Some Pascal-like triangles

Johann Cigler

Abstract

We collect some simple facts about analogues of Pascal’s triangle where the entries count
subsets of the integers with an even or odd sum of its elements. A widely known example is
Losanitsch’s triangle.

1. Introduction

n
The entries (k] of Pascal’s triangle count the subsets of {1 n} with k elements which

will be called k — sets for short.
A k—set S will be called even, if the sum of its elements is even and odd if this sum is odd.
By convention the empty set is even.

Let E,, be the set of all even k —subsets of {1,---,n} and e(n,k) = the number of its

On,k

En,k

elements and let O, be the set of all odd k — subsets of {1,---,n} and o(n,k) =

number of its elements.
For example e(5,3) =6 because E, = {{1, 2,34{L,2,5},{1,3,4},{1,4,5},{2,3, 5},{3,4,5}}.
Let us note the trivial fact

the

e(n, k) +0(n,k) = @ (1.1)

Lemma 1
If k is odd then o(2n,k) =e(2n,k) because {s,-,5 } <> {2n+1-s,,---,2n+1-5,} is a
bijection.

Lemma 2

e(n,k):e(n—z,k)+(k 1j+o(n—2,k—2),

(1.2)

o(n,k):o(n—2,k)+(r|l J+e(n—2,k—2).

Proof

There are 3 possibilities.
a) A k—subsetof {1,---,n} isa k—subset of {1,---,n-2},

b) it contains precisely one of the numbers n—1 and n. The remaining (k —1) —set is then an

arbitrary subset of {1,---,n—2}. There are ( j such subsets.



¢) It contains both n—1 and n. Since n+(n—1) is odd the remaining (k —2) —subset must
have the opposite parity of the k — subsets.

Let e, be the column with entries e(n,k) and o, the column with entries o(n,k) for ne N.
We consider some matrices whose columns are e, or o,.

2. Matrices where the columns ¢, and c,,, have the same parity

la) Let us first consider the matrix (e(n,k))= (e,,&e,,e,,--) whose entries are the number
of even sets (Cf. OEIS [3], A282011). The first terms are

l1ee @ @8 8,
l1 8o @ @eae8
1108 @ @ @@
1111 e@@e
122 2 10680
124 6 3080
13610 9 3 @)
Proposition 2.1
The numbers e(n,k) satisfy
e(n,k)=e(n-1L,k)+e(n-1Lk-1) (2.1)
if kn is even and
n
e(2n+1,2k +1) =e(2n, 2k +1) +e(2n, 2k) + (-1 k-l(k} (2.2)
Proof
Consider the difference
d(n,k) =e(n,k)—o(n,k) (2.3)
and let
dn(x)=Zd(n,k)xk. (2.4)
k=0

Since the right-hand-side is > > (=) kx" :ﬁ(1+(—1)jx)

ko <<y j=1
we see that

d_(x) :f[(1+ (-1)’x)

which gives by induction

d, () = (LX)l (1= 0. (2.5)
Thus
d, (x)=(1-x2)",
2n(X) ( X ) (26)

Ay (¥) = 1= X)(1-%7)".
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[nj+d(n,k)
By (1.1) and (2.3) we get e(n, k) B — and therefore

@+ %)™ +(1- x2)n

e2n (X) = 2 ’

(L+x)*" + (1-x) (1— X2 )n
Cona(X) = 2 .

This implies

&, (X) = (L+X)&,,_,(X),

e2n+1(x) = (1+ X)eZn (X) - X(l_ X2 )n )

which is equivalent with Proposition 2.1.

Since ) e(n,n—k)x“ =x"e, Gj (2.7) implies

k=0

Corollary 2.1
e(n,n—k) =e(n,k) forn=0,3mod 4,

e(n,n—k)=o0(n,k) forn=1,2mod4.

Let us also derive some explicit formulae. From

n+l

or-annfled T

n

2 -

]

we get

son-3] 5| 2]

U 2j Nk=2j
As special case we get the well-known formula

e(2n,n) :Z(anj .

