
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Explore as a Storm, Exploit as a Droplet: A Unified Search
Technique for the MetaSchedule

MICHAEL CANESCHE, UFMG, Brazil
GAURAV VERMA, Stony Brook University, USA
FERNANDO MAGNO QUINTÃO PEREIRA, UFMG, Brazil

Recently, we have submitted a “Request for Comments” about augmenting TVMAnsorwith a quick exploitation
phase based on coordinate descent. The proposed technique was well received by the TVM community, and
eventually a new algorithm was approved in Ansor. We have realized that this approach seems to improve
other kernel schedule that performs wide exploration. To demonstrate this fact, we have also implemented our
exploitation phase onto TVM MetaSchedule. The MetaSchedule is the most recent kernel scheduler added to
TVM, and, in many settings, seems to outperform Ansor. Incidentally, it also greatly benefits from fine-tuning
via droplet search, as we demonstrate in this report.

CCS Concepts: • Software and its engineering→ Runtime environments; Compilers.

Additional Key Words and Phrases: Tensor Compiler, Optimization, Kernel Scheduling, Search

ACM Reference Format:
Michael Canesche, Gaurav Verma, and Fernando Magno Quintão Pereira. 2024. Explore as a Storm, Exploit as
a Droplet: A Unified Search Technique for the MetaSchedule. 1, 1 (June 2024), 16 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A kernel is an algorithm that applies operations on tensors: chunks of memory indexed by a linear
combination of natural numbers. A Tensor Compiler is a compilation infrastructure that generates
code for kernels. As Ansel et al. [2024] explains, many tensor compilers, including TVM [Chen et al.
2018], nvFuser [Sarofeen et al. 2022] and NNC [Zolotukhin 2021], follow a design probably inspired
by Halide [Ragan-Kelley et al. 2013]. An essential characteristic of this design is the separation
between the semantics of the kernel (what the kernel does) from its schedule (when the kernel
does it). Since the same kernel semantics can be implemented by many different schedules, tensor
compilers often face the challenge of solving a problem called kernel scheduling: determining a
suitable ordering for the numerous operations a kernel performs on tensors. Kernel scheduling is
typically addressed using heuristics because the Kernel Optimization Space—the set of all possible
implementations of a kernel—is usually vast.

The Apache TVM tensor compiler employs three distinct optimizing infrastructures for solving
kernel scheduling: AutoTVM [Chen et al. 2018], Ansor [Zheng et al. 2020], and the MetaSchedule.
AutoTVM finds parameters for kernel sketches. The sketch of a kernel represents the sequence of
optimizations that the tensor compiler applies on the abstract description of that kernel, such as
loop unrolling, splitting, interchange, and tiling. Many of these optimizations are parameterizable.

Authors’ addresses: Michael Canesche, UFMG, Brazil, michaelcanesche@dcc.ufmg.br; Gaurav Verma, Stony Brook University,
USA, gaurav.verma@stonybrook.edu; Fernando Magno Quintão Pereira, UFMG, Brazil, fernando@dcc.ufmg.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

Examples of parameters include the unrolling factor in loop unrolling or the width of the tiling
window in loop tiling. AutoTVM assigns values to these parameters using various search heuristics.
One of these heuristics is of interest to this paper: Droplet Search [Canesche et al. 2024]. Droplet
Search seeks the optimal configuration of an optimization template by determining a descent
direction along the objective function that models the running time of the kernel. In contrast
to AutoTVM, the other two autotuners—Ansor and and MetaSchedule —have the capability to
generate new sketches. In other words, Ansor and MetaSchedule are not restricted to a single
sequence of optimizations. To fill up these templates with concrete optimization parameters,
MetaSchedule employs an evolutionary algorithm. Section 2.1 provides further details on how
MetaSchedule works, whereas Section 2.2 explains how Droplet Search works.

A Combined Search Infrastructure. In general, MetaSchedule typically generates higher-quality
kernels compared to AutoTVM’s Droplet Search, as MetaSchedule is not limited to a single search
space. Each sketch generated by MetaSchedule leads to the exploration of an entirely new search
space. However, when constrained to a single sketch, Droplet Search tends to outperform MetaSchedule’s
evolutionary algorithm. Drawing on the terminology from recent work by Ding et al. [2023], Droplet
Search’s coordinate descent approach is “hardware centric”, while MetaSchedule’s genetic algo-
rithm is “input centric”; better embodying this quality that Sorensen et al. [2019] calls “performance
portability”. In essence, Droplet Search, by traversing the search space contiguously, is sensitive to
cache sizes and cache hierarchy levels. Nevertheless, despite Droplet Search’s tendency to identify
optimal points within the search space, this algorithm is unable to navigate beyond this space due
to its reliance on the initial sketch.

Inspired by these observations, this paper studies the following research question: “Is it possible to
combine MetaSchedule’s exploration and Droplet Search’s exploitation mechanisms; thus, obtaining
the advantages of each approach?” By doing so, we can develop a version of MetaSchedule that
produces superior kernels compared to the original tool while also reducing search times. This
paper brings evidence that such a combination is effective. The core idea presented in this work is
as follows: Initially, we allow MetaSchedule to explore the kernel optimization space, leveraging
its “space travel ability” to test different sequences of optimizations during this exploration. Sub-
sequently, following this initial exploration phase, we identify the most promising kernel space
discovered by MetaSchedule and employ AutoTVM’s Droplet Search—a line search algorithm—to
find a good kernel within this space.

