
Googling for Software Development:
What Developers Search For and What They Find

Andre Hora
Department of Computer Science

Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

Abstract—Developers often search for software resources on
the web. In practice, instead of going directly to websites (e.g.,
Stack Overflow), they rely on search engines (e.g., Google).
Despite this being a common activity, we are not yet aware of
what developers search from the perspective of popular software
development websites and what search results are returned.
With this knowledge, we can understand real-world queries,
developers’ needs, and the query impact on the search results.
In this paper, we provide an empirical study to understand what
developers search on the web and what they find. We assess
1.3M queries to popular programming websites and we perform
thousands of queries on Google to explore search results. We
find that (i) developers’ queries typically start with keywords
(e.g., Python, Android, etc.), are short (3 words), tend to omit
functional words, and are similar among each other; (ii) minor
changes to queries do not largely affect the Google search results,
however, some cosmetic changes may have a non-negligible
impact; and (iii) search results are dominated by Stack Overflow,
but YouTube is also a relevant source nowadays. We conclude by
presenting detailed implications for researchers and developers.

Index Terms—Software Development, Web Search, Google
Search, Empirical Study

I. INTRODUCTION

Developers often search for software resources (e.g., code
examples, documentation, bug-fixes, etc.) on the web to sup-
port development activities [1]–[5]. Prior work reports that
developers may spend up to 20% of their time on this task [6]–
[8]. For this purpose, many websites are available [9]. Stack
Overflow [10], for instance, receives over 50 million users
per month and is the 44th most visited website in the world.
W3Schools [11], another popular website to support software
development, had 2.5 billion pageviews in 2019 and is among
the top 200 most visited ones. Typically, developers rely
on web search engines, such as Google, to find software
resources on the web [1]–[5], [8], [12]–[14]. That is, instead
of going directly to those websites, developers go firstly to
search engines to perform their search queries. According to
Alexa [15], Stack Overflow and W3Schools have over 85% of
their traffic coming from web search engines.

When searching on the web, developers are free to type in
natural language, producing a rich log with the queries they
are performing. In the literature, some studies assess those
search queries to learn from them. Bajracharya et al. [16],
[17] mined the log usage of a code search engine, Koders, to
understand what their users are searching for. Sadowski et

al. [18] performed a case study at Google to learn how
developers search for code and the properties of the queries.
Those research studies have a special focus on code search.
However, code search is not the sole goal of developers when
navigating on the web: they may also search for a variety
of other resources [5], such as novel technologies, debugging
logs, and installation guides, to name a few. In this context,
Rahman et al. [14] assessed the queries of 310 developers
and built a model to detect code and non-code related queries.
Xia et al. [5] analyzed the queries from 60 developers to
better understand their search tasks. Recently, Microsoft re-
searchers [19] proposed a classifier for distinguishing software
engineering dedicated queries from other queries.

To the best of our knowledge, the literature has not yet
explored what developers search on the web from the per-
spective of the most popular websites dedicated to software
development. That is, what queries performed on web search
engines such as Google lead to websites such as Stack
Overflow and W3Schools, and what search results are returned
to developers. This knowledge can be used to understand real-
world search queries and developers’ needs, thus, supporting
the creation of better tools and targeted websites. Assessing
the search results can help to detect where search engines
find software resources and how the search queries affect the
search results, fomenting the discovery of novel sources and
the creation of better searching tools for developers.

In this paper, we provide an empirical study to better under-
stand what developers and programmers search on the web and
what they find. First, we assess 1.3M search queries to five
popular programming websites: Stack Overflow, W3Schools,
GeeksForGeeks, TutorialsPoint, and ProgramCreek; this data
is collected from alexa.com [15]. We then propose the follow-
ing research questions to study developers’ search queries:
• RQ1 (query content): What is the content of the search

queries? Developers’ queries reference key contexts, such
as programming languages (30%), software technologies
(24.5%), and web frameworks (5%). They mostly per-
form code reuse (45.8%) and general (20.1%) searches.

• RQ2 (query size and keyword position): What is the size
of the search queries? Where are the keywords located?
Developers’ queries have 3 words on the median, which
is similar to general web search queries. Queries typically
start by referencing a technology (e.g., “c# read file”).



TABLE I
SELECTED SOFTWARE DEVELOPMENT WEBSITES.

Websites Short Description Traffic Rank Indexed Pages Web Traffic Queries Top 3 Words

stackoverflow.com Question and answer platform for developers 44 35M 94% 500,014 python, php, javascript
w3schools.com Website with code tutorials, references, and examples 177 47K 85% 478,537 javascript, html, css
geeksforgeeks.org Computer science portal with articles and tutorials 331 200K 92% 476,403 python, java, javascript
tutorialspoint.com Education portal with courses, tutorials, and examples 485 170K 90% 500,000 python, java, c
programcreek.com Programming website with code examples 9,153 690K 95% 90,085 python, java, example

• RQ3 (query structure): How are the search queries struc-
tured? Developers tend to omit function words (e.g., con-
junctions) in queries, which are mostly composed of
content words (e.g., nouns and verbs). The ratio is similar
to general web search queries: 20% x 80%.

• RQ4 (query similarity): How similar are the search
queries? Most of the developers’ queries are similar
among each other: 60% have at least one similar peer,
whereas 8% have 10 or more similar ones.

Next, based on the insights from the developers’ queries,
we perform thousands of queries on Google (with the Google
Search API [20]) to assess and explore search results:
• RQ5 (result resources): Where does Google find soft-

ware resources? Google finds software resources mostly
on stackoverflow.com (11%), youtube.com (6%), and
w3schools.com (5%). However, the results tend to vary
according to query type (e.g., more or less general).

• RQ6 (result variation): How do Google results vary for
similar queries? Overall, performing minor changes to
queries (e.g., swapping, omitting, and using synonymous
words) do not broadly affect the top 1 search results nor
the overall top 10. However, there are a few exceptions,
e.g., some word swap may have a non-negligible impact.

Based on our findings, we provide implications for devel-
opers and researchers: (1) we reveal novel empirical data
that can guide software vendors and content providers un-
derstanding developers’ queries and needs; (2) we shed light
on the existence of query patterns specific to development,
which can be useful for research areas as automated query
suggestion and reformulation [21]–[23]; (3) we present that
the overall stability of the Google search results can foment
programming tools that rely on web search, e.g., tools to find
errors/exceptions [24]–[27]; (4) we reveal that minor cosmetic
query changes can affect the Google results, indicating room
for improvement in the software search landscape; and (5) we
bring to light the priority of Google search to Stack Overflow.

This paper has the following contributions:
• We provide a large study to characterize real-world search

queries performed by developers on the web (Section III).
• We provide a large analysis to understand the Google

search results due to developers’ queries (Section IV).
• We make our Google search results publicly available to

the research community (Section IV).
• We propose implications and insights for developers and

researchers to improve programming tools and foment
novel researches (Section V).

II. STUDY DESIGN

A. Selecting the Websites

We select five very popular websites to perform this study:
Stack Overflow [10], W3Schools [11], GeeksForGeeks [28],
TutorialsPoint [29], and ProgramCreek [30]. They are well-
known platforms that support software development, as pre-
sented in Table I. Stack Overflow, for example, is a question
and answer platform, whereas TutorialsPoint is an educa-
tion portal that includes tutorials. Column “Traffic Rank”
presents their ranking position worldwide as measured by
alexa.com [15]. Those websites also have thousands of web-
pages indexed by the Google search engine, receiving millions
of users per month (e.g., Stack Overflow has 51M users/month,
while TutorialsPoint 40M). Column “Web Traffic” shows the
ratio of users coming from web search traffic (measured by
Alexa), that is, web search engines, such as Google, Yahoo!,
Bing, etc. The majority of the users come from web searches,
ranging from 85% in W3Schools to 95% in ProgramCreek.

B. Collecting the Search Queries

We analyze the search queries performed by developers on
web search engines that lead to the selected websites. We
rely on Alexa to collect the search queries. One can log in
directly into alexa.com and download the queries per website;
we collected it in June 2020. Alexa traffic estimates are based
on data from global traffic, which is a sample of millions of
internet users [15].

