applications using automated instrumentation. In Proceedings of the IEEE
International Conference on Software Security and Reliability-Companion, SERE-
C’13, pages 182–187, June 2013. doi: 10.1109/SERE-C.2013.35.

[76] S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong. Controlling physical memory fragmen-
tation in mobile systems. In Proceedings of the ACM SIGPLAN International Sym-
posium on Memory Management, ISMM’15, pages 1–14, Portland, Oregon, 2015.
doi: 10.1145/2754169.2754179.

[77] P. Lengauer and H. Mössenböck. The taming of the shrew: Increasing per-
formance by automatic parameter tuning for Java garbage collectors. In Pro-
ceedings of the ACM/SPEC International Conference on Performance Engineer-
ing, ICPE’14, pages 111–122, Dublin, Ireland, 2014. ISBN 978-1-4503-2733-6.
doi: 10.1145/2568088.2568091.

[78] J. Levin. Android Internals — Volume I: A Confectioner’s Cookbook. Jonathan
Levin, 2014. ISBN 9780991055524. URL http://newandroidbook.com/index.
php.

[79] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In Proceed-
ings of the Workshop on Experimental Computer Science, ExpCS’07, San Diego,
California, 2007. doi: 10.1145/1281700.1281702.

http://dx.doi.org/10.1145/2897845.2897904
http://dx.doi.org/10.1145/2897845.2897904
http://dx.doi.org/10.1145/2464157.2464160
http://dx.doi.org/10.1145/2464157.2464160
http://dx.doi.org/10.1145/2384616.2384641
http://dx.doi.org/10.1145/2384616.2384641
http://dx.doi.org/10.1145/2660193.2660196
http://dx.doi.org/10.1109/APNOMS.2011.6077030
http://dx.doi.org/10.1109/SERE-C.2013.35
http://dx.doi.org/10.1145/2754169.2754179
http://dx.doi.org/10.1145/2568088.2568091
http://newandroidbook.com/index.php
http://newandroidbook.com/index.php
http://dx.doi.org/10.1145/1281700.1281702

104

[80] H. Li, X. Lu, X. Liu, T. Xie, K. Bian, F. X. Lin, Q. Mei, and F. Feng. Char-
acterizing smartphone usage patterns from millions of Android users. In Pro-
ceedings of the ACM Conference on Internet Measurement Conference, IMC’15,
pages 459–472, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3848-6.
doi: 10.1145/2815675.2815686.

[81] H. Lieberman and C. E. Hewitt. A real-time garbage collector based on the lifetimes
of objects. Communications of the ACM, 26(6):419–429, June 1983. doi: 10.1145/
358141.358147.

[82] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. Mining energy-greedy api usage patterns in Android apps: An
empirical study. In Proceedings of the Working Conference on Mining Software
Repositories, MSR’14, pages 2–11, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2863-0. doi: 10.1145/2597073.2597085.

[83] M. Maas, P. Reames, J. Morlan, K. Asanović, A. D. Joseph, and J. Kubiatow-
icz. GPUs as an opportunity for offloading garbage collection. In Proceedings of
the ACM SIGPLAN International Symposium on Memory Management, ISMM’12,
pages 25–36, Beijing, China, 2012. doi: 10.1145/2258996.2259002.

[84] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz. Taurus: A holistic language
runtime system for coordinating distributed managed-language applications. In Pro-
ceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’16, pages 457–471, Atlanta, Georgia,
2016. doi: 10.1145/2872362.2872386.

[85] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Rajkumar. Critical
power slope: Understanding the runtime effects of frequency scaling. In Proceedings
of the International Conference on Supercomputing, pages 35–44, New York, New
York, June 2002. doi: 10.1145/514191.514200.

[86] M. Moghimi, J. Venkatesh, P. Zappi, and T. Rosing. Context-aware mobile power
management using fuzzy inference as a service. In Proceedings of the EAI In-
ternational Conference on Mobile Computing, Applications, and Services, Mobi-
CASE’13, pages 314–327, Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-
36632-1. doi: 10.1007/978-3-642-36632-1_18.

[87] NI USB-6008/6009 user guide and specifications: Bus-powered multifunction DAQ
USB device. National Instruments, February 2012. URL http://www.ni.com/
pdf/manuals/371303n.pdf.

[88] S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing energy-performance tradeoffs
for multithreaded applications on multiprocessor architectures. In Proceedings of
the ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 169–180, San Diego, California, June 2007. doi: 10.
1145/1254882.1254902.

[89] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained power
modeling for smartphones using system call tracing. In proceedings of the ACM
European Conference on Computer Systems, EuroSys’11, pages 153–168, Salzburg,
Austria, April 2011. doi: 10.1145/1966445.1966460.

http://dx.doi.org/10.1145/2815675.2815686
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/2597073.2597085
http://dx.doi.org/10.1145/2258996.2259002
http://dx.doi.org/10.1145/2872362.2872386
http://dx.doi.org/10.1145/514191.514200
http://dx.doi.org/10.1007/978-3-642-36632-1_18
http://www.ni.com/pdf/manuals/371303n.pdf
http://www.ni.com/pdf/manuals/371303n.pdf
http://dx.doi.org/10.1145/1254882.1254902
http://dx.doi.org/10.1145/1254882.1254902
http://dx.doi.org/10.1145/1966445.1966460

105

[90] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof. In proceedings of the
ACM European Conference on Computer Systems, EuroSys’12, pages 29–42, Bern,
Switzerland, April 2012. doi: 10.1145/2168836.2168841.

[91] G. Pinto, F. Castor, and Y. D. Liu. Understanding energy behaviors of thread man-
agement constructs. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA’14, pages
345–360, Portland, Oregon, October 2014. doi: 10.1145/2660193.2660235.

[92] T. Printezis. On measuring garbage collection responsiveness. Science of Computer
Programming, 62(2):164–183, October 2006. doi: 10.1016/j.scico.2006.02.
004.

