INFERENCE OF RESIDUAL ATTACK SURFACE UNDER MITIGATIONS

A Dissertation
Submitted to the Faculty
of
Purdue University
by

Kyriakos K. Ispoglou

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

May 2019
Purdue University

West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF DISSERTATION APPROVAL

Dr. Mathias Payer, Chair

Department of Computer Science
Dr. Byoungyoung Lee

Department of Computer Science
Dr. Samual Wagstaff

Department of Computer Science
Dr. Benjamin Delaware

Department of Computer Science

Approved by:
Dr. Voicu S. Popescu

Head of the Department Graduate Program

il

To my dad, Konstantinos.

iii

v

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Mathias Payer, for his astonishing
work, his invaluable guidance and the —not so easy— task of advising me. I would also like
to thank my co-authors Trent Jaeger, Bader AlBassam, Daniel Austin, and Vishwath Mohan
for helping me with my research projects. I have to admit that this PhD would not be done
without the continuous support and motivation from my family; my parents Konstantinos
and Parthena and my siblings Alexandra and George. Last but not least, I would like to
thank my two wonderful friends Eugenia Kontopoulou and Marios Papamichalis for the

nice memories that I had with them in West Lafayette. I will be forever grateful.

TABLE OF CONTENTS
Page
LISTOFTABLES| viil
LISTOFFIGURES| X
ABBREVIATIONS| xi
ABSTRACT] xii
1 INTRODUCTIONI e 1
(1.1 The three phases of an attack|. 2
(I.1.1 ~ Discovering a vulnerability| 4
(1.1.2 Exploiting a vulnerability|00 6
(1.1.3 Persisting on the compromised system| 8

[2.4.3 Argument flow analysts|o o000 29
[2.4.4 Fuzzer stub synthesis| oL 31
2.5 Implementation| oL 33
2.6 Evaluation| 36
[2.6.1 Consumer Ranking| 39

[2.6.2 Measuring code coverage| 41

Vi

Page

[3.2 Background and Related Worklo 00000 54
[3.2.1 Control Flow Integrity| 55
3.22 Shadow Stacks|.o Lo 56
[3.2.3 Data-only Attacks| 56

(3.3 Assumptions and Threat Model| 57
4 Designl 58
[3.4.1 Expressing Payloads|. 000 61
[3.4.2 Selecting functional blocks| 62
[3.4.3 Finding BOP gadgets| 63
[3.4.4 Searching for dispatcher blocks| 64

[3.4.5 Stitching BOP gadgets|. 66

(3.5 Implementation| oo o 67
[3.5.1 Bmary Frontend| L. 69
B52 SPLFrontend 69
[3.5.3 Locating candidate block sets| 70
[3.5.4 Identiftying functional block sets|. 72

[3.5.5 Selecting functional blocks| 0000 73
[3.5.6 Discovering dispatcher blocks| o000 73
[3.5.7 Synthesizing exploits| 75

3.6 Evaluationl 76
[3.7 Case Study: nginx| 81
[3.7.1 Spawningashelll.o 81
[3.7.2 Infimteloop 82

[5.4 TImplementation| o000 100
[5.4.1 Phase I: Chopping the binary| 102
[5.4.2 Phase 2.a: Loading emulators| 105
[5.4.3 Phase 2.b: Executing the bnary| 106
[5.4.4 Recovering terminated instances|. 109

5.5 Evaluationl 110
5.5.1 malWASH resiliencel. 110
[5.5.2 Case Study: Remote Keylogger] 111
053 Discussionl 114

Vil

6 REILATED & FUTURE WORK]

[6.0.1 Library Fuzzing| 118

[6.0.2 Data-Only and Control Flow Bending attacks| 119

[6.0.3 Distributed malware detectionf 119

7 CONCLUSION e 121
APPENDIX| 123
/.1 Determining exploitability 1s undecidable| 123

7.2 State Inconsistency for A*DG coalescing| 125
[/.3__Extended Backus-Naur Formof SPL 126
(7.4 Stitching BOP Gadgetsis NP-Hard) 127
[7.5 SPL1s Turing-complete| 129
[7.6 CFG of nginx after pruning| 130
[7.7 Detailed overview of the BOPC implementation|. 132

BIBLIOGRAPHY] 142

viii

LIST OF TABLES
Table Page
2.1 Set of possible attributes inferred during the argument value-set analysis.| 34
2.2 Codec libraries and consumers used in our evaluationl 37
2.3 Results from fuzzer evaluation on codec libraries. We run each fuzzer 5 timesl . 40
2.4 Assigned CVEs for the vulnerabilities found by FuzzGen.|. 47
2.5 Complexity increase for the 1ibopus library|. 48
(3.1 Examples of SPL payloads|. o000 61
[3.2 Counterexample that shows 1inaccurate functional block proximity] 66
[3.3 Semantic matching of SPL statements to basic blocks| 71
[3.4 Vulnerable applications for BOPC evaluation| 77
[3.5 SPL payloads for BOPC evaluation| 78
[3.6 Feasibility of executing SPL payloads on vulnerable applications| 79
(3.7 Performance metrics for BOPConngmnx] 81
[5.1 Supported properties by design and implemented in the current prototype|. . . 101
5.2 Block statistics of malware samples|o 00000 110
[5.3 Statistics from running the Octane 2.0 JavaScript benchmark| 113

X

LIST OF FIGURES
Figure Page
(1.1~ The three phases of an attack| 3
(1.2 A visual representation of a crash, a bug and a vulnerability] 5
(1.3 'The interconnection of dissertation’s three main components| 10
2.1 _The main intuition behind FuzzGenl 16
[2.2 Source code that initializes an MPEG?2 decoder object) 19
2.3 The FuzzGen workflowl 0oL 23
2.4 FuzzGen implementation overview.| 32
[2.5 Code coverage (%) over time for each library| 42
2.6 Code coverage over time for ibaom.. 43
(2.7 Our device fuzzing cluster.|. 0oL 44
[2.8 Consumer tail off for distinct API calls for 1ibopus hibrary,|. 46
(3.1 Overview of BOPC’sdesign.| 58
(3.2 BOP gadget structure| 60
[3.3 Visualisation of BOP gadget volatility| 63
(3.4 Imprecision of existing shortest path algorithms| 64
(3.5 High level overview of the BOPC implementation|. 68
3.6 CFG of nginx’s ngx_signal_handler and payload for an infinite loop|. . . 83
[3.7 A delta graph 1nstance for an ifelse payload fornginx| 84
4.1 Code snippet that shows computation 1sland disconnectivityl 90
[>.1 A comparison between normal infection and malWASH| 95
[5.2 Translation of a return instruction. 103
5.3 Aninstance of duptab| oo 108
[5.4 CPU usage among infected (1dle) processes| 111

[5.5 CPU usage of Firefox and Chrome under malWASH infection| 112

Figure

[5.6 Thwarting detection based on shared memory correlation|

[/.1 ~Andelta graph instance|

ABI
A’DG
API
ARP
ASLR
AWP
AV
BID
BOP
BOPC
CFG
CFI
CPU
CVE
DEP
DFI
IDS
IPC
IPS
IR
JOP
LLVM
ROP
SPL

ABBREVIATIONS

Application Binary Interface
Abstract API Dependence Graph
Application Programming Interface
Arbitrary Read Primitive

Address Space Layout Randomization
Arbitrary Write Primitive

Anti-Virus

Block IDentifier

Block Oriented Programming

Block Oriented Programming Compiler
Control-Flow Graph

Control-Flow Integrity

Central Processing Unit

Common Vulnerability and Exposure
Data Execution Prevention
Data-Flow Integrity

Intrusion Detection System

Inter Process Communication
Intrusion Prevention System
Intermediate Representation

Jump Oriented Programming

Low Level Virtual Machine

Return Oriented Programming

SPloit Language

X1

Xii

ABSTRACT

Ispoglou, Kyriakos K. PhD, Purdue University, May 2019. Inference of Residual Attack
Surface under mitigations. Major Professor: Mathias Payer.

Despite the broad diversity of attacks and the many different ways an adversary can
exploit a system, each attack can be divided into different phases. These phases include the
discovery of a vulnerability in the system, its exploitation and the achieving persistence on
the compromised system for (potential) further compromise and future access. Determining
the exploitability of a system —and hence the success of an attack— remains a challenging,
manual task. Not only because the problem cannot be formally defined but also because
advanced protections and mitigations further complicate the analysis and hence, raise the
bar for any successful attack. Nevertheless, it is still possible for an attacker to circumvent
all of the existing defenses —under certain circumstances.

In this dissertation, we define and infer the Residual Attack Surface on a system. That
is, we expose the limitations of the state-of-the-art mitigations, by showing practical ways
to circumvent them. This work is divided into four parts. It assumes an attack with three
phases and proposes new techniques to infer the Residual Attack Surface on each stage.

For the first part, we focus on the vulnerability discovery. We propose FuzzGen, a tool
for automatically generating fuzzer stubs for libraries. The synthesized fuzzers are target
specific, thus resulting in high code coverage. This enables developers to expose and fix
vulnerabilities (that reside deep in the code and require initializing a complex state to trigger
them), before they can be exploited. We then move to the vulnerability exploitation part and
we present a novel technique called Block Oriented Programming (BOP), that automates
data-only attacks. Data-only attacks defeat advanced control-flow hijacking defenses such
as Control Flow Integrity. Our framework, called BOPC, maps arbitrary exploit payloads

into execution traces and encodes them as a set of memory writes. Therefore an attacker’s

Xiii

intended execution “sticks” to the execution flow of the underlying binary and never departs
from it. In the third part of the dissertation, we present an extension of BOPC that presents
some measurements that give strong indications of what types of exploit payloads are not
possible to execute. Therefore, BOPC enables developers to test what data an attacker would
compromise and enables evaluation of the Residual Attack Surface to assess an application’s
risk. Finally, for the last part, which is to achieve persistence on the compromised system,
we present a new technique to construct arbitrary malware that evades current dynamic
and behavioral analysis. The desired malware is split into hundreds (or thousands) of little
pieces and each piece is injected into a different process. A special emulator coordinates and
synchronizes the execution of all individual pieces, thus achieving a “distributed execution”
under multiple address spaces. malWASH highlights weaknesses of current dynamic and
behavioral analysis schemes and argues for full-system provenance.

Our envision is to expose all the weaknesses of the deployed mitigations, protections
and defenses through the Residual Attack Surface. That way, we can help the research

community to reinforce the existing defenses, or come up with new, more effective ones.

1 INTRODUCTION

As computer systems evolve, they become a prominent target for all kinds of attacks. Some
attacks such as control-flow hijacking, can have devastating effects as they force the system
to execute arbitrary, attacker chosen, code. Hence, a plethora of defense mechanisms
have been proposed to mitigate the impact, or even prevent those attacks. This started an
arms race, with the attackers finding new ways to circumvent the existing protections and
mitigations, and defenders reinforcing their defenses and creating new ones [1/]. However,
as defenses evolve, attacks become sophisticated, more subtle and harder to successfully
execute.

Despite the stunning success of the applied defenses, they all have some form of
limitation or weakness that in some cases, an adversary can leverage. This is sufficient to
leave some small space for a successful attack. Nevertheless, most attacks remain infeasible,
thus significantly raising the bar against successful compromise.

Therefore, given all these protections and mitigations applied on a system, what are
the remaining options for an attacker? This dissertation defines this as the Residual Attack
Surface i.e., the attack possibilities for an adversary on a system where a set of mitigations
and protections are applied.

This dissertation focuses on defining and inferring the Residual Attack Surface. 1deally, to
precisely measure the Residual Attack Surface, one has to identify all possible vulnerabilities
in the system, determine which ones are exploitable, and try to execute each exploitable
vulnerability to get unauthorized access to the system. Finally, if the attacker does not
have the desired privileges on the system, or she wants to utilize the system as a pivot to
attack other systems, she needs to repeat these steps for each target. Clearly, each of the
aforementioned steps requires an enumeration of all potential inputs to the system, which are

uncountable. Furthermore the problem of determining whether a vulnerability is exploitable

or not is undecidable (see [Appendix 7.1)).

Hence, to infer the Residual Attack Surface, we use the following approach: First, we
show that the Residual Attack Surface does exist and it is nonzero. We find vulnerability
locations and we present new techniques that circumvent all of the deployed state-of-the-art
mitigations (either combined or alone). Second, we find “upper bounds” on attacker’s
capabilities. That is, we aim to identify the limits of exploitation, i.e., what an adversary is
capable of doing in the best case scenario for her (which is also the worst case scenario for
the system).

However, there are some concerns with our approach. Due to the large number of
potential attacks, the inference of the Residual Attack Surface becomes complicated. For
instance, there can be uncountable ways to break into a system, as each system is different.
This implies that creating general techniques is challenging, as each system can have its
own Residual Attack Surface.

To deal with this challenge, we divide an attack into distinct phases and we infer the
Residual Attack Surface in each phase. Despite the large diversity of the potential attacks,
these phases are common in most attacks. Furthermore, dividing an attack into distinct
phases has several advantages from a defender’s point of view. First, defenses become more
targeted (and therefore more effective) as they aim to protect only one part of the system.
Second, multiple defenses, orthogonal to each other, can be applied together at different
phases. This multi-layered approach implies that the adversary has to defeat several layers
of protection before she breaks into the system, so any attack becomes significantly more
complicated. Although there can be multiple ways to divide an attack into phases, this

dissertation assumes a three phase, coarse grained separation.

1.1 The three phases of an attack

As stated above, this dissertation divides an attack into three distinct phases as shown in
We do not state that this is the only way to divide an attack; more fine-grained
divisions may exist. However, the seperation suits the needs of inference of the Residual

Attack Surface. These three phases are:

Discover a Exploit a
Vulnerability Vulnerability

Persist on the
Compromised
System

Figure 1.1.: The three phases of an attack.

* The discovery of a vulnerability
* The exploitation of a vulnerability

* The persistence on the compromised system

An attack starts with reconnaissance. That is, the adversary first gets some knowledge
on the system, how its components operate, what their weaknesses are and what the potential
points to attack are. The goal of this step, is for attacker to find a way to get the system into
a state that it is not designed to be in. That is, to find out “what could go wrong” in the
system. This is called a bug (or flaw).

In the second phase, the attacker is looking for a way to leverage this bug in order
to compromise the system. That is, taking advantage of the bug, to force the system to
perform actions on the attacker’s behalf (e.g., execute the attacker’s indented code). This is
commonly referred to as exploitation.

Although in some scenarios it is sufficient to — successfully — exploit a bug, this may
not be enough to complete an attack, so a third phase is required. For instance, the attacker
may be able to execute her own code, but with low privileges. Thus, the attacker needs to
establish herself on the compromised system and repeat the same process. This “persistence”

on the compromised system is a crucial, as it allows the attacker to continue attacking further.

This is done by either using the compromised system as a pivot to reach other systems
that are not otherwise reachable, or to further compromise another component on the same

system and elevate her privileges.

1.1.1 Discovering a vulnerability

In the first phase of the attack the adversary analyzes the target system and tries to trigger
“abnormal” behavior, which indicates that the system has reached an undefined state. An
undefined state, is a state that the system is not supposed or designed to be in. This usually
happens, when the system accepts unexpected input it cannot handle properly. Then the
attacker can abuse this behavior to start manipulating the system state.

For instance, consider a system that plays blackjack. A player gives a bet as input to the
system and the game starts. When the player wins, the bet is added to her balance. When
the player loses, the bet is subtracted from her balance. Now consider a situation where
the player gives a negative bet and loses intentionally. Let us assume that the designers
of the system did not consider this case —as it is not feasible in reality to bet a negative
amount of money— and hence, they did not sanitize the input properly. However the system
continues to operate normally, so when the player loses, the system subtracts the (negative)
bet from player’s balance. The result is that player’s balance is increased as the subtraction
of a negative number results in an addition. Hence, an evil player can abuse this system to
always win.

Technically, this behavior is referred as crash, bug, flaw, or vulnerability. Although each
of these terms indicates that the system has reached an “undefined” state, they all describe
different situations.

A crash indicates that the system has stopped working. The root cause for it is usually
an access violation or a segmentation fault. For instance when the system tries to do some
operations on a pointer that does not point to valid memory address, the underlying operating

system, throws an exception which results in program termination.

Vulnerability

Figure 1.2.: A visual representation of a crash, a bug and a vulnerability.

A bug, may cause a crash. Segmentation faults and memory errors are types of bugs that
can crash the system. However, a bug is also anything that results in an undefined behavior
in the system. For example, if an attacker can manipulate a timeout parameter on a system,
she can cause the system to hang, by supplying a very large value. Although the program
still continues to work, it stops responding, which in practice means that it is dead. Back in
our blackjack example, the system has a bug that does not cause any crashes. A player can
bet negative amounts of money while the system continues to operate normally.

A flaw is a special type of bug that is created during sysstem design and carried into its
implementation. It is usually referred as logic error. For instance, a system that implements
a weak access control policy and allows low privileged users to access functionality from
super users has a design flaw. Although the system does not crash, the results can be
devastating.

Finally, a vulnerability is a bug that allows the attacker to manipulate the system. That
is, a vulnerability allows unintended state changes on the system that are controlled by the
attacker. Therefore, a vulnerability is a bug that the attacker can leverage to control the
program’s state. As an example, if a system tries to access a pointer that points to an invalid
location, this is a bug. However, if an attacker can first control this pointer and make it point
to a memory region that contains executable code instead of crashing, the system will start
executing code that it is not supposed to execute (this type of attack is called control-flow

hijacking). shows a visual representation of a crash, a bug, and a vulnerability.

From the aforementioned types of issues, an adversary is interested in finding vulnera-
bilities as it is the basic requirement to get unauthorized access to the system. Nevertheless,
there are some scenarios that the attackers can leverage bugs to cause Denial of Service
(DoS) attacks and compromise the availability of the system.

Finding vulnerabilities has been an interesting problem for the research community
for several years. During that time many techniques have been developed for finding
vulnerabilities. One of the oldest and most effective methods is fuzzing. Fuzzing is the
process of supplying random and unexpected input to program and looking for abnormal
behavior (i.e., crashes or hangs). Although fuzzing is based on a simple and “naive” concept,
it turned out to be much more efficient in practice than other sophisticated approaches
that involve symbolic execution [2] or SMT [3]] solvers. Despite its simplicity, making
fuzzing efficient is challenging. Some bugs reside deep in the code and it is hard to craft
proper input to trigger them. Discovering new techniques to improve fuzzing (in both
directions of performance and effectiveness) has received significant attention from the
research community. Over the last years there is a lot of great work in the area, such as
TFuzz [4]. Recent work of Klees et al. S]] compares and evaluates the 32 most recent
fuzzing techniques, showing their effectiveness in bug finding.

Although attackers utilize fuzzing to find vulnerabilities, fuzzers are also used with great
success as defense mechanisms. Finding and eliminating bugs is important as it protects
against their potential exploitation. While an attacker only needs to find a single bug to
exploit, defenders need to find all bugs before attackers. However, defenders have the

advantage of knowing the source code and deployment, which is beneficial for fuzzing.

1.1.2 Exploiting a vulnerability

Given a bug on the target system, an attacker needs to find a way to turn it into a
vulnerability and synthesize an exploit that gives her unauthorized access to the system.
However, determining if a bug is exploitable is a challenging, manual task. Despite the great

effort |6, [7] that has been done towards automating exploit generation, this problem remains

unsolved. Furthermore, the wide deployment of mitigations against control-flow hijacking
attacks such as Data Execution Prevention (DEP), Address Space Layout Randomization
(ASLR), stack canaries, Control Flow Integrity (CFI), and shadow stacks, further complicate
this task.

One of the oldest techniques to exploit a vulnerability is code injection. The attackers
supply arbitrary code to the program and force it to execute this code through a vulnerability.
Data Execution Prevention (DEP) [8] stops code injection by leveraging memory page
permissions to make pages that contain contain data non-executable. An attacker is still able
to inject code, but when control is transfered to it, a segmentation fault occurs.

However, injecting new code into a program is not always necessary. Most of the times,
the program itself contains sufficient code that it is possible for an attacker to reuse it and
synthesize the desired payload. This idea started with the return-to-libc [9]] attacks and
extended to its general form, called Return Oriented Programming (ROP) [10]. In addition
to ROP, some variations have been proposed, with Jump Oriented Programming [11]] and
ROP without returns [12] being two of them.

To defeat code reuse attacks, one has to look into the execution flow of an attacker’s
payload. Code reuse attacks, execute small pieces of code called gadgets, chained together.
However, this style of execution violates the benign control flow of the program. Control
Flow Integrity (CFI) [13] prevents code reuse attacks, by sanitizing the target address of each
indirect control flow transfer. CFI leverages the program’s Control Flow Graph (CFG) to
identify the forward edges and inserts additional instrumentation code to check the integrity
of the runtime target address. Similarly, Shadow Stacks [14] assure the integrity of the
backward edges. Even though CFI significantly raises the bar for successful exploitation,
it still suffers from some weaknesses. First, CFI overapproximates the allowed target set,
thus giving some freedom to an attacker [15]. Furthermore, Data-Only attacks [16}|17] are
also feasible as they do not violate a program’s CFG. However those attacks violate the
program’s Data Flow Integrity (DFI) [18]]. Unfortunately, proposed DFI mechanisms have

high overhead, which prevents them from being deployed.

Another orthogonal mitigation is Address Space Layout Randomization (ASLR) [19].
ASLR randomizes the various sections of a program when loaded in memory. Thus, the
attacker does not know the exact address of the desired code to execute and hence, she
cannot transfer control to it. It is possible for the attacker to guess the correct address, but
the probability is negligible for realistic scenarios. The main limitation here, is that the
system randomizes whole sections of the program. Thus, if an attacker knows one address
from a section, it can compute the relative offset and find the exact address of her code [20].
Therefore, an attacker only needs to find an information leak (i.e., leak an address). Although
there are some improvements on ASLR, such as ASLR-Guard [21]] that aims to prevent

information leaks, it is still remains vulnerable to information leaks.

1.1.3 Persisting on the compromised system

At this point the attacker has unauthorized access (i.e., she is able to execute her own
code) to the —compromised— system. In many cases this is not what the attacker really
wants, as code may run with limited privileges. Hence, the attacker needs to find a robust
and reliable way to “establish™ herself on the system. That is, to install some backdoor to
ease future access. This enables the attacker to either: i) utilize system as a pivot to launch
new attacks on other systems that are not directly accessible otherwise, ii) attack different
components on the same system to elevate privileges, or iii) simply have access for any
potential future use. Therefore, attacker needs to install code with malicious indention on
the system. This code is referred as malicious software or malware for short.

Detecting malware and inferring whether a program performs malicious actions or not,
is an open problem with a lot and interesting ongoing research. Recent work on malware
detection [22,23]] makes the task of evading detection challenging. Detection is based on two
main approaches: static and dynamic. Special monitoring programs such as AnitVirus (AV),
Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS), run — with high
privileges — on the system and inspect it for any suspicious activity. However, AV software

nowadays is reinforced with IDS and IPS capabilities, so there is not clear distinction on

them. AntiVirus software focuses on detecting malicious files. It periodically scans the
filesystem and inspects executable files that are about to run. This is done either by statically
analyzing the file, or using emulators to run the program in a virtual environment and
carefully monitor its activity. Intrusion Detection/Prevention Systems focus on monitoring
and inspecting the behavior of the applications running on the system.

Static detection methods [23| 24} 25] analyze programs without executing them. One of
the oldest —and most successful— techniques is signature detection. In signature detection,
AV extracts “patterns” and computes special “signatures” E] from the target program, which
uses them to lookup in a huge database of all known malware. Furthermore, AV performs a
sequence of various analyses on the file looking for notorious system calls, self-modifying
or obfuscated code, and so on. However, attackers can defeat static detection through meta-
morphic [26] malware. Metamorphic malware modifies itself each time it gets propagated.
That is, the same malware can have an infinity amount of different instances thus thwarting
signature detection.

Dynamic detection methods [22, 27, 28, 29, 130, 131}, 132} 133} 134, 135] on the other hand,
focus on malware’s behavior instead. They let the malware run until it reveals its real
indentions. The main limitation of static detection is that it is easy for an attacker to thwart
analysis by obfuscating the code, applying anti-disassembly [36]] tricks or creating meta-
morphic instances. The intuition behind this concept is that even though two instances of
a metamorphic malware are very different they still have the exact same behavior. Nev-
ertheless there are some techniques to evade dynamic detection [37, 138, [39] which keeps

malware detection an interesting, open research problem.

1.2 Dissertation Statement

This dissertation infers the Residual Attack Surface at each of the three phases of an
attack. It presents state-of-the-art techniques that a defender can utilize in her analysis to

defend. Although it is hard to precisely measure the Residual Attack Surface, its objective is

'A signature comes in the form of a hash.

i Discovery ! Exploitation ' ! Persistence
} 11

1

i I 11

I i i

. | FuzzGen
| 11 11

i ' i

a ¥ ¥

Backdoor Access

Figure 1.3.: The interconnection of dissertation’s three main components.

to expose weaknesses in existing mitigations and assist the research community to improve
existing, or come up with new, stronger defenses. The dissertation statement is shown

below:

The wide and successful deployment of mitigations led to the development of
highly sophisticated attacks that are challenging to orchestrate. The Residual
Attack Surface consists of the set of attacks that remain feasible and practical.
It provides strong indications on what an adversary is capable of, thus assisting

defenders in exposing the limitations of existing protections.

The dissertation consists of three major components. Each part demonstrates a new,
practical technique that an adversary can utilize in each phase of an attack as described in
The interconnection of these components is shown in [Figure 1.3

The first part of the dissertation focuses on finding memory corruption vulnerabilities,
by using target-specific fuzzing. This is done through an automatic fuzzer generation
framework, called FuzzGen [40]]. FuzzGen, leverages the source code of a given application
library, to automatically generate a fuzzer for it. The resulting fuzzers achieve deep code
coverage, thus exposing bugs that are otherwise, hard to reach. Furthermore, large scale
fuzzing becomes simple, as we automatically create specific fuzzers for every application
that we want to fuzz. FuzzGen assists defenders to quickly find bugs that are potentially

exploitable, and prevent attackers from exploiting them.

11

In the second part (vulnerability exploitation), we propose a novel technique called Block
Oriented Programming (BOP) [17] which automates data-only attacks. BOP, leverages a
memory corruption vulnerability (found in the previous step), to automatically generate
arbitrary and Turing-complete, data-only exploit payloads. BOP comes with a framework,
called BOPC (BOP Compiler) that demonstrates proof-of-concept exploits for several
vulnerable applications, protected through state-of-the-art control flow hijacking defenses
such as CFI and shadow stacks. BOP can help software developers to highlight payloads
that an attacker is still capable of executing under a heavily protected (and constrained)
environment. For instance, defenders can test whether a bug at a particular statement enables
a practical code reuse attack in the program.

The last part, focuses on achieving persistence in the compromised system without
triggering any alarms or suspicious behavior. To evade detection and show that Residual
Attack Surface does exists, a new technique is proposed capable of constructing arbitrary
malware that evades all kinds of dynamic and behavioral analysis. Attacker’s payload is
“chopped” into hundreds of little pieces with each piece injected into the address space of
a different process. A special process, called emulator, coordinates and synchronizes the
execution of all individual pieces, thus achieving a “distributed execution” under multiple
address spaces. Our framework, called malWASH [37] automates this process. malWASH,
reveals a new direction on stealthy malware. So far, malware detection mechanisms do not
consider a distributed malware execution and operate on a single process. Malware analysts
can utilize malWASH framework to evaluate and reinforce their detection mechanisms so
they can detect that kind of dangerous malware.

Finally, this dissertation closes with a discussion of future work. There are many
unexplored dimensions on the area of Residual Attack Surface while this dissertation only
shines some light on it. The aim of this dissertation is to assist the research community to
make existing defense mechanisms stronger and come up with new ones, by exposing the

weaknesses of the existing mitigations and protections.

12
1.3 Dissertation Organization

This dissertation presents the work on inferring the Residual Attack Surface. The overall

organization is shown below:

. has introduced the attack phases, the intuition behind the Residual Attack

Surface and why it is useful as long the main approaches to infer it.

. describes FuzzGen, a new technique to find vulnerabilities in library code

through automatic fuzzer synthesis.

. provides a detailed explanation behind the concept of Block Oriented
Programming, and provides the design, implementation and evaluation of BOPC, a

framework built on BOP that automates data-only attacks.

. is an ongoing work, that extends BOPC to assess exploitation capabilities.
Our tool, X-Cap provides strong indications on the exploit payloads that an attacker

can execute on a vulnerable application through Block Oriented Programming.

* [Chapter 5|presents a new technique to evade dynamic and behavioral analysis, through

distributed malware execution.

. discusses the related research —which is the motivation to this work— as

well as some of the new directions that this research can continue.

. concludes the dissertation.

13

2 FUZZGEN: AUTOMATIC FUZZER GENERATION

Fuzzing is a testing technique to discover unknown vulnerabilities in software. When
applying fuzzing to libraries, the core idea of supplying random input remains unchanged,
yet it is non-trivial to achieve good code coverage. Libraries cannot run as standalone
programs, but instead are invoked through another application. Triggering code deep in a
library remains challenging as specific sequences of API calls are required to build up the
necessary state. Libraries are diverse and have unique interfaces that require unique fuzzers,
so far written by a human analyst.

To address this issue, we present FuzzGen, a tool for automatically synthesizing fuzzers
for complex libraries in a given environment. FuzzGen leverages a whole system analysis to
infer the library’s interface and synthesizes fuzzers specifically for that library. FuzzGen
requires no human interaction and can be applied to a wide range of libraries. Furthermore,
the generated fuzzers leverage LibFuzzer to achieve better code coverage and expose bugs
that reside deep in the library.

