
GUARDS: A Generic Upgradable Architecture
for Real-Time Dependable Systems

D. Powell, Member, IEEE, J. Arlat, Member, IEEE, L. Beus-Dukic,

A. Bondavalli, Member, IEEE Computer Society, P. Coppola, A. Fantechi,

E. Jenn, C. RabeÂ jac, and A. Wellings

AbstractÐThe development and validation of fault-tolerant computers for critical real-time applications are currently both costly and

time consuming. Often, the underlying technology is out-of-date by the time the computers are ready for deployment. Obsolescence

can become a chronic problem when the systems in which they are embedded have lifetimes of several decades. This paper gives an

overview of the work carried out in a project that is tackling the issues of cost and rapid obsolescence by defining a generic fault-

tolerant computer architecture based essentially on commercial off-the-shelf (COTS) components (both processor hardware boards

and real-time operating systems). The architecture uses a limited number of specific, but generic, hardware and software components

to implement an architecture that can be configured along three dimensions: redundant channels, redundant lanes, and integrity levels.

The two dimensions of physical redundancy allow the definition of a wide variety of instances with different fault tolerance strategies.

The integrity level dimension allows application components of different levels of criticality to coexist in the same instance. The paper

describes the main concepts of the architecture, the supporting environments for development and validation, and the prototypes

currently being implemented.

Index TermsÐComputer architecture, generic architecture, embedded systems, fault tolerance, real-time, integrity levels.

æ

1 INTRODUCTION

MOST ultradependable real-time computing architec-
tures developed in the past have been specialized to

meet the particular requirements of the application domain
for which they were targeted. This specialization has led to
very costly, inflexible, and often hardware-intensive solu-
tions that, by the time they are developed, validated, and
certified for use in the field, can already be out-of-date in
terms of their underlying hardware and software technol-
ogy. This problem is exacerbated in some application
domains since the systems in which the real-time architec-
ture is embedded may be deployed for several decades, i.e.,
almost an order of magnitude longer than the typical
lifetime of a generation of computing technology.

A consortium of European companies and academic

partners has been formed to design and develop a Generic

Upgradable Architecture for Real-time Dependable Systems

(GUARDS), together with an associated development and

validation environment. The end-user companies in the

consortium all currently deploy ultradependable real-time

embedded computers in their systems, but with very
different requirements and constraints resulting from the
diversity of their application domains: nuclear submarine,
railway, and space systems. The overall aim of the
GUARDS project is to significantly decrease the lifecycle
costs of such embedded systems. The intent is to be able to
configure instances of a generic architecture that can be
shown to meet the very diverse requirements of these (and
other) critical real-time application domains. A three-
pronged approach is being followed to reduce the cost of
validation and certification of instances of the architecture:
1) design for validation, so as to focus validation obligations
on a minimum set of critical components; 2) reuse of
already-validated components in different instances; and 3)
the support of software components of different criticalities.

The paper is structured as follows: Section 2 sketches the
rationale for the design of the generic architecture, which is
then summarized in Section 3. Central to the architecture is
an interchannel communication network, which is de-
scribed in Section 4. Section 5 details the interchannel fault
tolerance mechanisms while Section 6 discusses the
scheduling issues raised by active replication of real-time
tasks. Sections 7 and 8 discuss, respectively, the develop-
ment and validation environments that accompany the
architecture. Section 9 describes the prototypes currently
being implemented. Finally, Section 10 concludes the paper.

2 DESIGN RATIONALE

To merit the epithet ªgeneric,º the architecture must be able
to meet the widest possible spectrum of dependability and
real-time requirements. To this end, we first consider some
key nonfunctional requirements of typical applications in

580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

. D. Powell and J. Arlat are with LAAS-CNRS, 7 avenue du Colonel Roche,
Toulouse Cedex 4, France. E-mail: david.powell@laas.fr.

. L. Beus-Dukic and A. Wellings are with the University of York, York
YO10 5DD, United Kingdom.

. A. Bondavalli is with PDCC-CNUCE-CNR, Via S. Maria 36, 56126 Pisa,
Italy.

. P. Coppola is with Intecs Sistemi S.p.A., V.L. Gereschi 32/34, 56127 Pisa,
Italy.

. A. Fantechi is with PDCC-IEI CNR, Via S. Maria 46, 56126 Pisa, Italy.

. E. Jenn is with Technicatome, BP 34000, 13791 Aix-en-Provence Cedex 3,
France.

. C. RabeÂjac is with Matra Marconi Space, 31 rue des Cosmonautes, 31402
Toulouse Cedex 4, France.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 109045.

1045-9219/99/$10.00 ß 1999 IEEE

each of the three end-user domains. We then discuss the
issues of fault classes and real-time scheduling.

2.1 Key Nonfunctional Requirements

A typical instance of the architecture in the railway domain
would be a fail-safe control system. Standards in this
domain dictate extremely low catastrophic failure rates for
individual subsystems (e.g., less than 10-11/hour with
respect to physical faults). In railway applications, it is
common to physically segregate subsystems responsible for
vital (safety-critical) functions from nonvital functions. We
decided to investigate the possibility of a single instance
supporting both high-integrity vital functions and low-
integrity nonvital functions.

In the nuclear submarine domain, an instance of the
architecture would typically be used to support secondary
protection functions, which are required to be ready to react
in case of (rare) incidents. Two requirements from this
application domain impose quite severe restrictions on the
design space. First, it must be possible to separate
redundant elements of the architecture by several meters
so as to tolerate physical damage. Second, to avoid
obsolescence during the submarine's lifetime, the use of
unmodified commercial off-the-shelf operating system(s) is
mandatory.

A particularly challenging application in the space
domain is that of an autonomous spacecraft carrying out
missions containing phases that are so critical that tolerance
of several faults may be required (e.g., target fly-by or
docking). During noncritical phases, the redundant ele-
ments may be powered down to save energy. Moreover, it
is necessary for an instance to be able to support software of
different integrity levels: high-integrity critical software that
is essential for long-term mission reliability and potentially
unreliable payload software.

2.2 Fault Classes

The architecture aims to tolerate permanent and temporary
physical faults (of both internal and external origins) and
should provide tolerance or confinement of software design
faults. This wide spectrum of fault classes [42] has several
consequences beyond the basic physical redundancy
necessary to tolerate permanent internal physical faults.
Tolerance of permanent external physical faults (e.g.,
physical damage) requires geographical separation of
redundancy. Temporary external physical faults (transients)
can lead to rapid redundancy attrition unless their effects
can be undone. This means that it must be possible to
recover corrupted processors. Temporary internal physical
faults (intermittents) are treated as either permanent or
transient faults according to their rate of recurrence.

Many design faults can also be tolerated like intermit-
tents if their activation conditions are sufficiently diversi-
fied [29] (e.g., through loosely coupled replicated
computations). However, design faults that are activated
systematically for a given sequence of application inputs
can only be tolerated through diversification of design or
specification. Due to limited resources, the project has not
considered diversification of application software beyond
imposing the requirement that no design decision should
preclude that option in the future. However, we have

studied the use of integrity level and control-flow monitor-

ing mechanisms to ensure that design faults in noncritical

application software do not affect critical applications.

Moreover, we have considered diversification for tolerating

design faults in off-the-shelf operating systems. We also

encourage activation condition diversification to provide

some tolerance of design faults in replicated hardware and

replicated applications.

2.3 Real-Time Models

In keeping with the genericity objective, the architecture

must be capable of supporting a range of real-time

computational and scheduling models.
The computational model defines the form of concurrency

(e.g., tasks, threads, asynchronous communication, etc.) and

any restriction that must be placed on application programs

to facilitate their timing analysis (e.g., bounded recursion).

Applications supported by GUARDS may conform to a

time-triggered, event-triggered or mixed computational

model.
Three scheduling models are considered [69]:

. CyclicÐas typified by the traditional cyclic execu-
tive.

. CooperativeÐwhere an application-defined schedu-
ler and the prioritized application tasks explicitly
pass control between one another to perform the
required dispatching.

. PreemptiveÐthe standard preemptive priority
scheme.

We have focused primarily on the preemptive schedul-

ing model since this is the most flexible and the one that

presents the greatest challenges.

3 THE GENERIC ARCHITECTURE

The diversity of end-user requirements and fault tolerance

strategies led us to define a generic architecture that can be

configured into a wide variety of instances. The architecture

favors the use of commercial off-the-shelf (COTS) hardware

and software components, with application-transparent

fault tolerance implemented primarily by software. Draw-

ing on experience from systems such as SIFT [47], MAFT

[37], FTPP [30], and Delta-4 [52], the generic architecture is

defined along three dimensions of fault containment (Fig. 1)

[53]:

. Integrity levels, or design-fault containment regions.

. Lanes, or secondary physical-fault containment
regions.

. Channels, or primary physical-fault containment
regions.

A particular instance of the architecture is defined by the

dimensional parameters {C, M, I}, a reconfiguration

strategy, and an appropriate selection of generic hardware

and software GUARDS components. These generic compo-

nents implement mechanisms for:

. Interchannel communication.

. Output data consolidation.

. Fault tolerance and integrity management.

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 581

Fault tolerance and integrity management are software-
implemented through a distributed set of generic system
components (shown as a ªmiddlewareº layer on Fig. 1).
This layer is itself fault-tolerant (through replication and
distribution of its components) with respect to faults that
affect channels independently (e.g., physical faults). How-
ever, the tolerance of design faults in this system layer is not
explicitly addressed.1

3.1 The Integrity Dimension

The integrity dimension aims to provide containment
regions with respect to software design faults. The intent
is to protect critical components from the propagation of
errors due to residual design faults in less-critical compo-
nents. Each application object is classified within a
particular integrity level according to how much it can be
trusted (the more trustworthy an object is, the higher its
integrity level). The degree to which an object can be trusted
depends on the evidence that is available supporting its
correctness, and the consequences of its failure (i.e., its
criticality).

The required protection is achieved by enforcing an
integrity policy to mediate the communication between
objects of different levels. Basically, the integrity policy
seeks to prohibit flows of information from low to high
integrity levels, like in the Biba policy [15]. However, this
approach is inflexible. An object can obtain data of higher
integrity than itself, but the data must then inherit the level
of integrity of this object. This results in a decrease in the

integrity of the data, without any possibility of restoring it.
We deal with this drawback by providing special objects
(Validation Objects) whose role is to apply fault tolerance
mechanisms on information flows. The purpose of these
objects is to output reliable information by using possibly
corrupted data as input (i.e., with a low integrity level).
Such objects upgrade the trustworthiness of data and,
hence, allow information flows from low to high integrity
levels [67].