Table I shows the number queries in each dataset (column
“Queries”), which varies from 90,085 in ProgramCreek to
500,014 in Stack Overflow. After grouping the queries and
removing duplicated ones, we find 1,306,628 distinct queries.
The last column presents the most frequent words in the
queries: as expected, they are in the context of software devel-
opment, such as Python, JavaScript, and HTML. Our dataset is
publicly available at https://doi.org/10.5281/zenodo.4429258.

C. Research Questions: What Developers Search For

1) RQ1: Query Content: In our first research question, we
assess the context and intent of the developers’ queries.

Query context. First, we assess the context of the search
queries to acquire insights on what developers are looking for
on the web. As presented in Table II, we explore the query
context regarding three categories: programming languages,
web frameworks, and popular technologies.

Specifically, we analyze the queries and look for references
to the 100 most popular programming languages (according

https://doi.org/10.5281/zenodo.4429258


TABLE II
QUERY CONTEXT CATEGORIES.

Context # Examples

Programming lang. 100 C, Java, Python, C++, C#, Visual Basic,
JavaScript, PHP, SQL, R

Web frameworks 100 React, ASP NET, Angular, Rails, Vue, Django,
Laravel, Spring, Express, Flask

Other technologies 53 JQuery, Ajax, Android, Selenium, Numpy, Pan-
das, Bootstrap, D3, CSS, HTML

to the TIOBE Index)1 and to the 100 most popular web
frameworks (according to the Hot web framework ranking).2

Examples of queries with references to languages and web
frameworks include “read from json file in c#”, “example of
python tuple”, and “when to use react”. Besides, we also look
for references to other 53 popular software technologies. This
set was manually curated by inspecting the most frequent
words in our dataset of queries. It includes a miscellany of
software libraries, frameworks, and tools, such as JQuery,
Android, and Selenium (e.g., “splash screen in android”).
Rationale: we aim to assess whether developers are likely
to mention the underlying software technologies behind the
queries. Queries including those references are more specific
and possibly easier to be resolved by the search engine. For
example, “arraylist add” is dubious and may refer to both Java
and C#, while “java arraylist add” may produce better results.

Query intent. We rely on the categories proposed by Xia et
al. [5], who performed a similar analysis, to assess developers’
search tasks. This has two advantages: (1) we keep consis-
tency with previous research studies and (2) we can directly
compare our results with previous ones. Table III presents
the seven query categories: general search includes general
purpose queries (e.g., “lifecycle of android”); debugging and
bug fixing are about exceptions, errors, and bugs (e.g., “curl:
failed to connect”); programming category contains queries
mostly related to programming language features and design
patterns (e.g., “protected field in java”); third party code
reuse includes queries about APIs and reusable examples
(e.g., “javascript date get year”); tools contain tool-related
queries (e.g., “git delete files”); database is about search
queries related to SQL statements (e.g., “sql drop all foreign
keys”); and testing contains queries in the context of software
testing (e.g., “what is a smoke test”). Since the categories are
well-defined, the query classification is straightforward. In this
analysis, we randomly select 384 queries (i.e., 95% confidence
level and 5% confidence interval) and manually classify them.
Rationale: developers may search on the web for a variety of
reasons, from code [16]–[18] to other resources (e.g., novel
technologies, etc.) [5]. However, it is not clear what are their
major concerns from the perspective of the studied websites,
which are among the most popular nowadays.

1https://www.tiobe.com/tiobe-index
2https://hotframeworks.com

TABLE III
QUERY INTENT CATEGORIES (BASED ON [5]).

Intent Short description

General search Technologies, terminologies, background knowledge,
best practices, laws or regulations, licenses, or any
generic software terms

Debugging and
bug fixing

Exceptions/error messages, bugs (e.g., programming,
configuration, security, performance, multi-threading,
etc.)

Programming Programming language features and design patterns

Third party code
reuse

APIs, reusable examples, libraries, frameworks,
HTML/CSS

Tools command line, SO, IDEs, version control systems, issue
tracking systems

Database SQL statements, no-SQL database, optimization solutions

Testing Testing methods, automated testing tools, public testing
datasets

2) RQ2: Query Size and Keyword Position: We now assess
the size of the queries and the position of the contextual words.

Query size. As typically adopted in the literature [4], [18],
[31], we compute query size in terms of the number of
words. Rationale: general web search queries are known to be
short [31], while code search queries may vary [4], [17], [18].
While shorter queries may point to broader issues, longer ones
may reveal the need for the resolution of specific problems.

Keyword position. We also assess the position of contextual
words (the 253 of Table II) in queries with size ≥ 3 (that is,
three or more words). Rationale: we aim to better understand
where contextual words are located in the search queries, that
is, whether developers are likely to position such keywords,
in the beginning, middle, or end of the query. This assessment
provides the basis for us to analyze whether word position may
affect the search results, which we further explore in RQ6.

3) RQ3: Query Structure: In this research question, we
investigate the structure of the developers’ queries.

Part of speech. Words have distinct roles in natural language,
with a distinction between content words (nouns, verbs, adjec-
tives, and adverbs) and function words (prepositions, conjunc-
tions, etc.) [32]. Content words represent the core information
in a sentence and can be meaningful in isolation because of
their straightforward semantics (e.g., “JavaScript”) [33]. In
contrast, function words represent the relationships between
content words and often do not carry relevant meaning in
isolation (e.g., “the”) [33]. Despite the set of function words
is smaller than the set of content words, function words are
more frequently used than content words, representing over
half of the words we use in daily speech [33]–[35]. They
both compose the part of speech (POS) in a sentence. We
apply part of speech tagging to assess the query structures.
Rationale: users have a mental model of what search engines
can handle, thus, most users tend to omit function words in
search queries, possibly believing they are less important in
query effectiveness [32], [36]. We explore the most common
tags (noun, verb, conjunction, etc.) in developers’ queries and

https://www.tiobe.com/tiobe-index
https://hotframeworks.com


whether they follow such a mental model, which is common
in general web search [32], [36]. Also, after gaining insights
in this analysis, we explore in RQ6 whether function words
and synonymous verbs are likely to impact the search results.

Other frequent terms. We analyze the presence of other
frequent terms in the queries. First, we inspect the presence of
the five Ws (who, what, where, when, and why) and how, also
known as 5w1h,3 which represent questions whose answers are
considered basic in information gathering or problem-solving
(e.g., “how to zip in linux”). We also assess other frequent
terms found in the part of speech analysis. Rationale: we aim
to understand to what extent and how frequently some terms
are adopted in software development queries. We further assess
how those terms affect the search results in RQ6.

4) RQ4: Query Similarity: We explore how similar are the
search queries. For this purpose, we evaluate three similarity
metrics: Cosine [37], Jaccard [38], and weighted Jaccard [39].4

These metrics are typically adopted in information retrieval
and code search literature to compare the similarity between
two documents [8], [41], [42]. Rationale: we aim to discover
to what extent developers create similar queries possibly to
resolve similar problems and to reveal those small variations.

Typically, the adopted metric and threshold vary according
to the target problem. To find the best option for our problem,
we create an oracle of similar queries and evaluate each
combination of metric and threshold, as follows.
(i) Creating an oracle of similar queries. First, we select 10
base queries in distinct technologies, including Java, Python,
C#, JavaScript, PHP, HTML, and CSS (see Table IV). For each
base query, we collect from our dataset all the queries in which
the base query is included. For instance, considering the first
query “java check string is number”, we collect 12 queries,
such as “check if a string is a number java”. Considering the
10 base queries, we automatically collect a total of 175 similar
queries, which is our oracle.