= (1+ X)MZ [

n+1

2
2]

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



The numbers e(n,k) are given explicitly by

2e(2n, 2k) = [;E}L (-1 @

2e(2n+1,2K) = {22:1} (=1 [E]

2
2e(2n, 2k +1) =| "
2k +1

on+1
2e2n+1,2k+1) =| " |+ ey "
2k +1 k

(2.13)

Therefore the generating functions are

) XX 1 (-1 @+x)
;‘e(n,Zk)x = (1—x)2k*1+ (1_)(2)“1 (2.14)

2k+1 _ k+1
S e(n, 2k +1)x" == 12k2+ ) _
n>0 2 (1_X) ’ (1—X2) "

These can also be written in the following way:

x*e,. (X)
e(n,4k)x" = Ak ,
; ( ) (1+ X)4k (1_ X)4k+l

(2.15)

4k+1

X*70,,.,,(X)
e(n, 4k +1)x" = Akl :
; ( ) (1_+_ X)4k+1(1_ X)4k+2

X4k+20 (X) (216)
D e(n, 4k +2)x" = i
=0 @+x)" " 1—x)""

X4k+3

€3 (X)
> e(n, 4k +3)x" = i3 :
P ( ) (1+ X)4k+3 (1_ X)4k+4

Ib) The matrix (o(n,k))= (0,,0,,0,,0,,--), cf. OEIS [3], A 159916.

D00 0000
W oW R ®
ook NRE OO
BN O OO
N0 0O
wWeE 0 000 .
OO0 000 ®

=
®

In the same way as above we get
n n+1
el T
0, (x) = @+x)"-@Q+ );) (1-x) ' (2.17)




n+1 n
onk)=% LTJ {EJ . (2.18)

T 2j+1 )\k-2j-1

X 1 (D" @+x)
> o(n, 2k)x 7[(1—x)2k+1_ e (2.19)
n>0 (l—X )
2k+1 1)K
S o(n, 2k +1)x" == L& (2.20)
n>0 2 (1_ X) (1— X2)
The generating functions can also be written as
x*0,, (X)
ZO(”"”()X” = 2K . 2kl
70 @+x)"@-x)""
4k+1
S o(m 4k +)x' = X)4kﬁ4(k1+l(’(;4k+2 ,
< +X —X
’ X4k+2e (X) (221)
ZO(”"‘“Z)Xn = T e
10 @+x)" @=-x)"
4k+3
> o(n, 4k +3)x" = X 4k034"+3(x)4k -
=0 @+x) " A=-x)"™
Ic) The matrix (f(n,k))=(e,0,,€,,05,--).
100 8 @ 0 0,
110 © © 00
1106 © © 00
121 @ e @8
122 2 1060
134 4 31860
13610 9 3 @)
Proposition 2.2
f(2n,k) =e(2n,k),
(2n,k) =e(2n,k) (2.22)

f(2n+1k) = f(2n,k)+ f (2n,k 1)

Proof
f(2n,k) =e(2n,k) for all k. By definition this holds for even k. For odd k it follows from

Lemma 1.
To show that f(2n+1,k) =e(2n,k)+e(2n,k —1) consider first an even K.

The k —sets which do not contain 2n+1 are counted by e(2n,k) and the rest by

o(2n,k —1) =e(2n,k -1).

If k is odd, then f(2n+1,k)=0(2n+1k), o(2n,k) =e(2n,k) and the remaining (k —1) —set
is even.



Id) The opposite matrix (f_(n, k)) =(05,€,,0,,85,+).

/6060 @ 0 080
000 @ 0060
211 0 @068
812 1 060680
824 2 000680
8 26 6 20080
'@ 39106 31

Consider the polynomials f,(x)=>Y_ f(n,k)x* and f (x)=>_ f(nk)x*.
k=0

k=0

Since f(n,k)— f(n,k)=(-1)(e(n,k)—o(n,k)) we get
f,(x) = F,(x) =d(n,~x).