It must be ensured that it is not possible to by-pass the
controls put into place to enforce the policy. This is
achieved by spatial and temporal isolation, which are
provided, respectively, by memory management hardware
and resource utilization budget timers [66]. Furthermore,
for the most critical components (the topmost integrity
level) and a core set of basic components (i.e., the integrity
management components and the underlying hardware
and operating systems), it must be assumed either that there
are no design faults or that they can be tolerated by some
other means (e.g., through diversification).

In this paper, we do not detail the integrity dimension
any furtherÐthe interested reader should refer to [66], [67].

3.2 The Lane Dimension

Multiple processors or lanes are used essentially to define
secondary physical fault containment regions. Such sec-
ondary regions can be used to improve the capabilities for
fault diagnosis within a channel, e.g., by comparison of
computation replicated on several nodes. There is also
scope for improving coverage with respect to design faults
by using intrachannel diversification.

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

1. Note, however, that correlated faults are included in the models used
to assess the dependability of instances of the architecture: See Section 8.2.

Fig. 1. The generic architecture.

Alternatively, lanes can be used to improve the avail-
ability of a channel, e.g., by passivating a node that is
diagnosed to be permanently faulty. The required fault
diagnosis could be triggered either by the error-processing
mechanisms within a channel or through an error signal
from the interchannel voting mechanisms.

Further reasons for defining an instance with multiple
lanes include parallel processing to improve performance
and isolation of software of different integrity levels. To aid
the timing analysis of such software we require that the
multiple processors within a channel have access to shared
memory (see Section 6).

3.3 The Channel Dimension

Channels provide the primary fault containment regions that
are the ultimate line of defense within a single instance for
physical faults that affect a single channel. Fault tolerance is
based on active replication of application tasks over the set
of channels. It must be ensured that replicas are supplied
with the same inputs in the same order, despite the
occurrence of faults. Then, as long as replicas on fault-free
channels behave deterministically, they should produce the
same outputs. Error processing can thus be based on
comparison or voting of replica outputs.

Not all instances require the same number of channels. In
fact, one could imagine an instance with just one channel.
This would be the case for an application that only requires
multiple integrity levels or for which the fault tolerance
mechanisms implemented within a channel are judged to be
sufficient. It should be expected, however, that most
applications require instances with several channels. Im-
portant cases are:

. Two channels: motivated either by a requirement for
improved safety (using interchannel comparison) or
improved reliability (based on intrachannel self-
checking to provide crash failure semantics).

. Three channels: the well-known triple modular
redundancy (TMR) strategy that enables most2 faults
in one channel to be masked. In addition, any
disagreements are detected and used as inputs for
error diagnosis and fault treatment.

. Four channels: to enable masking of completely
arbitrary faults or to allow a channel to be isolated
for off-line testing while still guaranteeing TMR
operation with the remaining on-line channels.

Instances of the architecture with more than four
channels are not currently envisaged.

4 INTERCHANNEL COMMUNICATION NETWORK

Central to the architecture is an interchannel communica-
tion network (ICN), which fulfills two essential functions:

. It provides a global clock to all channels.

. It allows channels to achieve interactive consistency
(consensus) on nonreplicated data.

The ICN consists of an ICN-manager for each channel
and unidirectional serial links to interconnect the ICN-
managers. In the current implementation, the ICN-manager

is a Motorola 68040-based board with a dual-port shared
memory for asynchronous communication with the intra-
channel VME back-plane bus. Serial links are provided by
two Motorola 68360-based piggyback boards. Each such
board provides two Ethernet links. One link is configured
as transmit only, the other links are configured as receive
only. An ICN-manager can thus simultaneously broadcast
data to the remote ICN-managers over its outgoing serial
link and receive data from the remote ICN-managers over
the other links.

4.1 Clock Synchronization

The ICN-managers constitute a set of fully interconnected
nodes. Each node has a physical clock and computes a
global logical clock time through a fault-tolerant synchro-
nization algorithm. Such an algorithm is classically defined
as one that satisfies both the agreement and accuracy
properties:

. The agreement condition is satisfied if and only if the
skew between any nonfaulty logical clocks is
bounded.

. The accuracy condition is satisfied if and only if all
nonfaulty logical clocks have a bounded drift with
respect to real time.

Since COTS-based solutions are preferred within
GUARDS, we focused on software-implemented algo-
rithms. In particular, we considered both convergence
averaging and convergence nonaveraging algorithms [57].

In a convergence averaging algorithm, each node
resynchronizes according to clock values obtained through
periodic one-round clock exchanges. On each node, the
other clocks can be taken into account through a mean-like
function [40] or a median-like function [46]. The worst-case
skew of these algorithms is dominated by the uncertainty
on transmission delay. They can tolerate f arbitrarily faulty
nodes in a (fully connected) network of n nodes, under the
sufficient condition that n > 3f .

In a convergence nonaveraging algorithm, each node
periodically seeks to be the system synchronizer. To deal
with possible Byzantine behavior, the exchanged messages
can be authenticated [63]. The worst-case skew of these
algorithms is dominated by the maximum message transit
delay. When authentication is used for internode message
exchanges, they can tolerate f arbitrarily faulty nodes with
only n > 2f nodes.

The GUARDS architecture uses a convergence-averaging
solution based on [46] and applied to up to four nodes (i.e.,
ICN-managers in our architecture). This choice was
motivated mainly by reasons of performance and design
simplicity. It implies that the probability of occurrence of a
Byzantine clock must be carefully evaluated in a three-
channel configuration. This probability is expected to be
very small, since the ICN serial links are broadcast media
and the ICN-managers can check whether they receive a
syntactically correct synchronization message in a well-
defined local time window.

The global clock maintained by the set of ICN-managers
is broadcast via the intrachannel back-plane busses, to the
processors and I/O boards local to a channel.

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 583

2. The exception is that of Byzantine clock behavior (see Section 4.1).

4.2 Interactive Consistency

The issue of exchanging private data between channels and

agreeing on a common value in the presence of arbitrary

faults is known as the interactive consistency problem (the

symmetric form of the Byzantine agreement problem) [50].

The two fundamental properties that a communication

algorithm must fulfill to ensure interactive consistency are:

. Agreement: If channels p and q are nonfaulty, then
they agree on the value ascribed to any other
channel.

. Validity: If channels p and q are nonfaulty, then the
value ascribed to p by q is indeed p's private value.

In the general case, the necessary conditions to achieve

interactive consistency in spite of up to f arbitrarily faulty

channels are [39]:

. At least 3f � 1 channels.

. At least 2f � 1 disjoint interchannel communication
links.

. At least f � 1 rounds of message exchange.

. Bounded skew between nonfaulty channels.

Under the assumption of authenticated messages,

which can be copied and forwarded but not undetectably

altered by a relayer, the condition on the minimal number

of channels can be relaxed to f � 2. Nevertheless, at least

2f � 1 channels are still necessary if majority voting must

be carried out between replicated application tasks.
The interactive consistency protocol used in GUARDS is

based on the ZA algorithm [28], which was derived from

the Z algorithm [64] by adding the assumption of

authentication. In particular, authentication precludes the

design fault in the Z algorithm identified in [45]. Following

the hybrid fault model described in [45], the protocol allows

for both arbitrarily faulty channels and channels affected by

less severe kinds of faults (e.g., omission faults).
For performance reasons, and since by assumption the

architecture only needs to tolerate accidental faults and not

malicious attacks, we preferred to use a keyed checksum

scheme for message authentication rather than resorting to

true cryptographic signatures. Under this scheme, multiple

checksums are appended to each (broadcast) message. Each

checksum is computed over the concatenation of the data

part of the message and a private key that is known only to

the sender and to one of the broadcast destinations.

4.3 Scheduling

The ICN is scheduled according to a table-driven protocol.

The schedule consists of a frame (corresponding to a given

application mode) that is subdivided into cycles and slots.

The last slot of a cycle is used for clock synchronization so

the length of a cycle is fixed either by the required channel

synchronization accuracy or by the maximum I/O fre-

quency in a given mode. The other slots of a cycle are of

fixed duration and can support one fixed-sized message

transmission (and up to three message receptions). In the

current implementation, each message may contain 1,000

bytes.

5 INTERCHANNEL ERROR PROCESSING AND FAULT

TREATMENT

From a conceptual viewpoint, it is common to consider fault
tolerance as being achieved by error processing and fault
treatment [2], [41]:

. Error processing is aimed at removing errors from the
computation state, if possible, before failure occur-
rence. In general, error processing involves three
primitives: error detection, error diagnosis, and error
recovery.

. Fault treatment is aimed at preventing faults from
being activated again and also involves three
primitives: fault diagnosis, fault passivation, and
reconfiguration.

In GUARDS, error recovery is achieved primarily by
error compensation, whereby the erroneous state contains
enough redundancy to enable its transformation into an
error-free state. This redundancy is provided by active
replication of critical applications (although diversification
is not precluded) over the C channels; it is application-
transparent and managed by software, including compar-
ison or voting of computed results. Error processing thus
relies primarily on N-modular redundancy to detect
disagreeing channels and (when C � 3) to mask errors
occurring in the voted results at run-time. When C � 2, two
possibilities are offered, as already mentioned in Section 3.3:

. Error detection (locally by a channel) and compensa-
tion (by switching to a single channel configuration).

. Error detection (by channel comparison) and switch-
ing to a safe state (a degenerate form of forward
recovery).

Fig. 2 illustrates the replicated execution of an iterative
task in the case of a three-channel configuration. After
reading the replicated sensors, the input values are
consolidated across all channels after a two-round inter-
active consistency exchange over the ICN. The application
tasks are then executed asynchronously, with preemptive
priority scheduling allowing different interleavings of their
executions on each channel. This diversifies the activities of
the different channels, thereby allowing many residual
design faults to be tolerated as if they were intermittents (cf.
Section 2.2).

Application state variables (which contain values that are
carried over between iterations) are used together with
consolidated inputs to compute the output values which are
exchanged in a single round over the ICN and voted. The
voted results are then written to the actuators, possibly via
output consolidation hardware, which allows the physical
values to be voted.

Since neither the internal state variables of the under-
lying COTS operating systems nor the totality of the
application state variables are voted, further error recovery
is necessary to correct any such state that becomes
erroneous (note that this may be case even in the event of
a transient fault). However, this is a secondary, nonurgent
error recovery activity since, until another channel is
affected by a fault, the error compensation provided by
output voting or switching can be relied upon to ensure that
correct outputs are delivered to the controlled process.

584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Consequently, this secondary error recovery can be viewed
as part of fault treatment.

In the next section, we describe the GUARDS diagnosis
mechanisms, which include both error diagnosis, to decide
whether the damage to a channel's state warrants further
action, and fault diagnosis, to decide the location and type
of the fault and, thus, the necessary corrective action.