Summary of Findings. This paper describes findings of an eminently empirical nature. The search
techniques discussed in Section 2 are not an original contribution of this work: MetaSchedule’s
exploration algorithm was created by TVM [Chen et al. 2018], and Droplet Search’s exploitation
approach was designed by Canesche et al. [2024]. Nevertheless, the combination of these two
techniques into a practical tool required a number of experimental observations and engineering
decisions which Section 3 organizes into six research questions.

The experiments discussed in this paper show that the combined exploration-exploitationmethod-
ology outperforms the original implementation of MetaSchedule in terms of kernel quality and
search speed. Positive results were observed across four different processors (AMD R7-3700X,
Fujitsu ARM A64FX, NVIDIA RTX 3080, and NVIDIA A100), and in 20 popular deep-learning
models, including AlexNet, VGG, ResNet, MobileNet, Inception, GoogleNet, and DenseNet. As
an illustration, by terminating MetaSchedule after sampling 300 kernels and subsequently optimiz-
ing the best candidate with Droplet Search, we consistently outperformed MetaSchedule (running
with a budget of 10,000 samples) across all 4 × 20 architecture-model pairs. For instance, applying
the combined search approach to MnasNet yielded kernel speedups of 1.13x, 1.12x, and 1.08x on

, Vol. 1, No. 1, Article . Publication date: June 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 3

x86, ARM, and NVIDIA platforms, respectively. Correspondingly, the search time for the combined
approach decreased by 1.70x, 1.44x, and 1.39x on these architectures.

2 EXPLORATION VIA META SCHEDULE; EXPLOITATION VIA DROPLET SEARCH
A kernel is an abstract concept: it can be represented by operations on memory indexed by a
linear combination of natural numbers. The actual implementation of a kernel is determined by
its schedule. The schedule of a kernel determines in which order the different memory elements
are accessed when the kernel runs. Following the terminology introduced in the original Ansor
work [Zheng et al. 2020], a schedule is the combination of two notions: a sketch and an annotation
of the sketch. Definition 2.1 enumerates these notions.

Definition 2.1 (The Kernel Search Space). The naïve implementation of a kernel replaces each
linear index in the abstract representation of the kernel with a loop. A sketch is a sequence
of transformations, such as loop fusion, splitting, or tiling, that can be applied onto the naïve
implementation of the kernel. An annotation of the sketch is the set of parameters that control the
effect of each optimization in the sketch, such as unrolling factor, length of tiling window, number
of threads in parallelization, etc. We call an annotated sketch a “kernel”. A kernel is a concrete
program: it effectively runs. Each sketch determines a kernel search space, which is the set of every
valid way to annotate that sketch.

Example 2.2. Figure 1 (a) shows an example of an abstract kernel. Figure 1 (b) shows a naïve
implementation of the abstract kernel seen in Figure 1 (a). Figure 1 (c) shows two sketches produced
after the application of different code optimizations onto the program in Figure 1 (b).

D[i, j] = max(C[i, j] , 0)

𝚺
k

C[i, j] = A[i, k] ╳ B[k, j]

where 0 ≤ i, j, k ≤ 512

for i in range(512):
 for j in range(512):
 for k in range(512):
 C[i, j] += A[i, k] * B[k, j]
for i in range(512):
 for j in range(512):
 D[i, j] = max(C[i, j], 0.0)

parallel i.0@j.0@i.1@j.1 in range(P0):
 for k.0 in range(P1):
 for i.2 in range(P2):
 unroll k.1 in range(P3):
 unroll i.3 in range(P4):
 vectorize j.3 in range(P5):
 C[...] += A[...] * B[...]
for i.4 in range(P6):
 vectorize j.4 in range(P7):
 D[...] = max(C[...], 0.0)

(a)

(b) parallel i.2 in range(P8):
 for j.2 in range(P9):
 for k.1 in range(PA):
 for i.3 in range(PB):
 vectorize j.3 in range(PC):
 C[...] += A[...] * B[...]
parallel i.4 in range(PD):
 for j.4 in range(PE):
 D[...] = max(C[...], 0.0)

(c-i)

(c-ii)

P0 = 256
P1 = 32
P2 = 16
P3 = 16
P4 = 4
P5 = 16
P6 = 64
P7 = 16

(d-i)

P8 = 16
P9 = 128
PA = 512
PB = 32
PC = 4
PD = 512
PE = 512

(d-ii)

Fig. 1. (a) Abstract view of a kernel. (b) Naïve implementation of the abstract kernel. (c) Two optimization
sketches for the naïve kernel. (d) Different annotations for the sketches.

Figure 1 (d) shows different parameters of the sketches in Figure 1 (c). As introduced in Defini-
tion 2.1, the set of every valid configuration of annotations for a given sketch forms the search space

, Vol. 1, No. 1, Article . Publication date: June 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

of that sketch. This space has one dimension for each parameter that is allowed to vary. Figure 2
shows two views of the optimization space of the two sketches in Figure 1 (c).

2
4

8
16

32
64

1
2

4
8

16
32

64

1

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.25

0.30

0.35

0.40

0.45

0.50

1
2

4
8
16

32
64

124681012P2 = size of tilin
g window k.0

P1 = size of tiling window k.0 PC = number of lanes in vector word

P9 = size of tiling window j.2

Ru
nn

ing
 ti

m
e

(se
c)

Ru
nn

ing
 ti

m
e

(se
c)

(a) (b)

Fig. 2. (a) A three-dimensional view of the optimization space formed by the parameters P1 and P2 seen in
Figure 1 c-i. (b) A three-dimensional view of the optimization space, this time involving parameters P9 and
PC.