This gives
@+ x)“+(1—x)m(1+ g7 5 FJ -
f,(0) = . @0 2y (2] e
} 2] (2.23)
@+x)" -] (1+(-1'x)
fn(X): 72 "
Thus
Gl
f(nk)=>112 2 (2.24)
0 2) Lk=2j
and
Gl
fink)=> 2 2 : (2.25)
T2j+1lk=-2j-1
(2.23) also implies
f(n,n—k) = f(n,k) forn=0,1mod4,
_ (2.26)
f(n,n-k) = f(n,k) forn=2,3mod4.
Proposition 2.2 is equivalent with
f2n (X) = e2n (X)’ (227)

Fana (X) = (L4 X) T3, (X) = L+ X)e,, (X).



Let us also sketch another approach. Since the columns ¢, and c,,, have the same parity by
Lemma 2 the entries of these matrices satisfy

) =am-2k)+ "2 ][ "2 2,k-2) and th
a(n,k)=a(n-2, )+[k_1j+[k_2j—a(n— ,k—2) and thus

a(n,k)=a(n—2,k)+[:j—a(n—2,k—2). (2.28)

Therefore the polynomials a,(x) = Za(n, k)x* satisfy the recursion
k=0

a,(x) =(1-x*)a, , (x)+ XL+ X)"". (2.29)

By applying this to n and n—1 we get the homogeneous recursion

a,(x) = (1+X)a, 4 (¥) +(1-x*)a, , () - @+x) (1-x*)a, (). (2.30)
Observe that
23—(1+x)22—(1—x2)z+(1+x)(1—x2)=(z—1—x)(22—1+x2). (2.31)
Therefore
1—xz—(l—x2)z2 1 1 1+(1-x)z
n_ _= 2.32
gen(x)z (1—(1+x)z)(1—(1—x2)22) 2(1—(1+X)Z+1—(1—x2)22] (2.32)

which again gives (2.7).
Analogously we get

) 1-(1+x)2° 1 1 1+ (1+X)z
f — == 2.33
g(; (X2 (1—(1+x)z)(1—(1—x2)22) 2{1—(1+X)Z+1—(1—XZ)ZZJ (2.33)
which gives (2.23).

3. Matrices whose columns ¢, and c,., have opposite parity

Let us now consider another class of triangles where the columns ¢, and c,,, have opposite

parity.
By Lemma 2 the entries of these matrices satisfy

b(n,k):b(n—z,k)+[ _1j+b(n—2,k—2). (3.1)

n

k-1

Therefore the polynomials b, (x) = Zb(n, k)x* satisfy the recursion
k=0

b, () = (1+ X% )b, _, (x) + X(L+X)"". (3.2)
7



By applying thisto n and n—1 we get

b, (X) = 1+ X)b, (%) + 1+ X )b, _, (x) = (L+ %) (1+ X* ) b, (X). (3.3)

l1a) The best known special case is Losanitsch’s triangle (L(n,k))=(e,,0,,0,,€;,€,,05,-*)
The first terms are

1006 0 @00 0,
1106 @ @06e
111 0 e06e
122 10069
124 2 1068
136 6 3168
13910 9 3 1)

By (3.1) we have

L(n,k) = L(n—2,k)+(n_1]+ L(n-2,k—2) (3.4)

k-1
which is often used to define this triangle.

This matrix has been obtained by the chemist S.M. Losanitsch [2] in his investigation of
paraffin. Therefore we call the numbers L(n,k) Losanitsch numbers. The same triangle has

also been considered in [1] in the study of some sort of necklaces where these numbers have
been called necklace numbers. Further information can be found in OEIS [3], A034851.

Remark

By (2.13) we have e(n,n) =1 if n=0,3mod4 and o(n,n) =1 else. Therefore Losanitsch’s
triangle is also characterized by the fact that all columns are e, or o, and all elements of the
main diagonal are 1.