Then, in Section 5.2, we describe the state recovery
procedure that allows reintegration of a channel after a
transient fault or repair of a permanent fault. Finally,
Section 5.3 discusses mechanisms for output consolidation.

5.1 Diagnosis

The first step in diagnosis is to collect error reports
generated during the interactive consistency and consolida-
tion exchanges (majority voting discrepancies, timing
errors, ICN bus transmission errors, protocol violations,
etc.) and then to filter them to assess whether the extent of
damage warrants further action. Indeed, some reported
errors may not have resulted in any change to the state of a
channel. Alternatively, if only a small part of the state has
become erroneous, then an erroneous channel might correct
itself autonomously by overwriting the erroneous variables
during continued execution. If such fortuitous recovery
does not occur, an explicit forward recovery action is
necessary to reconstruct a correct state.

The filtering of errors is done using a software-
implemented mechanism known as an �-count, which
was originally proposed for the discrimination of transient
versus intermittent-permanent faults [17]. Error reports are
processed on a periodic basis, giving lower weights to
error reports as they get older. A score variable �x
(initially set to 0) is associated to each component x to
record information about the errors attributed to that
component. The Lth judgment is accounted for as follows:

�x�L� � �x�Lÿ 1� � 1

if component x is perceived as faulty

�x�L� � k � �x�Lÿ 1�
if component x is perceived as correct �with 0 < k < 1�:

When �x�L� becomes greater than a given threshold �T ,
the damage to the state of component x is judged to be such
that further diagnosis is necessary.

The appropriate filtering action can be provided by
several different heuristics for the accumulation and decay
processes (where �x�L� takes slightly different expressions)

[17], [55], [56]. For a given error distribution, the parameters
of the heuristics can be determined through a dependability
evaluation (for example, see [17]).

A distributed version of �-count is used in GUARDS to
provide the error syndrome that is input to interchannel
fault diagnosis. Each channel i maintains C �-count
variables, one, �ii, representing its opinion of its own
health and C-1 variables, �ij; j 6� i, representing its opi-
nions of the health of the other channels. The �-counts are
updated and processed cyclically. Each cycle N�, called an
�-cycle, has a duration chosen such that N� � n1 � Nframe,
where n1 is an integer and Nframe the duration of the ICN
frame (see Section 4.3).

Since each channel may have a different perception of
the errors created by other channels, the �-counts main-
tained by each channel must be viewed as single-source
(private) values. They are consolidated at the end of each �-
cycle through an interactive consistency protocol so that
fault-free channels have a consistent view of the status of
the instance (a consistent matrix A of �-count values).
During the next �-cycle, fault diagnosis can thus be
performed using A. The resulting diagnosis consists of a
vector D whose elements Di represent the diagnosed state
of each channel (correct or requiring passivation and
isolation).

The fault diagnosis problem has been extensively
studied in the literature. An ideal diagnosis should be both
correct and complete:

. A diagnosis is correct if any channel that is diagnosed
as faulty is indeed faulty.

. A diagnosis is complete if all faulty channels are
diagnosed as faulty.

In the current case, the interchannel tests have imperfect
coverage so a channel requiring passivation is not necessa-
rily accused by all correct channels [16], [43]. The algorithm
in the current implementation diagnoses a channel as faulty
if it is accused of being faulty by a majority of channels or,
of course, if it accuses itself. This algorithm is correct and
complete under the assumption that not more than one
channel at a time is accused by a fault-free channel.
However, due to the memory effect of the �-count
mechanism, this assumption can be violated if near-
coincident faults occur on different channels. In this
situation, there is thus a trade-off between the probability
of incorrect diagnosis caused by a long memory effect (high
value of k) and the probability of having an incorrect

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 585

Fig. 2. TMR execution of an application function split in sequential threads.

majority vote due to slow elimination of a faulty channel
(low value of k). This trade-off is the subject of ongoing
research.

Once a channel has been diagnosed as requiring
passivation, it is isolated (i.e., disconnected from the outside
world) and reset (with the reinitialization of operating
system structures). A thorough self-test is then carried out.
If the test reveals a permanent fault, the channel is switched
off and (possibly) undergoes repair. Whenever a channel
passes the test (i.e., the fault was transient), or after having
repaired a channel having suffered a permanent fault, it
must be reintegrated to avoid unnecessary redundancy
attrition.

It should be noted that the error filtering action of the �-
count can effectively be turned off by setting its threshold
�T � 1. In this case, any transient fault leading to a self-
detected error (or to errors perceived by a majority of
channels) will cause that channel to go through the possibly
lengthy self-test and reintegration procedure, irrespective of
the extent of the actual damage to the channel's state. A
fault affecting another channel before reintegration of the
former will induce a further decrease in the number of
active channels. When transients are common, this policy
can thus cause rapid switching to a safe state if the number
of active channels becomes insufficient for error compensa-
tion to remain effective. The choice of whether filtering is
used or, more generally, the value of the �-count threshold,
thus leads to a classic trade-off between safety and
reliability.

5.2 State Restoration

For a channel to be reintegrated, it must first resynchronize
its clock, then its state, with the pool of active channels.
Since not all state variables are necessarily consolidated
through ICN exchanges, the state (or channel context) cannot
be retrieved by simply observing the traffic on the ICN, but
must be explicitly copied from the active channels. This is
achieved by a system state restoration (SR) procedure,
called Running SR, applied to the channel context, i.e., the
set of application state variables whose values are carried
over successive iterations without consolidation.

A minimum level of service must be ensured, even
during the SR procedure, so a limited number of vital
application tasks must be allowed to continue execution on
the active channels. Running SR is therefore a multistep
algorithm where, at each step, only a fraction of the state is
exchanged. Furthermore, vital application tasks may update
state variables while SR progresses.

The basic behavior of Running SR is the following (more
details with variations and optimizations are given in [18],
[19]). The channel context is arranged in a single (logical)
memory block managed by a ªcontext object.º When the
state of channel needs to be restored, the system enters an
ªSR mode.º The C-1 active channels enter a ªput stateº
submode while the joining channel enters a ªget stateº
submode.

To take advantage of the parallel links of the ICN, the
whole block of memory storing the channel context is split
into C-1 subblocks of similar size, each managed by one of
the active channels. Each active channel i propagates to the
joining channel any updates to state variables belonging to

block i. A Sweeper task is executed to transfer the ith block of
the context. In the joining channel, transferred data are
received and processed by a Catcher task. This task has most
of the CPU time available since no application tasks are
executed on that channel.

Switching from normal computation to the SR mode
occurs at the beginning of an ICN frame, with a
corresponding change in task scheduling, and SR comple-
tion always occurs at the end of a frame. After completion,
signatures of the entire channel state are taken in each
channel and exchanged through the interactive consistency
protocol. State restoration is considered successful if all
signatures match. Normal application scheduling is then re-
activated on the next frame.

Since a deterministic, finite time is required to copy the
memory block and any updates to already copied state
variables are immediately propagated, the whole (parallel)
state restoration is performed in a deterministic, finite time.
The state restoration tasks are assigned a priority and a
deadline and, for schedulability analysis, are treated the
same as vital application tasks. Note that, during SR, the
ICN has to support: 1) the normal traffic generated by the
vital (i.e., nonstoppable) applications, 2) the extra traffic due
to state variable updates, and 3) the traffic generated by the
Sweeper task. SR will therefore normally require a mode
change to suspend nonvital application tasks so as to
release processor time and ICN slots for SR execution and
communication.

5.3 Output Data Consolidation

The purpose of the output data consolidation system (cf.
Fig. 1) is to map the replicated logical outputs of each channel
onto the actual physical outputs to the controlled process, in
such a way that the latter are either error-free or in a safe
position. Such consolidation, placed at the physical inter-
face with the controlled process, is the ultimate error
confinement barrier and is a complement to any software-
implemented voting of the logical outputs.

A given instance of the architecture could have several
different output consolidation mechanisms according to its
various interfaces with the controlled process. Ideally, an
output data consolidation mechanism should extend into
the controlled process itself to prevent the physical interface
to the process from becoming a single point of failure. A
typical example would be a control surface (e.g., in a fly-by-
wire application) that can act as a physical voter by
summing the forces produced by redundant actuators.
Alternatively, a single channel can be designated to control
a given actuator. Failures of that actuator can be detected at
the application level by means of additional sensors
allowing each channel to read back the controlled process
variable and check it against the requested output.
Recovery can then be achieved by switching to an
alternative actuator. Other process-specific output data
consolidation mechanisms used in the GUARDS end-user
application domains include combinatorial logic implemen-
ted by relay or fluid valve networks, and the ªarm-and-fireº
technique commonly used to trigger space vehicle pyro-
technics (one channel sends an ªarmº command, which is
checked by the other channels, then all channels send

586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

matching ªfireº commands; the pyrotechnics are triggered
only if a majority of the latter concur with the former).

Output consolidation mechanisms such as these may be
used for various end-user instances of the architecture. By
definition, such process-specific techniques cannot be
generic so no specific research has been carried out in this
direction. However, the project has considered generic
output consolidation mechanisms for networked and
discrete outputs. A prototype consolidation mechanism is
being implemented for discrete digital or analog outputs
that can be electrically isolated from each other and then
connected through a wired-OR to the output devices.
Consolidation is achieved by having each channel read
back its own output and those of the other channel(s) so that
a vote can be carried out in software. Each channel then
sends selection signals to a hard-wired voter (one per
channel) that allows or disconnects that channel's outputs.
This approach relies on the assumption that the output
devices can tolerate the short but inevitable output glitch
caused by the read-back, vote, and disconnection delay.

6 REAL-TIME SCHEDULING

The architecture is capable of supporting a range of
scheduling models (cf. Section 2.3). In this section, we focus
on the standard preemptive priority-based scheme. We also
discuss the consequences on scheduling of the ICN net-
work.

Our timing analysis is based upon the Response-time
Analysis [7], [44]. We assume that any communication
between applications is asynchronous through the shared
memory. The use of round-robin scheduling on the
intrachannel VME bus allows all shared-memory accesses
to be bounded. This is adequate because it is assumed that
the number of hosts within a channel is small. Furthermore,
we assume the use of a nonblocking algorithm such as that
proposed in [62] to avoid the problems associated with
remote blocking.

6.1 Interchannel Replication of Applications

For an application task to be replicated, it must behave
deterministically and each replica task must process the
same inputs in the same order. At any point where there is
potential for replica divergence, the channels must perform
an interactive consistency agreement. Unfortunately, the
cost of executing interactive consistency agreement proto-
cols can be significant. There is, therefore, a need to keep
their use to a minimum.

In our approach, we force all replicated tasks to read the
same internal data. We can thus trade off fewer agreement
communications (and therefore greater efficiency) against
early detection of errors. If we assume that each replica does
not contain any inherently nondeterministic code, replica
determinism and error masking (or detection) can be
ensured by:

. Performing interactive consistency agreement or
Byzantine agreement on single-sourced data.

