
École Polytechnique Fédérale de Lausanne

Hardening and Testing Privileged Code through Binary Rewriting

Master Thesis
by Matteo Rizzo

Chemin de la Praz 9 — CH-1052 Le Mont-sur-Lausanne

Approved by the Examining Committee:

Prof. Dr. sc. ETH Mathias Payer

Thesis Advisor

Julien Voisin

External Expert

EPFL IC IINFCOM HEXHIVE

BC 160 (Bâtiment BC) - Station 14 - CH-1015 Lausanne

January 16, 2020

La vita non va dietro alle carte. Le carte vanno dietro alla vita.

— Anonymous

Dedicated to my father, Michele, my mother, Roberta, and my sister, Marianna, who have

followed and helped me immensely during the last three years. This work would have not been

possible without their support.

Acknowledgments

I want to thank my advisor, Prof. Mathias Payer, for his support, close guidance, and for all the

feedback I received. I enjoyed the four months I spent at HexHive working with him and I thank

him for pushing me to strive for more. He is a brilliant researcher and I wish him the best in his

career. I also want to thank Prof. George Candea and Prof. Katerina Argyraki for introducing me

to the world of systems research and for supporting me throughout my second year at EPFL.

I want to thank my family for their ever-present support and for believing in me and letting

me be here. Getting through my Master’s studies has been one of my greatest challenges, and I

would not have made it without their emotional support.

I want to thank the members of HexHive for welcoming me during my Master Project and

offering their guidance and feedback on my research and presentations. I learned a lot about

research and about security in general during our conversations in these four months. Good luck

to everyone for your PhDs and careers!

Finally, I want to thank the members of polygl0ts, EPFL’s Capture The Flag (CTF) team, for

accompanying me in my journey into systems security. Playing Capture The Flag with them has

not only been great fun but it has also taught me much about the applied side of security. The

knowledge that I gained by playing CTF has been instrumental in my research work. I’m looking

forward to playing even more CTFs with you!

Lausanne, January 16, 2020 Matteo Rizzo

1

Abstract

Kernel code contains memory corruption vulnerabilities and is an appealing target for attackers,

who can abuse its flaws to escalate privileges and bypass sandboxing. Kernel memory corruption

accounted for more than 20% of CVEs in the Android Platform between May 2017 and May 2018.

Fuzzing is an effective strategy to discover software flaws and has found thousands of bugs in

security-critical kernel components.

Instrumentation boosts the efficacy of fuzzing by enabling the fuzzer to select more interest-

ing test cases and detect more bugs during testing. Coverage-tracking instrumentation lets the

fuzzer select better inputs by providing feedback about each test case. Sanitizing instrumentation

lets the fuzzer detect more bugs by actively checking for security violations.

State-of-the-art instrumentation like Address Sanitizer is implemented as a compiler pass,

which only works on C source code and requires a recent compiler. Compiler-based instrumenta-

tion is unsuitable for kernel components that are closed-source, that use hand-written assembly,

or that are incompatible with an instrumenting compiler. Existing methods to instrument binary

kernel code have prohibitive runtime overhead (10-100x).

We show that static rewriting is a viable way to instrument binary kernel-mode code at low

runtime overhead. RetroWrite shows that static rewriting is feasible for position-independent

user-mode binaries. We present kRetroWrite, a static rewriter for kernel-mode binaries and we

use it to instrument binaries for both coverage tracking and memory sanitization.

The performance impact of our binary instrumentation is similar to that of source-based

instrumentation in our evaluation. kRetroWrite rewrites individual kernel modules, allowing

us to selectively instrument the kernel components that we are targeting. Our instrumentation

passes are compatible with their source-based counterparts and with off-the-shelf kernel fuzzers.

2

Contents

Acknowledgments 1

Abstract 2

1 Introduction 5

2 Background 10

2.1 Fuzzing . 10

2.1.1 Userspace fuzzing . 11

2.1.2 Kernel fuzzing . 11

2.2 Binary rewriting . 12

2.2.1 Dynamic rewriting . 12

2.2.2 Static rewriting . 13

2.3 Coverage-guided fuzzing . 14

2.4 Address Sanitizer . 15

3 Design 17

3.1 Goals . 17

3.2 System overview . 18

3.3 Symbolizer . 20

3.3.1 Code relocations . 20

3.3.2 Self-modifying code . 21

3.3.3 Structure of kernel modules . 22

3

3.3.4 Multiple code sections . 22

3.4 Binary kcov instrumentation . 23

3.5 Binary KASan instrumentation . 24

4 Implementation 25

4.1 Symbolizer . 25

4.2 Self-modifying code . 26

4.3 Binary KASan . 26

4.3.1 Kernel shadow address computation . 27

4.3.2 Lack of red zones in the kernel . 28

4.4 Binary kcov . 29

5 Evaluation 30

5.1 Setup and hardware . 31

5.2 Scalability . 32

5.3 Instrumentation Performance . 33

5.3.1 Results . 33

5.4 Instrumentation Coverage . 34

6 Related Work 39

6.1 Blackbox fuzzing . 39

6.2 Symbolic execution and whitebox fuzzing . 40

6.3 Hardware-assisted greybox fuzzing . 41

6.4 Rewriting-based kernel instrumentation . 41

7 Conclusion 43

7.1 Future work . 43

7.2 Conclusion . 44

Bibliography 45

4

Chapter 1

Introduction

Modern operating system kernels are large and complex. Security researchers routinely find

vulnerabilities in OS kernels, and Linux alone received more than 250 CVEs in 2019 [25]. Security

vulnerabilities in the OS kernel are a threat to the safety of the entire system because the kernel

runs at the highest privilege level, and an attacker that compromises it gains unrestricted access

to the machine. The kernel is also an appealing target for attackers trying to evade userspace

exploit mitigations and process sandboxing: mainstream web browsers like Chrome prevent

processes that render untrusted web content from accessing kernel subsystems that have a

history of vulnerabilities [16]. Even though mainstream kernels ship with mitigations against

several kinds of attacks, those mitigations are often ineffective and attackers routinely bypass

them.

Fuzzing is an effective way to discover bugs in complex software systems and in recent years

it has gained traction in both research and industry. Large scale fuzzing campaigns such as

Google’s OSS-fuzz and syzbot have found thousands of security-critical bugs in mainstream

software, and continue to do so. Fuzzing is easy to use even for non-experts compared to other

automatic bug finding methods: it requires little human effort besides the implementation of a

harness, and the selection of the initial seed corpus. It is also embarrassingly parallel because

each generated test case can be executed independently of the others: it scales to large server

5

farms with thousands of CPU cores, further adding to its effectiveness.

Fuzzers are most effective if they leverage feedback about the generated test cases and they

have a way to detect crashes: this is typically accomplished using instrumentation. Coverage-

guided fuzzers use instrumentation to track the coverage of each test case. The fuzzer selects

inputs that produce new coverage for further mutation which lets it discover new parts of the

program without supervision. Fuzzers are also often paired with sanitizers, which instrument

the target to actively check for security violations. Sanitization uses instrumentation to detect

bugs that the fuzzer would miss.

Unfortunately, it is much more challenging to instrument a program when the source code is

not available. In spite of the booming popularity of open source software, closed source software

is still the norm in many cases. For example more than 90% of desktop PCs and laptops run

Windows or macOS, both proprietary OSs [43]. Even when source code for the majority of the

system is available, many devices require closed source drivers: for example this is the case

for GPUs and Android phones. The main difficulty in instrumenting a binary is that much of

the information that exists in the source code such as typing, control flow, and the distinction

between code and data is discarded during the compilation process. Particularly, the compiler

translates all references between code and static data to hard-coded constant offsets: this means

that simply inserting new instructions into the target makes it malfunction because it breaks all

references. There are broadly two approaches to instrumenting binaries: static rewriting and

dynamic rewriting.

Existing binary instrumentation toolkits for the kernel use dynamic rewriting, which has

poor performance, and therefore they are poorly suited for fuzzing. Dynamic rewriters run the

rewriting engine side-by-side with the target, and translate and instrument the target’s code as

needed. Dynamic rewriting does not rely on heuristics because it can gather information about

the target’s behavior at runtime. Runtime information allows dynamic rewriting to deal with arbi-

trary code and to scale well to large and complex targets. Unfortunately dynamically translating

the target introduces overhead. Furthermore dynamic rewriters cannot afford to run complex

6

analysis and optimization passes because they would further increase this overhead, making

the rewritten code less than optimal: AFL-QEMU introduces a 10-100x runtime overhead [12] to

instrument a binary for coverage tracking compared to compiler-based instrumentation. Only a

fraction of the test cases generated by a fuzzer trigger bugs in the target, and therefore a faster

target directly translates into more bugs found in the same amount of time.

Static rewriting instruments the target ahead of time and has lower overhead than dynamic

rewriting, but scales poorly because it relies on complex analysis [49, 50]. A static rewriter does

not need to run side-by-side with the target, and can do more expensive optimizations offline:

therefore it can have lower overhead than a dynamic rewriter. However it cannot take advantage

of runtime information and is forced to rely on static analysis. The main difficulty for static

rewriters is distinguishing between references and scalars, which is known to be undecidable

statically. Static rewriters are forced to use unsound heuristics which increase complexity and do

not scale to large targets.