I1b) The opposite matrix (L(n,k))=(0,,€,€,,0;,0,,€,--).

/@6 @0 0 00 0,
000 0 000
010 0 00080
11 0 00089
e 22 2 @080
e 24 4 200
'@ 3 6 10 6 3 0/

This is OEIS [3], A034852 and essentially also A034877.

The polynomials L, (x) = Zn: L(n,k)x* and L, (x) :Zn:E(n,k)xk satisfy the recursion (3.2).
Therefore we get 7 7
L, () - L, (0 =(1+x*)(L,, (0 -L,,(0)
with initial values L,(x)—L,(x)=1 and L,(x)-L,(x)=1+x.
8



Let

D, (x) = L, (x) - L, (%) (3.5)
Then
D, (x) = (1+x2)",
2n(X) ( +X ) (36)
D,,..(X) = (1+X) (1+ xz)n :
Therefore we get
L (x)= 1+ x) 2+Dn(x),
L) D (3.7)
En(X):( +X) 2_ n(X).

Thus we get (cf. [1], Theorem 2.8)
2n

2k +1

n
M (38)

L(2n, 2k +1)=%[

L(n,k)=1 n + else.
1 B
2
Note that
L2n+1(x) = (1+ X) I—2n (X) (39)
Analogously as above we get
1-(1+x+x%)z°
> L(02" = ( ) S L T
=0 (1—(1+x)z)(1—(1+x2)zz) 2| 1-(1+x)z  1-(1+x%*)z

Further properties of the Losanitsch polynomials can be found in [1] and will not be repeated
here. Let us only mention that by (3.6) L,(x) is palindromic since

L(n,k) =L(n,n=K). (3.11)
Comparing with (2.16) and (2.21) we get

Proposition 3.1
x‘e, (X)

Zn:L(n, k)x" = Zn: L(n,n—k)x" = I (3.12)




There exists also another interesting relation between the numbers e(n,k) and L(n,k).

Proposition 3.2
k

Y e(nn-k)x' = ZV”JE — L),
’ a-xt? (1+ XZ)M+1 (3.13)
Proof
It suffices to show that
X2k
e(n,n—2k)x" = L,y ., (=X
; ( ) 10 (14x) " ) (3.14)

since by Proposition 1.1
(1-x)D e(n,n-2k -1)x" = > e(n,n—2k)x""
and by (3.9)
L2k+3 (_X) = (1_ X) L2k+2 (_X)-

By (2.13) we get
e(nn—2k)=~|[ " +(—1)V;1J_k EJ
’ 2[\ 2k

k
This implies

PPV il - 1=x _|_ x* 1+x2) 7 £ =0 @-x)21).
Zn:e(nn )X 2{(1X)2k+1+(1+xz)k+l} (1—X)2k+1(1+X2)k+1(( +X) +(1-x)1-x) )

By (3.7) we get (L+x)" + (1= x)(1- 0" = L, ().

llc) The matrix (M (n,k))=(e,,&,,0,,0,,€,,&5,")

e
WMNMNRE RO
ook NRE OO

We have
M (n,k) =L(n+1k)—L(n,k-1). (3.15)
For
M (n,4k) =e(n,4k) =e(n+1,4k) —e(n,4k -1),
M (n,4k +2) =o(n,4k + 2) =o(n+1,4k + 2) —o(n, 4k),
M (n,4k +1) =e(n,4k +1) =o(n+1,4k +1) —e(n, 4k),
M (n,4k +3) =o(n,4k +3) =e(n+1,4k + 3) —o(n, 4k + 2),

