
0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 1

Detecting Software Security Vulnerabilities via
Requirements Dependency Analysis

Wentao Wang, Student Member, IEEE, Faryn Dumont, Nan Niu, Senior Member, IEEE, and Glen Horton

Abstract—Cyber attacks targeting software applications have a tremendous impact on our daily life. For example, attackers have
utilized vulnerabilities of web applications to steal and gain unauthorized use of sensitive data stored in these systems. Previous
studies indicate that security testing is highly precise, and therefore is widely applied to validate individual security requirements.
However, dependencies between security requirements may cause additional vulnerabilities. Manual dependency detection faces
scalability challenges, e.g., a previous study shows that the pairwise dependency analysis of 40 requirements would take around 12
hours. In this paper, we present a novel approach which integrates the interdependency among high-level security requirements, such
as those documented in policies, regulations, and standards. We then use automated requirements tracing methods to identify
product-level security requirements and their dependencies. Our manual analysis of HIPAA and FIPS 200 leads to the identification of
five types of high-level security requirements dependencies, which further inform the automated tracing methods and guide the designs
of system-level security tests. Experimental results on five projects in healthcare and education domains show the significant recall
improvements at 81%. Our case study on a deployed production system uncovers four previously unknown vulnerabilities by using the
detected requirements dependencies as test paths, demonstrating our approach’s value in connecting requirements engineering with
security testing.

Index Terms—Security requirements, requirements dependency management, requirements traceability, vulnerability discovery.

F

1 INTRODUCTION

THE number of vulnerabilities reported to the Com-
mon Vulnerabilities and Exposures (CVE)1 continues to

grow every year [1]. This number reached a new record of
16,511 and 17,307 in 2018 and 2019 respectively. A single
vulnerability could negatively impact tens of thousands
of end users. For instance, in 2014, a cross-site scripting
(XSS) vulnerability reported in eBay caused a data breach
that compromised nearly 145 million customers’ usernames
and passwords [2]. Another painful instance happened in
2018: a data breach caused by security vulnerability exposed
more than 50 million Facebook user accounts to malicious
attackers [3].

Static analysis [4], [5], [6] and security testing [7], [8] are
two widely applied approaches to identify vulnerabilities.
Previous research pointed out that static analysis not only
has high false positive rates but also misses true vulnerabil-
ities [7]. In contrast, security testing is highly precise [9].
Several testing approaches such as dynamic taint analy-
sis [7] and penetration testing [10] are applied to validate
individual security requirements. However, even if they
are successfully satisfied in isolation, security requirements
may be violated when they interact with one another, thus

• W. Wang, F. Dumont, and N. Niu are with the Department of Electrical
Engineering and Computer Science, University of Cincinnati, Cincinnati,
OH, 45221.
E-mail: {wang2wt, dumontfn}@mail.uc.edu, nan.niu@uc.edu.

• G. Horton is with University of Cincinnati Libraries, University of
Cincinnati, Cincinnati, OH, 45221.
E-mail: glen.horton@uc.edu.

Manuscript received XX XX XXXX; date of current version 4 Dec. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

1. http://cve.mitre.org/

leading to undetected security vulnerabilities.
Requirements engineers have long recognized the im-

portance of requirements dependency analysis aimed at the
discovery and management of critical relationships among
sets of requirements [11]. According to Robinson et al. [11],
up to 70% of total software errors are caused by interacting
requirements, making the requirements dependency error
a significant software development and quality challenge.
In fact, the Facebook vulnerability mentioned earlier was
caused by two requirements, namely “view as” and “upload
birthday video” [3]. Although “upload birthday video”
was introduced in 2017, its interdependency with other re-
quirements (especially with “view as”) was not thoroughly
tested, resulting in the serious security breach.

Manually analyzing requirements dependency suffers
from a prohibitively high cost. Carlshamre et al. [12] studied
interdependencies within five distinct sets of requirements
from industrial projects. They showed that pairwise depen-
dency analysis of only 40 requirements would take in the
vicinity of 12 hours. In modern software projects, the size
of requirements ranges from hundreds to thousands [13],
making manual pairwise dependency analysis a mission
impossible.

Carlshamre et al. [12] pointed out that empirically the
20% “most dependent” requirements were responsible for
75% of all the dependencies. Therefore, pairwise assess-
ments could be done only for those 20% requirements in
order to reduce the effort needed for identifying the depen-
dencies. This is a reasonable trade-off in tasks like release
planning [12]. However, missing any critical interdepen-
dency may lead to security vulnerabilities in the software
product. Given that a single vulnerability, like the XSS
vulnerability in eBay [2], could negatively effect millions of

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 2

users, having an automated tool is key to achieving a high
recall especially when security requirements are involved.