Recent work [12] presented RetroWrite, a zero-cost principled static rewriter, and efficient

static instrumentation for binaries. RetroWrite leverages PC-relative addressing to disambiguate

references from other constants in a binary. The authors observe that disambiguating scalars

from references is possible in practice for position-independent code (PIC) when the target ISA

supports PC-relative addressing. This covers a broad range of targets, including shared libraries

and most programs on the x86_64 architecture. The authors of RetroWrite use it to instrument

binaries for coverage tracking and sanitization and achieve compiler-level performance.

RetroWrite and its instrumentation passes only support userspace binaries and do not work

on the kernel. RetroWrite’s symbolizer only handles userspace PIE binaries, which have a different

format from kernel modules. Furthermore, RetroWrite’s coverage and binary ASan instrumen-

tation passes are designed for user-space binaries and do not work in the kernel. To address

this limitation we develop kRetroWrite, a static rewriter that can instrument kernel code at high

performance for fuzzing. kRetroWrite takes as input a binary kernel module and produces a

symbolized assembly listing that can be reassembled into a working module. Symbolized assem-

7

bly uses labels rather than hard-coded offsets to refer to static data and code: instrumentation

passes can freely insert and remove instructions in the symbolized listing without breaking the

code. We base our system on RetroWrite and change the symbolizer to support the executable

format used by Linux modules. As a proof of concept we implement two binary instrumentation

passes for Linux modules: (1) A binary kcov pass that provides coverage information for the

instrumented code to a userspace agent. (2) A binary Kernel Address Sanitizer (KASan) [46] pass

that detects memory errors such as buffer overflows in the instrumented module and produces

a bug report. Both passes seamlessly integrate with their source-based counterparts and can

be used with off-the-shelf kernel fuzzers. To the best of our knowledge, no publicly available

memory sanitizer works with binary Linux modules. kmemcheck [17] marks kernel pages as not

present to trap on every memory access, and it can detect use-after-free and uses of uninitialized

memory. kmemcheck was removed from the kernel in 2017 [27] and replaced with KASan, which

is 6x faster [23] and supports multiple CPUs.

kRetroWrite lets users target specific kernel components with instrumentation, and works

even when compiler-based approaches are not applicable. Modern kernels build only essential

components into the main kernel executable, and place other components in kernel modules

which are loaded on demand. When fuzzing a specific kernel components, users often want to

only apply instrumentation to that component: targeted instrumentation improves performance

and guides the fuzzer towards the component under test. kRetroWrite instruments individual

modules rather than the entire kernel and therefore it lets users choose the kernel components

where they would like to pay for instrumentation overhead. kRetroWrite’s utility is not limited

to closed-source modules: compiler-based instrumentation does not work on hand-written as-

sembly and on code that requires a legacy toolchain. Our instrumentation works at the assembly

level and therefore it can cover such cases.

Our experiments demonstrate that kRetroWrite instrumentation is competitive with

compiler-based instrumentation in both runtime performance and coverage. We are only about

8% slower at fuzzing Btrfs [37] while achieving only 6% less coverage than source-based instru-

mentation. kRetroWrite scales to large modules and instruments a 32MiB kernel module in

8

about 1 minute.

In the rest of this report, we give an overview of the background, then describe our three

contributions:

• kRetroWrite, a static rewriter for kernel code that can instrument binary kernel modules. To

our knowledge this is the first system for sound static rewriting of kernel code. kRetroWrite

shows that static rewriting is practical for kernel modules and that the RetroWrite approach

is applicable to the kernel,

• An instrumentation pass that allows userspace agents to collect coverage information

about a binary Linux module,

• An instrumentation pass that adds KASan checks to binary Linux modules to detect mem-

ory safety violations.

We then evaluate our kRetroWrite prototype, discuss its limitations, discuss related work,

and finally present our conclusions.

9

Chapter 2

Background

In this chapter we provide an overview of fuzzing, sanitization, and binary rewriting. We first

discuss the core ideas behind fuzzing, and why it is more difficult to apply it to kernel code.

Next we discuss the challenges of binary rewriting and discuss RetroWrite’s approach. Finally we

discuss coverage tracking and sanitization.

2.1 Fuzzing

Fuzzing is a method to test programs automatically that uses randomly-generated test cases.

Modern software systems are large and complex, and the software running on a modern desktop

computer comprises hundreds of millions of lines of code. Unfortunately, the scale of these

systems makes it hard to comprehensively reason about their correctness. Therefore most

software contains bugs, some of which are security bugs that allow an attacker to compromise

the system. The security community uncovers thousands of vulnerabilities every year, and

malicious actors routinely exploit security holes to their advantage. A fundamental problem in

securing complex software is that manual testing and auditing are time-consuming and do not

scale. Fuzzing addresses this problem by generating test cases automatically. Fuzzing consists

in automatically generating random inputs, feeding them to the target, and monitoring it for

10

crashes or other unexpected behavior. Fuzzing does not require any human input besides the

initial setup and therefore it is scalable. Furthermore it is embarrassingly parallel and can be run

on an arbitrary number of cores. Fuzzing regularly finds thousands of bugs in popular software

packages: Google’s OSS-fuzz project continuously fuzzes open-source software and reported

more than 1000 security bugs in 2019 [34].

Fuzzing kernels presents additional challenges compared to userspace applications.

2.1.1 Userspace fuzzing

A crashing userspace fuzzing target is terminated by the kernel, which then notifies the fuzzer.

Userspace processes run in an isolated context and do not have direct access to the hardware.

A misbehaving userspace process can not crash the entire machine unless the kernel is also

buggy. Userspace programs are mostly deterministic, unless they use multiple threads and

synchronization or a random number generator. Therefore it is easier to reproduce a crashing

test case in userspace. There are many off-the-shelf tools to fuzz userspace applications, and

many resources online on how to use them. Userspace fuzzers are increasingly being used as

part of the regular development cycle of applications. Attackers are also more likely to focus on

attacking userspace applications rather than the kernel because vulnerabilities are more stable

and easier to exploit.

2.1.2 Kernel fuzzing

By contrast, fuzzing kernel code is harder than fuzzing in userspace. Firstly, when the kernel

crashes the entire machine goes down. This requires that the fuzz target is either run in a virtual

machine or on a dedicated machine to limit the impact of a system crash. The VM also needs to

be rebooted every time the system crashes which impacts performance. Secondly the flow of ex-

ecution in the kernel is non-deterministic, even on a single-CPU machine, because of interrupts.

This makes reproducing bugs and the execution flows of system calls more complicated. There

11

are also fewer tools to fuzz kernels and they require more complicated setups such as compiling

a custom kernel and using special configurations.

2.2 Binary rewriting

Instrumenting a program consists in inserting short snippets of code to monitor its behavior.

Instrumentation enhances the effectiveness of a fuzzer by providing feedback about the gener-

ated inputs and detecting more bugs. Instrumentation is typically added at compile time using

a compiler pass, but this technique cannot be used in many situations. For example, it cannot

be used when the target is only available as a binary, or when the target requires a compiler

that does not support adding instrumentation. Furthermore passes for C/C++ compilers do not

instrument hand-written assembly.

The most straightforward approach to instrumenting a binary is to simply insert new instruc-

tions into the target. Unfortunately this approach does not work except for trivial programs that

contain no references to code or static data. When the compiler translates source code to ma-

chine code it replaces such references with hardcoded constants. Inserting new instructions in a

compiled program invalidates the values of the constants, and breaks it. We say that compiled

binaries have a rigid structure because moving any code or data breaks the references. A binary

rewriter must ensure that all references remain correct after inserting the instrumentation. There

are two approaches to rewriting binaries: static rewriting and dynamic rewriting.

2.2.1 Dynamic rewriting

Dynamic rewriting rewrites the target’s code while the target itself is executing. The target runs

side-by-side with a rewriting engine which translates its code on demand. Dynamic rewriters

have access to dynamic information such as the path that the execution has taken. They can

leverage this information to recognize and adjust references in the target. Dynamic rewriters

do not need to analyze the entire target program, but only the part that is executing. Dynamic

12

mov [rax + rbx ∗8] , r d i
dec rbx
jnz −7

Listing 2.1: Original code

mov [rax + rbx ∗8] , r d i
inc rcx
dec rbx
jnz −7

Listing 2.2: Instrumented code

Figure 2.1: These assembly code snippets show why simply inserting instructions in a binary
causes it to break. The original code jumps back to the beginning of the loop. The instrumented
code jumps to the inserted instrumentation and breaks. Adjusting the jump offset to account for
the instrumentation solves the problem. A binary rewriter must find and adjust all references. In
general, this problem is undecidable for a static rewriter.

information allows such rewriters to scale to large targets, but comes at the cost of performance:

the rewriter has to run side-by-side with the target and consumes execution resources. Moreover

binary rewriters cannot perform complex analysis on the target because it would further increase

the runtime overhead. The most efficient dynamic rewriters, like PIN [28] and DynamoRIO [5]

have between 10% and 20% rewriting overhead, with no instrumentation.

Existing work shows that dynamic rewriters such as QEMU [3] can instrument both userspace

binaries [1] and kernels [35] for fuzzing. In both cases dynamic rewriting introduces significant

overhead, which is undesirable when fuzzing.