TABLE IV
QUERY SIMILARITY BEST RESULT (JACCARD, THRESHOLD: 0.8)

Base query # TP FP FN Prec Rec F1

java check string is number 12 12 1 0 0.92 1.0 0.96
java comparable vs comparator 9 9 0 0 1.0 1.0 1.0
java private public protected 13 13 0 0 1.0 1.0 1.0
python get file size 12 10 0 2 1.0 0.83 0.91
python check item in list 12 12 1 0 0.92 1.0 0.96
c# reverse string 14 12 0 2 1.0 0.86 0.92
javascript break loop 48 33 0 15 1.0 0.69 0.82
php array remove duplicates 18 16 0 2 1.0 0.89 0.94
html change color font 19 16 0 3 1.0 0.84 0.91
css zoom animation 18 16 0 2 1.0 0.89 0.94

Total 175 149 2 26 0.99 0.85 0.91

(ii) Detecting the best similarity metric and threshold. We
first split our query dataset according to their technologies
(the same of Table II), including only queries with three or
more words (query size ≥ 3). Thus, the queries are grouped

3https://en.wikipedia.org/wiki/Five Ws
4We use TF-IDF in the weighted Jaccard to represent the weights [40].

according to their technologies and we avoid very small and
meaningless queries. For each split dataset, we run the three
similarity metrics using distinct threshold values, ranging from
0.5 to 0.9 by increments of 0.1, totaling 15 combinations.
As often performed in information retrieval, we tokenize and
remove stop words for this analysis. Therefore, for each com-
bination, the queries are grouped in similar queries according
to the evaluated similarity metric and threshold. Then, for
each combination, we collect the groups of similar queries
that include the base queries. Finally, we assess the accuracy
of the collected groups of similar queries against the oracle,
in terms of precision, recall, and F1 score [43]. As detailed
in Table IV, the best result in terms of F1 score (i.e., the
harmonic mean of the precision and recall) occurred for the
metric Jaccard and threshold 0.8. This combination resulted
in an overall precision of 0.99, recall of 0.85, and F1 score of
0.91. Thus, in this study, we adopt the Jaccard metric with a
threshold of 0.8 to group similar queries.

D. Research Questions: What Developers Find

In the following RQs, we focus on the search results.

1) RQ5: Google result resources: To understand what
developers find on the web, we first assess the returned
websites for their queries. For this purpose, we rely on the
official Google Search API [20] to programmatically search on
Google [44]. We selected Google because it is the de facto web
search engine nowadays with over 92% of the search market
share [45]. We perform two types of queries (specific and
generic), which are randomly selected from our query dataset.
The specific queries have references to popular technologies:
Python, JavaScript, Java, PHP, and CSS. The generic queries
include the broader terms how to, what is, example, vs, and
convert to, which come from RQ3. For each term, we select
500 queries, totaling 5K queries. Lastly, from the Google
search results, we collect the top 10 returned links and analyze
their source websites. Rationale: detecting software resources
on the web informs software vendors where developers find
information about their products, it notifies developers where
they can spot software information, and it supports researchers
to study the software resource landscape on the web [9], [46].

2) RQ6: Google result variation: Lastly, we explore the
variation of the search results due to similar queries. Rationale:
we aim to understand whether Google search results may
change due to minor query changes likely done by developers.
This way, we become aware of missing resources and its
possible impact on developers and programming tools that rely
on web search (e.g., [24]–[27]). Next, we detail this evaluation.
(i) Modifying the search query. We propose 28 modification
types, which are grouped into four categories: word swap,
word removal, synonymous word, and similar query, as de-
tailed in Table V. In word swap, we swap a target word from
the beginning to the end of the query; in word removal, we
remove a target word; in synonymous word, we replace a target
word by a synonym;5 and in similar query, we select queries

5Based on Stack Overflow synonyms for tags: stackoverflow.com/tags.

https://en.wikipedia.org/wiki/Five_Ws
stackoverflow.com/tags


from the groups of similar queries in RQ4 (i.e., Jaccard,
threshold: 0.8). Note that some changes are simple, e.g., from
the original query “python email parser” to the modified
version “email parser python”. In contrast, other changes may
affect the query meaning, e.g., from “convert txt to json” to
“convert json to txt”. For each modification type, we randomly
select (at most) 500 queries and create their 500 modified
versions, thus, generating close to 28K queries in total.
(ii) Searching on Google and assessing the results. Lastly, with
the Google Search API [20], we search for each query pair
(i.e., the original and modified versions) and we assess the top
10 returned links. For each pair of search results, we compare
whether the top 1 and the top 10 links are exactly the same;
we also compute the intersection of links in the top 10.

TABLE V
QUERY MODIFICATION SEARCHED ON GOOGLE.

Cat. Modification Type Example

W
or

d
sw

ap

1. context python email parser → email parser python
2. how to how to zoom in css → zoom in css how to
3. what is what is virtualenv → virtualenv what is
4. example example xml file → xml file example
5. vs map vs list → list vs map
6. convert to convert txt to json → convert json to txt

W
or

d
re

m
ov

al

7. context python email parser → email parser
8. how to how to zoom in css → zoom in css
9. what is what is virtualenv → virtualenv
10. example example xml file → xml file
11. vs map vs list → map list
12. convert to convert txt to json → txt to json
13. stop words from bootstrap 3 to 4 → bootstrap 3 4

Sy
no

ny
m

ou
s

w
or

d

14. python → py python email parser → py email parser
15. javascript → js xml encode javascript → xml encode js
16. java → jdk weak reference java → weak reference jdk
17. php → php5 swicth case php → swicth case php5
18. css → cascading
style sheets

twitter css library → twitter cascading style
sheets library

19. get → obtain vuejs get base url → vuejs obtain base url
20. create → build swift create json → swift build json
21. remove → delete list remove all → list delete all
22. check → verify date format check → date format verify
23. convert→ transform convert nan to zero → transform nan to zero

Si
m

ila
r

qu
er

y

24. python python list remove item→ how to remove item
from list python

25. javascript javascript tab open → open tab javascript
26. java java char array string→ java convert char array

to string
27. php php get array key→ how to get array key php
28. css css change color → change color in css

III. WHAT DEVELOPERS SEARCH FOR

RQ1: What is the content of the search queries?

Query context. Table VI summarizes the context of the
search queries. Close to 30% (389,185 out of 1,306,628)
of the developers’ queries have references to programming
languages. The top 10 programming languages account for the
majority of the cases (26.7%). The most referenced languages
are Python (6.2%), JavaScript (5.6%), and Java (4%). In
contrast, references to web frameworks are less common:
only 5.1% of the queries mention them. We also observe
that developers’ queries also mention other technologies, such
as HTML (3.6%), CSS (3.3%), and JQuery (2.1%). In total,
the 53 tracked technologies are referenced by 24.5% of the

queries. Altogether, developers are likely to cite the software
technologies behind the queries, making their contexts explicit.

TABLE VI
CONTEXT OF THE QUERIES. PY: PYTHON. JS: JAVASCRIPT. T10: TOP 10.

Pos Prog. languages Web frameworks Other technologies
Name # % Name # % Name # %

1 py 81,027 6.2 react 13,607 1.0 html 46,867 3.6
2 js 73,517 5.6 laravel 13,100 1.0 css 42,805 3.3
3 java 52,033 4.0 angular 12,913 1.0 jquery 27,982 2.1
4 php 45,720 3.5 django 5,450 0.4 bootstrap 23,830 1.8
5 sql 30,438 2.3 spring 5,278 0.4 android 20,010 1.5

T10 - 349,383 26.7 - 61,762 4.7 - 227,296 17.4
All - 389,185 29.8 - 66,408 5.1 - 320,301 24.5

When analyzing per programming website, we notice only
a small difference in the top-1 results (Table VII). Python is
the top-1 language in all websites, but W3Schools. The web
frameworks vary per website, but they are all among the top-
5 of the overall analysis. Lastly, the other technologies are
dominated by HTML and JQuery.

TABLE VII
CONTEXT OF THE QUERIES PER WEBSITE (TOP-1).

Websites Prog. languages Web frameworks Other technologies

stackoverflow.com python laravel jquery
w3schools.com javascript angular html
geeksforgeeks.org python react jquery
tutorialspoint.com python angular html
programcreek.com python django android

Query intent. To get more insights into the developers’ search
tasks, we perform a manual classification of 384 randomly
selected queries. Table VIII shows that developers mostly
perform code reuse (45.8%) and general (20.1%) searches.
Those queries are followed by programming (9.4%), debug-
ging (7.8%), database (7.6%), and tool searches (6.3%). We
could not find testing queries in our selection. Xia et al. [5]
found debugging, code reuse, and general searches as the most
common, whereas testing as the least common. The difference
in the top searches may happen because, in the prior study [5],
the queries belong to specific developers, which work in large
outsourcing companies mostly in Java. In our case, the queries
are much broader: the developers may have distinct expertise
levels and the queries are not specific to any language.

TABLE VIII
INTENT OF THE QUERIES.

