
© 2010 SpringSource, A division of VMware. All rights reserved

CONFIDENTIAL

Diagnosing and Fixing Memory Leaks in
Web Applications: Tips from the Front Line
Mark Thomas, Staff Engineer

2CONFIDENTIAL 2CONFIDENTIAL

Introduction

 Mark Thomas

 Involved in Apache Tomcat for 7 years

• Wrote the first memory leak detection and prevention implementation for Tomcat

• Implemented a large proportion of Servlet 3.0, JSP 2.2 & EL 2.2 for Tomcat 7

• Currently the Tomcat 7.0.x release manager

• Created Tomcat’s security pages

• Committer, PMC member

 Apache Software Foundation

• Member

• Part of the infrastructure team

 Staff Engineer at VMware

• Tomcat / httpd consulting and training

• Lead the SpringSource security team

3CONFIDENTIAL 3CONFIDENTIAL

Agenda

H
How it all started

H
How memory leaks occur

D
Debugging a leak – demonstration

R
Root causes of leaks

• Those already fixed

• Future plans

Q
Questions

4CONFIDENTIAL 4CONFIDENTIAL

How it all started

5CONFIDENTIAL 5CONFIDENTIAL

How it all started

 Presenting on Servlet 3.0 etc to an audience like this

 Made an off the cuff remark

• “Permgen errors on reload are not caused by Tomcat bugs, they are caused by
application bugs”

 That generated a lot of discussion

 Spent the rest of the conference debugging memory leaks with
attendees

• Tomcat wasn’t causing the leaks

• Neither were the applications, at least not directly

• Root cause often in JRE code, triggered by 3rd party library

 Wrote some fixes for the specific issues seen

6CONFIDENTIAL 6CONFIDENTIAL

How it all started

 Patterns soon started to emerge

 Realised that Tomcat could provide generic fixes

 Start of what became:
org.apache.catalina.core.JreMemoryLeakPreventionListener

 Then ran some tests with some leaky applications

• Spring sample applications

• Test cases provided by users

• A couple of internal web applications

 Added additional detection and prevention based on these

 The user community has provided additional ideas and feedback

7CONFIDENTIAL 7CONFIDENTIAL

How memory leaks occur

8CONFIDENTIAL 8CONFIDENTIAL

How memory leaks occur: A little theory

 A class is uniquely identified by

• Its name

• The class loader that loaded it

 Hence, you can have a class with the same name loaded multiple
times in a single JVM, each in a different class loader

 Web containers use this for isolating web applications

 Each web application gets its own class loader

 Web application A can use Spring 2.5.6 whilst web application B can
use Spring 3.0.2 without any conflicts

 Other containers, e.g. OSGI, use a similar approach

 Classes are loaded into the Permanent Generation

9CONFIDENTIAL 9CONFIDENTIAL

How memory leaks occur: Reference chains

 An object retains a reference to the class it is an instance of

 A class retains a reference to the class loader that loaded it

 The class loader retains a reference to every class it loaded

 Retaining a reference to a single object from a web application pins
every class loaded by the web application in the Permanent
Generation

 These references often remain after a web application reload

 With each reload, more classes get pinned in the Permanent
Generation and eventually it fills up

10CONFIDENTIAL 10CONFIDENTIAL

Debugging a leak - demonstration
Apache Tomcat 7, YourKit Java Profiler, Simple web application

11CONFIDENTIAL 11CONFIDENTIAL

Debugging memory leaks

 Reload the application once

 Force GC

 Look for org.apache.catalina.loader.WebappClassLoader instances

 There should be exactly one per deployed application

 If you have more than that

• look for the instance where started = false

• trace its GC roots

• that will tell you what is holding the reference

• finding what created the reference might be harder

 A profiler makes this easy

 There are lots of good profilers available

• Full disclosure: I use YourKit because they give me a free copy to use with
Tomcat

12CONFIDENTIAL 12CONFIDENTIAL

Root causes
JRE triggered leaks

13CONFIDENTIAL 13CONFIDENTIAL

JRE triggered leaks

 All take a similar form

 Singleton / static initialiser

• Can be a Thread

• Something that won’t get garbage collected

 Retains a reference to the context class loader when loaded

 If web application code triggers the initialisation

• The context class loader will be web application class loader

• A reference is created to the web application class loader

• This reference is never garbage collected

• Pins the class loader (and hence all the classes it loaded) in memory

 Prevented by the JreMemoryLeakPreventionListener

14CONFIDENTIAL 14CONFIDENTIAL

JRE triggered leaks: sun.awt.AppContext

 Triggered by

• Use of javax.imageio (e.g. Google Web Toolkit)

• Use of java.beans.Introspector.flushCaches()

• Ironically, Tomcat calls this to try and prevent memory leaks through the bean cache

• Probably many others

 Prevented in Tomcat by:

• Calling ImageIO.getCacheDirectory()

• Pins Tomcat’s common class loader in memory

• This is fine – don’t expect to throw this one away

• Might be different if embedding Tomcat

15CONFIDENTIAL 15CONFIDENTIAL

JRE triggered leaks: sun.misc.GC.requestLatency(long)

 Starts a GC Daemon thread

 Thread’s context class loader will be context class loader when
thread is started

 Triggered by:

• javax.management.remote.rmi.RMIConnectorServer.start()

• Possibly others

 Prevented in Tomcat by:

• Calling sun.misc.GC.requestLatency(long)

• Has to use reflection

• JVM specific so need to handle other JVMs

• Pins Tomcat’s class loader in memory

• Should be OK (remember embedding)

16CONFIDENTIAL 16CONFIDENTIAL

JRE triggered leaks: More threads

 Both very similar to previous slide

 sun.net.www.http.HttpClient

• Starts an HTTP keep-alive thread

• Triggered by URL. openConnection()