2.2.2 Static rewriting

Static rewriters process the target statically and emit an instrumented binary. They could have

no runtime overhead in principle because they do not have to execute at the same time as the

target and can perform expensive optimizations offline. However static rewriters suffer from

the lack of runtime information and have to resort to static analysis to identify references in

the target. Static analysis is complex and introduces imprecision, which makes it challenging to

scale these rewriters to large targets. Distinguishing references from scalars and structure offsets

statically is known to be an undecidable problem in the general case, and static rewriters have to

resort to heuristics.

13

In RetroWrite, Dinesh et al. [12] observe that distinguishing references from scalars and

structure offsets is possible for position-independent executables. Position-independent exe-

cutables are the norm on modern platforms because they allow the operating system to load

each binary at a random address as a mitigation against software exploits (Address Space Layout

Randomization, or ASLR). Modern CPU architectures include architectural support for PIE in

the form of PC-relative addressing. Binaries compiled for these architectures refer to other code

or data using an offset from the current value of the PC, called RIP-relative addressing on x86_64.

PC-relative addressing lets static analysis identify references to other code and static data be-

cause they always use PC-relative addressing while other references never use it. This makes

it possible to disambiguate references from scalars and structure offsets statically. RetroWrite

lifts the target binary to assembly and replaces all hardcoded constant references with symbolic

references to labels. Data-to-code and data-to-data references always use relocations in PIE

binaries and can be symbolized by resolving the relocation. The resulting symbolized assembly

can be instrumented by inserting new instructions into the listing. RetroWrite shows that static

rewriting scales to complex targets in the common case of position-independent code.

2.3 Coverage-guided fuzzing

Coverage-guided fuzzing addresses the inability of a fuzzer to cover new parts of the target by

leveraging coverage feedback. One of the main issues with fuzzing is that the fuzzer tends to get

stuck without achieving high coverage of the program under test (coverage wall). This limits the

effectiveness of the fuzzer because the test cases can only trigger bugs if they cause the program

to execute the buggy code. One of the reasons why fuzzers run into the coverage wall is that fuzz

targets often accept highly structured input and it is unlikely that randomly generated data will

satisfy the constraints of the input format. The program under test rejects such invalid inputs

early in the parsing stage and the fuzzer fails to trigger deep bugs. Smart fuzzing mitigates this

by providing the fuzzer with a description of the input format, but creating such descriptions is

time-consuming.

14

A coverage-guided fuzzer learns the input format by using coverage feedback. The test case

generator collects coverage from the target and attempts to provide inputs that discover new

paths. Such inputs are deemed interesting and added to a corpus. The fuzzer generates new

inputs by randomly mutating an input from the corpus. AFL [51] popularized coverage-guided

fuzzing and showed that it can find real-world vulnerabilities [52]. AFL tracks branch coverage by

instrumenting the target at compile time. Other fuzzers collect coverage with dynamic rewriting

(e.g., AFL-QEMU [1]), or hardware-assisted feedback (e.g., kAFL [38]).

kcov [21] is an implementation of coverage tracking built into the Linux kernel. It uses a

compiler pass to insert a call to a coverage collection function at the beginning of every basic

block. kcov exposes coverage information to userspace programs through a special file. kcov was

added to Linux to support fuzzing the kernel from user space. It does not instrument some parts

of the kernel such as interrupt handling and the scheduler to ensure that the collected coverage

is as close as possible to being deterministic as a function of system call inputs.

2.4 Address Sanitizer

Sanitization helps a fuzzer find more bugs by actively checking for security violations. The

most straightforward way to detect bugs in a target is to look for crashes. This is simple but

imperfect because many exploitable bugs do not crash the target, or do so only under specific

circumstances.

Sanitization augments fuzzing by using instrumentation enforce a security policy, such as

memory safety. This lets the fuzzer detect buggy executions earlier and more reliably. Address

Sanitizer (ASan) [41] detects memory corruption and is the most widely used sanitizer. Memory

corruption is endemic in C/C++ code bases and is arguably the most dangerous class of security

bugs. It accounted for more than 60% of CVEs in the Android platform between May 2017

and May 2018 [40]. ASan uses a special region of memory called shadow memory to track

valid addresses and instruments every memory access to check the shadow. ASan adds red

15

zones around every variable that trigger a security violation when accessed. Red zones help

detect buffer overflows more reliably. Memory belonging to a red zone is said to be poisoned.

ASan instruments the memory allocator to add red zones around heap-allocated objects, and

instruments function prologues and epilogues to poison and unpoison memory around stack-

allocated objects. ASan introduces an average slowdown of 73% and an average memory usage

increase of 3.37x on the SPEC CPU2006 benchmark suite [41]. Despite the performance overhead,

it is widely used for fuzzing and has founds thousands of bugs in large software systems like

Chromium. ASan has no false positives.

Kernel Address Sanitizer (KASan) [46] is a version of ASan that works on kernel code. Kernel

code is more difficult to instrument because it uses its own memory allocator and resides in high

memory. Furthermore some parts of the kernel are timing-critical or expected to access memory

out-of-bounds (e.g., when traversing the stack) and must not be instrumented. Userspace ASan is

a generic compiler pass and library that can be used on most userspace applications by switching

on a compiler flag, but KASan is tightly integrated into the kernel’s memory subsystem.

16

Chapter 3

Design

We now provide an overview of kRetroWrite: our design goals, an overview of the system, the

design of the symbolizer, and the design of the instrumentation passes.

3.1 Goals

Our goal is to provide a platform to write static instrumentation passes for binary kernel modules.

kRetroWrite should not restrict users to the passes we implement but instead it should provide

a foundation for our users to build their binary instrumentation. kRetroWrite’s core should take

care of the binary analysis and rewriting part: that is, it should identify and fix up references,

and provide the instrumentation with the result of the analysis. Analyses performed by the core

should scale to real-world kernel components and not rely on source code at all. Furthermore

the rewriting process itself should introduce no runtime overhead. No existing tools satisfy

these requirements: they either require source code (e.g., kcov [21], KASan [46]), or use dynamic

rewriting, which has high rewriting overhead (e.g., TriforceAFL [35]).

We also set the following goals for our instrumentation passes: they should provide similar

capabilities to source-based passes and integrate with existing compiler-based instrumentation.

17

We do not want to force our users to write custom kernel fuzzers or make our binary instru-

mentation mutually exclusive with its source-based counterpart. Modules instrumented with

our passes should work side-by-side with source-instrumented modules and support existing

kernel fuzzers. This would allow kRetroWrite users to tap into a rich ecosystem of existing in-

strumentation without being constrained to source-available modules compatible with modern

compilers.

3.2 System overview

kRetroWrite is a static rewriter for kernel code, based on RetroWrite. Static rewriting fulfills our

goal of low runtime overhead, but generally suffers from poor scalability due to the requirement

for heavyweight static analysis. RetroWrite [12] shows that scalable and sound static rewriting

is indeed possible in the common case of PIC binaries. PIC is widely used in modern systems

because it is required by shared libraries and exploit mitigations such as ASLR. Major Linux

distributions enable PIC by default [48] [15] [31] and recent versions of Android forbid non-PIC

binaries [39]. Modern OSs implement ASLR both for user applications and for the kernel, and

therefore modern kernels are also position-independent. We show that RetroWrite’s approach is

not just applicable to user applications, but to the kernel as well. RetroWrite fulfills our goals of

scalable binary instrumentation at low runtime overhead.

Unfortunately we cannot simply apply RetroWrite to the kernel, as it is designed to rewrite

user applications. Kernel executables use a different format and different ABI that RetroWrite’s

symbolizer does not support. RetroWrite’s instrumentation passes are also not designed to work

in the kernel: AFL-RetroWrite communicates with a fuzzer process which would not work in a

kernel; RetroWrite’s binary ASan links with libASan which does not exist in the kernel and uses

userspace addresses rather than kernel addresses for the shadow memory. Therefore we have to

adapt RetroWrite’s symbolizer and instrumentation passes to the kernel.

Like RetroWrite, kRetroWrite is structured in multiple parts:

18

Figure 3.1: The kRetroWrite pipeline. The symbolizer produces symbolized assembly which can
be reassembled into a binary. Instrumentation passes add instrumentation to the symbolized
assembly.

• The symbolizer lifts a binary to symbolized assembly, where all hard-coded offsets are

replaced by symbolic references to labels;

• A set of analysis passes recover information about the code, such as an approximate control

flow graph and register liveness;

• A set of instrumentation passes instrument the symbolized assembly file for fuzzing and

sanitization.

A symbolized assembly file can be turned back into a binary using an off-the-shelf assembler.

This modular architecture allows us to add new instrumentation passes with little effort.

Our prototype rewrites individual Linux kernel modules rather than an entire kernel. There

are three reasons for this decision:

• Rewriting individual modules allows us to target specific kernel components with instru-

mentation. Instrumentation introduces runtime overhead and fuzzing campaigns often

target a specific component, not the whole kernel. kRetroWrite users can minimize run-

time overhead by only instrumenting the components that their fuzzing campaign is

19

targeting

• In Linux’s case, proprietary components are not compiled into the kernel due to licensing

constraints. Instead they are distributed as proprietary modules that are loaded into the

kernel. The source for the kernel itself is available and can be instrumented at compile

time.

