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Abstract—Test coverage is largely used to assess test effective-
ness. In practice, not all code is equally important for coverage
analysis, for instance, code that will not be executed during tests
is irrelevant and can actually harm the analysis. Some coverage
tools provide support for code exclusion from coverage reports,
however, we are not yet aware of what code tends to be excluded
nor the reasons behind it. This can support the creation of
more accurate coverage reports and reveal novel and harmful
usage cases. In this paper, we provide the first empirical study to
understand code exclusion practices in test coverage. We mine 55
Python projects and assess commit messages and code comments
to detect rationales for exclusions. We find that (1) over 1/3 of
the projects perform deliberate coverage exclusion; (2) 75% of
the code are already created using the exclusion feature, while
25% add it over time; (3) developers exclude non-runnable,
debug-only, and defensive code, but also platform-specific and
conditional importing; and (4) most code is excluded because
it is already untested, low-level, or complex. Finally, we discuss
implications to improve coverage analysis and shed light on the
existence of biased coverage reports.

Index Terms—Software Testing, Test Coverage, Software Evo-
lution, Software Maintenance, Software Repository Mining

I. INTRODUCTION

Test coverage measures the percentage of code that is
covered (and uncovered) by tests, that is, which parts of a
program are actually executed during a test run [1]. Coverage
measurement is used to assess the test effectiveness [2]–[4]
and provides benefits to the developer workflow by offering
an objective, industry-standard metric with actionable data [3],
[5]. For instance, it can be used to identify untested areas of
the code, to ensure that frequently changing code is covered,
to facilitate code review, and to make sure that tests are
not getting worse over time [5], [6]. Indeed, many coverage
tools are available nowadays for most languages, for example,
Coverage.py [4] for Python, JaCoCo [7] and Cobertura [8] for
Java, Jest [9] and Istanbul [10] for JavaScript, to name a few.

In practice, not all code is equally important for coverage
analysis. For example, code that will never be executed during
tests is irrelevant for coverage analysis [4], [5]. Consequently,
this type of code can actually harm coverage reports [4], [5].
Some coverage tools provide native support to exclude code
from coverage analysis, that is, the developer can deliberately
flag the code to be ignored. Coverage.py1 and Istanbul2, for

1https://coverage.readthedocs.io/en/coverage-5.3/excluding.html
2https://github.com/gotwarlost/istanbul#ignoring-code-for-coverage

instance, provide features to filter out one or more lines
from coverage reports. Despite being provided by mainstream
coverage tools, we are not yet aware of what code tends to be
excluded from test coverage reports nor the reasons behind
the exclusions. This knowledge can be used to understand
code coverage exclusion practices, supporting the production
of more accurate coverage reports. Moreover, this can also fa-
cilitate code review, for example, when coverage is integrated
into the code review process [5].

In this paper, we provide the first empirical study to better
understand code exclusion practices in coverage reports. We
focus on assessing what code is excluded from coverage
reports and why. For this purpose, we first mine 55 popular
Python projects that adopt test coverage and assess their
usage of code coverage exclusion. We then assess commit
messages and code comments to detect rationales behind those
exclusions. Specifically, we propose four research questions to
assess the frequency, time, code, and reasons, as follows:

• RQ1: How frequent is code excluded from test coverage?
Over one-third of the analyzed projects (20 out of 55)
perform deliberate code coverage exclusion. In total,
those projects use the exclusion feature in 534 cases.

• RQ2: When is code excluded from test coverage? Most
code is excluded from coverage analysis since its creation
(75%), meaning they are already created using the exclu-
sion feature. In 25% of the cases, the exclusion feature
is added over time (24 days later, on the median).

• RQ3: What code is excluded from test coverage? Most
of the excluded code happens in conditional statements
(42%) and exception handling (29%). Developers tend to
exclude non-runnable, debug-only, and defensive code,
but also platform-specific and conditional importing.

• RQ4: Why is code excluded from test coverage? We
find that most code is excluded because it is already
untested (22%), low-level (20%), or complex (15%).
Other rationales are related to deprecation/legacy code,
parallelism, trivial/safe code, and non-determinism.

Based on our findings, we discuss several implications for
both practitioners and researchers to improve coverage tools,
testing guidelines, and coverage analysis as well as foment
novel research on test coverage. In short, we discuss the
enhancement of coverage tools with mandatory explanations

https://coverage.readthedocs.io/en/coverage-5.3/excluding.html
https://github.com/gotwarlost/istanbul#ignoring-code-for-coverage


for the exclusion features; the proposal of project guidelines
to enforce explanations when using the exclusion feature; the
improvement of test coverage tools’ documentation with novel
exclusion examples; the detection of trivial/safe candidates for
coverage exclusion to produce more accurate test coverage
reports; and techniques to spot biased coverage reports as well
as to detect project-specific test coverage exclusion.
Contributions. The contributions of this paper are threefold: (i)
we provide the first empirical study to assess code exclusion
practices in coverage analysis; (ii) we present what code is
excluded and the reasons for exclusions; and (iii) we propose
implications for practitioners and researchers.
Organization. Section II motivates the study. Section III
presents the study design, while Section IV details the results.
Section V discusses the implications. Lastly, Section VI details
the threats to validity, Section VII discusses the related work,
and Section VIII concludes the paper.