. Ensuring that all replicas receive the same inputs
when those inputs are obtained from other replica
tasks (replicated inputs).

. Voting on any vital output.

6.1.1 Agreement on Sensor Inputs

To reduce the complexity of the input selection algorithm,
which processes the vector of redundant values consoli-
dated through the interactive consistency exchange, it is
important to minimize the error between the redundant
input values. However, since the tasks are independently
scheduled on each channel, they could read their corre-
sponding sensors at significantly different times. This is
similar to the input jitter problem where a task (�)
implementing a control law has to read its input on a
regular basis. If jitter is a problem, the solution is to split the
task into two tasks (� ip,� '). � ip has a release time4 and a
deadline appropriate for the dynamics (and the allowable
jitter) of the physical quantity being measured by the
sensor. Task � ' has the original � 's deadline and is executed
at an offset from the release time of � ip. We will discuss
what value this offset should have in Section 6.2.

6.1.2 Identical Internal Replicated Input

Two cases need to be considered when reader and writer
tasks share the same data, according to whether or not there
is an explicit precedence constraint between the writer and
the reader. When there is such a constraint, then it can be
captured by the scheduling. When tasks share data
asynchronously (and, therefore, there is no explicit pre-
cedence constraint between the writer and the reader), there
are four types of interaction:

. Periodic writerÐPeriodic reader: the periods of the
two tasks do not have a simple relationship.

. Periodic writerÐSporadic reader: There is no rela-
tionship between the period of the writer and the
release of the reader.

. Sporadic writerÐSporadic reader: There is no
relationship between the release of the writer and
the release of the reader.

. Sporadic writerÐPeriodic reader: There is no rela-
tionship between the release of the writer and the
period of the reader.

In all of these cases, to ensure each replica reads the same
value, we keep more than one copy of the data (usually two
is enough) and use timestamps [9], [51]. The essence of this
approach is to use off-line schedulability analysis [7] to
calculate the worst-case response times of each replicated
writer. The maximum of these values is added to the release
time of the replicas (taking into account any release jitter) to
give a time by which all replicas must have written the data
(in the worst case). To allow for clock drift between replicas,
the maximum skew, ", is also added. This value is used as a
timestamp when the data is written.

A reader replica simply compares its release time with
the data timestamp. If the timestamp is earlier, then the
reader can take the data. If the timestamp is later than its
release time, then the reader knows that its replicated writer
has potentially executed before the other replicated writers.
It must therefore take a previous value of the data (the most
recent) whose timestamp is earlier than its release time. All

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 587

4. We assume that all I/O is periodic in nature.

reader replicas undertake the same algorithm and conse-
quently get the same value.

6.1.3 Output Voting

Where output voting is required, it is again necessary to
transform the replicated task writing to the actuators into
two tasks (� ' and �op): � ' sends the output value across the
ICN for voting, and �op reads the majority vote and sends
this to the actuator. The deadline of � ' will determine the
earliest point when the ICN manager can perform the
voting. The offset and deadline of �op will determine when
the voted result must be available and the amount of
potential output jitter. Hence, the two tasks have similar
timing characteristics to the tasks used for input agreement
(cf. Section 6.1.1). The main difference is that there is a
simple majority vote rather than an agreement protocol
involving three separate values.

6.2 Handling Offsets

A real-time periodic transaction model has been developed
in which periodic transaction i consists of three tasks � i1, � i2,
and � i3. Task � i1 reads a sensor and sends the value to the
ICN manager. Task � i2 reads back from the ICN manager
the set of values received from all the replicas; it
consolidates the values and processes the consolidated
reading and eventually produces some data. It sends this
data for output result consolidation to the ICN manager.
Task � i

3 reads the consolidated result from the ICN
manager and sends it to the actuator.

This form of real-time transaction is implemented by
timing offsets. Analysis of task sets with offsets is NP
complete [44] and even suboptimal solutions are complex
[6], [8], [65]. The approach we take is based on [10],
modified to take into account the fact that the computa-
tional times of � i1 and � i3 (respectively Ci1 and Ci3) are
much smaller than Ci

2, the computational time of � i
2, i.e.,

Ci2 >> max(Ci1, Ci3).
Once offsets has been assigned, a check must be made to

ensure that: 1) the response times of the individual tasks are
less than the offsets of the next task in the transaction, 2)
there is enough time before the offset and after the response
to transmit data on the ICN network, and 3) that the
deadline of the transaction has been met. If any of these
conditions is violated, then it may be possible to modify the
offsets of the transaction violating the condition in an
attempt to satisfy all the requirements [10].

6.3 Scheduling the ICN Network

Following the individual schedulability analysis of each
channel, the following characteristics are known for each
task participating in replicated transactions:

. Period

. Response-time

. Offset

. Deadline

The ICN tables can be built from this informationÐin the
same way as cyclic executive schedules can be constructed
[22]. Since all communication through the channels' shared
memory is asynchronous, the ICN manager can take the

data any time after the producing task's deadline has
expired.

Of course, there is a close relationship between the
scheduling of the channels and the scheduling of the ICN
network. If the off-line tool fails to find an ICN schedule, it
is necessary to revisit the design of the application.

7 ARCHITECTURE DEVELOPMENT ENVIRONMENT

The generic architecture is supported by an Architecture
Development Environment [49] consisting of a set of tools
for designing instances of the architecture according to a
coherent and rigorous design method. The toolset allows
collection of the performance attributes of the underlying
execution environment and the analysis of the schedul-
ability of hard real-time threads, not only within each
processing element of the system, but also among them.
This allows in particular a rigorous definition of critical
communication and synchronization among the redundant
computers.

7.1 Design Method

The design and development of a GUARDS software
application are centered on a hard real-time (HRT) design
method, which allows real-time requirements to be taken
into account and verified during the design. The method
also addresses the problem of designing replicated, fault-
tolerant architectures, where a number of computing and
communication boards interact for the consolidation of
input values and output results.

The design of a GUARDS application is defined as a
sequence of correlated activities that may be reiterated to
produce a software design that complies with both the
functional and nonfunctional requirements of the applica-
tion. Three design activities are identified:

. Functional architecture design, where the software
application is defined through an appropriate design
method and according to its functional requirements
and its performance requirements (task periods,
deadlines, etc.).

. Infrastructure architecture design, where the required
hardware boards and generic GUARDS software
components are identified. They constitute the
underlying computing environment of the applica-
tion software.

. Physical architecture design, where the functional
architecture is mapped onto the infrastructure and
analyzed according to the performance require-
ments. This is done not only for the processors
within each replicated channel, but also at the inter-
channel level, to determine the ICN exchanges
needed to consolidate input values and output
results.

7.2 Interchannel Schedulability

According to the dependability requirements, each critical
application task replica needs to consolidate its inputs and
its output results with those of the corresponding replicas
on the other channels (Fig. 3). Each application task � i is
structured as a real-time transaction consisting of three
subtasks, or threads, � i1, � i2, and � i3 responsible for input

588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

acquisition, result calculation and output actuation (cf.

Section 6.2).
For each application task � i, a deadline is set that defines

the time by which the final value must be sent to the

actuator(s) (corresponding to the third thread of the

transaction). Intermediate deadlines D�1 and D�2 are also

introduced for the first and second threads. They define the

time by which the input or output results are (or must be)

ready for transfer through the ICN (after a fixed intrachan-

nel transfer time) and consolidated. The transfer and

consolidation of each value over the ICN must take place

at predefined transfer slots (to synchronize such activities

on each channel) and the needed duration determines an

offset for the activation of the following thread (Fig. 4).
Although the final deadline is set by the requirements,

intermediate deadlines can be set arbitrarily during the

design, according to the intrachannel schedulability analy-

sis and the allocation of ICN transfer slots. Different

intermediate deadlines may imply different ICN transfers

(i.e., slot allocations) and consequently different offsets.

Consequently, the HRT schedulability analysis (at the

intrachannel level) must take into account the possible

tuning of HRT design attributes (i.e., intermediate deadlines

and offsets), as well as the slot allocation (i.e., the

interchannel schedulability).

7.3 Supporting Tools

The functional architecture design is supported by an

appropriate method and tool. To provide for genericity,

GUARDS does not force the selection of a specific method,

but it is assumed that the method selected by the user is

indeed suitable for the design of real-time software systems.

Nevertheless, a survey and an analysis of design methods

have shown that only HRT-HOOD [23] addresses explicitly

the design of hard real-time systems, providing means for

the verification of their performance. Therefore, HRT-

HOOD was selected as the baseline design method and

HRT-HoodNICE adopted as supporting tool [34].
However, the analysis also revealed several weaknesses

of the method, in particular related to the design of

distributed systems. The method was thus extended to

include the concept of Virtual Nodes, similar to that in the

HOOD 3.1 method [31]. The extended method can take into

account the lane dimension of GUARDS (by allocating

objects to different processors within a channel) and the

integrity dimension (by defining spatial firewalls around

objects of a given criticality). The HRT-HoodNICE toolset

has been accordingly enhanced.
The infrastructure architecture design is supported by a

specific toolset that manages an archive of hardware and

software components. Such components are described by

their relations, compatibilities, and performance attributes.

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 589

Fig. 3. Decomposition of critical tasks.

Fig. 4. Interchannel schedulability.

The tool selects the needed components according to the

characteristics of the required GUARDS instance.
As part of the physical architecture design, the applica-

tion tasks (i.e., HRT objects) identified in the functional

architecture are mapped onto the infrastructure architec-

ture. They are coupled with the real-time models of the

selected components in order to analyze and verify their

schedulability properties. This is done by the Temporal

Properties Analysis toolset, which analyzes the perfor-

mance of the resulting distributed software system.
The Temporal Properties Analysis toolset includes a

Schedulability Analyzer and a Scheduler Simulator, based

on those available in HRT-HoodNICE. They have been

enhanced to provide a more precise and realistic analysis

(by taking into account the concept of thread offsets) and to

cope with the specific needs of a redundant fault-tolerant

architecture (by allowing the analysis of the interactions

over the ICN).
A further result of the physical architecture design is

that, on the basis of the real-time models produced by the

verification tools, the critical interactions among software

functions on different channels are scheduled in a

deterministic way. The ICN transfer slots allocated to

them and a set of predefined exchange tables are produced

automatically.
As a final step of the design phase, the overall structure

of the software application is extracted from the HRT-

HOOD design and the related code is automatically

generated. To this end, a set of mapping rules has been

defined to translate the HRT-HOOD design in terms of

threads implemented in a sequential programming lan-

guage (which could be C or the sequential subset of Ada)

and executed by a POSIX compliant microkernel [68].

