
USAGE OF DYNAMIC ANALYSIS TO STRENGTHEN CONTROL-FLOW

ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Priyam Biswas

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mathias Payer, Co-Chair

Department of Computer Science

Dr. Christina Garman, Co-Chair

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Dr. Aniket Kate

Department of Computer Science

Approved by:

Dr. Kihong Park

Head of the Department Graduate Program

iii

To Sagar, my partner in crime

iv

ACKNOWLEDGMENTS

First and foremost, I am thankful to Dr. Mathias Payer, my major advisor and

mentor for giving me the opportunity to conduct research under his guidance. His

cheerful energy and motivational power encouraged me every day to become a better

researcher. He is one of the smartest persons I know and “System Security” became

fun because of him. Supervising someone very sentimental like me may not have

been a good experience for him, yet he guided me with patience and care. I hope I

would be able to follow his footsteps someday. I an forever grateful to him for being

a constant source of inspiration.

I would like to thank my co-advisor, Dr. Christina Garman for introducing me

the world of Cryptography and giving me the freedom to explore research ideas. Her

close monitoring and thoughtful insights helped me to refine my research projects.

I am also thankful to Dr. Sonia Fahmy, Dr. Xiangyu Zhang and Dr.Aniket Kate,

for serving in my dissertation committee, and providing me valuable guidance.

I am grateful to my colleague, Yuseok Jeon, for always being there for me and

supporting me from research to life hacks. I would also like to thank all the HexHive

group members, Abe Clements, Adrian Herrera, Ahmad Hazimeh, Ahmed Hussein,

Alessandro Di Federico, Andrés Sanchez, Atri Bhattacharyya, Antony Vennard, Bader

AlBassam, Daniele Antoniolli, Derrick McKee, Hui Peng, Jean-Michel Crepel, Jelena

Jankovic, Kyriakos Ispoglou, Naif Almakhdhub, Nathan Burow, Nicolas Badoux,

Prashast Srivastava, Scott Carr, Sushant Dinesh, Uros Tesic, and Zhiyuan Jiang for

their continous support and precious feedback.

I would like to thank Purdue BARC group members, Arushi Arora, Alex Seto,

Devansh Panirwala, Varun Shah, and Yongming Fan for their collaboration and words

of encouragement.

v

I am thankful to my friends Abdullah Al Mamun, Bushra Ferdousi, Marufa Khan-

daker Joyeeta, and S M Ferdous for always cooking biriyani for me and for their

generous support throughout the journey.

This journey would not have been possible without the continous support and

motivation from my family. I am grateful to my late mother, Gouri Biswas for always

fighting for her daughters’ education. I am thankful to my father, Tusher Kanti

Biswas, my sister, Dr. Sumana Biswas, and my brother-in-law, Rupam Sarkar for

believing in me and their never ending encouragement. Thanks to my nephew, Rick

for being our source of happiness. I would also like to extend my gratitude to my

father-in-law, Promode Ranjan Chowdhury and mother-in-law, Ratna Chowdhury for

their emotional support.

Finally, I am thankful to my husband, Sagar Chowdhury, for making my dreams

his own, sacrifing his career to support mine and being always a ‘+1’ for me.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xii

ABSTRACT . xiii

1 Introduction . 1
1.1 Motivation . 1
1.2 Thesis Statement . 2
1.3 Contribution . 2

2 Ancile . 5
2.1 Introduction . 6
2.2 Background . 8

2.2.1 Attack Surface Debloating . 8
2.2.2 Control-Flow Integrity . 9
2.2.3 Fuzzing . 11
2.2.4 Sanitization . 12

2.3 Threat Model . 13
2.4 Challenges and Trade-offs . 15
2.5 Ancile Design . 18

2.5.1 Dynamic CFG Generation . 20
2.5.2 Debloating Mechanism . 21
2.5.3 CFI Target Analysis . 22

2.6 Implementation . 23
2.7 Evaluation . 25

2.7.1 Effectiveness of fuzzing as a debloating tool (RQ1) 26
2.7.2 Effectiveness of fuzzing as a CFI tool (RQ2) 28
2.7.3 Analyzing the correctness of the specialized binary (RQ3) 33
2.7.4 Performance Overhead (RQ4) 35

2.8 Related Work . 37
2.9 FitJit . 39

2.9.1 Introduction . 39
2.9.2 Motivating Example . 39
2.9.3 Attack Surface . 41
2.9.4 Related Work . 41

vii

Page

2.10 Proposed Policy . 42
2.11 Conclusion . 43

3 HexVASAN . 48
3.1 Introduction . 49
3.2 Background . 52

3.2.1 Variadic functions . 52
3.2.2 Variadic functions ABI . 53
3.2.3 Variadic attack surface . 54
3.2.4 Format string exploits . 55

3.3 Threat model . 56
3.4 HexVASAN design . 57

3.4.1 Analysis and Instrumentation 57
3.4.2 Runtime support . 59
3.4.3 Challenges and Discussion . 61

3.5 Implementation . 65
3.6 Evaluation . 69

3.6.1 Case study: CFI effectiveness 69
3.6.2 Exploit Detection . 73
3.6.3 Prevalence of variadic functions 73
3.6.4 Firefox . 77
3.6.5 SPEC CPU2006 . 77

3.7 Related work . 78
3.8 Conclusions . 80

4 Artemis . 84
4.1 Motivation . 84
4.2 Introduction . 85
4.3 Research gap in identification of cryptographic algorithms 87
4.4 Cryptographic Features . 88

4.4.1 Magic Constants . 88
4.4.2 Presence of Loops . 89
4.4.3 Changes in Entropy . 90
4.4.4 I/O Mapping . 90
4.4.5 Data-Flow Isomorphism . 90
4.4.6 Instruction Sequence . 90

4.5 Categorization of detection approaches 91
4.5.1 Static Approaches . 91
4.5.2 Dynamic Approaches . 92
4.5.3 Machine Learning Based Approaches 92

4.6 Challenges . 93
4.6.1 Obfuscation . 93
4.6.2 Implementation Variation . 95

viii

Page
4.6.3 Differences in Cryptographic Functions 95

4.7 Performance Metric . 95
4.8 Benchmarks . 97
4.9 Case study: Openssl . 100
4.10 Conclusion and Future Work . 100

5 Summary . 102

REFERENCES . 104

ix

LIST OF TABLES

Table Page

2.1 Sensitive function analysis: Number of indirection level to the sensitive
functions from functions present in the target sets of LLVM-CFI and Ancile.29

2.2 Statistics of maximum target size in LLVM-CFI and Ancile for our bench-
marks. 31

2.3 Performance overhead comparison between LLVM-CFI and Ancile. 36

3.1 Detection coverage for several types of illegal calls to variadic functions. X
indicates detection, 7 indicates non-detection. “A.T.” stands for address
taken. 70

3.2 Statistics of Variadic Functions for Different Benchmarks. The second and
third columns are variadic call sites broken into “Tot.” (total) and “Ind.”
(indirect). The third and fourth columns are for variadic functions. “A.T.”
stands for address taken. “Proto.” is the number of distinct variadic
function prototypes. “Ratio” indicates the function-per-prototypes ratio
for variadic functions. 82

3.3 Performance overhead on Firefox benchmarks. For Octane and JetStream
higher is better, while for Kraken lower is better. 83

4.1 Score for each of the evaluation criterion based on different optimization
and obfuscation flags. 97

4.2 Analysis of the tools across the three categories of the benchamark 99

x

LIST OF FIGURES

Figure Page

2.1 Ancile operates in three distinct phases: (i) Dynamic CFG Generation (to
record control flow), (ii) Debloating (to remove unnecessary functionality),
and (iii) CFI Target Analysis (to tighten indirect control flow checks to
the minimal required targets). 20

2.2 Comparison of the number of functions before and after debloating across
our benchmarks: libtiff, libpng, tcpdump, and nginx. We used the stan-
dard test-suite for each of these applications. Ancile reduces more func-
tions in specialized cases. 27

2.3 Mean and std. deviation of target sets across the four applications in our
test-suite for LLVM-CFI and Ancile. LLVM-CFI has more callsite outliers
with large target sets than Ancile. 30

2.4 Comparison of number of targets per each callsite at LLVM-CFI and An-
cile with specialization in different functionalities for two libraries: libtiff
and libpng. For each case study, we analyzed LLVM-CFI and Ancile with
three different functionality scenarios: standard test-suite along with two
utilities (tiffcrop and tiff2pdf utilities for libtiff, and pngfix and timepng
utilities for libpng) . 44

2.5 Comparison of the cumulative distribution function (CDF) of the target
set size per call site of Ancile against LLVM-CFI over two SPEC CPU2006
benchmarks: 400.perlbench and 445.gobmk 45

2.6 Statistics of the number of equivalence classes for SPEC CPU2006 bench-
marks. 46

2.7 Target discovery over the time during application (tcpdump) fuzzing. . . . 47

2.8 Proposed segmented CFI policy for language boundaries 47

3.1 Overview of the HexVASAN compilation pipeline. The HexVASAN instru-
mentation runs right after the C/C++frontend, while its runtime library,
hexvasan.a, is merged into the final executable at link time. 58

3.2 Run-time overhead of HexVASAN in the SPECint CPU2006 benchmarks,
compared to baseline LLVM 3.9.1 performance. 78

xi

4.1 Evolution of the research techniques to identify cryptographic functions
over time . 86

xii

ABBREVIATIONS

ABI Application Binary Interface

ASLR Address Space Layout Randomization

CDF Cumulative Distribution Function

CFG Control-Flow Graph

CFH Control-Flow Hijacking

CFI Control-Flow Integrity

COP Call Oriented Programming

CVE Common Vulnerabilities and Exposure

DEP Data Execution Prevention

IR Intermediate Representation

JIT Just-In Time

LTO Link Time Optimization

ROP Return Oriented Programming

VCS Variadic Call Stack

VCSD Variadic Call Site Descriptor

VLM Variadic List Map

VM Virtual Machine

xiii

ABSTRACT

Biswas, Priyam Ph.D., Purdue University, December 2020. Usage of Dynamic Anal-
ysis to Strengthen Control-Flow Analysis. Major Professor: Mathias J. Payer.

System programming languages such as C and C++ are ubiquitously used for

systems software such as browsers and servers due to their flexibility and high per-

formance. However, this flexibility comes with a price of lack of memory and type

safety.

Control-Flow Hijacking (CFH), by taking advantage of the inherent lack of mem-

ory and type safety, has become one of the most common attack vectors against

C/C++ programs. In such attacks, an attacker attempts to divert the normal con-

trol flow of the program to an attacker-controlled location. The most prominent

defense against these kind of attacks is Control-Flow Integrity (CFI), which restricts

the attack surface by limiting the set of possible targets for each indirect control-flow

transfer. However, current analyses for the CFI target sets are highly conservative.

Due to the ambiguity and imprecision in the analyses, CFI restricts adversaries to

an over-approximation of the possible targets of individual indirect call sites. State-

of-the-art CFI approaches fail to protect against special attack classes such as over-

writing variadic function arguments. Furthermore, mitigation of control-flow attacks

are not explored to its full potential in the context of language boundaries in current

literature. Hence, we need effective solution to improve the precision of the CFI ap-

proaches as well as strong protection mechanisms against commonly abused corner

cases.

We leverage the effectiveness of dynamic analysis in deriving a new approach to

efficiently mitigate control-flow hijacking attacks. We present Ancile, a novel mech-

anism to improve the precision of the CFI mechanism by debloating any extraneous

xiv

targets from the indirect control-flow transfers. We replaced the traditional static

analysis approach for target discovery with seed demonstrated fuzzing. We have

evaluated the effectiveness of our proposed mechanism with standard SPEC CPU

benchmarks and other popular C and C++ applications.

To ensure complete security of C and C++ programs, we need to shield commonly

exploited corners of C/C++ such as variadic functions. We performed extensive case

studies to show the prevalence of such functions and their exploits. We also devel-

oped a sanitizer, HexVASAN, to effectively type-check and prevent any attack via

variadic functions. CFH attacks, by abusing the difference of managed languages

and their underlying system languages, are very frequent in client and server side

programs. In order to safe-guard the control-flows in language boundaries, we pro-

pose a new mechanism, FitJit, to enforce type integrity. Finally, to understand the

effectiveness of the dynamic analysis, we present Artemis, a comprehensive study of

binary analysis on real world applications.

1

1 INTRODUCTION

1.1 Motivation

C and C++ are popular systems programming languages. This is mainly due

to their low overhead abstractions and high degree of control left to the developer.

However, these languages guarantee neither type nor memory safety, and bugs may

lead to memory corruption. Memory corruption attacks allow adversaries to take

control of vulnerable applications or to extract sensitive information.

Modern operating systems and compilers implement several defense mechanisms

to combat memory corruption attacks. The most prominent defenses are Address

Space Layout Randomization (ASLR) [1], stack canaries [2], and Data Execution

Prevention (DEP) [3]. While these defenses raise the bar against exploitation, so-

phisticated attacks are still feasible. In fact, even a combination of these defenses

can be circumvented through information leakage and code-reuse attacks. For exam-

ple, an attacker can manipulate the control-flow of a program by carefully choosing

gadgets within the program; e.g., Call Oriented Programming (COP) [4], Return

Oriented Programming (ROP) [5].

Control-Flow Integrity (CFI) [6] is a defense mechanism that prevents control-

flow hijacking attacks by validating each indirect control flow transfer based on a

precomputed Control-Flow Graph (CFG). While CFI allows the adversary to corrupt

non-control data, it will terminate the process whenever the control-flow deviates

from the predetermined CFG. The strength of any CFI scheme hinges on its ability

to statically create a precise CFG for indirect control-flow edges (e.g., calls through

function pointers in C or virtual calls in C++). Due to the dependency on static anal-

ysis, traditional CFI approaches cannot resolve aliasing problem and hence, restrict

adversaries to an over-approximation of the possible targets of individual indirect call

2

sites. Additionally, traditional CFI approaches fail to provide security against CFH

attacks via variadic functions and language boundaries. Therefore, we need effective

solutions to shield against all the possible CFH attacks.

1.2 Thesis Statement

This report explores compiler based defense mechanisms to secure applications

written in C and C++ as well as inspects the applications of dynamic analysis. Hence,

the thesis statement is:

State-of-the-art CFI approaches are over-approximate due to the static nature of

the analyses and leave several areas unprotected such as variadic functions and code

pointers. We strengthen CFI along these two unprotected dimensions by providing

tighter enforcement mechanisms using dynamic analysis and then analyze its appli-

cations on real-world programs.

1.3 Contribution

The goal of the thesis report is to secure systems software against CFH-like attack

vectors. We present three different mechanisms to effectively mitigate control-flow

hijacking attacks by applying dynamic analysis. Our CFI based mechanism Ancile

is under review for ACM CODASPY 2021, our work on defense against variadic

function exploits, HexVASAN, was published in USENIX Security 2017, and we are

currently working on the prototype of FitJit and Artemis with an aim to submit

them to peer reviewed conferences.

• Ancile

– We design a mechanism that reduces a program to the minimal amount

of required code for a given functionality. We remove the unnecessary

code as well as specialize CFI by creating strict target sets to solve over-

approximation problem.

3

– Our analysis successfully infers code targets based on the user-provided

functionality.

– By re-purposing the efficient LLVM-CFI from a per-equivalence class mech-

anism to a per-callsite mechanism, we achieve the same performance while

significantly increasing the security guarantees through a finer-grained pol-

icy.

• HexVASAN

– By utilizing dynamic call type information, we enforce a tighter bound on

variadic function parameters passed on the stack, protecting against type

errors and stack overflows/underflows.

– We have conducted an extensive case study on large programs to show the

prevalence of direct and indirect calls to variadic functions.

– We present several exploit case studies and CFI bypasses using variadic

functions.

• Artemis

– We present a systematic study of cryptographic function identification ap-

proaches.

– We create a standardized suite of performance metrics and benchmarks

to evaluate the effectiveness of current detection mechanisms and analyze

existing tools based on this suite.

– Based off of this analysis, we discuss the research gaps in this domain and

propose directions for future work.

– We present a comprehensive framework to understand the scalability and

impact of dynamic analysis in detection mechanisms.

4

• Future Work. In addition, and as an extension to Ancile and HexVASAN,

we propose FitJit as future work, to enforce type integrity and control-flow

integrity to defend against CFH attacks in the context of language boundaries.

5

2 ANCILE

Modern software (both programs and libraries) provides large amounts of function-

ality, vastly exceeding what is needed for a single given task. This additional func-

tionality results in an increased attack surface: first, an attacker can use bugs in the

unnecessary functionality to compromise the software, and second, defenses such as

control-flow integrity (CFI) rely on conservative analyses that gradually lose precision

with growing code size.

Removing unnecessary functionality is challenging as the debloating mechanism

must remove as much code as possible, while keeping code required for the program

to function. Unfortunately, most software does not come with a formal description

of the functionality that it provides, or even a mapping between functionality and

code. We therefore require a mechanism that—given a set of representable inputs

and configuration parameters—automatically infers the underlying functionality, and

discovers all reachable code corresponding to this functionality.

We propose Ancile, a code specialization technique that leverages targeted fuzzing

to discover the code necessary to perform the functionality required by the user. From

this, we remove all unnecessary code and tailor indirect control-flow transfers to the

minimum necessary for each location, vastly reducing the attack surface. We evaluate

Ancile using real-world software known to have a large attack surface, including

image libraries and network daemons like nginx. For example, our evaluation shows

that Ancile can remove up to 93.66% of indirect call transfer targets and up to 78%

of functions in libtiff’s tiffcrop utility, while still maintaining its original functionality.

6

2.1 Introduction

Similar to the second law of thermodynamics, (software) complexity continuously

increases. Given new applications, libraries grow to include additional functional-

ity. Both applications and libraries become more complex based on user demand

for additional functionality. The Linux kernel is an important example of this phe-

nomenon: its code base has grown substantially over the last 35 years (from 176K

LoC to 27.8M LoC [7, 8]). Yet, given a single task, only a small subset of a program

(or library) is required to be executed at runtime. This increase in code size can

also be seen in network facing applications such as nginx or tcpdump, which deal

with, e.g., IPv4, IPv6, or proxy settings, as well as image processing libraries, which

face increasingly complex file formats as standards expand to support more features.

This feature bloat results in a massive amount of unneeded complexity and an ever-

growing attack surface. Ideally, applications would be customized with the minimal

set of features required by the user, and only the minimum amount of code inlined

from imported libraries.

Software complexity results in a flurry of challenges rooted in security, perfor-

mance, and compatibility concerns. In our opinion, security is the most pressing

of these challenges as security flaws can lead to potentially irreversible losses from

adversarial exploitation. While functionality may not be required for a given task,

adversaries may still find ways to exercise it, increasing the attack surface of a pro-

gram [9–11]. Additionally, the precision of popular mitigations such as control-flow in-

tegrity (CFI) degrades when more code is introduced. Deployed CFI mechanisms [12]

leverage function prototypes to disambiguate the target sets of valid targets. Addi-

tional complexity increases the probability that functions with the same signature

pollute the same target set.

Removing unnecessary functionality is extremely challenging, as the majority of

programs and libraries do not come with a formal description of their functionality.

Even worse, there is no clear mapping between functionality (i.e., an exposed API)

7

and the underlying code. Reducing the attack surface and removing unnecessary

code requires a mechanism to infer this functionality to code mapping based on an

informal description of the necessary functionality.

Debloating has been embraced by the security research community to remove un-

necessary code at various levels of granularity [13–17]. Removing dead code reduces

the number of gadgets and unreachable functionality (which may be buggy). Due

to the lack of a formal description of functionality, these approaches all remain con-

servative and must include potentially unneeded functionality. Unfortunately, past

research has shown that debloated code still contains vulnerabilities and sufficient

targets for an attacker [18].

Our core idea is to facilitate the help of the user who selects the minimum required

functionality (by providing a set of example seeds), thus establishing an informal de-

scription of functionalities in a program. While this approach was previously used to

reverse engineer and extract functional components [19], we are the first to leverage

user help to specialize complex software. The user provides a set of inputs that exercise

the required functionality and a configuration of the software (as part of the envi-

ronment). Our approach, Ancile, then specializes the program in three steps. First,

Ancile infers the required functionality and code through targeted fuzzing. Second,

Ancile removes all unnecessary code in a compilation pass. Third, Ancile computes

minimal CFI target sets (based on individual indirect call locations instead of over-

approximation on function prototypes) to enforce strong security properties.

Note that we propose fuzzing not primarily as a bug finding tool (although Ancile

may discover bugs during focused fuzzing that can be reported to the developer) but

as a tool for analyzing exercised code. Coverage-guided greybox fuzzing uses code

coverage as a feedback to map code to inputs. We use this insight to discover the

exercised functionality and to map the corresponding code to user-selected inputs.

The primary contributions of our approach are below:

• We design a code specialization technique that repurposes fuzzing to reduce a

program to the minimal amount of code required for a given functionality. Our

8

technique not only removes unnecessary code, but also specializes control-flow

checks by creating a reduced target set.

• We present a comprehensive analysis of Ancile on real-world applications to

show the effectiveness of fuzzing as a way to generate precise path information.

2.2 Background

We provide a brief introduction of debloating and CFI to minimize the attack

surface of applications. We also describe fuzzing and sanitization as these concepts

are integral to our approach.