II. MOTIVATION

Software testing is a key activity in modern software
development. Test coverage is largely adopted nowadays to
support software testing. For example, 43 (86%) out of the top-
50 most popular Python software projects hosted in GitHub
use Coverage.py [4]. In addition to the large number of tools
and benefits mentioned in the previous section (e.g., identify
untested code, ensure important code is covered, etc.), there
is a tendency nowadays to present online coverage reports,
integrating them on CI and facilitating code review workflow.
For example, industrial-scale tools are available to generate
detailed coverage analysis for most programming languages,
such as Codecov [11] and Coveralls [12]. This way, many
open-source projects hosted on GitHub expose their coverage
reports to the public via badges, e.g., . For in-
stance, the popular machine learning project scikit-learn3 has
an overall 98% coverage and its report is publicly available
by Codecov.4 In addition, to the coarse-grained view, coverage
can also be assessed at fine-grained levels (e.g., for files or
commits) and tracked over time to ensure tests are getting
better or worse [2]. This way, at fine-grained levels, fine-
configuring coverage analysis is even more important because
few lines of code can have a large impact on the analysis.

Test coverage is widespread in the software industry.
Thus, better understanding coverage exclusion prac-
tices can reveal novel usage cases that should be
fomented by developers as well as harmful cases that
should be avoided. This can support, for example, the
production of more accurate coverage reports and warn
about the existence of biased ones.

Another benefit of coverage analysis is to support code
review. For example, developers at Google state that coverage
analysis can facilitate the code review process: “[...] embed-
ding code coverage into your code review process makes code

3https://github.com/scikit-learn/scikit-learn
4https://codecov.io/github/scikit-learn/scikit-learn

reviews faster and easier” [5]. They present that during code
review it is important to see not only coverage numbers but
also each covered line highlighted to make sure that the most
important code is covered [5]. During this process, ideally, the
coverage analysis should be as clean as possible to avoid noisy
data: “Not all code is equally important, for example, testing
debug log lines is often not as important” [5].

Test coverage can be used to support code review.
Therefore, assessing and detecting code coverage ex-
clusion practices can improve code review workflow
by eliminating possible noisy code.

III. STUDY DESIGN

A. Coverage Assessment

In this study, we assess test coverage in the Python ecosys-
tem. We select Python due to several reasons. First, Python is
among the most important programming languages nowadays
according to both GitHub5 and TIOBE6 rankings. Second,
Python has a rich software ecosystem with worldwide adopted
projects, like web frameworks, machine learning libraries, and
data analysis libraries, to name a few. Third, the most popular
coverage tool in Python, Coverage.py [4], is recommended
by the official Python documentation,7 making it the de facto
coverage tool for Python and an “almost” native library; this
does not happen in other popular programming languages like
Java and JavaScript, in which several tools are available.

Coverage.py provides the feature “pragma: no cover”
to exclude one or more lines of code from coverage reports.
There are two main solutions to use this feature: based on code
comments or based on configuration files. Figure 1(a) shows
an example in which code is excluded via a code comment
(i.e., #pragma: no cover). In this case, the if debug
clause is excluded from reporting [4], that is, it is not counted
as uncovered lines. Figure 1(b) presents an example in which a
configuration file is used for coverage exclusion. In this case,
the developers do not need to flag the source code directly,
but only indicate the patterns to be excluded.

(a) Code comment (b) Configuration file

Fig. 1: Examples of coverage exclusion in Coverage.py.

5GitHub ranking: https://bit.ly/2XHn2PY
6TIOBE ranking: https://www.tiobe.com/tiobe-index
7https://docs.python.org/3/library/trace.html
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B. Case Study Selection

We aim to study relevant and real-world software systems.
Thus, we first select the top-50 most popular Python software
systems hosted on GitHub based on the stars metric [13],
which is largely adopted in the software mining literature
as a proxy of popularity. To add more relevant projects,
we also select the top-20 most downloaded Python packages
in the Python Package Index (PyPI) [14]; this ranking is
obtained from the PyPI Stats.8 After merging the two lists
of systems (50+20), we have 68 unique and highly popular
Python projects. We find that 80% of those projects (55 out of
68) rely on Coverage.py. This high rate confirms that coverage
analysis is frequent in the Python ecosystem.

Finally, we verify how many projects adopt the coverage
exclusion feature. We detect that 20 out of those 55 (36%)
projects use the coverage exclusion. This ratio of over one-
third shows that the usage of the exclusion feature is com-
mon among the projects that rely on test coverage. The 20
projects are listed in Table I: it includes popular projects
as scikit-learn (43.2K stars), Home Assistant (37.6K stars),
and CPython (34.8K stars), to name a few. It also contains
the most downloaded projects in the Python ecosystem, for
example, pip (2B downloads), dateutil (1.8B downloads), and
setuptools (1.6B downloads). Those numbers, thus, reinforce
the relevance and impact of the selected projects. Our dataset is
publicly available at https://doi.org/10.5281/zenodo.4425671.

TABLE I: Selected software systems.

scikit-learn/scikit-learn, home-assistant/core, python/cpython,
apache/incubator-superset, tiangolo/fastapi, pypa/pipenv, encode/django-
rest-framework, sqlmapproject/sqlmap, huge-success/sanic, ray-
project/ray, willmcgugan/rich, plotly/dash, cookiecutter/cookiecutter,
dateutil/dateutil, pypa/setuptools, pypa/pip, pypa/wheel,
huggingface/transformers, binux/pyspider, locustio/locust

C. Research Questions Assessment

1) RQ1 (frequency): We first assess the frequency of code
exclusion in test coverage. For this purpose, we analyze the
last version of the 20 selected projects looking for references
to the code exclusion feature provided by Coverage.py. We
compute both the number of files and individual occurrences.

Rationale: We aim to understand to what extent the code
exclusion feature is adopted in practice. Over-adoption may
indicate, for instance, that developers are excluding a large
portion of code from coverage reports or that developers are
fine-configuring them (e.g., systematically excluding all pos-
sible code). On the other hand, under-adoption may suggest,
for example, that the feature is not broadly known by the
community or are deliberately not adopted.