8 VALIDATION

The validation strategy implemented within GUARDS has
two main objectives [3]:

. A short-term objective: the validation of the design
principles of the generic architecture, including both
real-time and dependability mechanisms.

. A long-term objective: the validation of the devel-
opment of instances of the architecture implement-
ing specific end-user requirements.

A large spectrum of methods, techniques, and tools has
been considered to address these validation objectives and
to account for the validation requirements expressed by the
emerging trans-application domain standard IEC 1508 [33].

Following the comprehensive development model de-
scribed in [42], the validation strategy is closely linked to
the design solutions and the proposed generic architecture.
The validation environment that supports the strategy
includes components for verification and evaluation, using
both analytical and experimental techniques. Fig. 5 illus-
trates the relationship between the components of the
validation environment and their interactions with the
architecture development environment.

Besides the three main validation components (namely,
formal verification, model-based evaluation, and fault
injection), the figure explicitly identifies the role played by
the methodology and the supporting toolset being devel-
oped for schedulability analysis (cf. Section 7.3). The figure
also depicts the complementarity and relationships among
the three validation components. In particular, fault injec-
tion (carried out on prototypes) complements the other
validation components by providing means for: 1) assessing
the validity of the necessary assumptions made by the
formal verification task, and 2) estimating the coverage

590 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Fig. 5. Main interactions between architecture development and validation.

parameters included in the analytical models for depend-

ability evaluation. The following three subsections briefly

describe the related validation activities.

8.1 Formal Verification

Formal approaches were used both for specification and as

a design-aid. We concentrated our effort on four depend-

ability mechanisms, which constitute the basic building

blocks of the architecture: 1) clock synchronization, 2)

interactive consistency, 3) fault diagnosis, and 4) multilevel

integrity.
The formal approaches that have been applied included

both theorem proving and model checking. Table 1

summarizes the main features of the verifications carried

out for each of the target mechanisms.
The work carried out on the verification of clock

synchronization relied heavily on PVS (Prototype Verification

System) [48]. It led to the development of a general theory

for averaging and nonaveraging synchronization algo-

rithms [60]. The verification of the synchronization solution

used in GUARDS (cf. Section 4.1) was derived as an

instantiation of this general theory.
The verifications concerning interactive consistency [12],

[14], fault diagnosis [13], and multilevel integrity [27], [61]

were all based on model checking using the JACK (Just

Another Concurrency Kit) toolset [21]. This integrated

environment provides a set of verification tools that can

be used separately or in combination. Due to the complexity

of the required models, the toolset was extended to include

a symbolic model checker for ACTL [26].
These studies demonstrated the feasibility and the

benefits of formal methods on realistic industrial problems

using state-of-the-art tools. We believe this is an important

outcome that can significantly facilitate the acceptance of

the GUARDS generic architecture for critical applications. It

is also expected that further exploitation of the comple-

mentarity between theorem proving and model checking

could facilitate a wider industrial acceptance of formal

methods.

8.2 Dependability Evaluation

Model-based dependability evaluation is widely recognized
as a powerful means to make early and objective design
decisions by assessing alternative architectural solutions.
Nevertheless, fault-tolerant distributed systems (such as
GUARDS instances) pose several practical modeling pro-
blems (ªstiffness,º combinatorial explosion, etc.). Moreover,
due to the variety of the application domains being
considered, the dependability measures of interest encom-
pass reliability, availability, and safety.

To cope with these difficulties, we adopted a divide-and-
conquer approach, where the modeling details and levels
are tailored to fit the needs of the specific evaluation
objectives. This was achieved by first focusing the modeling
effort either on generic or specific architectural features, or
on selected dependability mechanisms. Then, an abstract
modeling viewpoint that aims to provide a global frame-
work for configuring instances to meet specific application
dependability requirements was devised. Finally, elaborat-
ing on previous related work (e.g., [36]), a detailed
modeling viewpoint that supports incremental and hier-
archical evaluation has been considered.

Table 2 identifies the various dependability evaluation
activities carried out according to these three modeling
viewpoints.

The focused models addressed several issues concerning
the analysis of generic mechanisms (e.g., �-count [17]) and
of specific features for selected instances (phased missions,
for the space prototype instance [20], intrachannel error
detection for the railway prototype instance).

The second viewpoint aims to establish a baseline set of
models for the three instances of the architecture described
in Section 9 (see also [54]). A general notation is introduced
that allows for a consistent interpretation of the model
parameters (layers, correlated faults, etc.) for each prototype
instance. This work provides the foundation of a generic
modeling approach to guide the choice of a particular
instantiation of the architecture, according to the depend-
ability requirements of the end-user application. A large
number of parameters (proportion of transient vs. perma-
nent faults, correlated faults in the hardware and software
layers, coverage factors, error processing rates, etc.) have

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 591

TABLE 1
Formal Verification Approaches

been included in the models, allowing intensive sensitivity

analyses to be carried out. As an example of the results

obtained, Fig. 6 compares reliability and safety for the three

instances considered,5 for one set of values of the para-

meters included in the models. The ranking of the reliability

curves simply reflects the redundancy at the channel level

(C = 4, 3, and 2 for the space, railway, and space instances,

respectively). However, in the case of safety, the ranking of

the nuclear and railway instances is reversed. This is mainly

due to the fact that, in the nuclear instance, correlated

design faults in either lane of the executive layer can be

detected by the interlane comparison within each channel.

Detailed models are needed to allow for a more

comprehensive analysis of the behavior of the instances

(dependencies, error propagation, etc.). Specific work has

addressed hierarchical modeling with the aim of mastering

the complexity of such detailed models [35]. This work is

directed mainly at: 1) enforcing the thoroughness of the

analysis, 2) helping the analyst (i.e., a design engineer who

is not necessarily a modeling expert). It is currently being

applied and refined on the nuclear submarine prototype

instance.
Although they were supported by different tools, namely

UltraSAN [59], MOCA-RP [25] and SURF-2 [11], the

modeling efforts all rely on the stochastic Petri net

formalism. This should facilitate reuse of the results of the

various studies (both models and modeling methodology).

592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

TABLE 2
Dependability Evaluation Viewpoints and Studies

Fig. 6. Comparison of the dependability of selected instances.

5. As safety is only a minor concern for the application targeted by the
space instance, only the reliability curve is shown for that instance.

8.3 Fault Injection

The main objectives for the planned fault injection
activities are twofold: 1) to complement the formal
verification of GUARDS mechanisms (i.e., removal of
residual deficiencies in the mechanisms), and 2) to support
the development of GUARDS instances by assessing its
overall behavior in the presence of faults, in particular by
estimating coverage and latency figures for the built-in
error detection mechanisms [4].

Indeed, as an experimental approach, fault injection
provides a pragmatic means to complement formal ver-
ification by overcoming some of the behavioral and
structural abstractions made, especially regarding the fail-
ure mode assumptions. Fault injection is to be carried out
on complete prototypes so the mechanisms are tested
globally when they have been integrated into an instance.
In particular, the interactions between the hardware and
software features are taken into account.

Although available tools could have been usedÐalbeit
with some extensionsÐa specific fault injection toolset
(FITS) is being developed. Such a toolset is a major feature
of the validation environment made available to support the
end-users in the development of specific instances of the
generic architecture.

Both for cost-effectiveness and flexibility, the fault
injection environment is based on the software-implemen-
ted fault injection (SWIFI) technique [32]. This also allows
tests to be conducted more efficiently, since: 1) a limited
number of errors can simulate the consequences of a large
number of faults, 2) it is less likely that the injected error
fails to exercise the dependability mechanisms.

Two main levels of injection are being considered,
whether the targeted mechanisms are implemented by the
ICN-manager board or by the intrachannel processors. In
practice, the implementations differ significantly: Whereas
fault injection on the intrachannel processors can be assisted
by the resident COTS operating systems and debug
facilities [24], [38], the ICN-manager only has a very simple
cyclic executive.

We concentrate here on the verification objective, which
is the main focus of the current implementation of FITS;

further features are needed to address the evaluation
objective (e.g., see [5]). Some examples of the experiments
aimed at testing various mechanisms are given in Table 3.

Besides injecting specific fault/error types, FITS allows
injection to be synchronized with the target system by
monitoring trigger events. Of course, the observations
depend on the targeted mechanisms. While it is primarily
intended to inject on a single channel, observations are
carried out on all channels. Initial experiments will focus on
the ICN mechanisms.

9 PROTOTYPES

Several practical instances of the generic architecture have
been studied and a prototype for each of the three end-user
domains is under development. The basic building blocks
are practically identical in each instance. However, the
configurations of the instances are very different and offer
quite different fault tolerance strategies. Moreover,
although the operating systems chosen by each end-user
are POSIX-compliant, they are not identical; neither are the
end-users' preferred system development environments.
Consequently, although there is a single specification of the
generic software components of the fault-tolerant and
integrity management layer, they have different practical
instantiations in each instance.

9.1 Railway Instances

One instance studied for the railway domain is a fairly
classic triple modular redundant (TMR) architecture with
one processor per channel (Fig. 7). If a channel is diagnosed
to be permanently faulty, the system degrades to a two-out-
of-two mode. If a fault should occur while in this mode, the
instance is switched to a safe state if the errors caused by the
fault are detected (either locally within a channel or by two-
out-of-two comparison).

This instance would employ Motorola 68040 or 68360
processors, each running a POSIX-compliant VxWorks
operating system. Compared to currently deployed sys-
tems, the innovative aspect of this instance is the co-
existence of two levels of application software integrity
corresponding to very different degrees of criticality:

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 593

TABLE 3
Fault Injection-Based Testing of the GUARDS' Dependability Mechanisms

. Highly critical interlocking logic or safety nucleus,
which must be the highest integrity.

. Noncritical monitoring, diagnostic, and supervision
functions.

This is a significant departure from current practice in
railway applications, where these two levels of criticality
would normally be implemented on separate instances.
However, there is an appreciable economic advantage to be
gained when it is possible to share the same hardware
between both levels (e.g., for small railway stations).

A second railway instance has also been considered for
an embedded train control system and is currently being
prototyped. This is a straightforward duplex fail-safe
configuration.

9.2 Nuclear Submarine Instance

The targeted nuclear submarine application is a secondary
protection system. The instance considered for this applica-
tion is a dual-channel architecture with two Pentium
processors in each channel (Fig. 8). To prevent common-
mode failures of both channels due to physical damage, the
channels are geographically separated by a distance of
several meters. Like the railway triplex system, this instance
hosts two levels of integrity.