FuzzGen was evaluated on Debian and the Android Open Source Project (AOSP)
selecting 7 libraries to generate fuzzers. So far, we have found 17 previously unpatched
vulnerabilities with 6 assigned CVEs. The generated fuzzers achieve an average of 54.94%
code coverage; an improvement of 6.94% when compared to manually written fuzzers,

demonstrating the effectiveness and generality of FuzzGen.

2.1 Introduction

Modern software distributions like Debian, Ubuntu, and the Android Open Source
Project (AOSP) are large and complex ecosystems with many different software components.
Debian consists of a base system with hundreds of libraries, system services and their

configurations, and a customized Linux kernel. Similarly, AOSP consists of the ART virtual

14

machine, Google’s support libraries, and several hundred third party components including
open source libraries and vendor specific code. While Google has been increasing efforts
to fuzz test this code, e.g., OSS-Fuzz [41, 42]], code in these repositories does not always
go through a rigorous code review process. All these components in AOSP may contain
vulnerabilities and could jeopardize the security of Android systems. Given the vast amount
of code and its high complexity, fuzzing is a simple yet effective way of uncovering unknown
vulnerabilities [43|44]. Discovering and fixing new vulnerabilities is a crucial factor in
improving the overall security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on AFL [45] or any of the more
recent advances over AFL such as AFLfast [46]], AFLGo [47], collAFL [48]], Driller [49],
VUzzer [50], T-Fuzz [4]], QSYM [51], or Angora [52]] are highly effective at finding bugs
in programs by mutating inputs based on execution feedback and new code coverage [3].
Programs implicitly generate legal complex program state as fuzzed input covers different
program paths. Illegal paths quickly result in an error state that is either gracefully handled
by the program or results in a true crash. Code coverage is therefore an efficient indication
of fuzzed program state.

While such greybox-fuzzing techniques achieve great results regarding code coverage
and number of discovered crashes in programs, their effectiveness does not transfer to
fuzzing libraries. Libraries expose an API without dependency information between indi-
vidual functions. Functions must be called in the right sequence with the right arguments
to build complex state that is shared between calls. These implicit dependencies between
library calls are often mentioned in documentation but are generally not formally specified.
Calling random exported functions with random arguments is unlikely to result in an efficient
fuzzing campaign. For example, libmpeg?2 requires an allocated context that contains the
current encoder/decoder configuration and buffer information. This context is passed to
each subsequent library function. Random fuzzing input is unlikely to create this context
and correctly pass it to later functions. Quite the contrary, it will generate a large number of
false positive crashes when library dependencies are not enforced, e.g., the configuration

function may set the length of the allocated decode buffer in the internal state that is passed

15

to the next function. A fuzzer that is unaware of this length field may supply a random
length, resulting in a spurious buffer overflow. Alternatively, “invalid state checks” in library
functions will likely detect dependency violations and terminate execution early, resulting
in wasted fuzzing performance. To effectively fuzz libraries, a common approach is to
manually write small programs which build up state and call API functions in a “valid”
sequence. This allows the fuzzer to build up the necessary state to test functionality deep in
the library.

libFuzzer [S3] facilitates library fuzzing through the help of an analyst. The analyst
writes a small “fuzzer stub”, a function that (i) calls the required library functions to set
up the necessary state and (ii) leverages random input to fuzz state and control-flow. The
analyst must write such a stub for each tested component. Determining interesting API calls,
API dependencies, and fuzzed arguments is at the sole discretion of the analyst. While this
approach mitigates the challenge of exposing the API, it relies on deep human knowledge
of the underlying API and its usage. Hence, this approach does not scale to many different
libraries.

FuzzGen is based on the following intuition: existing code on the system utilizes the
library in diverse aspects. Abstracting the graph of possible library dependencies allows us
to infer the complex library API. Different aspects of the API are tested by automatically
generating custom fuzzer stubs based on the inferred API. The automatically generated
fuzzers will execute sequences of library calls that are similar to those present in real
programs without the “bloat” of real programs, i.e., removing all computation that is not
strictly necessary to build the state required for fuzzing. These fuzzers will achieve deep
coverage, improving over fuzzers written by an analyst as they consider real deployments
and API usage.

On one hand, many libraries contain unit tests that exercise simple aspects of the library.
On the other hand, programs that utilize a library’s API build up deep state for specific
functions. Leveraging only individual test cases for fuzzing is often too simplistic and
building on complex programs results in low coverage as all the program functionality is

executed alongside the target library. Test cases are too simple and fail to expose deep

16

—] API Inference

Target |——>»
© e

A2DG Construction i

‘ ‘ Library
Consumers

Figure 2.1.: The main intuition behind FuzzGen. To synthesize a fuzzer, FuzzGen performs
a whole system analysis to extract all valid API interactions.

bugs while full programs are too complex. A mechanism that automatically constructs
arbitrarily complex fuzzer stubs with complex API interactions and library state allows
sufficient testing of complex API functions. The set of all test cases and programs which use
a library covers nearly all relevant API invocations and contains code to set up the necessary
complex state to execute API calls. The vast amount of different library usages implicitly
defines an Abstract API Dependence Graph (A?DG). Based on this A2 DG it is possible to
automatically create fuzzer stubs that test different aspects of a library (Figure 5.1).

To address the challenges of fuzzing complex libraries, we propose FuzzGen. FuzzGen
consists of three parts: an API inference, an A?DQG construction mechanism, and a fuzzer
generator that leverages the A2DG to produce a custom libFuzzer “fuzzer stub”. The
API inference component builds an A2DG based on all test cases and programs on a
system that use a given library. The A?DG is a graph that records all API interactions,

including parameter value range and possible interactions. Our analysis infers library use

17

and constructs a generic A? DG based on this use. The fuzzer generator synthesizes fuzzers
that build up complex state and leverage fuzz input to trigger faults deep in the library.
FuzzGen automates the manual process of the analyst in creating custom-tailored fuzzers
for libraries and specific library functions. The key contribution of FuzzGen is an automatic
way to create new libFuzzer [53] stubs, enabling broad and deep library fuzzing.

FuzzGen performs a whole system analysis, iterating over all programs and libraries
that use the target library to infer the A2DG. It then automatically generates fuzzer stubs
(ranging from 1,000 to 10,000 LoC) that encode the A>?DG and use libFuzzer to fuzz
individual API components. FuzzGen was evaluated on Debian and Android [54].

Our evaluation of FuzzGen so far, resulted in 17 discovered vulnerabilities in the Android
media framework, with 6 assigned CVEs: CVE-2019-2176 [55], CVE-2019-2108 [56],
CVE-2019-2107 [57] and CVE-2019-2106 [58]] (critical), CVE-2017-13187 [59]] (high) and
—duplicate— CVE-2017-0858 [60] (medium). (in we provide more details on
these vulnerabilities). Finding and eliminating vulnerabilities in these components is crucial
to prevent potential attacks such as StageFright [61]. So far, FuzzGen has reported 17 new
vulnerabilities in Android native libraries and Debian. The discovered bugs range from
denial of service to stack buffer overflows, as shown in Overall FuzzGen makes

the following contributions:

* Design of a whole system analysis that infers valid API interactions for a given library
based on existing programs and libraries that use the target library—abstracting the

information into an Abstract API Dependence Graph (A2DG);

* Based on the A2 DG, FuzzGen creates libFuzzer stubs that construct complex program
state to expose vulnerabilities in deep library functions was developed—fuzzers are

generated without human interaction;

* Evaluation of the prototype on AOSP and Debian demonstrates the effectiveness and
the generality of the FuzzGen technique. Generating fuzzers for 7 libraries, FuzzGen
discovered 17 bugs. The generated fuzzers achieve 54.94% code coverage on average,

compared to 48.00% that fuzzer stubs—written manually by experts—achieve.

18

A note on disclosure: All bugs have been responsibly disclosed, and fixes have been
pushed to the corresponding projects. The source code of our prototype is available at
https://github.com/HexHive/FuzzGen, allowing other researchers to reproduce

our results and to extend our automatic fuzzer generation technique.

2.2 The case for API-aware fuzzer construction

Writing an effective API-aware fuzzer requires an in-depth understanding of the target
library and pinpointing the interesting components for fuzzing. Consider the libmpeg?2
library, which provides encoding and decoding functions for MPEG2 video streams. The
library contains several functions to build up a per-stream context that other functions take
as a parameter. This approach of encapsulating state is common in libraries.
shows a code snippet for properly initializing an MPEG?2 decoding object. A fully initialized
decoder object is required to decode a video frame. Without this decoder object, frames
cannot be decoded.

While a target-agnostic fuzzer (invoking all functions with random arguments in a ran-
dom order) may find simple issues, deep bugs will likely be missed due to their dependence
on complex state. Naive fuzzers are also prone to false positives due to lack of API aware-
ness. Consider a fuzzer that targets frame decoding. If the context does not contain a valid
length with a pointer to an allocated decode buffer then the fuzzer will trigger a false positive
crash when the decoded frame is written to unallocated memory. However, this is not a
bug in the decode function. It is simply improper initialization. Orthogonally, by supplying
random values to certain arguments, such as function pointers or sizes, a fuzzer may trigger
memory errors. These crashes do not correspond to actual bugs or vulnerabilities as such an
illegal context cannot be generated through any possible execution of a benign use of the
library. Inferring API dependencies, such as generating a common context, initializing the
necessary buffers, and preparing it for usage, is challenging because dependencies are not

encoded as part of the library specification.

https://github.com/HexHive/FuzzGen

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

19

/% 1. Obtain available number of memory records #*/
iv_num_mem_rec_ip_t num_mr_ip = { ... };
iv_num_mem_rec_op_t num_mr_op = { ... };
impeg2d_api_function (NULL, &num mr_ip, &num_mr_op);

/* 2. Allocate memory & fill memory records */
nmemrecs = num_mr_op.ué4_num_mem_rec;
memrec malloc (nmemrecs * sizeof (iv_mem_rec_t));

for (i=0; i<nmemrecs; ++1i)
memrec[i] .ud4_size = sizeof (iv_mem_ rec_t);

impeg2d_fill_mem_rec_ip_t fill mr_ip { ... 1
impeg2d_fill_mem_rec_op_t fill mr_op = { ... };
impeg2d_api_function(NULL, &fill mr_ip, &fill_mr_op);

nmemrecs = fill mr op.s_ivd_fill mem_rec_op_t
.u4_num _mem_rec_filled;

for (i=0; i<nmemrecs; ++1i)
memrec[i] .pv_base = memalign (memrec[i].u4_mem_alignment,
memrec[i].ud4_mem_size);

/% 3. Initalize decoder object x/
iv_obj_t xiv_obj = memrec[0] .pv_base;
iv_obj->pv_fxns impeg2d_api_function;
iv_obj->u4d_size sizeof (iv_obj_t);

impeg2d_init_ip_t init_ip = { ... };
impeg2d_init_op_t init_op = { ... };
impeg2d_api_function(iv_obj, &init_ip, &init_op);

/+ 4. Decoder is ready to decode headers/frames */

Figure 2.2.: Source code that initializes an MPEG?2 decoder object. Low level details such
as struct field initializations, variable declarations, or casts are omitted for brevity.

However, by observing a module that utilizes libmpeg?2 (i.e., a library consumer), we
could observe the dependencies between the API calls and infer the correct order of context
initialization calls. Such dependencies come in the form of (a) control flow dependencies
and (b) shared arguments (variables that are passed as arguments in more than one API
call). Furthermore, arguments that hold the state of the library (e.g., the context), should
not be fuzzed, but instead they should be passed, without intermediate modification, from
one call to the next. Note that this type of information is usually not formally specified. The
libmpeg?2 library exposes a single API call, impeg2d_api_function, that dispatches
to a large set of internal API functions. Yet, this state machine of API dependencies is not

made explicit in the code.

20

2.3 Background and Related Work

Early fuzzers focused on generating random parameters to test resilience of code against
illegal inputs. Different forms of fuzzers exist depending on how they generate input, handle
crashes, or process information. Generational fuzzers, e.g., PROTOS [62]], SPIKE [63], or
PEACH [64]], generate inputs based on a format specification, while mutational fuzzers, e.g.,
AFL [45]], honggfuzz [65], or zzuf [66], synthesize inputs through random mutations on
existing inputs, according to some criterion (e.g., code coverage). Typically, increasing code
coverage and number of unique crashes is correlated with fuzzer effectiveness.

Mutational fuzzers have become the de-facto standard for fuzzing due to their efficiency
and ability to adapt input. The research community developed additional metrics to classify
fuzzers, based on their “knowledge” about the target program. Blackbox fuzzers, have no
information about the program under test. That is, they treat all programs equally, which
allows them to target arbitrary applications. Whitebox fuzzers are aware of the program
that they test and are target-specific. They adjust inputs based on some information about
the target program, targeting more “interesting” parts of the program. Although whitebox
fuzzers are often more effective in finding bugs (as they focus on a small part of the program)
and therefore have lower complexity, they require manual effort and analysis and allow
only limited reuse across different programs (the whitebox fuzzer for program A cannot
be used for program B). Greybox fuzzers attempt to find a balance between blackbox and
whitebox fuzzing by inferring information about the program and feeding that information
back to guide the fuzzing process. Evaluating fuzzers is challenging. We follow proposed
guidelines [S]] for a thorough evaluation.

Code coverage is often used in greybox fuzzers to determine if an input should be further
evaluated. The intuition is that the more code a given input can reach the more likely is to
expose bugs that reside deep in the code. Fuzzers are limited by the coverage wall. This
occurs when the fuzzer stops making progress, and could be due to limitations of the model,
input generation, or other constraints. Any newly generated input will only cover code that

has already been tested. Several recent extensions of AFL have tried to address the coverage

21

wall using symbolic or concolic execution techniques [2] and constraint solving. Driller [49]
detects if the fuzzer no longer increases coverage and leverages program tracing to collect
constraints along paths. Driller then uses a constraint solver to construct inputs that trigger
new code paths. Driller works well on CGC binaries but the constraint solving cost can
become high for larger programs. VUzzer [S0] leverages static and dynamic analysis to
infer control-flow of the application under test, allowing it to generate application-aware
input. T-Fuzz [4] follows a similar idea but instead of adding constraint solving to the
input generation loop, it rewrites the binary to bypass hard checks. If a crash is found in
the rewritten binary, constraint solving is used to see if a crash along the same path can
be triggered in the original binary. FairFuzz [67] increases code coverage by prioritizing
inputs that reach “rare” (i.e., triggered by very few inputs) areas of the program, preventing
mutations on checksums or strict header formats. FuzzGen addresses the coverage wall by
generating multiple different fuzzers with different API interactions. The A2DG allows
FuzzGen to quickly generate alternate fuzz drivers that explore other parts of the library
under test.

Although the aforementioned fuzzing approaches are effective in exposing unknown
vulnerabilities, they assume that the target program has a well defined interface to supply
random input and observe for crashes. These methods cannot be extended to deal with
libraries. A major challenge is the interface diversity of the libraries, where each library
provides a different interface through its own set of exported API calls. DIFUZE [68]] was
the first approach for interface-aware fuzzing of kernel drivers. Kernel drivers follow a
well-defined interface (through ioct 1) allowing DIFUZE to reuse common structure across
drivers. FuzzGen infers how an API is used from existing use cases and generates fuzzing
functions based on observed usage. SemFuzz [69], used natural-language processing
to process the CVE descriptions and extract the location of the bug. Then it uses this
information to synthesize inputs that target this specific part of the vulnerable code.

Developed concurrently and independently from FuzzGen, FUDGE [70] is the most
recent effort on automated fuzz driver generation. FUDGE leverages a single library

consumer to infer valid API usages of a library to synthesize fuzzers. However there are two

22

major differences to our approach: First, FUDGE extracts sequences of API calls and their
context (called “snippets”) from a single library consumer and then uses these snippets to
create fuzz drivers which are then tested using a dynamic analysis. Instead of extracting short
snippets from consumers, FuzzGen minimizes consumers (iterating over the consumer’s
CFG) to only the library calls, their dependent checks, and dependent arguments/data flow.
Second, FUDGE creates many small fuzz drivers from an extracted snippet. In comparison,
FuzzGen merges multiple consumers to a graph where sequences of arbitrary length can
be synthesized. Instead of the 1-N approach of FUDGE, FuzzGen uses an M-N approach
to increase flexibility. Compared to FUDGE, FuzzGen fuzzers are larger, more generic,
focusing on complex API interaction and not just short API sequences.

Beside fuzzing, there are several approaches to infer API usage and specification. One
way to infer API specifications [71,[72] is through dynamic analysis. This approach collects
runtime traces from an application, analyzes objects and API calls and produces Finite State
Machines (FSMs) that describe valid sequences of API calls. This set of API specifications
is solely based on dynamic analysis. Producing rich execution traces that utilize many
different aspects of the library requires the ability to generate proper inputs to the program.
Similarly, API Sanitizer [73]] finds violation of API usages. APISan infers correct usages
of an API from other uses of the API and ranks them probabilistically, without relying
on whole-program analysis. APISan leverages symbolic execution to create a database of
(symbolic) execution traces and statistically infers valid API usages. APISan suffers from
limited scalability due to symbolic execution. As a static analysis tool, it may result in
false positives. SSLint [[74] targets SSL/TLS libraries and discovers API violations based
on an analyst-encoded API graph. MOPS [75] is a static analyzer that uses a set of safe
programming rules and searches for violations of those rules. Yamaguchi et. al [/6] present
a technique that mines common vulnerabilities from source code, representing them as a

code property graph. Based on this representation, they discover bugs in other programs.

23

‘uanzzn Aq pajerouadoine are sydeid asay[, () s1opio
uoroUNJ UO PIseq $ISZZNJ JBIID 0} PISN U] ST H)(7 ;7 PASIoW 3y, “(p) padiow uay) axe sydeis 5 (7,17 om) ay], “(S[npowt Jayjour
Jo ydei3 oy 10 (9) 998) (q) H(J ;Y Surpuodsaiiod ay) $10BNXA pue (B) DD B I SUIRIS UdDZZN] "MOPIOM UIDZZNJ Y, "¢ IS

(®)

Buys~ uoisien 306 sndo

Alojsep Jepoosp sndo

apoosp 1apodap sndo

opoosp 1epooap sndo

apoosp Jopooap sndo ‘o Jepodap sndo

a)ealo Japooap sndo

Buuys~ uoisian 186 sndo ‘sjpuueyo qu }o6 jexoed sndo
Buiys uoisten 186 sndo ‘ypimpueq 1ab jesoed sndo

‘8#
#
‘O#
G#
H
‘CH#
‘cH#
L#

©)

(e)

Buwys~uoisien 196 sndo

Konsap 1epooap sndo

opooap sndo

(9]

7 Bulys~uoision o6 sndo

A

7 Kosysap Japoosp sndo

apoosp sndo

30" J1epooap”sndo

7 BuLys~uoisian o6 sndo

9)jeald Japoosp sndo

)

v X

7 BuLys~uoisian o6 sndo

sjouueyd qu jeb joxoed sndo 7

)

7 yipmpueq o6 jexoed sndo 7

apoosp sndo

Bulys~uoision 196~ sndo 9)eal0 Jopooap sndo

Bulys~uoisian 106~ sndo

(@)

7 Aosysep Jopoosp sndo 7

| epooepsndo

y 4

10 Japooap sndo

9)ealo Japooap sndo

7 s|puueyd qu jeb jexoed sndo 7

L)

7 yipimpueq b jexoed sndo 7

apooap sndo
10 Japooap sndo

I 0] 8sled

. Sa:_wcoﬁmo._.ENN:u_E>._,._/ RN

sjouueyd qu 3ab jexoed sndo T

yipimpueq o6 jexoed sndo

00] 8sied

24

2.4 Design

To synthesize customized fuzzer stubs for a library, FuzzGen requires both the library
and code that exercises the library (referred to as library consumer). FuzzGen leverages a
whole system analysis to infer the library API, scanning consumers for library calls. The
analysis detects all valid library usage, e.g., valid sequences of API calls and possible
argument ranges for each call. This information is essential to create reasonable fuzzer stubs
and is not available in the library itself.

By leveraging actual uses of API sequences, FuzzGen synthesizes fuzzer code that
follows valid API sequences, comparable to real programs. Our library usage analysis
allows FuzzGen to generate fuzzer stubs that are similar to what a human analyst would
generate after learning the API and learning how it is used in practice. FuzzGen improves
over a human analyst in several ways: it leverages real-world usage and builds fuzzer stubs
that are close to real API invocations; it is complete and leverages all uses of a library, which
could be manually overlooked; and FuzzGen scales to full systems due to its automation
without requiring human interaction.

At a high level, FuzzGen consists of three distinct phases, as shown in [Figure 5.1
First, FuzzGen analyzes the target library and collects all code on the system that utilizes
functions from this library to infer the basic API. Second, FuzzGen builds the Abstract API
Dependence Graph (A2DG@G), which captures all valid API interactions. Third, it synthesizes
fuzzer stubs based on the A2DG.

2.4.1 Inferring the library API

FuzzGen leverages the source files from the consumers to infer the library’s exported
APIL. First, the analysis enumerates all declared functions in the target library, ;. Then,
it identifies all functions that are declared in all included headers of all consumers, F;,,;.

Then, the set of potential API functions, F4py is:

Farr < Fiis N Fina (2.1)

25

FuzzGen'’s analysis relies on the Clang framework to extract this information during
the compilation of library and consumer. To address over-approximation of inferred library
functions (e.g., identification of functions that belong to another library that is used by
the target library), FuzzGen applies a progressive library inference. Each potential API
function is checked by iteratively compiling a test program linked with the target library.
If linking fails, the function is not part of the library. Under-approximations are generally
not a problem as functions that are exported but never used in a consumer are not reachable

through attacker-controlled code.

2.4.2 A2DQ@G construction

FuzzGen iterates over library consumers that invoke API calls from the target library
and leverages them to infer valid API interactions. It builds an abstract layout of library
consumers which is used to construct fuzzer stubs. Recall that FuzzGen fuzzer stubs try
to follow an API flow similar to that observed in real programs to build up complex state.
FuzzGen fuzzer stubs allow some flexibility as some API calls may execute in random
order at runtime, depending on the fuzzer’s random input. The A2DG represents the
complicated interactions and dependencies between API calls, allowing the fuzzer to satisfy
these dependencies. It exposes which functions are invoked first (initialization), which are
invoked last (tear down), and which are dependent on each other.

The A2DG encapsulates two types of information: control dependencies, and data
dependences. Control dependencies indicate how the various API calls should be invoked,
while data dependencies describe the potential dependencies between arguments and return
values in the API calls (e.g., if the return value of an API call is passed as an argument in a
subsequent API call).

The A%2DG is a directed graph of API calls, similar to a coarse-grained Control-Flow
Graph (CFG) that expresses sequences of valid API calls in the target library. Edges are also
annotated with valid parameter ranges to further improve fuzzing effectiveness as discussed

in the following sections. Each node in the A2DG corresponds to a single call of an API

26

function, and each edge represents control flow between two API calls. The A2DG encodes
the control flow across the various API calls and describes which API calls are reachable
from a given API call. (a) shows an instance of the CFG from a libopus consumer.
The corresponding A2DG is shown in (b).

Building the A% DG is two step process. First, a set of basic A2DG's is constructed, one
A% DG for each root function in each consumer. Second, the A2DG's of all consumers are

coalesced into a single A2DG.

Constructing a basic A2D(G. To build a basic A2 DG, FuzzGen starts with a consumer’s
CFG. If the consumer is a library, FuzzGen builds CFGs for each exported API function,
otherwise it starts with the main function. To reconcile the collection of CFGs, FuzzGen
leverages the Call Graph of the consumer. An individual analysis starts at the entry basic
block of every root function in the call graph to explore the full consumer. This may lead to
a large number of A2DG's for a library consumer.

Starting from the entry basic block of a root function, FuzzGen iteratively removes
every basic block that does not contain any call instruction to an API call. If a basic
block contains multiple call instructions on API functions, the basic block is split into
multiple A2DG nodes with one API call each. When a basic block calls a non-API function,
FuzzGen recursively calculates the A2DG for the callee and results are integrated into
the caller’s A2DG. The pass integrates the calls into the root function. If the same non-
API function is invoked multiple times, it is marked as a repeating function in the graph,
avoiding an explosion of the graph’s complexity. The algorithm to create the A2DG is
shown in A call stack (Cs) prevents unbounded loops when analyzing recursive
functions. Two maps (Mcp¢r, and M.,), associate basic blocks to individual nodes in the
A%DG@, allowing the algorithm to locate the A2 DG node a basic block corresponds to. Note
that the only case that M., and M., are different is when a basic block contains more
that one call to an API function.

After A2DG construction, each node represents a single API call. The A2DG allows

FuzzGen to isolate the flows between API calls and expose their control dependencies.

Algorithm 1: A2DG construction.

Input: Function F to start A2 DG construction
Output: The corresponding A2DG

1 Function make_ AADG(Function F')

2 > “AU- B” is shorthand for “A = AU B”
3 if F € Cg then return (0, () else Cs U= {F'}
4 | Gazpg < (Vazpe, Eazpc)
5 foreach basic block B € CFGF do
6 > An empty vertex is not associated with an API call
7 L Create empty vertex u, Vazpg U= {u}, Mentry[B] < u
8 Q < {entry_block(F)} > single entry point
9 while Q) is not empty do
10 remove basic block B from ()
11 U < Mepiry[B]
12 foreach call instruction c; € B in reverse order do
13 if ¢;.callee € F 4p; then
14 if v is empty then
15 L U 4= i, Mentry|B] <= v, Megit|B] < v
16 else
17 > if already exists, split node
18 U < ¢
19 Vazpa U= {u}, Eq2pg U= {(u,v)}
20 U 4= U, Meptry[B] < u
21 else
2 AADG' + make_AADG(¢;)
23 Create empty vertex sink
24 Vazpg U= Va2 per U {smk}
25 FEr2pag U= Er2pe
26 foreach leaf v; € AADG' do
27 L Ei2pc U= {(vy, sink)}
28 foreach root v, € AADG' do
29 | Earpe U={(v, vr)}
30 foreach unvisited successor block B,q; of B do
31 add Bygj to Q
» | Eaeng U= {(Mest| B, Mensry[Bas))}
33 > Drop empty nodes from AADG
34 foreach empty node v € AADG do
35 foreach predecessor p of v do
36 foreach successor s of v do
37 L | EapaU={(p,5)}
38 remove v and its edges from V42 pg
39 Cg + Cg —{F}
40 return G 42 pg

28

Basic A2DG construction is a static analysis which results in some over-approximation
during CFG construction due to indirect function calls. FuzzGen uses an LLVM Link Time

Optimization (LTO) analysis pass to extract this information.

Coalescing A2DG graphs. After generating A% DG's for each consumer, FuzzGen merges
them into a single A2DG":

Select any two A2DG graphs and try to coalesce them together. Repeat this process
until there are no two A2DG that can be coalesced together.

To coalesce two A%2DG's they must have at least one node in common. Two nodes are
considered “common” if they invoke the same API call with the same arguments of the same
type. FuzzGen starts from the root and selects the first common node. FuzzGen then removes
the node from one graph and migrates all children, along with their sub trees, to the other
A%DG, continuously merging common nodes. A common node is a requirement, as placing
the nodes from the second A?DG at random positions will likely result in illegal target
states. If there are no common nodes, FuzzGen keeps the A2DG's separate, synthesizing
two different fuzzers.

(d) shows an example of the A2DG produced after coalescing the two
A’DG@G's in (b) and (c). The nodes with function opus_decoder_destroy
are coalesced (as the argument is a handle, which has the same type), but other nodes like
opus_decoder_ctl are not coalesced as the arguments are different. It is possible for
the coalesced A?DG to result in an inconsistent state, which results in an API misuse. That
is, the coalesced A2DG may contain a path (i.e., a subset of API calls) that violates API
usage and therefore causes problems to execution state of the library. In we
explain this problem in detail.

Our experiments showed that it may be feasible to coalesce two A% DG's without common
nodes by backward-slicing and locating function usages that invoke the API call. We leave

this along with other heuristics to coalesce A2DG's into a single one, for future work.

Precision of A2DG construction. The current FuzzGen A2DG construction has two

sources of imprecision: static analysis and merging. First, the static analysis results in an

29

over-approximation of paths. This may result in false positives due to illegal API sequences
that do not occur in real programs. Second, the merging process may over-eagerly merge two

A%DG's with different or slightly different parameters, resulting in illegal API sequences.
We will discuss these sources of false positives in

2.4.3 Argument flow analysis

To create effective fuzzers, the A2DG requires both control and data dependencies.
To construct the data dependencies between API calls FuzzGen leverages two analyses:
argument value-set inference (what values are possible) and argument dependence analysis

(how are individual variables reused).

Argument value-set inference. Argument value-set inference answers two questions:
which arguments to fuzz and how to fuzz these arguments. Supplying arbitrary random
values (i.e., “blind” fuzzing) to every argument imposes significant limitations both in the
efficiency and the performance of fuzzing. Contexts, handles, and file/socket descriptors
are examples that result in large numbers of false positives. Supplying random values for
a descriptor in an API call results in shallow coverage as there are sanity checks at the
beginning of the function call. Some arguments present diminishing returns when being
fuzzed. Consider an argument that is used to hold output, or an argument that is part of a
switch statement. In both cases, a fuzzer will waste cycles generating large inputs, where

only a few values are meaningful. To better illustrate this, consider a fuzzer for memcpy:
void xmemcpy (void =*dest, const void *src, size_t n);

Supplying arbitrary values to n makes it inconsistent with the actual size of src, which
results in a segmentation fault. However this crash does not correspond to a real bug.
Also, the fuzzer may invest many cycles generating random values for the de st argument,
which is never read by memcpy () (please ignore the corner case of overlapping source and

destination arguments for the sake of the example).