• We can compile the main kernel with support for kcov and KASan. This compiles the

infrastructure needed to support the instrumentation into the main kernel. For example it

replaces the allocator with one that inserts red zones and allocates memory for the KASan

shadow. This is analogous to linking with libASan in userspace.

In short, instrumenting individual modules allows us to target kernel components more

precisely, and at the same time minimizes the complexity of our tool by reusing Linux’s existing

instrumentation infrastructure.

3.3 Symbolizer

The symbolizer lifts a binary to symbolized assembly. It finds all references to code and static

data and replaces them with references to labels. Symbolization enables rewriting because it

removes hard-coded offsets to other parts of the binary. We identify four issues with RetroWrite’s

symbolizer that prevent it from working on kernel modules: the presence of relocations in code

sections, the presence of self-modifying code in the kernel, the memory layout of kernel modules,

and the presence of multiple code sections.

3.3.1 Code relocations

Unlike userspace binaries, kernel modules use relocations that overwrite instructions in the code

section to import symbols from other modules or from the main kernel. The kernel computes

20

l e a rax , [r i p + 0x1234]
c a l l 0x100
dec rcx
jnz −15

Listing 3.1: Original assembly code

loop1 :
l e a rax , [data1]
c a l l func1
dec rcx
jnz loop1

Listing 3.2: Symbolized assembly

Figure 3.2: These code snippets show the difference between regular assembly and symbolized
assembly. Regular assembly contains hard-coded offsets to the beginning of the loop, to the
beginning of a function and to a data variable. Symbolized assembly uses labels instead.

the offset between an imported symbol and the instruction that uses it at load time and writes

it directly to, e.g., the offset field of a memory access. This is normally not done in userspace

because it prevents multiple processes that use the same binary from sharing the code section

in memory. This is not an issue for kernel modules because it is not possible to load the same

module in memory multiple times. Code relocations are a challenge for the rewriter because they

do not specify which field of the instruction they are writing to, but merely state how to compute

the value of the relocation and the address that this value should be written to. RetroWrite

does not support relocations that write to code because it does not know what part of the

instruction’s operands should be symbolized or which syntax it should use for the symbolized

instruction. We add support for these relocations to kRetroWrite’s symbolizer by leveraging

additional information provided by the disassembler.

3.3.2 Self-modifying code

Linux uses runtime patching (i.e., self-modifying code) to ensure that it is using an optimal set of

machine instructions at runtime. Self-modifying code is a challenge for RetroWrite’s rewriter

because it treats code as data. RetroWrite lets instrumentation passes insert new instructions

anywhere in the symbolized binary because it assumes that the value of the bytes in the code

section does not matter as long as the references are preserved. Self-modifying code breaks this

and needs special handling, therefore RetroWrite does not support it. We observe that while

arbitrary self-modifying code would be intractable for a static rewriter, the kernel supports only

21

limited transformations. Linux uses a set of tables that specify the address of the instructions

to patch and the new code that should be written to that address. We can support runtime self-

patching by finding these tables and ensuring that the entries point to the original instructions

during symbolization.

3.3.3 Structure of kernel modules

The structure of a kernel module differs from that of a userspace binary. The memory layout

of a userspace binary’s code and static data is chosen at link time and known statically. This

is not true for kernel modules, whose structure is less rigid. The sections of a kernel module

can be loaded at an arbitrary distance from each other, which means that the full memory

layout of a kernel module is not known until load time. Only the offset of a byte from the start

of the section that contains it is known statically. RetroWrite’s symbolizer assumes that the

layout of the binary is known, and kernel modules break this assumption. We solve this by using

(section,offset from the start of the section) as addresses for static data and code.

3.3.4 Multiple code sections

Userspace binaries only use one section for code, one section for writable static data, and one

section for read-only static data. Kernel modules can have multiple sections for each. RetroWrite

misses code in kernel modules because it expects all code to reside in a section called .text.

Kernel modules contain several other code sections, such as .init.text, which contains ini-

tialization routines. We account for this by using section attributes instead of section names to

identify code sections.

22

3.4 Binary kcov instrumentation

We implement a binary instrumentation pass that enables coverage-guided fuzzing of binary

Linux modules. Our requirements are to support existing kernel fuzzers and to integrate with

existing source-based instrumentation.

RetroWrite reuses AFL’s [51] instrumentation pass for coverage tracking. AFL’s instrumenta-

tion is designed for userspace applications and does not support fuzzing kernels out-of-the box.

While other work [35] [38] adapted the instrumentation to the kernel, they are one-off implemen-

tations and require a custom fuzzer. One of our design goals is to integrate with existing kernel

compiler passes and existing infrastructure. Porting AFL’s instrumentation would go against that

goal.

kcov [21] is the Linux kernel’s coverage collection framework. kcov provides basic block

coverage to a fuzzer running in userspace through a special file in debugfs. kcov is tightly

integrated into the kernel and it is already used by existing fuzzers such as syzkaller [18]. Therefore

it satisfies our requirement of being compatible with existing kernel fuzzers. kcov inserts a call to

a tracing function at the beginning of every basic block. Our binary kcov pass uses RetroWrite’s

control flow graph (CFG) analysis pass to recover the start of all basic blocks and instruments

recovered blocks. We rely on the main kernel to provide the infrastructure for kcov, such as the

tracing function. kcov is not enabled by default for performance reasons but it can be switched

on at compile time. Userspace fuzzers can collect coverage for both modules instrumented at

compile time and modules instrumented with kRetroWrite at the same time. Therefore our

binary kcov pass satisfies our other requirement of integrating with existing compiler-based

passes.

23

3.5 Binary KASan instrumentation

The Kernel Address Sanitizer (KASan) is a version of ASan that targets the kernel. KAsan relies

on compile-time instrumentation and thus does not work on binaries, or inline assembly. We

use kRetroWrite to implement an instrumentation pass that adds the same checks as KASan

to binary Linux modules. To the best of our knowledge we are the first to implement a memory

checker that supports binary modules and offers precise detection of out-of-bounds memory

accesses.

ASan and KASan consists of a compiler instrumentation pass and a runtime. The compiler

pass instruments every memory access with a sanity check and adds red zones around stack

variables and globals. The runtime instruments the allocator to insert red zones around heap

allocations, manages the shadow memory, and displays error messages when a check fails. The

userspace runtime is implemented by libASan and instrumented programs link to it. KASan’s

runtime is part of the kernel itself and is controlled by a compile-time switch. While we can rely

on the kernel to provide the runtime, we still need to instrument modules to add checks and

insert red zones on the stack.

RetroWrite provides a binary ASan pass for userspace. This binary ASan is about 65% slower

than source ASan and achieves the same precision on the heap. KASan’s instrumentation is

largely similar to ASan’s, so we can apply their instrumentation pass to kernel modules with

only minor modifications. The main difference between ASan and KASan instrumentation is the

location of the shadow metadata table: the ASan shadow is in the low half of the address space

while the KASan shadow is in the higher half. We adapt binary ASan to use the KASan shadow.

We also change binary ASan to not spill registers above the stack pointer. Linux’s userspace

ABI allows saving data above the stack pointer but this is prohibited in the kernel. Binary ASan

saves data above the stack pointer which violates the kernel ABI and makes rewritten modules

crash. We solve this by making the instrumentation adjust the stack pointer.

24

Chapter 4

Implementation

In this chapter we cover the implementation of kRetroWrite. We cover the implementation of

the rewriter, of our binary KASan instrumentation and of our binary kcov instrumentation.

4.1 Symbolizer

Kernel modules use relocations in the code sections to import external symbols. Userspace

binaries do not use relocations in the data and code sections directly but instead import all

external symbols through the Global Offset Table (GOT). This lets all processes that map the

same userspace binary share the backing physical memory for all read-only sections because

the contents of those sections are always the same. The only section that changes between the

different copies is the GOT, which contains pointers to all imported symbols. Kernel modules

use relocations in the code section directly because this removes the overhead of accessing

the GOT. In order to handle these relocations, our symbolizer must discover which field in the

instruction the relocation is writing to and symbolize it accordingly. RetroWrite’s symbolizer

does not handle relocations that write to the bytes of an instruction because userspace binaries

do not use them. We solve this problem by recovering the encoding of the instruction from

the disassembler. When kRetroWrite loads a binary it disassembles every function, and stores

25

instruction metadata provided by the disassembler. This includes the encoding of the instruction,

which specifies the position of every field in the instruction bytes. Code relocations can write to

one of two fields in an x86_64 instruction: a displacement in a memory operand or an immediate.

Each instruction can have at most one immediate and one memory operand. We compute the

position of the relocation inside the encoded instruction and compare it with the offset of the

displacement and the memory operand that we extracted from the disassembly. This way we

can disambiguate between a relocation that writes to the immediate and one that writes to the

offset of a memory operand.