2.2.1 Attack Surface Debloating

To increase software versatility for different users, its size and complexity has

grown dramatically over time, resulting in software bloat. For example, a recent

study showed that most applications only use 5% of libc [15]. This code bloating

comes with the burden of increasing the attack surface. Software debloating is a

technique that helps prune the program’s attack surface by removing extraneous

code. Several approaches have been proposed such as debloating via reinforcement

learning [14] or trimming unused methods [20]. However, trimming unused or rarely

used features cannot alone prevent Control-Flow Hijacking (CFH). By manipulating

the remaining indirect call sites, an attacker can still perform code-reuse attacks.

Code debloating improves security along two dimensions: code-reuse reduction

and bug reduction. First, code debloating reduces the amount of available code,

making it harder for an attacker to find gadgets for a code-reuse attack. Second, fea-

ture based code debloating approaches reduce attack surface by removing potentially

reachable buggy functionality, making it harder for the attacker to find an exploitable

bug.

9

Unfortunately, security effectiveness of existing code debloating is inherently lim-

ited by the amount of code that remains. Any functionality in the program requires

code, and even tiny programs [21] provide enough code for full code-reuse attacks.

While code debloating may be effective in removing some reachable bugs, it is not

effective in stopping code-reuse attacks as any remaining code will be sufficient for

such attacks.

Debloating restricts attack surface by removing unneeded code, whereas CFI does

so by removing extraneous targets from indirect branches. In a sense, code debloat-

ing is comparable to Average Indirect Target Reduction (AIR), a metric to measure

effectiveness of early CFI mechanisms. Even coarse-grained CFI mechanisms rou-

tinely removed more than 99% of targets, yet remained exploitable. An adversary

only needs a single usable target but a defense must prohibit all reachable targets to

be effective. Partial target reduction is insufficient to stop an attack. Similarly for

debloating, the remaining code may still allow the adversary to carry out the attack.

2.2.2 Control-Flow Integrity

Another prominent mechanism for reducing attack surface is Control-Flow In-

tegrity (CFI), the state-of-the-art policy for preventing code-reuse attacks in C and

C++ programs. Its key insight is that to perform a control-flow hijacking attack, at-

tackers must modify the code pointer used for an indirect control-flow transfer (direct

control-flow transfers are protected as the target is encoded in read-only code). CFI

builds, at compile time, a set of legitimate targets for each indirect and virtual call,

and, at runtime, validates that the observed target is in the allowed set. By verifying

the target, CFI prevents the use of any corrupted code pointer.

State-of-the-art CFI mechanisms have focused on a conservative static analysis for

building the target sets which leads to include more targets than the valid ones. This

approach has no false positives, but is prone to false negative as it over-approximates

targets. It is also possible to use dynamic analysis to construct the target sets,

10

potentially introducing false positives, but greatly improving the precision of the

analysis. Here, we discuss both analysis techniques and their trade-offs, for a more

in depth survey of CFI see [22].

Static Analysis-Based CFI

Static analysis-based CFI mechanisms compute the allowed target sets at compile

time. The goal of the analysis is to discover the set of functions that the programmer

intends to target at a given indirect call site. In compiler terms, the analysis is

looking for every reaching definition of the function pointer used at the indirect call

site. Implementations of the analysis quickly run into the alias analysis problem, and

so have to fall back to more tractable, albeit over-approximate, techniques. Early

mechanisms reverted to allowing any address taken function [6] to be targeted at

any indirect call site. Subsequent mechanisms improved this to any function with a

matching prototype [23]. Recent work has even looked at using a context-sensitive

and flow-sensitive analysis to further limit the target sets [24, 25]. While such works

increase the precision of the analysis, aliasing prevents achieving full sensitivity.

Dynamic CFI

Unlike the static signature-based approach, Dynamic CFI approaches generate

or change the target sets of the control-flow transfers during the execution of the

program. Dynamic CFI is generally more precise than static CFI as it starts off with

a static target sets but then uses runtime information to further constrain the target

sets.

Several works have leveraged the support of hardware to restrict the target sets

during runtime. πCFI [26] begins with an empty control-flow graph and activates con-

trol transfers as required by specific inputs. However, this approach does not execute

any address deactivation which may degenerate to the full static control-flow graph

(CFG). PathArmor [27] takes advantage of hardware support, specifically the 16 Last

11

Branch Record (LBR) registers to effectively monitor per-thread control-flow trans-

fers. It limits the verification process to only security critical functions, and verifies

the path to these critical functions by using a path cache. PittyPat [28] improves on

this by collecting runtime traces via Intel PT, and verifies them in a separate process,

halting execution at system calls to synchronize with the verification process. While

it is precise (assuming the entire execution is traced), PittyPat also consumes signif-

icant additional resources, e.g., another core for the verification process. µCFI [29]

improves PittyPat by recording full execution context using Intel PT, and observing

unique code target for each invocation of an indirect control-flow transfer. Similar to

PittyPat, it relies on a separate monitoring process.

Orthogonally, CFI does not protect against data-only attacks. An attacker that

compromises the data of a process can bend execution [9–11] to any allowed func-

tionality and, if a path in the original CFG exists, CFI will allow execution of that

path. While CFI limits code execution to legitimate targets under some execution of

the program, it does not remove unneeded functionality.

CFI prohibits rogue control flow to unintended locations while code debloating

removes unnecessary code. In combination, CFI and code debloating can reduce the

exposure of a program but are limited by the remaining code as both approaches are

conservative, resulting in an over-approximation of the required functionality.

2.2.3 Fuzzing

Fuzzing [30] is a widely used technique for automatic test case generation. Coverage-

based fuzzers such as American Fuzzy Lop (AFL) [31] create a new test case by mu-

tating interesting inputs that trigger new code paths. Their mutation based strategy

leads them to test many inputs that cover the same code paths, causing them to

explore the possible data-flows of the application as well. Fuzzers operate from a seed

input, mutating it in their search for new code-paths while simultaneously exploring

data paths as a result of their search.

12

Ancile requires extensive path coverage, since it is crucial in generating a compre-

hensive target set for the indirect call-transfers in the desired functionality. Guided

fuzzing [32] by modern fuzzing approaches facilitates finding new code paths from an

indirect call site. With the knowledge of deeper path information, target discovery

has become more efficient.

2.2.4 Sanitization

Sanitization is a dynamic testing technique that effectively detects policy viola-

tions at runtime [33]. A sanitizer generally instruments the program during compi-

lation to enforce some security policy. The instrumentation collects metadata about

the program execution and continuously checks if the underlying policy is violated.

AddressSanitizer (ASan) [34] employs a specialized memory allocator, and in-

struments memory accesses at compile time to detect out-of-bounds accesses to heap,

stack, and global objects, as well as temporal bugs. ASan is a tripwire-based approach

that creates redzones, and checks each memory access to detect memory safety vio-

lations. Fuzzing then triggers memory access bugs, allowing ASan to detect them.

Apart from ASan, other types of sanitization exist. Memory Sanitizer (MSAN) [35]

detects accesses to uninitialized memory by using bit-precise shadow memory at run-

time. UndefinedBehaviorSanitizer (UBSan) [36] catches various kinds of undefined

behavior during program execution such as null-pointer dereferences.

As Ancile uses fuzzing for functionality inference, we must distinguish between

correct functionality and potential bugs. To avoid memory corruption bugs from

tainting our allowed functionality, we compile our target program with ASan during

the inference phase. Hence, Ancile ensures all the explored targets via fuzzing are

indeed valid targets.

13

2.3 Threat Model

Ancile uses the standard threat model for modern defenses such as CFI and soft-

ware debloating. We assume that the attacker has the ability to read and write mem-

ory arbitrarily. Specifically, we assume that the attacker can modify arbitrary code

pointers on the heap and stack to hijack the program’s control flow. We also assume

that our target system is deployed with the standard software defenses: DEP [37],

ASLR [1], and stack canaries [38]. DEP prevents code-injection and forces an attacker

to rely on code-reuse attacks. ASLR and stack canaries make attacks harder but do

not stop an attack in the given attack model. We include them as they are on by

default in modern systems.

Listing 2.1 shows an example of a control-flow hijack attack [39]. In this example,

the function victimFunc has a buffer, a function pointer and an int pointer. By

setting var1 to 128, the attacker causes ptr to point to the function pointer on the

stack. The dereference of ptr at line 8 then causes var2 to be written to the function

pointer. Consequently, an attacker can divert execution to any executable byte at

line 9, specified by the value in var2. While real-world examples are more complex

than this – their spirit is the same. An attacker controlled value dictates a function

pointer, virtual table pointer, or return address, thereby hijacking the application’s

control flow.

Another prominent mechanism for reducing attack surface is Control-Flow In-

tegrity (CFI). It is the state-of-the-art policy for preventing code-reuse attacks in

both C and C++ programs. Its key insight is that to perform a control-flow hijack-

ing attack, attackers must modify the code pointer used for an indirect control-flow

transfer (direct control-flow transfers are protected as the target is encoded in read-

only code). CFI builds a set of legitimate targets for each indirect and virtual call,

and validates that the runtime target is in the allowed set. By verifying the target,

CFI prevents the use of any corrupted code pointer.

14

1 void bar() { }

2

3 int victimFunc(int var1, int var2) {

4 void (*fnptr)();

5 char buffer[128];

6 int *ptr = buff + var1;

7 fnptr = &bar;

8 *ptr= var2;

9 fnptr();

10

11 return 0;

12 }

Listing 2.1 Control-flow hijacking example.

15

To date, CFI mechanisms have focused on a conservative static analysis for build-

ing the target sets. This approach has no false positives, but is also fundamentally

over-approximate. It is also possible to use dynamic analysis to construct the target

sets, potentially introducing false positives, but greatly improving the precision of the

analysis. Here, we discuss both analysis techniques and their trade-offs, for a more

in depth survey of CFI see [22].

2.4 Challenges and Trade-offs

Code specialization is a technique used to generate more efficient code for a specific

purpose from a generic one [40]. The core issue of code specialization is the prediction

of effective code-behavior in order to generate precise control-flows. Specializing an

application allows us to apply both attack surface reduction techniques at once, by

removing code unused by the deployment scenario, and restricting targets to exactly

the purposefully valid sets. However, automatically specializing code to only support

a user specified configuration is challenging. Static analysis quickly degenerates to

the aliasing problem [41], and has difficulty determining if a function is required for

a particular functionality. Dynamic analysis is an attractive alternative, however, it

requires that all valid code and data paths for a particular configuration are explored.

Dynamic analysis has been made practical by recent advances in automatic testing,

and in particular coverage-guided fuzzing [31, 32, 42, 43]. Given a minimal set of

seeds that cover the desired behavior, fuzzers are capable of quickly and effectively

exploring sufficient code and data paths through a program to observe the required

indirect control-flow transfers for a given configuration. CFI target sets are then

restricted to the observed targets for the desired functionality of the application, e.g.,

an IPv4 deployment of nginx with no proxy. Note that the dynamic analysis can

occur offline, with only traditional CFI set checks, which incur minimal performance

overhead, required at run time. Ancile leverages fuzzing to correlate functionality with

code. Fuzzing’s code exploration serves as a mapping process from functionalities to

16

relevant code-regions. The coverage information from fuzzing enables us to effectively

specialize software by replacing conservative analysis of valid cases with a more precise

analysis of what states are reachable in practice. Using fuzzing as a path exploration

technique introduces its own set of challenges: (i) generating a dynamic control-

flow graph (CFG) for user-selected functionality, (ii) projection of dynamic CFG in

functionality-based debloating, (iii) precision vs soundness in CFI target analysis, and

(iv) the risk of introducing false positives and false negatives due to the randomness

associated with fuzzing. We now discuss each of these challenges in turn and how we

address them.

Challenge i. Generating a dynamic CFG: Given a program with a set of

functionalities f1,f2, f3,...,fn and a user-specified functionality fs ⊂ {f1,f2, f3,...,fn},

we must discover the code required by that particular functionality, fs. For example,

a user may only require the tiffcrop functionality from the image library libtiff. To

generate a dynamic CFG for a given functionality, we need to explore all required

and valid control-flows exercised by that functionality within the program. Ancile

address this by taking as input a set of seeds and configuration demonstrating the

required functionality (fs), and then uses these to fuzz the application in order to

retrieve the relevant control flows. We start with an empty CFG and add edges only

if their execution is observed in the set of valid executions.

Challenge ii. Projection of dynamically generated CFG in functionality-

based debloating: To prune unneeded functionality, we need to map the control-

flow information into relevant code. In order to do so, we guide fuzzing by carefully

selecting inputs to explore the intended functionality. Similar to Razor [13] and binary

control-flow trimming [44], Ancile utilizes test cases to trace execution paths. Ancile

also takes advantage of the power of coverage-guided fuzzing to explore deeper code

paths pertinent to the desired functionality. To ensure that the fuzzed functionality

has covered all possible paths, we evaluate the targeted utility with a different set

of testcases. Ancile then removes any functions that have not been triggered during

fuzzing.

17

Challenge iii. Precision vs soundness: Ancile trades theoretical soundness

for precision when constructing CFI target sets. State-of-the-art CFI mechanisms

have focused on a conservative static analysis for building the CFG, resulting in a

conservative over-approximation of indirect control-flow targets. These CFI mech-

anisms quickly run into the alias analysis problem, and so must fall back to more

tractable, albeit over-approximate, techniques. Recent approaches have looked at us-

ing context-sensitive and flow-sensitive analyses to further limit the target sets [24,25].

While such works increase the precision of the analysis, aliasing prevents achieving

full sensitivity.

It is also possible to use dynamic analysis to construct the target sets, potentially

introducing false positives, but greatly improving the precision of the analysis. Sev-

eral works [26–28] introduce hardware requirements to restrict the target sets during

runtime. Both static and dynamic approaches are inherently over-approximative as

existing CFI solutions are oblivious to a minimal, user-specified functionality. Static

analysis-based approaches leverage only information available during compilation,

while dynamic analysis-based approaches use runtime information to further constrain

the target sets. Still, existing dynamic mechanisms result in over-approximation in

the target set. Ancile extensively fuzzes the desired functionality to infer the required

control-flow transfers. Fuzzing’s efficiency comes from its fundamental design deci-

sion: to embrace randomness and practical results rather than theoretical soundness.

Consequently, fuzzing gives no guarantees about covering all possible code or data

paths, but covers them well in practice.

Challenge iv. False positives and false negatives: Our goal is to minimize

the number of targets for individual CFI checks. Ancile restricts per-location CFI

targets by combining per-function removal along with CFI-based target removal. An

unintended function included in the target set is a false negative This can happen in

two scenarios, (i) a fuzzing campaign performing invalid executions; and (ii) exploring

traces outside of the desired functionality. Ancile guarantees valid executions by

using Address Sanitizer (ASan) along with fuzzing. Furthermore, by restricting our

18

fuzzing campaigns to only the intended functionality, we guide our fuzzing campaigns,

cautiously selecting the input seeds as well as tuning the fuzzing campaign.

A false positive happens if a valid and intended target is not included in the

generated set. This may happen due to lack of fuzzing coverage. Ancile starts with

the minimum set of seeds that exercise the intended functionalities, giving a lower-

bound of targets. Next, fuzzing discovers targets that were not previously included.

Moreover, to increase confidence in the discovered target set, we repeat each fuzzing

campaign multiple times. We explore the issue of false positives/negatives further in

Section 2.7.

2.5 Ancile Design

Based on the user-selected functionality (through provided seeds), Ancile gener-

ates specialized binaries. The design of Ancile is motivated by the need for precise

control-flow information so that this information can be used to debloat the target

program, reducing its exposed attack surface. The user informally specifies the de-

sired functionality by providing seed inputs that explore that functionality. Ancile

operates in three distinct phases, as shown in Figure 2.1. First, Ancile performs

targeted fuzzing (using the seeds provided by the user) to infer the CFG and to ex-

plore code associated with the required functionality (including error paths). This

step infers all of the necessary information for the next two steps. Second, Ancile

removes any unnecessary code using a compiler pass, reducing the program’s attack

surface. Third, Ancile leverages the precise CFG to customize CFI enforcement to

the observed CFG. This customization increases the precision of CFI to only observed

targets. These observations result in the following requirements:

Desired Functionality. Every application has its own set of features. By desired

functionality, we mean one or more features of the application that the user intends

to exercise. For example, in tcpdump, the user may only want to exercise the feature

that reads pcap files.

19

Seed Selection. The minimum number of inputs required to exercise the desired

functionalities is selected. For example, to exercise the feature of reading a pcap file,

the user only needs to provide a captured pcap file.

User Involvement. Ancile requires two sets of input from the user, (i) necessary

command line arguments to select the functionality; and (ii) a minimum set of seeds

that exercise this functionality. For reading a pcap file, the user must provide (i) the

-r command-line argument, and (ii) a pcap file as an input seed.

The key insight of Ancile is the functionality analysis. It is this analysis which

allows us to automatically specialize an application, simultaneously removing extrane-

ous features and shrinking the attack surface by restricting the set of allowed indirect

control-flow transfers. Selection of the required functionality depends on the type

of application as well as user requirements. Ancile minimizes the user burden for

feature selection. For example, if a user wants to read pcap files using tcpdump, she

will configure Ancile to execute tcpdump with the command line option -r, and a

sample pcap file as input. Ancile also takes advantage of existing unit test-suites that

comes with the application package to exercise functionality.

Ancile uses fuzzing to infer the code covered by an informally-selected functional-

ity. Input seeds are used to exercise the desired functionality. Coverage-based fuzzing

excels at finding code paths from a given seed. For each target in our per CFI-location

target sets, fuzzing produces an execution that witnesses that specific target. The

challenge becomes ensuring that the set of executions used by our functionality anal-

ysis fully covers the control and data flows of the desired functionality. We show

that fuzzing, in conjunction with a small set of test cases that observe the desired

functionality, can be leveraged to generate a precise CFG.

Ancile then utilizes the dynamic CFG constructed in the dynamic CFG generation

phase as a mechanism for (i) debloat unnecessary code and (ii) tighten CFI checks to

restrict indirect control-flow to a set of targets required by a given user specification.

Ancile can achieve the best possible precision with negligible runtime overhead, i.e.,

20

Ancile
Instrumentation

Dynamic
CFGSeed

Debloater

 Phase i: Dynamic CFG Generation

Phase ii: Debloating

Fuzzing

Hardened
Binary

Source Instrumented
Binary

C/C++
Source

Debloated
Binary

CFI Enforcement

Phase iii: CFI Enforcement

C/C++

Figure 2.1. Ancile operates in three distinct phases: (i) Dynamic CFG
Generation (to record control flow), (ii) Debloating (to remove unnec-
essary functionality), and (iii) CFI Target Analysis (to tighten indirect
control flow checks to the minimal required targets).

set checks inserted at compile time. Therefore, we believe that increased specialization

is the way of the future for “prevent-the-exploit” defenses.

2.5.1 Dynamic CFG Generation

Ancile requires the user to select the desired functionality of the program by

providing corresponding input. These input seeds can come from, e.g., unit tests, ex-

amples, or be custom tailored by the user. For example, the network sniffer tcpdump

offers a variety of features, from directly capturing network packets to processing

recorded traces. A user may want to only process recorded traces of a single pro-

tocol. Building off this informal specification, Ancile performs dynamic fuzzing that

identifies (i) all the executed functions, and (ii) the targets of indirect function calls.

Any function that has not been observed via direct or indirect calls during this phase

is considered extraneous and hence, is not included in the CFG. At this point, our

analysis is fully context and flow sensitive, as it directly depends on actual executions.

After this analysis, the observed targets are aggregated over each indirect call site.

This aggregation results in some over-approximation and a loss of full context and

21

data sensitivity. However, every target we allow is valid for some execution trace,

which is a significantly stronger guarantee than is provided by static analysis-based

CFI [22]. Static analysis-based target sets only guarantee that every target may be

required by an execution trace. Put another way, our dynamic analysis recovers the

programmer-intended target sets, rather than an over-approximation thereof.

Ancile recompiles the application with not only the coverage instrumentation for

grey box fuzzing, but also to log the targets for direct and indirect control-flow trans-

fers. In particular, we cover forward edges, leaving return edges for more precise

solutions such as a shadow stack [45]. When running the fuzzing analysis, we use

AddressSanitizer [46] to validate that all observed executions are in fact valid and

free of memory errors.

As fuzzing is incomplete, the core risk of this approach is that some required func-

tionality is not discovered and therefore unintentionally removed. Our analysis could

potentially introduce false positives (prohibiting valid indirect control-flow transfers).

This is in direct opposition to the conservative approach employed by static analysis,

which over-approximates and thus weakens security guarantees. In contrast, Ancile

only allows the targets for a particular functionality.

The increased security guarantees through this specialization provide a new avenue

for the security community to explore. Our evaluation Section 2.7 shows that with

the increasing power of automated testing techniques such as fuzzing [31], robust test

sets maintained by many projects [47,48], and a wealth of prior work on sanitizers [46]

to validate execution traces, Ancile does not cause false positives in practice.

2.5.2 Debloating Mechanism

In automatic code specialization, unneeded code is discarded and the debloated

program contains only the required functionality. Given the user’s functionality selec-

tion, the challenge of debloating comes from mapping functionality to code regions.