30

Our analysis classifies arguments into two categories according to their type: primitive
arguments (e.g., char, int, float, or double) and composite arguments (e.g., pointers,
arrays, structs, or function pointers). The transitive closure of composite arguments are a
collection of primitive arguments—pointers may have multiple layers (e.g., double indirect
pointers), structures may contain nested structures, arrays and so on—and therefore they
cannot be fuzzed directly. That is, they cannot be assigned a random (i.e., fuzz) value, upon
the invocation of the API call but require layout-aware construction. Consider an API call
that takes a pointer to an integer as the first argument. Clearly, fuzzing this argument results
in segmentation faults, as the function attempts to dereference the likely invalid pointer.
Instead, the pointer should point to some integer. The pointed-to address can be safely
fuzzed. FuzzGen performs a data-flow analysis in the target library for every function for

every argument, to infer the possible values that an argument could get.

Argument dependence analysis. Data-flow dependencies are as important as control-
flow dependencies. A fuzzer must not only follow the intended sequence of API calls but
must also provide matching data flow. For example, after creating a context, it must be
passed to specific API calls for further processing. If this does not occur, it will likely result
in a violation of a state check or a spurious memory corruption.

Data-flow dependencies to be encoded in an A2DG can be intra-procedural and inter-
procedural. First, FuzzGen identifies data dependencies through static per-function alias
analysis of the code using libraries, tracking arguments and return values across API calls.
Static alias analysis has the advantage of being complete, i.e., allowing any valid data-flow
combinations but comes at the disadvantage of imprecision. For example, if two API calls
both leverage a parameter of type st ruct libcontext then our static analysis may be
unable to disambiguate if the parameters point to the same instance or to different instances.
This over-approximation can result in spurious crashes. FuzzGen leverages backward and

forward slicing on a per-method basis to reduce the imprecision due to basic alias analysis.

31

Second, FuzzGen identifies dependencies across functions: For each edge in the A%2DG,
FuzzGen performs another data flow analysis for each pair of arguments and return values
to infer whether whether they are dependent on each other.

Two alternative approaches could either (i) leverage concrete runtime executions of
the example code which would result in an under-approximation with the challenge of
generating concrete input for the runtime execution or (ii) leverage an inter-function alias
analysis that would come at high analysis cost. Our approach works well in practice and we
leave exploration of alternate approaches to data-flow inference as future work.

The A2DG (i.e., API layout) exposes the order and the dependencies between the
previously discovered API calls. However, the arguments for the various API calls may
expose further dependencies. The task of this part is twofold: First, it finds dependencies
between arguments. For example, if an argument corresponds to a context that is passed
to multiple consecutive API calls it should likely not be fuzzed between calls. Second, it
performs backward slicing to analyze the data flow for each argument. This gives FuzzGen

some indication on how to initialize arguments.

2.4.4 Fuzzer stub synthesis

Finally, FuzzGen creates fuzzer stubs for the different API calls and its arguments
through the now complete A2DG. An important challenge when synthesizing fuzzer stubs
is to balance between depth and breadth of the A2DG exploration. For example, due to
loops, a fuzzer stub could continuously call the same API function without making any
progress.

Instead of generating many fuzzer stubs for each A? DG, FuzzGen creates a single stub
that leverages the fuzzer’s entropy to traverse the A2D(G. At a high level, a stub encodes
all possible paths (to a certain depth) through the A% DG. The first bits of the fuzzer input
encode the path through the API calls of the A2DG. Note that FuzzGen only encodes the
sequence of API calls through the bits, not the complete control flow through the library

functions themselves. The intuition is that an effective fuzzer will “learn” that if certain

32

"MATAIOAO uonRIUdWRIdWT UanZZN, 47 2In31

Bujass|eod HAY aouassaju|
P aoedg P uonodnysuog |
e A < wewnbiay [€ 5av <
leusa)xg
Buibio A slawnsuo)
%Mnhhom_ P sisaylufs Pl Buiusye|d siskjeuy Aluwm..ms_“,_> ™ heiar
. 4911 € 19zzn4 DAV @ouspuadaqg S
— aouaisju| P
L 1es-enjep | Qouasdyu] X
) wawnbiy [N 1dv <
|leuaiu]
SOIISINdH ainjieq _ 7y o
% % — | 19Buel
| I—

_ 10ssadoadaid usnzzng

T

33

input encodes an interesting path, mutating later bits to explore different data-flow along
that path. As soon as the path is well-explored, the fuzzer will flip bits to follow an alternate

path.

2.5 Implementation

The FuzzGen prototype is written in about 19,000 lines of C++ code, consisting of
LLVM/Clang [77] passes that implement the analyses and code to generate the fuzzers.
FuzzGen generated fuzzers use libFuzzer [53]] and are compiled with Address Sanitizer [[/8].

FuzzGen starts with a target library and performs a whole system analysis to discover
all consumers of the library. The library and all consumers are then compiled to LLVM
bitcode as our passes work on top of LLVM IR. shows a high level overview of
the different FuzzGen phases.

The output of FuzzGen is a collection (one or more) of C++ source files. Each file is a

fuzzer stub that utilizes libfuzzer [33]] to fuzz the target library.

Target API inference. FuzzGen infers the library API by intersecting the functions im-

plemented in the target library and those that are declared in the consumers’ header files.

A2DG construction. FuzzGen constructs a per-consumer A2 DG by filtering out all non-
API calls from each consumer’s CFG, starting from the root functions. For program
consumers, the root function is main. To support libraries as consumers, root functions
are functions with no incoming edges (using a backwards data-flow analysis to reduce the

imprecision through indirect control-flow transfers).

Internal Argument Value-Set inference. Possible values and their types for the function
arguments are calculated through a per-function data flow analysis. FuzzGen assigns
different attributes to each argument based on these observations. These attributes allow the
fuzzer to better explore the data space of the library. Note that this process is imprecise due

to aliasing. shows the set of possible attributes. For example, if an argument is

34

Attribute Description

dead Argument is not used

invariant Argument is not modified

predefined Argument takes a constant value from a set
random Argument takes any (random) value

array Argument is an array (pointers only)

array size Argument represents an array size

output Argument holds output (destination buffer)
by value Argument is passed by value

NULL Argument is a NULL pointer

function pointer | Argument is a function pointer

dependent Argument is dependent on another argument

Table 2.1.: Set of possible attributes inferred during the argument value-set analysis.

only used in a switch statement, it can be encoded as a set of predefined values. Similarly,
if the first access to an argument is a write, the argument is used to output information.
Arguments that are not modified (such as file descriptors or buffer lengths) receive the

invariant attribute.

External Argument Value-Set inference. Complementing the internal argument value-
set inference, FuzzGen performs a backward slice from each API call through all consumers,

assigning the same attributes to the arguments.

Argument Value-Set Merging. Due to imprecision in the analysis or potential misuses
of the library, the attributes of the arguments may differ. We need to carefully consolidate
the different attributes for each argument when merging the attributes. Generally, FuzzGen’s
analysis is more accurate with external arguments. These arguments tend to provide real
use-cases of the function. Any internal assignments that give concrete values, are used to
complement the externally observed values. Value-set merging is based on heuristics and

may be adjusted in future work.

Dependence analysis. Knowing the possible values for each argument is not enough, the

fuzzer must additionally know when to reuse the same variable across multiple functions.

35

The dependence analysis infers when to reuse variables and when to create new ones between
function calls. FuzzGen performs a per-consumer data-flow analysis using precise intra-
procedural and coarse-grained inter-procedural tracking to connect multiple API calls. While
a coarse-grained inter-procedural analysis may result in imprecision, it remains tractable and
scales to large consumers. The analysis records any data flow between two API functions in

the A2DG@. Similarly to other steps, aliasing may lead to further imprecision.

Failure Heuristics. To handle some corner cases, FuzzGen uses a heuristic to discard
error paths and dependencies. Many libraries contain ample error checking. Arguments
are checked between API calls and, if an error is detected, the program signals an error.
The argument analysis will detect theses checks as argument constraints. Instead of adding
these checks to the A2DG@G, we discard them. FuzzGen detects functions that terminate the

program or pass on errors and starts the detection from there.

A?DG Coalescing. After initial A2DG construction, each consumer results in a set of
at least one A2DG@. To create fuzzers that explore more state, FuzzGen tries to coalesce
different A2DG. Starting from an A2DG node where an API call shares the exact same
argument types and attributes, FuzzGen continuously merges the nodes or adds new nodes
that are different. If the two graphs cannot be merged, i.e., there is a conflict for an API call
then FuzzGen returns two A2DG's. If desired, the analyst can override merging policies
based on the returned A2DG's. However, coalescing may combine an API call sequence
that results in a state inconsistency (see for an example). An analyst may
optionally disable coalescing and produce a less generic fuzzer for each consumer. Although
this approach cannot expose deeper dependencies, it increases parallelism, as different

fuzzers can target different aspects of the library.

A%DG Flattening. So far, the A2DG may contain complex control flow and loops. To
create simple fuzzers, we “flatten” the A2DG before synthesizing a fuzzer. Our flattening
heuristic is to traverse the A2DG and to visit each API call at least once by removing

backward edges (loops) and then applying a (relaxed) topological sort on the acyclic A2DG

36

to find a valid order for API calls. While a topological sort would provide a total order of
functions (and therefore result in an overly rigid fuzzer), we relax the sorting. At each step
our algorithm removes all API functions of the same order and places them in a group of

functions that may be called in random order.

Fuzzer Synthesis. Based on a flattened A%2D@, FuzzGen translates nodes into API calls
and lays out the variables according to the inferred data flow. The fuzzer leverages some
fuzz input to decode a concrete sequence for each group of functions of the same order,
resulting in a random sequence at runtime. Before compiling the fuzzer, FuzzGen must also
include all the necessary header files. During the consumer analysis, FuzzGen records a
dependence graph of all includes and, again, uses a topological sort to find the correct order

for all the header files.

FuzzGen Preprocessor. The source code to LLVM IR translation is a lossy process. To
include details such as header declarations, dependencies across header files, pointer argu-
ments, array types, argument names, and st ruct names, FuzzGen leverages a preprocessor

pass that records this information for later analysis.

2.6 Evaluation

Evaluating fuzzing is challenging due to its inherent non-determinism. Even similar
techniques may exhibit vastly different performance characteristics due to randomness of
input generation. Klees. et al [3] set out guidelines and recommendations on how to properly
compare different fuzzing techniques. Key to a valid comparison are (i) a sufficient number
of test runs to assess the distribution using a statistical test, (i1) a sufficient length for each
run, and (iii) standardized common seeds (i.e., a small set of valid corpus files in the right
format).

Following these guidelines, we run our fuzzers five (5) times each (since results from a
single run can be misleading), with twenty-four (24) hour timeouts. In the FuzzGen experi-

ments, coverage tails off after a few hours with only small changes during the remainder

37

"DV Teuy oY) ut (A[9An0adsar) sa3pa pue sopou JO Idquinu [e10], = SISPH ‘SIPON ‘(Surdiow
10J 9pOU J[UIS B $3SN WILIOS[INO OULS ‘SITIOW §5)(7 |/ JO I9qUINU JY) SB JUILS) PIISI[ROI SIPOU JO JIqUINN] = PIISI[ROD) ‘SH)(T 7
Jo qunu [p10], = syders (7, [BUl] "SIOWNSUOD Y} UL PIsn suonouny [y Jo 1_quinN = [JV(] ‘AISUSP JOWNSU0D 93LIOAY =
(] 8AY ‘(saul] YUB[Q PUB SJUSWIWIOD JNOYIIM) SIQWNSUOD AIRIqI[[[B JO 9POD JO Saul [BI0], = DO’ [BIO], ‘UOIIBN[BAD U} UI papnjoul
SIQWINSUOD ATRIQI] = PIs(] ‘WIAISAS Y} UO SIOWNSUOD AIRIQI] JO JOqQUINU [B)JO], = [B)0], :UOIJBULIOJU] JOWINSUO)) "suonounj [dv Jo
RqunN = [dV ‘ATeIqQI[9U) UI PUNOJ SUOIOUNJ JO JOqUINN = SdUn,[‘(SQUI[JUB[Q PUB SJUWIIOD JNOYIIM) 9POJ JO SAUI] [€10], = DO
[B10], ‘SO[Y 2IN0S JO JoquINN = SI[L] IS ‘UONBUWLIOJU] ATeIqI] "UOIIEN[BAD JNO UI PIsn SIQWNSUOD PUE SALIBIQI] 99p0)) "7 T J[qeL

IS o ¥ ¥ Ll 9010 |16 v 6 |98 [zety | svoe6s | $S6 odpia [woeqy [5
9t 62 ¥ ¥ €1 SLO0 | ¥6S ¥ ov || oer [orer | 169zse | €ool oopia | xdaqq | &
88 LS ¥ v L 0900 | 96€ v 6 8 1€ P19 1t yooads [wis3qy

0€ T ¥ ¥ Z1l | vLo0 [6Lo1 v €z |[s9 [oLz | €860S SI€ orpne | sndoqy | &
9 0¢ S 6 I 1000 | 0€T¥ [4 I 6L1 87861 811 09pIA | gBoduuqry m.
€S 62 v 6 I 2000 | ¥90% z z 1 [18 | zvess 061 oopia | oaeqy | &
8§ 62 S 01 I 2000 | 08S€ z z I | w1 |evosil | cog odpia | oaayq
s38pd | SIPON | [e0) | sydein | 1qvn | °q 8av | Do1®0L | pasn | #1oL || 1dV | sdung [Do [ejoL | apg 2iS | adAY, | eweN

OV 1euly UONBULIOJU] JOWINSUO0)) uonjewLIoOjuUy Axeaqry

38

of the test run (see [Figure 2.5). Longer timeouts appear to have a negligible effect on our
results.

The effectiveness of a fuzzer depends on the number of discovered bugs. However,
code coverage is a complementing metric that reflects a fuzzer’s effectiveness to generate
inputs that cover large portions of the program. Performance is an orthogonal factor as more
executed random tests broadly increase the chances of discovering a bug.

Due to the lack of extensive previous work on library fuzzing, we cannot compare Fuz-
zGen to other automatic library fuzzers. As mentioned in[Section 3.1] the primary method for
library fuzzing is to (manually) write a fuzzer stub that leverages the libFuzzer [S3]] engine.
We evaluate our FuzzGen prototype on AOSP and Debian. Evaluating and testing FuzzGen
on two different systems demonstrates the ability to operate in different environments with
different sets of library consumers. Additionally, we compare FuzzGen against libFuzzer
stubs written by a human analyst. A second method is to find a library consumer (which is a
standalone application) and use any of the established fuzzing techniques. We forfeit the
second method as the selection of the standalone application will be arbitrary and highly
influence the results. There is no good metric on how an analyst would select the “best”
standalone application.

To compare FuzzGen, we select seven (7) widely deployed codec libraries to fuzz. There
are two main reasons for selecting codec libraries. First, codec libraries present a broad
attack surface especially for Android, as they can be remotely reached from multiple vectors
as demonstrated in the StageFright [61]] attacks. Second, codec libraries must support a wide
variety of encoding formats. They consist of complex parsing code likely to contain more
bugs and vulnerabilities.

We manually analyzed the API usage of each library and wrote manual fuzzer stubs
for libhevc, libavc, libmpeg2, and libgsm. Luckily AOSP already provides manually
written fuzzers libopus, libvpx, and libaom which we can readily use. Some libraries such
as libmpeg2 have complicated interface (see [Section 2.2) and it took several weeks to

sufficiently understand all libraries and write the corresponding fuzzer stubs. In comparison,

39

FuzzGen generates a fuzzer in a few minutes given the LLVM IR of the library and the
consumers.

shows all libraries that we used in the evaluation for AOSP and Debian. Note
that the libhevc, libavc, and libmpeg?2 libraries have a single API call (see for
an example) that acts as a dispatcher to a large set of internal functions. To select the
appropriate operation, the program initializes a command field of a special st ruct which
is passed to the function. Such dispatcher functions are challenging for fuzzer synthesis and

we chose these libraries to highlight the effectiveness of FuzzGen.

2.6.1 Consumer Ranking

When synthesizing fuzzers, methods for consumer selection are important. Fuzzers
based on more consumers tend to include more functionality. This functionality, represented
by new API calls and transitions between API functions, can increase the fuzzer’s complexity.
An efficient fuzzer must take both the amount of API calls and the underlying complexity
into account. It is important to consider how much initialization state should be constructed
before fuzz input is injected into the process. It is also important to determine how many
API calls should be used in a single fuzzer to target a particular aspect of the library. During
the evaluation, we observed that adding certain consumers increased A> DG complexity
without increasing the API diversity or covering new functionality. Merging too many
consumers increases A2DG complexity without resulting in more interesting paths. Adding
other consumers lead to the state inconsistency problem. Restricting the analysis to few
consumers resulted in a more representative A2DG, but lead to an interesting question:
which set of consumers provide a representative set of API calls?

FuzzGen ranks the “quality” of consumers from a fuzzing perspective and creates fuzzers
from high quality consumers. The intuition is the number of API calls per lines of consumer
code (i.e., the fraction of API calls in a consumer) correlates to a relatively high usage of the
target API. That is, FuzzGen selects consumers that are “library oriented”. We empirically

found that using four consumers demonstrates all features of our prototype, such as A2DG

40

"SINOAWN e S3NQ PAIAAOISIP £R7,
[[B 9SNBd3q MO[dIe ASBI SIY} Ul puodds Jad suonndaxa ayJ,,. '(98eI0A00 93pd wnwirxew pue s3nqg anbrun €s9) N ASUIIY A -UUR]A] WOIJ
an[eA d) S19ZZnj [enuew pue UdNZZn,{ UIIMIIQ UIILIP Y], = IJUIIIPJL(‘(SunlI [[& WoIy) puodas Jod suornoIxd 95eIdAY = IIS/IIXI
‘punoj s3nq () onbrun pue (,) (8101 Jo JOqUINN = punoj sgng ‘(95eIA00 Y} JO UONBIAIP PIEPUBIS (PIS ‘UNI ISIOM) WOIJ ZBIIA0D
WNWIXeW UW ‘SUNI [[B SSOIOR 9SRISA0D dFRIOAR AR “UNI J$9Q WOIJ 9SBIRAOD WNWIXRW XBW) 93RIIA0D 3P = 0/, 9GRIIA0)) ISP
QP09 19zznJ JO SAUI| [BI0], = DO’ [BI0], "SQW) G JOZZNJ OB UNI AN "SILIRII] I9POJ UO UONBN[BAD JOZZNJ WOIJ SINSAY :'¢'T [qel,

0 09°1- | ¥L90 | 991 | T |SL L8S 96T | evee | OI'Iy | Cell | TIT | T LS CI'S | 0F0E | €0°SE | ¥SVP | 69 woeqIq
I+ PI1'e- [C100 | 090C | T | TSOY9v | ST | SO'8Y | 6605 | LI'CS | I8F | €9 0 0 670 | 19°€S | €1'¥S | 6L%S | TTI xdaqr
I+ S¢'L- | T100 | 289 | 1 | 6CC LLO | OF'L9 | 0T'89 | 0¥'69 | 067 | 996S | O 0 000 | 1€°SL | SS'SL | SS'SL | 1T1 ws3qr[
¢t 1661+ | 2100 | 8IC | € |OIT 80°¢ | €9°C¢ | TTSE | 66'6E | ¥C9 | VLT | O 0 LTO | 9T°ST | TL'ST | S8'ST | STI sndoqrg
0 10°L+ | 2100 | LY € | €59 9T°0 | 9T°9G | 09°9¢ | S6'9S | ¥OCI | 0T € 60ST | ¥1°T | TH'St | 6S°6¥ | 6€°1S | LSy | g8aduqr
I- 89°G1+ | 8000 | IST |0 |0 €T | S9V9 | 86'S9 | T9OL | SSTT | 8x I €8C | 8TV | ILvy | 0€°0S | T6'VS | 90¢ OABqI
91- 97’81+ | 100 | 6C L | vO¥ 81'0 | TOPL | OT'VL | OS¥VL | OLTT | €8 € €61C | €0 | TE'SS | OL'SS | ST'9S | 80¢ SAYqI]
NS | N L PIS | WAL | SAV | Xy | DO | 99 n L PIS | WA | AV | Xy | DO

ssng | A0D d

/O3X3 | punoy ssng (%) 38ea3A0)) ISpH [®10], | /99Xd | punoyq ssng (9,) 98eI13A0)) 93pH e, | Areaqry

UAIPJIQ UOT)BULIOJUT JIZZNJ UI)ZZN] UOTJBULIOJUT JIZZNJ [eNUBIA

41

coalescing, and results in small fuzzers that are easy to verify. For the evaluation, the
generated fuzzers are manually verified to not violate the implicit API dependencies or
generate false positives.

However, in we demonstrate how the number of consumers affects the set
of API functions and how the generated A2 DG's participate in the fuzzer. The number of
applied consumers tail off at a certain point. That is, additional consumers increase fuzzer
complexity without adding new “interesting” coverage of the API. In future work we plan
to explore other heuristics or even random selections of consumers to construct potentially
more precise A2DG's.

Formally, our heuristic for ranking consumers, is called consumer density, D., and

defined as follows:
distinct API calls

“ " Total lines of real code

(2.2)

2.6.2 Measuring code coverage

Code coverage is important both as feedback for the fuzzer during execution and to
compare different fuzzers’ ability to explore a given program. Code overage can be measured
at different granularities: function, basic block, instruction, basic block edges, and even
lines of source code. FuzzGen, like AFL and libFuzzer, uses basic block edge coverage.

For the evaluation, FuzzGen uses SanitizerCoverage [79]], a feature that is available in
Clang. During compilation, SanitizerCoverage adds instrumentation functions between CFG
edges to trace program execution. To optimize performance, SanitizerCoverage does not
add instrumentation functions on every edge as many edges are considered redundant. This
means that the total number of edges that are available for instrumentation during fuzzing
do not correspond to the total number of edges in the CFG.

Measuring code coverage for a single fuzzing run may be misleading [5]. To address
this, statistical testing is conducted across the five runs to calculate the average coverage
over time. Since new code paths are found at different times, we cannot simply calculate the

average coverage for a given time. To overcome this problem we use linear interpolation to

42

'SI9zZZNnj
uan)Zzn, I10J UnI J[IUIS }S9q WOIJ IZBIIA0D AFPI Y} QU] PAI AY) PUB ‘SIIZZNJ UIN)ZZN,] J0J 9TLIIA0D 93P 93BIIAL Y} SMOUS dUI|
U213 oY) ‘A[R[IWIS "SI9ZZNJ [enuew J0J (9AY) Suowe) Un [3urs 1s9q AY) J0J 93BIA0D 93P Y} SMOYS UI[d3ULIO Y} PUB SISZZNJ
[enuUEBW J0J QW) JOAO 9TBIIA0D 93Pa 95BISAE) SMOYS dUI] aN[q Y], "ATeIqI] YOrd J0J W) JOAO (9,) 93BIA0D 9p0)) :'G'Z 2In3I]

_ uny 9|buIS 1599 J9ZZN4 UBDHZZNH = abelany 19zzn4 USHZZNH ——— uny 9|buIS 1599 49ZZN4 |BNUB = 9belany 19zzn4 |enuel ——

(sanoy ur) awiL (sanoy ur) awi] (sanoy ut) awil
14pZ Yoz JU9T JYZT JUg Yy JYE Yz YT 4yo 14bZ YOz JU9T JYZT JYg Jyp JYE Yz YT 4yo 14pZ JUOZ JU9T JYZT JYg Yy JYE JYz YT ayo

0 0 0

o
—

o

o~
o
~—

o
o

o
o

o
<

\g

o
m
(%) @betano) abp3
o o
© <+
(%) @b6e1an0) abp3

(%) @besano) abp3

\

k

o
©
o
©

o
n

(sdnoy ur) sawil (sanoy ur) awi] (sanoy ut) awi]
14pz Yoz JU9T JYZT JUg Yy JYE Yz YT dyo 14bZ Yoz JU9T JYZT JUg Uy JYE Jyz YT yo JYpZ 140z JU9T JYZT JY8 Yy JUE Yz YT Yo

o

o
o
o

o
o~

o
m

o
<

m

o o
© <
(%) @be1an0) abp3

(%) @betano) abp3
o o
© <
(%) @besano) abp3

|

=

o

©o
(=]
oo}

08

43

(]
o

H
o

w
o

———

Edge Coverage (%)
N
o

=
o

Ohr 1hr 2hr 3hr 4hr 8hr 12hr 16hr 20hr 24hr
Time (in hours)

Figure 2.6.: Code coverage over time for libaom.

approximate the coverage for each fuzzing run at given time intervals. Then we calculate

the average code coverage on each interval and visualize it in [Figure 2.5 and [Figure 2.6]

Finally, we also report the results of the Mann-Whitney U test, comparing the maximum
coverage across all runs for manual/generated fuzzers, according to [80]. The coverage of
the FuzzGen generated fuzzers are better (p < 0.05, two-tailed) than the manually written

fuzzers for all libraries except for libaom, where the result is not statistically significant.

2.6.3 Android evaluation

To evaluate FuzzGen on Android, we set up a small device cluster of twelve (12) Pixel-2
(walleye) devices (Figure 2.7). This setup allowed us to run repeated 24-hour fuzzing
sessions and fuzz the first five (5) libraries. shows the results of our fuzzing
execution. The first observation is that manual fuzzers are smaller in size as they target only
a specific part of the library (e.g., a decoding routine). Second, manual fuzzers are more
targeted. Due to the focus on a single component, manual fuzzers can expose more bugs in
that component compared to FuzzGen fuzzers. Meanwhile, FuzzGen fuzzers are broader
and achieve a higher code coverage as they encode more diverse API interactions. This

however imposes complexity which results in performance overhead, reducing the number

44

Figure 2.7.: Our device fuzzing cluster.

of executions per second. Given more additional resources, FuzzGen fuzzers therefore allow
the exploration of a broader program surface in the long run.

To get a better intuition on the evolution of the fuzzing process, we visualize the edge
coverage over time as shown in through The libopus library
has lower total coverage (39.99%) than the other libraries tested. This is because all
selected consumers focused on the decoding functionality. This aspect is highlighted in
where the fuzzer includes only 12 API calls while the API exposes 65 functions.
A different selection of library consumers that utilize more aspects of the library (e.g.,
encoding functionality), would result in higher coverage, illustrating that selection of library
consumers is crucial for FuzzGen fuzzing.

One of the key advantages of FuzzGen compared to manual fuzzer collection is the
scalability and automation that FuzzGen provides. FuzzGen can leverage different sets

of consumers to create many different fuzzers (e.g., a fuzzer stub focusing on encoding

45

while another fuzzer stub focuses on decoding), allowing an analyst to explore different
parts of the API in depth without having to manually create individual fuzzer stubs. These

automatically created fuzzers can run at scale, simplifying the work of the analyst.

2.6.4 Debian evaluation

The Debian evaluation shows similar results to the Android evaluation. Two (2) addi-
tional codec libraries were selected for FuzzGen fuzzer generation. It is important to note
the difference in library consumer selection. On Android, consumers are limited to those
present in AOSP. On Debian, the package manager is referenced to search for consumers
that depend on the given library. In both cases we leverage a “finite”” ecosystem where we
can iterate through all available packages and select candidates to synthesize our fuzzers.

The last two columns of show the results of running libvpx and libaom on
Debian. The edge coverage over time is shown in [Figure 2.5 and [Figure 2.6 respectively.

The first observation is that manual fuzzers have a lower rate of executions per second even
though they are much smaller in size. This is because they contain loops. That is, they use
a loop to continuously feed random input to the decoder. FuzzGen fuzzers are loop-free,
which implies they spend less time on individual random inputs. For both libvpx and libaom,
decoding multiple frames results in building a more complicated decoding state, which in
turn triggers deeper code paths. It is better to have a fuzzer that contains loops for these
cases, even though it achieves lower executions per second. For libopus, the decoding state
i1s much simpler—since it is an audio library—so decoding multiple frames on each random

input, affects performance, which results in a lower coverage.

2.7 Library Consumer Complexity

We empirically determined that a maximum of four consumers is a reasonable balance
between complexity, breadth of explored API, and fuzzing effectiveness. To demonstrate
the loss of effectiveness and the unnecessary increase in complexity when adding too may

consumers, we present a case study on the 1 ibopus library where we continuously and

46

B u o))
o o o

of API Calls
w
o

20+
101 = AP| calls used in the Fuzzer
Total API calls identified
0 2 4 6 8 10 12 14

of Consumers

Figure 2.8.: Consumer tail off for distinct API calls for 1 ibopus library.

iteratively merge consumers. We start with one consumer and progressively add more
consumers (following our predetermined ranking). We measure the total number of API
calls found in the consumer along with the size of the corresponding A? DG. shows
how the number of consumers increases the size of the explored API. Only 7 consumers
are enough to discover the complete API. However, the generated fuzzer only executes 33
different API calls. With increasing number of merged consumers, the fuzzer then executes
more API calls until we reach a plateau at 13 merged consumers. Note that the fuzzer creates
one path through the program that strings these API calls together. Libraries expose different
functionality that are hard to streamline. This additional complexity slows down the fuzzer
and prohibits it from discovering bugs quickly. Additionally, the generated fuzzers are
harder for an analyst to analyze and, due to the repeated merging process, we increase the
chances of false positives. Our observation is that it is better to create several smaller fuzzers
than one complex fuzzer.

visualizes the discovery of API calls relative to the increasing set of merged
library consumers. With 15 consumers FuzzGen generates a fuzzer stub with 8, 375 lines of
code. Despite this enormous size, it compiled and discovered a crash. However verifying
whether this crash is a false positive or not, is extremely challenging due to the complexity

of the API interactions in the fuzzer.