4.2 Self-modifying code

The kernel subsystem that handles runtime patching is called SMP Alternatives. Every kernel

module contains a special section called .altinstructions, which has references to each in-

struction to patch and to its replacement. .altinstructions entries reference the instruction

that they patch using a relocation that points into a code section. Our symbolizer handles run-

time patching by ensuring that all such relocations always point to the original instruction and

not to instrumentation inserted by a pass. We implement this by inserting labels between the in-

strumentation and the original instructions and by updating all relocations in .altinstructions

to point to those labels.

4.3 Binary KASan

Our binary KASan instrumentation pass instruments all memory accesses with a snippet that

checks shadow memory and calls KASan’s error reporting function if it detects a violation. We

reuse most of RetroWrite’s binary ASan pass but make some modifications to make it compatible

with KASan. The two main differences that we have to account for are that the KASan shadow is

located at a different address from the ASan shadow and that the kernel ABI does not use a stack

red zone.

26

4.3.1 Kernel shadow address computation

ASan and KASan use a region of shadow memory to store validity information for memory

regions. Each byte of shadow memory corresponds to 8 bytes of real memory. Before a memory

access, ASan instrumentation computes the address of the corresponding shadow byte as

shadow byte address = shadow base + (address�L 3)

where�L is a logical right shift. The instrumentation loads the shadow byte and checks if it

indicates that the target is not inside a red zone. If the check fails, the instrumentation calls a

reporting function that crashes the program and prints a stack trace. The reporting function

takes the address of the faulty memory access as its first argument; the address is used to

produce the bug report. The address of the shadow byte is computed in the same way in both

ASan and KASan but the base address of the shadow is different. This is because x86_64 splits

the address space in two: high memory (above 0xffff800000000000) and low memory (below

0x7fffffffffff). Other addresses are not valid and trigger a general protection fault. Linux uses

high memory for itself and low memory for userspace. The same rule applies to the ASan and

KASan shadows. The authors of ASan chose the base address of the ASan shadow so that it fits

into a 32-bit integer. This allows the compiler to encode the base address in a 32-bit immediate,

which saves one instruction in the instrumentation. This optimization is not applicable to KASan

because the base of the shadow is in high memory, and no high addresses fit into 32 bits. KASan

instrumentation has to use an extra instruction to load the shadow base into a register.

RetroWrite’s binary ASan pass has to clobber two registers to compute the address of the

shadow byte and check its value. It tries to avoid clobbering live registers because spilling and

restoring to the stack is expensive. RetroWrite identifies register spills as one of the reasons why

the overhead of binary ASan is worse than that of source ASan. Our KASan instrumentation

would have to use an extra register to store the shadow base, which would further increase its

overhead over compiler instrumentation. We solve this by using a different algorithm to compute

the address of a shadow byte. Our algorithm uses two registers, just like RetroWrite’s, and keeps

27

the target address in a register so that we can pass it to the error reporting function without

recomputing it. Our instrumentation computes the address of the shadow byte as

shadow byte address = ((shadow base� 3) + address)�A 3

where�A is an arithmetic right shift,� is a left shift, and all additions are modulo 264. It is easy

to show that this is equivalent to the ASan algorithm for every address in high memory. We do not

need to support low memory addresses because accessing user memory from the kernel directly

(i.e., without using copy_from_user or copy_to_user) is a bug. Accesses to user memory raise

a page fault which crashes the kernel and alerts the fuzzer. Source-based KASan also handles

accesses to user memory in the same way.

4.3.2 Lack of red zones in the kernel

The System V ABI reserves 128 bytes above the stack pointer as scratch space for the current

function. The specification calls this a red zone, confusingly the same term that ASan uses for

poisoned memory. RetroWrite’s binary ASan spill registers to the red zone to avoid moving

the stack pointer. However the kernel uses a different ABI without red zones because the CPU

uses the space above the stack pointer to push exception frames. If an interrupt fires while the

instrumentation is executing, the exception frame overwrites the saved register and makes the

kernel crash. The simplest solution is to move the stack pointer above the address where we saved

the registers. Unfortunately this fix breaks address calculations for SP-relative memory accesses

because the memory access uses the old value of rsp as base, but the instrumentation uses the

adjusted value. We address this second issue by adjusting the address calculation for SP-relative

accesses in our instrumentation when we spill registers. Instead of using rsp + orig_offset to

look up the shadow byte, we use rsp+ orig_offset + 2× rs where rs is the number of registers

that we spilled.

28

4.4 Binary kcov

kcov uses a compiler pass to insert a call to a tracing function (__sanitizer_cov_trace_pc)

at the start of every basic block. The tracing function is implemented in the main kernel and

imported by modules. The implementation reads the address of the caller from the stack and

does not take any arguments, unlike the ASan error reporting functions. Our binary kcov pass

needs to discover basic block starts and instrument them with a call to the tracing function.

We use an approximate control flow analysis to discover basic blocks: the analysis pass marks

every function start and jump target as basic block start during symbolization. RetroWrite uses

the same technique for their fuzzing instrumentation so we reuse their implementation. Like

RetroWrite, we only analyze direct jumps and do not rely on heavyweight analysis to infer indirect

jump targets.

Binary kcov also saves and restores caller-saved registers when calling the tracing function.

The System V ABI specifies that callees are free to overwrite rax, rdi, rsi, rdx, rcx, r8, r9, r10,

r11, and rflags: calling the tracing function may clobber any of those registers and our instru-

mentation must preserve them. We use the register analysis pass to infer which of those registers

are live at the call site and only spill as many as necessary to limit runtime overhead.

29

Chapter 5

Evaluation

In this section we validate the claims that we made earlier by performing experiments. We show

that kRetroWrite combines the scalability of dynamic rewriting with the performance of source-

based instrumentation. Furthermore we show that our coverage instrumentation successfully

guides a coverage-guided fuzzer deep into its target. We formulate these claims into the following

research questions:

RQ1 Does kRetroWrite scale to real-world targets?

RQ2 Is our instrumentation competitive to compiler-based memory checking and coverage

tracking in terms of performance?

RQ3 Is our binary coverage instrumentation competitive with source-based coverage instrumen-

tation on the above targets? Is it as effective as source-based instrumentation in guiding

fuzzers?

We answer our research questions by performing the following experiments:

1. Rewrite Btrfs [37], Ext4 [13], and isofs [26], three real-world kernel modules.

30

2. Evaluate fuzzing throughput on the above modules, comparing (i) compiler-based KASan

and kcov and (ii) binary KASan and kcov.

3. Evaluate fuzzing coverage on the above targets, comparing the basic block coverage reached

when fuzzing with (i) source-based kcov and (ii) compiler-based kcov.

5.1 Setup and hardware

We run our fuzzing campaigns with syzkaller [18] compiled from git commit

3a75be00f50996031dd301d44b009d56db3485f0 and Linux 5.5-rc1. syzkaller is a state-of-

the-art coverage-guided kernel fuzzer that found thousands of bugs in Linux and other

mainstream OSs [45]. syzkaller collects coverage with kcov and uses KASan to detect memory

errors, and so it is compatible with our binary instrumentation. We build Linux with defconfig

+ kvmconfig, which are needed to run inside a VM, and enable debug info, kcov, and KASan,

which are required to fuzz with Syzkaller. We build Ext4, Btrfs, isofs, and their dependencies as

modules and compile everything else into the main kernel image. We build the target modules

twice: once with source-based instrumentation and once with no instrumentation. We rely on

the KASan and kcov runtimes built into the main kernel image rather than adding a copy of

the runtime to the instrumented modules. This allows our instrumentation to interoperate

with source-instrumented modules and reduces complexity (see section 3.2). We use an initial

ramdisk (initramfs) to boot the machine and load the modules, then hand control over to a

Debian Stretch userspace image.

There is no way to target syzkaller to a single module: by default syzkaller fuzzes every system

call that it knows about. To target our fuzzing campaign we whitelist only system calls that

interact with the file system, such as open, read, write, ioctl. This is not a perfect solution

because those same system calls can also be used to interact with drivers through, e.g., character

devices, but it restricts the scope of the campaign by disallowing large subsystems such as

network I/O. We build two such whitelists: the first one includes all system calls that interact

31

with the file system from userspace, and the second one includes only a small set of seldom-used

system calls. We run the target kernel in QEMU VMs with 2 CPUs and 2 GiB of physical memory

each. Each VM runs 8 userspace agents concurrently. We store the VMs’ disks in tmpfs to reduce

the overhead of disk writes and minimize storage wear. We use QEMU in KVM mode to minimize

the overhead of virtualization.

As we have a limited amount of time to conduct our evaluation, we run our fuzzing campaigns

on two machines in parallel: the first machine has an AMD Ryzen 7 PRO 1700 (8 cores, 16 threads)

CPU and 32 GiB of DRAM and runs Ubuntu 19.04; the second one has an Intel Core i7-8700 (6

cores, 12 threads) CPU and 16 GiB of DRAM and runs Ubuntu 19.10. We use the first machine to

fuzz with the full system call list and 8 VMs, and the second machine to fuzz with the reduced

system call list and 6 VMs. We build Linux using gcc 9.2.1.

We begin each 24h fuzzing trial with an empty corpus and save the corpus at the end of the

run. Syzkaller uses API descriptions for system call inputs and therefore it is able to discover

interesting paths quickly even with an empty corpus.