Intent # % Examples

Third party code reuse 176 45.8 javascript read line from file
General search 77 20.1 neural network tutorial pdf
Programming 36 9.4 switch case cpp
Debugging and bug fixing 30 7.8 read csv not working
Database 29 7.6 group by statement sql
Tools 24 6.3 git commit windows
Undefined 12 3.1 two columns

Total 384 100 -



RQ1 Conclusion: Developers’ queries typically pro-
vide references to key contexts, such as programming
languages (30%), software technologies (24.5%), and
web frameworks (5%). Developers mostly perform
code reuse (45.8%) and general (20.1%) searches.

RQ2: What is the size of the search queries? Where are the
keywords located?
Query size. Figure 1 presents the distribution of the size for
the 1,306,628 queries. The median number of words per query
is only 3 (the first quartile is 3 and the third quartile is 4).
Breaking the queries by context, we notice a small variation:
queries with references to languages and other technologies
are slightly larger (4 words), while web framework queries
continue with 3. The literature reports that general web queries
are also short: 2.8 words [31]. However, code search studies
have found distinct values, e.g., 1.31 [17], 1.85 [18], and
4.2 [4]. Our results concur with those in the sense that some
variation in size is expected depending on the query context.

Fig. 1. Distribution of the size of the queries.

Keyword position. We now focus on the queries that include
references to languages, web frameworks, and other technolo-
gies. We assess where those keywords are located in the query,
i.e., first, middle, or last words. As presented in Figure 2, the
keywords are mostly the first of the query. In queries with ref-
erences to languages, 49.2% start by mentioning the language
itself (e.g., “python get file size”), while 36.9% end with it
(e.g., “get file size python”); in 13.9%, the reference appears
in the middle. In web framework queries, the difference is
larger: 65.2% start with the keyword. Lastly, other technology
queries also follow a similar trend (first: 48.7%).

Other technologies

0,0

12,5

25,0

37,5

50,0

First word Last word Middle word

21,4
29,9

48,7

Programming languages

0,0

12,5

25,0

37,5

50,0

First word Last word Middle word

13,9

36,9

49,2

Web frameworks

0,0

17,5

35,0

52,5

70,0

First word Last word Middle word

17,017,8

65,2

Fig. 2. Position of the keywords words in the queries (query size ≥ 3).

RQ2 Conclusion: Developers’ queries are short: they
have 3 words on the median, which is similar to
general web search queries. Keywords are more likely
to be the first than the last word in the query.

RQ3: How are the search queries structured?

Part of speech. We present in Table IX the tags used for
labeling part of speech in the queries. We notice that the
queries are mostly formed by content words (80.3%), while
function words represent only 19.7%. This rate is very similar
to the ones found in a recent study about general web search
queries [32], which detected 79% for content words and 21%
for function words. Thus, as in general web search, this
suggests that developers also tend to omit function words in
the analyzed search queries, possibly believing they will not
affect the query results [32], [36].

TABLE IX
TAGS USED FOR LABELING PART OF SPEECH IN THE QUERIES.

Class Tag # % Examples

Content

Noun 3,085,194 63.1 python, javascript, php
Verb 441,435 9.0 create, find, add
Adjective 271,106 5.5 multiple, new, empty
Adverb 91,836 1.9 how, where, online
Total 3,923,167 80.3 -

Function
Adposition 337,616 6.9 in, to, of
Conjunction 57879 1.2 and, or but
Other 567965 11.6 to, not, s
Total 963,460 19.7 -

We also observe in Table IX that the most common content
tag is noun (63.1%), followed by verb (9%) and adjective
(5.5%). In a related study, Biega et al. [32] also found the
same order (nouns, verbs, and adjectives) in general web
search queries, but with distinct ratios (47%, 15%, and 13%,
respectively). This suggests that nouns are more common
in developers’ queries than in general web search queries,
whereas the opposite happens to verbs and adjectives.

We detail in Table X the queries starting with Python,
JavaScript, and PHP (the most common starting nouns) and
their top 2nd and 3rd words. We notice that 42,608 queries
start with python, 25,436 with javascript, and 23,996 with php.
Those proper nouns are mostly followed by verbs (i.e., get,
print, and check) or common nouns representing data types
(i.e., list and array). Interestingly, the verb get is dominant in
the three cases, meaning that developers are likely to create
queries in the format: <technology> get <complement>, as
in “python get file” and “javascript get element”.

TABLE X
QUERIES STARTING WITH PYTHON, JAVASCRIPT, AND PHP.

1st python (42,608)

2nd 3rd

get current (58)
(1,010) all (41)

file (37)

list of (85)
(962) to (63)

remove (33)

print list (24)
(769) to (22)

format (19)

1st javascript (25,436)

2nd 3rd

get element (83)
(1,422) current (71)

all (47)

array to (40)
(721) of (38)

push (32)

check if (381)
(658) for (38)

string (15)

1st php (23,996)

2nd 3rd

get current (76)
(1,384) file (56)

first (54)

array to (64)
(725) remove (31)

get (28)

check if (303)
(562) string (23)

array (22)



Other frequent terms. To better understand how the queries
are formed, we assess frequent terms in the queries (Table XI).
We also present key accompanying words in those queries,
which were manually curated from their most frequent words
(after removing proper nouns, such as Python, JavaScript,
etc.). We first focus on the 5w1h terms, which represent
questions about information gathering or problem-solving. The
5w1h terms happen in 4.7% of the queries: the most common
terms are how (3.1%) and what (1.4%). Notice that their
accompanying words are distinct, involving themes as usage,
creation, difference, and installation, to name a few.

Next, we analyze the other three terms: example, vs, and
convert to, which are among the most commons nouns, adposi-
tions, and verbs, but are very specific to software development.
Developers mostly seek examples with terms as file, json, api,
post, and class, e.g., “valid json example” and “generic class
example”. The term vs is used in comparison queries and
happens with join, class, list, static, and array, e.g., “inner
join vs join” and “vector vs list”. Lastly, the term convert to
is more attached to data types, such as string, array, int, date,
and json, indicating developers are interested in conversions,
e.g., “convert string to decimal” and “convert json to csv”.

TABLE XI
FREQUENT TERMS IN THE QUERIES.

Term # % Top Words

5w1h 61,269 4.7 -
- how 40,092 3.1 to, use, create, make, file
- what 18,164 1.4 is/are, mean, between, difference, data
- where 1,269 0.1 is/are, stored, installed, put, file
- why 971 0.1 is/are, use, important, used, not
- when 603 <0.1 to, use, is, vs, class
- who 170 <0.1 is, created, developed, used, invented

example 21,793 1.7 file, json, api, post, class
vs 17,088 1.3 join, class, list, static, array
convert ... to ... 9,034 0.7 string, array, int, date, json

RQ3 Conclusion: As in general web search, developers
also tend to exclude function words in their queries,
which are mostly composed of content words (80.3%).
Developers’ queries may make explicit their goals,
using terms as 5w1h, example, vs, and convert.

RQ4: How similar are the search queries?

After grouping the queries by applying the Jaccard similar-
ity, we separate the similar queries in three groups (Table XII):
the ones with only one query (69%), groups with between
2 and 9 similar queries (30%), and groups with 10 or more
queries (1%). In total, 370,001 groups are created with 635,943
queries: 40% of the queries are grouped alone (i.e., group
size = 1), while 60% have similar queries (i.e., they are
in groups with size ≥ 2). We observe that 50,104 (8%)
queries belong to the 3,392 groups with 10 or more similar
queries. The right side of the table details this distribution:
on the median, those 3,392 groups have 13 similar queries
(the first quartile is 10 and the third quartile is 16). This

suggests that developers are likely to perform similar queries
with small variations. For example, the largest group in our
analysis includes 131 tiny queries related to the C program-
ming language, e.g., “or in c” and “for in c”. The second
largest group has 95 similar queries related to the usage of
array in JavaScript, e.g., “array in javascript” and “if array
javascript”. Lastly, the third largest group includes 78 HTML
queries related to the opening of new tabs, e.g., “html open
new tab” and “new tab open html”.

TABLE XII
STATISTICS OF THE SIMILAR QUERIES.