47

| CVE number | Severity | Component | Description

Heap Buffer Overflow in

CVE-2019-2176 Critical libhevce iheved parse buffering period sei

Stack buffer overflow in

CVE-2019-2108 Critical libheve iheved ref list

Multiple heap buffer overflows in

CVE-2019-2107 Critical libhevc iheved. decode

CVE-2019-2106 | Critical | libheve | Sck buffer underflow in

ihevc_sao_edge_offset_class2_chroma_ssse3

Out of bounds read in

CVE-2017-13187 High libheve iheved nal unit

NULL pointer dereference in

CVE-2017-0858 Medium libave ih264d_parse_decode slice

Table 2.4.: Assigned CVEs for the vulnerabilities found by FuzzGen.

2.8 Overview of Disclosed Vulnerabilities

During our evaluation, the generated fuzzers discovered 17 vulnerabilities, 6 of which

were assigned CVEs (Table 2.4). Following responsible disclosure, some vulnerabili-

ties are still under embargo. CVE-2019-2106 [58]] is a critical vulnerability found in

the High Efficiency Video Coding (HEVC) [81] library on Android. The vulnerability

is an out of bounds write—which could lead to an arbitrary write—and resides inside

ihevc_sao_edge_offset_class2_chroma_ssse3, as shown below:

1 void ihevc_sao_edge_offset_class2_chroma_ssse3 (UWORD8 *pul_src,

2 WORD32 src_strd, UWORD8 =xpul_src_left, UWORD8 =xpul_src_top,
3 UWORD8 #pul_src_top_left, UWORD8 =*pul_src_top_right,

4 UWORD8 #pul_src_bot_left, UWORD8 *pul_avail,

5 WORD8 +*pil_sao_offset_u, WORD8 *pil_sao_offset_v,

6 WORD32 wd, WORD32 ht) {

7

8

9

WORD32 row, col;
UWORD8 +*pul_src_top_cpy, *pul_src_left_cpy, *pul_src_left_cpy2;

11 Jx .. x/

12

13 //availability mask creation

14 ul_availO = pul_avail([O0];

15 ul_availl = pul_availl[l];

16 aul_mask([0] = ul_availO;

17 aul_mask[1] = ul_availO;

18 aul_mask[wd - 1] = ul_availl;

19 aul_mask[wd - 2] = ul_availl; // Cra OOB write ———>

48

Consumers API A*DG

Used | Found | Total | Nodes | Edges
0 0 0 1 0 0
1 6 34 1 7 12
2 6 34 1 9 14
3 10 34 1 16 22
4 12 34 1 24 30
5 25 51 1 142 289
6 31 51 2 148 303
7 33 65 2 181 438
8 44 65 1 540 | 1377
9 47 65 2 551 | 1393
10 50 65 2 611 | 1473
11 51 65 2 613 | 1475
12 53 65 2 697 | 1587
13 56 65 2 883 | 1773
14 56 65 2 885 | 1778
15 56 65 2 885 | 1778

Table 2.5.: Complexity increase for the 1ibopus library. Consumers: Total number of
consumers used. API: Used: Total number of distinct API calls used in the final fuzzer.
Found: Total number of distict API calls identified in headers. A2DG": Total: Total number
of A2DG graphs produced (if coalescing is not possible there are more than one graphs).
Nodes & edges: The total number of nodes and edges across all A2DG's.

CVE-2017-13187 [39] is another high severity vulnerability found in the same compo-

nent. This time, the vulnerability is an out of bounds read—which can cause remote denial

of service—and resides inside 1thevecd_nal unit as shown below:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

IHEVCD_ERROR_T ihevcd_nal_unit (codec_t =#ps_codec)
{
IHEVCD_ERROR_T ret = (IHEVCD_ERROR_T)IHEVCD_SUCCESS;

/+ NAL Header */

nal_header_t s_nal;

ret = ihevcd_nal_unit_header (&ps_codec->s_parse.s_bitstrm,
&s_nal);
RETURN_IF ((ret != (IHEVCD_ERROR_T)IHEVCD_SUCCESS), ret);

if (ps_codec->i4_slice_error)
s_nal.il_nal_unit_type = // Crash. OOB read. >
ps_codec->s_parse.ps_slice_hdr->il_nal_unit_type;

Supplying a frame with malformed slices to the decoder triggers both an out-of-bounds

write (using the first vulnerability) and an out-of-bounds read (using the second vulnerabil-

ity).

49

2.9 Discussion and future work

Our prototype demonstrates the power of automatic fuzzer generation and API depen-
dency analysis. As this is a first step towards automation, we would like to highlight several

opportunities for improvement.

Maximum code coverage FuzzGen generated fuzzers achieve 54.94% coverage on aver-
age compared to manually written fuzzers that achieve only 48.00%. While FuzzGen vastly
simplifies the generation of fuzzers, it remains an open question if the additional coverage
substantially improves the fuzzing effectiveness in itself and if full cumulative coverage can
be achieved by improving FuzzGen. The coverage we report is the cumulative coverage
across all inputs in a single run. Given a fuzzer stub, only a certain amount of coverage
can be achieved given through a combination of the used API functions and the arguments
used for those functions. The problem of the maximum possible coverage that a fuzzer can

achieve given a fuzzer stub is left for future work.

Single library focus. For now, FuzzGen focuses on a single target library and does not
consider interactions between libraries. FuzzGen could be extended to support multiple
libraries and interactions between libraries. This extension poses the interesting challenge
of complex inter-dependencies but will allow the exploration of such inter-dependencies

through an automated fuzzer. We leave this as future work.

Coalescing dependence graphs into a unifying A DG. When multiple library con-
sumers are available, FuzzGen has to either coalesce all generated A% DG into a single one
or generate a separate fuzzer of each library consumer While the first approach can expose
deeper dependencies and therefore achieve deeper coverage, it could potentially result in
state inconsistencies. The latter approach increases parallelism, as different clusters can fuzz

different aspects of the library.

50

False positives. Imprecision in the static analysis and the A DG coalescing may result in
spurious paths that result in false positives. Fuzzing libraries is inherently challenging as the
API dependencies are not known. The analysis could trace benign executions and extract
benign API sequences to construct the A2 DG. This would result in an under-approximation
of all valid API sequences. However, the static analysis combined with A2DG coalescing
results in an over-approximation. We argue that the over-approximation results in additional
freedom for the fuzzer to generate more interesting path combinations, allowing FuzzGen
to trigger deep bugs at the cost of a small false positive rate. In general, we propose to
validate the API sequence during triaging. The analyst can trace the set of API calls and
their parameters and manually check, for each reported crash, that the API sequence is valid.
We empirically discovered that for some but few merged consumers, the likelihood of false
positives is low. For our evaluation, we manually verified that the fuzzers cannot create false

positives by double checking all API sequences.

2.10 Conclusion

Despite their effectiveness in vulnerability discovery, existing fuzzing techniques do
not transfer well to libraries. Libraries cannot run as standalone applications and fuzzing
them requires either a manually written libFuzzer stub that utilizes the library, or to fuzz the
library through a library consumer. The wide diversity of the API and the interface of various
libraries further complicates this task. To address this challenge, we presented FuzzGen,
a framework that automatically infers API interactions from a library and synthesizes a
target-specific fuzzer for it. FuzzGen leverages a whole system analysis to collect library
consumers and builds an Abstract API Dependence Graph (A2 DG) for them.

We evaluated FuzzGen on 7 codec libraries —which are notorious for having a compli-
cated interface— and in all cases, the generated fuzzers were able to discover 17 previously
unknown vulnerabilities and received 6 CVEs.

The source code of our prototype is available at ht tps://github.com/HexHive/

FuzzGen.

https://github.com/HexHive/FuzzGen
https://github.com/HexHive/FuzzGen

51

3 BLOCK ORIENTED PROGRAMMING: AUTOMATING DATA ONLY ATTACKS

With the widespread deployment of Control-Flow Integrity (CFI), control-flow hijacking
attacks, and consequently code reuse attacks, are significantly more difficult. CFI limits
control flow to well-known locations, severely restricting arbitrary code execution. Assessing
the remaining attack surface of an application under advanced control-flow hijack defenses
such as CFI and shadow stacks remains an open problem.

We introduce BOPC, a mechanism to automatically assess whether an attacker can
execute arbitrary code on a binary hardened with CFI/shadow stack defenses. BOPC
computes exploits for a target program from payload specifications written in a Turing-
complete, high-level language called SPL that abstracts away architecture and program-
specific details. SPL payloads are compiled into a program trace that executes the desired
behavior on top of the target binary. The input for BOPC is an SPL payload, a starting point
(e.g., from a fuzzer crash) and an arbitrary memory write primitive that allows application
state corruption. To map SPL payloads to a program trace, BOPC introduces Block Oriented
Programming (BOP), a new code reuse technique that utilizes entire basic blocks as gadgets
along valid execution paths in the program, i.e., without violating CFI or shadow stack
policies. We find that the problem of mapping payloads to program traces is NP-hard, so
BOPC first reduces the search space by pruning infeasible paths and then uses heuristics to
guide the search to probable paths. BOPC encodes the BOP payload as a set of memory
writes.

We execute 13 SPL payloads applied to 10 popular applications. BOPC successfully
finds payloads and complex execution traces — which would likely not have been found
through manual analysis — while following the target’s Control-Flow Graph under an ideal

CFI policy in 81% of the cases.

52

3.1 Introduction

Control-flow hijacking and code reuse attacks have been challenging problems for ap-
plications written in C/C++ despite the development and deployment of several defenses.
Basic mitigations include Data Execution Prevention (DEP) [] to stop code injection,
Stack Canaries [82] to stop stack-based buffer overflows, and Address Space Layout Ran-
domization (ASLR) [[19] to probabilistically make code reuse attacks harder. These mit-
igations can be bypassed through, e.g., information leaks [20, |83} 184, |85]] or code reuse
attacks [10, 11} 86 87, 188]].

Advanced control-flow hijacking defenses such as Control-Flow Integrity (CFI) [[13} |89,
90, 91]] or shadow stacks/safe stacks [14, 92] limit the set of allowed target addresses for
indirect control-flow transfers. CFI mechanisms typically rely on static analysis to recover
the Control-Flow Graph (CFG) of the application. These analyses over-approximate the
allowed targets for each indirect dispatch location. At runtime, CFI checks determine if the
observed target for each indirect dispatch location is within the allowed target set for that
dispatch location as identified by the CFG analysis. Modern CFI mechanisms 89,90, 93} 194
are deployed in, e.g., Google Chrome [95]], Microsoft Windows 10, and Edge [96].

However, CFI still allows the attacker control over the execution along two dimensions:
first, due to imprecision in the analysis and CFI’s statelessness, the attacker can choose any of
the targets in the set for each dispatch; second, data-only attacks allow an attacker to influence
conditional branches arbitrarily. Existing attacks against CFI leverage manual analysis to
construct exploits for specific applications along these two dimensions [15, 97,98, 99, [100].
With CFI, exploits become highly program dependent as the set of reachable gadgets is
severely limited by the CFI policy, so exploits must therefore follow valid paths in the
CFG. Finding a path along the CFG that achieves the exploit goals is much more complex
than simply finding the locations of gadgets. As a result, building attacks against advanced
control-flow hijacking defenses has become a challenging, predominantly manual process.

We present BOPC (Block Oriented Programming Compiler) , an automatic framework

to evaluate a program’s remaining attack surface under strong control-flow hijacking miti-

53

gations. BOPC automates the task of finding an execution trace through a buggy program
that executes arbitrary, attacker-specified behavior. BOPC compiles an “exploit” into a
program trace, which is executed on top of the original program’s CFG. To express the
desired exploits flexibly, BOPC provides a Turing-complete, high-level language: SPloit
Language (SPL). To interact with the environment, SPL provides a rich API to call OS
functions, direct access to memory, and an abstraction for hardware registers. BOPC takes
as input an SPL payload and a starting point (e.g., found through fuzzing or manual analysis)
and returns a trace through the program (encoded as a set of memory writes) that encodes
the SPL payload.

The core component of BOPC is the mapping process through a novel code reuse
technique we call Block Oriented Programming (BOP). First, BOPC translates the SPL
payload into constraints for individual statements and, for each statement, searches for basic
blocks in the target binary that satisfy these constraints (called candidate blocks). At this
point, SPL abstracts register assignments from the underlying architecture. Second, BOPC
infers a resource (register and state) mapping for each SPL statement, iterating through
the set of candidate blocks and turning them into functional blocks. Functional blocks
can be used to execute a concrete instantiation of the given SPL statement. Third, BOPC
constructs a trace that connects each functional block through dispatcher blocks. Since the
mapping process is NP-hard, to find a solution in reasonable time BOPC first prunes the
set of functional blocks per statement to constrain the search space and then uses a ranking
based on the proximity of individual functional blocks as a heuristic when searching for
dispatcher gadgets.

We evaluate BOPC on 10 popular network daemons and setuid programs, demonstrating
that BOPC can generate traces from a set of 13 test payloads. Our test payloads are both
reasonable exploit payloads (e.g., calling execve with attacker-controlled parameters) as
well as a demonstration of the computational capabilities of SPL (e.g., loops and condition-
als). Applications of BOPC go beyond an attack framework. We envision BOPC as a tool

for defenders and software developers to highlight the residual attack surface of a program.

54

For example, a developer can test whether a bug at a particular statement enables a practical

code reuse attack in the program. Overall, we present the following contributions:

* Abstraction: We introduce SPL, a C dialect with access to virtual registers and an
API to call OS and other library functions, suitable for writing exploit payloads. SPL

enables the necessary abstraction to scale to large applications.

» Search: Development of a trace module that allows execution of an arbitrary payload,
written in SPL, using the target binary’s code. The trace module considers strong
defenses such as DEP, ASLR, shadow stacks, and CFI alone or in combination. The

trace module enables the discovery of viable mappings through a search process.

* Evaluation: Evaluation of our prototype demonstrates the generality of our mechanism
and uncovers exploitable vulnerabilities where manual exploitation may have been
infeasible. For 10 target programs, BOPC successfully generates exploit payloads and
program traces to implement code reuse attacks for 13 SPL exploit payloads for 81%

of the cases.

3.2 Background and Related Work

Initially, exploits relied on simple code injection to execute arbitrary code. The deploy-
ment of Data Execution Prevention (DEP) [[8] mitigated code injection and attacks moved
to reusing existing code. The first code reuse technique, return to libc [9], simply reused
existing libc functions. Return Oriented Programming (ROP) [[10] extended code reuse to a
Turing-complete technique. ROP locates small sequences of code which end with a return
instruction, called “gadgets.” Gadgets are connected by injecting the correct state, e.g., by
preparing a set of invocation frames on the stack [10]. A number of code reuse variations
followed [11, 12, 101], extending the approach from return instructions to arbitrary indirect
control-flow transfers.

Several tools [[102} 103}, (104, [105] seek to automate ROP payload generation. However,

the automation suffers from inherent limitations. These tools fail to find gadgets in the target

55

binary that do not follow the expected form “instl; inst2; ... retn;” asthey
search for a set of hard coded gadgets that form pre-determined gadget chains. Instead of
abstracting the required computation, they search for specific gadgets. If any gadget is not
found or if a more complex gadget chain is needed, these tools degenerate to gadget dump
tools, leaving the process of gadget chaining to the researcher who manually creates exploits
from discovered gadgets.

The invention of code reuse attacks resulted in a plethora of new detection mechanisms
based on execution anomalies and heuristics [106, 107,108, 109} 110] such as frequency of
return instructions. Such heuristics can often be bypassed [111].

While the aforementioned tools help to craft appropriate payloads, finding the vulner-
ability is an orthogonal process. Automatic Exploit Generation (AEG) [6] was the first
attempt to automatically find vulnerabilities and generate exploits for them. AEG is limited
in that it does not assume any defenses (such as the now basic DEP or ASLR mitigations).

The generated exploits are therefore buffer overflows followed by static shellcode.

3.2.1 Control Flow Integrity

Control Flow Integrity [[13}189,90, 91] (CFI) mitigates control-flow hijacking to arbitrary
locations (and therefore code reuse attacks). CFI restricts the set of potential targets that are
reachable from an indirect dispatch. While CFI does not stop the initial memory corruption,
it validates the code pointer before it is used. CFI infers an (overapproixmate) CFG of the
program to determine the allowed targets for each indirect control-flow transfer. Before
each indirect dispatch, the target address is checked to determine if it is a valid edge in the
CFG, and if not an exception is thrown. This limits the freedom for the attacker, as she can
only target a small set of targets instead of any executable byte in memory. For example, an
attacker may overwrite a function pointer through a buffer overflow, but the function pointer
is checked before it is used. Note that CFI targets forward edges, i.e., virtual dispatchers for

C++ or indirect function calls for C.

56

With CFI, code reuse attacks become harder, but not impossible [15} 97,198, 99]. De-
pending on the application and strength of the CFI mechanism, CFI can be bypassed with
Turing-complete payloads, which are often highly complex to comply with the CFG. So far,
these code-reuse attacks rely on manually constructed payloads.

Deployed CFI implementations [89, 90, 93, 194, [112] use a static over-approximation
of the CFG based on method prototypes and class hierarchy. PittyPat [[113] and PathAr-
mor [[114] introduce path sensitivity that evaluates partial execution paths. Newton [115]]
introduced a framework that reasons about the strength of defenses, including CFI. New-
ton exposes indirect pointers (along with their allowed target set) that are reachable (i.e.,
controllable by an adversary) through given entry points. While Newton displays all usable
“gadgets,” it cannot stitch them together and effectively is a CFI-aware ROP gadget search

tool that helps an analyst to manually construct an attack.

3.2.2 Shadow Stacks

While CFI protects forward edges in the CFG (i.e., function pointers or virtual dispatch),
a shadow stack orthogonally protects backward edges (i.e., return addresses). Shadow stacks
keep a protected copy (called shadow) of all return addresses on a separate, protected stack.
Function calls store the return address both on the regular stack and on the shadow stack.
When returning from a function, the mitigation checks for equivalence and reports an error
if the two return addresses do not match. The shadow stack itself is assumed to be at a
protected memory location to keep the adversary from tampering with it. Shadow stacks
enforce stack integrity and protect the binary from any control-flow hijacking attack against

the backward edge.

3.2.3 Data-only Attacks

While CFI mitigates code-reuse attacks, CFI cannot stop data-only attacks. Manipulating
a program’s data can be enough for a successful exploitation. Data-only attacks target the

program’s data rather than its control flow. E.g., having full control over the arguments

57

to execve () suffices for arbitrary command execution. Also, data in a program may
be sensitive: consider overwriting the uid or a variable like 1 s_admin. Data Oriented
Programming (DOP) [16] is the generalization of data-only attacks. Existing DOP attacks
rely on an analyst to identify sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the program and apply
Data Flow Integrity (DFI) [18] to it. However, to the best of our knowledge, there are no
practical DFI-based defenses due to prohibitively high overhead of data-flow tracking.

In comparison to existing data-only attacks, BOPC automatically generates payloads
based on a high-level language. The payloads follow the valid CFG of the program but not
its Data Flow Graph.

3.3 Assumptions and Threat Model

Our threat model consists of a binary with a known memory corruption vulnerability
that is protected with the state-of-the-art control-flow hijack mitigations, such as CFI along
with a Shadow Stack. Furthermore, the binary is also hardened with DEP, ASLR and Stack
Canaries.

We assume that the target binary has an arbitrary memory write vulnerability. That is,
the attacker can write any value to any (writable) address. We call this an Arbitrary memory
Write Primitive (AWP). To bypass probabilistic defenses such as ASLR, we assume that the
attacker has access to an information leak, i.e., a vulnerability that allows her to read any
value from any memory address. We call this an Arbitrary memory Read Primitive (ARP).
Note that the ARP is optional and only needed to bypass orthogonal probabilistic defenses.

We also assume that there exists an entry point, i.e., a location that the program reaches
naturally after completion of all AWPs (and ARPs). Thus BOPC does not require code
pointer corruption to reach the entry point. Determining an entry point is considered to be
part of the vulnerability discovery process. Thus, finding this entry point is orthogonal to

our work.

58

Note that these assumptions are in line with the threat model of control-flow hijack
mitigations that aim to prevent attackers from exploiting arbitrary read and write capabilities.
These assumptions are also practical. Orthogonal bug finding tools such as fuzzing often
discover arbitrary memory accesses that can be abstracted to the required arbitrary read
and writes, placing the entry point right after the AWP. Furthermore, these assumptions
map to real bugs. Web servers, such as nginx, spawn threads to handle requests and a bug
in the request handler can be used to read or write an arbitrary memory address. Due to
the request-based nature, the adversary can repeat this process multiple times. After the
completion of the state injection, the program follows an alternate and disjoint path to trigger
the injected payload.

These assumptions enable BOPC to inject a payload into a target binary’s address space,
modifying its memory state to execute the payload. BOPC assumes that the AWP (and/or
ARP) may be triggered multiple times to modify the memory state of the target binary. After
the state modification completes, the SPL payload executes without using the AWP (and/or
ARP) further. This separates SPL execution into two phases: state modification and payload
execution. The AWP allows state modification, BOPC infers the required state change to

execute the SPL payload.

3.4 Design

shows how BOPC automates the analysis tasks necessary to leverage AWPs

to produce a useful exploit in the presence of strong defenses, including CFI. First, BOPC

(2) Selecting

(1) SPL Payload ,
functional blocks

Y

(4) Stitching (3) Searching for
BOP gadgets dispatcher blocks

A

Figure 3.1.: Overview of BOPC’s design.

59

provides an exploit programming language, called SPL, that enables analysts to define
exploits independent of the target program or underlying architecture. Second, to automate
SPL gadget discovery, BOPC finds basic blocks from the target program that implement
individual SPL statements, called functional blocks. Third, to chain basic blocks together in
a manner that adheres with CFI and shadow stacks, BOPC searches the target program for
sequences of basic blocks that connect pairs of neighboring functional blocks, which we
call dispatcher blocks. Fourth, BOPC simulates the BOP chain to produce a payload that
implements that SPL payload from a chosen AWP.

The BOPC design builds on two key ideas: Block Oriented Programming and Block
Constraint Summaries. First, defenses such as CFI impose stringent restrictions on transi-
tions between gadgets, so an exploit no longer has the flexibility of setting the instruction
pointer to arbitrary values. Instead, BOPC implements Block Oriented Programming (BOP),
which constructs exploit programs called BOP chains from basic block sequences in the
valid CFG of a target program. Note that our CFG encodes both forward edges (protected
by CFI) and backward edges (protected by shadow stack). For BOP, gadgets are chains of
entire basic blocks (sequences of instructions that end with a direct or indirect control-flow
transfer), as shown in A BOP chain consists of a sequence of BOP gadgets
where each BOP gadget is: one functional block that implements a statement in an SPL
payload and zero or more dispatcher blocks that connect the functional block to the next
BOP gadget in a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual instructions into Block Con-
straint Summaries, enabling blocks to be employed in a variety of different ways. That is,
a single block may perform multiple functional and/or dispatching operations by utilizing
different sets of registers for different operations. That is, a basic block that modifies a
register in a manner that may fulfill an SPL statement may be used as a functional block,
otherwise it may be considered to serve as a dispatcher block.

BOPC leverages abstract Block Constraint Summaries to apply blocks in multiple
contexts. At each stage in the development of a BOP chain, the blocks that may be employed

next in the CFG as dispatcher blocks to connect two functional blocks depend on the block

60

. SILIIIII 777777
Functlonal Ay
/777

/S
[] Dispatcher

X

=
I:,IZI X > BOP
>|< |:,|:| | Gadget
— x

Figure 3.2.: BOP gadget structure. The functional part consists of a single basic block that
executes an SPL statement. Two functional blocks are chained together through a series of
dispatcher blocks, without clobbering the execution of the previous functional blocks.

summary constraints for each block. There are two cases: either the candidate dispatcher
block’s summary constraints indicate that it will modify the register state set and/or the
memory state by the functional blocks, called the SPL state, or it will not, enabling the
computation to proceed without disturbing the effects of the functional blocks. A block that
modifies a current SPL state unintentionally, is said to be a clobbering block for that state.
Block summary constraints enable identification of clobbering blocks at each point in the
search.

An important distinction between BOP and conventional ROP (and variants) is that the
problem of computing BOP chains is NP-hard, as proven in Conventional ROP
assumes that indirect control-flows may target any executable byte in memory while BOP
must follow a legal path through the CFG for any chain of blocks, resulting in the need for

automation.

61

Table 3.1.: Examples of SPL payloads.

Simple loop Spawn a shell

void payload () { void payload () {

_ 10 = 0; string prog = "/bin/sh\0";

int64 =xargv = {&prog, 0x0};

LOOP:

_ 10 += 1; __1r0 = &prog;

if (__r0 != 128) __rl = &argv;

goto LOOP; _r2 = 0;
returnto 0x446730; execve(__r0, __rl, __r2);

} }

3.4.1 Expressing Payloads

BOPC provides a programming language, called SPloit Language (SPL) that allows
analysts to express exploit payloads in a compact high-level language that is independent of
target programs or processor architectures. SPL is a dialect of C. Compared to minDOP [16],
SPL allows use of both virtual registers and memory for operations and declaration of
variables/constants. [Table 3.1|shows some sample payloads. Overall, SPL has the following

features:
e It is Turing-complete;
* Itis architecture independent;
e Itis close to a well known, high level language.

Compared to existing exploit development tools [102, [103} [104], the architecture in-
dependence of SPL has important advantages. First, the same payload can be executed
under different ISAs or operating systems. Second, SPL uses a set of virtual registers,
accessed through reserved volatile variables. Virtual registers increase flexibility, which
in turn increases the chances of finding a solution: virtual registers may be mapped to any
general purpose register and the mapping may be changed dynamically.

To interact with the environment, SPL defines a concise API to access OS functionality.

Finally, SPL supports conditional and unconditional jumps to enable control-flow transfers

62

to arbitrary locations. This feature makes SPL a Turing-complete language, as proven in
The complete language specifications are shown in[Appendix 7.3]in Extended
Backus—Naur form (EBNF).

The environment for SPL differs from that of conventional languages. Instead of running
code directly on a CPU, our compiler encodes the payload as a mapping of instructions to
functional blocks. That is, the underlying runtime environment is the target binary and its

program state, where payloads are executed as side effects of the underlying binary.

3.4.2 Selecting functional blocks

To generate a BOP chain for an SPL payload, BOPC must find a sequence of blocks that
implement each statement in the SPL payload, which we call functional blocks. The process
of building BOP chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL statement to determine if
the block can implement the statement. However, blocks are in terms of machine code
and SPL statements are high-level program statements. To provide flexibility for matching
blocks to SPL statements, BOPC computes Block Constraint Summaries, which define the
possible impacts that the block would have on SPL state. Block Constraint Summaries
provide flexibility in matching blocks to SPL statements because there are multiple possible
mappings of SPL statements and their virtual registers to the block and its constraints on
registers and state.

The constraint summaries of each basic block are obtained by isolating and symbolically
executing it. The effect of symbolically executing a basic block creates a set of constraints,
mapping input to the resultant output. Such constraints refer to registers, memory locations,
jump types and external operations (e.g., library calls).

To find a match between a block and an SPL statement the block must perform all the
operations required for that SPL statement. More specifically, the constraints of the basic

block should contain all the operations required to implement the SPL statement.

63

) o @
o o 0% o0 ;
°® 0..:: e ¢
e %°® o o e ® © b ® o o
°. o o0 . ® . ° ° .
Y . .0....0 c o "ot e o00f
oo 0%, , o ° °) e® o o
(a) (b) (c)

Figure 3.3.: Visualisation of BOP gadget volatility, rectangles: SPL statements, dots:
functional blocks (a). Connecting any two statements through dispatcher blocks constrains
remaining gadgets (b), (c).

3.4.3 Finding BOP gadgets

BOPC computes a set of all potential functional blocks for each SPL statement or halts
if any statement has no blocks. To stitch functional blocks, BOPC must select one functional
block and a sequence of dispatcher blocks that reach the next functional block in the payload.
The combination of a functional block and its dispatcher blocks is called a BOP gadget,
as shown in[Figure 3.2] To build a BOP gadget, BOPC must select exactly one functional
block from each set and find the appropriate dispatcher blocks to connect to a subsequent
functional block.

However, dispatcher paths between two functional blocks may not exist either because
there is no legal path in the CFG between them, or the control flow cannot reach the next
block due to unsatisfiable runtime constraints. This constraint imposes limits on functional
block selection, as the existence of a dispatcher path depends on the previous BOP gadgets.

BOP gadgets are volatile: gadget feasibility changes based on the selection of prior
gadgets for the target binary. This is illustrated in The problem of selecting
a suitable sequence of functional blocks, such that a dispatcher path exists between every
possible control flow transfer in the SPL payload, is NP-hard, as we prove in

Even worse, an approximation algorithm does not exist.

64

Function_1:
<instructions>

@ call Function_?2 Function_2:
<insn_after_call> <prologue>

<instructions> <instructions>
A OO

Ce.
<nop_sled>
call Function_2 = retn

<insn_after_call> (—"
retn

Figure 3.4.: Existing shortest path algorithms are unfit to measure proximity in the CFG.
Consider the shortest path from A to B. A context-unaware shortest path algorithm will mark
the red path as solution, instead of following the blue arrow upon return from Function_2,
it follows the red arrow (3).

As the problem is unsolvable in polynomial time in the general case, we propose several
heuristics and optimizations to find solutions in reasonable amounts of time. BOPC leverages
basic block proximity as a metric to “rank” dispatcher paths and organizes this information
into a special data structure, called a delta graph that provides an efficient way to probe

potential sequences of functional blocks.

3.4.4 Searching for dispatcher blocks

While each functional block executes a statement, BOPC must chain multiple functional
blocks together to execute the SPL payload. Functional blocks are connected through zero
or more basic blocks that do not clobber the SPL state computed thus far. Finding such
non-clobbering blocks that transfer control from one functional statement to another is
challenging as each additional block increases the constraints and path dependencies. Thus,
we propose a graph data structure, called the delta graph, to represent the state of the
search for dispatcher blocks. The delta graph stores, for each functional block for each SPL

statement, the shortest path to the next candidate block. Stitching arbitrary sequences of

65

statements is NP-hard as each selected path between two functional statements influences
the availability of further candidate blocks or paths, we therefore leverage the delta graph to
try likely candidates first.