One possible approach to address this challenge is to learn code regions through valid

22

program executions that exercise the desired functionality. In other words, we require

a set of inputs that exercises, at least minimally, all desired functionality.

By taking advantage of the dynamic functionality observation performed in the

first phase of our analysis, Ancile discovers all reachable and executable code. This

code analysis can be considered a simple marking phase that records all reachable

code. Based on the recorded execution traces, Ancile removes all unneeded code. As

a second compilation pass, with the marked code from the fuzzing campaigns, we

then tailor and remove all unnecessary code on a per function basis. All functions

that are unreachable are replaced with a single empty stub. If this stub is reached,

the program is terminated with an error message.

2.5.3 CFI Target Analysis

Although, debloating restricts a program’s attack surface by removing unneeded

code, it is still possible that vulnerabilities remain in non-bloated code. To ensure

tighter security in the specialized binary, Ancile removes extraneous targets from

indirect control-flow transfers in the remaining code.

The main goal of Ancile’s CFI target analysis is to achieve minimal target sets

for indirect branches. It does so by only allowing targets that are required for the

specified functionality and actually observed at runtime. For each target, we ensure

that there is at least one dynamic witness, i.e., a valid execution trace that includes

the indirect call. Hence, Ancile solves the aliasing problem of static analysis based

approaches and increases precision.

Based on the inferred CFG that is tied to the actual execution of the desired be-

havior, Ancile learns—for each indirect control-flow transfer—the exact set of targets

observed during execution. This set is strictly smaller than the set of all functions

with the same prototype. Once the target sets are created, we recompile the applica-

tion to a specialized form, which enforces the target sets derived from our functionality

analysis.

23

Since we focus on static CFI enforcement mechanisms, deciding if a target is al-

lowed depends purely on the information known at compile time, regardless of how

that information was obtained. For example, if two paths in a program result in two

different targets at a location then the most precise static mechanism will always allow

both targets (as it cannot distinguish the runtime path without tracking runtime in-

formation). In contrast, dynamic enforcement mechanisms can modify the target sets

depending on runtime information (e.g., data-flow tracking). Unfortunately, dynamic

mechanisms result in additional runtime overhead (e.g., to update the target sets),

increased complexity (for ensuring that the target sets remain in sync), and compat-

ibility issues (e.g., the runtime metadata for the CFI mechanism must be protected

against an adversary during the updates). For as long as no hardware extension exists

for protecting metadata (e.g., to protect attacker-controlled arbitrary writes from the

buggy program), realistically deployable CFI mechanisms will remain static.

2.6 Implementation

Ancile is implemented on top of the LLVM compiler framework, version 7.0.0. The

LLVM-CFI framework has entered mass deployment [49, 50], and its set checks are

highly optimized. Consequently, building on top of LLVM-CFI guarantees that our

enforcement scheme is efficient, and ready for wide-spread adoption. As mentioned

in the design, the Ancile implementation constitutes three parts: (i) dynamic CFG

generation, (ii) debloating and (ii) CFI enforcement, following the description in

Section 3.4.

Dynamic CFG Generation This functionality analysis phase is implemented as

a combination of an LLVM compiler pass and a runtime library. Our instrumentation

takes place right after the clang front-end and modifies the LLVM IR code. Ancile is

enabled by specifying our new fsanitize=Ancile flag.

C/C++ source files are first passed to the clang front-end. The compiler pass

adds instrumentation to log all indirect calls and their targets. At the IR level,

24

Ancile adds a call to the logging function in our runtime library before every indirect

call. The logging function takes two arguments: location of the indirect call in the

source, as well as the address of the targeted function. Additionally, the pass logs all

the address taken functions to facilitate the remapping of the logged target addresses

to corresponding functions. The runtime library of Ancile generates a hash map

to store target set information per call site. To remove extraneous code, Ancile

collects information during profiling about function invocations via direct control-flow

transfers. This procedure follows the same mechanism described above for indirect

control-flow transfers. Hence, Ancile generates a dynamic CFG accommodating all

the observed control flows that reflect the user specified functionality.

The challenge associated with fuzzing is to guarantee that paths taken during

fuzzing are valid code and data paths. To address such challenges, we leverage

AddressSanitizer (ASan) [34], a widely-used sanitizer that detects memory corrup-

tions (e.g., use-after-free or out-of-bounds access). Only non-crashing executions are

recorded. Hence, Ancile ensures all the recorded control-flow transfers are from valid

execution traces and generates the dynamic CFG.

Debloating To prune unnecessary code, Ancile utilizes the dynamic CFG to con-

struct the list of observed functions. It then removes any functions that are not in

our observed white list, thereby ensuring a custom binary incorporating only the user

specified features. It relies on a compiler pass to remove any unintended function.

CFI Mechanism Ancile enforces the strict targets for the indirect calls based on

the dynamic CFG. Despite relying on dynamic profiling, Ancile still enforces target

sets statically (i.e., relying only on information available at compile time to embed the

target sets in the binary). We have customized LLVM-CFI to adopt Ancile’s strict

target set at each individual indirect control transfer check points. Our target-set sizes

are smaller in most cases and equal to the size of the LLVM analysis in the worst case.

In contrast to Ancile, vanilla LLVM-CFI relies on static analysis for target generation

and thus fails to solve aliasing, resulting in an over-approximate target sets. The main

25

advantage behind adapting LLVM-CFI is that it is highly optimized and incurs only

1% overhead [12]. Our framework for using LLVM-CFI to enforce user-specified target

sets will help the research community to advance control-flow hijacking mitigation by

serving as an enforcement API for any analysis that generates target sets.

2.7 Evaluation

The evaluation of Ancile is guided by the following research questions:

RQ1. Can fuzzing be used to enable debloating?

RQ2. Can fuzzing be used as a CFI target generator?

RQ3. How can we analyze the correctness?

RQ4. How performant is Ancile (in particular, compared to LLVM-CFI)?

We performed a series of investigations on Ancile to answer the research questions

posed above. For our evaluation, we selected commonly attacked diverse software

that offers rich opportunities for customization and specialization. We chose two

popular, and frequently attacked, image libraries libtiff and libpng, as well as

two network facing applications, nginx and tcpdump which deal with different proxy

settings for our analysis. To show the impact of feature selection, we investigated

four different cases for each of the applications. We analyzed vanilla LLVM-CFI and

Ancile with the application’s standard test-suite (included in the package), as well as

two user-selected functionality sets. For the two image libraries, we use the utilities

tiffcrop, tiff2pdf for libtiff and pngfix, timepng for libpng. We used a set of tif and

png files as input seeds to fuzz the libraries respectively. For tcpdump, we leveraged

two sets of command line arguments -r and -ee -vv -nnr as well as network capture

files in the cap and pcap formats as input seeds. For nginx, we used methods such as

GET, POST, and TRACE operations as inputs along with two different configuration

settings.

26

2.7.1 Effectiveness of fuzzing as a debloating tool (RQ1)

With the advancement of efficient coverage-guided mechanisms, fuzzers can be

used to observe valid code executions. Ancile learns valid targets yielding from valid

execution paths. Ancile utilizes mutational fuzzing via AFL and honggfuzz to explore

relevant code paths. To generate complete observed function sets for a desired func-

tionality, it is possible to carefully select input seeds for that particular functionality.

For instance, if the user only wants to read pcap files via tcpdump, we can provide

only pcap files as seed. In the case, where the user wants to read both cap and pcap

files, we can then use both type of files as seeds.

In the following sections, we have analyzed fuzzing’s effectiveness in debloating

and CFI checks. Fuzzing has been mainly used as a bug finding mechanism. To

demonstrate its effectiveness as a debloating mechanism, we evaluate code reduc-

tion by Ancile on our case studies. Additionally, Ancile improves the security of the

debloated binary by pruning gadgets as well as security-sensitive functions. All per-

formance measurement were done on Ubuntu 18.04 LTS system with 32GB memory

and Intel Core i7-7700 processor.

Function Debloating Ancile debloats applications by removing all unused func-

tions, i.e., code that was never executed during our functionality inference phase. It

generates a white list of functions based on the context of the user-specified function-

ality and removes functions that were not invoked during execution. Figure 2.2 com-

pares the number of functions before and after debloating is performed across different

benchmarks. Additionally, function reduction depends on the specified functionality.

Ancile reduces around 60% functions for libtiff standard test-suite that comes with

the library, where as for a more specialized scenario, for example in case of tiffcrop

utility, reduces 78% functions.

Pruning-Security Sensitive Functions The main goal of Ancile is to allow the

minimum set of control-flow transfers for the required functionality, thereby minimiz-

27

0

0.25

0.5

0.75

1

libtiff (testsuite) libpng (testsuite) nginx (testsuite) tcpdump (testsuite)

Before debloating After debloating

Figure 2.2. Comparison of the number of functions before and after de-
bloating across our benchmarks: libtiff, libpng, tcpdump, and nginx. We
used the standard test-suite for each of these applications. Ancile reduces
more functions in specialized cases.

ing the available attack surface. Sensitive functions belonging to a target set increase

the attack surface. We measure if sensitive functions are reachable from (i) indirect

calls i.e., they are in the target sets, (ii) at distance-1 (indirection +1), i.e., if a func-

tion in the target set calls a sensitive function, (iii) at distance-2 (indirection +2),

i.e., if a function in the target set calls a function that calls a sensitive function, and

(iv) similarly at distance-3 (indirection +3). In short, we have observed different level

of indirect calls in the evaluated benchmarks. We considered execve, mmap, memcpy,

and system as the set of sensitive functions in our analysis. The main reason behind

selecting such functions as sensitive is that an attacker can modify the arguments of

these functions such as system to execute unwanted actions and gain control of the

system. Since, there were no security sensitive function directly in the target set, we

exclude criterion (i) from our analysis.

Table 2.1 shows reachability to sensitive functions from an indirect call site through

a sequence of intermediate calls. For instance, in libpng several calls are made to the

sensitive function memcpy. At indirection+1, indirection+2, and indirection+3 level,

there are five, 20, and 17 reachable calls respectively in LLVM-CFI. Ancile restricts

these calls to three locations at indirection+1 and in rest of the two cases there are no

indirect call sequences to memcpy. We have observed another interesting case in nginx,

28

where execve, a highly sensitive function, is reachable in indirection+1 in LLVM-CFI,

however, Ancile does not allow this call. This call is only made in one rarely-used

feature (to hot restart nginx without losing connections when the underlying binary

is replaced with a newer version). This demonstrates that focusing on control-flow

transfers based on functionality reduces the attack surface when such features are

restricted.

Case Study: Gadget Reduction To better understand the significance of Ancile,

we performed a case-study on gadget discovery. We focused on two metrics: (i) Jump

Oriented Programming (JOP) gadgets, and (ii) unintended indirect-call gadgets. We

did not consider ROP gadgets since our framework is aimed for securing forward edges

only and CET [51]-like technology will secure backward edges. We built two versions

of nginx: one with LLVM-CFI enforcement and the other with Ancile enforcement

along all the unit test-suite features. Using a gadget-discovery algorithm and manual

analysis, we observed a 54% reduction in JOP gadgets and a 44% reduction of unin-

tended indirect-call gadgets. This case study shows us that Ancile can indeed help in

reducing the number of gadgets in an application.

2.7.2 Effectiveness of fuzzing as a CFI tool (RQ2)

To show the effectiveness of fuzzing as a CFI analysis tool, our aim is to estab-

lish that fuzzing is effective in producing drastically smaller target sets for indirect

control-transfers than previous approaches. We found that Ancile can reduce target

sets by 93.66% and 97.94% for the tiffcrop, tiff2pdf utilities from the libtiff image

library. Target set reduction reduces the attack surface, increasing the security of

our customized binaries. Any additional target which is not intended to be taken

during valid program execution potentially increases an attacker’s capabilities. We

compare Ancile’s target set per call site with LLVM-CFI on libtiff-4.0.9, libpng-1.6.35,

nginx-1.15.2 and tcpdump-4.9.0, as well as the SPEC CPU2006 benchmark suite.

29

Table 2.1.
Sensitive function analysis: Number of indirection level to the sensitive
functions from functions present in the target sets of LLVM-CFI and An-
cile.

Benchmark Function ind. +1 ind. + 2 ind. + 3

LLVM-CFI 5 20 17
libpng memcpy

Ancile 3 0 0

LLVM-CFI 1 0 0
execve

Ancile 0 0 0

LLVM-CFI 1271 2276 2869
memcpy

Ancile 167 272 352

LLVM-CFI 0 2 4

nginx

mmap
Ancile 0 1 1

LLVM-CFI 59 95 66
memcpy

Ancile 14 14 11

LLVM-CFI 1 0 0
libtiff

mmap
Ancile 1 0 0

LLVM-CFI 156 670 678
tcpdump memcpy

Ancile 34 22 26

To understand the differences in target set generation from different feature selec-

tions, we have analyzed the target applications with different user specifications and

input seeds. Varying the input seeds for a given specification allows us to examine

the effect of path exploration during fuzzing on target set generation.

30

Figure 2.3. Mean and std. deviation of target sets across the four appli-
cations in our test-suite for LLVM-CFI and Ancile. LLVM-CFI has more
callsite outliers with large target sets than Ancile.

Figure 2.3 shows the mean and standard deviation of target set per call site

across the four benchmarks for Ancile and LLVM-CFI. We leverage the application’s

standard test-suite for Ancile’s functionality analysis. In each of the benchmarks

libtiff, libpng, nginx and tcpdump, LLVM-CFI has on average 73% more targets than

Ancile. Furthermore, LLVM-CFI has outliers of call sites with very large target sets.

For example, tcpdump has 48 call sites for which LLVM-CFI reports 130 targets,

whereas Ancile observes none to at most two targets. To support our claim in target

reduction, Table 2.2 shows the comparison between LLVM-CFI and Ancile for the

maximum target set size for each of the benchmarks. This highlights the power of

functionality analysis in reducing the attack surface available to attackers.

Figure 2.4 shows the comparison of target-set size per call site between LLVM-CFI

and Ancile specializing on different functionalities. In each of the cases, we analyzed

31

Table 2.2.
Statistics of maximum target size in LLVM-CFI and Ancile for our bench-
marks.

Max. target set size
Benchmark

LLVM-CFI Ancile

400.perlbench 354 175

401.bzip2 1 1

429.mcf - -

433.milc 2 2

444.namd 40 1

445.gobmk 1642 492

447.dealII 11 2

450.soplex 7 1

458.sjeng 10 6

462.libquantum - -

464.h264ref 12 10

470.lbm - -

473.astar 1 1

482.sphinx3 5 1

libtiff 78 16 (testsuite)

libpng 48 25 (testsuite)

nginx 103 87 (testsuite)

tcpdump 130 18 (testsuite)

target sets obtained from the unit test-suite as well as target sets obtained from the

specialization of certain features as mentioned in Section 2.7. As expected, Ancile

reduces the target set sizes for all targets, compared to LLVM-CFI. Additionally,

fuzzing a particular utility can lead to discovering more targets than the unit test-

32

suite. For instance, for certain indirect control-flow transfers, we observed more

targets while fuzzing tiffcrop than just running the test-suite.

SPEC CPU2006 In addition to our real-world applications, we also evaluate our

prototype on the SPEC CPU2006 benchmark-suite. Working with SPEC CPU2006

enables us to compare with LLVM-CFI. Furthermore, SPEC CPU2006 is the stan-

dard performance benchmark, so we included our analysis results for completeness.

We used the smaller test SPEC benchmark configuration as our functionality speci-

fication, and ran the benchmarks once without fuzzing. These target sets were then

used to specialize the binaries, and we verified they run with larger ref data set, see

Section 2.7.4.

Figure 2.5 shows the comparison of Ancile, and LLVM-CFI on two SPEC CPU2006

benchmarks, namely 400.perlbench, and 445.gobmk. We chose to focus on these

benchmarks as they have the largest number of indirect call sites. We show the

cumulative distribution function (CDF) of target set size per call site. The goal

is to have as many call sites as possible and a very short tail, indicating few call

sites with many targets, as such call sites are easily exploitable. For example, in

case of 400.perlbench 2.5(a), most of the call sites have very few targets, 65% of all

call sites have only one target. Similar situations were observed in the 445.gobmk

benchmark; where the maximum target set size for LLVM-CFI is 1642, compared to

492 for Ancile. In all of these benchmarks, Ancile has fewer targets than LLVM-CFI

as well as the maximum number of targets allowed by any call site is on average 59%

smaller. Table 2.2 shows the maximum target set size in LLVM-CFI and Ancile for

each of the evaluated benchmarks.

Equivalence Classes Equivalence classes are an important part of static analysis-

based CFI. Each class is a group of call sites that are all assigned to the same target set

(e.g., based on function prototypes). Ancile does away with the notion of equivalence

classes as each call site is independently analyzed, instead of being grouped together

as per existing static analysis-based approaches. In other words, Ancile introduces

33

an equivalence class for each indirect call instead of, in its most precise form, for each

function pointer type for LLVM-CFI. Having more equivalence classes increases the

security of applications [22], as each call site has the minimum target set appropriate

for it, not the target set for a class of call sites.

Figure 2.6 shows the equivalence class data for SPEC CPU2006. The ideal sce-

nario is to increase the number of these classes as well as to reduce the size of each

class. Ancile breaks large equivalence classes into smaller ones, namely one class per

indirect call site, thus restricting the indirect calls to fewer targets. Figure 2.6 shows

a comparison between LLVM-CFI and Ancile based on the number of equivalence

classes. In the plot, the x-axis corresponds to benchmarks, while the y-axis repre-

sents the total number of equivalence classes in each benchmark. Vanilla LLVM-CFI

does not compile for five of the benchmarks (403, 453, 456, 471 and 483), hence we

did exclude them from the graph. Finally, Ancile generates more equivalence classes

than LLVM-CFI, and the classes are strictly smaller, in most cases restricting the call

site to single target.

2.7.3 Analyzing the correctness of the specialized binary (RQ3)

To confirm the correctness of Ancile-generated binaries, we performed a series

of analyses such as result consistency, assessment of target discovery, correctness of

generated input, target set minimality, and statistical analysis.

Consistency One way to establish the confidence of the result is to check for con-

sistency. If two separate fuzzer can generate same set of targets, it can increase our

confidence in the specialized binary. We have used two separate fuzzers, AFL and

honggfuzz, to generate the dynamic CFG and we achieved similar outcomes.

Target Discovery Using fuzzing for target discovery comes with the challenge of

effectiveness in learning targets. To understand this aspect, we plotted the discovery

of each unique target against time. Figure 2.7 shows the number of targets discovered

34

over time by the fuzzer for tcpdump with the command line option r for reading

IPv4 and IPv6 captured packets. The x-axis plots time in hour and y-axis plots

the percentage of target discovery. From the figure, it is evident that most of the

targets are discovered at the very beginning of the fuzzing procedure and few to no

new targets towards later phases of fuzzing. This same observation holds true for all

programs we tested. Furthermore, we reran all the fuzzing executions multiple times

and target discovery remain identical in all the fuzzing sessions.

This profile of target discovery, with most targets discovered early, increases our

confidence that fuzzing is finding all possible targets, and that continuing to fuzz for

greater than 24 hours will not find additional targets.

Correctness of Generated Input In order to cross-check that the fuzzer gener-

ated executions are valid, we applied several sanitizers (ASan, Ubsan) to check the

correctness of fuzzer generated inputs. We also manually ensured that for each of

these generated inputs there is an intended control-flow execution.

Minimality Almost all dynamic CFI policies [26] have a fallback strategy and

they usually fall back to over-approximated target sets generated statically. Ancile

is inherently more aggressive. Although it uses instrumentation similar to LLVM-

CFI for its enforcement, it never reduces precision to LLVM-CFI target sets. Ancile

considers any call site or target that has not been exercised during profiling phase as

invalid or, in other words, not relevant to the intended functionality. This is to ensure

that we only employ the desired functionality. Our investigation indicates that this

reduction has a meaningful impact on the application’s security by making sensitive

functions harder to access (more levels of indirection are required) from indirect call

sites.

Statistical Analysis A potential issue of using fuzzing is that the fuzzer may

include superfluous coverage, i.e., the fuzzer discovers functionality that the user

does not want included, preferably known as false negative. One way to handle

35

this situation is to tune the length of the fuzzing campaigns. For example, when

extracting functionality of reading the captured pcap packets using tcpdump, it is

unlikely that the fuzzer will mutate the input seed enough to discover the code that

handles capturing packets. Due to the stochastic nature of fuzzing, it is also possible

that Ancile might miss some intended control flows resulting in false positives.

To understand how Ancile performs with respect to false positives and false neg-

atives, we have analyzed it with forty different test cases for each of our case studies.

In half of our test cases, we analyzed the specialized binary with the same intended

functionality but with different set of inputs. For example, in case of tiff2pdf utility,

we evaluated it with twenty different tif files which we have not used as seed. In

similar way, we have used the rest twenty of the test cases to exercise an unintended

functionality. Ancile successfully validated all test scenarios for all the investigated

applications.

In future work, we will evaluate how a user can select negative functionality they

want explicitly excluded. We refer to existing work that focused on similar chal-

lenges [19].