Groups of Similar Queries Queries
Size # % # %

1 256,899 69 256,899 40
2 to 9 109,710 30 328,940 52
≥ 10 3,392 1 50,104 8

Total 370,001 100 635,943 100

RQ4 Conclusion: Most of the developers’ queries are
similar among each other: while 40% have no similar
counterpart, 60% have at least one similar peer. We
also find that 8% have 10 or more similar ones.

IV. WHAT DEVELOPERS FIND

Based on our findings so far, we propose two novel analyses
to explore and reason about search results.

RQ5: Where does Google find software resources?

We perform queries on Google to discover the websites
it finds software resources on the web. Specifically, we run
5K queries with the support of the Google Search API [20].
Table XIII summarizes this analysis: we find 7,303 distinct
websites and 49,203 distinct links. Overall, when considering
all the search results (i.e., top 10), the most recurrent web-
sites are stackoverflow.com (11%), youtube.com (6%), and
w3schools.com (5%). Interestingly, YouTube is the second one
before websites dedicated to software development. Notice that
when considering only the top 1 websites, Stack Overflow
is even more dominant with 28% of the links. We also
observe that 4 out of the 5 studied websites (Stack Overflow,
W3Schools, GeeksForGeeks, and TutorialsPoint) appear in the
top search results: this is expected because they are among the
most popular ones nowadays.

Next, we break the results by keyword and general queries
(Table XIV). The keyword queries are about popular contexts
found in RQ1 (e.g., Python, JavaScript, etc.), whereas the
general ones include common search terms found in RQ3
(e.g., how to, what is, etc.). The keyword queries return
fairly less distinct websites than the general ones (column
#). For example, the python queries returned 764 distinct
websites, while the how to queries returned almost twice



TABLE XIII
OVERVIEW OF THE MOST RETURNED WEBSITES BY GOOGLE.

Top 10 (all) # % Top 1 # %

stackoverflow.com 5,246 11 stackoverflow.com 1,393 28
youtube.com 2,931 6 w3schools.com 705 14
w3schools.com 2,656 5 geeksforgeeks.org 217 4
geeksforgeeks.org 2,241 5 php.net 211 4
tutorialspoint.com 1,161 2 en.wikipedia.org 119 2
developer.mozilla.org 1,142 2 developer.mozilla.org 97 2
medium.com 776 2 docs.python.org 96 2
en.wikipedia.org 743 2 docs.oracle.com 89 2
php.net 701 1 tutorialspoint.com 80 2

Distinct websites 7,303 868
Distinct links 49,203 4,924

more (1,412). Besides, in addition to dominant websites like
stackoverflow.com and w3schools.com, the keyword queries
reveal dedicated websites, for example, the python queries go
to docs.python.org, javascript to developer.mozilla.org, java to
docs.oracle.com, php to php.net, and css to css-tricks.com.

TABLE XIV
RETURNED WEBSITES BY GOOGLE: KEYWORD AND GENERAL QUERIES.

Query # Top 3 websites

python 764 stackoverflow.com, docs.python.org, geeksforgeeks.org
javascript 831 stackoverflow.com, w3schools.com, developer.mozilla.org
java 729 stackoverflow.com, geeksforgeeks.org, docs.oracle.com
php 902 stackoverflow.com, php.net, w3schools.com
css 837 w3schools.com, stackoverflow.com, css-tricks.com

how to 1,412 stackoverflow.com, youtube.com, w3schools.com
what is 1,577 youtube.com, en.wikipedia.org, stackoverflow.com
example 1,175 w3schools.com, en.wikipedia.org, youtube.com
vs 1,751 stackoverflow.com, youtube.com, medium.com
convert to 1,321 stackoverflow.com, youtube.com, geeksforgeeks.org

Another observation is that stackoverflow.com is the top
1 in most cases (7 out of 10), but not for css, what is, and
example queries. Lastly, it is worth to notice that youtube.com
is top 3 in all general queries, but in none of the specific ones.
Examples of general queries in which YouTube is top-ranked
include: “how to use colab”, “what is real time database”, and
“example of transitive relation”, to name a few. This reinforces
YouTube as an important source of knowledge for developers
nowadays, and, depending on how the query is written, it may
even overshadow mainstream software development websites.

RQ5 Conclusion: Google finds software resources
mostly on Stack Overflow (11%), YouTube (6%),
and W3Schools (5%). However, the results may vary
according to query (keyword or general).

RQ6: How do Google results vary for similar queries?

In this final analysis, we explore how Google results vary
for similar developers’ queries. The results are summarized in
Table XV. Column “full agreement” presents the percentage of
original and modified search query results with the same links
and same order. The last column presents the intersection of
links between the original and modified search query results.

Overall, we observe that the top 1 results are less impacted
by the modifications, that is, they often present high full
agreement. For example, swapping the term how to from
the beginning to end of the query does not change 80% of
the top 1 results. On the other hand, notice that the top 10
results rarely have full agreement, at most 5%. However, with
a few exceptions, the intersection of links is high between
the original and modified results, over 70% in most of the
comparisons. Next, we detail each category.

TABLE XV
AGREEMENT IN THE GOOGLE SEARCH RESULTS.

Cat. Modification Type
Full agreement (%) Intersection
Top 1 Top 10 Top 10 (Med.)

W
or

d
sw

ap

context 89 5 90
how to 80 1 80
what is 72 0 80
example 73 0 80
vs 88 3 90
convert to 14 0 30

W
or

d
re

m
ov

al

context 32 0 20
how to 77 2 90
what is 56 0 70
example 23 0 30
vs 44 0 60
convert to 71 0 70
stop words 65 1 80

Sy
no

ny
m

ou
s

w
or

d
python → py 70 0 70
javascript → js 80 2 80
java → jdk 47 0 60
php → php5 30 0 20
css → cascading
style sheets

52 0 50

get → obtain 70 1 70
create → build 60 1 60
remove → delete 76 1 70
check → verify 69 2 70
convert→ transform 63 2 70

Si
m

ila
r

qu
er

y python 65 4 80
javascript 60 1 70
java 60 5 80
php 58 2 80
css 61 5 80

Word swap. Overall, swapping the word in the query
(e.g., from “example xml file” to “xml file example”) is not
likely to impact the top 1 search result, however, it affects
the links and order of the top 10 results. In this case, 5 out
of 6 comparisons have top 1 agreement over 70%, meaning
that the original and modified queries mostly lead to the same
top 1 link. The sole exception is the convert to queries: the
agreement is low in the top 1 (14%) and the intersection of
links is only 30%. In this case, the modified query may change
the meaning of the original query. For example, the queries
“convert txt to json” and “convert json to txt” have different
goals, thus, it is expected they return distinct links.
Word removal. Omitting words from the queries impact the
top 1 as well as the top 10 links and order. In the top 1,
the agreement varies from 23 to 77%, while in the top 10 it
varies from 0 to 2%. The least affected are the how to queries:
after removing this term, 77% of the top 1 results are still the
same. In contrast, the most affected are example and context
queries, which have only 23% and 32% of agreement in the



top 1, respectively. Notice that, removing those terms may
make the query generic: for example, removing php from “php
email parser” to “email parser” causes it to be technology
independent. Lastly, omitting stop words from queries affects
35% of the top 1 results, i.e., 65% remains the same. However,
the links have a high intersection (80%).
Synonymous word. For synonymous languages, the top 1
agreement has a large variation, from 30% to 80%. JavaScript
and Python queries are the least affected: using javascript or
js in the search queries is likely to return the same top 1
link (80% of agreement), with 80% of intersection; likewise,
python and py produce 70% for both metrics. The most
impacted results happens when we replace php by php5 and
java by jdk, leading to top 1 agreement of only 30% and 47%,
respectively. Replacing css by cascading style sheets modifies
around 50% of the top 1 results and the link intersection. Fi-
nally, synonymous verbs have less impact: the top 1 agreement
ranges from 60% (create→ build) to 76% (remove→ delete),
while the intersection is mostly around 70%.
Similar query. In this category, we rely on the data computed
for RQ4, that is, Jaccard similarity and threshold 0.8. This way,
we can compare the results of queries like “change color svg
css” and “svg change color in css”. In this case, the top 1
agreement varies from 58% to 65%, while the top 10 from
1% to 5%. The intersection of links is high, mostly 80%.