A class of solutions striving for high recalls is auto-
mated requirements traceability based on information re-
trieval algorithms [14]. Hayes and her colleagues [15], [16]
were among the first to automatically link high-level and
low-level requirements, and their experiment on the CM-
1 dataset showed that the TF-IDF algorithm achieved an
acceptable recall with a good precision [16]. Of particular
relevance to security is the work by Cleland-Huang et
al. [17] where high-level security requirements (HSRs) like
the regulatory codes of the Health Insurance Portability and
Accountability Act (HIPAA)2 are traced to low-level security
requirements (LSRs) such as the features of specific software
systems.

Linking HSRs and LSRs, shown in Figure 1a, is a kind of
horizontal traceability where relationships between artifacts
that are part of different work products are established [18].
In contrast, Figure 1b illustrates vertical traceability that cap-
tures dependencies among artifacts that are part of a single
work product within the software development process [18].
The state-of-the-art of horizontal traceability [17] concerns
individual requirements without their interdependencies,
whereas vertical traceability [18] focuses on product-level
requirements dependencies without considering the high-
level guidelines regulated by the security policies.

In this paper, we propose a novel approach to integrate
horizontal and vertical traceability in analyzing security
requirements dependencies. We distinguish two levels of
security requirements: HSRs are those specified in regula-
tions and policies whereas LSRs are those implemented in
concrete software systems and products. As shown in Fig-
ure 1c, our hybrid approach first identifies the dependencies
among the HSRs manually, and then traces HSRs to LSRs
automatically. The combination of horizontal and vertical
traceability gives rise to requirements dependencies at the
product level, and our key insight here is that dependen-
cies between LSRs shall be consistent with dependencies
between their corresponding HSRs.

Our research methodology involves three steps shown
in Figure 1c. We first p erform m anual a nalysis t o identify
the dependencies of HSRs found in regulations and policies.
An important result of the HSR dependency analysis is the
set of indicator terms which we use in the second step to
automatically trace HSRs and LSRs. As the third step, the
dependencies of LSRs are automatically derived, i.e., if HSRi
depends on HSRj , then all LSRim traced to HSRi depend
on all LSRjn traced to HSRj . This last step establishes re-
quirements dependencies at the concrete software system’s
level. We carry out two evaluations to assess our approach:
a quantitative experiment on five open-source projects to
evaluate the requirements dependency detection, and a
qualitative case study on a deployed, production system
to use the detected requirements dependencies to derive
system-level security tests in order to uncover software
vulnerabilities.

2. HIPAA requires health agencies in the United States to use tech-
nical safeguards to protect patient medical information. See https:
//www.hhs.gov/hipaa/index.html

 (a) (b)

(c)

HSRi

LSRi1

LSRi2

LSRim

…

horizontal
traceability

LSR1

LSR2 LSRn…

vertical
traceability

HSRi
LSRi1 … LSRim

HSRj

(2) tracing (automatic)

(1) dependency
(manual)

(3) dependency
(automatically inferred)

LSRj1 … LSRjn
(2) tracing (automatic)

Fig. 1: (a) Horizontal traceability concerns individual HSRs
(high-level security requirements found in regulations or
policies), (b) Vertical traceability concerns dependencies
among LSRs (low-level security requirements found in
concrete software), and (c) Our semi-automated approach,
guided by dependencies among HSRs, incorporates both
horizontal and vertical traceability.

Our approach presented in this paper makes three main
contributions:

1) We present five HSR-dependency types—namely,
input modification, temporal relation, task re-
finement, triggering condition, and realization
similarity—while manually analyzing the regula-
tory codes in HIPAA and Family Educational Rights
and Privacy Act (FERPA)3;

2) We evaluate the performance of our requirements
dependency identification in five long-lived soft-
ware projects, demonstrating the significant recall
improvements at 81% as well as the reusability of
the manual analysis; and

3) We conduct a case study with a deployed system
to derive system-level tests based on the interde-
pendent LSRs, and illustrate the effectiveness of
our approach in detecting four previously unknown
security vulnerabilities.

The remainder of this paper is organized as follows. We
review related work in Section 2. In Section 3, we introduce
our semi-automated requirements dependency analysis ap-
proach. In Section 4, we evaluate the requirements depen-
dencies quantitatively on five projects. Section 5 describes

3. FERPA forces all educational agencies like colleges in the United
States to protect student education records. See https://www2.ed.gov/
policy/gen/guid/fpco/ferpa/index.html

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 3

our case study on software vulnerability detection. We
discuss limitations and threats to validity in Section 6, and
conclude with the summary and future work in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Software Vulnerability Detection

Vulnerabilities in our work refer to the implementation
bugs hurting a software system’s security goals, such as
protecting the confidentiality, preserving the integrity, and
ensuring the availability of the information assets. Many
types of vulnerability are documented in the CVE, including
XSS (CWE-794), SQL injection (CWE-89), path manipulation
(CWE-22), nonexistent access control (CWE-285), lack of
auditing (CWE-778), trust boundary violation (CWE-501),
dangerous file upload (CWE-434), etc.