2) RQ2 (time): In the second research question, we analyze
when code is excluded from test coverage. We assess the
exclusion occurrences in the version history of the 20 selected
projects and compute when they were added in code. That is,
for each line of code including the comment #pragma: no

8https://pypistats.org/top

cover, we verify the commit and the date that added it (we
rely on the PyDriller [15] mining tool and to assess this data).
This way, two cases can happen: (1) the comment has been
created with the code and (2) the comment has been added
later to the code. For example, in file concurrency.py
of project fastapi, the comment was created with the code,
as illustrated in Figure 2(a).9 On the other hand, in file
color.py, project rich, the code was created in December
310 and the comment was added 4 days later, in December
711, as presented in Figure 2(b). In this RQ, we compute the
frequency of both cases; when the second case happens, we
also measure the delay between the code addition and the
comment addition, i.e., 4 days in the previous example.

(a) Comment created with code (fastapi, commit: 3f9f4a0f).

(b) Comment added later (rich, commit: 0ffdd2f2).

Fig. 2: Examples of code exclusion addition.

Rationale: We aim to discover whether developers are likely
to add the exclusion feature when the code is created or later.
The former may suggest that the practice is known beforehand
and the code excluded since its conception, while the latter
may indicate that developers may adapt the code over time.

3) RQ3 (code): Next, we assess what code is excluded
from test coverage both quantitatively and qualitatively. For
this purpose, we first analyze the code being flagged as
excluded and classify its statement. For example, the code in
Figure 2(a) refers to an exception handling statement, while
Figure 2(b) presents a conditional statement. After detecting
the most common statements, we look for further explanations
in the documentation about the excluded code. For example,
after inspecting the Python documentation, we detect that
TYPE_CHECKING, in Figure 2(b), is a constant used by third-
party static type checkers and this code is non-runnable.

Rationale: We aim to reveal and better understand both the
excluded statements and their goals. While some scenarios
are well-known to be excluded from test coverage (e.g., non-
runnable and debugging-only code) [4], we are not sure how
frequent those cases are. Moreover, we not aware of whether
other cases exist. Revealing novel exclusion scenarios may
support the improvement of test coverage documentation and
aid developers when fine-configuring their reports. On the
other hand, it may also reveal unexpected and possibly harmful
cases that should be avoided.

4) RQ4 (reasons): Lastly, we analyze why code is excluded
from test coverage. To assess the reasons, we inspect commit
messages and code comments to detect rationales behind
exclusions. We rely on the GitHub API to collect the RQ4

9Commit URL: https://bit.ly/3m5PDtf
10Commit URL: https://bit.ly/2V4orPI
11Commit URL: https://bit.ly/2V0IkYb
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data; we expanded our dataset because we could not find
enough relevant commit messages in the 20 projects. We then
queried in the GitHub API for the occurrence of “pragma: no
cover” in commit messages, and we manually inspected the
first 250 results. After filtering out false-positives and results
from toy and irrelevant projects, we find 38 commit messages
with rationales. We also find 3 cases in which the explanation
was placed in the code itself, totaling 41 occurrences. We
adopted thematic analysis to classify these messages, with the
following steps [16], [17]: (1) initial reading of the messages,
(2) generating a first code for each message, (3) searching for
themes among the proposed codes, (4) reviewing the themes
to find opportunities for merging, and (5) defining and naming
the final themes.

Rationale: We aim to uncover the reasons behind the usage
of the coverage exclusion feature. So far, it is not clear
why developers exclude code from coverage analysis. This
information can foment, for example, the improvement of
coverage analysis. On the other hand, if the rationale is
not convincing, this can reveal that developers are actually
excluding code that could be tested and covered, which is not
a best practice. The latter may shed light on practices that are
actually biasing coverage reports.

IV. RESULTS

A. RQ1: How frequent is code excluded from test coverage?

In this first research question, we assess the frequency
of code exclusion in test coverage. Table II summarizes the
frequency: overall, we find 534 exclusion occurrences (i.e., the
code comment #pragma: no cover) in 179 source files
of the 20 analyzed systems. Pipenv is the project with the
most occurrences (221 in 47 files), followed by pip (81 in
17 files) and FastAPI (58 in 18 files). The top-5 is completed
with Rich (48) and CPython (40), while the remaining projects
have together 86 occurrences.

TABLE II: Frequency of code exclusion in test coverage per
project.

Pos System #Files #Exclusions %

1 Pipenv 47 221 41
2 pip 17 81 15
3 FastAPI 18 58 11
4 Rich 33 48 9
5 CPython 16 40 7
6-20 Others 48 86 16

All 179 534 100

It is worth to notice that the exclusion occurrences may
happen in distinct parts of the projects, such as external and
local code (Table III). We find that 70% (377 out of 534)
of the exclusion are located in external code.12 Interestingly,
this suggests that exclusion is even broader in the Python

12We manually inspected all full file names and detected three patterns for
external code: lib, vendor, and thirdparty. Thus, the 377 cases refer to file
names including these patterns.

ecosystem, i.e., they are not restricted to analyzed projects, but
also happen in their dependencies. On the other hand, we find
that 30% (157 out of 534) of the exclusion happen in local
code. From those 157 local cases, 95 (60%) are located in
production code, while 62 (40%) in test code. Independently
of the origin (external or local), these numbers suggest that
that exclusion is broader in the Python ecosystem.

TABLE III: Frequency of code exclusion in test coverage per
code location.

Location #Exclusions %

All External 377 70
Local 157 30

Local only Production 95 60
Test 62 40

RQ1 Conclusion: Code is frequently excluded from
test coverage analysis: we find 534 individual occur-
rences in 179 source files of the 20 selected projects.

B. RQ2: When is code excluded from test coverage?

Next, we analyze the version history of the 20 selected
projects and assess when code is excluded from test coverage.
We detect 934 exclusion occurrences over time.13 In this RQ,
we only analyze the occurrences that happen in local code
because they are properly versioned and managed by the
projects. We exclude the occurrences that happen in external
code because their version history may be incomplete and
flawed, for example, a third-party code may be simply copied
and pasted, losing track of its version history.