2.1 Space Exploration via Meta Schedule

Meta Schedule is a unified scheduling approach developed by TVM that combines the strengths
of two previous systems. It offers the flexibility to manually generate search spaces, similar to
AutoTVM, while also providing the efficiency and automation of space generation as seen in Ansor.
Meta Schedule finds the best way to run code on different hardware by intelligently searching
the space that Definition 2.1 formalizes. The core search approach adopted by MetaSchedule is
based on Ansor’s algorithm [Zheng et al. 2020]—the evolutionary search. Thus, following Ansor’s
implementation, search in MetaSchedule can be divided into three phases:

Schedule generation: in this phase, new optimization templates (also called “Schedules”) are
created. As explained in Definition 2.1, each optimization template determines one kernel
search space.

Kernel annotation: in this phase, an initial population of annotated kernels is created. Fol-
lowing Definition 2.1, each annotated kernel is a point in the search space determined by
the schedule that provides the annotations.

Kernel evolution: in this phase, candidate kernels are sorted according to an estimation
of their performance (via MetaSchedule’s cost model). The best candidates are sampled
(executed and timed), and this information is used to improve the cost model.

Schedule Generation. The generation of a new optimization template happens via the application
of a small collection of rewriting rules1. Each rewriting rule provokes a code transformation, such
as tiling, parallelization, or unrolling. The schedule generation rules are hardware-dependent: some
rules, like those that bind loop iterations to threads, are only well-defined for GPUs, for instance.

1These are the rules that were implemented in https://github.com/apache/tvm/blob/main/src/meta_schedule/schedule_rule
on 06/12/2024

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://github.com/apache/tvm/blob/main/src/meta_schedule/schedule_rule

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 5

Kernel Annotation. Schedule are not executable programs: they have annotations which must be
replaced with actual values. These values are the parameters of optimizations, as Definition 2.1
explains. Thus, as a second step of the iterative exploration approach of MetaSchedule, an initial
population of annotated templates is produced via the application of “initialization rules”. Each
initialization rule is parameterized by a probability distribution, which associates concrete values
with the probability that they can be chosen.

Evolution of the Annotated Schedule. To explore different kernel spaces, MetaSchedule keeps a
population of promising candidate kernels. This population is updated in an iterative process. At
each iteration, the current population of candidates evolves through the application of mutation
strategies. To select the next set of candidates, MetaSchedule does not run every kernel in the
current population. Instead, it uses a cost model to select candidates that are likely to run efficiently.
These promising candidates are executed, and the result of these samples is used to recalibrate
the cost model; hence, improving the estimates of the next candidates. Periodically, the algorithm
reports statistical information regarding the search progress, including maximum and minimum
scores, population size, and the success rate of mutations. Upon completion of the specified number
of iterations, the best-performing kernels are recorded as the winning candidates.

Termination in MetaSchedule. The number of possible schedules is very large; hence, The Meta
Schedule limits the amount of sampled kernels with a budget of trials. Each trial consists of the
observation of the execution of an actual schedule, which happens at the end of the evolutionary
phase. Because a machine learning model contains many kernels, an initial round of trials is
partitioned among these layers. Layers are grouped into a worklist, and receive a quota of trials in
round-robin fashion. After an initial round of optimizations, layers that run for a very short time are
removed from this worklist. This process ensures that layers that run for the longest time are subject
to more extensive optimizations. This approach is what Zheng et al. [2020] call “optimizing with
gradient descent”. Because the budget of trials is fixed, MetaSchedule is guaranteed to terminate.

Limitations of MetaSchedule. The main limitation of MetaSchedule is the fact that it is oblivious
to the structure of the search space. For instance, if by increasing the unrolling factor of a loop
from 4 to 6 we observe a performance improvement, it is likely that if we increase it further to 8,
then another improvement could be also observed. However, if by going to 8, we obtain perfor-
mance degradation, then it is also likely that further increases will not bring future improvements.
MetaSchedule’s exploitation approach, via an evolutionary algorithm, is not aware of this notion
of neighborhood between kernels, or of potential convex regions in the optimization space.

2.2 Space Exploitation via Droplet Search
Droplet Search [Canesche et al. 2024] is a kernel scheduling algorithm available in AutoTVM.
AutoTVM differs from Ansor in the sense that it does not create new sketches. Rather, it is restricted
to modifying the parameters of a single sketch—the origin of the optimization space. AutoTVM
provides several independent scheduling approaches: random sampling, grid sampling, genetic
sampling, etc. However, only Droplet Search will be of interest to this presentation. Droplet Search
is a variation of an exploitation algorithm called Coordinate Descent2. It relies on the premise that
the parameters of a sketch can be arranged into a coordinate space. Figure 3 contains an annotated
version of the algorithm.

Example 2.3. Let us assume a sketch formed by two optimizations: unrolling and tiling. For
the sake of this example, unrolling supports five “unrolling factors”: {1, 2, 3, 4, 5}. These are the
2It is not clear who invented Coordinate Descent. Descriptions of the algorithm can be found in classic textbooks [Zangwill
1969]. For a comprehensive overview, we recommend the work of Wright [2015].