5.2 Scalability

We use kRetroWrite to rewrite and instrument the kernel modules shown in Table 5.1. They

are part of mainline Linux and each implements a file system. Ext4 is the default file system

for many major Linux distributions such as Debian [10] and Fedora Workstation [14]. Btrfs is

also supported by major distros and is the default file system for openSUSE and SLES [6]. isofs

implements the ISO 9660 file system, the standard file systems for CD-ROMs [20].

Name Size (debug) Size (stripped) Symbolization (avg) Instrumentation (avg)

Btrfs 32M 1.2M 48s +14s
Ext4 16M 616K 21s +10s
isofs 1.8M 32K 4.3s +0.6s

Table 5.1: The Linux modules that we instrument with kRetroWrite and fuzz. We instrument the
modules with both binary kcov and binary KASan and report kRetroWrite’s run time.

32

We symbolize each module in the table using kRetroWrite and instrument it with binary

KASan and binary kcov. We run kRetroWrite on an Intel Core i7-8700 CPU @ 3.20GHz with

PyPy3 7.1.1. The modules are built from Linux 5.5-rc1, the latest development version at the

time of our evaluation. kRetroWrite is fast enough that it could be run automatically as part

of a fuzzing campaign, e.g., when a vendor publishes an updated version of a binary module.

Symbolization and instrumentation are embarrassingly parallel tasks because each function can

be processed independently, but kRetroWrite runs on a single thread. Implementing parallel

symbolization and instrumentation would reduce the run time further and would only require a

minor engineering effort.

As Table 5.1 shows, we successfully rewrote and instrumented large, real world kernel mod-

ules. Dinesh et al. evaluate RetroWrite by rewriting binaries with a maximum size of 12MB,

and conclude that RetroWrite scales to real world binaries. The largest kernel module in our

evaluation is 32M (2.6x larger) and all our modules are larger than one megabyte. Therefore we

are confident that kRetroWrite scales to arbitrarily large kernel modules (RQ1).

5.3 Instrumentation Performance

We evaluate the performance of our instrumentation by fuzzing Ext4, Btrfs, and isofs with

syzkaller for 24 hours and measuring the number of executions per second. The number of

executions per second is an important metric for fuzzers because covering more of the target

directly translates to a higher probability of finding bugs. We also compare coverage in section 5.4

because a fuzzer could easily maximize its throughput by only exploring shallow paths in the

target. Such a fuzzer would achieve high throughput but not find any bugs.

5.3.1 Results

Our evaluation shows that our performance is similar to source-based kcov and KASan (RQ2).

Figure 5.1 shows syzkaller’s throughput in the fuzzing trials that we ran. We are 8.3% slower

33

on average on Btrfs, 2x faster on isofs and 26% slower on Ext4 with the full system call list.

With the reduced system call list, we are 1% faster on Btrfs and 72% faster on Ext4. We were not

able to run more trials due to time constraints, so our results are affected by random variance.

Unlike RetroWrite’s binary ASan, which consistently showed a slowdown, in many cases our

instrumentation does not seem to have a large performance impact compare to source-based

instrumentation. We explain this by observing that RetroWrite evaluated the performance of

binary ASan on SPEC CPU2006. SPEC CPU2006 is a CPU benchmark which involves few context

switches and all the code was instrumented with binary ASan or ASan in their evaluation. We only

use our instrumentation on the target module and always use compiler-based instrumentation

on the rest of the kernel. Furthermore fuzzing the kernel incurs many context switches as each

test case issues multiple system calls, which cause two context switches each. Disk I/O causes

further context switches because every disk access is handled by the hypervisor. Finally the

fuzzer processes have to communicate with the manager process which runs on the host. We

omit the results for isofs with the reduced system call list because syzkaller did not generate

any test cases covering the module in that setting. We speculate that this happens because we

cannot use a CD-ROM image as the root filesystem for fuzzing and therefore file operations do

not hit any isofs filesystems.

We do not modify syzkaller, the kernel, the compiler, the hypervisor, or any of the modules to

run any of our experiments. This shows that kRetroWrite integrates seamlessly into an off-the-

shelf kernel fuzzing setup.

5.4 Instrumentation Coverage

We evaluate the effectiveness of our coverage tracking instrumentation by measuring the cover-

age of the target module when fuzzing with source kcov and binary kcov. We save the fuzzing

corpus after each campaign and re-run all test cases on a kernel instrumented with source kcov.

We compute the number of basic blocks in the module and use it to compute the fraction of

basic blocks covered by each corpus.

34

Btrfs Ext4 isofs
0

100

200

300

E
xe

cu
tio

ns
 /

s

Full system call list

kRetroWrite
Source

Btrfs Ext4
0

25

50

75

100

E
xe

cu
tio

ns
 /

s

Reduced system call list

kRetroWrite
Source

Figure 5.1: Plot of fuzzing executions per second on real-world kernel modules. Each fuzzing
trial ran for 24 hours. We repeated the trials 3 times for Btrfs and Ext4, and only once for isofs
due to time constraints. Higher numbers indicate better performance.

35

Btrfs Ext4 isofs
0.0

0.1

0.2

0.3

C
ov

er
ag

e

Full system call list

kRetroWrite
Source

Btrfs Ext4
0.00

0.05

0.10

0.15

0.20

C
ov

er
ag

e

Reduced system call list

kRetroWrite
Source

Figure 5.2: Plot of basic block coverage for our fuzzing campaigns. Coverage is given as a fraction
of the total number of basic blocks in the module under test. We repeated the trials 3 times for
Btrfs and Ext4, and only once for isofs due to time constraints. Higher numbers indicate better
performance.

36

Our experiments show that the coverage obtained by syzkaller with our binary instrumenta-

tion is similar to the one obtained with source-based instrumentation (RQ3). Figure 5.2 shows

that syzkaller covers about 6% less basic blocks when using our instrumentation on Btrfs, whereas

we are within 2% of the source-based instrumentation on Ext4 and isofs. We hypothesize that

the missing coverage is due to the imprecise control flow recovery missing basic blocks. Our

evaluation therefore shows that our instrumentation is a viable alternative to source-based

coverage instrumentation for fuzzing binary kernel modules.

We also show that when fuzzing with our binary instrumentation, syzkaller hits many of the

basic blocks it hit with source-based instrumentation with similar frequency. We rerun all test

cases from the Ext4 corpora (full system call list) on a kernel instrumented with source kcov, and

count how many times the corpora hit each basic block in Ext4. Figure 5.3 shows that most basic

blocks in Ext4 are covered by a similar number of test cases in the source corpora and in the

binary corpora. Moreover it shows that the basic blocks that syzkaller found with our binary kcov

are not a subset of the blocks that it found with source-based kcov. This means that our binary

kcov did not only guide syzkaller through the module effectively but it also made it discover

modules that weren’t found by the source-based instrumentation.

37

101

103

105

So
ur

ce
 H

it
Co

un
t

101

103

105

Bi
na

ry
 H

it
Co

un
t

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
(Source Hits - Binary Hits) / Total Hits

0

200

400

600

Ba

sic
 B

lo
ck

s

Figure 5.3: This plot shows how many times the corpora accumulated by syzkaller when fuzzing
Ext4 with the full system call list covered each basic block in Ext4. The basic blocks are sorted
on the horizontal axis according to the relative difference in popularity. The bottom plot is a
histogram of the distribution of the basic blocks. The top two plots have a log-scale vertical axis.

38

Chapter 6

Related Work

6.1 Blackbox fuzzing

Blackbox fuzzers are the oldest and simplest class of fuzzers. They are not aware of the structure

of the target at all but instead they entirely rely on random mutation to trigger crashes in the

target. The fundamental problem for black box fuzzer is to find interesting paths through the

target that lead to bugs. Because most real-world targets expect structured input, purely random

test cases are unlikely to be effective. Prior work attempted to address this in various ways.

One approach is to use random mutation on a starting corpus with no coverage feedback (e.g.,

Radamsa [36]). This class of fuzzers relies on a high-quality starting corpus and cannot discover

the input format on its own. Another approach is to use grammars or API descriptions to generate

valid inputs or call sequences. Trinity [47] is an example of a blackbox Linux system call fuzzer

that uses system call descriptions. This approach is more effective than executing random call

sequences but requires manual effort to create API descriptions. IMF [19] addresses this problem

by inferring API models for the kernel automatically. IMF infers API models (sets of ordering

dependences and value dependences) from the execution trace of a userspace program and

uses it to fuzz the kernel. IMF can fuzz binaries but relies on crashes to detect bugs, and is likely

that it will miss bugs such as subtle memory corruption. Furthermore it increases coverage by

39

observing userspace consumers of kernel APIs and not by observing the kernel itself, unlike a

coverage guided fuzzer. DIFUZE [8] infers system call models automatically like IMF but does so

by analyzing source code. Their approach is not applicable to binaries.