This way, we find 309 cases that happen in local code, as
summarized in Table IV. In the majority of the occurrences
(75%), the exclusion comments were created with the code,
that is, the code was already created including the exclusion
feature. On the other hand, in 25% of the cases, the exclusions
were added later to code, meaning the code was created
without the exclusion feature but it was added later.

TABLE IV: When code is excluded from test coverage.

Exclusion was... # %

Created with code 230 75
Added later to code 79 25

Total (local only) 309 100

Considering the 79 occurrences in which developers added
the exclusion comment later, the delay to update is 24 days, on
the median. Table V breaks this analysis into three categories
regarding the update time: fast (up to one month), medium
(between 2 and 6 months), and slow (over 6 months). We
notice that most update (57%) is fast, in a period up to 30

13Notice that this number is larger than the 534 cases of RQ1 because
here we are assessing version history, while in RQ1 we only assessed the last
version of the systems.



days (in 8 occurrences, the exclusion feature was added on
the same day, just a few hours later). Next, we find that in
23% of the cases the update happens at a medium speed (2-6
months), while 20% are slow (i.e., over 6 months).

TABLE V: Delay to add the exclusion feature in test coverage.

Delay # %

Fast (0≤days≤30) 45 57
Medium (31≤days≤180) 18 23
Slow (days>181) 16 20

All 79 100

RQ2 Conclusion: Most code is excluded from coverage
analysis since its creation (75%), meaning they are
already created using the exclusion feature. In 25%
of the cases, the exclusion feature is added over time,
on the median, 24 days later.

C. RQ3: What code is excluded from test coverage?

In this RQ, we focus on a better understanding of what
code is excluded from test coverage. Table VI summarizes the
934 excluded code statements over time. Conditional statement
is the top one (396, 42%), followed by exception handling
(275, 29%). The top-5 is completed with method call (38, 4%),
method definition (36, 3%), and pass statement (31, 3%).

TABLE VI: Most excluded code statements.

Pos Code Statement # %

1 Conditional Statement 396 42
2 Exception Handling 275 29
3 Method Call 38 4
4 Method Definition 36 4
5 Pass Statement 31 3

Other 158 17

All 934 100

Table VII presents the most excluded code snippets as they
are used in the analyzed systems. The most excluded code
is the exception handling except ImportError: (131
cases). This is followed by three conditional statement: else:
(102), if __name__ == "__main__": (52), and if
type_checking: (33). Lastly, the list is completed with
the pass statement pass (31). Next, we present more details
about each category.

TABLE VII: Most excluded code snippets.

Pos Code # %

1 except ImportError: 131 14
2 else: 102 11
3 if __name__ == "__main__" 52 5
4 if TYPE_CHECKING 33 3
5 pass 31 3

All 934 100

Conditional Statement. Control flow structures like if state-
ments are less likely to be covered by tests [18] and in
deliberately excluded code this is not different. Table VIII
presents the most excluded if statements. The top one
is if __name__ == "__main__", which happens 52
times and typically represents non-runnable code.14 Unsur-
prisingly, this is among the suggested code to be excluded
by the Coverage.py documentation [4]. The second one
(TYPE_CHECKING) is a special constant that is assumed
to be true by third-party static type checkers, while is false
at runtime.15 The third statement (MYPY_CHECK_RUNNING)
also relates to static type analysis. Both TYPE_CHECKING
and MYPY_CHECK_RUNNING are typically used in guarded
imports.16 Interestingly, the three aforementioned statements
are related to code that should not be executed at runtime,
which shows the concerns of developers to filter out those
cases in test coverage analysis. Lastly, the two remaining if
statements are related to filtering specific platforms from test
coverage, which is detailed in the following lines.

TABLE VIII: Most excluded if statement.

Pos Code #

1 if __name__ == "__main__" 52
2 if TYPE_CHECKING 33
3 if MYPY_CHECK_RUNNING 24
4 if sys.platform.startswith(’java’) 10
5 if not ver_suffix 7

We now explore the most excluded platforms, OSs, and
versions. Here, we focus on the native APIs sys17 and
os,18 which are the most frequently called in the analyzed
if statements. Developers rely on the API sys.platform
to filter out specific platforms (java, win32, and cli) and on
the API os.name to filter out the operating system dependent
modules nt (Windows) and Java. Interestingly, Windows and
Java are the only platforms that developers are concerned about
excluding from test coverage. The other two APIs, os.path
and sys.version_info, relate to excluding according to
specific OS paths and platform versions.

TABLE IX: Most excluded versions and platforms.

Pos Code # Parameters

1 if sys.platform 22 java, win32, cli
2 if os.path 13 templates, static
3 if os.name 7 nt, java
4 if sys.version_info 6 major < 3

A commonly mentioned code snippet that should be ex-
cluded from test coverage is debugging-only code. For ex-
ample, the Coverage.py documentation [4] illustrates this as
a possible scenario to aid developers. This way, we looked

14https://docs.python.org/3/library/ main .html
15https://docs.python.org/3/library/typing.html#constant
16e.g., https://bit.ly/36QmUDA
17https://docs.python.org/3/library/sys.html
18https://docs.python.org/3/library/os.html
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for debug code in our dataset, however, we could find
only two code snippets: if use_debug in project home-
assistant/core19 and if self.app.debug in project huge-
success/sanic.20 Another related flag is the verbose one, which
is typically used to produce detailed logging information, as
in project scikit-learn.21 Those detailed outputs may make the
execution slower, thus, developers may not be concerned about
testing (and covering) them.

TABLE X: Most excluded debug and verbose code.