An innovative aspect of this instance is the use of two
processors in each channel, with two different POSIX-
compliant operating systems: QNX and VxWorks. Apart
from the operating systems, both processors in each channel
run identical application software. The copies of application
components executing on each lane form self-checking pairs
to provide detection of errors due to faults activated
independently on each lane. In particular, this includes
physical faults (of the processors) and design faults of the
processors and their operating systems. It is assumed that
design faults of the operating systems are activated
independently, based on the fact that their designs are
diversified. Although the processors are identical, we also
assume that faults in their design will be independently
activated, based on their diversification of utilization (due
to loose coupling and diversification of operating systems).

As long as both channels are operational, they operate in
a two-out-of-two mode. Results of computations that are
declared as error-free by the intrachannel mechanisms are
compared and, in case of disagreement, the instance is put
into a safe state. However, if errors are detected locally, by
intrachannel mechanisms, the channel declares itself to be
faulty and the instance switches to single channel opera-
tion. Note that this strategy is different from that of the

594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Fig. 7. Railway triplex instance (C � 3, M � 1, I � 2).

Fig. 8. Nuclear submarine duplex instance (C � 2, M � 2, I � 2).

two-channel configurations of the railway instances
(duplex instance or triplex instance degraded to duplex),
which switch to a safe state whether the error is detected
locally or by comparison.

9.3 Space Instance

The instance of the architecture for space applications is
the most complex of those considered. It is a full four-
channel instance of the architecture capable of tolerating
arbitrary faults at the interchannel level (Fig. 9). Degrada-
tion to three-, two-, and one-channel operation is possible.
This instance also features two levels of integrity.

Like the instance intended for the nuclear submarine
application, this instance also possesses two lanes, but for a
different reason. For the nuclear application, the aim was to
allow diversified but equivalent operating systems to be
used so that errors due to design faults could be detected.
Here, the objective is to have one of the lanes (the secondary
lane) act as a back-up for the other lane (the primary lane).
Each lane supports a different operating system and
different application software:

. The primary lane runs a full-functionality version of
VxWorks and a nominal application that provides
full control of the spacecraft and its payload. The
application includes built-in self-monitoring based
on executable assertions and timing checks.

. The secondary lane runs a much simpler, restricted
version of VxWorks and a safety-monitoring and
simple back-up application. The purpose of the latter
is to provide control of the spacecraft in a very
limited ªsurvivalº mode (e.g., sun-pointing and
telemetry/telecontrol functions).

The idea is that neither the full VxWorks nor the nominal
application supported by the primary lane can be trusted to
be free of design faults. However, the restricted version of
VxWorks and the application software supported by the
back-up lane are assumed to be free of design faults and
thus trustable. The aim is to allow continued (but severely
degraded) operation in the face of a correlated fault across
all processors of the primary lane. Errors due to such a
correlated fault can be detected in two ways:

. By the self-monitoring functions (essentially control-
flow monitoring and executable assertions) included
within the nominal application.

. By a safety-monitoring application executed by the
secondary lane while the primary lane is opera-
tional.

In view of the differing levels of trust of the applications
supported by the primary and secondary lanes, they are
placed at different levels of integrity. The nominal applica-
tion (on the primary lane) is not trusted, so it is assigned to
the lower integrity level. The back-up application is
assumed to be free of design faults and is placed at the
higher integrity level. This separation of the integrity levels
on different lanes provides improved segregation (fire-
walling) between the two levels of integrity.

10 Conclusions and Future Work

The GUARDS project is an ambitious one. We have defined
a generic fault-tolerant architecture based on COTS compo-
nents and a small set of purpose-designed hardware and
software building blocks. This architecture can be config-
ured along three different dimensions (channels, lanes,
integrity levels) to meet the dependability requirements of a
wide variety of end-user applications.

The design of the architecture has shamelessly borrowed
ideas from previous work (in particular, SIFT [47], MAFT
[37], FTPP [30], and Delta-4 [52]). Like SIFT and Delta-4, the
focus has been on software-implemented fault tolerance,
with a minimum of special-purpose hardware. Like SIFT
and MAFT, the architecture uses a fully connected broad-
cast bus network for interchannel communication. Further-
more, the architecture uses the ZA algorithm for interactive
consistency [28], which resulted from work done in the
MAFT project. Like FTPP, the architecture allows parallel
processing within each channel (the M dimension). As in
Delta-4, the focus has been on the use of COTS operating
systems. The architecture also includes several completely
innovative aspects: support for multiple levels of integrity, a
novel error-filtering technique (�-count), and support for a
wide range of scheduling models, including preemptive

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 595

Fig. 9. Space quadruplex instance (C � 4, M � 2, I � 2).

scheduling. At the time of writing, the first prototypes were
nearing completion and it is hoped that performance
measurements and fault injection results will soon be
available.

A particularly constraining design requirement was that
only COTS operating systems were to be used. This
requirement appears to leave just two options to the fault-
tolerant system designer. The first option is to use a
hardware-intensive approach so that the hardware,
although fault-tolerant, presents a standard interface to an
unmodified COTS operating system, e.g., as in [1]. This
approach, which precludes the use of COTS hardware
boards, might nevertheless be necessary in some perfor-
mance-critical applications. The second option, which is the
one followed in GUARDS, is to use high-granularity
replication managed by software above the COTS operating
systems of interconnected COTS processor boards. One
consequence of this choice is that the operating systems
themselves cannot be protected from errors. This means
that even a transient fault might require a processor to be
completely reinitialized. Furthermore, the fault tolerance
management software cannot access data structures that are
internal to the operating systems. This leads to a nontrivial
channel reintegration procedure that relies on programmer-
defined context objects. One interesting direction for future
research on this aspect would be to explore how compile-
time reflection could be used to render context definition
transparent to the application programmer [58].

ACKNOWLEDGMENTS

GUARDS is partially financed by the European Commis-
sion as ESPRIT project no. 20716. The consortium consists of
three end-user companies: Technicatome (France), Ansaldo
Segnalamento Ferroviario (Italy), and Matra Marconi Space
(France); two technology-provider companies: Intecs Siste-
mi (Italy), Siemens AG OÈ sterreich PSA (Austria); and three
academic partners: LAAS-CNRS (France), Pisa Dependable
Computing Centre (Italy), and the University of York
(United Kingdom). The University of Ulm (Germany) also
participated in the first phase of the project as a
subcontractor.

REFERENCES

[1] M. Abbott, D. Har, L. Herger, M. Kaufmann, K. Mak, J. Murdock,
C. Schulz, T.B. Smith, B. Tremaine, D. Yeh, and L. Wong, ªDurable
Memory RS/60002 System Design,º Proc. 24th Int'l Conf. Fault-
Tolerant Computing (FTCS-24), pp. 414-423, Austin, Texas, June
1994.

[2] T.A. Anderson and P.A. Lee, Fault ToleranceÐPrinciples and
Practice. Prentice Hall, 1981. (see also: P.A. Lee, and T. Anderson,
Fault ToleranceÐPrinciples and Practice, Dependable Computing and
Fault-Tolerant Systems, vol. 3. Vienna: Springer-Verlag, 1990.

[3] J. Arlat, ªPreliminary Definition of the GUARDS Validation
Strategy,º Research Report no. 96378, LAAS-CNRS, Toulouse,
France, Jan. 1997. Also available as ESPRIT Project 20716
GUARDS Report no. D3A1.A0.5002.C.

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, ªFault Injection for Dependability
ValidationÐA Methodology and Some Applications,º IEEE Trans.
Software Eng., vol. 16, no. 2, pp. 166-182, Feb. 1990.

[5] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, ªFault
Injection and Dependability Evaluation of Fault-Tolerant Sys-
tems,º IEEE Trans. Computers, vol. 42, no. 8, pp.913-923, Aug. 1993.

[6] N. Audsley, ªFlexible Scheduling for Hard Real-Time Systems,º
DPhil thesis, Dept. of Computer Science, Univ. of York, UK, 1993.

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J.
Wellings, ªApplying New Scheduling Theory to Static Priority
Pre-emptive Scheduling,º Software Eng. J., vol. 8, no. 5, pp. 284-
292, 1993.

[8] N. Audsley, K. Tindell, and A. Burns, ªThe End of the Line for
Static Cyclic Scheduling?º Proc. Fifth Euromicro Workshop Real-Time
Systems, pp. 36-41, Oulu, Finland, 1993.

[9] P. Barrett, A. Burns, and A.J. Wellings, ªModels of Replication for
Safety Critical Hard Real-Time Systems,º Proc. 20th IFAC/IFIP
Workshop Real-Time Programming (WRTP '95), pp. 181-188, Ft.
Lauderdale, Fla., Nov. 1995.

[10] I. Bates and A. Burns, ªSchedulability Analysis of Fixed Priority
Real-Time Systems with Offsets,º Proc. Ninth Euromicro Workshop
on Real-Time Systems, pp. 153-160, Toledo, Spain, 1997.

[11] C. BeÂounes, M. Aguera, J. Arlat, S. Bachmann, C. Bourdeau, J.-E.
Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J. Moreira de Souza, D.
Powell, and P. Spiesser, ªSURF-2: A Program for Dependability
Evaluation of Complex Hardware and Software Systems,º Proc.
23rd Int'l Conf. Fault-Tolerant Computing (FTCS-23), pp. 668-673,
Toulouse, France, June 1993.

[12] C. Bernardeschi, A. Fantechi, S. Gnesi, and A. Santone, ªFormal
Specification and Verification of the Inter-Channel Consistency
Network,º PDCC, Pisa, Italy, ESPRIT Project 20716 GUARDS
Report no. I3A4.AO.6009.B, Apr. 1998.

[13] C. Bernardeschi, A. Fantechi, S. Gnesi, and A. Santone, ªFormal
Specification and Verification of the Inter-Channel Fault Treat-
ment Mechanism,º PDCC, Pisa, Italy, ESPRIT Project 20716
GUARDS Report no. I3A4.AO.6013.A, May 1998.

[14] C. Bernardeschi, A. Fantechi, S. Gnesi, and A. Santone, ªFormal
Validation of Fault Tolerance Mechanisms,º Digest of FastAbstracts
Ð28th Fault-Tolerant Computing Symp. (FTCS-28), pp. 66-67,
Munich, Germany, 23-25 June 1998.

[15] K.J. Biba, ªIntegrity Considerations for Secure Computer Sys-
tems,º The Mitre Corporation, Technical Report no. MTR-3153,
Rev. 1, Apr. 1977.

[16] D.M. Blough, G.F. Sullivan, and G.M. Mason, ªIntermittent Fault
Diagnosis in Multiprocessor Systems,º IEEE Trans. Computers,
vol. 41, no. 11, pp. 1,430-1,441, Nov. 1992.

[17] A. Bondavalli, S. Chiaradonna, F.D. Giandomenico, and F.
Grandoni, ªDiscriminating Fault Rate and Persistency to Improve
Fault Treatment,º Proc. 27th Int'l Symp. Fault-Tolerant Computing
(FTCS-27), pp. 354-362, Seattle, Wash., June 1997.