[93] Vellamo Open. Qualcomm Innovation Center, INC., 2012. URL https://www.
codeaurora.org/projects/all-active-projects/vellamo-open.

[94] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayan-
deh. AppInsight: Mobile app performance monitoring in the wild. In Pro-
ceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI’12, pages 107–120, Hollywood, CA, 2012. USENIX. ISBN
978-1-931971-96-6. URL https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/ravindranath.

[95] J. M. Robson. Worst case fragmentation of first fit and best fit storage allocation
strategies. The Computer Journal, 20(3):242–244, August 1977.

[96] J. B. Sartor and L. Eeckhout. Exploring multi-threaded Java application performance
on multicore hardware. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA’12, pages
281–296, Tucson, Arizona, October 2012. doi: 10.1145/2384616.2384638.

[97] S. Schwarzer, P. Peschlow, L. Pustina, and P. Martini. Automatic estimation of
performance requirements for software tasks of mobile devices. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering, ICPE’11,
pages 347–358, Karlsruhe, Germany, 2011. doi: 10.1145/1958746.1958796.

[98] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti. Predicting user traits
from a snapshot of apps installed on a smartphone. ACM SIGMOBILE Mobile
Computing and Communications Review, 18(2):1–8, June 2014. ISSN 1559-1662.
doi: 10.1145/2636242.2636244.

[99] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and
exploiting program phases. IEEE Micro, 23(6):84–93, November 2003. doi: 10.
1109/MM.2003.1261391.

[100] R. K. Sheshadri, I. Pefkianakis, H. Lundgren, D. Koutsonikolas, A. K. Pieti-
lainen, A. Soule, and J. Chandrashekar. Characterizing mobile user habits: The
case for energy budgeting. In Proceedings of the IEEE Conference on Com-
puter Communications Workshops, INFOCOM’15, pages 306–311, April 2015.
doi: 10.1109/INFCOMW.2015.7179402.

[101] C. Shin, J.-H. Hong, and A. K. Dey. Understanding and prediction of mobile appli-
cation usage for smart phones. In Proceedings of the ACM Conference on Ubiquitous
Computing, UbiComp’12, pages 173–182, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1224-0. doi: 10.1145/2370216.2370243.

http://dx.doi.org/10.1145/2168836.2168841
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1016/j.scico.2006.02.004
http://dx.doi.org/10.1016/j.scico.2006.02.004
https://www.codeaurora.org/projects/all-active-projects/vellamo-open
https://www.codeaurora.org/projects/all-active-projects/vellamo-open
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/ravindranath
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/ravindranath
http://dx.doi.org/10.1145/2384616.2384638
http://dx.doi.org/10.1145/1958746.1958796
http://dx.doi.org/10.1145/2636242.2636244
http://dx.doi.org/10.1109/MM.2003.1261391
http://dx.doi.org/10.1109/MM.2003.1261391
http://dx.doi.org/10.1109/INFCOMW.2015.7179402
http://dx.doi.org/10.1145/2370216.2370243

106

[102] J. Singer, G. Brown, I. Watson, and J. Cavazos. Intelligent selection of application-
specific garbage collectors. In Proceedings of the ACM SIGPLAN International
Symposium on Memory Management, ISMM’07, pages 91–102, Montreal, Canada,
2007. doi: 10.1145/1296907.1296920.

[103] Moshi Project. Square, Inc., 2015. URL https://github.com/square/moshi.

[104] V. Srinivasan, S. Moghaddam, A. Mukherji, K. K. Rachuri, C. Xu, and E. M. Tapia.
Mobileminer: Mining your frequent patterns on your phone. In Proceedings of
the ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp’14, pages 389–400, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2968-2. doi: 10.1145/2632048.2632052.

[105] SPECjvm98 Benchmarks. Standard Performance Evaluation Corporation, release
1.03 edition, March 1999. URL http://www.spec.org/jvm98.

[106] D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. Emmons, and N. Paver.
A structured approach to the simulation, analysis and characterization of smart-
phone applications. In proceedings of the IEEE International Symposium on Work-
load Characterization, IISWC’13, pages 113–122, September 2013. doi: 10.1109/
IISWC.2013.6704677.

[107] A. Tongaonkar, S. Dai, A. Nucci, and D. Song. Understanding mobile app us-
age patterns using in-app advertisements. In Proceedings of the 14th International
Conference on Passive and Active Measurement, PAM’13, pages 63–72, Berlin,
Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-36515-7. doi: 10.1007/
978-3-642-36516-4_7.

[108] H. F. Unelsroed, P. C. Roeine, and F. Ghani. Power Guru: Implementing smart
power management on the Android platform.

[109] D. M. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, pages
157–167, Pittsburgh, Pennsylvania, April 1984. doi: 10.1145/800020.808261.

[110] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam, and
M. J. Irwin. Energy behavior of Java applications from the memory perspective.
In Proceedings of the USENIX Java Virtual Machine Research and Technology
Symposium, Monterey, California, April 2001. URL https://www.usenix.org/
legacy/events/jvm01/full_papers/vijaykrishnan/vijaykrishnan.pdf.

[111] V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and overcount on mod-
ern hardware performance counter implementations. Proceedings of the IEEE In-
ternational Symposium on Performance Analysis of Systems and Software, pages
215–224, April 2013. doi: 10.1109/ISPASS.2013.6557172.