, Vol. 1, No. 1, Article . Publication date: June 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

def droplet_search(num_iterations):

 candidate = origin

 visited = set()

 for i in range(num_iterations):

 neighborhood = get_neighbors(candidate) - visited

 visited += neighborhood

 new_candidate = min(neighborhood, key=lambda e: e.execute_and_get_time())

 if is_statistically_faster(new_candidate, candidate, confidence_level=0.05):

 candidate = new_candidate

 else:

 return candidate

01

02

03

04

05

06

07

08

09

10

11

The neighborhood of a kernel k is a set H of different kernels such that h
in H differs from k in only one optimization parameter. For instance,
consider that k was created by applying some optimizations to the
“origin” kernel. Assume that one of these optimizations is loop
unrolling (e.g., of the innermost loop) with an unrolling factor of 12
iterations. Then, a kernel h that is obtained with the same optimizations as
k, except that the unrolling factor is 11 (or 13) iterations is a neighbor of k.

At every point, Droplet Search keeps
a “candidate” as the best kernel in
the search space. The best candidate
is the kernel that runs the fastest,
given the available training input.

Droplet Search stops either after a fixed number of iterations is reached (the “num_iterations”),
or after convergence is reached. In this case, the algorithm reaches a neighborhood without a kernel
that is faster than the current candidate. To compare kernel speeds, Droplet Search runs each kernel
three times, and uses a t-test on the two populations, with confidence level of 95%.

Fig. 3. The Droplet Search kernel scheduling algorithm. This pseudo-code is a simplified version of the
original presentation of the algorithm, taken from [Canesche et al. 2024]. We have removed speculation and
parallelism from this version, as these features are immaterial for the presentation of our ideas.

parameters of the loop unrolling optimization. Tiling is parameterized by the size of the tiling
window. Let us assume the following sizes: {1, 2, 4, 8, 16}. The optimization space, in this case, is
formed by 5 × 5 points, such as (1, 1), which means no optimization, or (3, 16), which indicates
that the loop must be unrolled three times, and then tiled with a window of size 16. These points,
e.g., (1, 1), (3, 16), etc, are the coordinates of the optimization space.

From the notion of coordinates, Droplet Search defines a neighborhood function: a function that
returns the neighbors of a given coordinate. Intuitively, the neighbors of a coordinate are the points
that are the closest to it. In Example 2.3, the neighbors of (unrolling = 3, tiling = 8) would be the
points (2, 8), (4, 8), (3, 4) and (3, 16). From this concept of neighborhood, Droplet Search works
iteratively, as follows:

(1) At iteration zero, let the best current candidate be the set of parameters that implement no
optimization.

(2) Let (𝑐1, 𝑐2, . . . , 𝑐𝑛) be the best set of parameters discovered up to iteration 𝑖 .
(a) If there exists 𝑐′𝑖 , 1 ≤ 𝑖 ≤ 𝑛, such that (𝑐1, . . . , 𝑐′𝑖 , . . . , 𝑐𝑛) yields a faster kernel than

(𝑐1, . . . , 𝑐𝑖 , . . . , 𝑐𝑛), then update the current best candidate to use 𝑐′𝑖 instead of 𝑐𝑖 .
(b) If there is no such 𝑐′𝑖 , then the search terminates.

Limitations of Droplet Search. Droplet search is a fast search algorithm when compared to Ansor
or to other approaches available in AutoTVM [Canesche et al. 2024]. However, it has two fundamental
limitations:

• Droplet Search is restricted to a single sketch. In other words, it can modify the annotations
of a sketch, but it cannot create new sketches. This is a limitation of any search algorithm
used in AutoTVM, but it is not a limitation of Ansor.

• Droplet Search is highly dependent on the initial schedule that it receives as the seed of the
search procedure. If this initial schedule does not exist in the same convex region as the
optimal schedule, then Droplet Search cannot find the optimal schedule.

By combining Ansor and Droplet Search, we hope to circumvent the limitations of both search
techniques. Section 2.3 explains how these two approaches can be used together.

2.3 Combining Meta Schedule with Droplet Search
To combine Droplet Search and MetaSchedule, we determine two parameters:

• 𝐾 : the budget of trials of MetaSchedule.

, Vol. 1, No. 1, Article . Publication date: June 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 7

• 𝑁 < 𝐾 : a subset of trials.
We then proceed as follows:

(1) Run MetaScheduleon the target model using only 𝑁 trials.
(2) Give the best schedule found with 𝑁 trials to Droplet Search.
(3) Run Droplet Search up to convergence.

Figure 4 provides some intuition on this modus operandi. As the figure illustrates, the proposed
technique seeks to use MetaSchedule to explore the universe of sketches, and then use Droplet
Search as the core strategy to explore concrete representations of these sketches.

(a) Meta Schedule uses rewriting rules to produce different
sketches. Each sketch determines a new kernel search
space via the optimizations that it encodes.

(b) Meta Schedule annotates the sketches via initialization
and evolution rules. It runs some of the annotated
templates, to collect good kernel candidates.

(c) We choose the best schedule (annotated sketch),
considering the running time of the end-to-end model.

(d) We give the best schedule to Droplet Search, which
uses coordinate descent to explore its neighborhood.

Best schedule
found by Meta

Schedule

Best schedule
found by

Droplet Search

Fig. 4. Coarse exploration of different kernel search spaces with MetaSchedule, and careful exploitation of
the best candidate with Droplet Search.