2.7.4 Performance Overhead (RQ4)

Performance overhead is crucial in any mechanism, hence we analyzed the perfor-

mance of Ancile on SPEC CPU2006 benchmark suite and compared it with LLVM-

CFI. Table 2.3 presents a comparison of runtime performance of Ancile and LLVM-

CFI. Ancile’s enforcement mechanism mainly reuses the enforcement part of LLVM-

CFI with a tighter target set, and as the table shows, has equivalent runtime perfor-

mance. As is standard, we report results for three SPEC CPU2006 iterations. Note

that we require no additional system resources, such as additional processes, cores,

virtual address space, or hardware extensions, unlike other works aimed at increasing

the precision of CFI [27,28,52].

36

Table 2.3.
Performance overhead comparison between LLVM-CFI and Ancile.

Benchmark Baseline (ms) LLVM-CFI (ms) Ancile (ms)

400.perlbench 374 379 (1.33%) 378 (1.07%)

401.bzip2 726 730 (0.55%) 730 (0.55%)

403.gcc 781 - 790 (1.1%)

429.mcf 296 297 (0.34%) 297 (0.34%)

433.milc 1029 1037 (0.78%) 1036 (0.68%)

444.namd 1420 1429 (0.63%) 1430 (0.70%)

445.gobmk 518 522 (0.77%) 519 (0.19%)

447.dealII 1294 1301 (0.54%) 1300 (0.46%)

450.soplex 339 345 (1.78%) 345 (1.78%)

453.povray 440 - 451 (2.5%)

456.hmmer 569 - 572 (0.52%)

458.sjeng 620 621 (0.16%) 622 (0.32%)

462.libquantum 474 481 (2.34%) 481 (2.34%)

464.h264ref 872 877 (0.57%) 879 (0.80%)

470.lbm 692 695 (0.43%) 694 (0.28%)

471.omnetpp 781 - 802 (2.6%)

473.astar 544 546 (0.33%) 546(0.33%)

482.sphinx3 945 947 (0.21%) 946 (0.11%)

483.xalanbmk 1325 - 1341(1.2%)

37

2.8 Related Work

Software Debloating is a well-known attack mitigation scheme which reduces

code size and complexity. Rastogi et al. introduced Cimplifier [16], an approach for

debloating containers by using dynamic analysis for necessary resource identification.

Chisel [14] debloats programs at a fine-grained level through reinforcement learning.

Trimmer [53] eliminates unused functionality based on user-provided configuration

data. Quanch et al. [15] debloat programs via piece wise compilation and loading.

They analyze the program to build a dependency graph of external functions and

then only load the required functions as well as remove any library code. Nibbler [17]

performs similar library specialization at the binary level. BinTrimmer [54] utilizes

abstract interpretation to recover a precise CFG as well as to identify unreachable

code and then removing it. Unfortunately, software debloating is not enough to stop

CFH. An attacker can still exploit bugs in the remaining code segments and launch

code-reuse attacks.

Razor [13] is another post-deployment debloating framework which works at the

binary level. It has three components: Tracer, Path finder and Generator. It debloats

the binary by utilizing test cases to trace execution paths, then uses four heuristics

to find nearby code-paths. Finally, the generator rewrites the binary. Similar to

Razor, Binary Control-Flow Trimming [44] uses test traces and later machine learning

to explore relevant control-flows. Both of these works are binary based and utilize

test traces, where as Ancile works primarily on source code and it depends on the

user given seeds to map functionality into code. The main distinction of Ancile

over these two works is it introduces seed demonstrated fuzzing to explore relevant

code regions. It strengthens the security of an application by not only debloating

unused functionalities, but also eliminating invalid targets from the remaining control

transfers.

Feature-based software specialization is a different software debloating ap-

proach that relies on feature specifications. Jiang et al. [55] propose feature-based

38

software customization for Java bytecode by applying static dataflow analysis and a

program slicing technique. But this specialization is done by the developers, whereas

JRed [56] performs static analysis and automatically trims unused code from both

Java applications and Java Runtime Environment (JRE).

Control-Flow Integrity reduces attack surface by prohibiting illegal control flow

transfers from the CFG. After the introduction of the CFI mechanism by Abadi et

al. [6] in 2005, the mechanism saw a diverse set of improvements along performance,

security, and precision. For a full survey see Burow et. al [22].

LLVM-CFI [12] is a static analysis based CFI approach that is implemented in

production compilers with negligible overhead (approximately 1%) [57]. In this ap-

proach, each indirect call along with associated targets are clustered into equivalence

classes where each indirect call can target any of the addresses within the associated

equivalence class. However, due to the reliance on the static analysis, LLVM-CFI

struggles with aliasing that results in an over-approximation. An attacker can per-

form attacks [9, 11, 58, 59] by leading an indirect control flow to a different target

within the equivalence class without violating the CFG. LLVM-CFI is seeing wide

deployment by Google in Chrome [50] and Android [49].

Recent research efforts improved the precision, and thus security, of CFI. Pitty-

Pat [28] presents a path-sensitive approach combining hardware-based monitoring

and runtime points-to-analysis. It improves preciseness with the cost of additional

hardware and performance overhead. In particular, it requires a separate process to

monitor and validate the execution traces of the protected process. πCFI [26] starts

enforcement of a process with an empty CFG and adds edges dynamically by activat-

ing addresses as needed. The security of πCFI depends on an attacker’s inability to

activate certain edges, otherwise it would provide the same guarantees as a static CFI

policy (modulo the complexity of activating the target). VIP [25] adds a measure of

control and data-flow sensitivity to the static analysis used by CFI. Ancile achieves

greater precision than πCFI or VIP through its functional analysis, and does not

require additional system resources like PittyPat.

39

Existing solutions for control-flow hijacking cannot protect against data-flow at-

tacks and leave the attacker some room. Ancile restricts the application to the bare

minimum code required to run the specified functionality and thereby restricts the

power of data-only attacks to this exposed functionality. If there is no path to, e.g.,

execve then no modification of the program’s memory can bend the control flow to

the sensitive function.

2.9 FitJit

2.9.1 Introduction

High-level managed languages like JavaScript are widely used in web pages, server-

side applications, browser extensions and even in desktop programs. Such languages

rely heavily on run-time systems written in unsafe languages such as C and C++. For

improved performance, these run-time systems adopt Just-In Time (JIT) compilation.

However, the dynamic nature of managed languages make it hard to extract the

accurate equivalent representation in C/C++. Attackers take advantage of this to

divert the normal execution of the program in order to perform attacker intended

actions. Hence, we need a solution to secure JIT compilation and JITted code against

CFH attacks.

2.9.2 Motivating Example

The variables of JavaScript are dynamically typed. Hence, it is important that

to ensure that whenever there is a communication between the JavaScript code and

underlying C++ runtime system, appropriate type translations are performed. Oth-

erwise, untrusted JavaScript application code can attempt to call and exploit the

trusted C++ runtime system. Such bugs often arise since JavaScript engines like V8

(Google Chrome’s open-source JavaScript and WebAssembly engine) make it easy for

the developers to violate JavaScript’s memory and type safety [60].

40

CVE-2020-6418 is a type confusion vulnerability in V8. Listing 2.2 [61] shows this

type confusion attack where an attacker attempts to access data in an unauthorized

way, thereby executing the malicious code.

ITERATIONS = 10000;

TRIGGER = false;

function f(a, p) {

return a.pop(Reflect.construct(function()

{}, arguments, p));}

let a;

let p = new Proxy(Object,{get: function(){

if (TRIGGER) {a[2] = 1.1;}

return Object.prototype;}});

for(let i = 0; i < ITERATIONS; i++){

let isLastIteration = i == ITERATIONS - 1;

a = [0, 1, 2, 3, 4];

if (isLastIteration)

TRIGGER = true;

print(f(a, p));

}

Listing 2.2 Example of a type confusion attack, CVE-2020-6148

41

2.9.3 Attack Surface

Since the the application code can be easily controlled by an attacker, JIT com-

pilers such as V8 has large attack surface. The most common type of attack is

JIT-spraying attack [62]. In such attacks, an attacker takes advantage of variable

length of instruction length in the x86 architecture. The attacker crafts an input

program with carefully chosen constants. For example, the following code snippet is

an xor operation between a variable and a constant 0x3C909090.

var = var ∧ 0x3C909090

Assuming the attacker can control the program counter, she can leverage the

variable length instruction features of x86 architecture and change th program counter

to point the first 0x90 in the above. In consequence, the next executable instruction

will then become a no-op (0x90) instruction. To make the attack more effective, the

attacker can spray copies of the same code in memory.

2.9.4 Related Work

RockJIT [63] enforces fine-grained CFI on JIT compiler and coarse-grained CFI

on the jitted code with a 14% performance overhead. NaCL-JIT [64] enforces coarse-

grained CFI policy which implements software based fault isolation by putting the

JIT compiler and jitted code in a sandbox. It enforces aligned chunk CFI and incurs

51% overhead. Both the approaches suffer from high overhead and apply very coarse

grained security, making them still bypassable and practically infeasible.

Software diversification based mechanism Librando [65] puts random amount of

no-ops in the jitted code as well as replaces instruction sequences that have constant

operands with other equivalent instruction sequences. Because of its black-box nature,

librando needs to disassemble the jitted code and then re-assemble the new code.

Another diversification approach, INSeRT [66] combines randomization of intrinsic

elements of machine instructions as well as randomly plants special trapping snippets.

Wu et al. [67] proposed Removing IMmediate (RIM) where they eliminates immediate

42

values in the native code. It replaces the original opcode with an immediate operand

to a new opcode with register operand. Additionally, it randomizes the arrangement

of registers to prohibit register layout prediction. Diversification approaches can

make CFH attack harder, but a determined attacker will still be able to bypass the

mitigation.

JitSafe [68] narrows the time window of the JIT compiled code in the executable

pages and eliminates all the immediate values. JitDefender [69] applies code execution

control on the VMs and distinguishes the benign usage of JIT-code from malicious

usage of the attacker.

Existing work does not ensure type integrity as well as fine-grained CFI in JIT

compilers and jitted code in general, leaving enough space for an attacker to perform

CFH attacks. Therefore, we need a strong defense mechanism to safe-guard language

boundaries from such attacks.

2.10 Proposed Policy

JavaScript is a dynamically typed language. The object and type representation

in JavaScript differs hugely from its underlying run-time system written in C++. We

propose a run-time monitor to enforce type integrity and control-flow integrity both

in JIT compiler and jitted code.

To enforce type integrity, we propose to explicitly check the type at run-time,

whenever object calls are dispatched across language barriers and inside both the JS

and C++ world. In order to do so, we build a meta data structure to store object type

information (for both the C++ and JS world) and verify accurate type information

at run-time.

To enforce fine-grained CFI, we propose a segmented CFI policy. Figure 2.8 shows

the three different CFI policies for three different code regions.

• Policy1: For C++ code regions, we propose to apply static CFI approaches

such as Ancile.

43

• Policy2: For C++ and JavaScript binding layers, we propose mapping one-to-

one functions.

• Policy3: For JavaScript code base, we propose, callback function based ap-

proach. In this technique, we use a v8 wrapper to collect all the function

information and enforce integrity via call-back functions.

Security critical application like JIT compiler along with jitted code requires

strong defense mechanism against CFH attacks. Therefore, FitJit aims to guarantee

strong security in such applications by ensuring type and control-flow integrity.

2.11 Conclusion

We present HexVASAN, a code specialization technique through fuzzing. Our

case studies show that targeted fuzzing can be used to effectively map user-intended

functionalities into relevant code regions. We can then leverage this information to

guide debloating and program specialization, reducing the program’s attack surface

and improving the precision of defenses such as CFI.

We believe that automatically specializing code for particular usage scenarios via

fuzzing is a promising new technique for software security. It can achieve greater

security than static analysis without requiring extra system resources.

44

(a) libtiff

(b) libpng

Figure 2.4. Comparison of number of targets per each callsite at LLVM-
CFI and Ancile with specialization in different functionalities for two li-
braries: libtiff and libpng. For each case study, we analyzed LLVM-CFI
and Ancile with three different functionality scenarios: standard test-suite
along with two utilities (tiffcrop and tiff2pdf utilities for libtiff, and pngfix
and timepng utilities for libpng)

45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

(a) 400.perlbench

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

P
er
ce
n
ta
ge

Target

LLVM-CFI

Ancile

(b) 445.gobmk

Figure 2.5. Comparison of the cumulative distribution function (CDF)
of the target set size per call site of Ancile against LLVM-CFI over two
SPEC CPU2006 benchmarks: 400.perlbench and 445.gobmk

46

Figure 2.6. Statistics of the number of equivalence classes for SPEC
CPU2006 benchmarks.

47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

P
er

ce
n

ta
ge

Time (in hour)

Figure 2.7. Target discovery over the time during application (tcpdump)
fuzzing.

Policy1

Policy2

Policy3

C++ Code Base JavaScript
Code Base

Figure 2.8. Proposed segmented CFI policy for language boundaries

48

3 HEXVASAN

Programming languages such as C and C++ support variadic functions, i.e., functions

that accept a variable number of arguments (e.g., printf). While variadic functions

are flexible, they are inherently not type-safe. In fact, the semantics and parameters

of variadic functions are defined implicitly by their implementation. It is left to the

programmer to ensure that the caller and callee follow this implicit specification,

without the help of a static type checker. An adversary can take advantage of a

mismatch between the argument types used by the caller of a variadic function and

the types expected by the callee to violate the language semantics and to tamper with

memory. Format string attacks are the most popular example of such a mismatch.

Indirect function calls can be exploited by an adversary to divert execution through

illegal paths. CFI restricts call targets according to the function prototype which,

for variadic functions, does not include all the actual parameters. However, as shown

by our case study, current CFI implementations are mainly limited to non-variadic

functions and fail to address this potential attack vector. Defending against such an

attack requires a stateful dynamic check.

We present HexVASAN, a compiler based sanitizer to effectively type-check and

thus prevent any attack via variadic functions (when called directly or indirectly). The

key idea is to record metadata at the call site and verify parameters and their types at

the callee whenever they are used at runtime. Our evaluation shows that HexVASAN

is (i) practically deployable as the measured overhead is negligible (0.45%) and (ii)

effective as we show in several case studies.

49

3.1 Introduction

In this work, we present a new attack against widely deployed mitigations through

a frequently used feature in C/C++ that has so far been overlooked: variadic func-

tions. Variadic functions (such as printf) accept a varying number of arguments

with varying argument types. To implement variadic functions, the programmer im-

plicitly encodes the argument list in the semantics of the function and has to make

sure the caller and callee adhere to this implicit contract. In printf, the expected

number of arguments and their types are encoded implicitly in the format string,

the first argument to the function. Another frequently used scheme iterates through

parameters until a condition is reached (e.g., a parameter is NULL). Listing 3.1 shows

an example of a variadic function. If an adversary can violate the implicit contract

between caller and callee, an attack may be possible.

In the general case, it is impossible to enumerate the arguments of a variadic

function through static analysis techniques. In fact, their number and types are

intrinsic in how the function is defined. This limitation enables (or facilitates) two

attack vectors against variadic functions. First, attackers can hijack indirect calls and

thereby call variadic functions over control-flow edges that are never taken during any

legitimate execution of the program. Variadic functions that are called in this way

may interpret the variadic arguments differently than the function for which these

arguments were intended, and thus violate the implicit caller-callee contract. CFI

countermeasures specifically prevent illegal calls over indirect call edges. However,

even the most precise implementations of CFI, which verify the type signature of the

targets of indirect calls, are unable to fully stop illegal calls to variadic functions.

A second attack vector involves overwriting a variadic function’s arguments di-

rectly. Such attacks do not violate the intended control flow of a program and thus

bypass all of the widely deployed defense mechanisms. Format string attacks are a

prime example of such attacks. If an adversary can control the format string passed to,

e.g., printf, she can control how all of the following parameters are interpreted, and

50

can potentially leak information from the stack, or read/write to arbitrary memory

locations.

The attack surface exposed by variadic functions is significant. We analyzed

popular software packages, such as Firefox, Chromium, Apache, CPython, nginx,

OpenSSL, Wireshark, the SPEC CPU2006 benchmarks, and the FreeBSD base sys-

tem, and found that variadic functions are ubiquitous. We also found that many

of the variadic function calls in these packages are indirect. We therefore conclude

that both attack vectors are realistic threats. The underlying problem that enables

attacks on variadic functions is the lack of type checking. Variadic functions gener-

ally do not (and cannot) verify that the number and type of arguments they expect

matches the number and type of arguments passed by the caller. We present Hex-

VASAN, a compiler-based, dynamic sanitizer that tackles this problem by enforcing

type checks for variadic functions at run-time. Each argument that is retrieved in a

variadic function is type checked, enforcing a strict contract between caller and callee

so that (i) a maximum of the passed arguments can be retrieved and (ii) the type of

the arguments used at the callee are compatible with the types passed by the caller.

Our mechanism can be used in two operation modes: as a runtime monitor to protect

programs against attacks and as sanitizer to detect type mismatches during program

testing.

We have implemented HexVASAN on top of the LLVM compiler framework, in-

strumenting the compiled code to record the types of each argument of a variadic

function at the call site and to check the types whenever they are retrieved. Our

prototype implementation is light-weight, resulting in negligible (0.45%) overhead for

SPEC CPU2006. Our approach is general as we show by recompiling the FreeBSD

base system and effective as shown through several exploit case studies (e.g., a format

string vulnerability in sudo).

51

#include <stdio.h>

#include <stdarg.h>

int add(int start, ...) {

int next, total = start;

va_list list;

va_start(list, start);

do {

next = va_arg(list, int);

total += next;

} while (next != 0);

va_end(list);

return total;

}

int main(int argc, const char *argv[]) {

printf("%d\n", add(5, 1, 2, 0));

return 0;

}

Listing 3.1 Example of a variadic function in C. The function add takes a
non-variadic argument start (to initialize an accumulator variable) and a
series of variadic int arguments that are added until the terminator value
0 is met. The final value is returned.

52

3.2 Background

Variadic functions are used ubiquitously in C/C++ programs. Here we introduce

details about their use and implementation on current systems, the attack surface

they provide, and how adversaries can abuse them.

3.2.1 Variadic functions

Variadic functions (such as the printf function in the C standard library) are used

in C to maximize the flexibility in the interface of a function, allowing it to accept

a number of arguments unknown at compile-time. These functions accept a variable

number of arguments, which do not necessarily have fixed types. An example of a

variadic function is shown in Listing 3.1. The function add accepts one mandatory

argument (start) and a varying number of additional arguments, which are marked

by the ellipsis (...) in the function definition.

The C standard defines several macros that portable programs may use to access

variadic arguments [70]. stdarg.h, the header that declares these macros, defines an

opaque type, va_list, which stores all information required to retrieve and iterate

through variadic arguments. In our example, the variable list of type va_list is

initialized using the va_start macro. The va_arg macro retrieves the next variadic

argument from the va_list, updating va_list to point to the next argument as a side

effect. Note that, although the programmer must specify the expected type of the

variadic argument in the call to va_arg, the C standard does not require the compiler

to verify that the retrieved variable is indeed of that type. va_list variables must be

released using a call to the va_end macro so that all of the resources assigned to the

list are deallocated.

printf is an example of a more complex variadic function which takes a format

string as its first argument. This format string implicitly encodes information about

the number of arguments and their type. Implementations of printf scan through

this format string several times to identify all format arguments and to recover the

53

necessary space in the output string for the specified types and formats. Interestingly,

arguments do not have to be encoded sequentially but format strings allow out-of-

order access to arbitrary arguments. This flexibility is often abused in format string

attacks to access arbitrary stack locations.

3.2.2 Variadic functions ABI

The C standard does not define the calling convention for variadic functions, nor

the exact representation of the va_list structure. This information is instead part of

the ABI of the target platform.

x86-64 ABI. The AMD64 System V ABI [71], which is implemented by x86-64

GNU/Linux platforms, dictates that the caller of a variadic function must adhere

to the normal calling conventions when passing arguments. Specifically, the first six

non-floating point arguments and the first eight floating point arguments are passed

through CPU registers. The remaining arguments, if any, are passed on the stack.

If a variadic function accepts five mandatory arguments and a variable number of

variadic arguments, than all but one of these variadic arguments will be passed on

the stack. The variadic function itself moves the arguments into a va_list variable

using the va_start macro. The va_list type is defined as follows:

typedef struct {

unsigned int gp_offset;

unsigned int fp_offset;

void *overflow_arg_area;

void *reg_save_area;

} va_list[1];

va_start allocates on the stack a reg_save_area to store copies of all variadic

arguments that were passed in registers. va_start initializes the overflow_arg_area

field to point to the first variadic argument that was passed on the stack. The

54

gp_offset and fp_offset fields are the offsets into the reg_save_area. They represent

the first unused variadic argument that was passed in a general purpose register or

floating point register respectively.

The va_arg macro retrieves the first unused variadic argument from either the

reg_save_area or the overflow_arg_area, and either it increases the gp_offset/fp_offset

field or moves the overflow_arg_area pointer forward, to point to the next variadic

argument.

Other architectures. Other architectures may implement variadic functions differ-

ently. On 32-bit x86, for example, all variadic arguments must be passed on the stack

(pushed right to left), following the cdecl calling convention used on GNU/Linux.

The variadic function itself retrieves the first unused variadic argument directly from

the stack. This simplifies the implementation of the va_start, va_arg, and va_end

macros, but it generally makes it easier for adversaries to overwrite the variadic ar-

guments.