[112] D. R. White, J. Singer, J. M. Aitken, and R. E. Jones. Control theory for principled
heap sizing. In Proceedings of the ACM SIGPLAN International Symposium on
Memory Management, ISMM’13, pages 27–38, Seattle, Washington, 2013. doi: 10.
1145/2464157.2466481.

http://dx.doi.org/10.1145/1296907.1296920
https://github.com/square/moshi
http://dx.doi.org/10.1145/2632048.2632052
http://www.spec.org/jvm98
http://dx.doi.org/10.1109/IISWC.2013.6704677
http://dx.doi.org/10.1109/IISWC.2013.6704677
http://dx.doi.org/10.1007/978-3-642-36516-4_7
http://dx.doi.org/10.1007/978-3-642-36516-4_7
http://dx.doi.org/10.1145/800020.808261
https://www.usenix.org/legacy/events/jvm01/full_papers/vijaykrishnan/vijaykrishnan.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/vijaykrishnan/vijaykrishnan.pdf
http://dx.doi.org/10.1109/ISPASS.2013.6557172
http://dx.doi.org/10.1145/2464157.2466481
http://dx.doi.org/10.1145/2464157.2466481

107

[113] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution-time problem — overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3):
36:1–36:53, May 2008. doi: 10.1145/1347375.1347389.

[114] The Power-Choke WE-TPC 8012. Würth Elektronik eiSos GmbH & Co. KG, 2009.
URL http://www.farnell.com/datasheets/1645832.pdf.

[115] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen, A. Campbell, and T. Choud-
hury. Preference, context and communities: A multi-faceted approach to predicting
smartphone app usage patterns. In Proceedings of the International Symposium on
Wearable Computers, ISWC’13, pages 69–76, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2127-3. doi: 10.1145/2493988.2494333.

[116] K. Yaghmour. Embedded Android: Porting, Extending, and Customizing. O’Reilly
Media, 2013. ISBN 9781449327972. URL https://books.google.com/books?
id=PsN9nq4WGB0C.

[117] Y. Yan, C. Chen, K. Dantu, S. Y. Ko, and L. Ziarek. Using a multi-tasking VM for
mobile applications. In Proceedings of International Workshop on Mobile Comput-
ing Systems and Applications, HotMobile’16, pages 93–98, St. Augustine, Florida,
USA, 2016. doi: 10.1145/2873587.2873596.

[118] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. DroidMiner: Automated
mining and characterization of fine-grained malicious behaviors in Android applica-
tions. In Proceedings of the European Symposium on Research in Computer Secu-
rity, ESORICS’14, pages 163–182. Springer International Publishing, 2014. ISBN
978-3-319-11203-9. doi: 10.1007/978-3-319-11203-9_10.

[119] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis
of user-driven callbacks in Android applications. In Proceedings of the Interna-
tional Conference on Software Engineering, ICSE’15, pages 89–99, Piscataway, NJ,
USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.org/
citation.cfm?id=2818754.2818768.

[120] C. Zhang, X. Ding, G. Chen, K. Huang, X. Ma, and B. Yan. Nihao: A pre-
dictive smartphone application launcher. In Proceedings of the EAI International
Conference on Mobile Computing, Applications, and Services, MobiCASE’13,
pages 294–313, Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-36632-1.
doi: 10.1007/978-3-642-36632-1_17.

http://dx.doi.org/10.1145/1347375.1347389
http://www.farnell.com/datasheets/1645832.pdf
http://dx.doi.org/10.1145/2493988.2494333
https://books.google.com/books?id=PsN9nq4WGB0C
https://books.google.com/books?id=PsN9nq4WGB0C
http://dx.doi.org/10.1145/2873587.2873596
http://dx.doi.org/10.1007/978-3-319-11203-9_10
http://dl.acm.org/citation.cfm?id=2818754.2818768
http://dl.acm.org/citation.cfm?id=2818754.2818768
http://dx.doi.org/10.1007/978-3-642-36632-1_17

APPENDICES

108

A HARDWARE SCHEMATICS

The DragonBoard 8074 provides a quick reference or evaluation platform for Qualcomm’s

800 series Snapdragon 8074 processor. The Snapdragon 800 SOM (System On Module)

measures 70x70mm, 230 pin MxM with BtB connector to support other SOC interfaces.

The SOM includes the following features:

• Snapdragon 800 main application processor

• PM8941 Power Management Integrated Circuits (PMIC) for Peripheral LDOs, Boost

Regulators

• PM8841 PMIC for Processor Core regulators

• LPDDR3 up to 800Mhz 2GB RAM.

Figure A.1 shows the two major functional blocks of the PM8441: (i) output power man-

agement, and (ii) IC-level interfaces. The PM8841 device, integrates all power manage-

Rev. C MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8
Confidential information of Intrinsyc Software International, Inc. and its respective licensors

APQ8074 PM8841 - DragonBoard Device Specification PM8841 Introduction

Figure 1-1 High-level PM8841 functional block diagram

1.1 About DragonBoard and Open-Q� SOM
Customers can now get access to QUALCOMM's Snapdragon S4 Plus APQ8074™ chipset
through DragonBoard development kit and Open-Q System On Module (SOM). The complete
DragonBoard platform and Open-Q SOM is available for purchase via Intrinsyc Software
International, Inc. For more information, visit http://www.intrinsyc.com/qualcomm.

To obtain any information that is not included in this document or any information beyond the
scope of this document, contact Intrinsyc Software International, Inc. For accessing additional
documentation and software updates, visit Intrinsyc’s resource center at
http://dragonboardsupport.intrinsyc.com/projects/dragonboardsupport.

You can access hardware and software support on DragonBoard platform at
http://mydragonboard.org/community/. You will need to register on the site for access to support
through forums. Additional support services are available from Intrinsyc at www.Intrinsyc.com.

1.2 Development device notice
This development device contains RF/digital hardware and software intended for engineering
development, engineering evaluation, or demonstration purposes only and is intended for use in a
controlled environment. This device is not being placed on the market, leased or sold for use in a
residential environment or for use by the general public as an end user device.