RQ6 Conclusion: The links and order of the top 10
Google search results are very likely to change due
to similar queries, whereas the top 1 is much less
affected. However, overall, the intersection of links due
to similar queries is high, at least 70% in most cases.

V. DISCUSSION AND IMPLICATIONS

Characteristics of developers’ queries (RQ1, 2, 3 & 4). We
find that developers’ queries are likely to include key contexts.
Most queries are similar among each other, that is, 60% have
at least one similar peer. Moreover, we detect that developers’
queries share some characteristics with general ones [31],
[32], [36]: they are both short (3 words) and tend to omit
function words. We also quantified several common terms,
e.g., 5w1h, comparison, and conversion. Thus, we contribute
to the literature with a large study to characterize real-world
developers’ queries, complementing existing research on this
field [5], [14], [16]–[19]. We reveal novel empirical data
that can guide software vendors and content providers better
understanding developers’ queries and needs.
Patterns in developer’s queries (RQ3). A common query
starts with a technology and is followed by a verb and
a complement, like <technology> <verb> <complement>,
e.g., “python get temp dir”. We identify others patterns, like
<data1> vs <data2> and convert <data1> to <data2>.
Exploring those patterns can be useful for research areas as au-
tomated suggestions and reformulation of search queries [21]–
[23]. For this purpose, queries can be suggested/refined ac-
cording to the prevalence of certain verbs and nouns typically

found in developers’ queries. For example, developers often
convert data types like string, array, and json, so conversion
queries could be suggested based on this list of known nouns.
Thus, we shed light on the existence of query patterns specific
to software development. However, although we provide initial
insights, a deeper analysis should yet be done.
Impact of changes on developers’ queries (RQ6). Perform-
ing minor changes to queries (e.g., swapping and omitting
words) do not broadly affect the top 1 search results nor the
overall top 10. Understating which changes can (and cannot)
be safely applied to the queries have implications to tool
creators that rely on web search to find errors/exceptions [24]
and to integrate IDEs [25]–[27]. For example, tool creators
can refine their queries (e.g., when searching for similar error
messages, code examples, etc.) and evaluate the impact on
the users. Thus, our empirical data on the overall stability of
Google results can foment the creation of better programming
tools that rely on web search.
Cosmetic changes (RQ6). We have highlighted that the
Google search results are not likely to change due to minor
changes, however, we do find a few exceptions that deserve
some attention. For example, one may argue that the simple
swapping of the language from the beginning to the end of the
query should ideally not affect the search results (e.g., “php utc
time” → “utc time php”), however, it does change 11% of the
top 1 results and 10% of the top 10 links. Likewise, starting or
ending the query with how to impacts 20% of the top 1 results
and 20% of the top 10 links. We thus show that cosmetic
query changes can affect the Google results, indicating that
there is some room for improvement in the search algorithm,
particularly in the software resource search landscape.
Omission of function words (RQ3 & 6). Users tend to
omit function words in general search queries [32], [36]. We
find that developers also tend to exclude function words from
queries, which are mostly formed by content words (80.3%).
However, we also detect that removing stop words (which
includes function words) affect 35% of the top 1 search results
and 20% of the returned links. This way, although developers
may omit function words from the queries, they should be
aware that the search results are sensitive to those changes.
Also, tools that rely on web search (e.g., [24]–[27]) may be
impacted by those omissions and thus should be aware to avoid
noisy results for developers.
Priority of Google to Stack Overflow (RQ5) It is fact
that Stack Overflow plays an important role in software
development nowadays [9], [47], [48]. Our findings reinforce
this statement: we detect that Google finds software resources
mostly on Stack Overflow (11%) with an over-concentration
in the top 1 results (28%). Despite its popularity, recent studies
warn that Stack Overflow should be used with caution: their
code examples may be insecure, include outdated code, and
contain usage and license violations [49]–[52]. The fact that
Stack Overflow is mostly top 1 deepens this issue since those
links receive more clicks from the users [53], consequently,
the potential risks are even more widespread. We thus bring
to light novel data about the priority Google search provides



to Stack Overflow, despite its well-known risks [49]–[52].
YouTube and other relevant sources (RQ5). YouTube is
likely to be in the top 3 results of general queries, e.g., the
ones with how to, what is, etc. Interestingly, recent [9] and
older [46] studies to assess resource search on the web do not
point YouTube as a relevant source; this may happen because
their search queries are specific (i.e., API documentation).
In contrast, we show that YouTube is a prominent source
for Google. However, YouTube links are more likely to be
returned in general queries than in specific ones. This can
foment more research linking YouTube and software develop-
ment (e.g., [54]–[56]) to better understand how, why, and when
developers resort to videos rather than programming websites.

Besides, we also present that Google finds software re-
sources on a large variety of websites (we found 7K websites
and 49K links for 5K queries in RQ5, and make it publicly
available). This way, we provide novel resources for crowd-
sourcing studies [57], e.g., to improve documentation [58]–
[60], APIs [61]–[64], and code examples [41], [65], [66].

VI. THREATS TO VALIDITY

Developers’ queries and Alexa. Our queries come from Alexa,
a platform that monitors global internet traffic [15]. Despite it
is a major player on the market, their traffic is not complete;
no tool can provide the whole internet traffic. Thus, despite our
large analysis of 1.3M queries, they may represent a fraction
of the whole traffic of the selected websites. Moreover, we
do not differentiate the queries according to their frequency
(e.g., some queries may be more popular than others), thus,
further studies should be performed to assess query frequency.
Manual classification of developers’ intent. We rely on the
categories proposed by Xia et al. [5] to assess developers’
intention, keeping consistency with prior literature. Since
the categories are well-defined, the query classification is
straightforward. Even so, like any other manual classification,
it is subjected to error and bias. However, an evidence that
may minimize this threat is that both results share similarities
(e.g., reuse is common and testing is rare in both studies).
Google search results. We rely on the official Google Search
API [20] to programmatically search on Google. This avoids
any bias caused by manual search analysis (e.g., cache, loca-
tion, etc.) and allows us to scale to run thousands of queries.
Notice that the Google Search API has request limits per day
(10K), thus we could not scale to run millions of queries.
Personally identifiable information (PII). Alexa only keeps
track of frequent queries, thus, they are unlikely to contain PII.
We inspected 384 randomly selected queries (95% confidence
level and 5% confidence interval); none of them included PII.
Generalization. The studied queries come from quite popular
websites for developers and represent real-world needs. Also,
we run the search queries on Google, which dominates the
web with more than 92% of the search market share [45].
Despite this, as usual in empirical studies, our query analysis
(RQ1-RQ4) cannot be directly generalized to other websites.
Similarly, our result analysis (RQ5-RQ6) cannot be general-
ized to other search engines, like Yahoo!, Bing, Baidu, etc.

VII. RELATED WORK

There exist a large research field on code search engines [8],
[12], [41], [42], [67], [68]. In this context, some studies
have been done to assess how developers search for code.
Bajracharya et al. [16], [17] mined the log usage of the
Koders code search engine and reveled some similarities with
general web search, the prevalence of certain topics, and
lexical structures. Sadowski et al. [18] performed a case study
at Google to learn how developers search for code, including
search frequency, search target, and developers’ goal.

Xia et al. [5] studied the queries from 60 developers and
surveyed 235 software engineers to understand developers’
search tasks. They found that the most frequent search tasks
are related to debugging, code reuse, and general searches,
whereas we found that developers mostly perform code reuse
and general searches. While the authors analyze queries of
developers who work on outsourcing companies mostly in
Java, in our study, the queries are broader and not spe-
cific to any language. Also, their goal is to understand the
developers’ search tasks, whereas we focus on developers’
search queries themselves. Besides, we analyze the search
results due to developers’ queries with the Google Search
API [20], which is a novel assessment in the literature. In
a related line, Microsoft researchers [19] provided a classifier
for distinguishing software engineering related queries from
other queries and defined the taxonomy of queries. Rahman et
al. [14] focused on how developers use general web search for
code retrieval by assessing the queries of 310 developers. The
authors compare code and non-code related queries regarding
vocabulary, modification, and sessions, and find that code
search performance in general web search is less effective.
In this study, we do not contrast code and non-code queries.
We assess other aspects of developers’ search queries: content,
size, keyword position, structure, similarity, result resources,
and result variation. Thus, we complement existing studies
with novel data about developers’ queries and search results.