Software development teams usually apply multiple ap-
proaches to help prevent vulnerabilities. The approaches
toward vulnerability detection can be classified into two
categories: static analysis and security testing. Static anal-
ysis looks into the source code of the system under test
(SUT) without actually executing it and reports potential
vulnerabilities. Automated static analysis approaches use
different software metrics related to source code complex-
ity, like lines of code, coupling, and cohesion, to predict
vulnerabilities [5], [19]. Most approaches predict software
vulnerabilities in general. With appropriate adaptions or
configurations, they can also be applied to predict specific
vulnerabilities which are unique to the SUT (e.g., XSS
vulnerability in web applications). However, a previous
study [19] showed that these approaches suffer from two
limitations: low precision rate and low effectiveness on
cross-project vulnerability prediction. The first limitation
increases the human effort spent on result evaluation, while
the second one leads to the situation that security experts
need to build new prediction model for each new project
which is neither practical nor realistic.

Security testing is complementary to static analysis by
executing the SUT on the real or virtual environment. These
include taint analysis and vulnerability scanning. In taint
analysis [7], untrusted user data is labeled as “tainted” at
runtime, which is cleared only if the data passes a dedicated
sanitization function. If the data which still carries the
taint information reaches a security sensitive sink (e.g., a
webpage that displays the data), the system is considered as
vulnerable. Taint analysis requires the source code which
is not always available in security testing. In addition,
extra engineering effort (e.g., adding new database columns
for tracking user input [7]) is required to implement taint
analysis.

Another approach which requires less engineering effort
is vulnerability scanning. Automated scanners like ZAP [20]
and SecuBat [21] are widely used to detect vulnerabilities
(especially in web applications). These scanners query the
system’s interface with a set of predefined attack payloads
(e.g., attacks in XSS Filter Evasion Cheat Sheet [22]) and
analyze immediate responses of the system for indicators

4. The Common Weakness Enumeration (CWE) is a com-
munity developed dictionary of software weakness types. See
http://cwe.mitre.org

of if the attack is successful. However, successful attacks do
not always manifest themselves in the immediate responses.
For instance, in the eBay case [2], it was hard to tell whether
the attackers were successful right after the malicious XSS
code was saved into the system. The judgment could not
be made until the malicious links were displayed to victims.
This limitation can be addressed by systematic requirements
dependency detection.

2.2 Requirements Dependency and Traceability
Carlshamre et al. [12] investigated requirements in five in-
dustrial projects and showed that it took between 2.5 and
3 hours to detect pairwise dependencies of 20 requirements
(190 assessments). With 40 requirements, for instance, the
pairwise dependency analysis would take in the vicinity of
12 hours, signifying clear scalability difficulties. To reduce
the number of assessments, Carlshamre et al. [12] proposed
a couple of methods: 1) identifying and removing singular
requirements, 2) focusing on four types (i.e., migration to
a new platform, changes to core functionality, changes to
core data structures, and major changes to user interfaces)
of highly dependent requirements and performing pairwise
assessments only on them. Experiments indicated that the
second method was the most effective in effort reduction.
The results showed that the four types of “most dependent”
requirements only account for 20% of all requirements.
However, assessing them could cover roughly 75% of all
the dependencies. For vulnerability detection, uncovering
all the requirements dependencies while keeping a low false
positive rate (i.e., high recall and acceptable precision) is the
ultimate goal.

Automated requirements traceability strives for high
recall when recovering the links of various software arti-
facts [14], [15], [16]. According to Rempel and Mäder [18],
the dependency between two requirements belonging to a
single work product represents a relationship characterized
by vertical traceability illustrated in Figure 1b. To support
automated vertical traceability, Carlshamre et al. [12] and
their previous research [23] propose that if the lexical sim-
ilarity score (i.e., cosine coefficient) of two requirements is
greater than 0.125, there is high possibility that interdepen-
dence exists between them. However, vertical traceability
does not distinguish whether the interdependent require-
ments are security requirements or not.