3.2.3 Variadic attack surface

When calling a variadic function, the compiler statically type checks all non-

variadic arguments but does not enforce any restriction on the type or number of

variadic arguments. The programmer must follow the implicit contract between caller

and callee that is only present in the code but never enforced explicitly. Due to this

high flexibility, the compiler cannot check arguments statically. This lack of safety

can lead to bugs where an adversary achieves control over the callee by modifying the

arguments, thereby influencing the interpretation of the passed variadic arguments.

Modifying the argument or arguments that control the interpretation of variadic

arguments allows an adversary to change the behavior of the variadic function, causing

the callee to access additional or fewer arguments than specified and to change the

interpretation of their types.

55

An adversary can influence variadic functions in several ways. First, if the pro-

grammer forgot to validate the input, the adversary may directly control the argu-

ments to the variadic function that control the interpretation of arguments. Second,

the adversary may use an arbitrary memory corruption elsewhere in the program to

influence the argument of a variadic function.

Variadic functions can be called statically or dynamically. Direct calls would, in

theory, allow some static checking. Indirect calls (e.g., through a function pointer),

where the target of the variadic function is not known, do not allow any static check-

ing. Therefore, variadic functions can only be protected through some form of runtime

checker that considers the constraints of the call site and enforces them at the callee

side.

3.2.4 Format string exploits

Format string exploits are a perfect example of corrupted variadic functions. An

adversary that gains control over the format string used in printf can abuse the

printf function to leak arbitrary data on the stack or even resort to arbitrary memory

corruption (if the pointer to the target location is on the stack). For example, a format

string vulnerability in the smbclient utility (CVE-2009-1886) [72] allows an attacker

to gain control over the Samba file system by treating a filename as format string.

Also, in PHP 7.x before 7.0.1, an error handling function in zend execute API.c allows

an attacker to execute arbitrary code by using format string specifiers as class name

(CVE-2015-8617) [73].

Information leaks are simple: an adversary changes the format string to print the

desired information that resides somewhere higher up on the stack by employing the

desired format string specifiers. For arbitrary memory modification, an adversary

must have the target address encoded somewhere on the stack and then reference the

target through the %n modifier, writing the number of already written bytes to that

memory location.

56

The GNU C standard library (glibc) enforces some protection against format string

attacks by checking if a format string is in a writable memory area [74]. For format

strings, the glibc printf implementation opens /proc/self/maps and scans for the

memory area of the format string to verify correct permissions. Moreover, a check

is performed to ensure that all arguments are consumed, so that no out-of-context

stack slots can be used in the format string exploit. These defenses stop some attacks

but do not mitigate the underlying problem that an adversary can gain control over

the format string. Note that this heavyweight check is only used if the format string

argument may point to a writable memory area at compile time. An attacker may

use memory corruption to redirect the format string pointer to an attacker-controlled

area and fall back to a regular format string exploit.

3.3 Threat model

Programs frequently use variadic functions, either in the program itself or as part

of a shared library (e.g., printf in the C standard library). We assume that the

program contains an arbitrary memory corruption, allowing the adversary to modify

the arguments to a variadic function and/or the target of an indirect function call,

targeting a variadic function.

Our target system deploys existing defense mechanisms like DEP, ASLR, and a

strong implementation of CFI, protecting the program against code injection and

control-flow hijacking. We assume that the adversary cannot modify the metadata of

our runtime monitor. Protecting metadata is an orthogonal engineering problem and

can be solved through, e.g., masking (and-ing every memory access), segmentation

(for x86-32), protecting the memory region [75], or probabilistically by randomizing

the location of sensitive data. Our threat model is a realistic scenario for current

attacks and defenses.

57

3.4 HexVASAN design

HexVASAN monitors calls to variadic functions and checks for type violations.

Since the semantics of how arguments should be interpreted by the function are

intrinsic in the logic of the function itself, it is, in general, impossible to determine

the number and type of arguments a certain variadic function accepts. For this

reason, HexVASAN instruments the code generated by the compiler so that a check

is performed at runtime. This check ensures that the arguments consumed by the

variadic function match those passed by the caller.

The high level idea is the following: HexVASAN records metadata about the

supplied argument types at the call site and verifies that the extracted arguments

match in the callee. The number of arguments and their types is always known at

the call site and can be encoded efficiently. In the callee this information can then

be used to verify individual arguments when they are accessed. To implement such

a sanitizer, we must design a metadata store, a pass that instruments call sites, a

pass that instruments callers, and a runtime library that manages the metadata store

and performs the run-time type verification. Our runtime library aborts the program

whenever a mismatch is detected and generates detailed information about the call

site and the mismatched arguments.

3.4.1 Analysis and Instrumentation

We designed HexVASAN as a compiler pass to be run in the compilation pipeline

right after the C/C++ frontend. The instrumentation collects a set of statically

available information about the call sites, encodes it in the LLVM module, and injects

calls to our runtime to perform checks during program execution.

Figure 3.1 provides an overview of the compilation pipeline when HexVASAN

is enabled. Source files are first parsed by the C/C++ frontend which generates

the intermediate representation on which our instrumentation runs. The normal

compilation then proceeds, generating instrumented object files. These object files,

58

source1.c

C frontend

HexVASAN

instrumentation

Compile

IR

IR

source2.cpp

C++ frontend

HexVASAN

instrumentation

Compile

IR

IR

source3.c

C frontend

HexVASAN

instrumentation

Compile

IR

IR

Link

Object file
Object file

Object file

output.elfhexvasan.a

Figure 3.1. Overview of the HexVASAN compilation pipeline. The
HexVASAN instrumentation runs right after the C/C++ frontend, while
its runtime library, hexvasan.a, is merged into the final executable at link
time.

59

along with the HexVASAN runtime library, are then passed to the linker, which

creates the instrumented program binary.

3.4.2 Runtime support

The HexVASAN runtime augments every va_list in the original program with the

type information generated by our instrumentation pass, and uses this type informa-

tion to perform run-time type checking on any variadic argument accessed through

va_arg. By managing the type information in a metadata store, and by maintaining

a mapping between va_lists and their associated type information, HexVASAN re-

mains fully compatible with the platform ABI. This design also supports interfacing

between instrumented programs and non-instrumented libraries.

The HexVASAN runtime manages the type information in two data structures.

The core data structure, called the variadic list map (VLM), associates va_list struc-

tures with the type information produced by our instrumentation, and with a counter

to track the index of the last argument that was read from the list. A second data

structure, the variadic call stack (VCS), allows callers of variadic functions to store

type information of variadic arguments until the callee initializes the va_list.

Each variadic call site is instrumented with a call to pre call, that prepares

the information about the call site (a variadic call site descriptor or VCSD), and

a call to post call, that cleans it up. For each variadic function, the va start

calls are instrumented with list init, while va copy, whose purpose is to clone a

va list, is instrumented through list copy. The two run-time functions will allocate

the necessary data structures to validate individual arguments. Calls to va end are

instrumented through list end to free up the corresponding data structures.

Algorithm 1 summarizes the two phases of our analysis and instrumentation pass.

The first phase identifies all the calls to variadic functions (both direct and indirect).

Note that identifying indirect calls to variadic functions is straight-forward in a com-

piler framework since, even if the target function is not statically known, its type is.

60

input: a module m

/* Phase 1 */

foreach function f in module m do

foreach variadic call c with n arguments in f do

vcsd.count ← n;

foreach argument a of type t do

vcsd.args.push(t);

end

emit call to pre call(vcsd) before c;

emit call to post call() after c;

end

end

/* Phase 2 */

foreach function f in module m do

foreach call c to va start(list) do

emit call to list init(&list) after c;

end

foreach call c to va copy(dst, src) do

emit call to list copy(&dst,&src) after c;

end

foreach call c to va end(list) do

emit call to list free(&list) after c;

end

foreach call c to va arg(list, type) do

emit call to check arg(&list, type) before c;

end

end

Algorithm 1: The instrumentation process.

61

Then, all the parameters passed by that specific call site are inspected and recorded,

along with their type in a dedicated VCSD which is stored in read-only global data.

At this point, a call to pre call is injected before the variadic function call (with

the newly created VCSD as a parameter) and, symmetrically, a call to post call is

inserted after the call site.

The second phase identifies all calls to va start and va copy, and consequently,

the va list variables in the program. Uses of each va list variable are inspected in

an architecture-specific way. Once all uses are identified, we inject a call to check arg

before dereferencing the argument (which always resides in memory).

3.4.3 Challenges and Discussion

When designing a variadic function call sanitizer, several issues have to be con-

sidered. We highlight details about the key challenges we encountered.

Multiple va lists. Functions are allowed to create multiple va_lists to access the

same variadic arguments, either through va_start or va_copy operations. HexVASAN

handles this by storing a VLM entry for each individual va_list.

Passing va_lists as function arguments. While uncommon, variadic functions

are allowed to pass the va_lists they create as arguments to non-variadic functions.

This allows non-variadic functions to access variadic arguments of functions higher in

the call stack. Our design takes this into account by maintaining a list map (VLM)

and by instrumenting all va_arg operations, regardless of whether or not they are in

a variadic function.

Multi-threading support. Multiple threads are supported by storing our per-

thread runtime state in thread-local variables that are supported on all major oper-

ating systems.

Metadata format. The main goals in designing the metadata encoding is to make

it lean and straight-forward to use. We opted for having a constant data structure

per variadic call site, the VCSD, that holds the number of arguments and a pointer

62

to an array of integers identifying their type. The check arg function therefore only

performs two memory accesses, the first to load the number of arguments and the

second for the type of the argument currently being checked.

To uniquely identify the data types with an integer, we decided to build a hashing

function (described in Algorithm 2) using a set of fixed identifiers for primitive data

types and hashing them in different ways depending on how they are aggregated

(pointers, union, or struct). This approach has the advantage of being deterministic

across compilation units, removing the need for keeping a global map of type-unique

id pairs. Note that (unlikely) hash collisions only result in two different types being

accepted as equal. Due to the information loss during the translation from C/C++

to LLVM IR, our type system does not distinguish between signed and unsigned

types. The required metadata is static and immutable and we mark it as read-only,

protecting it from modification. However, the VCS still needs to be protected through

other mechanisms.

Handling floating point arguments. In x86-64 ABI, floating point and non-

floating point arguments are handled differently. In case of floating point arguments,

the first eight arguments are passed in the floating point registers whereas in case of

non-floating point the first six are passed in general-purpose registers. HexVASAN

handles both argument types.

Support for aggregate data types. According to AMD64 System V ABI, the

caller unpacks the fields of the aggregate data types (structs and unions) if the argu-

ments fit into registers. This makes it hard to distinguish between composite types

and regular types – if unpacked they are indistinguishable on the callee side from ar-

guments of these types. HexVASAN supports aggregate data types even if the caller

unpacks them.

Attacks preserving number and type of arguments. Our mechanism prevents

attacks that change the number of arguments or the types of individual arguments.

Format string attacks that only change one modifier can therefore be detected through

the type mismatch even if the total number of arguments remains unchanged.

63

input : a type t and an initial hash value h

output: the final hash value h

h = hash(h, typeID(t));

switch typeID(t) do

case AggregateType do

/* union, struct and pointer */

foreach c in componentTypes(t) do

h = hashType(c, h);

end

case FunctionType do

h = hashType(returnType(t), h);

foreach a in argTypes(t) do

h = hashType(a, h);

end

end

end

h = hash(h, typeID(t));

return h

Algorithm 2: Algorithm describing the type hashing function hashType. typeID

returns an unique identifier for each basic type (e.g., 32-bit integer, double), type

of aggregate type (e.g., struct, union...) and functions. hash is a simple hashing

function combining two integers. componentTypes returns the components of an

aggregate type, returnType the return type of a function prototype and argTypes

the type of its arguments.

Non-variadic calls to variadic functions. Consider the following code snippet:

64

typedef void (*non_variadic)(int, int);

void variadic(int, ...) { /* ... */ }

int main() {

non_variadic function_ptr = variadic;

function_ptr(1, 2);

}

In this case, the function call in main to function_ptr appears to the compiler as

a non-variadic function call, since the type of the function pointer is not variadic.

Therefore, our pass will not instrument the call site, leading to potential errors.

To handle such (rare) situations appropriately, we would have to instrument all

non-variadic call sites too, leading to an unjustified overhead. Moreover, the code

above represents undefined behavior in C [76, 6.3.2.3p8] and C++ [77, 5.2.10p6], and

might not work on certain architectures where the calling convention for variadic and

non-variadic function calls are not compatible. The GNU C compiler emits a warning

when a function pointer is cast to a different type, therefore we require the developer

to correct the code before applying HexVASAN.

Central management of the global state. To allow the HexVASAN runtime

to be linked into the base system libraries, such as the C standard library, we made

it a static library. Turning the runtime into a shared library is possible, but would

prohibit its use during the early process initialization – until the dynamic linker has

processed all of the necessary relocations. Our runtime therefore either needs to be

added solely to the C standard library (so that it is initialized early in the startup

process) or the runtime library must carefully use weak symbols to ensure that each

symbol is only defined once if multiple libraries are compiled with our countermeasure.

65

C++ exceptions and longjmp. If an exception is raised while executing a variadic

function (or one of its callees), the variadic function may not get a chance to clean

up the metadata for any va_lists it has initialized, nor may the caller of this variadic

function get the chance to clean up the type information it has pushed onto the VCS.

Other functions manipulating the thread’s stack directly, such as longjmp, present

similar issues.

C++ exceptions can be handled by modifying the LLVM C++ frontend (i.e., clang)

to inject an object with a lifetime spanning from immediately before a variadic func-

tion call to immediately after. Such an object would call pre_call in its constructor

and post_call in the destructor, leveraging the exception handling mechanism to make

HexVASAN exception-safe. Functions like longjmp can be instrumented to purge the

portions of HexVASAN’s data structures that correspond to the discarded stack area.

We did not observe any such calls in practice and leave the implementation of handling

exceptions and longjump across variadic functions as future engineering work.

3.5 Implementation

We implemented HexVASAN as a sanitizer for the LLVM compiler framework [78],

version 3.9.1. We have chosen LLVM for its robust features on analyzing and trans-

forming arbitrary programs as well as extracting reliable type information. The sani-

tizer can be enabled from the C/C++ frontend (clang) by providing the -fsanitize=vasan

parameter at compile-time. No annotations or other source code changes are re-

quired for HexVASAN. Our sanitizer does not require visibility of whole source code

(see Section 3.4.3), but works on individual compilation units. Therefore link-time

optimization (LTO) is not required and thus fits readily into existing build systems.

HexVASAN consists of two components: a static instrumentation pass and a

runtime library. The static instrumentation pass works on LLVM IR, adding the

necessary instrumentation code to all variadic functions and their callees. The support

library is statically linked to the program and, at run-time, checks the number and

66

type of variadic arguments as they are used by the program. In the following we

describe the two components in detail.

Static instrumentation. The implementation of the static instrumentation pass

follows the description in Section 3.4. We first iterate through all functions, looking

for CallInst instructions targeting a variadic function (either directly or indirectly),

then we inspect them and create for each one of them a read-only GlobalVariable

of type vcsd t. As shown in Listing 3.2, vcsd t is composed by an unsigned integer

representing the number of arguments of the considered call site and a pointer to

an array (another GlobalVariable) with an integer element for each argument of

type t. type t is an integer uniquely identifying a data type obtained using the

hashType function presented in Algorithm 2. At this point a call to pre call is

injected before the call site, with the newly create VCSD as a parameter, and a call

to post call is injected after the call site.

During the second phase, we first identify all va_start, va_copy, and va_end op-

erations in the program. In the IR code, these operations appear as calls to the

LLVM intrinsics llvm.va_start, llvm.va_copy, and va_end. We instrument the op-

erations with calls to our runtime’s list_init, list_copy, and list_free functions

respectively. We then proceed to identify va_arg operations. Although the LLVM IR

has a dedicated va_arg instruction, it is not used on any of the platforms we tested.

The va_list is instead accessed directly. Our identification of va_arg is therefore

platform-specific. On x86-64, our primary target, we identify va_arg by recognizing

accesses to the gp_offset and fp_offset fields in the x86-64 version of the va_list

structure (see Section 3.2.2). The fp_offset field is accessed whenever the program

attempts to retrieve a floating point argument from the list. The gp_offset field is

accessed to retrieve any other types of variadic arguments. We insert a call to our

runtime’s check_arg function before the instruction that accesses this field.

Listing 3.2 shows (in simplified C) how the code in Listing 3.1 would be instru-

mented by our sanitizer.

67

struct vcsd_t { unsigned count; type_t *args; };

thread_local stack<vcsd_t *> vcs;

thread_local map<va_list *, pair<vcsd_t *, unsigned>> vlm;

void pre_call(vcsd_t *arguments) { vcs.push_back(arguments); }

void post_call() { vcs.pop_back(); }

void list_init(va_list *list_ptr) { vlm[list_ptr] = { vcs.top(), 0 }; }

void list_free(va_list *list_ptr) { vlm.erase(list_ptr); }

void check_arg(va_list *list_ptr, type_t type) {

pair<vcsd_t *, unsigned> &args = vlm[list_ptr];

unsigned index = args.second++;

assert(index < args.first->count);

assert(args.first->args[index] == type);

}

int add(int start, ...) {

va_start(list, start);

list_init(&list);

do {

check_arg(&list, typeid(int));

total += va_arg(list, int);

} while (next != 0);

va_end(list);

list_free(&list);

}

const vcsd_t main_add_vcsd = {

.count = 3,

.args = {typeid(int), typeid(int), typeid(int)}

};

int main(int argc, const char *argv[]) {

pre_call(&main_add_vcsd);

int result = add(5, 1, 2, 0);

post_call();

printf("%d\n", result);

}

Listing 3.2 Simplified C++ representation of the instrumented code for
Listing 3.1.

68

Error: Type Mismatch

Index is 1

Callee Type : 43 (32-bit Integer)

Caller Type : 15 (Pointer)

Backtrace:

[0] 0x4019ff <__vasan_backtrace+0x1f> at test

[1] 0x401837 <__vasan_check_arg+0x187> at test

[2] 0x8011b3afa <__vfprintf+0x20fa> at libc.so.7

[3] 0x8011b1816 <vfprintf_l+0x86> at libc.so.7

[4] 0x801200e50 <printf+0xc0> at libc.so.7

[5] 0x4024ae <main+0x3e> at test

[6] 0x4012ff <_start+0x17f> at test

Listing 3.3 Error message reported by HexVASAN.

Dynamic variadic type checking. plain C code, as this allows it to be linked into

the standard C library without introducing a dependency to the standard C++ library.

The VCS is implemented as a thread-local stack, and the VLM as a thread-local hash

map. The pre_call and post_call functions push and pop type information onto and

from the VCS. The list_init function inserts a new entry into the VLM, using the

top element on the stack as the entry’s type information and initializing the counter

for consumed arguments to 0.

check arg looks up the type information for the va_list being accessed in the

VLM and checks if the requested argument exists (based on the counter of consumed

arguments), and if its type matches the one provided by the caller.

If either of these checks fails, execution is aborted, and the runtime will generate

an error message such as the one shown in Listing 3.3. As a consequence, the pointer

to the argument is never read or written, since the pointer to it is never dereferenced.

69

3.6 Evaluation

In this section we present a case study on variadic function based attacks against

state-of-the-art CFI implementations. Next, we evaluate the effectiveness of Hex-

VASAN as an exploit mitigation technique. Then, we evaluate the overhead intro-

duced by our HexVASAN prototype implementation on the SPEC CPU2006 inte-

ger (CINT2006) benchmarks as well as HexVASAN hardened Firefox using stan-

dard JavaScript benchmarks. We also evaluate how widespread the usage of vari-

adic functions is in SPEC CPU2006 and in Firefox 51.0.1, Chromium 58.0.3007.0,

Apache 2.4.23, CPython 3.7.0, nginx 1.11.5, OpenSSL 1.1.1, Wireshark 2.2.1, and

the FreeBSD 11.0 base system.

Note that, along with testing the above mentioned software, we also developed

our internal set of regression tests, consisting of a suite of simple programs whose goal

is to assess that our sanitizer can catch problematic situations and benign correctly

calls to variadic functions. The test suite explores corner cases, including trying to

access arguments that have not been passed and trying to access them using a type

different from the actual one.

3.6.1 Case study: CFI effectiveness

One of the attack scenarios we envision is that an attacker controls the target of

an indirect call site. If the intended target of the call site was a variadic function,

the attacker could illegally call a different variadic function that expects different

variadic arguments than the intended target (yet shares the types for all non-variadic

arguments). If the intended target of the call site was a non-variadic function, the

attacker could call a variadic function that interprets some of the intended target’s

arguments as variadic arguments.

All existing CFI mechanisms allow such attacks to some extent. The most pre-

cise CFI mechanisms, which rely on function prototypes to classify target sets (e.g.,

LLVM-CFI, piCFI, or VTV) will allow all targets with the same prototype, possibly

70

Actual target

Intended target Prototype A.T.? LLVM-CFI pi-CFI CCFI VTV CFG HexVASAN

Variadic

Same
Yes 7 7 7 7 7 X

No 7 X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X 7 7 7 X

Non-variadic

Same
Yes X X 7 7 7 X

No X X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X X 7 7 X

Original Overwritten Arguments 7 7 7 7 7 X

Table 3.1.
Detection coverage for several types of illegal calls to variadic functions. X
indicates detection, 7 indicates non-detection. “A.T.” stands for address
taken.