VIII. CONCLUSION

We presented a large empirical study to understand what
developers search for on the web and what they find. We
first performed a quantitative and qualitative analysis to assess
the content, size, structure, and similarity of 1.3M developers’
queries. Then, we run thousands of search queries on Google
to explore the search results. We found that developers’ queries
typically include references to key contexts, are short, and tend
to omit functional words; minor changes to queries do not
largely affect the search results; and top search results are dom-
inated by Stack Overflow and YouTube. Lastly, we discussed
and provided implications for developers and researchers.

As future work, we plan to deepen our analysis on the query
patterns specific to development (e.g., comparison, conversion,
etc.). We also plan to perform more qualitative analysis per
context to better understand specific needs. Lastly, we plan to
expand the set of modifications to the search queries to assess
its impact and implications on the Google search results.



REFERENCES

[1] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2016, pp. 631–642, https://doi.org/10.1145/2950290.2950334.

[2] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 3, p. 26, 2014, https://doi.org/10.1145/2581377.

[3] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes, “How well do
search engines support code retrieval on the web?” ACM Transactions
on Software Engineering and Methodology, vol. 21, no. 1, p. 4, 2011,
https://doi.org/10.1145/2063239.2063243.

[4] S. E. Sim, M. Agarwala, and M. Umarji, “A controlled experiment on
the process used by developers during internet-scale code search,” in
Finding Source Code on the Web for Remix and Reuse. Springer,
2013, pp. 53–77, https://doi.org/10.1007/978-1-4614-6596-6 4.

[5] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing,
“What do developers search for on the web?” Empirical Software
Engineering, vol. 22, no. 6, pp. 3149–3185, 2017, https://doi.org/10.
1007/s10664-017-9514-4.

[6] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Conference on Human Factors in Com-
puting Systems, 2009, pp. 1589–1598, https://doi.org/10.1145/1518701.
1518944.

[7] K. Philip, M. Umarji, M. Agarwala, S. E. Sim, R. Gallardo-Valencia,
C. V. Lopes, and S. Ratanotayanon, “Software reuse through methodical
component reuse and amethodical snippet remixing,” in Conference on
Computer Supported Cooperative Work, 2012, pp. 1361–1370, https:
//doi.org/10.1145/2145204.2145407.

[8] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code examples for
code search engines,” Empirical Software Engineering, vol. 22, no. 1,
pp. 259–291, 2017, https://doi.org/10.1007/s10664-015-9421-5.

[9] C. Treude and M. Aniche, “Where does Google find API documenta-
tion?” in International Workshop on API Usage and Evolution, 2018,
pp. 19–22, https://doi.org/10.1145/3194793.3194796.

[10] Stack Overflow, https://stackoverflow.com, July, 2020.
[11] W3Schools, https://www.w3schools.com, July, 2020.
[12] J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Towards an intelligent

code search engine,” in Conference on Artificial Intelligence, 2010, p.
1358–1363, https://dl.acm.org/doi/10.5555/2898607.2898824.

[13] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing what
I mean-code search and idiomatic snippet synthesis,” in International
Conference on Software Engineering, 2016, pp. 357–367, https://doi.
org/10.1145/2884781.2884808.

[14] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,
C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how developers
use general-purpose web-search for code retrieval,” in International
Conference on Mining Software Repositories, 2018, pp. 465–475, https:
//doi.org/10.1145/3196398.3196425.

[15] Alexa, https://www.alexa.com, July, 2020.
[16] S. Bajracharya and C. Lopes, “Mining search topics from a code search

engine usage log,” in International Working Conference on Mining
Software Repositories, 2009, pp. 111–120, https://doi.org/10.1109/MSR.
2009.5069489.

[17] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4-5, pp.
424–466, 2012, https://doi.org/10.1007/s10664-010-9144-6.

[18] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in European Software Engineering Conference and
the Symposium on the Foundations of Software Engineering, 2015, pp.
191–201, https://doi.org/10.1145/2786805.2786855.

[19] C. Bansal, T. Zimmermann, A. H. Awadallah, and N. Nagappan,
“The usage of web search for software engineering,” arXiv preprint
arXiv:1912.09519, 2019, https://arxiv.org/pdf/1912.09519.pdf.

[20] Google Search API, https://developers.google.com/custom-search/v1/
overview, July, 2020.

[21] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Men-
zies, “Automatic query reformulations for text retrieval in Software
Engineering,” in International Conference on Software Engineering,
2013, pp. 842–851, https://doi.org/10.1109/ICSE.2013.6606630.

[22] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,”

in International Conference on Software Maintenance and Evolution,
2018, pp. 473–484, https://doi.org/10.1109/ICSME.2018.00057.

[23] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation
for code search using crowdsourced knowledge,” Empirical Software
Engineering, vol. 24, no. 4, pp. 1869–1924, 2019, https://doi.org/10.
1007/s10664-018-9671-0.

[24] M. M. Rahman, S. Yeasmin, and C. K. Roy, “Towards a context-aware
IDE-based meta search engine for recommendation about programming
errors and exceptions,” in Software Evolution Week-IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering, 2014,
pp. 194–203, https://doi.org/10.1109/CSMR-WCRE.2014.6747170.

[25] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric Programming: Integrating Web Search into the Development
Environment,” in SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 513–522, https://doi.org/10.1145/1753326.1753402.

[26] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Min-
ing StackOverflow to turn the IDE into a self-confident programming
prompter,” in Working Conference on Mining Software Repositories,
2014, pp. 102–111, https://doi.org/10.1145/2597073.2597077.

[27] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Code search in the
ide using crowdsourced knowledge,” in International Conference on
Software Engineering Companion, 2017, pp. 51–54, https://doi.org/10.
1109/ICSE-C.2017.11.

[28] GeeksForGeeks, https://www.geeksforgeeks.org, July, 2020.
[29] TutorialsPoint, https://www.tutorialspoint.com, July, 2020.
[30] ProgramCreek, https://www.programcreek.com, July, 2020.
[31] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic, “From e-sex to e-

commerce: Web search changes,” Computer, vol. 35, no. 3, pp. 107–109,
2002, https://doi.org/10.1109/2.989940.

[32] A. J. Biega, J. Schmidt, and R. S. Roy, “Towards query logs for
privacy studies: On deriving search queries from questions,” in European
Conference on Information Retrieval, 2020, pp. 110–117, https://doi.org/
10.1007/978-3-030-45442-5 14.

[33] M. Kestemont, “Function words in authorship attribution. from black
magic to theory?” in Workshop on Computational Linguistics for Liter-
ature, 2014, pp. 59–66, http://doi.org/10.3115/v1/W14-0908.

[34] C. Chung and J. W. Pennebaker, “The psychological functions of
function words,” Social communication, vol. 1, pp. 343–359, 2007,
https://psycnet.apa.org/record/2007-01308-012.

[35] G. K. Zipf, Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books, 2016, https://doi.org/
10.2307/2572028.

[36] C. Barr, R. Jones, and M. Regelson, “The linguistic structure of english
web-search queries,” in Conference on Empirical Methods in Natural
Language Processing, 2008, pp. 1021–1030, https://dl.acm.org/doi/10.
5555/1613715.1613848.

[37] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975, https://doi.org/10.1145/361219.361220.

[38] P. Jaccard, “Distribution de la flore alpine dans le bassin des dranses et
dans quelques régions voisines,” Bull Soc Vaudoise Sci Nat, vol. 37, pp.
241–272, 1901, https://ci.nii.ac.jp/naid/10027880482.

[39] F. Chierichetti, R. Kumar, S. Pandey, and S. Vassilvitskii, “Finding the
Jaccard median,” in Symposium on Discrete Algorithms, 2010, pp. 293–
311, https://doi.org/10.1137/1.9781611973075.25.

[40] D. Silva and M. T. Valente, “RefDiff: detecting refactorings in version
histories,” in International Conference on Mining Software Repositories,
2017, pp. 269–279, https://doi.org/10.1109/MSR.2017.14.

[41] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in International Conference on Software Engineering, 2014, pp. 664–
675, https://doi.org/10.1145/2568225.2568292.

[42] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in International
Conference on Software Engineering, 2018, pp. 933–944, https://doi.
org/10.1145/3180155.3180167.