Pos Code #

1 if use_debug 1
2 if self.app.debug 1

1 if verbose 5
2 if self.verbose 1

Exception Handling. Exception handling is known to be
hard to test [19]. We also find that developers tend to
omit them from coverage analysis. Table XI presents the
most excluded exceptions in test coverage. The top one is
ImportError, which happens in almost half of the cases,
48% (131 out of 275). This exception is raised when the import
statement fails to load a module.22 For example, in project
FastAPI,23 ImportError is captured if asynccontext-
manager is not properly loaded. Next, we see the generic
Exception (35), which is followed by AttributeError
(18), SQLAlchemyError (14), and UnicodeDecode-
Error (13). Unlike ImportError, we could not derive any
explanation for excluding those exception handling, and their
occurrence seems to be project-specific.

TABLE XI: Most excluded exceptions.

Pos Code # %

1 except ImportError 131 48
2 except Exception 35 13
3 except AttributeError 18 6
4 except SQLAlchemyError 14 5
5 except UnicodeDecodeError 13 4

All 275 100

Method Call. We could not find any meaningful method or
function call in our analysis. Indeed, most of the 38 detected
calls are local and refer to specific methods and functions.
Thus, like some of the exception handling aforementioned,
this reinforces that developers may exclude code they are
not willing to test (e.g., due to complexity or performance
issues, etc.). This is clearly not a best practice, as developers
seem to be excluding code snippets from test coverage without
any plausible explanation. To better assess this problem, we
analyze the reasons behind exclusions in RQ4.

19Commit URL: https://bit.ly/2JHpO4M
20Commit URL: https://bit.ly/33O5rd6
21Commit URL: https://bit.ly/3lXQ48a
22https://docs.python.org/3/library/exceptions.html
23Commit URL: https://bit.ly/3oA0UTK

Method Definition. As presented in Table XII, the most
common method definition excluded from test coverage is
__repr__(self). This is a native function to compute the
“official” string representation of an object and is typically
used for debugging.24 Coverage.py also suggests it to be
excluded from test coverage [4]. Notice that the remaining
method definitions are project-specific.

TABLE XII: Most excluded method definition.

Pos Code #

1 def __repr__(self): 6
2 def _cygwin_patch(filename): 3
3 def test(): 2
4 def dummy_get_response(request): 2

Other Statements. Lastly, we present other infrequent state-
ments that are excluded from test coverage. As a first example,
we show raise NotImplementedError: abstract meth-
ods should raise this exception when they require derived
classes to override the method or to indicate that the real
implementation still needs to be added while the class is
being developed.25 For instance, it is used in project Dash
in the abstract methods start and stop.26 Next, we have
AssertionError, which is raised when an assert statement
fails. Both statements can be interpreted as defensive code.
They are both recommended by the Coverage.py documenta-
tion as follows: “Don’t complain if tests don’t hit defensive
assertion code” [4].

TABLE XIII: Other excluded code.

Pos Code #

1 raise NotImplementedError 10
2 raise AssertionError 2

Table XIV summarizes the major cases in which developers
rely on test coverage exclusion that we discussed in this
RQ. We reinforce well-known cases, such as non-runnable,
debugging-only, and defensive code. We reveal novel cases,
such as platform-specific code and conditional importing.

TABLE XIV: Summary of major cases in which developers
exclude code from test coverage.

Category Examples

Non-runnable code if __name__ == "__main__":

Debugging-only code def __repr__(self):

Defensive code raise NotImplementedError

Platform-specific code if sys.platform

Conditional importing except ImportError

Unclear/project-specific -

24https://docs.python.org/3/reference/datamodel.html#object. repr
25https://docs.python.org/3/library/exceptions.html#NotImplementedError
26Commit URL: https://bit.ly/37KJ0XB
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RQ3 Conclusion: Most of the excluded code from
test coverage happens in conditional statements (42%)
and exception handling statements (29%), which are
code snippets known to be harder to test. In summary,
developers tend to exclude non-runnable, debugging-
only, defensive code, platform-specific, and conditional
importing.

D. RQ4: Why is code excluded from test coverage?

In the previous RQ, we explored what code is typically
excluded from test analysis. To better understand the ratio-
nales behind the exclusions, we now assess the explanations
provided by the developers themselves. The rationales are
inferred from both commit messages and code comments and
are summarized in Table XV. The most common explanation
refers to untested code (22%), followed by low-level code
(20%) and complex code (15%). Other rationales are related
to deprecated/legacy code, parallelism, trivial/safe code, and
non-determinism. Next, we elaborate on each rationale and
present examples.

TABLE XV: Rationales to exclude code from test coverage.

Rationale # %

Untested Code 9 22
Low-level Code 8 20
Complexity 6 15
Deprecated/Legacy Code 5 12
Parallelism 3 7
Trivial/Safe Code 3 7
Non-determinism 2 5
Other 5 12

Total 41 100

Untested Code. The most frequent reason for test coverage
exclusion is that the code is already not being tested. That
is, developers discover untested code snippets and add the
exclusion comment. In this scenario, they are likely interested
in inflating the coverage numbers. For example, in project
edx-organizations, the developer states: “Bring coverage up
to 100%: Just adds a couple ‘# pragma no-cover’ comments
to skip coverage on lines that already weren’t covered. Having
99.99% coverage is more annoying than having 100%”.27

Similarly, in project dateutil, the developer comments: “[...]
uses nocover pragmas for known-uncovered parts of the tests,
so that the baseline is 100%”.28 Another developer says in
project singularity: “Add a ‘no cover’ pragma to a untested
case”.29

Low-level Code. Another common explanation is to exclude
low-level code from test coverage. In this case, the code
may be related to operations to handle compilation, processes,
and specific platforms. For instance, in project thewalrus, the

27Commit URL: https://bit.ly/3mXXREl
28Commit URL: https://bit.ly/370DRv3
29Commit URL: https://bit.ly/36YjPS6

developer comments: “Adds # pragma: no cover to loss mat
since functions is jitted”30 (JIT compiles the decorated func-
tion on-the-fly to produce efficient machine code). In project
nutils, the usage is related to child processes: “add no cover
pragmas to child process code”.31