1) Output power management
2) IC-level interfaces

SPMI &
interrupt mgr

Poweron
circuits

SPMI

PM
88
41

!"
4

M
P

P
s

IC-level
interfaces

OPT ctls

Output power management

Regulated 9BOUTs (2)
Regulated 9BOUT (2)

9REF

H
F-

S
M

P
S

S
1,

S
3

LC
ne

tw
or

ks

FT
-S

M
P

S
S

2,
S

4

to/from
modem IC

Multi-phase
for Tuad .rait

FT
-S

M
P

S
S

5

Two major functional blocks:

1

PSBHOLD

PONB1

PONBRESETBN
2

Memory &
controls

to/from
PM8941

FT
-S

M
P

S
S

6

FT
-S

M
P

S
S

7

FT
-S

M
P

S
S

8

LC
ne

tw
or

ks

LC
ne

tw
or

k

LC
ne

tw
or

k

LC
ne

tw
or

k

LC
ne

tw
or

k

Regulated 9BOUT (1)

Figure A.1.: High-level PM8841 functional block diagram, ©Intrinsyc 2013

109

ment, general housekeeping, and user interface support functions into two mixed-signal

ICs. The PMIC includes poweron circuits that provide the proper power sequencing for the

entire APQ8074 chipset.The default poweron sequence is defined as follows:

1. VDD_MEM (on-chip memory)

2. VDD_CORE (digital core circuits)

3. VREF_SDC (SDC reference voltage)

4. VDD_P3(I/Os), VDD_P7 (SDC1), VDD_DDR_CORE_1P8 (DDR core 1.8 V)

5. VDD_USB_1P8 (USB 1.8 V circuits)

6. VDD_P1 (EBI and DDR I/Os), VDD_P4 (HSIC), VDD_DDR_CORE_1P2 (DDR core 1.2 V)

7. EBIx_VREF_CA2, EBIx_VREF_DQ (EBI0/1 CA and DQ LPDDR3 reference voltage)

8. VDD_USB_3P3 (USB 3.3 V circuits)

9. VDD_PLL2 (PLL circuits), VDD_QFPROM_PRG (QFPROM programming), VDD_P2 (SDC2)

10. VDD_KRAIT (Krait applications microprocessor)

VDD_KRAIT pins are dedicated to the power for quad-krait applications microprocessors.

These pins are listed as: J25, J27, J29, J37, J39, J41, N25, N27, N29, N37, N39, N41,

U25, U27, U29, U37, U39, U41, AC25, AC27, AC29, AC37, AC39, and AC41. The power

supply maximum rating on all VDD_KRAIT is 1.8 V.

Figure A.3 shows the voltage regulators and controls connected to the PM8841. We

replace the inductors L20, L22, L24 and L26 to measure the voltage drop on the micro-

processors as described in Chapter 3. The Pololu-ACS714 Hall-effect linear current sensor

[1] is positioned between the CPU and the voltage regulator. We read the output voltage

using a National Instruments NI-6009 data acquisition device [87]. From these we calcu-

late instantaneous power and thence energy over time. On the board we replaced the four

inductors L20, L22, L24 and L26 PIFE20161T power-choke inductors (0.24 µH, 20%, DCR

= 19 mW, ISAT = 4.7 A ROHS) by four power-choke WE-TPC-8012 shielded inductors (0.24

µH, DCR = 19 mW, ISAT = 5.8 A) in series with the hall-effect sensor [30; 114].

110

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

CAD NOTES:

NOTE 3

NOTE 1

1: PLACE R170 NEAR MSM AND CONNECT VREF_NEG TO PMIC WITH TRACE

3: CONNECT REF_GND AND REF_BYP TO C237 ON TOP LAYER WITHOUT VIA

2: PLACE S5B-S8B OUTPUT CAPACITORS CLOSE TO MSM

NOTE 2

N$1215224

N$1215226

N$1215228

N$1215230

VSW_S5

VSW_S6

VSW_S7

VSW_S8

PM8841_AVDD_BYP

N$1245282

N$1245283

VPH_PWR

VPH_PWR

VPH_PWR

PM8841_SYS_CLK_IN

N$1245292

MSM_RESIN_N

PM8841_TEST_EN

VREG_S3A_1P8

PM88_MPP1

PMIC_SPMI_DATA

PON_OUT

PON_OUT

PMIC_SPMI_CLK

VSENSE_KRAIT_0P9

VREG_S2B_0P9

VREG_S4B_0P9

VREG_KRAIT_0P9

VREG_KRAIT_0P9

N$1737613

VREG_S3B_1P15

VREG_S1B_0P95

VSENSE_VREG_S2B_0P9

VSENSE_VREG_S4B_0P9

VPH_PWR13..17,19,20,22..24

PON_OUT13

PMIC_SPMI_CLK3,5,13

PMIC_SPMI_DATA3,5,13

MSM_RESIN_N3,13

DIVCLK315

PM88_MPP124

VREG_S3A_1P83,4,8..10,12,15..17,20,21,23,25,28,30,31

VREG_KRAIT_0P9 8,12

VSENSE_KRAIT_0P9 8

VREG_S3B_1P15 9,12

VREG_S4B_0P9 8,12

VREG_S2B_0P9 8..10,12

VSENSE_VREG_S2B_0P9 10

VSENSE_VREG_S4B_0P9 8

VREG_S1B_0P95 9,12

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

DNP
C267

4V
2P0603R
DNP

2.2UF
C240

10V
2P0402R

L20 0.24UH
20%

L23 0.47UH
20%

2.2UF
C244

10V
2P0402R

22UF
C249

10V
2P0603R

2.2UF
C247

10V
2P0402R

L19 2.2UH
20%

DNP

R164

5%
2P0201R

DNP

22UF
C234

10V
2P0603R

22UF
C233

10V
2P0603R

L24 0.24UH
20%

U2B
PM8841-0-98WLNSP

CMN_GND_1
13

CMN_GND_2
14

CMN_GND_3
15

CMN_GND_4
21

CMN_GND_5
22

CMN_GND_6
23

REF_GND
24

TEST_EN
26

CMN_GND_7
29

CMN_GND_8
30

REF_BYP
31

VDD_MSM_IO
32

MPP01
33

MPP02
34

CMN_GND_9
38

CMN_GND_10
39

CMN_GND_11
40

AVDD_BYP
41

NC_1
43

VPP1
45

CMN_GND_12
48

WLP_TEST1
49

PVDD
50

OPTION2
51

OPTION1
52

CMN_GND_13
56

CMN_GND_14
57

WLP_TEST2
58

SYS_CLK_IN
59

PON_1
61

CMN_GND_15
65

CMN_GND_16
66

CMN_GND_17
67

PS_HOLD
68

RESIN_N
69

NC_2
70

CMN_GND_18
74

CMN_GND_19
75

SPMI_DATA
76

SPMI_CLK
77

MPP03
78

CMN_GND_20
84

CMN_GND_21
85

MPP04
86

VPP2
46

DNPC2022

10V
2P0201R

DNP

22UF
C243

10V
2P0603R

L21 0.47UH
20%

L26 0.24UH
20%

DNP

C242

10V
2P0201R
DNP

DNPR165

5% 2P0201R

DNP

DNPC2023

10V
2P0201R

DNP

47UF
C250

4V
2P0603R

2.2UF
C248

10V
2P0402R

2.2UF
C246

10V
2P0402R

U2A
PM8841-0-98WLNSP

VIN_S5_1
1

VIN_S5_2
2

VSW_S5_1
3

VREG_S5
4

VREG_S6
5

VREG_S2
6

VSW_S2_1
7

VIN_S2_1
8

VIN_S2_2
9

GND_S5_1
10

VSW_S5_2
11

VSW_S5_3
12

VSW_S2_2
16

VSW_S2_3
17

GND_S2_1
18

VIN_S6
19

GND_S5_2
20

GND_S2_2
25

VSW_S6_1
27

VSW_S6_2
28

GND_S1_1
35

GND_S6_1
36

GND_S6_2
37

VREG_S1
42

VSW_S1
44

VREF_NEG
47

VIN_S1
53

GND_S7_1
54

GND_S7_2
55

VREG_S3
60

GND_S3_1
62

VSW_S7_1
63

VSW_S7_2
64

VSW_S3
71

VIN_S7
72

GND_S8_1
73

GND_S4_1
79

VIN_S3
80

GND_S8_2
81

VSW_S8_1
82

VSW_S8_2
83

VSW_S4_1
87

VSW_S4_2
88

GND_S4_2
89

VIN_S8_1
90

VIN_S8_2
91

VSW_S8_3
92

VREG_S8
93

VREG_S7
94

VREG_S4
95

VSW_S4_3
96

VIN_S4_1
97

VIN_S4_2
98

L22 0.24UH
20%

0.1UF
C237

10V
2P0201R

DNP

R166

5%
2P0201R

DNP

R170

0402 SHORT

0

R169

5%
2P0201R

0

R171

5%
2P0201R

100K

R168

1%
2P0201R

47UF
C245

4V
2P0603R

22UF

C251

10V
2P0603R

DNP
C264

4V
2P0603R
DNP

22UF

C236

10V
2P0603R

1.0UF
C238

6.3V
2P0201R

L25 0.47UH
20%

47UF
C239

4V
2P0603R

2.2UF
C241

10V
2P0402R

2.2UF
C252

10V
2P0402R

2.2UF
C235

10V
2P0402R

Figure A.2.: PM8441 Schematics Control and VREG: ground and input pins; ©Intrinsyc
2013

111

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

CAD NOTES:

NOTE 3

NOTE 1

1: PLACE R170 NEAR MSM AND CONNECT VREF_NEG TO PMIC WITH TRACE

3: CONNECT REF_GND AND REF_BYP TO C237 ON TOP LAYER WITHOUT VIA

2: PLACE S5B-S8B OUTPUT CAPACITORS CLOSE TO MSM

NOTE 2

N$1215224

N$1215226

N$1215228

N$1215230

VSW_S5

VSW_S6

VSW_S7

VSW_S8

PM8841_AVDD_BYP

N$1245282

N$1245283

VPH_PWR

VPH_PWR

VPH_PWR

PM8841_SYS_CLK_IN

N$1245292

MSM_RESIN_N

PM8841_TEST_EN

VREG_S3A_1P8

PM88_MPP1

PMIC_SPMI_DATA

PON_OUT

PON_OUT

PMIC_SPMI_CLK

VSENSE_KRAIT_0P9

VREG_S2B_0P9

VREG_S4B_0P9

VREG_KRAIT_0P9

VREG_KRAIT_0P9

N$1737613

VREG_S3B_1P15

VREG_S1B_0P95

VSENSE_VREG_S2B_0P9

VSENSE_VREG_S4B_0P9

VPH_PWR13..17,19,20,22..24

PON_OUT13

PMIC_SPMI_CLK3,5,13

PMIC_SPMI_DATA3,5,13

MSM_RESIN_N3,13

DIVCLK315

PM88_MPP124

VREG_S3A_1P83,4,8..10,12,15..17,20,21,23,25,28,30,31

VREG_KRAIT_0P9 8,12

VSENSE_KRAIT_0P9 8

VREG_S3B_1P15 9,12

VREG_S4B_0P9 8,12

VREG_S2B_0P9 8..10,12

VSENSE_VREG_S2B_0P9 10

VSENSE_VREG_S4B_0P9 8

VREG_S1B_0P95 9,12

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

Size Document Number Rev

Date Sheet of

Drawn By

Intrinsyc Proprietary and Confidential. Copyright Intrinsyc 2013. All Rights Reserved.

Title

Intrinsyc Software International Inc.

Sheet

Reviewed by

Project Number

SVN Rev.