[43] C. D. Manning, H. Schütze, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge university press, 2008, https://nlp.stanford.
edu/IR-book.

[44] Google Custom Search Engine, https://developers.google.com/
custom-search/docs/tutorial/creatingcse, July, 2020.

[45] Search Engine Market Share Worldwide, https://gs.statcounter.com/
search-engine-market-share, July, 2020.

[46] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in International Workshop on Web 2.0 for Software Engineering, 2011,
pp. 25–30, https://doi.org/10.1145/1984701.1984706.

https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2581377
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1007/978-1-4614-6596-6_4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/2145204.2145407
https://doi.org/10.1145/2145204.2145407
https://doi.org/10.1007/s10664-015-9421-5
https://doi.org/10.1145/3194793.3194796
https://stackoverflow.com
https://www.w3schools.com
https://dl.acm.org/doi/10.5555/2898607.2898824
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425
https://www.alexa.com
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1145/2786805.2786855
https://arxiv.org/pdf/1912.09519.pdf
https://developers.google.com/custom-search/v1/overview
https://developers.google.com/custom-search/v1/overview
https://doi.org/10.1109/ICSE.2013.6606630
https://doi.org/10.1109/ICSME.2018.00057
https://doi.org/10.1007/s10664-018-9671-0
https://doi.org/10.1007/s10664-018-9671-0
https://doi.org/10.1109/CSMR-WCRE.2014.6747170
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1109/ICSE-C.2017.11
https://doi.org/10.1109/ICSE-C.2017.11
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.programcreek.com
https://doi.org/10.1109/2.989940
https://doi.org/10.1007/978-3-030-45442-5_14
https://doi.org/10.1007/978-3-030-45442-5_14
http://doi.org/10.3115/v1/W14-0908
https://psycnet.apa.org/record/2007-01308-012
https://doi.org/10.2307/2572028
https://doi.org/10.2307/2572028
https://dl.acm.org/doi/10.5555/1613715.1613848
https://dl.acm.org/doi/10.5555/1613715.1613848
https://doi.org/10.1145/361219.361220
https://ci.nii.ac.jp/naid/10027880482
https://doi.org/10.1137/1.9781611973075.25
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167
https://nlp.stanford.edu/IR-book
https://nlp.stanford.edu/IR-book
https://developers.google.com/custom-search/docs/tutorial/creatingcse
https://developers.google.com/custom-search/docs/tutorial/creatingcse
https://gs.statcounter.com/search-engine-market-share
https://gs.statcounter.com/search-engine-market-share
https://doi.org/10.1145/1984701.1984706


[47] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd docu-
mentation: Exploring the coverage and the dynamics of API discussions
on Stack Overflow,” Georgia Institute of Technology, Tech. Rep, 2012,
http://chrisparnin.me/pdf/crowddoc.pdf.

[48] State of the Stack 2019: A Year in Review, https://stackoverflow.blog/
2019/01/18/state-of-the-stack-2019-a-year-in-review, July, 2020.

[49] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow considered harmful? the impact of copy&paste
on Android application security,” in Symposium on Security and Privacy,
2017, pp. 121–136, https://doi.org/10.1109/SP.2017.31.

[50] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in Java: Challenges and vulnerabilities,” in International
Conference on Software Engineering, 2018, pp. 372–383, https://doi.org/
10.1145/3180155.3180201.

[51] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online Q&A forum reliable?: a study of API misuse
on Stack Overflow,” in International Conference on Software Engineer-
ing, 2018, pp. 886–896, https://doi.org/10.1145/3180155.3180260.

[52] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on Stack Overflow,” Transactions on Software
Engineering, 2019, https://doi.org/10.1109/TSE.2019.2900307.

[53] Google General Guidelines, https://static.googleusercontent.com/
media/www.google.com/en//insidesearch/howsearchworks/assets/
searchqualityevaluatorguidelines.pdf, July, 2020.

[54] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge using
YouTube,” in International Conference on Program Comprehension,
2015, pp. 104–114, https://doi.org/10.1109/ICPC.2015.19.

[55] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t watch! extract-
ing relevant fragments from software development video tutorials,” in
International Conference on Software Engineering, 2016, pp. 261–272,
https://doi.org/10.1145/2884781.2884824.

[56] M. Ellmann, A. Oeser, D. Fucci, and W. Maalej, “Find, understand,
and extend development screencasts on YouTube,” in ACM SIGSOFT
International Workshop on Software Analytics, 2017, pp. 1–7, https://
doi.org/10.1145/3121257.3121260.

[57] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and GitHub:
Associations between software development and crowdsourced knowl-
edge,” in International Conference on Social Computing, 2013, pp. 188–
195, https://doi.org/10.1109/SocialCom.2013.35.

[58] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending insightful
comments for source code using crowdsourced knowledge,” in Interna-
tional Working Conference on Source Code Analysis and Manipulation,
2015, pp. 81–90, https://doi.org/10.1109/SCAM.2015.7335404.

[59] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in International Conference on Soft-
ware Engineering, 2016, pp. 392–403, https://doi.org/10.1145/2884781.
2884800.

[60] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro,
N. Ernst, M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez
et al., “On-demand developer documentation,” in International Con-
ference on Software Maintenance and Evolution, 2017, pp. 479–483,
https://doi.org/10.1109/ICSME.2017.17.

[61] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic API recom-
mendation using crowdsourced knowledge,” in International Conference
on Software Analysis, Evolution, and Reengineering, vol. 1, 2016, pp.
349–359, https://doi.org/10.1109/SANER.2016.80.

[62] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do java developers struggle with cryptography apis?” in
International Conference on Software Engineering, 2016, pp. 935–946,
https://doi.org/10.1145/2884781.2884790.

[63] J. Zhang, H. Jiang, Z. Ren, and X. Chen, “Recommending apis for api
related questions in stack overflow,” IEEE Access, vol. 6, pp. 6205–6219,
2017, https://doi.org/10.1109/ACCESS.2017.2777845.

[64] H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach
for discovering relevant tutorial fragments for apis,” in International
Conference on Software Engineering, 2017, pp. 38–48, https://doi.org/
10.1109/ICSE.2017.12.

[65] R. P. Buse and W. Weimer, “Synthesizing API usage examples,” in
International Conference on Software Engineering, 2012, pp. 782–792,
https://doi.org/10.1109/ICSE.2012.6227140.

[66] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in International Conference on Software
Engineering, 2015, pp. 880–890, https://doi.org/10.1109/ICSE.2015.98.

[67] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Symposium on Object-oriented Programming
Systems, Languages, and Applications, 2006, pp. 681–682, https://doi.
org/10.1145/1176617.1176671.

[68] D. Rush and A. Bulsara, “Source Code Search Engine,” Dec. 27
2007, uS Patent App. 11/663,417, https://patents.google.com/patent/
US20070299825A1/en.

http://chrisparnin.me/pdf/crowddoc.pdf
https://stackoverflow.blog/2019/01/18/state-of-the-stack-2019-a-year-in-review
https://stackoverflow.blog/2019/01/18/state-of-the-stack-2019-a-year-in-review
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1109/TSE.2019.2900307
https://static.googleusercontent.com/media/www.google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
https://static.googleusercontent.com/media/www.google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
https://static.googleusercontent.com/media/www.google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
https://doi.org/10.1109/ICPC.2015.19
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1145/3121257.3121260
https://doi.org/10.1145/3121257.3121260
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1145/2884781.2884800
https://doi.org/10.1145/2884781.2884800
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1109/SANER.2016.80
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1109/ACCESS.2017.2777845
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1109/ICSE.2012.6227140
https://doi.org/10.1109/ICSE.2015.98
https://doi.org/10.1145/1176617.1176671
https://doi.org/10.1145/1176617.1176671
https://patents.google.com/patent/US20070299825A1/en
https://patents.google.com/patent/US20070299825A1/en

	Introduction
	Study Design
	Selecting the Websites
	Collecting the Search Queries
	Research Questions: What Developers Search For
	RQ1: Query Content
	RQ2: Query Size and Keyword Position
	RQ3: Query Structure
	RQ4: Query Similarity

	Research Questions: What Developers Find
	RQ5: Google result resources
	RQ6: Google result variation


	What Developers Search For
	What Developers Find
	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion
	References