Horizontal traceability, shown in Figure 1a, concerns the
relationship between artifacts that are part of different work
products [18]. When HSRs such as the HIPAA regulatory
codes are traced, the resulting horizontal traceability links
are product-level security requirements that comply with
the regulations. Cleland-Huang et al. [17] showed the effec-
tiveness of probabilistic network models in automatically
tracing HIPAA regulations. The maximum recall and the
average precision in their experiment of ten systems are
79% and 36% respectively [17]. Using horizontal traceability,
although regulatory compliance of every single HSR can
be demonstrated, the requirements dependencies are not
considered. Our work is motivated by leveraging both the
security focus of horizontal traceability and the dependency
relation of vertical traceability in order to systematically
detect vulnerabilities in software systems and products. We
detail our approach in the next section.

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 4

Fig. 2: Three main steps of our approach: Section 3.1 describes our manual analysis of dependencies among the HSRs,
resulting in five dependency categories and several indicator terms in each category, Section 3.2 introduces the use of the
indicator terms as relevance feedback in automated requirements traceability so as to identify the LSRs that trace to the
HSRs, and Section 3.3 presents the automated inference of LSR-dependency based on the previous two steps.

TABLE 1: Twelve HIPAA regulatory codes (adopted from [17]) and 29 FIPS 200 security requirements in 13 categories

Name and ID of HIPAA regulatory codes Category name (ID) of FIPS 200 security requirements
Access Control (AC H) Integrity Controls (IC) Access Control (AC F) Incident Response (IR-I, IR-II)

Automatic Logoff (AL) Person or Entity Authen Awareness and Media Protection (MP-I, MP-II, MP-III)
-tication (PA) Training (AT-I, AT-II) Personnel Security (PS-I, PS-II, PS-III)

Mechanism to Authenticate Audit Controls (AUD) Audit and Accountability Configuration Management (CM-I, CM-II)
Electronic Protected Integrity (IC) (AU-I, AU-II) Identification & Authentication (IA)
Health Information (APHI) Encryption (TED) Risk Assessment (RA) System & Services Acquisition (SA-II,
Emergency Access Encryption and System & Communication SA-III, SA-IV)
Procedure (EAP) Decryption (SED) Protection (SC-I, SC-II) Certification, Accreditation, and SecurityTransmission Unique User System & Information Assessments (CA-I, CA-II, CA-III, CA-IV)Security (TS) Identification (UUI) Integrity (SI-I, SI-II, SI-III)

3 REQUIREMENTS DEPENDENCY ANALYSIS

Figure 2 overviews our approach which consists of three
steps: (1) manually identify and classify the dependencies
among HSRs like the regulatory codes in HIPAA, (2) au-
tomatically trace an individual HSR to LSRs, and (3) au-
tomatically infer the dependencies among the LSRs based
on the previous two steps. The novelty of our approach
lies in not only the combination of vertical (first step and
third step) and horizontal (second step) traceability, but also
the new set of security-related types of requirements depen-
dencies grounded in our manual analysis. This set extends
current literature [11], [12], and offers two benefits: guiding
the selection of appropriate trace retrieval algorithms and
directing the generation of test cases to uncover software
vulnerabilities.

3.1 High-Level Security Requirements (HSR) Depen-
dencies

Despite challenges introduced by the ever complex and in-
terconnected software applications, regulations like HIPAA
provide guidance on information security. Detecting depen-
dencies between HSRs defined in regulations could benefit
not only security testing but also other software engineer-
ing tasks, such as compliance checking and certification.
The completeness of regulations ensures that dependencies
between HSRs have a broad coverage of the real-world

scenarios. The relatively small size of HSRs in regulations
reduces the effort on dependency assessment. The stability
of regulations reduces the effort spent on dependency main-
tenance. In addition, since one security regulation is enacted
to address security problems in a particular area, the results
of dependency assessment can be reused in many systems
and products of the given domain.

In this research, we perform manual dependency anal-
ysis of the security requirements defined in HIPAA and
FERPA. For HIPAA, a set of 12 security requirements is
studied in [17]. For FERPA, the United States Department of
Education lists the standard of “Minimum Security Require-
ments for Federal Information and Information Systems”
(FIPS 200) [24] as the best practice for addressing security
requirements and recommends that online education ser-
vices shall use FIPS 200 to help address legal requirements in
FERPA [25]. The 29 FIPS 200 HSRs, along with the 12 HIPAA
HSRs, are summarized in Table 1. The full descriptions and
dependencies of HSRs can be found in [26].