The intuition behind the proximity of functional blocks is that shorter paths result in
simpler and more likely satisfiable constraints. Although this metric is a heuristic, our
evaluation (Section 3.6) shows that it works well in practice.

The delta graph enables quick elimination of sets of functional blocks that are highly
unlikely to have dispatcher blocks and thus constitute a BOP gadget. For instance, if there is
no valid path in the CFG between two functional blocks (e.g., if execution has to traverse
the CFG “backwards”), no dispatcher will exist and therefore, these two functional blocks
cannot be part of the solution.

The delta graph is a multi-partite, directed graph that has a set of functional block nodes
for every payload statement. An edge between two functional blocks represents the minimum
number of executed basic blocks to move from one functional block to the other, while
avoiding clobbering blocks. See for an example.

Indirect control-flow transfers pose an interesting challenge when calculating the shortest
path between two basic blocks in a CFG: while they statically allow multiple targets, at
runtime they are context sensitive and only have one concrete target.

Our context-sensitive shortest path algorithm is a recursive version of Dijkstra’s [[116]
shortest path algorithm that avoids all clobbering blocks.. Initially, each edge on the CFG
has a cost of 1. When it encounters a basic block with a call instruction, it recursively
calculates the shortest paths starting from the calling function’s entry block, By (a call stack
prevents deadlocks for recursive callees). If the destination block, Bp, is inside the callee,
the shortest path is the concatenation of the two individual shortest paths from the beginning
to Bg and from Bg to Bp. Otherwise, our algorithm finds the shortest path from the By to
the closest return point and uses this value as an edge weight for that callee.

After creation of the delta graph, our algorithm selects exactly one node (i.e., functional

block) from each set (i.e., payload statement), to minimize the total weight of the resulting

66

Table 3.2.: A counterexample that demonstrates why proximity between two functional
blocks can be inaccurate. Left, we can move from point A to point B even if they are 5
blocks apart from each other. Right, it is much harder to satisfy the constrains and to move
from A to B, despite the fact that A and B are only 1 block apart.

Long path with simple constraints | Short path with complex constraints
a, b, ¢, d, e = input(); | a = input();
// point A
if (a == 1) { X = sqrt(a);
if (b == 2) { Y = log(axa%xa — a)
if (c == 3) {
if (d == 4) { // point A
if (e == 5) { if X=Y) {
// point B // point B

induced subgraph|'| This selection of functional blocks is considered to be the most likely
to give a solution, so the next step is to find the exact dispatcher blocks and create the BOP

gadgets for the SPL payload.

3.4.5 Stitching BOP gadgets

The minimum induced subgraph from the previous step determines a set of functional
blocks that may be stitched together into an SPL payload. This set of functional blocks has
minimal distance to each other, thus making satisfiable dispatcher paths more likely.

To find a dispatcher path between two functional blocks, BOPC leverages concolic
execution [117] (symbolic execution along a given path). Along the way, it collects the
required constraints that are needed to lead the execution to the next functional block.
Symbolic execution engines [118,119] translate basic blocks into sets of constraints and use
Satisfiability Modulo Theories (SMT) to find satisfying assignments for these constraints;
symbolic execution is therefore NP-complete. Starting from the (context sensitive) shortest
path between the functional blocks, BOPC guides the symbolic execution engine, collecting

the corresponding constraints.

I'The induced subgraph of the delta graph is a subgraph of the delta graph with one node (functional block) for
each SPL statement and with edges that represent their shortest available dispatcher block chain.

67

To construct an SPL payload from a BOP chain, BOPC launches concolic execution
from the first functional block in the BOP chain, starting with an empty state. At each
step BOPC tries the first K shortest dispatcher paths until it finds one that reaches the
next functional block (the edges in the minimum induced subgraph indicate which is the
“next” functional block). The corresponding constraints are added to the current state. The
search therefore incrementally adds BOP gadgets to the BOP chain. When a functional
block represents a conditional SPL statement, its node in the induced subgraph contains
two outgoing edges (i.e., the execution can transfer control to two different statements).
However during the concolic execution, the algorithm does not know which one will be
followed, it clones the current state and independently follows both branches, exactly like
symbolic execution [118]].

Reaching the last functional block, BOPC checks whether the constraints have a sat-
isfying assignment and forms an exploit payload. Otherwise, it falls back and tries the
next possible set of functional blocks. To repeat that execution on top of the target binary,
these constraints are concretized and translated into a memory layout that will be initialized

through AWP in the target binary.

3.5 Implementation

Our open source prototype, BOPC, is implemented in Python and consists of approx-
imately 14,000 lines of code. The current prototype focuses on x64 binaries, we leave
the (straightforward) extension to other architectures such as x86 or ARM as future work.

BOPC requires three distinct inputs:
* The exploit payload expressed in SPL,
* The vulnerable application on top of which the payload runs,

* The entry point in the vulnerable application, which is a location that the program

reaches naturally and occurs after all AWPs have been completed.

68

‘s1aypedsip 10 syyed 3sayuroys uo punoq rddp : 37 ‘sydeiqns paonpur wnwiruiw U0 punoq
1ddn N . soggnys,, peojAed uo punoq Jodd() : g ‘S)001q 19yd3edSIp SNONURIUOD JO YISU[WNWIXRA 7 "I9S Jurensuo)) : ™) ‘ydeidqns
paonpuy ¥y ‘ydeid vyo(:H¢ ‘peorked 14S Jo xmew Kouadelpy PV ‘s)00[q [euonouny Jo 39S :€.7 ‘SY00[q 2)epIpuLd Jo 19§ :€,)
‘sydes3 Jurddew o[qerrea [y 24 ‘ydeid Juiddew 1015139y 2y peojled T4S poridwo)) 77 ‘pappe suondensqe Joo[q d1seq yim Hgd
V7 -oanprey uodn ss9001d 9ANBIAIN AU AJBIIPUL SMOLIE pal Ay [, ‘uonejudwd[dwr DO Y3 JO MIIAIIAO [QAJ] YSIH :°G ¢ 2In31

|| v v J
‘ B pusjuoly < peojAed
(enTeA ‘uppe) u B < w 1dS e
sydea3qng ydesn | /2wy [S342019 5 so0|g
(entea ‘uppe) r4—{ndinQ |« uolR[NWIS |« paonpu| |« el2Q [euoiduny |« ajepipue)
(anTeA ‘appe) "o " [wnwiaw [99 | ping pui oA pul
(anTea ‘“Jppe)) q < o < piisitiold < Areulg
Yy Vo0 Areulg :

69

The output of BOPC is a sequence of (address, value, size) tuples that describe how
the memory should be modified during the state modification phase to execute
the payload. Optionally, it may also generate some additional (stream, value, size) tuples
that describe what additional input should be given on any potentially open “streams” (file
descriptors, sockets, stdin) that the attacker controls during the execution of the payload.

A high level overview of BOPC is shown in (a detailed implementation
overview is shown in[Appendix 7.7)). Our algorithm is iterative; that is, in case of a failure,

the red arrows, indicate which module is executed next.

3.5.1 Binary Frontend

The Binary Frontend uses angr [119] to lift the target binary into the VEX intermediate
representation to expose the application’s CFG. Operating directly on basic blocks is
cumbersome and heavily dependent on the Application Binary Interface (ABI). Instead, we
translate each basic block into a block constraint summary. Abstraction leverages symbolic
execution [2] to “summarize” the basic block into a set of constraints encoding changes in
registers and memory, and any potential system, library call, or conditional jump at the end
of the block — generally any effect that this block has on the program’s state. BOPC executes
each basic block in an isolated environment, where every action (such as accesses to registers
or memory) is monitored. Therefore, instead of working with the instructions of each basic
block, BOPC utilizes its abstraction for all operations. The abstraction information for every

basic block is added to the CFG, resulting in C F'G 4.

3.5.2 SPL Frontend

The SPL Front end translates the exploit payload into a graph-based Intermediate
Representation (IR) for further processing. To increase the flexibility of the mapping
process, statements in a sequence can be executed out-of-order. For each statement sequence
we build a dependence graph based on a customized version of Kahn’s topological sorting

algorithm [[120], to infer all groups of independent statements. Independent statements in a

70

subsequence are then turned into a set of statements which can be executed out-of-order.
This results in a set of equivalent payloads that are permutations of the original. Our goal is

to find a solution for any of them.

3.5.3 Locating candidate block sets

SPL is a high level language that hides the underlying ABI. Therefore, BOPC looks for
potential ways to “map” the SPL environment to the underlying ABI. The key insight in this
step is to find all possible ways to map the individual elements from the SPL environment to
the ABI (though candidate blocks) and then iteratively selecting valid subsets from the ABI
to “simulate” the environment of the SPL payload.

Once the C'F'G 4 and the IR are generated, BOPC searches for and marks candidate basic
blocks, as described in For a block to be a candidate, it must “semantically
match” with one (or more) payload statements. shows the matching rules. Note
that variable assignments, unconditional jumps, and returns do not require a basic block and
therefore are excluded from the search.

All statements that assign or modify registers require the basic block to apply the same
operation on the same, as yet undetermined, hardware registers. For function calls, the
requirement for the basic block is to invoke the same call, either as a system call or as a
library call (if the arguments are different, the block is clobbering). Note that the calling
convention exposes the register mapping.

Upon a successful matching, BOPC builds the following data structures:

* Rg, the Register Mapping Graph which is a bipartite undirected graph. The nodes
in the two sets represent the virtual and hardware registers respectively. The edges

represent potential associations between virtual and hardware registers.

71

d00T zul Uiy 0) oy | D © DL = uorpipuod D017 0106
xel ‘xel 3so3 {(Foe)} noy v butzog (I (O =0%) 1 dutnp puoipuo)
oADOXD TTED ﬁ (18404 °647) A%&Nﬂf\vw U2y 120y TTeD LT | (* “du™ “Pu”)pmo 1o
1 [Lf- g, — o,
?W w . ?mm wmm [($62.4°0.7) *(64°°07)} 0 Oy QMM*IVIV wmwu &* a ug* NNM Mmmww
TSI 08P {(*ba0°a™)} oy 0O Ybou — “bau D =0 P4 | uoypafipopy 1235182y
[ugt+Tsz] ‘xpx aow | {y}NNg ﬁ \ 5 v — “bou o —
; — VAN EA | fiip, 0 -5 o p— AP ="
[yoz+dsa] \xou eaT | {(*6oa>a)} Oy | MVYDD D — e?i tusuuSIssy 491189y
07150 Txex aou Winig v = o e
YL ‘Xex xXzaouw — D — bau
adurexyy SuonOYy uondeNSqy wIoq juduUIRIe)IS

‘ssarppe ue 03 dwn(

[ewIou Y :buTIog LT ‘SsaIppe uB 0} [[BO Y :TTRD LT 995 S9SSAIpPpY PaouaInjard(V(7 ‘ydeid Suiddew ojqeurep :24 ‘ydesd
Surddew 10)S139Y DY ‘SSIppe AIOWSA |/ ‘Q[qBLIBA TS A “ON[BA JUBISUO)) :/) ‘SIA)SISAI aIeMpIRH :°69. ““Ho.t ‘SI9)SISQI [BNIIIA
2047 Py ruayel are suondy Aeudoidde oy ‘yorewr v uod() w0 SY) UI JUSWIIILIS T[S 9Y) YOIBW 0] ARY 0) SPIdU uondensqe
)00[q JIskeq AY) Jey) sjudwIINbar oy SAILJIPUI UOHIRIISqY SYO0[q JISkq 0} SJUAWILIS TS JO Suryojew dnuULwWaS :'¢'¢ Jqel,

72

* Vg, the Variable Mapping Graph, which is very similar to R, but instead associates
payload variables to underlying memory addresses. V; is unique for every edge in

Regie.:

V(_ra,regy) € R VST

* Dy, the Memory Dereference Set, which has all memory addresses that are derefer-
enced and their values are loaded into registers. Those addresses can be symbolic

expressions (e.g., [rbx + rdxx8]), and therefore we do not know the concrete

address they point to until execution reaches them (see [Section 3.5.6).

After this step, each SPL statement has a set of candidate blocks. Note that a basic
block can be candidate for multiple statements. If for some statement there are no candidate

blocks, the algorithm halts and reports that the program cannot be synthesized.

3.5.4 Identifying functional block sets

After determining the set of candidate blocks, C'z, BOPC iteratively identifies, for each
SPL statement, which candidate blocks can serve as functional blocks, i.e., the blocks that
perform the operations. This step determines for each candidate block if there is a resource
mapping that satisfies the block’s constraints.

BOPC identifies the concrete set of hardware registers and memory addresses that
execute the desired statement. A successful mapping identifies candidate blocks that can
serve as functional blocks.

To find the hardware-to-virtual register association, BOPC searches for a maximum
bipartite matching [116l] in R¢. If such a mapping does not exist, the algorithm halts. The
selected edges indicate the set of V; graphs that are used to find the memory mapping, i.e.,
the variable-to-address association (see there can be a V; for every edge in
R¢). Then for every Vi; the algorithm repeats the same process to find another maximum

bipartite matching.

73

This step determines, for each statement, which concrete registers and memory addresses
are reserved. Merging this information with the set of candidate blocks constructs each
block’s SPL state, enabling the removal of candidate blocks that are unsatisfiable.

However, there may be multiple candidate blocks for each SPL statement, and thus the
maximum bipartite match may not be unique. The algorithm enumerates a/l maximum
bipartite matches [121]], trying them one by one. If no match leads to a solution, the

algorithm halts.

3.5.5 Selecting functional blocks

Given the functional block set F'z, this step searches for a subset that executes all payload
statements. The goal is to select exactly one functional block for every IR statement and
find dispatcher blocks to chain them together. BOPC builds the delta graph 0G, described
in

Once the delta graph is generated, this step locates the minimum (in terms of total
edge weight) induced subgraph, Hy,, that contains the complete set of functional blocks to
execute the SPL payload. If H},, does not result in a solution, the algorithm tries the next
minimum induced subgraph, H, , until a solution is found or a limit is reached.

If the resulting delta graph does not lead to a solution, this step “shuffles” out-of-order
payload statements, see and builds a new delta graph. Note that the number
of different permutations may be exponential. Therefore, our algorithm sets an upper bound
P on the number of tried permutations.

Each permutation results in a different yet semantically equivalent SPL payload, so the

CFG of the payload (called Adjacency Matrix, M 44;) needs to be recalculated.

3.5.6 Discovering dispatcher blocks

The simulation phase takes the individual functional blocks (contained in the minimum

induced subgraph Hy,) and tries to find the appropriate dispatcher blocks to compose the

74

BOP gadgets. It returns a set of memory assignments for the corresponding dispatcher
blocks, or an error indicating un-satisfiable constraints for the dispatchers.

BOPC is called to find a dispatcher path for every edge in the minimum induced subgraph.
That is, we need to simulate every control flow transfer in the adjacency matrix, M 44 of
the SPL payload. However, dispatchers are built on the prior set of BOP gadgets and their
impact on the binary’s execution state so far, so BOP gadgets must be stitched with the
respect to the program’s current flow originating from the entry point.

Finding dispatcher blocks relies on concolic execution. Our algorithm utilizes functional
block proximity as a metric for dispatcher path quality. However, it cannot predict which
constraints will take exponential time to solve (in practice we set a timeout). Therefore
concolic execution selects the K shortest dispatcher paths relative to the current BOP chain,
and tries them in order until one produces a set of satisfiable constraints. It turns that this
metric works well in practice even for small values of K (e.g., 8). This is similar to the
k-shortest path [122]] algorithm used for the delta graph.

When simulation starts it also initializes any SPL variables at the locations that are
reserved during the variable mapping (Section 3.5.4). These addresses are marked as
immutable, so any unintended modification raises an exception which stops this iteration.

In we introduce the set of Dereferenced Addresses, D)y, which is the set of
memory addresses whose contents are loaded into registers. Simulation cannot obtain the
exact location of a symbolic address (e.g., [rax + 41]) until the block is executed and the
register has a concrete value. Before simulation reaches a functional block, it concretizes any
symbolic addresses from D), and initializes the memory cell accordingly. If that memory
cell has already been set, any initialization prior to the entry point cannot persist. That
is, BOPC cannot leverage an AWP to initialize this memory cell and the iteration fails. If
a memory cell has been used in the constraints, its concretization can make constraints
unsatisfiable and the iteration may fail.

Simulation traverses the minimum induced subgraph, and incrementally extends the
SPL state from one BOP gadget to the next, ensuring that newly added constraints remain

satisfiable. When encountering a conditional statement (i.e., a functional block has two

75

outgoing edges), BOPC clones the current state and continues building the trace for both
paths independently, in the same way that a symbolic execution engine handles conditional
statements. When a path reaches a functional block that was already visited, it gracefully
terminates. At the end, we collect all those states and check whether the constraints of all

these paths are satisfied or not. If so, we have a solution.

3.5.7 Synthesizing exploits

If the simulation module returns a solution, the final step is to encode the execution
trace as a set of memory writes in the target binary. The constraint set C',, collected during
simulation reveals a memory layout that leads to a flow across functional blocks according to
the minimum induced subgraph. Concretizing the constraints for all participating conditional

variables at the end of the simulation can result in incorrect solutions. Consider the following

case:
a = input();
if (a > 10 && a < 20) {
a = 0;

/+ target block =/

The symbolic execution engine concretizes the symbolic variable assigned to a upon
assignment. When execution reaches “target block™, a is 0, which is contradicts the
precondition to reach the target block. Hence, BOPC needs to resolve the constraints during
(i.e., on the fly), rather than at the end of the simulation.

Therefore, constraints are solved inline in the simulation. BOPC carefully monitors
all variables and concretizes them at the “right” moment, just before they get overwritten.
More specifically, memory locations that are accessed for first time, are assigned a symbolic
variable. Whenever a memory write occurs, BOPC checks whether the initial symbolic
variable still exists in the new symbolic expression. If not, BOPC concretizes it, adding the

concretized value to the set of memory writes.

76

There are also some symbolic variables that do not participate in the constraints, but are
used as pointers. These variables are concretized to point to a writable location to avoid
segmentation faults outside of the simulation environment.

Finally, it is possible for registers or external symbolic variables (e.g., data from stdin,
sockets or file descriptors) to be part of the constraints. BOPC executes a similar translation
for the registers and any external input, as these are inputs to the program that are usually

also controlled by the attacker.

3.6 Evaluation

To evaluate BOPC, we leverage a set of 10 applications with known memory corruption
CVEs, listed in These CVEs correspond to arbitrary memory writes [[15], [16]
133], fulfilling our AWP primitive requirement. contains the total number of
all functional blocks for each application. Although there are many functional blocks,
the difficulty of finding stitchable dispatcher blocks makes a significant fraction of them
unusable.

Basic block abstraction is a time consuming process — especially for applications with
large CFGs — but these results may be reused across iterations. Thus, as a performance
optimization, BOPC caches the resulting abstractions of the Binary Frontend (Figure 3.5) to
a file and loads them for each search, thus avoiding the startup overhead listed in

To demonstrate the effectiveness of our algorithm, we chose a set of 13 representative
SPL payloads [|shown in Our goal is to “map and run” each of these payloads on
top each of the vulnerable applications. shows the results of running each payload.
BOPC successfully finds a mapping of memory writes to encode an SPL payload as a set
of side effects executed on top of the applications for 105 out of 130 cases, approximately
81%. In each case, the memory writes are sufficient to reconstruct the payload execution by

strictly following the CFG without violating a strict CFI policy or stack integrity.

ZResults depend on the SPL payloads and the vulnerable applications. We chose the SPL payloads to showcase
all SPL features, other payloads or combination of payloads are possible. We encourage the reader to play
with the open-source prototype.

7

LTO'V0E | SOL'ST | 611 166 16L°9 | I8Y'1 | 086°S9T | ST:Z8 | 60€°1SE | 180°991 | SWA | [TETN 9881-6002-HAD | 1uaroquus
8L7°9¢ | 89L'T | LTI 99 061 4K S19°¢E | TT0T | SOTHE | 06L°81 MV | [TETI L¥LE-900T-HAD ayoede
9LTIET | SSS¥ | 001 €61 9¢L’T | 6€9 €S0v'Tl | 1¥:6C | 1117291 | 981°%L MV | [0€T] 66TT-¥10T-HAD | Mreysdim
TSL'6 | 8SS €9 61 ¥1¢ 86 0088 €610 | L8V TI | 8899 MV | [621] #710-1002-HAD | Pyssuado
609T | STl 61 L S LL LTET | LT00 | 10LT | 88F°1 MV | [82T1 96v1-2002-HAD | pduyqnu
€OP'ST | 126 6 11 vLT 79 1011 | TTE0 | T6O'LT | 668°S SINA | [ZZT0 ££50-0002-HAD dpyynm
€LYT 68 11 8 6¢ 6 LIET LT00 | €91°C ¥SE°T SINA | [9ZT1 9S61% aibensng | pduyzio
SILS LOE Sy 81 LS1 9z 9IS | vI10 | L9T9 | 66€°€ SINA | [STTN 6080-2102-HAD opns
9/8°LE | SLEE | S€ 6LT TTST | 89T°T | L6V'TIE | 9€TT | SYOvy | 691°4C MV | 72T 8202-€102-HAD Xurgu
LTV'SY | 620°C | LL 661 7681 | LSE cPI0F | 80:01 | 298‘6v | L8O°LT MV | [€2T] S185-9002-HAD | Pd1d0id

[eloy, puo) nen TMUBIN PHUOIN MM%M 18534 (s:w) SI3pH | SOPON | ‘wiig AIIqeroumnp weI3orq

SYJ0[(q [BUONDUNJ JO JIqUINU [e)0], uulg, L) uonednddy sjqesdunp

"SJUAIAIL]S JOSTIY JO 1osqNS B AIe SJUSWIR)S PYYWIA I8y} J0U OS[Y "S[[€J JO 39S pauyopaid e Funagdie)
QJe M 9SNBOAQ [[BUWUS ST SJUSUIAIL)S [[BD JO Joquunu ay) Jey) doN (sdwnf [euonipuo) = puo) ‘s[ed AIeiqr/wlsis = jjp) ‘9101S
KIOWSIA = LMW ‘PeOT AIOWIN = pYuidjy ‘SUOTBOYIPOIA IISISY = poy8ay ‘SJUaWUIISSY J9ISISY = 19552Y]) SJUaUIdIe)s ay) Jo
OB J0J JoqUINU [B10) 9} MOYS §¥20]q [PUOIUN,] YO0[q JISeq AISAQ JOJ SUOTIORIISQE Q) AJBIUS 0) PIPISU W) JO JUNOWE Y) ST 2ull]

(3uInS B0 = SIWA “QIUA ATeniqrly = MY) 9dA) aanrwrid 9y) sajedipur uwn[od ‘utig Ay, ‘suoneddde sjqerduny :'4°¢ d[qeL

78

Table 3.5.: SPL payloads. Each payload consists of |S| statements. Payloads that produce
flat delta graphs (i.e., have no jump statements), are marked with v/. memwr payload
modifies program memory on the fly, thus preserving the Turing completeness of SPL (recall

from that AWP/ARP-based state modification is no longer allowed).
Payload Description | flat?

regset4 | Initialize 4 registers with arbitrary values

regref4 | Initialize 4 registers with pointers to arbitrary memory

regset5 | Initialize 5 registers with arbitrary values

regref5 | Initialize 5 registers with pointers to arbitrary memory

regmod | Initialize a register with an arbitrary value and modify it

memrd | Read from arbitrary memory

memwr | Write to arbitrary memory

print Display a message to stdout using write

execve Spawn a shell through execve

abloop | Perform an arbitrarily long bounded loop utilizing regmod

infloop | Perform an infinite loop that sets a register in its body

ifelse An if-else condition based on a register comparison

loop Conditional loop with register modification

RS2

—

A QDDA NPDS WO WV 0PN
RN X XX NSNS NANN

shows that applications with large CFGs result in higher success rates, as they
encapsulate a “richer” set of BOP gadgets. Achieving truly infinite loops is hard in practice,
as most of the loops in our experiments involve some loop counter that is modified in each
iteration. This iterator serves as an index to dereference an array. By falsifying the exit
condition through modifying loop variables (i.e., the loop becomes infinite), the program
eventually terminates with a segmentation fault, as it tries to access memory outside of the
current segment. Therefore, even though the loop would run forever, an external factor
(segmentation fault) causes it to stop. BOPC aims to address this issue by simulating the
same loop multiple times. However, finding a truly infinite loop requires BOPC to simulate
it an infinite number of times, which is infeasible. For some cases, we managed to verify
that the accessed memory inside the loop is bounded and therefore the solution truly is an
infinite loop. Otherwise, the loop is arbitrarily bounded with the upper bound set by an
external factor.

For some payloads, BOPC was unable to find an exploit trace. This is is either due to
imprecision of our algorithm, or because no solution exists for the written SPL payload.
We can alleviate the first failure by increasing the upper bounds and the timeouts in our

configuration. Doing so, makes BOPC search more exhaustively at the cost of search time.

79

+821 LG0T
e p / Y, Y, X A / / /S /S /S /S /S juatpoquus
+821 o0
X / y » x| X / / / / / / / dyoede
+821
S AL 2 X | v oL / Vs / , , /| eysonm
+821 414
6 L 2 2 » "X X "X / / / / / /| pyssuado
00 o€
X | X 2 P / X | / / / / % /| pduyqnu
+821 +821
X | X » » 'x / / / / / / / / dpyna
+821
X | X y "X X | / / / / / / /| pdnyzio
+821
"X "X y, "X /S /S /S /S /S / /S / /S opns
00 +821
Ll L y 2 / "X / / / / / % / Xuisu
o0 +821
SV / . Y, X e f /S / /S / /S / /S PdL401d
dooy | aspaf1 |dooyur |doojqp | 2422x2 | jurid UmMwiowl |piwaus pourdal (Cfa18a4 |G1aS3aL |ffa43a4 19884
weIsord
peojied 14S

“nopIs Ay} 03 pAuLId A[[NJss0ons 19)0BIRYD JO JoqUINU JY) SAJLIIPUL
uwnjod Juiid) 0) JXAU JIQUINU Y], "SUONIBI)I JO JOqUINU WNWIXBW Y} AeIIPUI SUWN[0d doo] pue ‘dooyul ‘doojqp ur s) 0} XU
s1oquInu Y, ‘synodwn Jo uonewrxoldde-10A0 03 anp I N puly Jouurd DJOg INQ ‘SISIX WYIIW uonnjos e ‘(*y pue £x) oml Jse[)
ur ‘9[IyM Uonn[os ou SI AIJY) 1Y) MOUY Im ‘(Zy pue ly) SISBD 0M] ISIL AU} UT Jey]) AJON ‘(JNOJWI) JIAOS JO SIUTRNSUOD J[qRYSHes-u}
Yy pue s)o0[q [euonduny uaamjiaq syyed prjea oN = £y ‘s3urddewr ojqerIeA/19)SISAI PI[RA ON = Ty ‘SY00[q JBPIPULD YSNOU JON
Iy) aanjrey Jo 2dA) oy Sunouap 1durosqns ay3 YIm ‘QInjrej B s9JedIpul ¥ B [Iym AIeulq JoS1e) 9y} U0 PIjndaxa A[[nyssadons sem
peojAed 14S ay3 Jeyl suedw A uy ‘suonedrdde sjqerauina ay) Jo yoed 10j speojAed TS snoLea 3unnoaxa Jo AIIqIsed] '9'¢ J[qel,

80

The failure to find a solution exposes the limitations of the vulnerable application. This
type of failure is due to the “structure” of the application’s CFG, which prevents BOPC
from finding a trace for an SPL payload. Hence, a solution may not exist due to one the

following:

1. There are not enough candidate blocks or functional blocks.
2. There are no valid register / variable mappings.
3. There are no valid paths between functional blocks.

4. The constraints between blocks are unsatisfiable or symbolic execution raised a

timeout.

For instance, if an application (e.g., ProFTPd) never invokes execve then there are no
candidate blocks for execve SPL satements. Thus, we can infer from the execve column
in that all applications with a X; never invoke execve.

In we mention that the determination of the entry point is part of the
vulnerability discovery process. Therefore, BOPC assumes that the entry point is given.
Without having access to actual exploits (or crashes), the locations of entry points are
ambiguous. Hence, we have selected arbitrary locations as the entry points. This allows
BOPC to find payloads for the evaluation without having access to concrete exploits. In
practice, BOPC would leverage the given entry points as starting points. We demonstrate
several test cases where the entry points are precisely at the start of functions, deep in the
Call Graph, to show the power of our approach. Orthogonally, we allow for vulnerabilities
to exist in the middle of a function. In such situations, BOPC would set our entry point to
the location after the return of the function.

The lack of the exact entry point complicates the verification of our solutions. We
leverage a debugger to “simulate” the AWP and modify the memory on the fly, as we reach
the given entry point. We ensure as we step through our trace that we maintain the properties
of the SPL payload expressed. That is, blocks between the statements are non-clobbering in

terms of register allocation and memory assignment.

81

3.7 Case Study: nginx

We utilize a version of the nginx web server with a known memory corruption vulnerabil-
ity [124] that has been exploited in the wild to further study BOPC. When an HTTP header
contains the “Transfer-Encoding: chunked” attribute, nginx fails to properly bounds check
the received packet chunks, resulting in stack buffer overflow. This buffer overflow [15]
results in an arbitrary memory write, fulfilling the AWP requirement. For our case study
we select three of the most interesting payloads: spawning a shell, an infinite loop, and a
conditional branch. shows metrics collected during the BOPC execution for these

cases.