• Prevented in Tomcat by loading the sun.net.www.http.HttpClient class

• JVM specific

 Java Cryptography Architecture

• Starts a Token poller thread

• Triggered by creating a message digest (under certain conditions)

• Prevented in Tomcat by calling java.security.Security.getProviders();

17CONFIDENTIAL 17CONFIDENTIAL

JRE triggered leaks: JarURLConnections

 URL connections are cached by default

 An open JarURLConnection locks the JAR file

 Affects all operating systems

• Harder to ignore on Windows

• Prevents web applications from being undeployed

• Potential security risk

 Triggered by

• log4j 1.2.15 and earlier

• javax.xml.bind.JAXBContext.newInstance()

 Prevented in Tomcat by:

• Disable caching by default

18CONFIDENTIAL 18CONFIDENTIAL

JRE triggered leaks: XML parsing

 Don’t know why this triggers a leak

 No GC roots reported by profilers

• JVM bug

• http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6916498

 Made it very difficult to track down

 Triggered by:

• DocumentBuilderFactory.newInstance();

 Prevented in Tomcat by:

• DocumentBuilderFactory.newInstance();

19CONFIDENTIAL 19CONFIDENTIAL

Root causes
Application triggered leaks

20CONFIDENTIAL 20CONFIDENTIAL

Application triggered leaks

 All take a similar form

 Application registers an object with a JRE provided registry

 JRE registry is loaded by the system class loader

 Not cleared when web application is reloaded

 Reference chain

• Registry retains a reference to the object

• Object retains a reference to its class

• Class retains a reference to its class loader (web application class loader)

• Class loader retains references to all classes it loaded

 Applications are responsible for clearing references they create

 Failure to do so is logged on application stop

21CONFIDENTIAL 21CONFIDENTIAL

Application triggered leaks: JDBC drivers

 JDBC drivers are automatically registered with
java.sql.DriverManager

• When loaded

• Through the services API

 JDBC drivers are NOT automatically de-registered

 Applications must de-register JDBC drivers when stopped

 Use a javax.servlet.ServletContextListener

• contextDestroyed() event

 Tomcat will de-register JDBC drivers if the applications forgets

22CONFIDENTIAL 22CONFIDENTIAL

Application triggered leaks: Threads

 Threads started by a web application will have the web application
class loader as the context class loader

 Applications must stop threads they start

 Tomcat will log an error if applications forget

 Tomcat can try and stop the thread (requires configuration)

• TimerThread via reflection – fairly safe

• If started via an Executor via reflection– fairly safe

• Thread.stop() – unsafe

 Stopping threads

• Code is not thread safe

• Often causes a JVM crash

23CONFIDENTIAL 23CONFIDENTIAL

Application triggered leaks: ThreadLocals

 The lifecycle of a ThreadLocal must match that of a request

 An application may never see a Thread again

• No way to remove the ThreadLocal later

 Applications must clear any ThreadLocals they create in the same
request

 Tomcat will log an error if applications forget

 Tomcat can try and clear the ThreadLocal (requires configuration)

• Code is not thread safe

• Not seen a problem in testing

24CONFIDENTIAL 24CONFIDENTIAL

Application triggered leaks: Non-application issues

 sun.rmi.transport.Target

• Nothing the application can do to clear these

• Tomcat does it silently via reflection

 ResourceBundle

• Uses a weak reference

• Still appears to trigger leaks

• Tomcat clears the references silently via reflection

 static final reference

• Not cleared by GC in some (very) old JVMs

• Code still present

• Disabled by default in Tomcat 7

 Tomcat also clears references it creates

• loggers, introspection utils

25CONFIDENTIAL 25CONFIDENTIAL

Future plans

26CONFIDENTIAL 26CONFIDENTIAL

Future plans

 See https://issues.apache.org/bugzilla

 Bugs

• Leaks triggered by JSP pages aren’t detected or cleared (48837)

 Enhancements

• Generic solution to ThreadLocal issues
Renew the thread pool after application reload (49159)

• Add the start date when reporting leaks in the manager app (49395)

 Can we reduce the leak by somehow manipulating the class loader?

• No success so far

27CONFIDENTIAL 27CONFIDENTIAL

Useful links

28CONFIDENTIAL 28CONFIDENTIAL

Useful links

 http://tomcat.apache.org/

 http://svn.apache.org/viewvc/tomcat/trunk/java/org/apache/
catalina/core/JreMemoryLeakPreventionListener.java
catalina/loader/WebappClassLoader.java

 http://wiki.apache.org/tomcat/MemoryLeakProtection

 Mailing lists

• announce@tomact.apache.org

• users@tomcat.apache.org

• dev@tomcat.apache.org

29CONFIDENTIAL 29CONFIDENTIAL

Questions

	Diagnosing and Fixing Memory Leaks in Web Applications: Tips from the Front Line
	Introduction
	Agenda
	How it all started
	Slide 5
	Slide 6
	How memory leaks occur
	How memory leaks occur: A little theory
	How memory leaks occur: Reference chains
	Debugging a leak - demonstration
	Debugging memory leaks
	Root causes
	JRE triggered leaks
	JRE triggered leaks: sun.awt.AppContext
	JRE triggered leaks: sun.misc.GC.requestLatency(long)
	JRE triggered leaks: More threads
	JRE triggered leaks: JarURLConnections
	JRE triggered leaks: XML parsing
	Slide 19
	Application triggered leaks
	Application triggered leaks: JDBC drivers
	Application triggered leaks: Threads
	Application triggered leaks: ThreadLocals
	Application triggered leaks: Non-application issues
	Future plans
	Slide 26
	Useful links
	Slide 28
	Questions