[18] A. Bondavalli, S. Chiaradonna, F.D. Giandomenico, and F.
Grandoni, ªInter-Channel State Restoration,º PDCC, Pisa, techni-
cal note, Nov. 1997. Also available as ESPRIT Project 20716
GUARDS Report no. I1-SA4.TN.6006.B.

[19] A. Bondavalli, F.D. Giandomenico, F. Grandoni, D. Powell, and C.
RabeÂjac, ªState Restoration in a COTS-based N-Modular Archi-
tecture,º Proc. First Int'l Symp. Object-Oriented Real-Time Distributed
Computing (ISORC'98), pp. 174-183, Kyoto, Japan, 20-22 Apr. 1998.

[20] A. Bondavalli, I. Mura, and M. Nelli, ªAnalytical Modelling and
Evaluation of Phased-mission Systems for Space Applications,º
Proc. Second Workshop High Assurance Systems Eng. (HASE-97),
Washington D.C., Aug. 1997.

[21] A. Bouali, S. Gnesi, and S. Larosa, ªThe Integration Project for the
JACK Environment,º Bulletin of the EATCS, vol. 54, pp.207-223,
Oct. 1994. See also http://rep1.iei.pi.cnr.it/projects/JACK.

[22] A. Burns, N. Hayes, and M.F. Richardson, ªGenerating Feasible
Cyclic Schedules,º Control Eng. Practice, vol. 3, no. 2, pp. 151-162,
1995.

[23] A. Burns and A. Wellings, ªHRT-HOOD: A Structured Design
Method for Hard Real-Time Ada Systems,º Real-Time Safety
Critical Systems, vol. 3, p. 313. Elsevier 1995.

[24] J. Carreira, H. Madeira, and J.G. Silva, ªXception: A Technique for
the Experimental Evaluation of Dependability in Modern Com-
puters,º IEEE Trans. Software Eng., vol. 24, no. 2, pp. 125-136, Feb.
1998.

[25] Y. Dutuit, E. ChaÃtelet, J.-P. Signoret, and P. Thomas, ªDepend-
ability Modelling and Evaluation by Using Stochastic Petri Nets:
Application to Two Test Cases,º Reliability Eng. & System Safety,
vol. 55, pp. 117-124, 1997.

[26] A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, and E. Tronci, ªA
Symbolic Model Checker for ACTL,º PDCC, Pisa, Italy, ESPRIT
Project 20716 GUARDS Report no. I3A5.AO.6011.A, Apr. 1998.

596 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

[27] A. Fantechi, S. Gnesi, and L. Semini, ªFormal Description and
Validation for an Integrity Policy Supporing Multiple Levels of
Criticality,º Proc. Seventh IFIP Working Conf. Dependable Computing
for Critical Applications (DCCA-7), pp. 6-8, San Jose, Calif., Jan.
1999.

[28] L. Gong, P. Lincoln, and J. Rushby, ªByzantine Agreement with
Authentication: Observations and Applications in Tolerating
Hybrid and Link Faults,º Dependable Computing for Critical
Applications 6, Dependable Computing and Fault-Tolerant Systems,
R.K. Iyer, M. Morganti, W.K. Fuchs and V. Gligor, eds., vol. 10,
pp. 139-157, 1998.

[29] J. Gray, ªWhy Do Computers Stop and What Can Be Done about
It?º Proc. Fifth Symp. Reliability in Distributed Software and Database
Systems, pp. 3-12, Los Angeles, Jan. 1986.

[30] R.E. Harper and J.H. Lala, ªFault-Tolerant Parallel Processor,º J.
Guidance, Control and Dynamics, vol. 14, no. 3, pp.554-563, May-
June 1990.

[31] HOOD Reference Manual, Release 3.1.1, HOOD Technical Group
1992.

[32] M.-C. Hsueh, T.K. Tsai, and R.K. Iyer, ªFault Injection Techniques
and Tools,º Computer, vol. 40, no. 4, pp. 75-82, Apr. 1997.

[33] ªFunctional Safety: Safety-Related Systems,º Draft Int'l Standard
IEC 1508, Int'l Electrotechnical Commission, IEC Document no.
65A/179/CDV, Geneva, June 1995.

[34] ªHRT-HoodNICE: a Hard Real-Time Software Design Support
Tool,º Intecs Sistemi, Pisa, Italy, ESTEC Contract 11234/NL/
FM(SC), Final Report, 1996.

[35] E. Jenn, ªModelling for Evaluation,º Technicatome, Aix en
Provence, France, ESPRIT Project 20716 GUARDS Report no.
I3A3.TN.0056.A Jan. 1998.

[36] K. Kanoun, M. Borrel, T. Morteveille, and A. Peytavin, ªModelling
the Dependability of CAUTRA, a Subset of the French Air Traffic
Control System,º Proc. 26th Fault-Tolerant Computing Symp. (FTCS-
26), pp. 106-115, Sendai, Japan, June 1996.

[37] R.M. Kieckhafer, C.J. Walter, A.M. Finn, and P.M. Thambidurai,
ªThe MAFT Architecture for Distributed Fault Tolerance,º IEEE
Trans. Computers, vol. 37, no. 4, pp. 398-405, Apr. 1988.

[38] N. Krishnamurthy, V. Jhaveri, and J.A. Abraham, ªA Design
Methodology for Software Fault Injection in Embedded Systems,º
Proc. IFIP Int'l Workshop Dependable Computing and Its Applications
(DCIA-98), Y. Chen, ed., pp. 237-248, Johannesburg, South Africa,
Jan. 1998.

[39] J.H. Lala and R.E. Harper, ªArchitectural Principles for Safety-
Critical Real-Time Applications,º Proc. IEEE, vol. 82, no. 1, pp. 25-
40, Jan. 1994.

[40] L. Lamport and P.M. Melliar-Smith, ªSynchronizing Clocks in the
Presence of Faults,º J. ACM, vol. 32, no. 1, pp. 52-78, Jan. 1985.

[41] ªDependability: Basic Concepts and Terminology,º Dependable
Computing and Fault-Tolerance,J.-C. Laprie, ed., vol. 5, p. 265.
Vienna: Springer-Verlag, 1992.

[42] J.-C. Laprie, J. Arlat, J.-P. Blanquart, A. Costes, Y. Crouzet, Y.
Deswarte, J.-C. Fabre, H. Guillermain, M. KaaÃniche, K. Kanoun, C.
Mazet, D. Powell, C. RabeÂjac, and P. TheÂvenod, Dependability
Handbook, p. 324, Toulouse, France: CeÂpadueÁs-Editions, 1995. (in
French; English version in preparation).

[43] S. Lee and K.G. Shin, ªOptimal Multiple Syndrome Probabilistic
Diagnosis,º Proc. 20th Int'l Symp. Fault-Tolerant Computing Systems
(FTCS-20), pp. 324-31, Newcastle upon Tyne, U.K., 1990.

[44] J. Leung and J. Whitehead, ªOn the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks,º Performance Evaluation,
vol. 2, no. 4, pp. 237-250, 1982.

[45] P. Lincoln and J. Rushby, ªA Formally Verified Algorithm for
Interactive Consistency Under a Hybrid Fault Model,º Proc. 23rd
Int'l Conf. Fault-Tolerant Computing (FTCS-23), pp. 402-411,
Toulouse, France, 1993.

[46] J. Lundelius-Welch and N. Lynch, ªA New Fault-Tolerant
Algorithm for Clock Synchronization,º Information &
Computation, vol. 77, no. 1, pp. 1-16, 1988.

[47] P.M. Melliar-Smith and R.L. Schwartz, ªFormal Specification and
Mechanical Verification of SIFT: A Fault-Tolerant Flight Control
System,º IEEE Trans. Computers, vol. 31, no. 7, pp. 616-630, July
1982.

[48] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas,
ªPVS: Combining Specification, Proof Checking, and Model
Checking,º Computer-Aided Verification (Proc. CAV'96), New
Brunswick, N.J., July/Aug. 1996.

[49] A. Paganone and P. Coppola, ªSpecification and Preliminary
Design of the Architectural Development Environment,º Intecs
Sistemi, Pisa, Italy, ESPRIT Project 20716 GUARDS Report no.
D2A1.A0.3002.C, Apr. 1997.

[50] M. Pease, R. Shostak, and L. Lamport, ªReaching Agreement in
the Presence of Faults,º J. ACM, vol. 27, no. 2, pp. 228-234, Apr.
1980.

[51] S. Poledna, ªDeterministic Operation in of Dissimilar Replicated
Tasks Sets in Fault-Tolerant Distributed Real-Time Systems,º
Dependable Computing for Critical Applications 6, M. Dal Cin, C.
Meadows, and W.H. Sanders, eds., pp. 103-119, 1998.

[52] D. Powell, ªDistributed Fault-ToleranceÐLessons from Delta-4,º
IEEE Micro, vol. 14, no. 1, pp. 36-47, Feb. 1994.

[53] D. Powell, ªPreliminary Definition of the GUARDS Architecture,º
LAAS-CNRS, Toulouse, France, Research Report no. 96277, Jan.
1997. Also available as ESPRIT Project 20716 GUARDS Report no.
D1A1.A0.5000.D.

[54] D. Powell, J. Arlat, and K. Kanoun, ªGeneric Architecture
Instantiation Guidelines,º LAAS-CNRS, Toulouse, France, Re-
search Report no. 98136, May 1998. Also available as ESPRIT
Project 20716 GUARDS Report no. I1SA1.TN.5008.C.

[55] D. Powell, C. RabeÂjac, and A. Bondavalli, ªAlpha-Count Mechan-
ism and Inter-Channel Diagnosis,º ESPRIT Project 20716
GUARDS Report no. I1SA1.TN.5009.E, 1998.

[56] C. RabeÂjac, ªInter-Channel Fault Treatment Mechanism,º Matra
Marconi Space, France, Guards Report no. D1A3 AO 2014 B, Mar.
1997.

[57] P. Ramanathan, K.G. Shin, and R.W. Butler, ªFault-Tolerant Clock
Synchronization in Distributed Systems,º Computer, pp. 33-42,
Oct. 1990.

[58] J.C. Ruiz Garcia, M.-O. Killijian, J.-C. Fabre, and S. Chiba,
ªOptimized Object State Checkpointing Using Compile-Time
Reflection,º Workshop Embedded Fault-Tolerant Systems, pp. 46-48,
Boston, 1998.

[59] W.H. Sanders and W.D. Obal II, ªDependability Evaluation Using
UltraSAN,º Proc. 23rd Int'l Conf. Fault-Tolerant Computing (FTCS-
23), pp. 674-679, Toulouse, France, 1993.