Table 3.7.: Performance metrics (run on Ubuntu 64-bit with an 17 processor) for BOPC on
nginx. Time = time to synthesize exploit, |C'5| = # candidate blocks, Mappings = # concrete
register and variable mappings, |G| = # delta graphs created, | Hy| = # of induced subgraphs
tried.

Payload | Time |Cg| | Mappings | 0G| | |Hy|
execve Om:55s | 10,407 142,355 1 1
infloop | 4m:45s | 9,909 14 1 1
ifelse 1m:47s | 10,782 182 4 2

3.7.1 Spawning a shell

Function ngx_execute_proc is invoked through a function pointer, with the second
argument (passed to rsi, according to x64 calling convention), being a void pointer that is
interpreted as a st ruct to initialize all arguments of execve:

mov rbx, rsi

mov rdx, QWORD PTR [rsi+0x18]
mov rsi, QWORD PTR [rsi+0x10]
mov rdi, QWORD PTR [rbx]

call 0x402500 <execve@plt>

82

BOPC leverages this function to successfully synthesize the execve payload (shown
on the right side of and generate a PoC exploit in less than a minute as shown in
Table 3.71

Assuming that rsi points to some writable address x, BOPC produces the follow-
ing (address,value, size) tuples: ($y,$z,8), ($y + 8h,0,8), ($z, /bin/sh,8), (3x +
10h, $y, 8), ($z + 18h,0, 8), were $y is a concrete writable addresses set by BOPC.

3.7.2 Infinite loop

Here we present a payload that generates a trace that executes an infinite loop. The
infloop payload is a simple infinite loop that consists of only two statements:
void payload() {

_rl = 0;
goto LOOP;

We set the entry point at the beginning of ngx_signal_handler function which is
a signal handler that is invoked through a function pointer. Hence, this point is reachable
through control-flow hijacking. The solution synthesized by BOPC is shown in
The box on the top-left corner demonstrates how the memory is initialized to satisfy the
constraints.

Virtual register __r0 was mapped to hardware register r14, so ngx_signal_-
handler contains three candidate blocks, marked as octagons. Exactly one of them
is selected to be the functional block while the others are avoided by the dispatcher blocks.
The dispatcher finds a path from the entry point to the first functional block, and then finds a
loop to return back to the same functional block (highlighted with blue arrows). Note that
the size of the dispatcher block exceeds 20 basic blocks while the functional block consists
of a single basic block.

The oval nodes in [Figure 3.6|indicate basic blocks that are outside of the current function.

At basic block 0x41C79F, function ngx_time_sigsafe_update is invoked. Due to

83

41C765: signals.signo == 0
40E10F: ngx_time_lock != 0
41C7B1: ngx_process - 3 > 1 Com)

41C9AC: ngx_cycle = $alloc_1

$alloc_l->log = $alloc_2
$alloc_2->log_level <= 5 D
41CA18: signo == 17
41CA4B: waitpid() return value != {0, -1} e
41cA50: ngx_last_process == 0

41CB50: *($stack - 0x03C) & 0x7F != 0

41CBSB: Salloc_2->log_level <= 1

41CBE6: *($stack - 0x03C + 1) != 2

41CC48: ngx_accept_mutex_ptr == 0

41CC5F: ngx_cycle->shared memory.part.elts = 0
_r0=rl14=0

41CC79: ngx_cycle->shared_memory.part.nelts <= 0

41CCTF: ngx_cycle->shared memory.part.next == 0

O Out of function
© Functional block

—p Dispatcher path

Atcabo)

alctbd

Figure 3.6.: CFG of nginx’s ngx_signal_handler and payload for an infinite loop
(blue arrow dispatcher blocks, octagons functional blocks) with the entry point at the
function start. The top box shows the memory layout initialization for this loop. This graph
was created by BOPC.

84

Statement #0

41eb23

Statement #
403d4b 404d5a 407887 @ @ @

Statement #6 Stateme 1#12
403ede 403£d9 403ede 403ebb @ @
\o

Statemient #]

Figure 3.7.: A delta graph instance for an ifelse payload for nginx. The first node is the entry
point. Blue nodes and edges form the minimum induced subgraph, Hy.. Statement #4 is a
conditional, execution branches into two statements. Note that BOPC created this graph.

the shortest path heuristic, BOPC, tries to execute as few basic blocks as possible from this
function. In order to do so BOPC sets ngx_t ime_1lock a non-zero value, thus causing
this function to return quickly. BOPC successfully synthesizes this payload in less than 5

minutes.

3.7.3 Conditional statements

This case study shows an SPL if-else condition that implements a logical NOT. That is,
if register ___rO0 is zero, the payload sets ___r1 to one, otherwise ___r1 becomes zero. The
execution trace starts at the beginning of ngx_cache_manager_process_cycle.

This function is called through a function pointer. A part of the CFG starting from this

function is shown in After trying 4 mappings, __rOand ___r1 mapto rsi
and r15 respectively. The resulting delta graph is the shown in

85

As we mentioned in |[Section 3.5.6, when BOPC encounters a functional block for a
conditional statement, it clones the current state of the symbolic execution and the two

clones independently continue the execution. The constraints up to the conditional jump are

the following:
0x41leb23 : $rdi = ngx_cycle_tx cycle
0x40£709 : *(ngx_event_flags + 1) == 0x2
0x41dfe3 : _ r0 = rsi = 0x0
0x403cdb : $rl5 = 0x1
ngx_module_t ngx_core_module.index = 0
Salloca_1l = xcycle

ngx_core_conf_tx conf_ctx =
*$alloca_1 + ngx_core_module.index * 8
0x403d06 : test rsi, rsi (__r0 != 0)
0x403d09 : jne 0x403dlb <ngx_set_environment+64>

If the condition is false and the jump is not taken, the following constraints are also
added to the state.

0x403d0b : conf_ctx->environment != 0
0x403fd9 : __ rl = *($stack - 0x178) = 1;

‘When the condition is true, the execution trace will follow the “taken” branch of the trace.
In this case the shortest path to the next functional block is 403d1b — 403d3d — 403d4b —
403d54 — 403d5a — 403 fb4 with a total length 6. Unfortunately, this cannot be used as a
dispatcher block, due to an exception that is raised at 403d4b. The register rsi, is 1 and
therefore when we attempt to execute the following instruction: cmp BYTE PTR [rsi],
54h, we essentially try to dereference address 1. BOPC is aware of this exception, so it
discards the current path and tries with the second shortest path. The second shortest path
has length 7 and avoids the problematic block: 403d1b — 403d8b — 4050ba — 40511c —
40513a — 403d9c — 403dab — 403 fb4. This results in a new set of constraints as shown

below:

86

0x403d1lb : conf_ctx->env.elts = &elt (ngx_array_tx)
conf_ctx—->env.nelts ==
0x4050ba : conf_ctx->env.nelts != $Salloca_2->env.nalloc
0x40511c : conf_ctx->env.nelts += 1
0x40513a : $ret = conf_ctx->env.elts +
conf_ctx->env.nelts*conf_ctx—>env.size

0x403d9c : Sret != 0
0x403da5 : conf_ctx—->env.nelts != 0
0x403fb4 : _ rl = rl5 =0

3.8 Discussion and Future Work

Our prototype demonstrates the feasibility and scalability of automatic construction of
BOP chains through a high level language. However, we note some potential optimizations
that we will consider for future versions of BOPC.

BOPC is limited by the granularity of basic blocks. That is, a combination of basic
blocks could potentially lead to the execution of a desired SPL statement, while individual
blocks might not. Take for instance an instruction that sets a virtual register to 1. Assume
that a basic block initializes rcx to 0, while the following block increments it by 1; a
pattern commonly encountered in loops. Although there is no functional block that directly
sets rcx to 1, the combination of the previous two has the desired effect. BOPC can be
expanded to address this issue if the basic blocks are coalesced into larger blocks that result
in a new CFG.

BOPC sets several upper bounds defined by user inputs. These configurable bounds
include the upper limit of (i) SPL payload permutations (P), (ii) length of continuous
blocks (L), (ii1) of minimum induced subgraphs extracted from the delta graph (/V), and (iv)
dispatcher paths between a pair of functional blocks (/X). These upper bounds along with
the timeout for symbolic execution, reduce the search space, but prune some potentially
valid solutions. The evaluation of higher limits may result in alternate or more solutions

being found by BOPC.

87

3.9 Conclusion

Despite the deployment of strong control-flow hijack defenses such as CFI or shadow
stacks, data-only code reuse attacks remain possible. So far, configuring these attacks relies
on complex manual analysis to satisfy restrictive constraints for execution paths.

Our BOPC mechanism automates the analysis of the remaining attack surface and syn-
thesis of exploit payloads. To abstract complexity from target programs and architectures,
the payload is expressed in a high-level language. Our novel code reuse technique, Block
Oriented Programming, maps statements of the payload to functional basic blocks. Func-
tional blocks are stitched together through dispatcher blocks that satisfy the program CFG
and avoid clobbering functional blocks. To find a solution for this NP-hard problem, we
develop heuristics to prune the search space and to evaluate the most probable paths first.

The evaluation demonstrates that the majority of 13 payloads, ranging from typical
exploit payloads to loops and conditionals are successfully mapped 81% of the time across
10 programs. Upon acceptance, we will release the source code of our proof of concept
prototype along with all of our evaluation results. The prototype is available at https :

//github.com/HexHive/BOPC.

https://github.com/HexHive/BOPC
https://github.com/HexHive/BOPC

88

4 X-CAP: ASSESSING EXPLOITATION CAPABILITIES

In we introduced a novel technique, called Block Oriented Programming (BOP),
to automate data-only attacks. The main intuition behind Block Oriented Programming is,
given an exploit payload, to find a sequence “gadgets” that perform useful computations
(called functional gadgets), and stitch them together through a sequence of dispatcher
gadgets. The purpose of a dispatcher gadget is twofold: First, it assures the smooth
transition between two functional gadgets, without clobbering the the execution state (or
context) that functional gadgets build. Second, it ensures that program’s execution flow
abides with Control Flow Graph (CFG) and therefore never violates Control Flow Integrity
(CFD).

However, the problem of stitching functional gadgets is NP-hard as it reduces from
K-Clique problem (see for a detailed proof). Furthermore, it also involves the use
of symbolic execution and constraint solving, two problems that reduce from 3-SAT [134]],
the original NP-complete problem. Hence, despite the extensive effort that our framework,
BOPC [[17], puts to stitch all functional gadgets together, there is no guarantee that such a
solution will exist, as shown in

A closer look at the cases were BOPC fails, reveals an interesting problem: Inferring the
root cause of the failures. BOPC has inherent limitations as it deals with NP-hard problems.
Therefore, it may not be capable of finding a solution all the times. But what if a solution
does not exist at all? In this chapter we aim to formulate this problem and determine under
which circumstances it is infeasible to stitch two functional gadgets together. Our analysis

results in three possible outcomes:

* It is possible to stitch two functional gadgets together, as BOPC has found a solution

(proven connectivity).

89

* It is impossible to stitch two functional gadgets together, because gadgets are either

too far apart or they have unsatisfiable constraints (proven disconnectivity).

* We have good indications that it may not be possible to stitch two functional gadgets
together. BOPC did not find a solution because either a timeout was raised during
concolic execution, or a potential solution pruned from the search space. (potential

dis-connectivity).

Although we can reduce the probability of falling in the last case by repeating the
experiment with longer timeouts and a more extensive search, there is no guarantee that we
can avoid it, as the execution time and the search space can be exponential. Nevertheless,
BOPC has the ability to distinguish between the last two cases.

Therefore, we can leverage the second outcome (proven disconnectivity) to solve the
inverse problem: Finding which functional gadgets are impossible to stitch together. This
is an interesting outcome, because if we know that it is infeasible to stitch two functional
gadgets together, we can infer that it is not possible to be part of the same payload. That is,
we know what payloads an adversary, is not capable of executing on a vulnerable application.

We can formalize the previous statement and assess the exploitation capabilities on a
vulnerable application. Our tool, X-Cap, leverages BOPC to find functional gadgets that
impossible to stitch together and functional gadgets that is feasible to stitch together. X-Cap
encodes this information in a directed graph, called capability graph. In this graph each
node represents functional gadget and each edge the potential connectivity between two
gadgets. An interesting property of this graph is that it constitutes from several, disconnected
components, called islands and they essentially represent gadget reachability.

By analyzing the capability graph we can infer that if two functional gadgets belong to
different computation islands then it is impossible to coexist in the same exploit payload.
However when two functional gadgets belong to the same computation island it does
not necessary mean that we can always stitch them together. For instance consider three
functional gadgets A, B and C, as shown in[Figure 4.1] that reside on the same computational
island. Although it is possible to stitch A with B, B with C' and A with C together, it is

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

90

/% declare a guard variable */
var_a = input();

/* code that executes gadget A «/
gadget_A();

if (var_a == 0) {
/% code that executes gadget B */
gadget_B () ;

}

if (var_a == 1) {
/+ code that executes gadget C */
gadget_C();

Figure 4.1.: Code snippet that shows computation island disconnectivity. Here, we have
three functional gadgets A, B and C'. Although it is possible to stitch A with B, A with C'
and B with C' together (so all of A, B and C, belong to the same computation island), it is
impossible to stitch all of them together as this requires var_a to be 0 and 1 at the same
time. This is because the path constrains contradict and therefore become unsatisfiable.

impossible to stitch A, B and C' all together. This is because their imposed constrains that
are built along the path contradict: The prerequisite to stitch A and B requires specific a
memory address to be zero, while the prerequisite to stitch B and C' is the same memory
address to be nonzero.

Therefore, the computation islands give us upper bounds. That is, they indicate the
largest set of functional gadgets that can be on the same payload, in the best case scenario
that all constrains are satisfiable. This allows X-Cap to infer properties regarding the
composition of the exploit payloads that can be executed under a vulnerable application.

In [Chapter 3| we described how BOPC indicates whether the Residual Attack Surface is
non-zero or not, by finding an exploit payload that can be executed under binaries hardened
with advanced mitigations, such as CFI and shadow stacks. Here, X-Cap identifies sets of
exploit payloads that can successfully be executed on top of a (given) vulnerable application.
We refer to this term as application’s capability and essentially encapsulates all “properties”
that an exploit payload should carry to be successful executed.

Large applications likely contain vulnerabilities so our tool, X-Cap, allows for an

assessment of the exploitability of a vulnerable application. X-Cap follows a similar

91

approach with BOPC and therefore it reuses a large portion from it. It finds all potential
(individual) SPL statements that the vulnerable application is capable of executing and
builds the proximity graph, which provides strong indications on which SPL statements

together can be stitched together. X-Cap is an ongoing work.

92

5 MALWASH: WASHING MALWARE TO EVADE DYNAMIC ANALYSIS

Hiding malware processes from fingerprinting is challenging. Current techniques like
metamorphic algorithms and diversity generate different instances of a program, protecting
it against static detection. Unfortunately, all existing techniques are prone to detection
through behavioral analysis — a runtime analysis that records behavior (e.g., through system
call invocations), and can detect executing diversified programs like malware.

We present malWASH, a dynamic diversification engine that executes an arbitrary
program without being detected by dynamic analysis tools. Target programs are chopped
into small components that are then executed in the context of other processes, hiding
the behavior of the original program in a stream of benign behavior of a large number of
processes. A scheduler connects these components and transfers state between the different
processes. The execution of the benign processes is not impacted. Furthermore, malWASH

ensures that the executing program remains persistent, complicating the removal process.

5.1 Introduction

Malware (and fighting malware) is an important aspect of computer security. Mal-
ware by itself does not exploit security vulnerabilities but is the payload that is executed
post-exploitation. Consequently, malware is only successful if it is stealthy and remains
undetected. Sophisticated, undetectable malware is therefore a required asset for attackers.
Anti Virus systems (AV) are based on signature detection and static analysis. Although
this method has limitations, it is well-proven, reliable, and accurate. The AV identifies
malware by looking for known patterns or characteristics. Due to its simplicity and accuracy,
signature-based detection remains widely used.

Malware authors bypass signature-based detection by using metamorphic [26] algorithms

and diversity. These techniques generate instances of the same binary that have different

93

signatures, while maintaining the functionality of the binary. Defenders quickly realized
that all generated instances have the same functionality, and started to identify the behavior
of the malware instead of the signature [22]. Dynamic analysis executes the malware to
reveal its behavior. This method is simple but effective, e.g., a typical keylogger repeatedly
performs a sequence of specific system calls. No matter how obfuscated the binary is, these
system calls are repeated in the same order, making the keylogger easily detectable.

A simple technique to bypass behavior based detection would be to insert bogus system
calls (i.e., system calls that do not affect the original execution) between real ones. An
analysis can likely filter out bogus system calls, thereby mitigating this naive technique. We
propose a sophisticated, novel mechanism to hide malware from behavior-based analysis.
Rather than executing the program in a single process, we automatically distribute the
program across a set of pre-existing, benign processes. Our approach is based on a simple
observation: although we cannot modify the executing system calls and their order of
execution in a binary, we can hide them within the stream of system calls that are performed
on the entire system.

To spread our system calls across the stream of calls for the entire system we propose
injecting our system calls into a set of existing processes on the system. To do this, the
original binary is chopped into small chunks. Each individual chunk only contains limited
functionality and therefore executes few system calls. These small chunks and an “emulator”
are then injected into multiple running processes and blend into the stream of executed
system calls. Each emulator then selects the individual chunks to run, captures state, and
coordinates with the other emulators who continues execution.

Detection tools that observe behavior based on a per-process analysis no longer see the
complete sequence of system calls that the program executes. Each injected system call is
hidden in a set of benign system calls and the program functionality is spread across a set
of benign processes, executing benign code (in addition to the injected one). Tracking the
system calls of all applications globally and trying to look for malicious patterns is a strictly

harder problem, as system calls from the injected binary are spread out in the stream of

94

system calls for the entire system. Consequently, methods like [29] which search for short
sequences of malicious system calls fail.

Prior obfuscation techniques such as [135}[136] guarantee that the actual computation
remains the same, which is a required, fundamental property that enabled behavioral analysis.
malWASH guarantees equal functionality, while bypassing behavioral analysis. The design
of our “malware” engine allows chopping and executing arbitrary programs. To keep our
Windows-based prototype implementation general but simple, we constrain the execution
environment, and assume that the binary has some specific properties (defined in|Section 5.4).
We evaluate our malWASH prototype implementation with samples from different malware
categories and show that our implementation successfully chops and executes the programs.

Beyond stealthiness, malWASH offers another interesting property: resilience. The
malware is distributed as it is injected into multiple benign processes and executes as part of
them. Therefore, killing a single process does not stop the execution of the malware as it
can reinstantiate itself from any remaining emulator. The only way to stop malWASH is to
kill all infected processes at the same time, before any process reinfects a new process.

The contributions of malWASH are:

* Design of an execution engine that thwarts behavioral and dynamic analysis.

* Creation of fully persistent malware that continues executing as long as at least one

emulator remains.

Furthermore, the design of malWASH, has some very interesting properties. First, even
if malWASH is detected, the actual binary remains obfuscated in a plethora of processes,
complicating reverse engineering. An analyst would first have to correctly reassemble the
binary. Second, all of the existing obfuscation and diversity techniques can be used with

malWASH.

5.2 Background and Related Work

Over the last decade, many techniques have been proposed to enable obfuscation and

diversity, with the goal of hiding malware from AV systems. One of the oldest methods

95

HSVM[EW pue UOT}OIJUT [BULIOU U2am}oq uostreduiod v :°1°¢ a1

Qrem[ew [euI3LIO 9y} Yiim [enba are syured pajoslur (uStuaq pue) [[ews ayi [‘A[fenideouo)) (9)

S e e

UonOdJuUI HS VA [BW Jopun waisAs (q) UOTIOQJUL [RWLIOU JOpUN WIISAS (B)

1]
SSa20.id

AN
$S920.1d

A Al 1} I |
$$9201d $S320.d $S8201d $S820.d $S820.d $S900.d

Al
“ ssao0id

1
SS820.d

aoeds Jasn & aoeds Jasn

96

to detect whether a given binary is malicious or not is to use static analysis detection
[23 25]]. Anti-disassembly mechanisms [36, (136, [137]] allow malware authors to bypass
static analysis and companies to protect their IP against, e.g., illegal distribution. Although
powerful, anti-disassembly techniques are infamous; benign programs have no reason to
obfuscate their code as obfuscation may impact performance, stability, and the ability to
reproduce crashes. Even though analysis of binaries protected by anti-disassembly is hard,
it is straight-forward to check whether such protections were applied, e.g., detecting an
encrypted PE header [24]. An AV can exploit this fact and flag a binary as malicious without
trying to analyze it, as using such obfuscation is a strong indication that the binary is actually
malicious.

Furthermore, these mechanisms have to eventually reveal their payloads and execute
it. Techniques like dynamic analysis and sandboxes, analyze the malware and compare
the behavior against well-known patterns. Anti-debugging techniques [39,[135]] along with
VM-detection [38]] are used to change a program’s behavior when a sandbox or a debugger is
detected. All these methods share that the actual execution of the malware, when not being
debugged, remains constant (this is a guaranteed property). Consequently, observing the
behavior of the executing malware always yields the same observation (e.g., same system
calls in the same order).

Improved obfuscation mechanisms were proposed, notably using Return Oriented Pro-
gramming (ROP) to hide a malware within a benign program [[138,[139]. Although effective,
a ROP-style execution can easily be detected [[106, 107, 108}, 109, [110]. Another interesting
obfuscation technique is movfuscator [140], which compiles a program using only mov
instructions. This makes analysis extremely hard, but detecting that movfuscator is applied
to a given binary is trivial. Any use of movfuscator is an indication that a binary is malicious,
even if there is no information on what the binary does.

The concept behind the previous approaches, was to hide a malicious payload within
a program. Another approach is to “get rid” of the malicious payload, by forcing another
program to execute it for you. Metasploit’s meterpreter [141] uses DLL and Reflective DLL

[142] injection, to inject a malicious payload into another process’s address space.

97

The common property of all the aforementioned protections is that any malicious action
happens within the context of a single process. Here is where dynamic analysis [27] takes
place. This is a powerful method that tries to classify a program or a process as malicious
by observing its behavior (e.g., system calls, involved files, or network connections). Using
dynamic analysis, it is possible to detect new, unknown malware just by matching the
behavior of the binary.

Many dynamic analysis methods have been proposed to detect malware. Methods based
on execution tracing [22, 28,29, 130} 31, 32], inspect executing traces, looking for malicious
patterns of system calls. However, when a binary runs under malWASH, is significantly
complicated due to the distributed nature of our approach: (i) the execution trace of a
process, contains only a small and out-of-order subset of system calls, and (ii) any sequence
of system calls of the original binary is distributed among multiple processes, because each
quantum given to malWASH, contains only a few system calls (e.g., 1 or 2).

The most recent malware detection methods use machine learning techniques to classify
a binary as malicious or not [33, 34, 35,143, 144]. However, these methods all assume that
the malware runs in a single process and that only malicious system calls are executed by a
process.

Even though the original binary is well hidden and protected, defenders could try to
detect the malWASH emulator itself and not the binary it emulates. However, the idea of
malWASH can also be used to protect malWASH itself. As we show in the
use of sub-emulators (small emulators that emulate the original emulator) along with other

hardening methods in emulator, makes detection challenging.

5.3 Design

The design of malWASH follows a simple concept: breaking a program into small pieces
and hiding these pieces in benign processes (see[Figure 5.1)). Conceptually, malWASH works
as an emulator that (i) executes individual instructions of the program and (ii) coordinates

with the other active emulators to create a correct flow of execution.

98

Behavioral malware detection is carried out per process (or per thread). After analysis,
an individual process can be flagged as malicious. We believe that scaling behavioral
analysis to a group of processes or threads is hard due to the exponential explosion of
possible combinations of system calls across processes. malWASH introduces an emulator
that allows the execution of a target program in a set of host processes. In the most stealthy
mode of malWASH, a host process executes a single instruction of the emulated program
per time slice. Detecting this one instruction within the millions of instructions that get
executed by the process is highly unlikely.

malWASH takes as input a binary file and produces a C++ source file that embeds all
the required parts of the binary along with all malWASH components. Using a source file as
output enables further binary obfuscation processes (e.g., metamorphism). This means that
all the existing protection methods against static analysis and signature detection work on
top of malWASH.

malWASH operates in two phases. In the first phase, the original program binary is
“chopped” into hundreds of small pieces and all the required information is extracted from
the binary (segments, loaded libraries, relocations, global data and thread information). All
these components (including those from malWASH) are encoded as character arrays and
packed into a single C++ source file.

Chopping the binary into components is challenging as control-flow transfer instructions
(e.g., jcc, jmp, call, and ret) may transfer control of the execution to a point that is
not in the current address space. Therefore, the initial chopping is done at the basic block
level. This way we know that only the last instruction transfers control to other locations.
Using an emulator lookup function, we can replace the original instruction with a set of
instructions that recover control-flow (possibly signaling another process to continue). Once
we finish chopping on basic blocks, we can further chop the basic blocks themselves into
new, smaller blocks, or start coalescing basic blocks to larger blocks.

Splitting opens a trade-off between efficiency and stealthiness. Using smaller blocks,
malware signatures disappear and dynamic analysis detection tools fail to observe malicious

behavior in the block. On the other hand, because there is a lot of overhead to transition

99

between executed blocks (capturing state, selecting the next block to execute, and scheduling
which process should execute the next block), fewer blocks will lead to less overhead from
the emulator.

Once the source file is compiled, the program is ready to execute. The second phase of
malWASH takes place when it starts execution. The first component is the loader, which
looks for a set of “suitable” processes. The amount of emulators used is flexible and user-
configurable. A good candidate is, e.g., the Google Chrome browser as it spawns many
communicating processes that are perfect candidates for injection. A process is suitable
when it allows another process to inject and execute code into its address space. Obviously,
these instances need to cooperate, so a stealthy, reliable communication channel is needed.
For this reason the loader also initializes a small set of shared memory regions for use by all
the malWASH emulators. These shared regions contain data segments, stack, heap and all
metadata that emulators are needed in order to cooperate and execute the blocks. Instead of
shared memory, other communication mechanisms can be used such as pipes, files, network
ports, or even covert channels.

Using shared memory regions has several advantages over process messages: (i) message
may get lost and (ii) someone may observe messages between processes that are irrelevant
to each other. If the emulator from process A communicates with the emulator from process
B, it writes to the shared region that emulator of process B is waiting to read. Someone
may still observe that there are new shared regions between processes, but as we show in
this information is of limited use.

Emulation of the malware begins after the loader terminates. Control is transferred to the
first emulator (there is no central scheduling emulator) which executes its basic block, and
then transfers control to the next emulator. At any time, exactly one emulator runs a piece
of the original program (except for multi-threading programs where multiple emulators can
execute different blocks of the program as long these blocks belong to different threads).
Semaphores and Mutexes synchronize the emulators and ensure that no more than two

processes will execute blocks from the same thread at each time.

100

When an emulator successfully takes the semaphore, it executes the next block of the
malware. Before executing the next block, a context switch is performed and all memory
accesses and imported function addresses are properly relocated. During the execution,
current instructions within a block are executed transparently, without knowing of the
emulation. After the block is executed, a context switch is performed, saving the current
state of the program in the shared region and the emulators will coordinate to find which
one will execute the next block. Note that different scheduling policies can be implemented
to select which emulator executes the next block, we use a simple race. This distribution of
emulators results in an address space independent execution.

When a process that contains an emulator terminates, the other emulators can continue
the execution and the malware will continue to execute. The other emulators can detect
the missing component and invoke the loader to reinitialize the missing emulator in a new
process, keeping the total number of emulators constant. This means that as long as there is
at least one emulator running it can recover from killed instances. Removing or stopping
the malware requires that all emulators must be killed at the same time. The emulators run

exclusively in memory, making it harder to detect as there are no persistent files.

5.4 Implementation

malWASH takes a binary program and distributes its execution across a set of benign
processes, coordinating the global state of the program and the scheduling between the
individual components. In the most fine-grained configuration, each instruction of the target
program is a different entity. The Windows-based implementation of malWASH draws
ideas from several areas: binary analysis to chop the program into individual components,
binary translation to manipulate the control execution of each block, to coordinate between
individual blocks and to orchestrate scheduling, and snapshotting to capture and synchronize
program state across the different processes.

Our malWASH prototype implementation (available at https://github.com/

HexHive/malWASH) consists of an offline and an online component. The offline compo-

https://github.com/HexHive/malWASH
https://github.com/HexHive/malWASH

101

Table 5.1.: List of supported properties by design and implemented in the current prototype.

Prototype
Property Implementation Design
Obfuscated No Depends
Self Modifying No Yes
Polymorphic /
Metamorphic No Yes
Packed No Yes
Anti disassembly No Yes
Anti debugging (Yes) (Yes)
Non PIE Depends Yes
Use Heap Yes Yes
Multi Threading Yes Yes
W+X sections No Yes
Non x86 No Yes
Statically linked Depends Depends

nent runs the binary analysis, chops the program into individual components, and prepares
the emulator. The online component includes the loader that injects components into dif-
ferent processes and the emulator which orchestrates and coordinates the execution of the
program among all the different host processes.

By extracting the components offline, we can fall back on existing tools for the under-
lying binary analysis and, more importantly, our emulator does not require disassembly
functionality. To keep the implementation prototype simple, we have restricted the (im-
plemented) functionality of the emulator. Our emulator supports the full x86 instruction
set (with a special focus of the control transfer instructions). Anti debugging features of
the original binary can be mitigated by our translation and analysis process. The current
implementation does not support x86-64 code and obfuscated or any form of self-modifying
code (a design and engineering decision as otherwise the emulator would require its own

binary analysis framework and disassembly functionality, vastly increasing the size of the

emulator). highlights the design trade-offs.