In Section 3 we demonstrate that by choosing proper values for 𝐾 and 𝑁 we can outperform
Ansor in two ways: first, producing faster end-to-end machine learning models; second, reducing

, Vol. 1, No. 1, Article . Publication date: June 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

the search time of Ansor. The modifications needed to add this combination to the current code
base of Apache TVM are relatively small. Section 2.4 describes these modifications.

2.4 Implementation Details
In order to combine MetaSchedule’s current implementation with Droplet Search, we have added
3 classes and 15 functions to the current Apache TVM code base. These modifications add up to 498
lines of code in the TVM repository (Release 17, Apache TVM v0.17.0). The summary of changes
follows below:

(1) New files:
• space.py (created 1 class, 11 functions); LoC: 240
• droplet.py (created 1 class with 9 functions); LoC: 124
• post_opt.py (created 1 function); LoC: 38
• utils.py (created 4 functions); LoC: 96

The proposed extension does not change how MetaSchedule is used. Its original implementation
can still be invoked via the same commands without modification. If users want to apply Droplet
Search on the best model found by Ansor after several trials, they only need to run a second
command. This section explains such interactions via a tutorial-like example:

Example 2.4. In order to optimize an ONNX model, we can use Ansor with the command below.
This command will run Ansor with a budget of 10,000 trials:
$> python3 benchmarks/models_onnx.py -m dpms -a x86 -t 10000 \

-l results/x86_resnet18_10k -b models/resnet18.onnx

This command has no modification in regards to the original implementation of MetaSchedule.
Notice that it will produce a log file inside of results/x86_resnet18. This file can be given to
Droplet Search, to improve even further the final implementation of the end-to-end model, as
follows:
$> python3 benchmarks/models_onnx.py -m dpms -a x86 -t 100 \

-l results/x86_resnet18_10k -b models/resnet18.onnx

The above command will run Droplet Search on the best candidate found by MetaSchedule, limiting
the number of trials given to Droplet Search to 100.

3 EVALUATION
This section evaluates the new version of the MetaScheduler augmented with droplet search. In
particular, it seeks to demonstrate that by exploiting, via Droplet Search, a reduced set of samples
explored by MetaSchedule, it is possible to outperform MetaSchedule itself. We shall refer to this
new version of MetaSchedule, which uses Droplet Search, as the Combined Approach. Henceforth,
we denote it as DPMS, reserving MetaSchedule for the original implementation of that tool. In what
follows, we explore six research questions:

RQ1: How many samples does DPMS need to observe in order to produce kernels that outper-
form those produced by MetaSchedule with 10,000 trials?

RQ2: How many samples can DPMS observe and still outperform MetaSchedule in terms of
search time when the latter uses 10,000 trials?

RQ3: How does the size of models impact the behavior of DPMS, in terms of kernel performance
and search speed?

RQ4: How does the average number of samples that Droplet Search gauges per layer varies
with the initial budget allocated to DPMS ’s exploration phase?

, Vol. 1, No. 1, Article . Publication date: June 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 9

Before diving into the research questions, we explain our experimental setup. Notice that a fully
containerized version of this methodology has been organized as a docker image, which is publicly
available at https://remove/due/to/blind/review.

Hardware and Software. We evaluated the scheduling approaches on four different architectures,
as shown in Figure 5. The hardware consists of a general-purpose desktop architecture (AMD Ryzen
7 [AMD 2019]), a cluster-based machine (ARM A64FX [Ookami 2022]), and two graphics processing
units (NVIDIA A100 [Nvidia 2020a] and NVIDIA RTX3080 [Nvidia 2020b]). The experiments
reported in this section use versions of MetaSchedule and AutoTVM (Droplet Search) available at
Apache TVM v0.16.0, released in April 2024.

Fig. 5. The architectures evaluated in this report.

Benchmarks. This section evaluates kernel scheduling across twenty neural networks. The first
column of Figure 6 contains the complete list of these models. All these models are implemented
using the ONNX representation. The models used in our study are sourced from the ONNX model
zoo available at https://github.com/onnx/models.

Methodology. A machine learning model forms a graph of kernels. Ansor optimizes machine
learning models per kernel, assuming kernels can be independently optimized. It starts with a
budget of trials, where each trial is a transformation that can be applied to a kernel. Let us call
this budget 𝐾 . Ansor ensures that each kernel receives a fraction of these 𝐾 trials. Currently, this
initial fraction is min(𝐾/𝐿, 64), where 𝐿 is the number of layers (kernels) in the model. After an
initial round of optimizations, Ansor applies the remaining trials onto kernels that run for the
longest time. This approach directs the optimization effort to the kernels that are more likely to
contribute to the overall running time of the end-to-end model. In what follows, all the results we
report are relative to a baseline version of Ansor equipped with a budget of 10,000 trials. We shall
test DPMS with either 𝐾 = 1, 10, 50, 100, 200, 300, or 1, 000 trials. Suppose we choose 𝐾 = 100, for
instance. In that case, we will run Ansor with a budget of 100 trials, pick the best configuration
(which results from the independent optimization of the kernels), and give this configuration to
AutoTVM’s Droplet Search. We then let Droplet Search run until it reaches convergence.