Complexity. Developers also tend to exclude complex code
from test coverage. In project nlp profiler, the developer
mentions he is skipping the for statements: “added pragma:
no cover to few lines in the core module to skip the for-
loops blocks”.32 Likewise, in project thewalrus, a recursive
function is excluded: “Adds pragma: no cover to the recursive
functions”.33 In project isort, the developer is very direct:
“Improve test coverage [...] Setuptools commands would be
hard to test”.34 Notice that, clearly, this is not a best practice:
developers seem to be using the exclusion feature to avoid
testing and yet increasing coverage.
Deprecated/Legacy Code. We also find some occurrences in
which deprecated and legacy code are excluded. In project
scikit-learn, the developer comments when adding the exclu-
sion feature: “Don’t cover this deprecated method”.35 Sim-
ilarly, in project isort, a deprecated flag is excluded: “Add
pragma no cover to deprecated flags check”.36 In project
home-assistant/core, a legacy code is excluded: “This part of
the implementation does not conform to policy regarding 3rd-
party libraries, and will not longer be updated”.37

Parallelism. In some cases, parallelism may appear as an issue
for developers. In project nlp profiler, the developer states:
“setting the run task() to pragma: no cover as due to some
Parallelisation process code-coverage isn’t able to capture
metrics here”.38 Likewise, in project datacube-core, the devel-
oper comments when adding the exclusion feature: “very rare
multi-thread only event [...] Disable test cover”.39 Like low-
level, complex, and deprecated/legacy code, developers seem
to be avoiding testing code that is difficult to test.
Trivial/Safe Code. This category is about code that has trivial
or safe logic, such as stubs, debugging-only, logging, etc. For
example, in project trio, the developer flags a stub function:
“Marked some function stubs with #pragma no cover”.40

Similarly, in project borgmatic, the developer states that some
trivial functions (with no code) should not be tested: “Add
some no-cover pragmas on functions that don’t need tests”.41

Notice that this category may be underestimated: developers
may not write rationales in commit messages when excluding
an obvious case from code coverage. This may explain the
reason this category is infrequent in this analysis.

30Commit URL: https://bit.ly/33ZzM8K
31Commit URL: https://bit.ly/372NCJp
32Commit URL: https://bit.ly/3oGB0xG
33Commit URL: https://bit.ly/2W4m6EV
34Commit URL: https://bit.ly/2Kfl2vb
35Commit URL: https://bit.ly/2W42EIG
36Commit URL: https://bit.ly/373or9q
37Commit URL: https://bit.ly/2W45L32
38Commit URL: https://bit.ly/3naFKeC
39Commit URL: https://bit.ly/3oDVRS6
40Commit URL: https://bit.ly/3qKhaDs
41Commit URL: https://bit.ly/2W4BhOp
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Non-determinism. Developers may apply coverage exclusion
in non-deterministic and flaky code. In project coala, a code
comment states in the excluded statement: “those branches are
only non-deterministically covered.”.42 Likewise, in project
datalad, the developer mentions: “Mark skips of flaky asser-
tions as ‘pragma: no cover‘”.43 This category also refers to
code that is difficult to test.
Other. Finally, we find some infrequent rationales that are
grouped together. Here, developers are concerned with exclud-
ing specific and challenging cases, for example, with memory
issues, utility code, and unreachable code (e.g., abstract meth-
ods). For example, in project orix, the developer flags a specific
conditional statement that if executed may cause RAM crash:
“Adding a pragma no cover for high ram usage case”.44

RQ4 Conclusion: Developers exclude code from test
coverage mostly because it is already untested (22%),
low-level (20%), or complex (15%). Other rationales
are related to deprecated/legacy code, parallelism, triv-
ial/safe code, and non-determinism. Most rationales
are indeed related to code that is somehow hard test.

V. DISCUSSION AND IMPLICATIONS

Based on the findings provided by RQs1-4, we discuss
several implications for both practitioners and researchers.

A. For Practitioners
Enhance coverage tools with mandatory explanations for
the exclusion feature. We detect several rationales to exclude
code from test coverage (RQ4). Most of them are related
to code that is hard to test [18]–[20], for example, low-
level code, complexity, legacy code, parallelism, and non-
determinism. In those cases, it seems that developers are
using coverage exclusion to avoid testing and yet increasing
coverage, which is not a best practice. This way, we shed light
on this harmful practice for testing and coverage analysis. One
solution to overcome this problem is to improve coverage tools
by including mandatory explanations when using the exclusion
feature. For example, instead of only flagging the code to
be excluded from test coverage, developers would also need
to add a comment explaining the exclusion. This way, the
rationale would be explicit in the code, better supporting code
review and merge.
Propose project guidelines to enforce explanations when
using the exclusion feature. Another solution to avoid the
exclusion of code that is hard to test is to rely on project
guidelines. We found one project applying this disciplined
approach, coala, a command-line interface [21]. The project
testing guideline states: “If some code is untestable, you need
to mark your component code with # pragma: no cover.
Important: Provide a reason why your code is untestable”,
45 as presented in Figure 3.

42Commit URL: https://bit.ly/3m1Wxil
43Commit URL: https://bit.ly/39YdWpZ
44Commit URL: https://bit.ly/2W286LX
45Testing guideline of coala: https://bit.ly/3gAGCGR

Fig. 3: coala guideline for excluding code [21].