10



Observing (3.15) we get

Corollary 3.1
" X"
ZM(n,n—k)X :mekﬂ(X). (316)
Remark
M(n,n—k)=M(n,k) forn=0,2mod4, (3.17)
M(n,n—k) =M (n,k) forn=1,3mod4. '
l1d) The opposite matrix (M (n,k))=(0,,0,,€,,,,0,,05,).
(6 @@ 0 @0 @ @)
106 @ 0600
106 0 0600
e 211 @908
022 2 @080
0346 2180
'@ 3 6 10 6 3 @)
Then M (n,k) = L(n+1,k)—L(n,k -1).
Let M, (x)=> M(nk)x* and M, (x) =D M(nk)x",
k=0 k=0
Since M (n,k)—M (n,k) = (=1)(L(n,k) - L(n,k)) we get M, (x)—M,(x) = D, (-X).
Thus
M. (x) = 1+ x) +Dn(—x),
2 (3.18)
Mn(x)z (1+X) _Dn(_x).
2
Finally let us compute the generating function of z f(n,n—k)x".
Proposition 3.3
z w2kt i _ _
f(n,n-2k +1)x" = = (-1D’'L(2k, j)x (3.19)
n (1-x)* (1+ x2)k =
and
2% 1+32) 7 F -0 L4 x
3 f(n,n—2K)X" = X M( [ ot )
- (1 x)2 (1+X2) 2 (3.20)

11



Proof
(3.19) follows from f(n,n—2k +1) =e(n,n—2k +1).

Since by (2.27) and (2.13)

) j+(—1)k*uJ EJ

1
f(n,n=2k)==
( ) 2 (Zk )

we get

e U X1 (1+x)
Zn:f(n,n 2k)x" = 5 [(1—X)2k+l+(1+x2)k+lJ

or (3.20).

Final Remarks
There are analogous results for odd primes p.

Let a(n,k, j) be the number of k —subsets of {1,2,---,n} whose sums are congruentto j
modulo p andlet £ be a primitive p—th root of unity.

Then

n -1
[Ta+gx)=3x > s Zx"pZa(n,k, )
j=1 K j<iy<<ic i =0
Observe that

p-1 n p-1p-1

i=0

(1+§‘jx):2x"

On the other hand we have

> a(n,k, j)c? =p> a(nk,0)x".

1=0"j=1 ‘

1l
o

FZ _n (1+¢7%) = L+ x)"+ pZ]‘[(1+ £x).

Since each product of 1+ ¢ over p consecutive values of j equals 1+ x° we see that

iﬁ(“;”x):bi(x)(“ xp)n

=1 j=1

for some polynomial b.(x) of degree i.

12



Therefore the polynomial a,(x) = Za(n, k,0)x* satisfies
k

@) b () (14 X7)

a'pn+i (321)
p
Let us only consider the case p =3 in more detail.
The first terms of the matrix (a(n,k,0)) are
1000000
19060000
191008086
11110900
1122008
1144118
11258521
Here we get
@+ %)% +b (X)(1+ %)
8y, (X) = 3 (1+x) (3.22)
with by(x) =2, b (x) =2-x, b,(x)=2(1-x+x*).
For example
_ 1+ X)° +2(1-x+X°
PP Lo SN L5 s R Lt RN e ( )1
3 3 3
1+ x)* +2(1+x°
as(x):1+x+x2+x3=( ) 3( )
For the generating function we get therefore
S, (002" 1—xz—(1—x)x22—(1+x3)z3 1 1 2+(2—x)z+2(1—x+x2)z2
a,(x)z" = -z "
=0 (1- 1+ x)z)(l—(l+ xs)zs) 3( 1-(x+1)z 1-(1+x°)2°
In this case we also get
a,(x) = (1+x*) a,_y () + X(1+ %)™ (3.23)
or equivalently
n-2
a(n,k)=a(n—3,k)+(k 1]+a(n—3,k—3). (3.24)

13



To prove this consider the elements n—2,n-1,n.
The number of k — sets which contain none of these numbers is a(n—3,k), the number of

n
those which contain precisely one of these numbers is ( J the number of those which

. . . (n
contain precisely two of these numbers is (k 2j,because n—-2+n-L,n-2+n,n-1+n are

different modulo 3 and the number of those which contain all of themis a(n—3,k —3)
because n—2+n-1+n=3n-3 is a multiple of 3.
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