3.1 RQ1 – On theQuality of End-to-End Models
In this section, one version of an end-to-end model is better than another for a given architecture if
it runs faster in that architecture. The execution time of a model is determined by the schedule of
the kernels that constitute it. If we apply Droplet Search to the best model produced by Ansor after
it observes 10,000 trials, we will likely improve the model (at least, we should not make it worse).
However, this section shows that obtaining a better model via DPMS with a much lower budget is
possible. The four figures that summarize results discussed in this section and in Section 3.2 (Fig. 6,
Fig. 7, Fig. 8, and Fig. 9) are divided into two parts. The left part (labeled “10k speedup execution
time comparison”) compares the running time of the kernels produced by Ansor and DPMS. The
second part (labeled “10k speedup tuning time comparison”) compares the search time of these
two approaches.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://remove/due/to/blind/review
https://github.com/onnx/models

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

Discussion: AMD Ryzen 7 (x86-64). The x86 architecture represents a widely adopted instruction
set architecture (ISA), serving as the basis for numerous computer processors, including those pro-
duced by Intel, AMD, and other manufacturers. Figure 6 presents the results for the x86 architecture.
In this setup, we observe most speedups after recording only 50 samples with DPMS. Furthermore,
by giving the best of 100 trials to DPMS, we observe speedups in all 20 models. Speedups improve
gradually as more samples are added to DPMS, to the point that with 1,000 samples, we see an
average speedup (geometric mean) of 13%.

Note: L denotes the number of the optimized layers.

Fig. 6. Comparative Analysis of Optimization Results on the x86 Architecture Using an AMD Ryzen 7
3700X Processor. Numbers show Meta Schedule/DPMS ratios. Thus, results higher than 1.0 (in blue) denote
improvements of DPMS (this paper) over MetaSchedule.

Discussion: NVIDIAA100 (Ampere). CUDA (Compute Unified Device Architecture) is the computer
architecture that NVIDIA has developed for its graphic cards (GPUs. Nowadays, GPUs are common
platforms to execute machine learning models. Figure 7 summarizes the results produced for
a particular GPU, the NVIDIA A100. The results are not as consistent as those presented in
Figure 6. However, the big picture is similar: as more trials are given to DPMS, it tends to outperform
MetaSchedule. Speedups are common with a budget of 300 trials, although not in every model. At
1,000 trials, no statistically significant regressions are observed Depending on the model, speedups
can be consequential. Our approach achieves a 16% improvement in execution time for VGG11 with
300 trials.

Discussion: RTX3080 (Ampere). In addition to being a GPU widely used for gaming, it can be used
in machine learning models. Unlike the A100, the RTX3080 has lower bandwidth. This makes it
effectively slower in data processing than an A100. Figure 8 summarizes results produced for a
particular GPU, the NVIDIA RTX3080. With only a budget of 300 samples, CUDA DPMS reaches the
same results with 10,000 trials by MetaSchedule.

, Vol. 1, No. 1, Article . Publication date: June 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 11

Fig. 7. Comparative Analysis of Optimization Results on the CUDA (Ampere) Architecture Using an NVIDIA
A100 GPU. Numbers show Meta Schedule/DPMS ratios. Thus, results higher than 1.0 denote improvements
of DPMS (this paper) over MetaSchedule.

Discussion: ARMA64FX (aarch64). We evaluate the ARMarchitecture using the FUJITSU Processor
A64FX. Figure 9 summarizes these results. In this case, the results are similar to those observed in
the AMD Ryzen 7 (x86-64). With a budget of 300 samples, DPMSconsistently outperforms or ties
with the MetaSchedule, for a geomean speedup of 9%.

3.2 RQ2 – On the Search Time
We define a scheduling approach as faster than another if it requires less time to converge to a final,
optimized version of an end-to-end model. The search time of MetaSchedule encompasses the
time spent applying optimizations to kernels, deriving new optimizations, and running the kernels
themselves, with a limit set at 10,000 trials. On the other hand, the search time of DPMS involves all
the steps of MetaSchedule, constrained to a lower number of trials, along with the time it takes to
run Droplet Search until convergence on the kernels that compose a model. Although we have
restricted Droplet Search to a maximum of 100 trials, it typically converges well before reaching
that limit. This section compares the search time between MetaSchedule and DPMS.

Discussion: AMD Ryzen 7 (x86-64). The right side of Figure 6 compares search times in the x86
hardware. For most models, DPMS is consistently faster than MetaSchedule for any number of trials
up to𝐾 = 300. At 1,000 trials, MetaSchedule becomes consistently faster. Also, MetaSchedule tends
to outperform DPMS for very large models. This fact happens due to the longer time that Droplet
Search takes to converge: the more complex the model, the more room Droplet Search will have to
optimize it.

Discussion: NVIDIA A100 (Ampere). The right side of Figure 7 compares search times in the
NVIDIA setup. Following the behavior observed in the x86 board, CUDA DPMS is also consistently

, Vol. 1, No. 1, Article . Publication date: June 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

Fig. 8. Comparative Analysis of Optimization Results on the CUDA (Ampere) Architecture Using an NVIDIA
RTX3080 GPU. Numbers show Meta Schedule/DPMS ratios. Thus, results higher than 1.0 denote improvements
of DPMS (this paper) over MetaSchedule.

faster than MetaSchedule in every setup where 𝐾 ≤ 300. At 1,000 samples, the relative benefit
that DPMS brings onto MetaSchedule disappears. However, even in this scenario, both approaches
present almost the same search time.