Two students, each having at least one-year research
experience on security requirements and related topics,
spent approximately 24 hours individually to detect HSR
dependencies. Cohen’s kappa between their results was
0.63, indicating a “good” inter-rater agreement level. The
discrepancies were resolved in a two-hour meeting in which
the third researcher participated. Jointly, the researchers
reached consensus, reviewed all the dependency detection

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 5

TABLE 2: Type of requirements dependencies in the literature with examples or explanations, and our HSR-dependency
analysis results

Release Interaction High-Level Security # of dependencies
Planning [12] Management [11] (our approach) HIPAA FIPS 200

Requires (“printer” requires “driver”) Structure (Req1 is similar to Req2) Input Modification 5 11
Temporal (“add” is done before “delete”) Time (Req1 is temporally related to Req2) Temporal Relation 2 3
Cvalue (“manual” decreases value) Task (Req1 describes a task for Req2) Task Refinement 2 7
Icost (“waiting” increases cost) Causality (Req1 is a consequence of Req2) Triggering Condition 4 4
Or (“draw” or ”import” an image) Resource (Req1 & Req2 rely on a resource) Realization Similarity 3 2

results, and categorized the HSR dependencies into five
categories. These categories represent the first contribution
of our work, which we explain by using representative
examples.

(1) Input Modification: If HSR1 creates, modifies, or
deletes an element or attribute of an entity that is regulated
by another requirement HSR2, then HSR1 depends on HSR2

which we denote as HSR1→HSR2. An example is AU-
I→SC-I in FIPS 200, where AU-I creates information system
audit records and SC-I monitors information transmitted
or received by the information system. Now, assume a
system-level feature LSR1 satisfies AU-I by recording audit
information in a log file but does not follow the format
specified in the feature LSR2 which corresponds to SC-I.
Then, a potential security risk is that LSR2 would miss at-
tacks (e.g., tampering) or illegal communications due to logs
not matching the required format. Thus the dependency,
LSR1→LSR2, shall be thoroughly checked and such checks
are driven naturally by LSR1’s creation, modification, and
deletion actions.

(2) Temporal Relation: If there is a clear temporal
relationship between HSR1 and HSR2, such as “Auto-
matic Logoff” and “Access Control” in HIPAA, we mark
AL→AC H. Only after a user logs into the system by pass-
ing the access control does it become necessary for the sys-
tem to automatically log out the user when a predetermined
time period of inactivity is reached. A security issue may
occur on the day we begin the daylight savings. Suppose
AC H records that a user logs into the system at 1:59am
on March 11. This user might be forcefully logged out after
only one minute because AL may think that she has been
inactive for one hour (i.e., the system time is automatically
adjusted to 3 am). This error harms availability, one of the
key aspects of security. Systematic tests can therefore be
derived by considering the temporal scenarios.

(3) Task Refinement: If requirement HSR1 describes the
general goal, and another one HSR2 specifies a detailed
approach toward the goal, we then note HSR1→HSR2. For
instance, in FIPS 200, MP-I (“organizations must protect
information system media, both paper and digital”) sets the
general goal of protecting system media. MP-II (“organiza-
tions must limit access to information on information system
media to the authorized user”) and MP-III (“organizations
must sanitize or destroy information system media before
disposal or release for reuse”) specify how to protect system
media under certain circumstances. Thus, we recognize MP-
I→MP-II and MP-I→MP-III. Imagine that a system adds
a new type of media (e.g., flash files) as well as a new
requirement LSR1 to satisfy MP-I with respect to the new
media files. Suppose LSR2 provides sanitizing features com-
plying with MP-III. If the dependency LSR1→LSR2 fails to

be recognized (e.g., automatically scanning and removing
sensitive information do not happen to flash files), then
security breach may occur.

(4) Triggering Condition: If HSR1 has to react to the
change while requirement HSR2 is taking place, the depen-
dency HSR1→HSR2 is recorded. For example, in FIPS 200,
after AC F (“access control”) rejects login request from the
same IP address n times (where n is defined by the security
policy) since the username and password pairs are not
matched, PS-III (“organizations must employ formal sanc-
tions for personnel failing to comply with security policies
and procedures”) shall punish this IP address by adding it to
the blacklist. Therefore PS-III→AC F recording a triggering
condition. A potential security risk will happen when AC F
handles login requests in parallel, changing the condition.
An attacker may send two requests from one IP address at
the same time, and AC F may record both rejections for that
IP address in one log item, resulting in PS-III treat the two
failed requests as one rejection. The vulnerability caused
by neglecting the PS-III→AC F dependency would allow
attackers to try more combinations before being blocked,
leading to weaker defenses. Sometimes, the requirements
dependency also exists in the opposite direction. For in-
stance, AC F→PS-III shows that AC F shall automatically
disable the login function to the IP addresses in the blacklist
after PS-III applies the punishment. The circular dependen-
cies between AC F and PS-III highlights the importance of
identifying all interdependent requirements and then using
the knowledge to test security vulnerabilities.