[60] D. Schwier and F. von Henke, ªMechanical Verification of Clock
Synchronization Algorithms,º Design for Validation, ESPRIT
Long Term Research Project 20072: DeVa - Second Year Report,
LAAS-CNRS, Toulouse, France, pp. 287-303, 1997.

[61] L. Semini, ªFormal Specification and Verification for an Integrity
Policy Supporting Multiple Levels of Criticality,º PDCC, Pisa,
Italy, ESPRIT Project 20716 GUARDS Report, no. I3A5.AO.6012.A,
Apr. 1998.

[62] H. Simpson, ªFour-Slot Fully Asynchronous Communication
Mechanism,º IEE Proc, vol. 137, no. Py. E 1, pp. 17-30, Jan. 1990.

[63] T.K. Srikanth and S. Toueg, ªOptimal Clock Synchronization,º J.
ACM, vol. 34, no. 3, pp. 626-645, July 1987.

[64] P. Thambidurai and Y.-K. Park, ªInteractive Consistency with
Multiple Failure Modes,º Proc. Seventh Symp. Reliable Distributed
Systems (SRDS-7), pp. 93-100, Columbus, Ohio, 1988.

[65] K. Tindell, ªFixed Priority Scheduling of Hard Real-Time
Systems,º DPhil thesis, Dept. of Computer Science, Univ. of York,
U.K., 1993.

[66] E. Totel, L. Beus-Dukic, J.-P. Blanquart, Y. Deswarte, D. Powell,
and A. Wellings, ªIntegrity Management in GUARDS,º Proc. IFIP
Int'l Conf. Distributed Systems Platforms and Open Distributed
Processing (Middleware '98), pp. 105-122, The Lake District,
England, 15-18 Sept. 1998.

[67] E. Totel, J.-P. Blanquart, Y. Deswarte, and D. Powell, ªSupporting
Multiple Levels of Criticality,º Proc. 28th Int. Symp. Fault-Tolerant
Computing (FTCS-28), pp. 70-79, Munich, Germany, 23-25 June
1998.

[68] A. Wellings and L. Beus-Dukic, ªGuidelines for Mapping HRT-
HOOD to POSIX/C,º Univ. of York, U.K., ESPRIT Project 20716
GUARDS Report no. I2A1-2.A0.7041.B, Dec. 1997.

[69] A. Wellings, L. Beus-Dukic, and D. Powell, ªReal-Time Scheduling
in a Generic Fault-Tolerant Architecture,º Proc. 19th Real-Time
Systems Symp. (RTSS-19), pp. 390-398, Madrid, 2-4 Dec. 1998.

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 597

David Powell (M'92) received his Bachelor of
Science degree in electronic engineering from
the University of Southampton, England, in
1972, a Specialty Doctorate degree from the
Toulouse Paul Sabatier University in 1975, and
his Docteur eÁs-Sciences degree from the Tou-
louse National Polytechnic Institute in 1981. He
has been at LAAS-CNRS since 1972, where he
holds a position of ªDirecteur de Recherche
CNRSº and leads the Dependable Computing

and Fault Tolerance Research Group.
He has managed several national and European research contracts

and acted as a consultant for several aerospace, telecommunication,
and data processing companies in France and for the European
Commission. He was the scientific director of the six year Delta-4 Esprit
project on open dependable distributed computing and the Scientific
Advisor of the GUARDS Esprit project, described in this paper.

Dr. Powell's research work concerns the design and validation of
fault-tolerant distributed computing systems. He has written more than
90 papers for international and national journals and conferences, is
coauthor of two books on dependable computing, and holds a patent for
a fault- and damage-tolerant network for data transmission. Dr. Powell is
a member of the ACM and the IEEE, the IFIP 10.4 working group on
Dependable Computing and Fault Tolerance, and the SEE Dependable
Computing Club.

Jean Arlat (M'80) received the Engineer degree
from the National Institute of Applied Sciences of
Toulouse in 1976, and the Doctor in Engineering
degree and the Docteur eÁs-Sciences degree
from the National Polytechnic Institute of Tou-
louse in 1979 and 1990, respectively. He is
currently ªDirecteur de Rechercheº within
CNRS, the French National Organization for
Scientific Research and a member of the group
on Dependable Computing and Fault Tolerance

at LAAS-CNRS. Since 1997, he has been director of the Laboratory for
Dependable Engineering (LIS: Laboratoire d'IngeÂnierie de la SuÃreteÂ de
fonctionnement) hosted by LAAS.

Dr. Arlat's research interests focus on the evaluation of hardware
and software fault-tolerant systems, including both analytical modeling
and experimental fault injection approaches, subjects on which he
authored or coauthored more than 70 papers for international and
national journals and conferences.

Dr. Arlat chaired the IEEE Computer Society's Technical Committee
on Fault-Tolerant Computing (TC-FTC) in 1994-1995. Since January
1999, he has been chairman of the IFIP Working Group 10.4 on
Dependable Computing and Fault Tolerance. He is a member of the
ACM, the IEEE, and the SEE Dependable Computing Club.

Ljerka Beus-Dukic received the BSc and MSc
degrees in electrical engineering/computer
science from the Faculty of Electrical Engineer-
ing, University of Sarajevo, Bosnia and Herze-
govina, in 1977 and 1988, respectively, and the
DPhil degree in computer science from the
University of York, England, in 1992. From
1977 to 1988, and from 1991 to 1996, she
worked in industry as a software engineer on
supervisory control and data acquisition soft-

ware for industrial real-time applications. From 1996 to 1999, she was a
research fellow in the Department of Computer Science, University of
York, England.

Dr. Beus-Dukic's research interests include real-time operating
systems, real-time communication, safety-critical systems, requirements
engineering, reuse, and acquisition of COTS software components. She
is currently a senior lecturer at the University of Northumbria at
Newcastle.

Andrea Bondavalli (M'97) received his ªLaur-
eaº degree in computer science from the
University of Pisa in 1986. In the same year,
he joined CNUCE-CNR, where he holds a
position of ªricercatoreº working in the Depend-
able Computing System group. From April 1991
to February 1992, he was a guest member of the
staff at the Computing Laboratory of the Uni-
versity of Newcastle-upon-Tyne (UK).

Since 1989, he has been working on several
European projects, such as Esprit BRA PDCS, Esprit BRA PDCS2,
Esprit 27439 HIDE, and various national projects on dependable
computing He is currently managing the PDCC partnership in the Esprit
20716 GUARDS project. He also acted as a consultant for transportation
companies and software houses.

Dr. Bondavalli has served as a program committee member for
international conferences and symposia and as a reviewer for
conferences and journals. His current research interests include the
design of dependable real-time computing systems, software and
system fault tolerance, the integration of fault tolerance in real-time
systems, and the modeling and evaluation of dependability attributes
like reliability, availability, and performability. Dr. Bondavalli is a member
of the IEEE Computer Society and the AICA Working Group on
ªDependability in Computer Systems.º

Paolo Coppola received his university degree
in computer science in 1980 from the University
of Pisa. He worked at CSELT (a research
laboratory of the Italian telephone company)
from 1981 to 1984. In 1984, he joined INTECS,
where he currently leads the ªEmbedded Space
Systemsº group.

He has managed several national and
European development projects and research
contracts, mainly concerning embedded soft-

ware systems for space, defense, and industrial applications. Particular
interests are design methods for hard-real-time systems, including
techniques and tools for the specification and verification of timing
requirements and constraints.

Dr. Coppola is member of the EUROSPACE Software Engineering
panel and the program committee of the ªData Systems in Aerospaceº
(DASIA) conference.

Alessandro Fantechi received is ªLaureaº
degree in computer science from the University
of Pisa in 1978. He has been an associate
professor on the Faculty of Engineering of the
University of Florence since 1995, and an
associate of the Istituto di Elaborazione dell'In-
formazione (IEI) del CNR, Pisa since 1992.
Previously, he was an associate professor at the
University of Pisa (from 1992) and a researcher
at IEI-CNR (from 1983). He was involved in the

Esprit LOTOSPHERE project before the current involvement in the
GUARDS project described in this paper. He has taught foundations of
computer science, software engineering, and dependable systems
engineering at the Universities of Florence and Pisa, and presented
several software engineering lectures at main Italian aerospace
industries.

Prof. Fantechi's current research is focused on the industrial
application of formal verification methods. In this field, he has recently
worked for a pilot project with Ansaldo Trasporti on the verification of a
railway signaling system. Other research interests have included formal
description techniques, temporal logic, distributed systems program-
ming and modeling, and applications of natural language understanding
to requirements engineering. He has written more than 40 papers for
international journals and conferences. Prof. Fantechi is a member of
the ACM.

598 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Eric Jenn received his Engineer Degree in
computer science from the National Institute of
Applied Sciences, Toulouse, France, in 1989
and a PhD in computer science from the
Toulouse National Polytechnic Institute in 1994.

His main interests include hardware and
software fault tolerance for real-time dependable
systems, validation by modeling and fault injec-
tion, and object-oriented design.

He is currently working as a software
engineer at Technicatome, the company which develops the nuclear
reactors of the submarines and the nuclear aircraft carrier of the French
navy.

Christophe RabeÂjac received a degree from
the French Ecole Polytechnique (Palaiseau) in
1991, a degree from ENSEEIHT (National
School for Engineers in Computing Science,
Toulouse) in 1993, and his PhD from the
Toulouse National Polytechnic Institute in
1995. He has been at Matra Marconi Space
France (MMS) since 1992.

He has been involved in the architecture of a
distributed mission-planning software tool for

ground segments, implemented above COTS CORBA technology. He is
currently the MMS manager of the GUARDS Esprit Project and, in that
context, is in charge of technological developments in fault-tolerant
architectures for MMS.

Dr. RabeÂ jac's main fields of interest are avionics architectures for
real-time critical embedded systems and all related software techniques.
He has published several papers for international conferences such as
FTCS and Safecomp.

Andy Wellings is a professor of real-time
systems at the University of York, UK in the
Computer Science Department. He is interested
in most aspects of the design and implementa-
tion of real-time dependable computer systems.
He has authored/coauthored more than 150
papers/reports. He is European editor-in-chief
for the computer science journal Software-
Practice and Experience.

Professor Wellings teaches courses in oper-
ating systems, real-time systems, and network and distributed systems.
He is the author of several books, including ªHard Real-Time HOOD: A
Structured Design Method for Hard Real-Time Ada Systems,º ªCon-
currency in Ada,º and ªReal-Time Systems and Programming Lan-
guages.º

POWELL ET AL.: GUARDS: A GENERIC UPGRADABLE ARCHITECTURE FOR REAL-TIME DEPENDABLE SYSTEMS 599