Discussion: NVIDIA RTX3080 (Ampere). The right side of Figure 8 compares search times in the
NVIDIA setup. Following the behavior observed in the x86 board, CUDA DPMS is also consistently
faster than MetaSchedule in every setup where 𝐾 ≤ 300. In some cases, at 1000 samples, there are
improvements.

Discussion: ARM A64FX (aarch64). The right side of Figure 9 summarizes relative speedups in the
ARM setting. This setup yields search times similar to those observed in x86 and CUDA. Even the
global averages tend to be similar. Limiting the budget of DPMS to 300 points, we achieve an average
speedup of 1.94x (geometric mean). Again, in some individual cases, speedups are noticeable. In
particular, for the small models, DPMS is more than twice faster than MetaSchedule, even with a
budget of 300 trials.

3.3 RQ3 – On the Impact of Model Size
The behavior of DPMS, when compared to MetaSchedule, varies with the size of the model. We
summarize this variation with two observations:

(1) The larger the model, the less samples DPMS needs to observe to outperform MetaSchedule,
if MetaSchedule uses a budget of 10,000 samples.

(2) The larger themodel, the lower the benefit, in terms of search time, of DPMS over MetaSchedule.
The rest of this section provides data to support these two conclusions.

, Vol. 1, No. 1, Article . Publication date: June 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 13

Fig. 9. Comparative Analysis of Optimization Results on an Aarch64 Architecture Using an A64FX Processor.
Numbers show Meta Schedule/DPMS ratios. Thus, results higher than 1.0 denote improvements of DPMS (this
paper) over MetaSchedule.

Discussion: The Search vs Quality Slope. The kernel optimization technique impacts two core
numbers: the search time and the speed of the final model. We can use these two quantities—search
time (S) and model performance (P)—to define an 𝑆 × 𝑃 line characterizing the behavior of the
optimization technique. Figure 10 shows these lines regarding four models and two architectures:
AMD’s x86 and NVIDIA’s Ampere. We chose these two architectures because x86 is the scenario
where DPMS performs better, and Ampere is the scenario where it performs worse.

Figure 10 uses our two smallest and two largest models. The numbers on the axes show ratios
between DPMS and MetaSchedule; the latter using a budget of 10,000 trials. Each dot in Figure 10
refers to the number of trials that DPMS is allowed to observe before shifting to Droplet Search. The
figure labels dots that refer to DPMS with one sample (its most restrictive scenario) and dots that
refer to 1,000 samples (its least restrictive scenario).

The slopes of the lines in Figure 10 are always negative, meaning that as more samples are given
to DPMS, the difference between its search time and MetaSchedule’s reduces, but the quality of the
kernels that it finds improves. However, the inclination changes with the size of the model. The
larger the model, the lower the benefit of DPMS over MetaSchedule in terms of search time; but
the higher the relative benefit in terms of kernel speed. This result is due to MetaSchedule’s fixed
budget of 10,000 trials. In a small model, more trials are distributed to each layer; in a large model,
in turn, each layer receives only a handful of trials.

3.4 RQ4: The Average Number of Droplet Search Samples
Droplet Search has a convergence criterion, which is discussed in Section 3.3 of its descrip-
tion [Canesche et al. 2024]. In this case, search stops once there is no statistically significant

, Vol. 1, No. 1, Article . Publication date: June 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

Ryzen 3700X RTX3080

Fig. 10. The search vs quality line that characterizes four models optimized in the AMD (Left) and in
the NVIDIA (Right) setting: the larger the model, the lower the slope. Numbers on the X and Y axes are
speedup/slowdown relative to MetaSchedule with a budget of 10,000 trials. Numbers for the left chart are
available in Figure 6, and numbers for the right chart are available in Figure 8. The labels on the dots (1 and
1k) refer to the number of trials given to DPMS.

difference between the current kernel and the kernels within its neighborhood. Thus, the more opti-
mized is the seed of the coordinate descent algorithm, the less iterations it is—intuitively—expected
to take until convergence. This section investigates if this hypothesis is true.

Discussion. We count the number of iterations of Droplet Search on the different architectures
that we have, considering different budges for DPMS. Figure 11 shows this number for each model
evaluated on the x86 setting. The figure reports total number of trials and average number of trials
per layer. The general tendency is that the larger the budget of trials allocated to DPMS, the faster
Droplet Search converges.
Figure 12 summarizes, for each architecture, the numbers earlier seen in Figure 11. Figure 12

reports averages per model (considering the 20 available models), and averages per layer. In the
latter case, we divide the total sum of trials observed for all the models by the sum of the number
of layers present in every model. In every case, the same tendency is evidence: more trials sampled
during exploration imply in less trials sampled during exploitation. This result is intuitive: as
previously mentioned, Droplet Search tends to reach stability the closer to a local optimum it starts.

4 CONCLUSION
This report has described our experience adding an exploitation methodology on top of the kernel
scheduling strategy already in place in the MetaSchedule optimizer. The new approach uses
MetaSchedule to explore different spaces of kernel schedules, chooses the best candidate found
thus far, and uses Droplet Search to further exploit it. This methodology benefits MetaSchedule
and Droplet Search:

• It enhances MetaSchedule’s capability to exploit “hardware boundaries”. The previous
implementation of MetaSchedule was not aware of the relationships between neighboring
kernel schedules, as it lacked a concept of “distance” between the implementatios of kernels.
The new exploration phase improves MetaSchedule’s ability to better adjust optimization
parameters to hardware constraints, such as cache sizes and vector widths.