(5) Realization Similarity: If two HSRs are realized by
using the same or similar techniques, they tend to have
a bidirectional dependency. For example, SED and TED
in HIPAA both need encryption technology, though the
former refers to the encryption and decryption of storage
and the latter refers to those of transaction. If two system-
level features LSR1 and LSR2 satisfy SED and TED by
using different encryption approaches, developers might be
confused and mistakenly use storage-encryption to secure
transaction reports, potentially harming data integrity.

Table 2 compares our dependency types to the work
on software release planning [12] and interaction manage-
ment [11]. An important distinction is that our dependency
analysis focuses on security requirements, and hence can
be viewed as a tailored categorization of the requirements
interaction types outlined by Robinson et al. [11]. Moreover,
we significantly enhance the testability of the requirements
dependencies, signified by the new “input modification”
and “realization similarity” types. In contrast, the depen-
dencies used in release planning are unique in their own
ways, e.g., Cvalue and Icost concern customer value and
implementation cost respectively [12]. As Table 2 shows, we

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 6

TABLE 3: Indicator terms used to incorporate relevance
feedback (RF) into automatically tracing HSRs to LSRs

Input Temporal Task Triggering Realization
Modification Relation Refinement Condition Similarity
transmit until hardware limit appropriate
improper session software authorize implement
receive timely monitor access mechanism
alter allow protect ensure electronic
destroy periodical media control encryption

identified a total of 16 and 49 dependencies in HIPAA and
FIPS 200 respectively. The complete HSR dependency lists
can be found in our online repository [26].

3.2 Automatically Tracing HSRs to LSRs
As shown in Figure 2, the second step of our approach
is aimed at automatically tracing an individual HSR at the
regulation and standard level to a candidate set of LSRs at
the system and product level. This set, {LSRi1, LSRi2, . . . ,
LSRim}, intends to capture the “complying with” relation
to the security policy HSRi. We develop automated solution
based on trace recovery methods [14]. In particular, Hayes et
al. [16] stated that requirements tracing should incorporate
requirements analyst’s feedback into the dynamic trace gen-
eration process, and Cleland-Huang et al. [27] showed that
indicator terms were effective in tracing nonfunctional re-
quirements. For example, “update” and “release” are among
the indicator terms for “maintainability” whereas “user”
and “learn” are for “usability”.

Inspired by the prior work [16], [27], we codify the in-
dicator terms during our manual HSR analysis, and Table 3
lists these terms. To identify these terms, we examined each
dependency category and used two heuristics for extraction:
(1) a term appeared frequently in a category, and (2) a term
appeared mostly in only one category but seldom in other
categories. Our manual work thus resembled the mech-
anism of detecting nonfunctional requirements indicator
terms, and our future work would experiment automated
methods [27] to identify these terms. We further incorporate
the indicator terms in the automated requirements tracing
via relevance feedback (RF). The basic idea of RF is to recog-
nize positive and negative results from the retrieved list so
as to modify the original (trace) query by weighting more on
the terms appearing in the positive results and less on the
terms from the negative ones [28]. Hayes et al. [16] applied
standard RF:

Qm = (α ·Qo) + (β · 1

|Dr|
∑

dj∈Dr

dj)− (γ · 1

|Di|
∑

dk∈Di

dk) (1)

where Qo is the original trace query (e.g., a single HSR), Qm

is the modified query, Dr is the set of relevant (positive)
candidate links, and Di is the irrelevant (negative) set.
Intuitively, the modified query takes the initial query while
adding the weighted dj∈Dr and subtracting the weighted
dk∈Di. Weighting parameters α, β, and γ are used to assign
different emphases to Qo, positive feedback, and negative
feedback, respectively. Empirically speaking, α=1.0, β=0.75,
and γ=0 are shown to consistently improve a varied range of
queries [28] and commonly used in automated requirements
traceability [16], [29], [30].

A couple of extensions of the standard RF are worth
noting. Panichella et al. [29] presented an adaptive version
of RF. Rather than applying the standard RF to every pair of
tracing source and target, the adaptive version checks cer-
tain conditions before applying the RF. The conditions are
defined on the basis of the software artifacts’ verbosity and
the trace links already classified [29]. While both standard
and adaptive RF work on the link level (e.g., every dj∈Dr

receives the positive weighting defined by β), Wang et
al. [30] proposed to apply RF at the term level, i.e., only
certain terms of dj , instead of all the terms of dj , would be
positively contributing to the modification of the trace query
Qm. Different from [30], the indicator terms listed in Table 3
are used in term-based RF.