71

restricting to the subset of functions whose addresses are taken in the program. This

is problematic for variadic functions, as only non-variadic types are known statically.

For example, if a function of type int (*)(int, ...) is expected to be called from

an indirect call site, then precise CFI schemes allow calls to all other variadic func-

tions of that type, even if those other functions expect different types for the variadic

arguments.

A second way to attack variadic functions is to overwrite their arguments directly.

This happens, for example, in format string attacks, where an attacker can overwrite

the format string to cause misinterpretation of the variadic arguments. HexVASAN

detects both of these attacks when the callee attempts to retrieve the variadic ar-

guments using the va_arg macro described in Section 3.2.1. Checking and enforcing

the correct types for variadic functions is only possible at runtime and any sanitizer

must resort to run-time checks to do so. CFI mechanisms must therefore be extended

with a HexVASAN-like mechanism to detect violations. To show that our tool can

complement CFI, we create test programs containing several variadic functions and

one non-variadic function. The definitions of these functions are shown below.

int sum_ints(int n, ...);

int avg_longs(int n, ...);

int avg_doubles(int n, ...);

void print_longs(int n, ...);

void print_doubles(int n, ...);

int square(int n);

This program contains one indirect call site from which only the sum_ints function

can be called legally, and one indirect call site from which only the square function

can be legally called. We also introduce a memory corruption vulnerability which

allows us to override the target of both indirect calls.

72

We constructed the program such that sum_ints, avg_longs, print_longs, and

square are all address-taken functions. The avg_doubles and print_doubles functions

are not address-taken.

Functions avg_longs, avg_doubles, print_longs, and print_doubles all expect dif-

ferent variadic argument types than function sum_ints. Functions sum_ints, avg_longs,

avg_doubles, and square do, however, all have the same non-variadic prototype (int

↪→ (*)(int)).

We compiled six versions of the test program, instrumenting them with, respec-

tively, HexVASAN, LLVM 3.9 Forward-Edge CFI [23], Per-Input CFI [26], CCFI [79],

GCC 6.2’s VTV [23] and Visual C++ Control Flow Guard [80]. In each version, we

first built an attack involving a variadic function, by overriding the indirect call sites

with a call to each of the variadic functions described above. We then also tested

overwriting the arguments of the sum_ints function, without overwriting the indirect

call target. Table 3.1 shows the detection results.

LLVM Forward-Edge CFI allows calls to avg_longs and avg_doubles from the

sum_ints indirect call site because these functions have the same static type signature

as the intended call target. This implementation of CFI does not allow calls to

variadic functions from non-variadic call sites, however.

CCFI only detects calls to print_doubles, a function that is not address-taken and

has a different non-variadic prototype than square, from the square call site. It allows

all of the other illegal calls.

GCC VTV, and Visual C++ CFG allow all of the illegal calls, even if the non-

variadic type signature does not match that of the intended call target.

pi-CFI allows calls to the avg_longs function from the sum_ints indirect call site.

avg_longs is address-taken and it has the same static type signature as the intended

call target. pi-CFI does not allow illegal calls to non-address-taken functions or

functions with different static type signatures. pi-CFI also does not allow calls to

variadic functions from non-variadic call sites.

73

All implementations of CFI allow direct overwrites of variadic arguments, as long

as the original control flow of the program is not violated.

3.6.2 Exploit Detection

To evaluate the effectiveness of our tool as a real-world exploit detector, we built a

HexVASAN-hardened version of sudo 1.8.3. sudo allows authorized users to execute

shell commands as another user, often one with a high privilege level on the system.

If compromised, sudo can escalate the privileges of non-authorized users, making it

a popular target for attackers. Versions 1.8.0 through 1.8.3p1 of sudo contained a

format string vulnerability (CVE-2012-0809) that allowed exactly such a compromise.

This vulnerability could be exploited by passing a format string as the first argument

(argv[0]) of the sudo program. One such exploit was shown to bypass ASLR, DEP,

and glibc’s FORTIFY SOURCE protection [81].

Although it is sudo itself that calls the format string function (fprintf), Hex-

VASAN can only detect the violation on the callee side. We therefore had to build

hardened versions of not just the sudo binary itself, but also the C library. We chose

to do this on the FreeBSD platform, as its standard C library can be easily built using

LLVM, and HexVASAN therefore readily fits into the FreeBSD build process. As ex-

pected, HexVASAN does detect any exploit that triggers the vulnerability, producing

the error message shown in Listing 3.4.

3.6.3 Prevalence of variadic functions

To collect data about variadic functions in real software, we extended our instru-

mentation mechanism to also collect statistics about variadic functions and calls to

variadic functions. As shown in Table 3.2, for each program, we collect:

74

$ ln -s /usr/bin/sudo %x%x%x%x

$./%x%x%x%x -D9 -A

Error: Index greater than Argument Count

Index is 1

Backtrace:

[0] 0x4053bf <__vasan_backtrace+0x1f> at sudo

[1] 0x405094 <__vasan_check_index+0xf4> at sudo

[2] 0x8015dce24 <__vfprintf+0x2174> at libc.so

[3] 0x8015dac52 <vfprintf_l+0x212> at libc.so

[4] 0x8015daab3 <vfprintf_l+0x73> at libc.so

[5] 0x40bdaf <sudo_debug+0xdf> at sudo

[6] 0x40ada3 <main+0x6c3> at sudo

[7] 0x40494f <_start+0x17f> at sudo

Listing 3.4 Exploit detection in sudo.

75

Calls sites. The number of function calls targeting variadic functions. We report

the total number and how many of them are indirect, since they are of particular

interest for an attack scenario where the adversary can override a function pointer.

Variadic functions. The number of variadic functions. We report their total num-

ber and how many of them have their address taken, since CFI mechanism cannot

prevent functions with their address taken from being reachable from indirect call

sites.

Variadic prototypes. The number of distinct variadic function prototypes in the

program.

Functions-per-prototype. The average number of variadic functions sharing the

same prototype. This measures how many targets are available, on average, for

each indirect call sites targeting a specific prototype. In practice, this the average

number of permitted destinations for an indirect call site in the case of a per-

fect CFI implementation. We report this value both considering all the variadic

functions and only those whose address is taken.

Interestingly, each benchmark we analyzed contains calls to variadic functions and

several programs (Firefox, OpenSSL, perlbench, gcc, povray, and hmmer) even con-

tain indirect calls to variadic functions. In addition to calling variadic functions, each

benchmark also defines at least several variadic functions with up to 421 for Firefox,

794 for Chromium, 1368 for FreeBSD, 469 for Wireshark, and 382 for CPython. Vari-

adic functions are therefore prevalent and used ubiquitously in software. Adversaries

have plenty of opportunities to modify these calls and to attack the implicit contract

between caller and callee. The compiler is unable to enforce any static safety guar-

antees when calling these functions, either for the number of arguments, nor their

types. In addition, many of the benchmarks have variadic functions that are called

indirectly, often with their address being taken. Looking at Firefox, a large piece of

software, the numbers are even more staggering with several thousand indirect call

sites that target variadic functions and 241 different variadic prototypes.

76

static sEnumBuilder _EtherMessageKind("EtherMessageKind",

JAM_SIGNAL, "JAM_SIGNAL",

ETH_FRAME, "ETH_FRAME",

ETH_PAUSE, "ETH_PAUSE",

ETHCTRL_DATA, "ETHCTRL_DATA",

ETHCTRL_REGISTER_DSAP, "ETHCTRL_REGISTER_DSAP",

ETHCTRL_DEREGISTER_DSAP, "ETHCTRL_DEREGISTER_DSAP",

ETHCTRL_SENDPAUSE, "ETHCTRL_SENDPAUSE",

0, NULL

);

Listing 3.5 Variadic violation in omnetpp.

The prevalence of variadic functions leaves both a large attack surface for attackers

to either redirect variadic calls to alternate locations (even if defense mechanisms like

CFI are present) or to modify the arguments so that callees misinterpret the supplied

arguments (similar to extended format string attacks).

In addition, the compiler has no insight into these functions and cannot statically

check if the programmer supplied the correct parameters. Our sanitizer identified

three bugs in omnetpp, one of the SPEC CPU2006 benchmarks that implements a

discrete event simulator. The benchmark calls a variadic functions with a mismatched

type, where it expects a char * but receives a NULL, which has type void *. List-

ing 3.5 shows the offending code.

We also identified a bug in SPEC CPU2006’s perlbench. This benchmark passes

the result of a substraction of two character pointers as an argument to a variadic

function. At the call site, this argument is a machine word-sized integer (i.e., 64-

bits integer on our test platform). The callee truncates this argument to a 32-bit

77

integer by calling va arg(list, int). HexVASAN reports this (likely unintended)

truncation as a violation.

3.6.4 Firefox

We evaluate the performance of HexVASAN by instrumenting Firefox (51.0.1)

and using three different browser benchmark suites: Octane, JetStream, and Kraken.

Table 3.3 shows the comparison between the HexVASAN instrumented Firefox and

native Firefox. To reduce variance between individual runs, we averaged fifteen runs

for each benchmark (after one warmup run). For each run we started Firefox, ran

the benchmark, and closed the browser. HexVASAN incurs only 1.08% and 1.01%

overhead for Octane and JetStream respectively and speeds up around 0.01% for

Kraken. These numbers are indistinguishable from measurement noise.

3.6.5 SPEC CPU2006

We measured HexVASAN’s run-time overhead by running the SPEC CPU2006

integer (CINT2006) benchmarks on an Ubuntu 14.04.5 LTS machine with an Intel

Xeon E5-2660 CPU and 64 GiB of RAM. We ran each benchmark program on its

reference inputs and measured the average run-time over three runs. Figure 3.2 shows

the results of these tests. We compiled each benchmark with a vanilla clang/LLVM

3.9.1 compiler and optimization level -O3 to establish a baseline. We then compiled

the benchmarks with our modified clang/LLVM 3.9.1 compiler to generate the Hex-

VASAN results.

The geometric mean overhead in these benchmarks was just 0.45%, indistinguish-

able from measurement noise. The only individual benchmark result that stands out

is that of libquantum. This benchmark program performed 880M variadic function

calls in a run of just 433 seconds.

78

0.9

0.95

1

1.05

1.1

Native HexVASan

Figure 3.2. Run-time overhead of HexVASAN in the SPECint CPU2006
benchmarks, compared to baseline LLVM 3.9.1 performance.

3.7 Related work

HexVASAN can either be used as an always-on runtime monitor to mitigate ex-

ploits or as a sanitizer to detect bugs, sharing similarities with the sanitizers that

exist primarily in the LLVM compiler. Similar to HexVASAN, these sanitizers em-

bed run-time checks into a program by instrumenting potentially dangerous program

instructions.

AddressSanitizer [34] (ASan), instruments memory accesses and allocation sites

to detect spatial memory errors, such as out-of-bounds accesses, as well as temporal

memory errors, such as use-after-free bugs. Undefined Behavior Sanitizer [36] (UB-

San) instruments various types of instructions to detect operations whose semantics

are not strictly defined by the C and C++ standards, e.g., increments that cause signed

integers to overflow, or null-pointer dereferences. Thread Sanitizer [82] (TSAN) in-

struments memory accesses and atomic operations to detect data races, deadlocks,

79

and various misuses of synchronization primitives. Memory Sanitizer [35] (MSAN)

detects uses of uninitialized memory.

CaVer [83] is a sanitizer targeted at verifying correctness of downcasts in C++.

Downcasting converts a base class pointer to a derived class pointer. This operation

may be unsafe as it cannot be statically determined, in general, if the pointed-to

object is of the derived class type. TypeSan [84] is a refinement of CaVer that reduces

overhead and improves the sanitizer coverage.

UniSan [85] sanitizes information leaks from the kernel. It ensures that data is

initialized before leaving the kernel, preventing reads of uninitialized memory.

All of these sanitizers are highly effective at finding specific types of bugs, but,

unlike HexVASAN, they do not address misuses of variadic functions. The aforemen-

tioned sanitizers also differ from HexVASAN in that they typically incur significant

run-time and memory overhead.

Different control-flow hijacking mitigations offer partial protection against vari-

adic function attacks by preventing adversaries from calling variadic functions through

control-flow edges that do not appear in legitimate executions of the program. Among

these mitigations, we find Code Pointer Integrity (CPI) [86], a mitigation that pre-

vents attackers from overwriting code pointers in the program, and various imple-

mentations of Control-Flow Integrity (CFI), a technique that does not prevent code

pointer overwrites, but rather verifies the integrity of control-flow transfers in the

program [6,23,26,79,80,87–108].

Control-flow hijacking mitigations cannot prevent attackers from overwriting vari-

adic arguments directly. At best, they can prevent variadic functions from being called

through control-flow edges that do not appear in legitimate executions of the program.

We therefore argue that HexVASAN and these mitigations are orthogonal. Moreover,

prior research has shown that many of the aforementioned implementations fail to

fully prevent control-flow hijacking as they are too imprecise [9,58,109,110], too lim-

ited in scope [59,111], vulnerable to information leakage attacks [112], or vulnerable to

spraying attacks [113,114]. We further showed in Section 3.6.1 that variadic functions

80

exacerbate CFI’s imprecision problems, allowing additional leeway for adversaries to

attack variadic functions.

Defenses that protect against direct overwrites or misuse of variadic arguments

have thus far only focused on format string attacks, which are a subset of the possible

attacks on variadic functions. LibSafe detects potentially dangerous calls to known

format string functions such as printf and sprintf [115]. A call is considered dan-

gerous if a %n specifier is used to overwrite the frame pointer or return address, or

if the argument list for the printf function is not contained within a single stack

frame. FormatGuard [116] instruments calls to printf and checks if the number of

arguments passed to printf matches the number of format specifiers used in the

format string.

Shankar et al. proposed to use static taint analysis to detect calls to format string

functions where the format string originates from an untrustworthy source [117].

This approach was later refined by Chen and Wagner [118] and used to analyze

thousands of packages in the Debian 3.1 Linux distribution. TaintCheck [119] also

detects untrustworthy format strings, but relies on dynamic taint analysis to do so.

None of these solutions provide comprehensive protection against variadic argu-

ment overwrites or misuse.

3.8 Conclusions

Variadic functions introduce an implicitly defined contract between the caller and

callee. When the programmer fails to enforce this contract correctly, the violation

leads to runtime crashes or opens up a vulnerability to an attacker. Current tools,

including static type checkers and CFI implementations, do not find variadic function

type errors or prevent attackers from exploiting calls to variadic functions. Unfortu-

nately, variadic functions are prevalent. Programs such as SPEC CPU2006, Firefox,

Apache, CPython, nginx, wireshark and libraries frequently leverage variadic func-

tions to offer flexibility and abundantly call these functions.

81

We have designed a sanitizer, HexVASAN, that addresses this attack vector. Hex-

VASAN is a light weight runtime monitor that detects bugs in variadic functions and

prevents the bugs from being exploited. It imposes negligible overhead (0.45%) on

the SPEC CPU2006 benchmarks and is effective at detecting type violations when

calling variadic arguments. This part of the thesis has been published in the 26th

USENIX Security Symposium, 2017 [120].

82

Call sites Func. Ratio

Program Tot. Ind. Tot. A.T. Proto Tot. A.T.

Firefox 30225 1664 421 18 241 1.75 0.07

Chromium 83792 1728 794 44 396 2.01 0.11

FreeBSD 189908 7508 1368 197 367 3.73 0.53

Apache 7121 0 94 29 41 2.29 0.71

CPython 4183 0 382 0 38 10.05 0.00

nginx 1085 0 26 0 14 1.86 0.00

OpenSSL 4072 1 23 0 15 1.53 0.00

Wireshark 37717 0 469 1 110 4.26 0.01

perlbench 1460 1 60 2 18 3.33 0.11

bzip2 85 0 3 0 3 1.00 0.00

gcc 3615 55 125 0 31 4.03 0.00

mcf 29 0 3 0 3 1.00 0.00

milc 424 0 21 0 8 2.63 0.00

namd 485 0 24 2 8 3.00 0.25

gobmk 2911 0 35 0 8 4.38 0.00

soplex 6 0 2 1 2 1.00 0.50

povray 1042 40 45 10 16 2.81 0.63

hmmer 671 7 9 1 5 1.80 0.20

sjeng 253 0 4 0 3 1.33 0.00

libquantum 74 0 91 0 7 13.00 0.00

h264ref 432 0 85 5 13 6.54 0.38

lbm 11 0 3 0 2 1.50 0.00

omnetpp 340 0 48 23 19 2.53 1.21

astar 42 0 4 1 4 1.00 0.25

sphinx3 731 0 20 0 5 4.00 0.00

xalancbmk 19 0 4 2 4 1.00 0.50

Table 3.2.
Statistics of Variadic Functions for Different Benchmarks. The second
and third columns are variadic call sites broken into “Tot.” (total) and
“Ind.” (indirect). The third and fourth columns are for variadic functions.
“A.T.” stands for address taken. “Proto.” is the number of distinct vari-
adic function prototypes. “Ratio” indicates the function-per-prototypes
ratio for variadic functions.

83

Benchmark Native HexVASAN

Octane

average 31241 80 30907 73

stddev 2449 82 2442 82

overhead -1 08%

JetStream

average 200 76 198 75

stddev 0 66 1 68

overhead -1 01%

Kraken

average [ms] 832 48 832 41

stddev [ms] 7 41 12 71

overhead 0 01%

Table 3.3.
Performance overhead on Firefox benchmarks. For Octane and JetStream
higher is better, while for Kraken lower is better.

84

4 ARTEMIS

4.1 Motivation

Cryptography is instrumental in securing our electronic communications and sys-

tems; yet time and time again they are mis-used, mis-implemented, or created in

an ad-hoc manner. Additionally, while cryptography plays a fundamental role in

securing systems, it is unfortunately also often used for malicious purposes. It has

been seen in practice that cryptographic functions are extensively used from hid-

ing payloads in malware to bypassing security protocols. In both situations (misuse

and malicious use) many of these instances occur in closed-source code or binary ap-

plications, which inherently present a challenge for independent audit and analysis.

Therefore, detecting the presence of cryptographic functions in a binary application

can be both a pragmatic indicator of malicious behaviors as well as a point of interest

to understand the effectiveness of dynamic analysis.

Motivated by these insights, as well as others, a variety of work has been per-

formed across industry and academia to develop techniques and build tools that can

identify different cryptographic primitives in binary applications. In this chapter, we

provide a systematic study and comparison of these approaches by developing a stan-

dard framework with a focus on their effectiveness in identification in many different

scenarios. In particular, we build a taxonomy of the current available detection crite-

ria and highlight the strengths and weaknesses of each, as well as provide a mapping

between detection criteria and specific types or classes of cryptographic algorithms.

Additionally, we highlight major gaps in existing work, especially as they relate to

modern cryptographic primitives and real-world use cases, and discuss a variety of

avenues for the future.

85

4.2 Introduction

Cryptographic functions play a key role in securing communications and are im-

perative in modern systems and applications. From data integrity to authentication

and online banking to messaging friends, cryptography is everywhere. Well-known

cryptographic libraries, such as OpenSSL [121], are widely used not only to generate

TLS certificates and validate certificate information, but also to implement cryptog-

raphy in general purpose applications. Despite their universal benign usage, crypto-

graphic functions are also used in malware and to evade security protocols. In recent

ransomware attacks [122, 123], cryptographic functions have been used to encrypt a

victim’s information and later asked to pay ransom in exchange of recovering their

files and information.

On one hand, the usage of cryptographic functions makes it easier to carry out

secure operations, and on the other hand, its malicious usage by attackers makes it

harder for cryptography and security experts to perform forensic and reverse engi-

neering. Hence, the ability to automatically identify or detect the presence of crypto-

graphic functions in binary applications can help these experts in a number of ways.

First, it can assist in binary analysis to give a better depiction of how the functions

work. Second, by determining the type of cryptographic function in a binary can help

to pinpoint the existence of a malicious payload [124]. Finally, oftentimes malware

and ransomware uses = similar cryptographic functions with some minor changes. For

example, there are different versions of the TeslaCrypt ransomware [125]. Identify-

ing one ransomware via an automatic detection mechanism can help to identify other

versions and thus save time and resources to could be better devoted to implementing

effective prevention mechanisms.

There are many dimensions of identifying cryptography in binaries, e.g., finding

keys (based on different encoding formats), identifying copied functions, or identifying

reimplementations of existing cryptographic algorithms. Each aspect has its own set

of challenges. Finding keys in an obfuscated binary can be challenging due to different

86

Figure 4.1. Evolution of the research techniques to identify cryptographic
functions over time

encodings and formats. Copied functions can be identified based on function behav-

iors or I/O mappings. Finally, it is extremely difficult to identify implementations of

certain cryptographic algorithms, since there is no gold standard for implementation

and even simple obfuscations can prohibit the identification of an algorithm. This

study primarily focuses on identifying cryptographic algorithms, the key challenge

when analyzing unknown code, and Section 4.6 discusses more of the challenges of

identifying cryptographic algorithms.