102

5.4.1 Phase 1: Chopping the binary

malWASH uses an IDA pro plugin to “chop” the binary. If IDA fails to analyse the
binary, our tool will fail as well. Our plugin uses a Depth First Search (DFS) to disassemble
the program from its entry point. This disassembly phase recursively follows control-flow
transfer instructions and thereby recovers the Control-Flow Graph (CFG) of the binary,
assigning a Block IDentifier (BID) to each basic block. These initial basic blocks can further

be chopped into smaller pieces, depending on the configuration:
BBS (Basic Block Split) mode: the basic blocks are used as is.

BAST (Below AV Signature Threshold) mode: basic blocks are chopped so that each

block is below a configurable threshold (we used 16 bytes for our experiments).

Paranoid mode: basic blocks are chopped to include only a single instruction.

Control-Flow Transfers

After binary analysis, each basic block ends with a control flow transfer instruction
(e.g., jec, jmp, call, or return and their variants). In BAST or Paranoid modes we have to
insert additional transfer instructions to connect the newly chopped basic blocks. These
instructions are replaced with a set of instructions that execute a lookup of the target block,
transferring execution to another process if necessary. By convention, our binary analysis
rewrites the basic block so that the target BID is in the ebx register (spilling the register
if necessary). This is not optimal from a binary translation perspective but the context
switching overhead to another process will dominate overhead and lookup efficiency is not
a key concern.

Indirect control-flow transfer instructions like indirect jumps, indirect calls, or return
instructions are harder to handle as the target BID is usually not statically known. For
switch statements, IDA Pro can often recover the actual targets and replace them with the
corresponding BIDs. For all remaining indirect control-flow transfer instructions we have to

execute an online lookup that translates a target address to a BID. This lookup can use a

; 1f retn is used

xchg

[esp], ebx

; if retn NN is used

mov
mov

[esp+ARG], ebx
ebx, [esp]

; code for both cases

cmp
Jjz
cmp
jz

mowv

jmp
TARGET_1:

mov

jmp
TARGET_2:

mowv

Jjmp

END:
nop

; if retn NN is used,

ebx, S_RET_1
TARGET_1
ebx, S$S_RET_2
TARGET_2

ebx, ffffffffh
END

ebx, S$_ID_1
END

ebx, $_ID_2
END

add esp, MM

Figure 5.2.: Translation of a return instruction.

; backup ebx

; retn NN, ARG = NN=x4
; get return address

; ERROR

remove all-1 args

MM = NN - 4

103

table of all target locations, or, e.g., in the case of return instructions, we can use the CFG to

identify all possible call sites and encode the return targets directly in the code as follows

(see|Figure 5.2)).

These replacements ensure that the control flow transfers are translated correctly and

allow the emulator to keep executing the target binary. Any calls back to the emulator

request a new target in ebx and dispatch to the next block.

104

Block relocations

All external references within a block must be relocated at runtime. External references
can either be functions from imported modules or constant references to segments (e.g.,
data, or rdata). Our block metadata keeps the offset of the addresses that need runtime
relocation, according with the type of relocation. In cases of indexed array accesses, or
constant pointers that point to constant addresses, all we have to do is to relocate the base

address.

Heap manipulation

Heap manipulation is a challenge when injecting a process into a set of benign processes
as all access to the heap must be coordinated, simulating a single target address space among
different host address spaces. If a block allocates memory using any of the standard heap
functions, this memory will be valid only under the address space that blocks is executed.
To overcome this problem we provide our own heap manipulation API, that will allocate
shared memory regions at the same base address for all processes. This can be done by
calling MapViewOfFileEx () with anon-NULL 1pBaseAddress.

During the translation we check for heap management functions like malloc (),
calloc(),LocalAlloc(),or HeapAlloc () and replace the call with an emulator-
local alternative that is aware of the translation. Similar work is done for other heap

management functions, like LocalFree () or MapViewOfFile ().

Socket descriptors and HANDLESs

The biggest challenge for the malWASH implementation is to transparently support
HANDLEs, HKEYs (essentially a HANDLE), sockets descriptors and FILE* pointers
(called “descriptors” for simplicity). Descriptors are unique per-process. If process A
creates a socket, process B cannot use that socket, even if it knows the socket descriptor.

However there are two functions provided by the Windows API, DuplicateHandle ()

105

and WSADuplicateSocket () that duplicate a HANDLE and a socket respectively.
Unfortunately, there is no native support for duplicating FILE* pointers. We discuss support
for FILE pointers in

Descriptor support has both an offline and an online component. Our IDA Pro plugin
searches for calls to descriptor functions (complete function declaration is proviced) and
marks them and their parameters for further analysis.

If a block creates, duplicates, or deletes a descriptor, this information is propagated to all
other emulators using the corresponding calls. The emulator includes runtime functionality

to coordinate this information.

5.4.2 Phase 2.a: Loading emulators

The loader is the first part of malWASH that executes. It initializes the required shared
memory regions (administrator privileges are required to set up shared memory, obtaining
these privileges is orthogonal to malWASH) and finds up to N processes to inject the emulator.
The standard code injection involves four functions: OpenProcess, VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread. Calling these functions in that
order is suspicious.

Although we cannot avoid to call these functions in that order, we make detection harder
in two ways. The first is to recursively use the chopping idea of malWASH: the loader
spawns 3 new processes. Each of these processes calls exactly one of the four functions and
informs the next one to continue. HANDLESs can be duplicated using DuplicateHandle() and
shared with any Inter Process Communication (IPC) mechanism. This does not solve the
problem but it adds one more layer of indirection. The second way we make detection more
difficult is to use equivalent undocumented functions from the NT API: ZwOpenProcess,
ZwAllocateVirtualMemory, ZwWriteVirtualMemory,and NtCreateThreadEx.
Both CreateThread (a benign function) and CreateRemoteThread (a notorious
function), internally call NtCreateThreadEx. Thus a detection tool has to check the

function arguments to decide if a call is malicious or not, resulting in performance overhead.

106

If these mitigations are not enough, the loader can spawn new processes, instead of
infecting existing ones, or infect non-running processes using one of the existing methods
viruses use for injection [145]. These approaches are not a panacea against detection and

we assume that the loader is, for now, trusted.

5.4.3 Phase 2.b: Executing the binary

After the loader finishes, it exits, and the emulator starts executing the individual pieces
of program code, emulating a regular process environment. The emulator runs under a
foreign process, like a parasite, and has no knowledge of the environment during start up.
This makes the development of the emulator an extremely challenging process. Written in
pure assembly, the emulator consists of 5,500 lines of assembly code (less than 14 kB of

compiled code) and can execute all the blocks in the correct order.

Core environment

When the emulator starts executing it must first establish its execution environment.
By reading the Process Environment Block (PEB), the emulator finds the entry point of
kernel32.dll and the address of LoadLibrary () and GetProcAddress (), allowing
us to find all other addresses in the system. The emulator then queries for a (randomly)
named shared memory region that contains the emulator state and the shared heap.

To get to an executable state, constant addresses to segments must be relocated to shared
regions and functions must be resolved to actual addresses, except some special functions
(e.g., those in that are redirected to internal functions of the emulator.

The emulator keeps “virtual registers” that the original binary will use. Context switching
is done before and after block execution. In each iteration the emulator waits on a semaphore
to get a mutual lock to execute the next block. When it takes the lock it copies the next
block into a local buffer. Eventually, the emulator will start executing the block using the
virtual registers. When the block finishes, the ebx register will contain the next BID and

control returns to the emulator to dispatch the next block.

107

There is also a special shared region, called Shared Control Region. This region coordi-
nates all emulators and contains (among other fields) the virtual registers. Stack is handled
like other segments. During startup, the emulator sets the virtual esp and ebp, with the
value of the shared stack, so the malware will not see any difference and will use the shared
stack instead. The loader prepares any command line arguments of the original program on

the stack.

Advanced Components

So far, the emulator can execute a program under multiple address spaces but there are
many small details that may cause the execution to fail. Here we discuss and address these
problems.

All emulators need to communicate. We therefore reserve some space in the shared
control region and use it as a mailbox. Emulators communicate by sending messages, each
message consists of a header followed by the data (a message looks like an UDP packet).
Emulators check their mailboxes (e.g., they simply read the value of the mail counter) and
process any messages, before execution of each block.

discussed the challenge of duplicating descriptors between emulators. The
offline part replaces the use of the descriptors with calls into the emulator. Here, we discuss
the implementation of these functions. We allocate a table (called Duplication Table or
“duptab”) with function pointers for each of the internal descriptor functions and dispatch
the functions accordingly. An instance of duptab is shown in

Duptab contains one row for each descriptor that the original binary uses. Each row
contains the original value, the type (socket, HANDLE, or HKEY) of the descriptor, and the
value of the duplicated descriptor for each host process. The emulator functions then use
this table to translate a descriptor to the local descriptor.

Unfortunately, there is no mechanism to duplicate FILE* pointers. We solve this problem
by using an alternative approach: We provide our API replacements for functions that use

FILE* pointers. These replacements are simple wrappers of equivalent functions that use

108

duptab (duplication table)
original rese

0x000004c8 |SOCK| O

Pn handle

0x00000504 | HDL 0

0x0000060c | SOCK

Figure 5.3.: An instance of duptab

HANDLEs (which we can duplicate). E.g., fopen (), is a wrapper for CreateFileW (),
fprintf () is a wrapper for sprintf () and WriteFile () and so on.

Beyond FILE* functions, several other functions need replacement. For instance, if
the original binary calls ExitProcess (), we terminate all emulators (instead of ter-
minating the current process). The emulator keeps a list of such special functions and
replaces them with the internal implementations during startup. Other types of func-
tions that need replacements are: functions that perform per-process specific actions (e.g.,
SetCurrentDirectory ()) or functions that keep internal state (e.g., , strtok ()).
In both cases, the emulator has to replicate the information across all emulator instances.

There are some sequences of functions, that must be executed in the same address space,
e.g., {bind, listen, accept} and {GetStartupInfo, CreateProcess}.
If 1isten () is executing in a different address space than bind (), even though the
socket is successfully duplicated, an WSAEINVAL error will be returned (this is a Windows
bug). Our emulator uses a call cache to address this issue. Each function in a chain is
marked as push while the last one is marked as sweep. Replacements are provided for these
functions to include the push-sweep functionality. An emulator does not execute a push
function; instead it pushes the function (with its arguments) on the call cache and returns a

fake successful value. When an emulator finds a sweep function it executes all functions

109

from the call cache along with the last one, flushing the call cache. Although not perfect,
this approach works well in practice.

The distributed design of malWASH allows us to handle multi-threaded programs
by creating a shared stack and virtual registers for each thread. Each thread contains
its own semaphore and its own variable that indicates the next block. Each emulator
uses a round-robin algorithm to execute blocks from all “RUNNING” threads. Simple
replacements are also provided for thread management functions: CreateThread () and
ResumeThread () mark and emulated thread as “RUNNING”, Exit Thread () marks
it as “UNUSED” and SuspendThread () marks it as “SUSPENDED”.

The job of the emulator is twofold; it executes the emulated binary and keeps itself
stealthy. Emulators can “ping” other emulators to see if all of them are alive. When an
emulator detects that some are missing, it could invoke the loader to inject the missing

emulator into a new process.

5.4.4 Recovering terminated instances

The core functionality of malWASH is to ensure that the original binary executes as
if being run in a regular environment. In addition, malWASH also ensures resilience and
recovery against “attacks”.

Resilience, is enforced as a side effect of malWASH’s distributed nature. We may
run into the problem that an analyst kills all but one emulator instances to simplify the
analysis process. Therefore, malWASH also needs a recovery mechanism. We already have
a communication mechanism between emulators and as we mentioned in
the total number of running emulators is constant and known to all emulators.
Thus, checking whether an emulator was killed is straight forward: each emulator periodi-
cally sends heartbeat messages to all emulators. If an emulator stops receiving heartbeats, it

can invoke the loader process again, to respawn the missing emulators.

110

Table 5.2.: Block statistics of malware samples.

| Sample name | Type | ## Instructions | Blocks Generated |
BBS | BAST | Paranoid

Trojan.Win32.Keylogger.Gen keylogger 2957 347 541 1484
Trojan.Win32.Invader.aa backdoor 6359 118 | 233 782
Gen:Heur.Bodegun.8 backdoor 1326 112 195 496
Virus.Win32.Filelnfector virus 1739 98 183 772
TrojanSpy:Win32/Keylogger.BZ keylogger 1380 89 178 546
Trojan-Spy.Win32.Diabloll.a trojan-spy 162 62 86 162

W32/S-ac5b79f0!Eldorado trojan 1837 67 141 431

W32/SelfStarterInternetTrojan!M | trojan-backdoor 3391 107 209 576

5.5 Evaluation

We evaluate malWASH by targeting a set of malware samples that we inject into the
most popular browsers (Google Chrome v50.0.2661.94, Mozilla Firefox 6.0.1 32 bit, Opera
12.16 and Safari 5.1.7) as victim processes under the Windows 8.1 Pro x64 operating system.
Chrome’s security feature of separating each tab as its own process comes in handy and
allows malWASH to inject a different set of chunks into each per-tab process and shared
memory regions across Chrome instances will not raise alarms.

shows details of the malware samples we evaluate. The total number of
instructions is not equal to the number of blocks in paranoid mode as malWASH omits
code before and after main () as the malWASH loader component sets up the process
environment and not the initialization code in the executable.

We inject malWASH into 1, 2, 4, and 8 Chrome processes, executing the samples in the
different modes. In all cases both the host processes and the emulated process run without

error. The host process continues without measurable performance degradation.

5.5.1 malWASH resilience

Due to the distributed nature and the shared state of malWASH, killing an emulated
process is hard. In[Figure 5.4/ we inject a sample into 8 idle processes (so any CPU usage will

come from malWASH) and start measuring their CPU usage using Microsoft Performance

111

100
Victim #0
90 —_— Victim #1

—_— Victim #2
80 | —— victim #3
Victim #4
Victim #5
Victim #6

70

60

Victim #7

50

40

30

20

10

£ L

%$CPU Usage/Time

Figure 5.4.: CPU usage among infected (idle) processes

Monitor. Initially, all host processes execute roughly the same number of blocks, so the
CPU per host process stays low. As we kill off individual host processes, the remaining
emulators end up executing more blocks, increasing their CPU usage. If additional stealth is
required, the emulators can throttle execution of the target process and add sleep intervals

between block executions.

5.5.2 Case Study: Remote Keylogger

For malWASH we assume that the target process is not CPU intensive. For CPU intensive
workloads, the emulator may be an issue as there is overhead between executed blocks.
Our emulator works well for programs that require stealthiness with little computation.
Examples of such programs are keyloggers or host-based backdoors. In this section we
focus on a remote keylogger to demonstrate the effectiveness of malWASH.

The remote keylogger works a follows: it opens a TCP connection to a remote host
and sends captured keystrokes to the host. For the evaluation, the keystrokes were sent to a
different process on the same machine. The target program is repeatedly checking whether
the foreground window contains keywords from a whitelist (e.g., Facebook, GMail, Hotmail,

or Twitter). And if so, it starts keylogging by checking the state of each key.

112

100

T
Continue

Browsin

W

Browsers Inject

80 start malWASH
Are Idle

Browsin

60

40

Firefox
Chrome
Chrome #1
Chrome #2
Chrome #3

%CPU Usage/Time

20

. AN

Figure 5.5.: CPU usage of Firefox and Chrome under malWASH infection

We measured performance impact by using the Octane 2.0 JavaScript benchmark on the
host browsers’ processes. In this benchmark we inject malWASH into the browser process
that runs the benchmark for each experiment. shows the average and standard
deviation of the benchmark scores for five runs, the low standard deviation shows that the
results are stable. The difference of the performance results across injected and non-injected
version is in the noise and will make intrusion detection based on performance results hard.

shows a second scenario where we inject the keylogger under malWASH
in one Firefox process and four Chrome processes (Chrome has four running processes
even with a single open tab), measuring their CPU usage using the Microsoft Performance
Monitor. During normal browsing we observe some spikes due to regular browsing activity.
Then we stop browsing (browsers are idle) and inject malWASH. At this point there is a
small peak due to malWASH startup. As browsing continues, the keylogger now runs inside
the host processes and captures keystrokes. After some time we close Chrome and the
emulator inside Firefox now has to execute all blocks, showing a slight increase in CPU
usage for the Firefox process.

This benchmark shows that we can distribute the load of the emulator across several
processes. With an increasing amount of host processes, the overhead for each individual

host process through the injected process is reduced.

113

8¢ €Sl 66 9¢l 0S¢ 10¢ 0S9 LCL¢ LY6 TEY'T vSL 91¢ A IS
1¥0°C | 8TET | €91°€ || 886°¢ | TE8Y | 8¥0'9 || 9SE°01 | 9¥1°TI | 6ST91 || 9TT'IT | TYLSI | 1¥S61 || ddetaay
md | PIS o/m md | PIS o/m I PIS o/m I PIS o/m 9PN
LD[DS viad() X0f241,] DIIZO w04y 2]8005)

yrewyOudg jdiIdseaef ()°g dUBII() WOIJ SAI0IS IFBIIAY

|

SMOUS ,.0/M,, ‘s1asmolq Je[ndod 1sow 9y} Jo Yora Ul sawn 9AY YIewyouaq 1dIIogeAr(()'g ueld() Ay} Juruunl Woij sonsnels "¢°g 9[qel,

awIn Y} JO 9% (0] SONOoNsAY Surpuas pue Furrmnjded 19330143 oY) SMOUS _ [[N,, [IYM ‘QUIT}) JO ISAI AY) IO
soyonsAay spuas pue sainyded pue auwin Ay JO Jiey J0J SPIOMAY J0J sueds 1ey) J0F30[AY B SMOUS , PIS,, ‘UONI[UT JNOYIIM UONNIAXD

114

5.5.3 Discussion

Detecting programs running under malWASH through static or dynamic analysis is
difficult. Static analysis is complicated because the original binary is chopped into many
small pieces, likely below the signature threshold. The (tiny) emulator itself can also be
protected using existing (automated) diversity techniques. Dynamic analysis is challenging
as the behavior of the target program is hidden under the infected processes, making it hard
to observe a sequence of calls of the target program. Therefore, defenders will likely move
towards detecting malWASH instead of the target program. This by itself has the advantage

of hiding the true functionality of the emulated program.

Protecting the emulators

Although existing detection methods will have a hard time detecting the original binary,
they can be used for detecting the emulators. We argue that behavioral analysis of emulator
is challenging because: (i) the emulator is very small (14kB), (ii) the emulator uses only
a tiny set of system calls (for shared memory management) which will appear benign,
and, most importantly, (ii1) these system calls are well mixed with a subset of system calls
from the emulated binary. In addition, the emulator can leverage any existing obfuscation
techniques to make analysis harder.

An issue that the emulator faces is that it uses dedicated threads with similar behavior.
Thus, instead of a per-process analysis, a defender could look at the actual threads and
try to identify emulator threads. However, this situation is somewhat similar to the status
quo: malware uses a dedicated process within the system. One option would be to chop
the emulator itself into small components, injecting them into different threads of the
same process. This would lead to yet another (smaller) sub-emulator. Sub-emulators
are much simpler because they run under the same address space and thus they lack the
aforementioned problems that malWASH tries to solve. No shared memory is required, just
a form of synchronization (e.g., spin locks or covert channels), hardening the options for

behavioral analysis and spreading the emulator across several threads.

115
Fixing any abnormal system behavior

The performance overhead for malWASH is small for non-CPU intensive workloads
(see[Figure 5.4)). A possible detection mechanism could spread “honeypot” processes that
are idling on the system. As soon as the emulator is injected into these processes they will
start to execute some computation and the malWASH injection can be detected. malWASH
can try to mitigate by scanning for active processes by making the loader more complex
(and therefore more detectable).

Careful selection of host processes, hides potential behavioral discrepancies of a process,
e.g., no alarms are raised for an emulator that opens a remote connection if it is running in a
browser. Process selection is an open problem and we leave it as a future work. In short,
malWASH could observe the behavior of a process, and if suitable, do the injection.

Another opportunity to detect malWASH is the shared memory regions. A detection
mechanism may correlate host processes through their shared memory regions. On one hand
correlation is challenging, due to the large amount of shared memory regions that are active
across all processes on windows systems. In addition, malWASH does not require a star-like
mapping where the same shared memory region is mapped among all processes (even for
heap allocated shared regions) but can also use duplicated regions as shown in

With duplicated regions, we maintain multiple copies of the same shared mapping, and
we force at most two processes to share the same region. Each region could then use a
disjoint encryption key to avoid correlation between shared regions. In order to keep these
shared regions consistent, some ‘“‘external” processes are needed. Each external process
is responsible for keeping the subset of shared regions consistent. External processes
communicate with each other to keep their subsets consistent. This communication is done
using covert channels or by reading/writing regions to temporary files to avoid “circles” of
processes connected by shared memory.

In case that usage of shared memory is a problem by itself, it can safely replaced by

different (and admittedly slower) mechanisms like files, pipes, or covert channels.

116

Process Process Process Process
| 1l I \Y)
A
Shared Region #1 Shared Region #2 Shared Region #3
A A A
External Covert External
Process V Channel Process VI

Figure 5.6.: Thwarting detection based on shared memory correlation. Here processes I
through IV used to share the same mapping. We create 3 replicas for the shared mapping
with two processes attached each.

Also, the distributed nature of malWASH does not require all the blocks and program’s
state to be present in memory during execution: the emulator could request the next block
and the current program’s state from a remote host which is controlled by the bot of the
attacker.

As discussed in the loading is the most exposed part of malWASH. If our
proposed obfuscation approach is not stealthy enough, additional emulator processes can be
spawned on demand, further obfuscating the loader.

We do not claim that this section covers all methods to detect malWASH and other ways
may exist. The current prototype of malWASH is not complete but focuses on showcasing
the technique. Overall, malWASH is a new technique to hide a target program in a set of

benign processes.

5.6 Conclusion

Hiding processes in an execution environment is a challenging problem. While static
detection is straight-forward to evade using metamorphism [26] and diversity, dynamic

detection can single out processes at runtime due to their behavior.

117

We present malWASH, a tool that hides the behavior of an arbitrary program by distribut-
ing the program’s execution across many processes. We break the program into small chunks
and inject these chunks into other processes. Our emulator captures and synchronizes state
among the processes and coordinates the execution of the program, hopping from process to
process and weaving individual instructions and system calls into the stream of instructions
and system calls of the host program. We also propose the use of sub-emulators to further
protect malWASH itself.

Our evaluation shows that our prototype of malWASH successfully distributes different
malware programs into sets of benign processes. Detecting coordinated small chunks of

malicious code in benign processes is a challenging problem for the research community.

118

6 RELATED & FUTURE WORK

As discussed in precisely inferring the Residual Attack Surface, is not possible as
it is based on an undecidable problem (refer to for the proof). Approximating
it remains an open problem with lots of interesting directions to explore. This dissertation
explores only a small portion of it (e.g., malWASH is just one way to achieve persistence
on a compromised system while evading detection). Finding new attacks is beneficial for

defenders as they can reinforce their defense mechanisms.

6.0.1 Library Fuzzing

Fuzzing remains the most widely deployed technique for discovering new vulnerabilities.
One major factor of its widespread use is simplicity: the target application is fed with some
random input while fuzzer looks for abnormal behavior (crashes, or hangs). However, scaling
fuzzing to libraries is challenging, as libraries are not standalone applications with a well
defined entry point. Existing solutions include i) libFuzzer [53]] and ii) fuzzing standalone
programs (called consumers) that utilize API functions from this library. Although libFuzzer
provides a convenient way to fuzz individual API functions, it involves a huge amount
of manual effort, as the analyst needs to figure out how to fuzz the individual functions.
Fuzzing library a consumer has some major limitations too. First, consumers may explore
only a small portion of the library. Second, it is hard to determine whether the discovered
bugs are from the library and not the consumer itself.

FuzzGen is the first attempt to solve this problem. However it can be improved in several
directions. Analysis can be imprecise or even fail in some cases, so improving the analysis
is our first goal. Furthermore, the generated fuzzers are heavily dependent on the library
consumers. Having too many consumers, results in cumbersome and slower fuzzers. Also,

when the consumers explore only a small portion of the library, FuzzGen produces weak

119

fuzzers. Classifying library consumers and selecting an appropriate subset is also the next

topic of our future work.

6.0.2 Data-Only and Control Flow Bending attacks

With the wide deployment of CFI, ROP is no longer possible. Nevertheless, it is
still possible to perform code reuse attacks [15, 97, 98, 99]], as well as data-only attacks
[16, 17, 1100, [133]. However, these attacks are extremely hard in practice as they have
requirements (e.g., arbitrary memory write primitives) that are hard to find. Even worse,
it has been shown [[17]] that the problem of automating data-only attacks is reduced to an
NP-hard problem. Hence, research in this areas seems to be saturated, as there are not many
new things to explore. A potential extension is to include the applied CFI policy in BOPC
framework, to include the likelihood of finding a solution when a coarse-grained CFI policy
is applied.

On the other hand, preventing data-only attacks remains an open problem as existing
DFI protection schemes come with a high overhead. During the evaluation of BOPC, we
noticed that it is possible to insert additional code in the binary, that clobbers a set of given
basic blocks. Thus finding dispatcher gadgets to stitch functional blocks together is no
longer possible. Finding a way to thwart BOP gadget stitching with a low overhead is an

interesting challenge that we will look into.

6.0.3 Distributed malware detection

Detecting malware through dynamic and behavioral analysis is an effective measure
against obfuscated and metamorphic malware where static analysis fails. Although it is easy
to change the shape of a malware, it is hard to change its identity and its intentions. With the
concept of distributed malware [37/]], attackers can “mix” the behavior of the malware with
other processes on the system thus bypassing existing detection mechanisms. Detecting this
form of distributed malware is an interesting challenge, as existing detection mechanisms

are not designed to scale to multiple processes. Finding a new detection scheme that is

120

capable of analyzing two or more processes at the same time with low overhead is also an

interesting problem to look into.

121

7 CONCLUSION

This dissertation presented the body of the work on infering the Residual Attack Surface
under state-of-the-art mitigations. The dissertation started with a definition of the Residual
Attack Surface and continued with the challenges in measuring it. The key insight was to
divide an attack into distinct phases (Vulnerability Discovery, Vulnerability Exploitation,
Persistence on the compromised system) and to infer the Residual Attack Surface in each
phase.

FuzzGen is a tool for automatically synthesizing target-specific fuzzers that able to
achieve a high code coverage and hence expose bugs that reside deep in the code. FuzzGen
is part of the Vulnerability Discovery phase and assist software developers to quickly find
and patch bugs before an attacker exploits them.

BOPC [17] is a framework that implements the concept of Block Oriented Programming
which automates Data-Only attacks under heavily constrained environments such as binaries
hardened with CFI and shadow stacks. BOPC is part of the Vulnerability Exploitation phase
and can help software developers to highlight payloads that an attacker is still capable of
executing.

An extension of BOPC is X-Cap, which is an ongoing work. It essentially assesses
exploitation capabilities by indicating what types of payloads are feasible to run in vulnerable
applications. X-Cap highlights the limits of BOPC and provides upper bounds on attacker’s
capabilities.

malWASH [377] is another framework for the last phase of the attack that thwarts dynamic
and behavioral analysis to achieve persistence on the compromised system. malWASH
automatically “chops” a binary into hundreds of piece and performs a distributed execution
on them. malWASH can help malware analysts to evaluate their detection tool and include

potential detection schemes for distributed malware in their defense mechanisms.

122

In conclusion, we hope that the Residual Attack Surface will lead to new defenses. These
defenses should be adapted to the new attack technologies and possibilities that attackers

invent to bypass existing mitigations.

123

APPENDIX
7.1 Determining exploitability is undecidable

We present a proof that the problem of determining the exploitability of a security bug
(i.e. vulnerability) is undecidable. We prove this statement by contradiction, by reducing
halting [[146] problem to it.

Let us assume that it is possible to determine whether a vulnerability is exploitable. In
this case there should exist a Turing machine £ X PL,;, that decides (i.e., always termi-
nates) whether another Turing machine M (i.e., a program) with an known vulnerability, is

exploitable when running on some given input w. EX P L, is formally defined as follows:

accept, if running M on w exploits a vulnerability
EXPLy(M,w) = (7.1)

reject, otherwise

Given EX PL,;, we will build a Turing machine H ALT); that determines whether

another Turing machine M terminates (halts) when running on some input w:

accept, if running M on w terminates
HALT(M,w) = (7.2)

reject, otherwise

Let also M’ be a Turing machine that operates on three distinct inputs: The description
(M) of another Turing machine), some input w, and some exploit payload x. The
description of M’ is the following:

M'" = * for input ((M), w, z)*

1. Run EXPLy; on (M, w)
2. if it accepts, then reject

3. Simulate M on w

124

4. If M accepts, or rejects, then

5. Trigger the vulnerability and execute payload x

Having all these components, we can build a Turing machine H ALT), that decides
whether a Turing machine terminates:
HALT) = * for input ((M), w)*
1. Run EX PLy; on M’ with input ((M), w, x)
2. If it accepts, then accept

3. Otherwise reject

The intuition behind M’ is that, if M does not terminate with input w, then it will never
reach step 5 and hence it will never exploit a vulnerability. Thus, EX P Ly, ((M), w, z) will
reject. On the other hand, if M terminates when running with input w after a finite number
of steps, then M’ will reach step 5 which means that the M’ will trigger the vulnerability
and execute a payload. This means that M’ has an exploitable vulnerability and therefore
EXPLy({(M),w,) accepts input. However, there’s a special case. What if running M
on w exploits an vulnerability itself? In that case, £ X PL,; will accept M’, even if the
exploit payload does not terminate. We do not consider this case, as we assume that M does
not have any vulnerabilities.

The above statement indicates that it is possible to build H ALT); from EX PLj;. This
implies that we have a solution for the halting problem. This is of course is not possible.
Therefore, the initial assumption (i.e., it is possible to determine whether vulnerability is
exploitable) contradicts with our result. Thus, /X PL,; cannot exist and hence the problem

of determining exploitability is undecidable.