6.2 Symbolic execution and whitebox fuzzing

Symbolic execution is an alternative to fuzzing for finding bugs. Symbolic execution consists in

executing the program under test with a symbolic, rather than concrete, input and collecting path

constraints as the execution proceeds. Unlike concrete execution, which only takes one of the

possible paths, symbolic execution explores all paths. When the symbolic executor encounters

an error condition it can use a constraint solver to synthesize an input that triggers the error

from the path constraints. S2E [7] can symbolically execute binaries and does not require source

code. It can also symbolically execute an entire system, including the kernel. Symbolic execution

suffers from similar problems to fuzzing, such as low coverage, but for different reasons. Fuzzing

struggles to achieve high coverage of the target because random inputs stop exploring new

paths through the target. Symbolic execution suffers from exponential path explosion in all

but the simplest targets, and complex constraints strain the solver. CAB-Fuzz [22] limits path

explosion when fuzzing the kernel by focusing symbolic execution on states that are more likely

to lead to vulnerabilities, such as boundary conditions. Tools like Driller [44] combine fuzzing

and symbolic execution to mitigate the weaknesses of both techniques. Driller overcomes the

path explosion problem by using the fuzzer to guide exploration of the target and only switching

to symbolic execution when the fuzzer gets stuck trying to bypass a complex check.

Whitebox fuzzers can find deeper bugs in their target but are often significantly harder to

implement and scale to large systems. Scaling whitebox testing to full kernels is an open area of

research.

40

6.3 Hardware-assisted greybox fuzzing

kAFL [38] uses Intel Processor Trace (IPT) to collect coverage information about kernel code

at low overhead. IPT is a feature of recent Intel CPUs that records the execution flow of code

executing on the CPU, including the outcome of conditional jumps and the target of direct jumps.

kAFL uses customized versions of QEMU and KVM that use IPT to record the execution trace of

a guest operating system running in a VM. Their approach relies solely on hardware support and

does not use any instrumentation, and therefore it has almost no performance overhead. kAFL

is mostly OS-independent because it uses the hypervisor to collect coverage information and

only contains a small amount (usually less than 150 lines) of OS-specific code.

Unlike kAFL, our approach uses static instrumentation which is more general because it can

be used not only to collect coverage but also to implement sanitization. Furthermore kAFL relies

on hardware support and cannot be ported to other architectures which lack IPT, or to older

Intel CPUs. kAFL does not integrate with existing coverage tracking frameworks such as kcov

and therefore it cannot be integrated with off-the-shelf fuzzers like syzkaller without additional

engineering effort.

6.4 Rewriting-based kernel instrumentation

DBT-based fuzzers use a dynamic rewriter to instrument the target kernel at runtime. The target

kernel is virtualized using dynamic binary translation and the DBT hypervisor instruments

the target’s code on the fly. An example of such a fuzzer is TriforceAFL [35] which uses QEMU

in system emulation mode to collect coverage information about the guest OS. TriforceAFL

can fuzz any target that runs inside QEMU and can run entirely in a RAM disk, and therefore

porting it to new target only requires little engineering effort. TriforceAFL uses heavyweight

dynamic binary instrumentation which slows down execution and prevents the fuzzer from

finding interesting test cases. Schumilo et al. found that TriforceAFL is up to 54 times slower than

kAFL [38]. Unicorefuzz [29] uses DBT to target arbitrary kernel functions that are not accessible

41

from userspace. It uses Unicorn [32], a fork of QEMU, to target parsers in the kernel. Unicorefuzz

can expose bugs in parts of the kernel that are normally difficult to reach from userspace and

works on binaries. However the authors’ evaluation shows that Unicorefuzz achieves around

46% of the throughput of AFL-QEMU [1]. Valgrind memcheck implements memory sanitization

for userspace programs using the Valgrind [30] DBT toolkit. Dinesh et al. [12] show that Valgrind

memcheck is 3x slower than RetroWrite’s Binary ASan and detects fewer bugs. To the best of our

knowledge there exist no DBT-based systems that can perform memory sanitization for kernel

code. Despite the name, the Linux kernel’s kmemcheck is unrelated to Valgrind memcheck and

does not use DBT.

DBT-based approaches have good scalability and are widely used to fuzz real-world targets,

but they impose high overhead which precludes their use for high-performance instrumentation.

RetroWrite [12] rewrites userspace binaries at low cost without heuristics and achieves

both scalability and low overhead, but does not work on the kernel. Static rewriters before

RetroWrite [50] [49] [33] [4] [11] [42] [2] were limited to small binaries, had other limitations

such as high memory runtime overhead, or could only apply some types of instrumentation.

42

Chapter 7

Conclusion

7.1 Future work

Support for other operating systems Our prototype implementation of kRetroWrite can only

rewrite Linux modules. Although closed source modules for Linux do exist, they are far more

common in proprietary operating systems such as Windows and macOS. kRetroWrite

makes no assumption about the target operating system except for the loader, which must

support the executable format used on the target platform. Porting kRetroWrite to those

platforms is an engineering effort which we leave to future work.

Support for other architectures kRetroWrite only supports x86_64. While x86_64 is the most

popular architecture on desktops and servers, it only has a small market share in other fields

such as mobile devices and IoT. Supporting other architectures would require extending

the symbolizer to handle more relocation types, and porting the assembly snippets which

we use in our instrumentation passes. ARM is the most popular architecture for Android

phones, which are based on Linux and often ship with proprietary device drivers. Porting

kRetroWrite to ARM would allow us to fuzz closed-source modules that ship with Android

phones.

Mitigations Our instrumentation passes target fuzzing but it is also possible to use kRetroWrite

43

to retrofit security mitigations. For example it could be used to add a shadow stack by

instrumenting all call and return instructions. We hypothesize that Hardware-assisted

mitigations, such as Intel CET [9] and ARM pointer authentication [24] can be retrofitted

on binaries without heavyweight static analysis.

7.2 Conclusion

To summarize we develop kRetroWrite, a scalable static rewriter for Linux modules. We present

two instrumentation passes implemented on top of kRetroWrite: (i) binary kcov to collect cover-

age for greybox fuzzing, and (ii) KASan memory checking to precisely detect memory corruption

during fuzzing. We show that our instrumentation passes are competitive with source-based

instrumentation in both performance and coverage, and at the same time remain compatible.

kRetroWrite instruments binary kernel modules, enabling targeted application of our instrumen-

tation even where compiler instrumentation is not an option, such as proprietary modules, inline

assembly, and code that requires an old compiler. Our work shows that RetroWrite’s approach is

not only applicable to userspace but also to the kernel.

44

Bibliography

[1] AFL QEMU mode. [Online, accessed 4-Jan-2020]. U R L: https://github.com/google/AFL/

blob/master/qemu_mode/README.qemu.

[2] Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. “Superset Disassembly: Statically

Rewriting x86 Binaries Without Heuristics.” In: Network and Distributed System Security

Symposium. 2018.

[3] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In: Usenix Annual

Technical Conference. 2005.

[4] Andrew R. Bernat and Barton P. Miller. “Anywhere, Any-Time Binary Instrumentation”.

In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools. 2011.

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. “An Infrastructure for Adap-

tive Dynamic Optimization”. In: International Symposium on Code Generation and Opti-

mization. 2003.

[6] Butter bei die Fische! [Online, accessed 8-Jan-2020]. U R L: https://www.suse.com/c/

butter-bei-die-fische/.

[7] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A Platform for In-vivo

Multi-path Analysis of Software Systems”. In: International Conference on Architectural

Support for Programming Languages and Operating Systems. 2011.

45

https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://www.suse.com/c/butter-bei-die-fische/
https://www.suse.com/c/butter-bei-die-fische/

[8] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao, Christo-

pher Kruegel, and Giovanni Vigna. “DIFUZE: Interface aware fuzzing for kernel drivers”.

In: ACM Conference on Computer and Communication Security. 2017.

[9] Intel Corporation. Control-flow Enforcement Technology Specification. [Online, accessed

9-Jan-2020]. U R L: https://software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf.

[10] Debian - Ext4. [Online, accessed 8-Jan-2020]. U R L: https://wiki.debian.org/Ext4.

[11] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. “Bistro: Binary component extraction and

embedding for software security applications”. In: European Symposium on Research in

Computer Security. 2013.

[12] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. “RetroWrite: Statically

Instrumenting COTS Binaries for Fuzzing and Sanitization”. In: IEEE International Sympo-

sium on Security and Privacy. 2020.

[13] Ext4. [Online, accessed 8-Jan-2020]. U R L: https://www.kernel.org/doc/Documentation/

filesystems/ext4.txt.

[14] Ext4 in Fedora 11. [Online, accessed 8-Jan-2020]. U R L: https://fedoraproject.org/

wiki/Ext4_in_Fedora_11.

[15] Fedora - Harden All Packages. [Online, accessed 7-Jan-2020]. U R L: https://fedoraprojec

t.org/wiki/Changes/Harden_All_Packages.

[16] James Forshaw. Breaking the Chain. [Online; accessed 25-December-2019]. U R L: https:

//googleprojectzero.blogspot.com/2016/11/breaking-chain.html.

[17] Getting started with kmemcheck. [Online, accessed 3-Jan-2020]. U R L: https://www.kernel.

org/doc/html/v4.14/dev-tools/kmemcheck.html.

[18] Google. syzkaller. [Online, accessed 5-Jan-2020]. U R L: https://github.com/google/

syzkaller.

[19] HyungSeok Han and Sang Kil Cha. “IMF: Inferred model-based fuzzer”. In: ACM Conference

on Computer and Communication Security. 2017.