885 Dunsmuir Street - Suite 380, Vancouver, BC, Canada V6C 1N5
Tel:+1 (604) 801-6461, E-mail: info@intrinsyc.com

Variant

199-0200-SCH-C 0200D
18 32Tuesday, February 18, 2014

DN

SCH - APQ8074 DragonBoard CPU SOM Board

01IMP1101-APQ8074-DB
na

PM8841: CONTROL AND VREG

Default

DNP
C267

4V
2P0603R
DNP

2.2UF
C240

10V
2P0402R

L20 0.24UH
20%

L23 0.47UH
20%

2.2UF
C244

10V
2P0402R

22UF
C249

10V
2P0603R

2.2UF
C247

10V
2P0402R

L19 2.2UH
20%

DNP

R164

5%
2P0201R

DNP

22UF
C234

10V
2P0603R

22UF
C233

10V
2P0603R

L24 0.24UH
20%

U2B
PM8841-0-98WLNSP

CMN_GND_1
13

CMN_GND_2
14

CMN_GND_3
15

CMN_GND_4
21

CMN_GND_5
22

CMN_GND_6
23

REF_GND
24

TEST_EN
26

CMN_GND_7
29

CMN_GND_8
30

REF_BYP
31

VDD_MSM_IO
32

MPP01
33

MPP02
34

CMN_GND_9
38

CMN_GND_10
39

CMN_GND_11
40

AVDD_BYP
41

NC_1
43

VPP1
45

CMN_GND_12
48

WLP_TEST1
49

PVDD
50

OPTION2
51

OPTION1
52

CMN_GND_13
56

CMN_GND_14
57

WLP_TEST2
58

SYS_CLK_IN
59

PON_1
61

CMN_GND_15
65

CMN_GND_16
66

CMN_GND_17
67

PS_HOLD
68

RESIN_N
69

NC_2
70

CMN_GND_18
74

CMN_GND_19
75

SPMI_DATA
76

SPMI_CLK
77

MPP03
78

CMN_GND_20
84

CMN_GND_21
85

MPP04
86

VPP2
46

DNPC2022

10V
2P0201R

DNP

22UF
C243

10V
2P0603R

L21 0.47UH
20%

L26 0.24UH
20%

DNP

C242

10V
2P0201R
DNP

DNPR165

5% 2P0201R

DNP

DNPC2023

10V
2P0201R

DNP

47UF
C250

4V
2P0603R

2.2UF
C248

10V
2P0402R

2.2UF
C246

10V
2P0402R

U2A
PM8841-0-98WLNSP

VIN_S5_1
1

VIN_S5_2
2

VSW_S5_1
3

VREG_S5
4

VREG_S6
5

VREG_S2
6

VSW_S2_1
7

VIN_S2_1
8

VIN_S2_2
9

GND_S5_1
10

VSW_S5_2
11

VSW_S5_3
12

VSW_S2_2
16

VSW_S2_3
17

GND_S2_1
18

VIN_S6
19

GND_S5_2
20

GND_S2_2
25

VSW_S6_1
27

VSW_S6_2
28

GND_S1_1
35

GND_S6_1
36

GND_S6_2
37

VREG_S1
42

VSW_S1
44

VREF_NEG
47

VIN_S1
53

GND_S7_1
54

GND_S7_2
55

VREG_S3
60

GND_S3_1
62

VSW_S7_1
63

VSW_S7_2
64

VSW_S3
71

VIN_S7
72

GND_S8_1
73

GND_S4_1
79

VIN_S3
80

GND_S8_2
81

VSW_S8_1
82

VSW_S8_2
83

VSW_S4_1
87

VSW_S4_2
88

GND_S4_2
89

VIN_S8_1
90

VIN_S8_2
91

VSW_S8_3
92

VREG_S8
93

VREG_S7
94

VREG_S4
95

VSW_S4_3
96

VIN_S4_1
97

VIN_S4_2
98

L22 0.24UH
20%

0.1UF
C237

10V
2P0201R

DNP

R166

5%
2P0201R

DNP

R170

0402 SHORT

0

R169

5%
2P0201R

0

R171

5%
2P0201R

100K

R168

1%
2P0201R

47UF
C245

4V
2P0603R

22UF

C251

10V
2P0603R

DNP
C264

4V
2P0603R
DNP

22UF

C236

10V
2P0603R

1.0UF
C238

6.3V
2P0201R

L25 0.47UH
20%

47UF
C239

4V
2P0603R

2.2UF
C241

10V
2P0402R

2.2UF
C252

10V
2P0402R

2.2UF
C235

10V
2P0402R

Figure A.3.: PM8441 Schematics Control and VREG: switch and regulator pins;
©Intrinsyc 2013

112

B IMPACT OF POWER MANAGER ON THE VM

Measuring performance on mobile systems is challenging due to the complex hardware and

software stacks. Different feedback mechanisms continuously adapt system parameters,

resulting in changed response time, power consumption, and time performance. These

metrics are deeply entangled and must be evaluated in unison in a controlled environment.

Here, we consider metrics for evaluating Android apps running on a real device (the

Snapdragon multi-core platform), and steps needed to obtain controlled results for those

metrics, like limiting interference from non-salient layers, and controlling variability due

to adaptive components that perturb the target metric. Understanding results requires cor-

relating metrics with underlying platform (e.g., hardware, OS, run-time, and application)

events.

B.1 Power Measurements

Measuring total AC current to the device with a clamp ammeter is not precise enough to

measure the effect of the VM components on the CPU power. Nevertheless, measuring the

power on the SoC level shadows the GC contribution on the CPU power since it accounts

for the total power consumed by individual components (e.g., modem, GPU, or sensors).

We measure overall current flow at the circuit level as shown in using a Pololu-ACS714

Hall-effect linear current sensor [1], positioned between the CPU and the voltage regulator.

We read the output voltage using a National Instruments NI-6009 data acquisition device

[87]. From these we calculate instantaneous power and thence energy over time. We

eliminate noise for analog signals using two bias resistors 50KW to satisfy the bias current

path requirement of the instrumentation to the ground. At sample rate 2 kS/s, we read the

voltage across the voltage regulator and the sensor output using the differential method

and we take simple moving average for each 20 points. As an example, Figure B.1 shows

113

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60

Po
w

e
r

(m
W

)

Time (sec)

power

Figure B.1.: xalan: Power readings over execution time

power measurements obtained during the execution of five full iterations of xalan. Between

iterations the system (governor) disables unused cores and lowers the frequency of the

remaining online cores in order to reduce power consumption.