, Vol. 1, No. 1, Article . Publication date: June 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Explore as a Storm, Exploit as a Droplet: A Unified Search Technique for the MetaSchedule 15

Fig. 11. Number of trials sampled by Droplet Search until reaching convergence, considering the AMD x86-64
architecture. The average number of trials per layer divides the total number of trials per the number of layers
in each deep learning model.

Fig. 12. Average number of trials per model (considering 20 models) for different architectures. The averages
per layer are the quotient of the total number of trials for all the models divided by the total number of layers
in all the models.

• It addresses Droplet Search’s two limitations: its reliance on a well-defined seed (the initial
kernel that initiates coordinate descent), and its inability to explore different kernel spaces.
Previously, the seed and the kernel spacewere determinedmanually, requiring a programmer
to provide Droplet Search with an initial annotated sketch. The proposed methodology
automates the seed generation process by utilizing MetaSchedule.

As detailed in Section 2.4, the proposed extension does not impact current Apache TVM users,
because the use of Droplet Search with MetaSchedule is optional. As Section 3 demonstrates, the
proposed extension improves MetaSchedule in terms of kernel quality and search time.

REFERENCES
AMD. 2019. AMD RyzenTM 7 3700X. https://www.amd.com/en/product/8446. [Online; accessed 18-Jan-2024].
Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David

Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias
Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch,

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://www.amd.com/en/product/8446

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Michael Canesche, Gaurav Verma, and Fernando MagnoQuintão Pereira

Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,
William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and
Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and
Graph Compilation. In ASPLOS. ACM, New York, USA, 623–630.

Michael Canesche, Vanderson M. Rosario, Edson Borin, and Fernando Magno Quintão Pereira. 2024. The Droplet Search
Algorithm for Kernel Scheduling. , 25 pages. https://doi.org/10.1145/3650109 Just Accepted.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In OSDI.
USENIX, Berkeley, USA, 578–594.

Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko. 2023. Hidet: Task-Mapping
Programming Paradigm for Deep Learning Tensor Programs. In ASPLOS (Vancouver, BC, Canada). Association for
Computing Machinery, New York, NY, USA, 370–384. https://doi.org/10.1145/3575693.3575702

Nvidia. 2020a. Nvidia A100 Tensor Core GPU. https://www.nvidia.com/en-in/data-center/a100/. [Online; accessed
18-Jan-2024].

Nvidia. 2020b. Nvidia RTX3080 Tensor Core GPU. https://www.nvidia.com/en-in/geforce/graphics-cards/30-series/. [Online;
accessed 18-Jan-2024].

Ookami. 2022. ACCESS Research Provider, A64FX Cluster. https://www.stonybrook.edu/ookami/. [Online; accessed
18-Jan-2024].

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
SIGPLAN Not. 48, 6 (jun 2013), 519–530. https://doi.org/10.1145/2499370.2462176

Christian Sarofeen, Piotr Bialecki, Jie Jiang, Kevin Stephano, Masaki Kozuki, Neal Vaidya, and Stas Bekman. 2022. Introducing
nvFuser, a deep learning compiler for PyTorch. https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-
for-pytorch/. [Online; accessed 15-Mar-2024].

Tyler Sorensen, Sreepathi Pai, and Alastair F. Donaldson. 2019. One Size Doesn’t Fit All: Quantifying Performance Portability
of Graph Applications on GPUs. In IISWC. IEEE, New York, US, 155–166. https://doi.org/10.1109/IISWC47752.2019.
9042139

Stephen J. Wright. 2015. Coordinate Descent Algorithms. Math. Program. 151, 1 (jun 2015), 3–34. https://doi.org/10.1007/
s10107-015-0892-3

W. Zangwill. 1969. Nonlinear Programming, A Unified Approach (1st ed.). Prentice Hall, USA.
Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo,

Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. In OSDI. USENIX Association, USA, Article 49, 17 pages.

Mikhail Zolotukhin. 2021. NNC walkthrough: how PyTorch ops get fused. https://dev-discuss.pytorch.org/t/nnc-
walkthrough-how-pytorch-ops-get-fused/125. [Online; accessed 15-Mar-2024].

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://doi.org/10.1145/3650109
https://doi.org/10.1145/3575693.3575702
https://www.nvidia.com/en-in/data-center/a100/
https://www.nvidia.com/en-in/geforce/graphics-cards/30-series/
https://www.stonybrook.edu/ookami/
https://doi.org/10.1145/2499370.2462176
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://doi.org/10.1109/IISWC47752.2019.9042139
https://doi.org/10.1109/IISWC47752.2019.9042139
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
https://dev-discuss.pytorch.org/t/nnc-walkthrough-how-pytorch-ops-get-fused/125
https://dev-discuss.pytorch.org/t/nnc-walkthrough-how-pytorch-ops-get-fused/125

	Abstract
	1 Introduction
	2 Exploration via Meta Schedule; Exploitation via Droplet Search
	2.1 Space Exploration via Meta Schedule
	2.2 Space Exploitation via Droplet Search
	2.3 Combining Meta Schedule with Droplet Search
	2.4 Implementation Details

	3 Evaluation
	3.1 RQ1 – On the Quality of End-to-End Models
	3.2 RQ2 – On the Search Time
	3.3 RQ3 – On the Impact of Model Size
	3.4 RQ4: The Average Number of Droplet Search Samples

	4 Conclusion
	References