46

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://wiki.debian.org/Ext4
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://fedoraproject.org/wiki/Ext4_in_Fedora_11
https://fedoraproject.org/wiki/Ext4_in_Fedora_11
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller

[20] Information processing — Volume and file structure of CD-ROM for information inter-

change. Standard. International Organization for Standardization, Apr. 1988.

[21] kcov: code coverage for fuzzing. [Online, accessed 4-Jan-2020]. U R L: https://www.kernel.

org/doc/html/v5.5-rc1/dev-tools/kcov.html.

[22] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun, and Taesoo

Kim. “CAB-Fuzz: Practical Concolic Testing Techniques for {COTS}Operating Systems”.

In: Usenix Annual Technical Conference. 2017.

[23] Andrey Konovalov and Dmitry Vyukov. KernelAddressSanitizer (KASan) — a fast memory

error detector for the Linux kernel. [Online, accessed 6-Jan-2020]. U R L: https://events.

static.linuxfound.org/sites/events/files/slides/LinuxCon%20North%20America%

202015%20KernelAddressSanitizer.pdf.

[24] Arm Limited. Arm R© Architecture Reference Manual - Armv8, for Armv8-A architecture

profile. [Online, accessed 9-Jan-2020]. U R L: https://static.docs.arm.com/ddi0487/ea/

DDI0487E_a_armv8_arm.pdf.

[25] Linux Kernel CVEs. [Online; accessed 25-December-2019]. U R L: https://www.linuxkerne

lcves.com/cves.

[26] Linux Kernel Documentation - isofs. [Online, accessed 8-Jan-2020]. U R L: https://www.

kernel.org/doc/Documentation/filesystems/isofs.txt.

[27] LKML archive: kmemcheck: kill kmemcheck. [Online, accessed 3-Jan-2020]. U R L: %7Bhttps:

//lore.kernel.org/lkml/20171007030159.22241-1-alexander.levin@verizon.com/

%7D.

[28] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Building Customized Pro-

gram Analysis Tools with Dynamic Instrumentation”. In: ACM International Conference on

Programming Language Design and Implementation. 2005.

[29] Dominik Maier, Benedikt Radtke, and Bastian Harren. “Unicorefuzz: On the Viability of

Emulation for Kernelspace Fuzzing”. In: Usenix Workshop on Offensive Technologies. 2019.

47

https://www.kernel.org/doc/html/v5.5-rc1/dev-tools/kcov.html
https://www.kernel.org/doc/html/v5.5-rc1/dev-tools/kcov.html
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon%20North%20America%202015%20KernelAddressSanitizer.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon%20North%20America%202015%20KernelAddressSanitizer.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon%20North%20America%202015%20KernelAddressSanitizer.pdf
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf
https://www.linuxkernelcves.com/cves
https://www.linuxkernelcves.com/cves
https://www.kernel.org/doc/Documentation/filesystems/isofs.txt
https://www.kernel.org/doc/Documentation/filesystems/isofs.txt
%7Bhttps://lore.kernel.org/lkml/20171007030159.22241-1-alexander.levin@verizon.com/%7D
%7Bhttps://lore.kernel.org/lkml/20171007030159.22241-1-alexander.levin@verizon.com/%7D
%7Bhttps://lore.kernel.org/lkml/20171007030159.22241-1-alexander.levin@verizon.com/%7D

[30] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight Dynamic

Binary Instrumentation”. In: ACM International Conference on Programming Language

Design and Implementation. 2007.

[31] New 17.0 profiles in the Gentoo repository. [Online, accessed 7-Jan-2020]. U R L: https:

//www.gentoo.org/support/news-items/2017-11-30-new-17-profiles.html.

[32] Anh Quynh Nguyen and Hoang Vu Dang. Unicorn: Next Generation CPU Emulator Frame-

work. [Online, accessed 9-Jan-2020]. U R L: https://www.unicorn-engine.org/BHUSA2015-

unicorn.pdf.

[33] Pádraig O’sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua, and

Angelos D Keromytis. “Retrofitting security in cots software with binary rewriting”. In: IFIP

International Information Security Conference. Springer. 2011, pp. 154–172.

[34] OSS-Fuzz issue tracker. [Online, accessed 4-Jan-2020]. U R L: https://bugs.chromium.

org/p/oss-fuzz/issues/list?can=1&q=Type%3DBug-Security&colspec=ID%20Status%

20Proj%20Reported%20Summary&sort=-id&num=1000.

[35] Project Triforce: Run AFL on Everything! [Online; accessed 19-December-2019]. 2016. U R L:

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/

project-triforce-run-afl-on-everything/.

[36] Radamsa — a general purpose fuzzer. [Online, accessed 9-Jan-2020]. U R L: https://gitlab.

com/akihe/radamsa.

[37] Ohad Rodeh, Josef Bacik, and Chris Mason. “Btrfs: The linux b-tree filesystem”. In: ACM

Transactions on Storage (TOS) (2013).

[38] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten

Holz. “kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels”. In: Usenix Security

Symposium. 2017.

[39] Security Enhancements in Android 5.0. [Online, accessed 7-Jan-2020]. U R L: https://

source.android.com/security/enhancements/enhancements50.html.

48

https://www.gentoo.org/support/news-items/2017-11-30-new-17-profiles.html
https://www.gentoo.org/support/news-items/2017-11-30-new-17-profiles.html
https://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
https://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=Type%3DBug-Security&colspec=ID%20Status%20Proj%20Reported%20Summary&sort=-id&num=1000
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=Type%3DBug-Security&colspec=ID%20Status%20Proj%20Reported%20Summary&sort=-id&num=1000
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=Type%3DBug-Security&colspec=ID%20Status%20Proj%20Reported%20Summary&sort=-id&num=1000
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://source.android.com/security/enhancements/enhancements50.html
https://source.android.com/security/enhancements/enhancements50.html

[40] Konstantin Serebryany. Hardware Memory Tagging to make C/C++ memory safe(r). [Online,

accessed 4-Jan-2020]. U R L: https://github.com/google/sanitizers/blob/master/hw

address-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%

20safe(r)%20-%20iSecCon%202018.pdf.

[41] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. “Ad-

dressSanitizer: A fast address sanity checker”. In: Usenix Annual Technical Conference.

2012.

[42] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and Rajeev Barua. “Static

binary rewriting without supplemental information: Overcoming the tradeoff between

coverage and correctness”. In: 2013 20th Working Conference on Reverse Engineering

(WCRE). 2013.

[43] StatCounter. Desktop Operating System Market Share Worldwide. [Online, accessed 3-Jan-

2020]. U R L: https://gs.statcounter.com/os-market-share/desktop/worldwide.

[44] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang, Jacopo

Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. “Driller: Augment-

ing Fuzzing Through Selective Symbolic Execution.” In: Network and Distributed System

Security Symposium. 2016.

[45] Syzbot fixed bugs. [Online, accessed 8-Jan-2020]. U R L: https://syzkaller.appspot.com/

upstream/fixed.

[46] The Kernel Address Sanitizer (KASAN). [Online, accessed 3-Jan-2020]. U R L: https://www.

kernel.org/doc/html/latest/dev-tools/kasan.html.

[47] Trinity. [Online; accessed 25-December-2019]. U R L: https://github.com/kernelslacker

/trinity.

[48] Ubuntu Foundations Team - Weekly Newsletter, 21017-06-15. [Online, accessed 7-Jan-2020].

U R L: https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html.

49

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware%20Memory%20Tagging%20to%20make%20C_C++%20memory%20safe(r)%20-%20iSecCon%202018.pdf
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://syzkaller.appspot.com/upstream/fixed
https://syzkaller.appspot.com/upstream/fixed
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html

[49] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul

Grosen, Christopher Kruegel, and Giovanni Vigna. “Ramblr: Making Reassembly Great

Again.” In: Network and Distributed System Security Symposium. 2017.

[50] Shuai Wang, Pei Wang, and Dinghao Wu. “Reassembleable disassembling”. In: Usenix

Security Symposium. 2015.

[51] Michał Zalewski. American Fuzzy Lop. [Online, accessed 4-Jan-2020]. U R L: http://lcamtu

f.coredump.cx/afl/.

[52] Michał Zalewski. The bug-o-rama trophy case. [Online, accessed 7-Jan-2020]. U R L: http:

//lcamtuf.coredump.cx/afl/#bugs.

50

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Fuzzing
	Userspace fuzzing
	Kernel fuzzing

	Binary rewriting
	Dynamic rewriting
	Static rewriting

	Coverage-guided fuzzing
	Address Sanitizer

	Design
	Goals
	System overview
	Symbolizer
	Code relocations
	Self-modifying code
	Structure of kernel modules
	Multiple code sections

	Binary kcov instrumentation
	Binary KASan instrumentation

	Implementation
	Symbolizer
	Self-modifying code
	Binary KASan
	Kernel shadow address computation
	Lack of red zones in the kernel

	Binary kcov

	Evaluation
	Setup and hardware
	Scalability
	Instrumentation Performance
	Results

	Instrumentation Coverage

	Related Work
	Blackbox fuzzing
	Symbolic execution and whitebox fuzzing
	Hardware-assisted greybox fuzzing
	Rewriting-based kernel instrumentation

	Conclusion
	Future work
	Conclusion

	Bibliography