We note that the core frequencies are important to measure and analyze power con-

sumption during the execution of programs. By extending systrace to show core frequency

updates and events that enable or disable cores, we can correlate the power expenses of the

system configurations and their impact on the speed of individual cores. Figure B.2 plots

the frequency for several benchmarks of each core over time. For DaCapo benchmarks,

cores 2 and 3 are disabled between iterations, while the second core is disabled outside the

main control loop for the iterations. The single threaded benchmarks (i.e., SPECjvm98)

utilize only two cores.

For Quadrant, Figure B.2(e), all cores run at their maximum frequency which makes

Quadrant inappropriate for experimental evaluation since any change to the system will

not be reflected on the CPU speed nor the power consumption.

The governors manage the frequency to meet power and performance constraints. We

note that during the evaluation of the GC, applying different GC strategies generates dif-

ferent workloads on the CPU. Hence, the governor reacts in different ways according to

the current strategy. Figure B.3 shows the distribution of core frequency as a percentage

of total execution time for lusearch and xalan, for two different governors. Although, the

114

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 5 10 15 20 25 30 35 40 45 50

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(a) lusearch

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 5 10 15 20 25 30 35 40 45 50

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(b) xalan

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 3 6 9 12 15 18 21 24 27 30

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(c) jack

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 4 8 12 16 20 24 28 32 36 40 44

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(d) javac

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 6 12 18 24 30 36 42 48 54 60

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(e) Quadrant

0-0

0-1

0-2

1-1

1-2

2-1

2-2

3-1

3-2

0 30 60 90 120 150 180 210 240 270 300 330

co
re

 f
re

q
u
e
n
cy

CPU time (s)

Core0 Core1 Core2 Core3

(f) Pandora

Figure B.2.: Core frequencies during execution time

ondemand governor does not allow a core to stay at the maximum frequency more than a

configurable threshold, the cores spend a higher percentage of time on higher frequencies.

This observation suggests that the GC evaluation has to consider carefully the ways the GC

changes the governor decisions leading to different power expenditures.

Smaller heap sizes naturally cause more frequent GC collections. With a tighter heap,

apps consume more energy as the GC is triggered more frequently during execution. All the

benchmarks showed this effect except for lusearch which exhibits less energy consump-

tion with tighter heaps. Figure B.4 shows the effect of the heap footprint on total energy

115

 0

 10

 20

 30

 40

 50

 60

0.00 0.42 0.73 0.96 1.19 1.50 1.73 2.15

fr
a
ct

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e
 (

%
)

core frequency (GHz)

ondemand interactive

(a) lusearch

 0

 10

 20

 30

 40

 50

 60

 70

0.00 0.42 0.73 0.96 1.19 1.50 1.73 2.15

fr
a
ct

io
n
 o

f
e
xe

cu
ti

o
n
 t

im
e
 (

%
)

core frequency (GHz)

ondemand interactive

(b) xalan

Figure B.3.: Frequency transitions trade-offs with governor

consumption when running under the default Dalvik GC (CMS), CMSFly (on-the-fly ex-

tension of CMS), fg (CMS with no GC daemon), and bg (CMS performing GC exclusively

through the GC daemon) (normalized to the smallest number per benchmark).

To understand the lusearch power trends, we analyze the frequency transitions and the

trade-offs between static and dynamic power as the execution time varies with different

heap utilization. lusearch benefits from the system making more effective frequency tran-

sition decisions than the other benchmarks. With target utilization 10%, the cores spend

60% of the execution time on the maximum frequency. For a heap utilization of 90%, the

cores spend 47% on maximum frequency. On the other hand xalan spends 56% and 61% of

execution time on the maximum frequency for 10% and 90% target utilization, respectively.

116

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70 80 90

co
n
su

m
e
d
 e

n
e
rg

y
(n

o
rm

a
liz

e
d
)

target heap utilization (%)

bg CMS fg CMSFly

(a) lusearch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 10 20 30 40 50 60 70 80 90

co
n
su

m
e
d
 e

n
e
rg

y
(n

o
rm

a
liz

e
d
)

target heap utilization (%)

bg CMS fg CMSFly

(b) xalan

Figure B.4.: Energy versus target heap utilization with GC variants

The energy behavior of lusearch demonstrates that it is not sufficient to evaluate the

GC impact on the power consumption based on only the CPU cycles. Instead, correlation

between other non-adjacent system layers such as scheduler and governor is necessary to

tune on-chip power expenses.

Figure B.4 also shows that concurrent GC (i.e., the GC daemon runs in the background)

consumes more energy. The performance counters (i.e., L1 misses and CPU cycles) suggest

that a background GC results in a higher workload across all the benchmarks due to heap

synchronization (i.e., context switches) and trimming operation triggered when the heap is

under utilized.

117

To control for variability across GC variants for the effects of enabling and disabling

cores and frequency scaling for the GC daemon, our experiments pin the GC daemon on a

dedicated throttled core to prevent it running faster than a fixed maximum frequency, and

consider each GC variant as the frequency varies. Still, running GC in the background has

the worst power efficiency across all the benchmarks. This suggests that the GC daemon

must be further integrated into frequency scaling decisions (to adapt the system to the GC

workload) in order to conserve energy.

B.2 Time Execution

We explore the trade-off between power and throughput, versus heap size. As we men-

tioned, apps consume more energy with larger heap except for lusearch. For execution

time, all benchmarks show that a larger heap increases the throughput.