However, cryptographic function identification has its own sets of challenges. Bi-

naries can be obfuscated in a variety of ways, such as control-flow flattening, data-

splitting, data-aggregation, inclusion of bogus control-flow. In addition, simple cryp-

tographic algorithms can be implemented in different ways, hence detection mech-

anism that may work on one variation, may fail on its complicated/ simplified im-

plementations. Malware authors also generates packed binary to evade any possible

detection (to make it harder for detection).

Cryptographic functions tend to have a lot of mathematical computations, nested

loop operations, exclusive input-output mapping which are distinct from non-cryptographic

functions. Researchers use these features as the medium of identification. Figure 4.1

shows the timeline of the research of cryptographic function identification approaches.

87

Harvey et al. [126] first utilized magic constants to identify cryptographic primitives

in binary in 2001 as hash functions tend to use one or more specific constant values.

Later works focused on signature based detection mechanisms. However, due to the

limitations of signature based approaches, subsequent work placed a greater emphasis

on heuristic based detection such as identification of particular basic blocks, instruc-

tion patterns etc. With the popularization of modern machine learning algorithms,

newer works utilized deep learning and AI in general to extract cryptographic features

from a binary. We discuss these various approaches in depth in Section 4.4.

The primary contributions of Artemis are:

• We present a systematic study of cryptographic function identification ap-

proaches.

• We create a standardized suite of performance metrics and benchmarks to evalu-

ate the effectiveness of current detection mechanisms and analyze existing tools

based on this suite.

• Based off of this analysis, we discuss the research gaps in this domain and

propose directions for future work.

• We present a comprehensive framework to understand the scalability and impact

of dynamic analysis in detection mechanisms.

4.3 Research gap in identification of cryptographic algorithms

Identification approaches can differ substantially based on the features of the

algorithm. Hence, it is crucial to understand the key differences and major features

of the algorithms. First, we present the classification of cryptographic algorithms.

Based on the usage of keys [127], cryptographic algorithms can be broadly divided

into three categories: i. Symmetric key, ii. Asymmetric key, and iii. Unkeyed (Hash-

ing). Symmetric key algorithms use a secret key for both encryption and decryption.

Asymmetric key cryptography also known as public-key algorithms use paired keys

88

usually consisting of a public and a private key. Generally, the public key is known to

all and the private key is kept secret by the owner. Unlike the first two types, hashing

refers to encryption without using any key. 4.3 shows the high level taxonomy of the

algorithms and 4.2(b) shows the number of different categories of algorithms that

have been used in cryptographic function identification approaches. We can see that,

most of the detection approaches are primarily focused on substitution-permutation

network based algorithms such as AES. There are some works on Feistel network

based algorithm like DES and factorization based approaches like RSA. However, we

can see that there has not been any work done on elliptic curve cryptography as well

as discrete log based cryptographic algorithms despite their wide usage in modern

systems and applications. Hence, we believe it is important that future researches in

this domain consider such algorithms and come up with newer detection mechanisms.

4.4 Cryptographic Features

Cryptographic functions have their own set of characteristics, and researchers have

used these characteristics in identifying such functions. Some of these features only

pertain to certain cryptographic algorithms and cannot work in identifying other

cases. In the following subsections, we discuss some of the popular cryptographic

features used for identification purposes.

4.4.1 Magic Constants

In this approach, a tool or individual searches for algorithm-specific magic con-

stants. For example, the magic constants for TEA algorithms usually are 2654435769

or 0x9E3779B9. Existence of these constants in a binary may indicate the presence

of the TEA algorithm.

89

Cryptographic Ciphers

Symmetric Asymmetric Unkeyed

Iterated block ciphers Substitution permutation
networks

Lai–Massey ciphersFeistel ciphers

Block ciphers Stream ciphers

Synchronous ciphers Self
synchronous ciphers

Factorization cryptosystem Elliptic curve cryptosystem Discrete log cryptosystem

(a) Taxonomy of Cryptographic Algorithms

Cryptographic Algorithms

N
um

be
r o

f t
oo

ls
 th

at
 w

or
ke

d
on

 d
et

ec
tin

g
th

e
al

go
rit

hm

0

2

4

6

8

10

12

Self
-

Syn
ch

ron
ou

s

Ite
rat

ed
 bl

oc
k

SPN
Feis

tel

La
i–M

as
se

y

Fac
tor

iza
tio

n
ECC

Disc
ret

e L
og

Unk
ey

ed

(b) Number of specific algorithms used in different cryptographic function identification approaches

4.4.2 Presence of Loops

Most cryptographic functions use some form of loops for key generation or for

encryption/decryption purposes. For example, the factorization-based algorithm RSA

has loops to perform modular exponentiation.

90

4.4.3 Changes in Entropy

The decryption procedure in cryptographic functions tends to reduce information

entropy. Researchers have used taint analysis to check if a memory buffer is decrypted

by measuring its entropy.

4.4.4 I/O Mapping

Cryptographic functions, such as decryption, have a one-to-one mapping from

their input to output, which means given a key and the plaintext, one would always

get the same output. However, these approaches rely on the accurate extraction of

key and input from the memory. Any wrong extraction can defeat the purpose of

unique mapping.

4.4.5 Data-Flow Isomorphism

A data-Flow graph (DFG) [128] is a graph that shows data dependencies between

different operations. In this approach, a DFG is being generated from the correspond-

ing assembly code, and later on subgraphs in the DFG are checked to see whether

they are isomorphic to the graph signature of a particular cryptographic algorithm.

It was first proposed by Lestringant et al. [129] and primarily used to identify sym-

metric key based algorithms. However, this approach is limited in case of conditional

statements which are more prominent in asymmetric algorithms. Secondly, DFG can

vary depending on the data obfuscations techniques such as data-splitting.

4.4.6 Instruction Sequence

Cryptographic algorithms execute sequences of instructions for encryption and

decryption purposes. Detection tools take advantage of these sequences to generate a

static signature of the algorithm. However, any form of control-flow obfuscation can

change the execution of instruction sequences.

91

Overall, research on cryptographic function identification is sliding from static

based features to more dynamic oriented features. Looking for particular sequences

can be easily defeated by various form of obfuscations and compiler level optimiza-

tions. However, dynamic feature based approaches like flow analysis are more resilient

to such techniques.

4.5 Categorization of detection approaches

We have broadly categorized the detection mechanisms into three categories: i)

Dynamic, ii) Static, and iii) Machine learning based approaches.

4.5.1 Static Approaches

Static approaches rely on static signatures, for e.g., ’magic’ constants, instruction

sequences as well as different code structures such as S-box to identify cryptographic

algorithms. Harvey et al. [126] first proposed [130] identification of cryptographic

algorithms in binary files in a research report. The report focused on finding al-

gorithms based on their constant characteristics. By taking advangtage of feature

matching, subsequent works [131–133] primarily focused on protocol reverse engi-

neering. Lestringant et al [129] used data-flow iso-morphism to find symmetric key

algorithms.

Commonly used tools such as Draft Crypto Analyzer (DRACA) [134], Kanal [135],

Kerckhoffs [136], Hash & Crypto Detector (HCD) [137], Signsrch [138], Crypto Searcher [139],

Findcrypt [140] and IDAscope, utilize static signature patterns of different crypto-

graphic functions. Static based approaches do not have any performance overhead.

However, these detection mechanisms can be easily bypassed using simple obfuscation

techniques.

92

4.5.2 Dynamic Approaches

Dynamic approaches [141–143] primarily focus on identifying cryptographic prim-

itives from execution traces. Lutz et al. [144] first applied dynamic analysis in execu-

tion traces to identify cryptographic algorithms based on three indicators: i) presence

of loops, ii) changes in entropy, and iii) high ratio of bitwise arithmetic instructions.

Based on the data avalanche effect, CipherXRay [143] pinpoints the boundary of cryp-

tographic operations and recovers transient cryptographic secrets. However, this ap-

proach does not work in case of stream ciphers as they don’t show any data avalanche

effect.

Gröbert et al. [145] proposed heuristic based approaches on both generic character-

istics of cryptographic code and on signatures for specific instances of cryptographic

algorithms by mapping input-output (I/O) relations. Aligot [142] further extends this

idea of I/O mapping in cryptographic function identification. It retrieves I/O param-

eters in an implementation-independent fashion, and compares them with known

cryptographic functions as well as performs an inter-loop data flow analysis. Crypto-

Hunt [141] uses bit-precise symbolic loop mapping to identify cryptographic functions

and applies guided fuzzing to make the solution scalable. Dynamic approaches, in

general, perform better than static approaches for obfuscated binaries, but suffer from

performance overhead.

4.5.3 Machine Learning Based Approaches

With the advent of machine learning techniques, several researches have used

such techniques in identification of cryptographic algorithms. Falke [146] proposed

a neural network based approach by modeling classifiers for arbitrary cryptographic

algorithms from sample files and then automatically extracting features to train the

neural network. It offered a high detection rate in combination with a low false posi-

tive rate. Benedetti et al. [147] used ‘grap’ tool to detect cryptographic algorithms by

creating patterns for AES and ChaCha20. Jia et al. [130] proposed a NLP based ap-

93

proach which first extracts the semantic information of assembly instructions. It then

transfers them into 100-dimensional vectors and later uses K-Max-CNN-Attention to

classify cryptographic functions. Hill et al. [148] proposed a Dynamic Convolutional

Neural Network based learning system CryptoKnight which learns from new crypto-

graphic execution patterns to classify unknown software.

4.6 Challenges

Identifying cryptographic functions has its unique set of challenges. Here, we

discuss the key challenges.

4.6.1 Obfuscation

The initial purpose of obfuscation was to protect software intellectual property [149]

from malicious reverse engineering attempts. However, malware authors adopted ob-

fuscation techniques as a way to avoid detection. Various types of obfuscation tech-

niques have been implemented to thwart any form of detection. The obfuscation

techniques can be primarily categorized as follows:

• Control-flow obfuscation

• Data obfuscation

• Layout obfuscation

To hinder, any form of CFG based detection, malware authors introduce various

techniques such as inclusion of bogus control-flow, control-flow flattening [150], and

opaque predicate [151]. Similar to control flow obfuscation, data obfuscation tech-

niques, such as data aggregation and data splitting, attempt to hinder any detection

approaches based on input/output relationships. Listing 4.2 shows an example of

data obfuscation. Here, the variable var1 used in Listing 4.1 can be split into two

variables var11 and var12 to avoid detection, although both of the programs are

performing the similar operations in the end.

94

int var1 = func1();

int var2 = func2();

while(condition statement) {

int m = var1 << 4;

int n = var2 *5;

}

Listing 4.1 Normal program

int var1 = func1();

int var2 = func2();

short var11 = var1 & 000fffff;

short var12 = var1 >> 20 & 00000fff;

while(condition statement) {

int new_var = (int) var12 << 20 | var11;

m = new_var << 4;

n = var2 * 5;

}

Listing 4.2 Data splitting

95

For layout obfuscation, malware authors perform address obfuscation and debug

information obfuscation, as well as address layout/memory layout randomization.

4.6.2 Implementation Variation

One cryptographic algorithm can be implemented in a number of ways. For ex-

ample, in malware Storm Worm and Silent Banker, researchers discovered a buggy

implementation of TEA algorithm [142]. Hence, even if a detection approach can de-

tect an ideal implementation of cryptographic algorithms, there is no guarantee that

the approach can also detect all the implementation variations of the same algorithm.

4.6.3 Differences in Cryptographic Functions

There are fundamental differences in different cryptographic algorithms. Different

algorithms use different set of features for identification purposes. For example, the

data avalanche effect [143] which is based on the fact that an insignificant change in

the input parameters can make significant differences in the output, works for block

ciphers. In case of stream ciphers, there are no such observations like data-avalanche.

4.7 Performance Metric

We propose a performance metric to conduct a fair comparison of all the available

tools. 4.7 shows the score for each of the categories. We have considered a compre-

hensive set of obfuscation and optimization flags to mimic real world scenarios. For

each true positive and true negative identification, we assign a score of 1. To calculate

the final score, we take the average of true positive and true negative scores. Our

analysis focuses on precision for each of this tool along three dimensions (symmetric,

asymmetric and unkeyed cryptography). For example, if tool A can identify MD5

with all 6 optimization flags both for true positive and true negative cases, but fail

to detect with any form of obfuscation, then based on our metric, we give tool A

96

(c) Evaluation of DRACA based on performance metrics

(d) Evaluation of Signsrch based on performance metrics

97

Metric Score

Failed Identification 0

Identification with no optimization/obfuscation 1

Identification with optimization flag -O0 1

Identification with optimization flag -O1 1

Identification with optimization flag -O2 1

Identification with optimization flag -O3 1

Identification with optimization flag –Os 1

Identification with optimization flag: -Ofast 1

Identification with instruction substitution obfuscation: -obs sub 1

Identification with control-flow flattening: -obs fla 1

Identification with bogus control-flow: -obs bcf 1

Identification with combination of obfuscation: -obs sub, obs fla, obs bcf 1

Identification with combination of obfuscation and optimization: -obs sub, obs fla, obs bcf, -O3 1

Table 4.1.
Score for each of the evaluation criterion based on different optimization
and obfuscation flags.

score of 7 in unkeyed category. We believe this metric gives us better insight on the

effectiveness of detection approaches. 4.2(c) and 4.2(d) shows the performance of the

two tools namely DRACA and Signsrch based on the above mentioned metrics. We

plan to work on other tools in future.

4.8 Benchmarks

We believe that to do a fair evaluation in any domain requires a standard bench-

mark. We propose a benchmark that will help us understand the scalability and

effectiveness of a detection approach. We have three categories in our benchamrk:

i) microbenchmarks, ii) libraries, and iii) large project. We believe that to under-

stand the scalability of a mechanism, it it crucial to determine that the tool performs

well irrespective of the code size and its applications. Our microbenchmarks cate-

98

gory contains small programs on file manipulation, networking, I/O heavy program,

math heavy program and golden implementation of well-known cryptographic algo-

rithms. We have chosen small programs such as I/O heavy and math-heavy programs

since they have the similar instruction sets or behavior patterns like cryptographic

functions. For libraries, we have chosen a set of total eleven cryptographic libraries

as well as encoding and compression libraries that have similar functionalities like

cryptographic functions.

• openssl

• libgcrypt

• libsodium

• mbedTLS

• gnuTLS

• bzip2

• zlib

• ffmpeg

• libgsm

• libjpeg

• libpng

For large scale project, we have chosen signal given its large code base and wide

spread usage. Table 4.2 shows the analysis of two tools DRACA and signsrch across

all the three categories of the benchmarks as well as with different compilation and

obfuscation flags.

99

T
ab

le
4.

2.
A

n
al

y
si

s
of

th
e

to
ol

s
ac

ro
ss

th
e

th
re

e
ca

te
go

ri
es

of
th

e
b

en
ch

am
ar

k

T
o
ol

s
M

ic
ro

-b
en

ch
m

ar
k
s

L
ib

ra
ri

es
L

ar
ge

S
ca

le
P

ro
je

ct

F
il

e
I/

O
M

at
h

s
N

et
w

or
k

op
en

ss
l

li
b

gc
ry

p
t

li
b

so
d

iu
m

m
b

ed
T

L
S

gn
u

T
L

S
b

zi
p

2
zl

ib
ff

m
p

eg
li

b
gs

m
li

b
jp

eg
li

b
p

n
g

si
gn

al

D
R

A
C

A
N

on
e

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7

-O
0

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

-O
1

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

-O
2

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

-O
3

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

-O
s

X
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

-O
fa

st
X

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7

ob
s

su
b

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7

ob
s

fl
a

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

ob
s

b
cf

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-o
b

s
su

b
,

ob
s

fl
a,

ob
s

b
cf

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-o
b

s
su

b
,

ob
s

fl
a,

ob
s

b
cf

,
-O

3
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

7

S
ig

n
sr

ch
N

on
e

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7

-O
0

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-O
1

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-O
2

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-O
3

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-O
s

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-O
fa

st
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

7

ob
s

su
b

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7

ob
s

fl
a

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

ob
s

b
cf

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-o
b

s
su

b
,

ob
s

fl
a,

ob
s

b
cf

X
X

X
X

7
7

7
7

7
7

7
7

7
7

7
7

-o
b

s
su

b
,

ob
s

fl
a,

ob
s

b
cf

,
-O

3
X

X
X

X
7

7
7

7
7

7
7

7
7

7
7

7

100

4.9 Case study: Openssl

We have analyzed the performance of the tools on openssl. We have observed that

static tools such as Draca, Findcrypt2, Signsrch, CryptoSearcher, Hash & Crypto de-

tector can detect only a handful of algorithms from the pool of RSA, AES, DES,

TEA and RC4. None of the tools succeed to truly identify all the algorithms. This

scenario becomes even worse on the presence of obfuscation. However, dynamic based

approaches such as Aligot are able to identify these algorithms. This helps us to draw

the conclusion that dynamic analysis based approaches can perform better identifi-

cation than static ones.

4.10 Conclusion and Future Work

Artemis presents a study on cryptographic function detection approaches. We

have presented results for some of the existing tools. In the future we plan to provide

results for all available tools. The list of such tools are:

• DRACA

• IDA Scope

• Hash Crypto Detector

• Signsrch

• SnD Crypto Scanner

• Findcrypt2

• KANAL

• Kerckhoff

• CryptoHunt

• CryptoKnight

101

• Aligot

• Where’s the Crypto

Once we reproduce the results of all selected tools, we hope to have a more com-

plete picture of their detection capabilities and potential failure classes. We are

particularly interested in biases towards specific algorithms or classes of algorithms.

From our initial result, we strongly believe the benchmark will establish a standard

for future evaluation of tools. The performance metrics will set a fair comparison

ground between different tools. By doing so, Artemis creates an avenue for future

research in this domain.

102

5 SUMMARY

State-of-the-art CFI approaches are over-approximate due to the static nature of the

analyses and leave several areas unprotected such as variadic functions and code point-

ers. We strengthen CFI along these two unprotected dimensions by providing tighter

enforcement mechanism using dynamic analysis and then analyze its applications on

real-world programs.

We have proposed three novel techniques in this report, namely Ancile, Hex-

VASAN, and FitJit, as well as we provide a systematic study (Artemis) on the

effectiveness of dynamic analysis in real world programs. Among the three mech-

anisms, we have implemented and evaluated Ancile and HexVASAN to secure

code-pointers and variadic functions. We have investigated real-world programs in

Artemis and as a next step, we plan to extend CFI across language boundaries by

implementing FitJit.

Ancile To overcome over-approximation of static CFI policies, we have developed

Ancile which enforces strict target sets on indirect control-flow transfers. It uses

seed demonstrated fuzzing for target discovery and can reduce the target sets up to

97.4%. It is also evident from our case studies that Ancile makes sensitive functions

more difficult for attackers to reach, essentially raising the bar for CFH attacks.

HexVASAN To defend against CFH attacks via variadic functions, we have im-

plemented HexVASAN, a light-weight runtime monitor to detect bugs in variadic

functions with a negligible performance overhead (0.45%).

Artemis To show the applications of dynamic analysis, we present Artemis. We

propose performance metrics to compare the efficacy of different tools in regarding

103

different optimization, and obfuscation techniques. We also developed a framework

to understand the scalability and the application of each tool.

FitJit To secure language boundaries against CFH attacks, we propose FitJit to

enforce type and control-flow integrity in JIT compiler and jit-compiled code. In the

future, we plan to work on the implementation of FitJit according to the design

policy proposed in Section 2.10.

Outlook Our techniques show that the potential of dynamic analysis applied to

source code and binary code. We leverage dynamic analysis to extract precise in-

formation of the underlying system, showing that these analyses play a paramount

role in securing C/C++ against different attack vectors. Additionally, we show that

dynamic analysis exhibits great promise in other domains of binary analysis, such as

helping to identify cryptographic code in binaries.

REFERENCES

104

REFERENCES

[1] PaX Team, “Pax address space layout randomization (aslr),” 2003.

[2] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks.” in USENIX Security Symposium, 1998.

[3] PaX Team, “PaX non-executable pages design & implementation,” http://pax.
grsecurity.net/docs/noexec.txt, 2004.

[4] A. Sadeghi, S. Niksefat, and M. Rostamipour, “Pure-call oriented programming
(pcop): chaining the gadgets using call instructions,” Journal of Computer
Virology and Hacking Techniques, pp. 1–18, 2017.

[5] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86),” in Proceedings of the 14th ACM conference
on Computer and communications security. ACM, 2007, pp. 552–561.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,”
in Proceedings of the 12th ACM conference on Computer and communications
security. ACM, 2005, pp. 340–353.

[7] “Linux in 2020: 27.8 million lines of code in the ker-
nel, 1.3 million in systemd,” https://www.linux.com/news/
linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/,
Online; accssed 13-Oct-2020.

[8] “Linux kernel,” https://en.wikipedia.org/wiki/Linux kernel, Online; accssed
13-Oct-2020.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow
bending: On the effectiveness of control-flow integrity.” in USENIX Security
Symposium, 2015, pp. 161–176.

[10] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-
oriented programming: On the expressiveness of non-control data attacks,” in
Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 969–
986.

[11] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented pro-
gramming: Automating data-only attacks,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2018,
pp. 1868–1882.

[12] “Control flow integrity design documentation,” https://clang.llvm.org/docs/
ControlFlowIntegrityDesign.html.

http://pax.grsecurity.net/docs/noexec.txt
http://pax.grsecurity.net/docs/noexec.txt
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://en.wikipedia.org/wiki/Linux_kernel
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

105

[13] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “{RAZOR}:
A framework for post-deployment software debloating,” in 28th {USENIX} Se-
curity Symposium ({USENIX} Security 19), 2019, pp. 1733–1750.