© 0 NN AW N =

=S

125

7.2 State Inconsistency for A2DG coalescing

Although coalescing increases the generality of the fuzzers, it suffers from the state
inconsistency problem. Consider for instance a fuzzer of a socket library and two library

consumers (a) and (b) as shown below:

/+ consumer #1 */ /% consumer #2 x*/ /% coalesced */
sd = socket (...); sd = socket (...); sd = socket (...);
connect (...); connect (...); connect (...);
// send only sock // send & recv shutdown (sd,
shutdown (sd, write(sd, ...); SHUT_RD) ;
SHUT_RD) ; write(sd, ...);

write(sd, ...); read(sd, ...); read(sd, ...);
close (sd); close (sd); close (sd);

(a) (b) (c)

The first module connects to a server and terminates the read side of the socket (as it only
sends data). The second module both sends and receives data. If we ignore the arguments for
now, the functions socket, connect and write are shared between the two consumers
and they are therefore coalesced. The result is the coalesced fuzzer shown in (c). However
this results in an inconsistency where the fuzzer closes the read side of the socket and later
tries to read from it. Although the fuzzer does not crash, the coalesced module violates the
state and is therefore not a useful fuzzer.

A%DG@ coalescing results in aggressive fuzzers that achieve deeper coverage and find
more bugs. The downside is that coalescing may introduce false positives where the API is
violated, resulting in false bugs. Without coalescing, the fuzzers are redundant and will not
achieve coverage as deep as the coalesced fuzzers but will not introduce any false positives.
In our empirical evaluation we discovered that the number of false positives is low and we
therefore enable coalescing but leave it as a configurable option. In future work, we will
look at how to tune coalescing aggressiveness, i.e., deciding how and when to coalesce

based on a heuristic.

126

7.3 Extended Backus-Naur Form of SPL

(SPL) ::= void payload() { (stmts) }
(stmts) = ((stmt) | (label))* (return)?
(stmt) ::= (varset) | (regset) | (regmod) | {call)

| (memwr) | (memrd) | (cond) | (jump)

(varset) ::= int64 (var) = (rvalue);
| int64d* (var) = {(rvalue) (, (rvalue))*};
| string (var) = (str);

regset) == (reg) = (rvalue);

regmod) ::= (reg) (op)= (number);

memwr) ::= *(reg) = (reg);

call) ::= (var) ((€l (reg) (, (reg))*);

(

(

(

(memrd) ::= (reg) = *(reg);
(

(label) ::= (var):

(

cond) ::= if ((reg) (cmpop) (number)) goto (var);

(jump) ::= goto (var);

(return) ::= returnto (number);

reg) = ‘__r’(regid)
regid) := [0-7]

number) := (‘+’ 1 °=") [0-9]+ | ‘0x’[0-9a-fA-F]+

stry = []*

(
(
(
(
(rvalue) := (number) | ‘&’ (var)
(
(op) =+ 1 =111)7 1~ < <
(

cmpop) = ‘=="11="1>"]>="]<| ‘<=’

127
7.4 Stitching BOP Gadgets is NP-Hard

We present the NP-hardness proof for the BOP Gadget stitching problem. This problem
reduces to the problem of finding the minimum induced subgraph Hj in a delta graph.

Furthermore, we show that this problem cannot even be approximated.

00 Y
P e DE s

A1
\8 12/ 2/4‘
A <

[> B4 <—Oo—>/Bz <-|

_\({Q7

Figure 7.1.: An delta graph instance. The nodes along the black edges form a flat delta graph.
In this case, the minimum induced subgraph, Hy, is As, By, Cy, D1, with a total weight of
20, which is also the shortest path from As to D;. When delta graph is not flat (assume that
we add the blue edges), the shortest path nodes constitute an induced subgraph with a total
weight of 70. However H}, has total weight 34 and contains As, By, C, D,. Finally, the
problem of finding the minimum induced subgraph becomes equivalent to finding a k-clique
if we add the red edges with oo cost between all nodes in the same set.

Let 0G be a multipartite directed weighted delta graph with & sets. Our goal is to select
exactly one node (i.e., functional block) from each set and form the induced subgraph Hy,

such that the total weight of all of edges is minimized:

Juin distance(e) (7.3)
ecHy

128

A G is flat, when all edges from 7" set are towards (i + 1) set. The nodes and the
black edges in[Figure 7.T]are such an example. In this case, the minimum induced subgraph,
is the minimum among all shortest paths that start from some node in the first set and end
in any node in the last set. However, if the G is not flat (i.e., the SPL payload contains
jump statements, so edges from i‘" set can go anywhere), the shortest path approach does
not work any more. Going back in if we make some loops (add the blue edges),
the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the 0G is not flat . To prove this, we will use a
reduction from K-Clique: First we apply some equivalent transformations to the problem.
Instead of having K independent sets, we add an edge with co weight between every pair
on the same set, as shown in (red edges). Then, the minimum weight K-induced
subgraph H, cannot have two nodes from the same set, as this would imply that /};, contains
an edge with oo weight.

Let R be an undirected un-weighted graph that we want to check whether it has a
k-clique. That is, we want to check whether clique(R, k) is True or not. Thus, we create a

new directed graph R’ as follows:
* R’ contains all the nodes from R
* Vedge (u,v) € R, we add the edges (u,v) and (v, u) in R’ with weight = 0
* Vedge (u,v) ¢ R, we add the edges (u,v) and (v, u) in R’ with weight = oo

Then we try to find the minimum weight k-induced subgraph Hy, in R'. It is true that:

Z weight(e) < oo & clique(R, k) = True

:= If the total edge weight of H, is not oo, this implies that for every pair of nodes in
Hj, there is an edge with weight 1 in R’ and thus an edge in R. This by definition means
that the nodes of Hj, form a k-clique in 1. Otherwise (the total edge weight of H, is co) it

means that it does not exist a set of k£ nodes in R’ that has all edge weights < oo.

129

<= If R has a k-clique, then there will be a set of £ nodes that are fully connected. This
set of nodes will have no edge with oo weight in R’. Thus, these nodes will form an induced
subgraph of R’ and the total weight will be smaller than co.

This completes the proof that finding the minimum induced subgraph in G is NP-hard.
However, no (multiplicative) approximation algorithm does exists, as it would also solve the

K-Clique problem (it must return O if there is a K-Clique).

7.5 SPL is Turing-complete

We present a constructive proof of Turing-completeness through building an interpreter
for Brainfuck [147], a Turing-complete language in the following listing. This interpreter is

written using SPL with a Brainfuck program provided as input in the SPL payload.

1 int64 *tape = {0, 0, O, O, O, O, O, 0, 0, O};

2 string input = ".+[.+]";

3 _ r0 = stape; // Data pointer

4 __r2 = &input; // Instruction pointer

5 __r6 = 0; // STDIN

6 _rl =1; // STDOUT

7 _r8 = 1; // Count arg for write/read
8 NEXT: _rl = %«__ 1r2;

9 if (__rl != 0x3e) goto LESS; S/
10 _r0 += 1;

1 LESS: if (__rl != 0x3c) goto PLUS; /<!
12 _r0 —= 1;

13 PLUS: if (__rl != 0x2b) goto MINUS; /ST
14 *__r0 += 1;

15 MINUS: if (__rl != 0x2d) goto DOT; S/ =T
16 x_ r0 —= 1;

17 DOT: if (__rl !'= 0x2e) goto COMMA; V2
18 write(__r7, _ r0, _ r8);

19 COMMA: if (__rl != 0x2c) goto OPEN; /S,
20 read(__r6, »__r0, _ r8);

21 OPEN: if (__rl != 0x5b) goto CLOSE; S/
2 if (_r0 != 0) goto CLOSE;

23 _r3 =1; // Loop depth counter
% FIND C: if (__r3 <= 0) goto CLOSE;

25 _r2 +=1;

26 _rl = %__1r2;

27 if (__rl != 0x5b) goto CHECK_C; // '['
28 _r3 +=1;

29 CHECK C: if (__rl != 0x5d) goto FIND_C; // ']’

30 _r3 —=1;

31
32
33
34
35
36
37
38
39
40
41
42
43
44

130

goto FIND_C;

CLOSE: if (__rl != 0x5d) goto END; J/]!
if (__r0 != 0) goto END;
_r3 =1; // Loop depth counter
FIND_O: if (__r3 <= 0) goto END;
_r2 —=1;
_rl = %__1r2;
if (__rl != 0x5b) goto CHECK_O; // '['
_r3 —=1;
CHECK_O: if (__rl != 0x5d) goto FIND_O; // "]’
_r3 +=1;
goto FIND_O;
END: _r2 +=1;
goto NEXT;

7.6 CFG of nginx after pruning

The following graph, is a portion of nginx’s CFG that includes function calls starting
from the function ngx_cache_manager_process_cycle. The graph only displays
functions which are up to 3 function calls deep to simplify visualization. Note the reduction

in search space—which is a result of BOPC’s pruning—as this portion of the CFG reduces to

the small delta graph in

131

132

7.7 Detailed overview of the BOPC implementation

|
anus T|_||

(anfen ‘ippe) p—
. <——— anjiey
(enfen ppe)

R S S S —— e
1 SS820.d aAnesay 1“

e e e
|
]
|
|
L4

0109
raviy| enowsy av,IN
|
|
|
|
|
T, S |
SdASH]
SnSol_ ozjjeuy. |
waw | | e |
|
[]
|
1Go¥eIS]
VS ydeuBgng ydes “
obpa obpa AH paanpu| Bled |
sleinwis 3 ajenWIS EREhEIL MH U o9 ping |
|
1 |
zolels 5 A |
sjebpen [
auojo e N vs [euonouny Gl depy o
ul. <
A._ﬂ P W °
sl

uonenuig [

SUed 1S9HOUS D40

syoo|g
ojepipued
puiy

_ peojfeq

pu3z-juoig Aieur

1
o018 fmmmmmmm s
oensay

1ds

010 | | 210 |
40 | 108V 7940] eremaeo |

(1]

(2]
(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

133

Bibliography

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in Security and Privacy

(SP), 2013 IEEE Symposium on. 1EEE, 2013, pp. 48-62.
J. C. King, “Symbolic execution and program testing,” Communications of the ACM, 1976.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 2008, pp. 337-340.
H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program transformation,” 2018.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, 2018.

T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley, “Automatic exploit
generation,” Communications of the ACM, vol. 57, no. 2, pp. 74-84, 2014.

Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen, and W. Zou, “Revery: From
proof-of-concept to exploitable,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2018, pp. 1914-1927.

A. van de Ven and I. Molnar, “Exec shield,” https://www.redhat.com/{/pdf/rhel/WHP0OOO6US_
Execshield.pdf, 2004.

S. Designer, “return-to-libc attack,” Bugtraq, Aug, 1997.

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls
(on the x86),” in Proceedings of CCS 2007, S. De Capitani di Vimercati and P. Syverson, Eds. ACM
Press, Oct. 2007, pp. 552-61.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a new class of code-reuse
attack,” in Proceedings of the 6th ACM Symposium on Information, Computer and Communications

Security, 2011.

S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and M. Winandy, ‘“Return-oriented
programming without returns,” in Proceedings of the 17th ACM conference on Computer and communi-

cations security, 2010.

https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

134

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity principles, implementations,

and applications,” ACM Transactions on Information and System Security (TISSEC), 2009.

T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of shadow stacks and stack canaries,”
in Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security.

ACM, 2015, pp. 555-566.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow bending: On the effective-
ness of control-flow integrity.” in 24th USENIX Security Symposium, 2015.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-oriented programming: On the
expressiveness of non-control data attacks,” in Security and Privacy (SP), 2016 IEEE Symposium on,

2016.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented programming: Automating data-
only attacks,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1868—1882.

M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,” in Proceedings

of the 7th symposium on Operating systems design and implementation, 2006.

PAX-TEAM, “Pax aslr (address space layout randomization),” http://pax.grsecurity.net/docs/aslr.txt,
2003.

T. Durden, “Bypassing PaX ASLR protection,” Phrack magazine #59, 2002.

K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-guard: Stopping address space
leakage for code reuse attacks,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015, pp. 280-291.

U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code,” Journal in

Computer Virology, 2006.

D. Wagner and D. Dean, “Intrusion detection via static analysis,” IEEE Symposium on Security and

Privacy, 2001.

D. Devi and S. Nandi, “Pe file features in detection of packed executables,” International Journal of

Computer Theory and Engineering, 2012.

M. L. Sharif, V. Yegneswaran, H. Saidi, P. A. Porras, and W. Lee, “Eureka: A framework for enabling
static malware analysis,” ESORICS, 2008.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” 2010 International Conference

on Broadband, Wireless Computing, Communication and Applications, 2010.

http://pax.grsecurity.net/docs/aslr.txt

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

135

M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic malware-analysis
techniques and tools,” ACM Comput. Surv., 2012.

W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from unix process execution traces for intrusion

detection,” AAAI Workshop on Al Approaches to Fraud Detection and Risk Management, 1997.

S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences of system calls,”

Journal of Computer Security, 1998.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. yong Zhou, and X. Wang, “Effective and
efficient malware detection at the end host,” USENIX Security Symposium, 2009.

X. Hu, T. cker Chiueh, and K. G. Shin, “Large-scale malware indexing using function-call graphs,”

ACM Conference on Computer and Communications Security, 2009.

C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting intrusions using system calls: Alternative

data models,” IEEE Symposium on Security and Privacy, 1999.

Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “Leaps: Detecting camouflaged attacks with
statistical learning guided by program analysis,” DSN, 2015.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov, “Learning and classification of malware
behavior,” in International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer, 2008, pp. 108—125.

J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious executables in the wild,”

ournal of Machine Learning Research, 2006.

J. Aycock, R. deGraaf, and M. J. Jr., “Anti-disassembly using cryptographic hash functions,” Journal in
Computer Virology, 2006.

K. K. Ispoglou and M. Payer, “malwash: Washing malware to evade dynamic analysis.” in WOOT,

2016.
P. Ferrie, “Attacks on virtual machine emulators,” Symantec Security Response, 2006.

R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not academical overview
of malware anti-debugging, anti-disassembly and antivm technologies.” [Online]. Available:

http://research.dissect.pe/docs/blackhat2012-paper.pdf]

K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Automatic fuzzer generation,” in 29th
USENIX Security Symposium. USENIX Association, 2020.

K. Serebryany, “Oss-fuzz - google’s continuous fuzzing service for open source software,” https:

/Iwww.usenix.org/conference/usenixsecurity 1 7/technical- sessions/presentation/serebryany, 2017.

http://research.dissect.pe/docs/blackhat2012-paper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]
[54]
[55]
[56]

[57]

(58]

136

——, “Oss-fuzz,” https://github.com/google/oss-fuzz.

P. Godefroid, “From blackbox fuzzing to whitebox fuzzing towards verification,” in Presentation at the

2010 International Symposium on Software Testing and Analysis, 2010.

R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: the state of the art,” DEFENCE SCIENCE
AND TECHNOLOGY ORGANISATION EDINBURGH (AUSTRALIA), Tech. Rep., 2012.

M. Zalewski, “American fuzzy lop,” 2015.

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as markov chain,”

IEEE Transactions on Software Engineering, 2017.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,” in Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path sensitive fuzzing,” in
CollIAFL: Path Sensitive Fuzzing, 2018.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execution.” in NDSS, 2016.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-aware
evolutionary fuzzing,” in Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2017.

L. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: a practical concolic execution engine tailored for

hybrid fuzzing,” in 27th USENIX Security Symposium, 2018.

P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” arXiv preprint arXiv:1803.01307,
2018.

K. Serebryany, “libfuzzer: A library for coverage-guided fuzz testing (within llvm).”
O. H. Alliance, “Android open source project,” 2011.

“CVE-2019-2176: Heap buffer overflow in libhevcdec,” 2019.

“CVE-2019-2108: libhevc: Stack-buffer-overflow in iheved_ref list,” 2019.

“CVE-2019-2107: libhevc: Multiple heap-buffer overflows in iheved_decode,” https://nvd.nist.gov/
vuln/detail/CVE-2019-2107, 2019.

“CVE-2019-2106: libhevc: Stack-buffer-underflow in ihevc_sao_edge_offset_class2_chroma_ssse3,”
https://nvd.nist.gov/vuln/detail/CVE-2019-2106, 2019.

https://github.com/google/oss-fuzz
https://nvd.nist.gov/vuln/detail/CVE-2019-2107
https://nvd.nist.gov/vuln/detail/CVE-2019-2107
https://nvd.nist.gov/vuln/detail/CVE-2019-2106

[59]

[60]

[61]

[62]

[63]
[64]
[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

137

“CVE-2017-13187: libhevc: An information disclosure vulnerability in the android media framework,”

https://nvd.nist.gov/vuln/detail/CVE-2017-13187, 2017.

“CVE-2017-0858: libavc: Another vulnerability in the android media framework,” https://nvd.nist.gov/
vuln/detail/CVE-2017-0858, 2017.

J. Drake, “Stagefright: Scary code in the heart of android,” BlackHat USA, 2015.

J. Roning, M. Lasko, A. Takanen, and R. Kaksonen, “Protos-systematic approach to eliminate software

vulnerabilities,” Invited presentation at Microsoft Research, 2002.

D. Aitel, “An introduction to spike, the fuzzer creation kit,” presentation slides), Aug, 2002.
M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, 2011.

R. Swiecki, “Honggfuzz,” Available online a t: http://code. google. com/p/honggfuzz, 2016.
S. Hocevar, “zzufﬁATmulti-purpose fuzzer,” 2011.

C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing
coverage,’ in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, 2018.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna, “Difuze: interface
aware fuzzing for kernel drivers,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, 2017.

W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang, “Semfuzz: Semantics-based auto-
matic generation of proof-of-concept exploits,” in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, 2017.

D. Babi¢, S. Bucur, Y. Chen, F. Ivanci¢, T. King, M. Kusano, C. Lemieux, L. Szekeres, and W. Wang,
“Fudge: fuzz driver generation at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations of Software Engineering.

ACM, 2019, pp. 975-985.

M. Pradel and T. R. Gross, “Automatic generation of object usage specifications from large method

traces,” in International Conference on Automated Software Engineering, 2009.

——, “Leveraging test generation and specification mining for automated bug detection without false

positives,” in International Conference on Software Engineering, 2012.

L. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “APISan: Sanitizing API Usages through Semantic

Cross-checking,” in 25th Usenix Security Symposium, 2016.

https://nvd.nist.gov/vuln/detail/CVE-2017-13187
https://nvd.nist.gov/vuln/detail/CVE-2017-0858
https://nvd.nist.gov/vuln/detail/CVE-2017-0858

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

138

B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and Z. Zhang, “Vetting ssl usage in
applications with sslint,” in 2015 IEEE Symposium on Security and Privacy (SP), 2015.

H. Chen and D. Wagner, “Mops: an infrastructure for examining security properties of software,” in

Proceedings of the 9th ACM conference on Computer and communications security, 2002.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with code
property graphs,” in Security and Privacy (SP), 2014 IEEE Symposium on, 2014.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & trans-
formation,” in Proceedings of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization, 2004.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast address sanity
checker.” in USENIX Annual Technical Conference, 2012.

“The clang development team: Sanitizer coverage,” http://clang.llvm.org/docs/SanitizerCoverage.html,

2015.

A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for assessing randomized algorithms in

software engineering,” Software Testing, Verification and Reliability, vol. 24, no. 3, pp. 219-250, 2014.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand et al., “Overview of the high efficiency video

coding(hevc) standard,” IEEE Transactions on circuits and systems for video technology, 2012.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton, “Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks.” in

Usenix Security Symposium, 1998.
T. Miiller, “ASLR smack & laugh reference,” Seminar on Advanced Exploitation Techniques, 2008.
Kil3r and Bulba, “Bypassing stackguard and stackshield,” Phrack magazine #53, 2000.

G. Richarte et al., “Four different tricks to bypass stackshield and stackguard protection,” World Wide
Web, 2002.

R. Wojtczuk, “The advanced return-into-lib (c) exploits: Pax case study,” Phrack Magazine, Volume

0x0b, Issue Ox3a, Phile# 0x04 of Ox0e, 2001.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the effectiveness of address-
space randomization,” in Proceedings of the 11th ACM conference on Computer and communications

security, 2004.

V. Katoch, “Whitepaper on bypassing aslr/dep,” Secfence, Tech. Rep., September 2011.[Online].
Available: http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf, Tech. Rep.

http://clang.llvm.org/docs/SanitizerCoverage.html
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

139

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano, and G. Pike, “Enforcing
forward-edge control-flow integrity in GCC & LLVM.” in 23rd USENIX Security Symposium, 2014.

Microsoft, “Visual studio 2015 — compiler options — enable control flow guard,” 2015, https://msdn

microsoft.com/en-us/library/dn919635.aspx.

N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz, “Control-flow integrity:
Precision, security, and performance,” ACM Computing Surveys (CSUR), 2018.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer integrity.” in
OSDI, vol. 14, 2014, p. 00000.

B. Niu and G. Tan, “Modular control-flow integrity,” ACM SIGPLAN Notices, vol. 49, 2014.

——, “Per-input control-flow integrity,” in Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, 2015.

T. C. Projects, “Control flow integrity,” |https://www.chromium.org/developers/testing/

control-flow-integrity, 2018.

J. Tang and T. M. T. S. Team, “Exploring control flow guard in windows 10,” Available at 'http://blog.

trendmicro.com/trendlabs-security-intelligence/ exploring- control-flow- guard-in-windows- 10", 2015.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz, “Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in c++ applications,” in Security and

Privacy (SP), 2015 IEEE Symposium on, 2015.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos,
“Control jujutsu: On the weaknesses of fine-grained control flow integrity,” in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, 2015.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Overcoming control-flow

integrity,” in Security and Privacy (SP), 2014 IEEE Symposium on, 2014.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the gadgets: On the ineffectiveness of
coarse-grained control-flow integrity protection.” in 23rd USENIX Security Symposium, 2014.

A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz, “Microgadgets: size does matter
in turing-complete return-oriented programming,” in Proceedings of the 6th USENIX conference on

Offensive Technologies. USENIX Association, 2012, pp. 7-7.
J. Salwan and A. Wirth, “ROPGadget,” https://github.com/JonathanSalwan/ROPgadget, 2012.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made easy.” in USENIX Security
Symposium, 2011.

https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
https://github.com/JonathanSalwan/ROPgadget

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

140

A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou, M. Payer, and E. Bodden, “PSHAPE:
Automatically combining gadgets for arbitrary method execution,” in International Workshop on

Security and Trust Management, 2016.
Pakt, “ropc: A turing complete rop compiler,” https://github.com/pakt/ropc, 2013.

M. Polychronakis and A. D. Keromytis, “ROP payload detection using speculative code execution,” in

Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on, 2011.

L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A detection tool to defend against return-
oriented programming attacks,” in Proceedings of the 6th ACM Symposium on Information, Computer

and Communications Security, 2011.

E. R. Jacobson, A. R. Bernat, W. R. Williams, and B. P. Miller, “Detecting code reuse attacks with a
model of conformant program execution,” in International Symposium on Engineering Secure Software

and Systems, 2014.

Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG et al., “ROPecker: A generic and practical approach
for defending against ROP attack,” 2014.

V. Pappas, “kBouncer: Efficient and transparent rop mitigation,” tech. rep. Citeseer, 2012.

N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern defenses.” in 23rd USENIX
Security Symposium, 2014.

M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity through binary hardening,”
in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

2015.

R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient protection of path-sensitive control
security,” 2017.

V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C. Giuf-
frida, “Practical Context-Sensitive CFL” in Proceedings of the 22nd Conference on Computer and

Communications Security (CCS’15), October 2015.

V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giuffrida,
“The dynamics of innocent flesh on the bone: Code reuse ten years later,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 1675-1689. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134026

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms. The MIT press,
20009.

https://github.com/pakt/ropc
http://doi.acm.org/10.1145/3133956.3134026

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

141

K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 263-272.

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation of high-coverage

tests for complex systems programs.” in OSDI, 2008.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel et al., “SOK:(State of) The Art of War: Offensive Techniques in Binary Analysis,” in
Security and Privacy (SP), 2016 IEEE Symposium on, 2016.

A. B. Kahn, “Topological sorting of large networks,” Communications of the ACM, 1962.

T. Uno, “Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs,”

Algorithms and Computation, 1997.

J.'Y. Yen, “Finding the k shortest loopless paths in a network,” management Science, vol. 17, no. 11, pp.

712-716, 1971.

“CVE-2006-5815: Stack buffer overflow in proftpd 1.3.0,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2006-5815, 2006.

“CVE-2013-2028: Nginx http server chunked encoding buffer overflow 1.4.0,” https://cve.mitre.org/
cgi-bin/cvename.cgi’name=CVE-2013-2028, 2013.

“CVE-2012-0809: Format string vulnerability in sudo 1.8.3,” https://cve.mitre.org/cgi-bin/cvename|
cginame=CVE-2012-0809, 2012.

“Cve/bug in orzhttpd - format string,” https://www.exploit-db.com/exploits/10282/, 2009.

“CVE-2000-0573: Format string vulnerability in wu-ftpd 2.6.0,” https://cve.mitre.org/cgi-bin/cvename
cgi?name=CVE-2000-0573, 2001.

“CVE-2002-1496: Heap-based buffer overflow in null http server 0.5.0,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2002-1496, 2004.

“CVE-2001-0144: Integer overflow in openssh 1.2.27,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2001-0144, 2001.

“CVE-2014-2299: Buffer overflow in wireshark 1.8.0,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-2299, 2014.

“CVE-2006-3747: Oft-by-one error in apache 1.3.34,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2006-3747, 2006.

“CVE-2009-1886: Format string vulnerability in smbclient 3.2.12,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2009-1886, 2009.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://www.exploit-db.com/exploits/10282/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

[147]

142

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic generation of data-oriented exploits.”

in 24th USENIX Security Symposium, 2015.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM

symposium on Theory of computing. ACM, 1971, pp. 151-158.

M. V. Yason, “The art of unpacking,” https://www.blackhat.com/presentations/bh-usa-07/Yason/
Whitepaper/bh-usa-07-yason- WP.pdf, 2007.

E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley; 1 edition, 2005.

C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler. No
Starch Press; 2 edition, 2011.

V. Mohan and K. W. Hamlen, “Frankenstein: Stitching malware from benign binaries,” Usenix WOOT,

2012.

G. Poulios, C. Ntantogian, and C. Xenakis, “Ropinjector: Using return oriented programming for

polymorphism and antivirus evasion,” Blackhat USA, 2015.
S. Dolan, “mov is turing-complete,” http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf, 2013.
“Metasploit,” https://www.metasploit.com/.

S. Fewer, “Reflective dll injection,” |http://www.harmonysecurity.com/files/HS-P0O0S5_|

ReflectiveDllInjection.pdf.

P. V. Shijoa and A. Salimb, “Integrated static and dynamic analysis for malware detection,” ICICT,

2014.

S. Yusirwan, Y. Prayudi, and I. Riadi, “Implementation of malware analysis using static and dynamic

analysis method,” International Journal of Computer Applications, 2015.
P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley Professional, 2005.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM

symposium on Theory of computing. ACM, 1971, pp. 151-158.

U. Miiller, “Brainfuck—an eight-instruction turing-complete programming language,” Available at the

Internet address http://en. wikipedia. org/wiki/Brainfuck, 1993.

https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
https://www.metasploit.com/
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	The three phases of an attack
	Discovering a vulnerability
	Exploiting a vulnerability
	Persisting on the compromised system

	Dissertation Statement
	Dissertation Organization

	FUZZGEN: AUTOMATIC FUZZER GENERATION
	Introduction
	The case for API-aware fuzzer construction
	Background and Related Work
	Design
	Inferring the library API
	A2DG construction
	Argument flow analysis
	Fuzzer stub synthesis

	Implementation
	Evaluation
	Consumer Ranking
	Measuring code coverage
	Android evaluation
	Debian evaluation

	Library Consumer Complexity
	Overview of Disclosed Vulnerabilities
	Discussion and future work
	Conclusion

	BLOCK ORIENTED PROGRAMMING: AUTOMATING DATA ONLY ATTACKS
	Introduction
	Background and Related Work
	Control Flow Integrity
	Shadow Stacks
	Data-only Attacks

	Assumptions and Threat Model
	Design
	Expressing Payloads
	Selecting functional blocks
	Finding BOP gadgets
	Searching for dispatcher blocks
	Stitching BOP gadgets

	Implementation
	Binary Frontend
	SPL Frontend
	Locating candidate block sets
	Identifying functional block sets
	Selecting functional blocks
	Discovering dispatcher blocks
	Synthesizing exploits

	Evaluation
	Case Study: nginx
	Spawning a shell
	Infinite loop
	Conditional statements

	Discussion and Future Work
	Conclusion

	X-CAP: ASSESSING EXPLOITATION CAPABILITIES
	MALWASH: WASHING MALWARE TO EVADE DYNAMIC ANALYSIS
	Introduction
	Background and Related Work
	Design
	Implementation
	Phase 1: Chopping the binary
	Phase 2.a: Loading emulators
	Phase 2.b: Executing the binary
	Recovering terminated instances

	Evaluation
	malWASH resilience
	Case Study: Remote Keylogger
	Discussion

	Conclusion

	RELATED & FUTURE WORK
	Library Fuzzing
	Data-Only and Control Flow Bending attacks
	Distributed malware detection

	CONCLUSION
	APPENDIX
	Determining exploitability is undecidable
	State Inconsistency for A2DG coalescing
	Extended Backus-Naur Form of SPL
	Stitching BOP Gadgets is NP-Hard
	SPL is Turing-complete
	CFG of nginx after pruning
	Detailed overview of the BOPC implementation

	BIBLIOGRAPHY