Several GitHub issues show how this discipline is taken
rigorously in this project. For example, in the next issue, the
developer alerts about the over-usage of coverage exclusion:
“pragma: no cover is being over used to avoid writing test
cases, and slipping through review. It should be prevented
[...]”.46 Thus, we suggest that projects facing a similar
dilemma should propose guidelines to enforce explanations
when using the exclusion feature. That is, developers would
need to clearly explain the reasons they are excluding the code
via commit messages or code comments.
Improve test coverage tools’ documentation with novel ex-
clusion examples. We find that developers apply test coverage
in non-runnable, debugging-only, defensive, platform-specific,
conditional importing, and project-specific code (RQ3). While
some cases are already well-known and suggested by coverage
tools (e.g., debugging-only [4]), others are novel (e.g., condi-
tional importing) or even harmful for testing (e.g., platform-
specific). We contacted a core developer of Coverage.py and
presented the code typically excluded from test coverage we
have found in this study. He agreed that some cases could be
added to the tool documentation as usage examples, while
other cases should indeed be avoided. Thus, our findings
can be used to improve test coverage tools’ documentation,
better guiding developers when flagging their code. If further
extended to other programming languages, this empirical study
can promote the improvement of other tools as well.
Detect and flag trivial/safe candidates for coverage ex-
clusion to produce more accurate test coverage reports.
Despite the harmful cases aforementioned (e.g., complexity,
parallelism, etc.), there is a safety net of code in which
developers can apply test coverage exclusion to refine their
reports. In this context, we find a rationale related to trivial/safe
code (RQ4), which may include for example non-runnable
and debugging-only code. Those cases can be detected and
flagged as excluded in the source code. One solution to handle
that is with the configuration file feature, as presented in
Figure 1(b), which receives regular expressions and ensures
that the matched pattern is excluded from test coverage.
However, from the 20 studied projects, we find that 11 do
not use this feature, that is, in these projects, the developers
prefer to flag the code directly, as in shown Figure 1(a).

To overcome this issue, we propose the in-house detection
and flagging of trivial/safe coverage exclusion candidates. We
have performed a preliminary analysis, which is summarized
in Table XVI. Each line of the table presents a trivial/safe
case detected in our study; column “#” presents the total

46Issue URL: https://bit.ly/3gAQCjr
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occurrences of that case in the projects, while column “Has
Exclusion” presents the occurrences that are actually excluded
from test coverage. We note a large difference between both
metrics, for example, only 10 out of the 1,528 raise Not-
ImplementedError statements are flagged as excluded in
this preliminary assessment. That is, the 1,518 (1,528 – 10)
statements without coverage exclusion are potential candidates
to be excluded. This suggests that coverage analysis can be
more accurate if such a simple solution is adopted to detect
and exclude trivial/safe code.

TABLE XVI: Trivial/safe candidates for exclusion.

Code # Has Exclusion

pass 20,282 31
if __name__ == "__main__": 1,973 52
raise NotImplementedError 1,528 10
except ImportError: 1,299 131
def __repr__(self): 806 6
raise AssertionError 242 2
if MYPY_CHECK_RUNNING: 231 24
if TYPE_CHECKING: 116 33

It is important to recall that despite being largely adopted in
the software industry [3], [5], [11], [12], developers should not
strive to achieve “magic” coverage numbers and this should
not be a project requirement [5], [6], [22]. Indeed, one can
have great coverage without checking correctness result [1],
this way, a high code coverage percentage does not ensure
high quality in the tests [5], [6].

B. For Researchers

Techniques to spot biased coverage reports. We have seen
that developers tend to exclude code that is hard to test from
coverage, such as complex and non-deterministic snippets.
This may produce misleading coverage reports with biased
coverage numbers. For example, in an extreme case, coverage
analysis may present high coverage numbers (e.g., 90%), while
in practice its coverage is low (e.g., 60%). If this is true,
coverage analysis loses one of its major benefits, which is
identifying untested areas of the code [5], [6]. In this scenario,
novel techniques can be proposed by the research community
to detect biased coverage reports to warn developers about the
misuse of code coverage exclusion.
Techniques to detect and enforce project-specific test cov-
erage exclusion. In addition to the trivial/safe cases that can
be excluded from coverage analysis, we also detect other more
controversial cases that need further investigation. For exam-
ple, we find that statements including debugging-only, verbose,
legacy, deprecated, and dummy code are sometimes excluded
from the analysis. While one can say that debugging-only
and verbose code is safer to be excluded, legacy, deprecated,
and dummy code need careful investigation. As a preliminary
assessment, we run the patterns presented in Table XVII
to explore the potential exclusions in the studied projects.
We find a large number of cases that could potentially be
excluded from coverage analysis, depending on the project
practices and policies. However, those are project-specific,

for example, the debug pattern may appear as a plethora of
cases, such as: if debugging:, if app.debug:, if
self._debug:, etc. This way, novel techniques can be
proposed by researchers to detect and enforce project-specific
test coverage exclusion.

TABLE XVII: Potential candidates for exclusion (depending
on the project practices and policies).

Code Total

if .*verbose.* 740
if .*debug.* 492

if .*legacy.* 140
if .*deprec.* 43
if .*dummy.* 21

Novel studies on test coverage and automated test case
generation. This is the first empirical study to assess code
exclusion practices in test coverage. We find that over 1/3 of
the studied projects perform coverage exclusion (RQ1) and
most code is excluded from reports since its creation (RQ2).
In RQ3 and RQ4, we performed a qualitative analysis to
explore the excluded code and their rationales. We focused
on Python because it is a stable ecosystem regarding coverage
analysis, in which a single coverage tool, Coverage.py [4],
is the de facto one. This is not true for other programming
languages in which several tools are available, for example,
JaCoCo [7] and Cobertura [8] for Java, whereas Jest [9] and
Istanbul [10] for JavaScript. Nevertheless, this opens room
for novel research about coverage exclusion practices in other
popular programming languages. This knowledge can be used
to better understand other software ecosystems as well as
can be compared with our findings in the Python ecosystem.
Furthermore, our results are also relevant for researchers
working in the area of automated test case generation [23]–
[27]. Information about statements that do not need coverage
may be exploited during the generation of test cases to avoid
wasting time and focusing on more important area of the code.