To control variability across GC variants due to the effects of enabling or disabling

cores and frequency scaling, our experiments pin the GC daemon to run on a dedicated core

that is throttled to prevent it running faster than a fixed maximum frequency, considering

each GC variant as the frequency is adapted. A foreground GC can still have an effect on

governor decisions regarding the mutator threads, which run only on the other three cores.

Also, when the GC daemon is idle, the only threads that can execute on that core are OS and

daemon threads of other processes. A surprising outcome is that having all GC performed

in foreground by mutators (fg) results in better throughput than for collectors that use a

background GC daemon.

Table B.1 shows the execution time, geometric mean, confidence interval 5%), and the

standard deviation of running each benchmark for a given number of iterations following

the warmup under two different governors. All benchmarks score better confidence interval

when the thermal-engine is disabled, demonstrating that the thermal engine affects the

accuracy of the experiments with the continuous increase in temperature during execution.

Quadrant has an exceptional pattern because the cores are locked to the highest frequency

(Figure B.2(e)).

118

Table B.1.: Impact of the governor and the thermal-engine on the throughput experiments

Benchmarks governor

Th
er

m
al

W
ar

m
up

Ite
ra

tio
ns

A
ve

ra
ge

(s
)

G
eo

.M
ea

n
(s

)

C
on

f.
In

te
rv

al
(m

s,
5%

)

St
an

da
rd

D
ev

ia
tio

n
(m

s)

DaCapo

lus
ea

rch ondemand ON 1 4 5.68 5.68 14.00 36.00
OFF 1 4 5.18 5.18 10.80 27.60

interactive ON 1 4 5.68 5.68 25.00 51.20
OFF 1 4 5.66 5.66 18.50 37.70

xa
lan

ondemand ON 1 4 6.71 6.71 36.10 92.10
OFF 1 4 6.69 6.69 24.00 62.70

interactive ON 1 4 6.82 6.81 50.20 102.40
OFF 1 4 6.83 6.83 30.10 61.50

SPECjvm98

jav
ac ondemand ON 1 3 27.53 27.53 162.20 165.50

OFF 1 3 27.46 27.46 111.70 114.00

interactive ON 1 3 30.62 30.62 57.30 117.00
OFF 1 3 30.90 30.90 190.10 194.00

jac
k ondemand ON 1 3 16.68 16.68 13.72 14.00

OFF 1 3 15.83 15.83 7.35 7.50

interactive ON 1 3 18.84 18.84 60.00 120.90
OFF 1 3 18.77 18.77 66.64 68.00

co
mpr

es
s ondemand ON 1 3 25.51 25.51 151.90 155.00

OFF 1 3 25.77 25.77 29.40 30.00

interactive ON 1 3 25.73 25.73 112.10 228.80
OFF 1 3 25.66 25.66 93.60 95.50

jes
s ondemand ON 1 3 19.66 19.66 41.65 42.50

OFF 1 3 18.85 18.85 7.35 7.50

interactive ON 1 3 21.81 21.81 52.80 107.80
OFF 1 3 19.66 19.66 41.65 42.50

db
ondemand ON 1 3 21.61 21.61 164.15 167.50

OFF 1 3 21.29 21.29 112.20 114.50

interactive ON 1 3 26.49 26.49 119.70 244.50
OFF 1 3 26.72 26.72 4.41 4.50

Android

Qua
dr

an
t ondemand ON 1 3 47.62 47.62 24.00 36.80

OFF 1 3 47.23 47.23 43.40 66.40

interactive ON 1 3 47.61 47.61 16.30 24.90
OFF 1 3 47.38 47.38 43.40 66.50

VITA

119

VITA

Ahmed Hussein received a Bachelor of Science in Computer Science from Alexandria

University, Egypt, in July 2005, and the Master of Science in Computer Science from Pur-

due University, USA, in December 2013. His research interest spans memory management,

implementation of compilers, and runtime systems for high-level languages.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	The Double Edged Sword in Fast Mobile Advances
	Thesis Statement
	Choice of Platform
	Work Plan
	Results
	Thesis Organization

	BACKGROUND AND RELATED WORK
	The Android Software Stack
	Kernel Layer
	Power management
	Memory management

	Android Virtual Machine
	App isolation
	Garbage collection in Dalvik
	Garbage collection in Android Runtime
	Android compiler

	GC Evaluations
	Mobile Application Behavior
	Security
	Usage patterns and context-aware approaches
	Managed runtime and microarchitecture evaluation

	RIGOROUS EXPERIMENTATION ON MOBILE PLATFORMS
	Motivation
	Experimental Challenges on Mobile Platforms
	System complexity
	Characterizing suitable benchmarks and workloads

	The Etalon Benchmark Suite
	Specifications
	Origins of the source code
	Android apps

	Experimental Environment
	VM Profiling
	Gathering memory events
	Power measurements

	Summary

	IMPACT OF GC DESIGN ON POWER AND PERFORMANCE
	GC Extensions
	Generational CMS
	On-the-fly
	Concurrency policies

	Results
	Summary

	CONTROLLING THE GC POWER CONSUMPTION
	Objective
	Approach
	Results
	Energy and throughput
	Responsiveness

	Discussion
	Choice criterion to characterize workload
	Android runtime extension

	Summary

	GARBAGE COLLECTION AS A SERVICE
	Motivation
	Design and Architecture
	Challenges
	Global collector and energy optimization
	global GC service vs. global GC policy

	Service Implementation
	System startup
	Communication with applications
	Energy optimization
	Memory layout
	Heap size management

	Experimental Results
	Workload
	Global evaluation
	Local per-VM evaluation
	Interprocess overhead

	Summary

	FUTURE WORK
	Tuning the GC Service
	Code Optimization Service
	Security

	CONCLUSIONS
	GC Impact on Android devices
	GC As A Service
	Benchmarking and Evaluation Methodology

	REFERENCES
	HARDWARE SCHEMATICS
	IMPACT OF POWER MANAGER ON THE VM
	Power Measurements
	Time Execution
	VITA