3.3 Inferring LSR Dependencies

The third step of our approach, as presented in Figure 2, is
to establish LSR dependencies. In fact, with the completion
of the first step (HSR dependency analysis) and the second
step (tracing individual HSR to candidate LSRs), this last
step is carried out in a straightforward and automatic way. If
HSRi depends on HSRj (HSRi→HSRj) at the security policy
level, and {LSRi1, LSRi2, . . . , LSRim} and {LSRj1, LSRj2,
. . . , LSRjn} are candidate product-level requirements traced
to (complied with) HSRi and HSRj respectively, then we
posit LSRik→LSRjl in the same way as HSRi→HSRj , where
1 ≤ k ≤ m, 1 ≤ l ≤ n, and the two interdependent LSRs
are different requirements.

To illustrate the third step, we revisit the Facebook’s
breach [3]. Suppose “upload birthday video” is traced to
the HSRi that permits posting by authorized users and
“view as” is traced to the HSRj that grants limited access to
other accounts. In addition, the dependency HSRi→HSRj is
of type “Triggering Condition”, meaning that “permitting
posting” shall react to “granting limited access to other
accounts”. Due to HSRi→HSRj and the horizontal trace-
ability, our third step detects that “upload birthday video”
depends on “view as” and their dependency is also of type
“Triggering Condition”. This system-level dependency can
be investigated before releasing the “upload birthday video”
feature, potentially preventing Facebook’s security breach.
We next present the quantitative evaluation of our approach.

4 EXPERIMENTAL EVALUATION

The objective of our experimental evaluation is to assess
the effectiveness of our approach in detecting requirements
dependencies as they relate to security. As mentioned in Sec-
tion 3.1, we perform manual HSR analysis on security poli-
cies in the healthcare and education domains. Consequently,
we want to choose products and systems in these two
domains, and also multiple projects in each domain for the
purpose of HSR applicability and reusability. To maximize
replicability, we searched the ten healthcare projects studied
by Cleland-Huang et al. [17] and found some were no
longer available (e.g., ClearHealth). We thus selected three
healthcare projects, CARE2X, iTrust, and WorldVistA, which
shared running demos or source code. For the education
domain where FIPS 200 would apply, we chose two open

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 7

TABLE 4: Five projects used to evaluate requirements
dependency detection (HSRs: high-level security require-
ments; LSRs: low-level security requirements; D: depen-
dency among the LSRs)

HSRs Project LSR format # of LSRs # of D

HIPAA
CARE2X feature 24 22

iTrust use case 36 43
WorldVistA feature 116 193

FIPS 200 Scholar@UC user story 144 267
Moodle feature 1182 1396

source projects: Moodle5 and Scholar@UC6. Both Moodle
and Scholar@UC are production systems deployed for real-
life uses.

Table 4 provides some basic characteristics of the five
subject systems in our experiment. The project-level LSRs
are documented in different formats: While iTrust adopts
use case diagram and descriptions, other systems use
lightweight methods, such as feature requests and user
stories, to support agile development and continuous de-
ployment [13], [31]. In all cases, natural languages are used
to convey the requirements, making information retrieval
algorithms suitable for automatically generating the trace-
ability information.

To evaluate our approach presented in Figure 1c, we
consider vertical trace recovery mechanisms to be the base-
line methods. In particular, the baseline methods trace LSRs
to establish interdependencies among themselves without
taking HSRs into account. Following the observation made
by Carlshamre et al. [12], if two requirements have a textual
similarity score that is greater than 0.125, we mark that there
is a dependency between these two LSRs. When calculating
textual similarity, we not only use TF-IDF [12] but also
enhance it with standard RF [16], adaptive RF [29], and
term-based RF [30], as discussed in Section 3.2. The baseline
group thus has four methods for detecting the dependencies
among the LSRs: vertical requirements tracing (VRT) with
TF-IDF, VRT with TF-IDF enhanced by standard RF, VRT
with TF-IDF enhanced by adaptive RF, and VRT with TF-
IDF enhanced by term-based RF.

In contrast, our approach explicitly considers HSRs and
their interdependencies. From a traceability perspective, our
approach differs from the baseline group in that the automa-
tion occurs horizontally, i.e., from an individual HSR which
acts as the trace query to a candidate set of LSRs which
are the tracing targets. The LSR dependencies are then
established by combining such horizontal traceability with
the HSR dependencies identified manually. We therefore
refer to our approach as hybrid, and in correspondence to
the baseline group, we assess four methods implementing
our approach: hybrid requirements tracing (HRT) with TF-
IDF, HRT with TF-IDF enhanced by standard RF, HRT with
TF-IDF enhanced by adaptive RF, and HRT with TF-IDF
enhanced by term-based RF.