VI. THREATS TO VALIDITY

Mining code history. In RQ1 we analyze only the last version
of the studied projects (i.e., single version), while in RQ2 and
RQ3 we analyze their code history (i.e., multiple versions).
This is the reason the number of code exclusions is distinct
among the research questions. For example, in RQ1 we find
a total of 534 exclusions in the last version of the studied
systems, whereas in RQ2 and RQ3 we find 934 exclusions.
The latter is larger because the search space is broader.

Local code analysis. RQ2 (time analysis) only assesses the
occurrences that happen in local code because they are prop-
erly versioned by the projects. The occurrences that happen in
external code are excluded because their version history may
be incomplete, which could bias history analysis. We recall
that we manually inspected all full file names and detected
three patterns for external code: lib, vendor, and thirdparty.
Thus, the chance that we miss pattern names is low.



Manual classification of the rationales. In RQ4 we started
with 250 code exclusions, but in the end, we only manually
classify 41 cases. We keep those 41 occurrences because their
rationales are explicit, while we filter out the ones with poor
descriptions. Moreover, the classification of the rationales was
performed by one author. We rely on thematic analysis [16]
to reduce the subjectiveness.
Generalization. In this study, we assessed real-world Python
software projects. Those systems are among the most popular
and downloaded in the Python ecosystem, thus, they are
credible and relevant projects. Despite these observations, our
findings—as usual in empirical software engineering studies—
may not be directly generalized to other projects or im-
plemented in other programming languages. Further studies
should be performed on other software ecosystems.

VII. RELATED WORK

Test coverage is a topic largely explored in technical books
(e.g., [6], [28]–[30]) and research papers (e.g., [2], [3], [18],
[31]–[34]). Many coverage criteria have been proposed, such
as statement, branch, and data-flow [35]. This metric presents
several advantages, such as identifying untested code, ensuring
that changing code is covered by tests, making sure that tests
are not getting worse over, and facilitating code review [5], [6].
On the other hand, it also has some well-known limitations:
a software project can have high coverage without checking
correctness result [1], that is, a high code coverage rate does
not ensure high quality in the tests [5], [6], [22]. Fowler
suggests that coverage analysis should be used “for identifying
untested areas of the code, not for assessing the quality of a
test suite” [6]. Moreover, like any other metric, if a magic
number is pre-defined, developers may strive at any cost to
achieve such a number (indeed, we saw that direction in most
of the rationales presented in RQ4, in which developers avoid
testing hard code to increase coverage numbers). Thus, those
definitions should be avoided [5], [6], [22]. Another solution
to assess test quality (and overcome coverage limitations) is
mutation testing [1], [5], [36], [37].

Coverage has long been the focus of various software testing
research. Some studies assess code coverage evolution [2],
[31], [32]. For example, recently, Hilton et al. [2] study the
evolution of test coverage with the support of data provided
by Coveralls [12]. The authors find that measuring the change
to statement coverage does not capture the nuances of code
evolution, thus, fine-grained analysis (i.e., changed statements
in commits) is needed to better capture coverage changes over
time. Zhai et al. [18] assess the state of code coverage in five
Python systems. They find that coverage depends on control
flow structures and that exception handling statements are less
frequently covered. Our study focus on code deliberately ex-
cluded from coverage, however, we concur with those findings
in the sense that both conditional statements and exception
handling tend to be less covered.

Chen et al. [34] propose an approach to estimate code cover-
age measures using execution logs. Kochhar et al. [33] analyze
100 open-source Java projects and detect that coverage has

an insignificant correlation with the number of bugs that are
detected after the release of the software at the project level.
Ivanković et al. [3] investigate the usage of code coverage at
Google. The authors analyze five years of historical data and
512 responses from developers. Overall, developers at Google
are positive regarding code coverage and they view it as a
valuable addition to their workflow. Google also presents a
solution to generate test cases for uncovered code paths for
increasing code coverage [38]. In this study, we contribute to
the coverage research landscape by analyzing code coverage
exclusion practices.

VIII. CONCLUSION

In this paper, we provided an empirical study to understand
code that is deliberately excluded from coverage reports. We
mined 55 popular Python projects that adopt test coverage
and assessed commit messages and code comments to detect
rationales behind exclusions. We found that:

• Over one-third of the analyzed projects performed delib-
erate code coverage exclusion.

• Most code is excluded from coverage analysis since its
creation, while in 1/4 the exclusion feature is added over
time (24 days, on the median).

• Developers tend to exclude non-runnable, debug-only,
and defensive code, but also platform-specific and condi-
tional importing.

• Most code is excluded because it is already untested, low-
level, or complex.

Based on our findings, we discussed several implications
for both practitioners and researchers to improve coverage
tools, testing guidelines, and coverage analysis and foment
novel research on test coverage. For example, we discussed the
enhancement of coverage tools with mandatory explanations
for the exclusion features; the proposal of project guidelines
to enforce explanations when using the exclusion feature; the
detection of trivial/safe candidates for coverage exclusion to
produce more accurate test coverage reports; and the proposal
of techniques to spot biased coverage reports and project-
specific coverage exclusions by the research community.

As future work, we plan to extend this research to other
programming languages, such as Java and JavaScript. Specif-
ically, we aim to investigate popular tools like JaCoCo [7]
and Cobertura [8] for Java, Jest [9] and Istanbul [10] for
JavaScript. We also plan to propose a technique to identify
flawed coverage reports and bring to light potential harmful
coverage analysis. Finally, we observed that the removal of
coverage exclusion is common in some projects. In this case,
the developers seems to deal with coverage exclusion as a kind
of code (or test) smell. This is an interesting assessment that
we also plan to further investigate.
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