[14] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program debloating
via reinforcement learning,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2018, pp. 380–394.

[15] A. Quach, A. Prakash, and L. K. Yan, “Debloating software through piece-wise
compilation and loading,” arXiv preprint arXiv:1802.00759, 2018.

[16] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel, “Cimplifier:
automatically debloating containers,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp. 476–486.

[17] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portokalidis,
“Nibbler: debloating binary shared libraries,” in Proceedings of the 35th Annual
Computer Security Applications Conference, 2019, pp. 70–83.

[18] M. D. Brown and S. Pande, “Is less really more? towards better metrics for
measuring security improvements realized through software debloating,” in 12th
{USENIX} Workshop on Cyber Security Experimentation and Test ({CSET}
19), 2019.

[19] D. Kim, W. N. Sumner, X. Zhang, D. Xu, and H. Agrawal, “Reuse-oriented
reverse engineering of functional components from x86 binaries,” in Proceedings
of the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 1128–1139. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568296

[20] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu, “Reddroid: Android appli-
cation redundancy customization based on static analysis,” in Proceedings of
the 29th IEEE International Symposium on Software Reliability Engineering
(ISSRE’18), 2018.

[21] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz, “Microgad-
gets: Size does matter in turing-complete return-oriented programming,” in
WOOT, 2012.

[22] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,” ACM
Computing Surveys(CSUR), vol. 50, no. 1, p. 16, 2017.

[23] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano,
and G. Pike, “Enforcing forward-edge control-flow integrity in gcc & llvm.” in
USENIX Security Symposium, 2014, pp. 941–955.

[24] R. Gawlik and T. Holz, “Towards automated integrity protection of c++ vir-
tual function tables in binary programs,” in Proceedings of the 30th Annual
Computer Security Applications Conference. ACM, 2014, pp. 396–405.

[25] X. Fan, Y. Sui, X. Liao, and J. Xue, “Boosting the precision of virtual call
integrity protection with partial pointer analysis for c++,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2017.

http://doi.acm.org/10.1145/2568225.2568296

106

[26] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 914–926.

[27] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska,
H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 927–940.

[28] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient protec-
tion of path-sensitive control security,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 131–148.

[29] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and
W. Lee, “Enforcing unique code target property for control-flow integrity,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2018, pp. 1470–1486.

[30] “Fuzzing,” https://www.owasp.org/index.php/Fuzzing.

[31] “american fuzzy lop,” http://lcamtuf.coredump.cx/afl/.

[32] “honggfuzz,” https://github.com/google/honggfuzz, Online; accssed 11-Oct-
2020.

[33] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” arXiv preprint arXiv:1806.04355, 2018.

[34] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker.” in USENIX Annual Technical Conference, 2012,
pp. 309–318.

[35] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector of uninitialized
memory use in c++,” in Proceedings of the 13th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. IEEE Computer
Society, 2015, pp. 46–55.

[36] “Undefinedbehaviorsanitizer,” https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[37] M. Corporation, “A detailed description of the data execution prevention (dep)
feature in windows xp service pack 2, windows xp tablet pc edition 2005, and
windows server 2003,” https://support.microsoft.com/en-us/kb/875352, 2013.

[38] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks.” in SEC ’98, 1998.

[39] “New memory corruption attacks:why can’t we have nice things?” http://
nebelwelt.net/publications/files/1532c3-presentation.pdf.

[40] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and automatic
program generation. Peter Sestoft, 1993.

https://www.owasp.org/index.php/Fuzzing
http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://support.microsoft.com/en-us/kb/875352
http://nebelwelt.net/publications/files/1532c3-presentation.pdf
http://nebelwelt.net/publications/files/1532c3-presentation.pdf

107

[41] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471,
1994.

[42] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program trans-
formation,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 697–710.

[43] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer:
Application-aware evolutionary fuzzing,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[44] M. Ghaffarinia and K. W. Hamlen, “Binary control-flow trimming,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1009–1022.

[45] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow stacks,”
SP’19, 2019.

[46] “Addresssanitizer,” https://github.com/google/sanitizers/wiki/
AddressSanitizer.

[47] “libpng,” http://www.libpng.org/pub/png/libpng.html.

[48] “libtiff,” http://www.libtiff.org/.

[49] G. Android, “Kernel control flow integrity,” https://source.android.com/
devices/tech/debug/kcfi, 2018.

[50] G. Chromium, “Chromium: Control flow integrity,” https://www.chromium.
org/developers/testing/control-flow-integrity, 2017.

[51] “Control-flow enforcement technology,” https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-enforcement-technology-preview.
pdf, Online; accssed 11-Oct-2020.

[52] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel
processor trace,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems.
ACM, 2017, pp. 585–598.

[53] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: application spe-
cialization for code debloating,” in Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. ACM, 2018, pp.
329–339.

[54] N. Redini, R. Wang, A. Machiry, Y. Shoshitaishvili, G. Vigna, and C. Kruegel,
“B in t rimmer: Towards static binary debloating through abstract interpre-
tation,” in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2019, pp. 482–501.

[55] Y. Jiang, C. Zhang, D. Wu, and P. Liu, “Feature-based software customization:
Preliminary analysis, formalization, and methods,” in 2016 IEEE 17th Inter-
national Symposium on High Assurance Systems Engineering (HASE). IEEE,
2016, pp. 122–131.

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
http://www.libpng.org/pub/png/libpng.html
http://www.libtiff.org/
https://source.android.com/devices/tech/debug/kcfi
https://source.android.com/devices/tech/debug/kcfi
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

108

[56] Y. Jiang, D. Wu, and P. Liu, “Jred: Program customization and bloatware mit-
igation based on static analysis,” in 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC), vol. 1. IEEE, 2016, pp. 12–21.

[57] “Control flow integrity,” https://clang.llvm.org/docs/ControlFlowIntegrity.
html.

[58] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and
S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-grained
control flow integrity,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015, pp. 901–913.

[59] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing code
reuse attacks in c++ applications,” in Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015, pp. 745–762.

[60] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan, “Find-
ing and preventing bugs in javascript bindings,” in 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 559–578.

[61] “Issue 1053604: Security: Incorrect side effect modelling for jscreate,” https:
//bugs.chromium.org/p/chromium/issues/detail?id=1053604, Online; accssed
13-Oct-2020.

[62] R. Gawlik and T. Holz, “Sok: Make jit-spray great again,” in 12th {USENIX}
Workshop on Offensive Technologies ({WOOT} 18), 2018.

[63] B. Niu and G. Tan, “Rockjit: Securing just-in-time compilation using modular
control-flow integrity,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 1317–1328.

[64] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. L. Schuff, D. Sehr,
C. L. Biffle, and B. Yee, “Language-independent sandboxing of just-in-time
compilation and self-modifying code,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011, pp. 355–366.

[65] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Librando: transparent
code randomization for just-in-time compilers,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 2013, pp.
993–1004.

[66] T. Wei, T. Wang, L. Duan, and J. Luo, “Insert: Protect dynamic code gen-
eration against spraying,” in International Conference on Information Science
and Technology. IEEE, 2011, pp. 323–328.

[67] R. Wu, P. Chen, B. Mao, and L. Xie, “Rim: A method to defend from jit spray-
ing attack,” in 2012 Seventh International Conference on Availability, Reliabil-
ity and Security. IEEE, 2012, pp. 143–148.

[68] P. Chen, R. Wu, and B. Mao, “Jitsafe: a framework against just-in-time spray-
ing attacks,” IET Information Security, vol. 7, no. 4, pp. 283–292, 2013.

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1053604
https://bugs.chromium.org/p/chromium/issues/detail?id=1053604

109

[69] P. Chen, Y. Fang, B. Mao, and L. Xie, “Jitdefender: A defense against jit spray-
ing attacks,” in IFIP International Information Security Conference. Springer,
2011, pp. 142–153.

[70] Linux Programmer’s Manual, “va start (3) - Linux Manual Page.”

[71] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v application binary
interface,” AMD64 Architecture Processor Supplement, Draft v0.99, 2013.

[72] “Cve-smbclient,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-1886.

[73] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617.

[74] “Fortify source,” https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html.

[75] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,” in
ACM Symposium on Operating Systems Principles (SOSP), 2009.

[76] “Information technology – programming languages – c. standard,” International
Organization for Standardization, Geneva, CH, Dec. 2011.

[77] “Information technology – programming languages – c++ standard,” Interna-
tional Organization for Standardization, Geneva, CH, Dec. 2014.

[78] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2004.

[79] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi: cryptographi-
cally enforced control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015, pp. 941–
951.

[80] Microsoft Corporation, “Control Flow Guard (Windows),” https://msdn.
microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx,
2016.

[81] “] exploit database. sudo debug privilege escalation,” https://www.exploit-db.
com/exploits/25134.

[82] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detection
in practice,” in Proceedings of the workshop on binary instrumentation and
applications. ACM, 2009, pp. 62–71.

[83] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stopping an
emerging attack vector,” in USENIX Security Symposium, 2015.

[84] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “Typesan: Practical type confusion detection,” in ACM Conference on
Computer and Communications Security (CCS), 2016.

[85] K. Lu, C. Song, T. Kim, and W. Lee, “Unisan: Proactive kernel memory ini-
tialization to eliminate data leakages,” in ACM Conference on Computer and
Communications Security (CCS), 2016.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://www.exploit-db.com/exploits/25134
https://www.exploit-db.com/exploits/25134

110

[86] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-
pointer integrity.” in OSDI, vol. 14, 2014, p. 00000.

[87] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity,” in IEEE Symposium on Security and Privacy
(S&P), 2010.

[88] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger,
and A.-R. Sadeghi, “MoCFI: A framework to mitigate control-flow attacks
on smartphones,” in Symposium on Network and Distributed System Security
(NDSS), 2012.

[89] B. Niu and G. Tan, “Monitor integrity protection with space efficiency and
separate compilation,” in ACM Conference on Computer and Communications
Security (CCS), 2013.

[90] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP exploit
mitigation using indirect branch tracing,” in USENIX Security Symposium,
2013.

[91] J. Pewny and T. Holz, “Control-flow restrictor: Compiler-based CFI for iOS,”
in Annual Computer Security Applications Conference (ACSAC), 2013.

[92] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for binary
executables,” in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013, pp. 559–573.

[93] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in USENIX
Security Symposium, 2013, pp. 337–352.

[94] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “ROPecker: A generic
and practical approach for defending against ROP attacks,” in Symposium on
Network and Distributed System Security (NDSS), 2014.

[95] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-flow in-
tegrity for commodity operating system kernels,” in IEEE Symposium on Se-
curity and Privacy (S&P), 2014.

[96] D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Securing C++ virtual
calls from memory corruption attacks,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2014.

[97] R. Gawlik and T. Holz, “Towards Automated Integrity Protection of C++
Virtual Function Tables in Binary Programs,” in Annual Computer Security
Applications Conference (ACSAC), 2014.

[98] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems against
software exploitation,” in Annual Design Automation Conference (DAC), 2014.

[99] B. Niu and G. Tan, “RockJIT: Securing just-in-time compilation using modular
control-flow integrity,” in ACM Conference on Computer and Communications
Security (CCS), 2014.

111

[100] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz, “Opaque
control-flow integrity,” in Symposium on Network and Distributed System Se-
curity (NDSS), 2015.

[101] A. Prakash, X. Hu, and H. Yin, “vfGuard: Strict Protection for Virtual Func-
tion Calls in COTS C++ Binaries,” in Symposium on Network and Distributed
System Security (NDSS), 2015.

[102] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint: Defending
virtual function tables’ integrity,” in Symposium on Network and Distributed
System Security (NDSS), 2015.

[103] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska,
H. Bos, and C. Giuffrida, “PathArmor: Practical ROP protection using context-
sensitive CFI,” in ACM Conference on Computer and Communications Security
(CCS), 2015.

[104] P. Yuan, Q. Zeng, and X. Ding, “Hardware-assisted fine-grained code-reuse at-
tack detection,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2015.

[105] D. Bounov, R. Kici, and S. Lerner, “Protecting C++ dynamic dispatch through
vtable interleaving,” in Symposium on Network and Distributed System Security
(NDSS), 2016.

[106] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow In-
tegrity for Kernel Software,” in IEEE European Symp. on Security and Privacy,
2016.

[107] B. Niu and G. Tan, “Modular control-flow integrity,” in ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), 2014.

[108] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity
through binary hardening,” in Conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA), 2015.

[109] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control:
Overcoming control-flow integrity,” in IEEE Symposium on Security and Pri-
vacy (S&P), 2014.

[110] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection.” in
USENIX Security Symposium, vol. 2014, 2014.

[111] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi,
“Just-in-time code reuse: On the effectiveness of fine-grained address space
layout randomization,” in IEEE Symposium on Security and Privacy (S&P),
2013.

[112] I. Evans, S. Fingeret, J. González, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the point (er):
On the effectiveness of code pointer integrity,” in IEEE Symposium on Security
and Privacy (S&P), 2015.

112

[113] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida, “Poking
holes in information hiding,” in USENIX Security Symposium, 2016.

[114] E. Göktas, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis, C. Giuf-
frida, and H. Bos, “Undermining information hiding (and what to do about it),”
in USENIX Security Symposium, 2016.

[115] T. Tsai and N. Singh, “Libsafe 2.0: Detection of format string vulnerability
exploits,” white paper, Avaya Labs, 2001.

[116] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier, “Formatguard: Automatic protection from printf format string vul-
nerabilities.” in USENIX Security Symposium, 2001.

[117] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string
vulnerabilities with type qualifiers.” in USENIX Security Symposium, 2001.

[118] K. Chen and D. Wagner, “Large-scale analysis of format string vulnerabilities in
debian linux,” in Proceedings of the 2007 workshop on Programming languages
and analysis for security, 2007.

[119] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software,” in Sym-
posium on Network and Distributed System Security (NDSS), 2005.

[120] P. Biswas, A. Di Federico, S. A. Carr, P. Rajasekaran, S. Volckaert, Y. Na,
M. Franz, and M. Payer, “Venerable variadic vulnerabilities vanquished,” in
26th {USENIX} Security Symposium ({USENIX} Security 17), 2017, pp. 186–
198.

[121] “Openssl,” https://www.openssl.org/.

[122] “Wannacry ransomware,” https://en.wikipedia.org/wiki/WannaCry
ransomware attack.

[123] “Petya ransomware,” https://www.proofpoint.com/us/glossary/petya.

[124] W. Yan, Z. Zhang, and N. Ansari, “Revealing packed malware,” ieee seCurity
& PrivaCy, vol. 6, no. 5, pp. 65–69, 2008.

[125] “History and evolution of teslacrypt ransomware virus,” https://www.engadget.
com/2016-04-06-history-and-evolution-of-teslacrypt-ransomware-virus.html.

[126] I. Harvey, “Cipher hunting: How to find cryptographic algorithms in large
binaries,” NCipher Corporation Ltd, pp. 46–51, 2001.

[127] “Summary of cryptographic algorithms - according to
nist,” https://www.cryptomathic.com/news-events/blog/
summary-of-cryptographic-algorithms-according-to-nist.

[128] “Data-flow graph,” http://bears.ece.ucsb.edu/research-info/DP/dfg.html, On-
line; accssed 10-Dec-2020.

https://www.openssl.org/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.proofpoint.com/us/glossary/petya
https://www.engadget.com/2016-04-06-history-and-evolution-of-teslacrypt-ransomware-virus.html
https://www.engadget.com/2016-04-06-history-and-evolution-of-teslacrypt-ransomware-virus.html
https://www.cryptomathic.com/news-events/blog/summary-of-cryptographic-algorithms-according-to-nist
https://www.cryptomathic.com/news-events/blog/summary-of-cryptographic-algorithms-according-to-nist
http://bears.ece.ucsb.edu/research-info/DP/dfg.html

113

[129] P. Lestringant, F. Guihéry, and P.-A. Fouque, “Automated identification of
cryptographic primitives in binary code with data flow graph isomorphism,”
in Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, 2015, pp. 203–214.

[130] L. Jia, A. Zhou, P. Jia, L. Liu, Y. Wang, and L. Liu, “A neural network-based
approach for cryptographic function detection in malware,” IEEE Access, vol. 8,
pp. 23 506–23 521, 2020.

[131] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse
engineering through context-aware monitored execution.” in NDSS, vol. 8, 2008,
pp. 1–15.

[132] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic extraction
of protocol message format using dynamic binary analysis,” in Proceedings of
the 14th ACM conference on Computer and communications security, 2007, pp.
317–329.

[133] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat: Automatic re-
verse engineering of encrypted messages,” in European Symposium on Research
in Computer Security. Springer, 2009, pp. 200–215.

[134] “Draft crypto analyzer,” http://www.literatecode.com/draca.

[135] “Kanal - krypto analyzer for peid,” http://www.dcs.fmph.uniba.sk/zri/6.
prednaska/tools/PEiD/plugins/kanal.htm.

[136] “Kerckhoffs,” https://github.com/felixgr/kerckhoffs.

[137] “Hash & crypto detector (hcd),” https://github.com/felixgr/kerckhoffs/blob/
master/static tools/HCD.rar.

[138] “Signsrch,” http://aluigi.altervista.org/mytoolz/signsrch.zip.

[139] “Crypto searcher,” http://x3chun.reteam.org/.

[140] “Findcrypt2,” http://www.hexblog.com/?p=28.

[141] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in obfuscated
binaries via bit-precise symbolic loop mapping,” in 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 921–937.

[142] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: cryptographic function
identification in obfuscated binary programs,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 169–182.

[143] X. Li, X. Wang, and W. Chang, “Cipherxray: Exposing cryptographic oper-
ations and transient secrets from monitored binary execution,” IEEE transac-
tions on dependable and secure computing, vol. 11, no. 2, pp. 101–114, 2012.

[144] N. Lutz, “Towards revealing attacker’s intent by automatically decrypting net-
work traffic,” Mémoire de maıtrise, ETH Zürich, Switzerland, 2008.

[145] F. Gröbert, C. Willems, and T. Holz, “Automated identification of crypto-
graphic primitives in binary programs,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, pp. 41–60.

http://www.literatecode.com/draca
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
https://github.com/felixgr/kerckhoffs
https://github.com/felixgr/kerckhoffs/blob/master/static_tools/HCD.rar
https://github.com/felixgr/kerckhoffs/blob/master/static_tools/HCD.rar
http://aluigi.altervista.org/mytoolz/signsrch.zip
http://x3chun.reteam.org/
http://www.hexblog.com/?p=28

114

[146] A. Aigner, “Falke-mc: A neural network based approach to locate cryptographic
functions in machine code,” in Proceedings of the 13th International Conference
on Availability, Reliability and Security, 2018, pp. 1–8.

[147] L. Benedetti, A. Thierry, and J. Francq, “Detection of cryptographic algorithms
with grap.” IACR Cryptology ePrint Archive, vol. 2017, p. 1119, 2017.

[148] G. Hill and X. Bellekens, “Cryptoknight: Generating and modelling compiled
cryptographic primitives,” Information, vol. 9, no. 9, p. 231, 2018.

[149] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating trans-
formations,” 1997.

[150] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-based sur-
vivability mechanisms,” in 2001 International Conference on Dependable Sys-
tems and Networks. IEEE, 2001, pp. 193–202.

[151] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, resilient,
and stealthy opaque constructs,” in Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1998, pp. 184–
196.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Motivation
	Thesis Statement
	Contribution

	Ancile
	Introduction
	Background
	Attack Surface Debloating
	Control-Flow Integrity
	Fuzzing
	Sanitization

	Threat Model
	Challenges and Trade-offs
	Ancile Design
	Dynamic CFG Generation
	Debloating Mechanism
	CFI Target Analysis

	Implementation
	Evaluation
	Effectiveness of fuzzing as a debloating tool (RQ1)
	Effectiveness of fuzzing as a CFI tool (RQ2)
	Analyzing the correctness of the specialized binary (RQ3)
	Performance Overhead (RQ4)

	Related Work
	FitJit
	Introduction
	Motivating Example
	Attack Surface
	Related Work

	Proposed Policy
	Conclusion

	HexVASAN
	Introduction
	Background
	Variadic functions
	Variadic functions ABI
	Variadic attack surface
	Format string exploits

	Threat model
	HexVASAN design
	Analysis and Instrumentation
	Runtime support
	Challenges and Discussion

	Implementation
	Evaluation
	Case study: CFI effectiveness
	Exploit Detection
	Prevalence of variadic functions
	Firefox
	SPEC CPU2006

	Related work
	Conclusions

	Artemis
	Motivation
	Introduction
	Research gap in identification of cryptographic algorithms
	Cryptographic Features
	Magic Constants
	Presence of Loops
	Changes in Entropy
	I/O Mapping
	Data-Flow Isomorphism
	Instruction Sequence

	Categorization of detection approaches
	Static Approaches
	Dynamic Approaches
	Machine Learning Based Approaches

	Challenges
	Obfuscation
	Implementation Variation
	Differences in Cryptographic Functions

	Performance Metric
	Benchmarks
	Case study: Openssl
	Conclusion and Future Work

	Summary
	REFERENCES