The experimental results are summarized in Table 5
where three metrics (i.e., Recall, Precision, and F2 measure)
are computed to evaluate the dependency detection accu-
racy of different approaches:

5. https://moodle.org
6. https://scholar.uc.edu

R =
|D ∩ T |
|T |

(2)

P =
|D ∩ T |
|D|

(3)

F2 =
5 ·R · P
R+ 4 · P

(4)

where R, P , F2, D, T refer to “Recall”, “Precision”, “F2

measure”, “detected dependencies”, and “true dependen-
cies” respectively. The answer set of the true dependencies
was constructed by the authors of this paper, and the
rightmost column of Table 4 shows the total number of true
dependencies in each subject system. To facilitate replication
and cross validation, the answer set along with all other
materials can be found in our online repository [26]. In
Table 5, each project is traced by VRT and HRT, and the
average recall, precision, and F2 values are reported. In
the bottom of Table 5, averages across the five projects are
summarized.

We perform Wilcoxon signed-rank test [32] to draw sta-
tistical inferences between a particular VRT method and its
HRT counterpart. The results show that our HRT approach
achieves significantly better accuracy when compared to
the VRT baseline. We deem these results important as they
extend the existing literature: Although the accuracy of TF-
IDF, standard RF, adaptive RF, and term-based RF has been
demonstrated in tracing individual requirements (e.g., the
average F2 of term-based RF is 48% in [30]), our results (e.g.,
the average F2 of Table 5 is 73%) show that these automated
tracing methods are effective in detecting requirements de-
pendencies, too.

Among the different methods that we experimented, it
seems that term-based RF is the most suitable for imple-
menting our HRT approach (e.g., term-based RF is the only
method that improves the F2 measure at the 0.01 level
in all five projects). We also noticed that the performance
across different systems varies. Of the five experimental
projects, CARE2X is the only one where all features are
submitted by end users. Surprisingly, the term-based RF im-
plementation of our approach achieves the second highest
performance on this project. iTrust is the one that achieves
better performance than CARE2X. One difference between
these two projects is that iTrust’s requirements are recorded
in a relatively heavy-weight format (i.e., use cases) and
CARE2X adopts the lightweight format of feature requests.
This difference may indicate that how requirements are
documented and modeled could impact dependency iden-
tification. Testing the hypothesis requires future work.

From Table 5, we can observe a theme that is in common
for five projects: our HRT approach significantly improves
recall, but not precision, consistently. We speculate the main
reason being the underlying assumption that we have about
the third step where dependencies among LSRs are auto-
matically inferred, i.e., LSRik→LSRjl if HSRi→HSRj , LSRik

is a candidate link of HSRi, and LSRjl is a candidate link
of HSRj . This assumption may cause some false positives,
hurting precision. The tradeoff is the high recall level which
is favored by the requirements tracing community [14].

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 8

TABLE 5: Results for requirements dependency detection: VRT: vertical requirements traceability (baseline approach); HRT:
hybrid requirements traceability (our approach); ∗: p-value of the Wilcoxon signed-rank test is less than 0.05; ∗∗: p-value of
the Wilcoxon signed-rank test is less than 0.01

Project Approach
Automated Requirements Tracing Method

TFIDF Standard RF Adaptive RF Term-Based RF
R P F2 R P F2 R P F2 R P F2

CARE2X VRT 0.67 0.42 0.59 0.63 0.67 0.64 0.71 0.63 0.69 0.77 0.64 0.74
HRT 0.64 0.49 0.60 0.71 ∗ 0.57 0.68 ∗ 0.77 ∗ 0.61 0.73 ∗ 0.88 ∗∗ 0.64 0.82 ∗∗

iTrust VRT 0.64 0.55 0.62 0.65 0.61 0.64 0.73 0.65 0.71 0.79 0.67 0.76
HRT 0.72 ∗ 0.53 0.67 ∗ 0.73 ∗ 0.57 0.69 ∗ 0.75 0.63 0.72 0.91∗∗ 0.71∗ 0.86 ∗∗

WorldVistA VRT 0.52 0.42 0.50 0.53 0.47 0.51 0.62 0.48 0.59 0.72 0.46 0.65
HRT 0.64 ∗ 0.47 ∗ 0.60 ∗ 0.65 ∗∗ 0.48 0.61 ∗∗ 0.67 ∗ 0.51 0.63 ∗ 0.87 ∗∗ 0.52 ∗ 0.77 ∗∗

Scholar@UC VRT 0.69 0.37 0.59 0.74 0.38 0.62 0.71 0.37 0.60 0.74 0.41 0.64
HRT 0.72 0.43 ∗ 0.63 0.81 0.44 ∗ 0.69 0.82 ∗ 0.43 0.69 ∗ 0.89 ∗∗ 0.45 0.74 ∗∗

Moodle VRT 0.43 0.44 0.43 0.54 0.46 0.52 0.58 0.45 0.55 0.67 0.43 0.60
HRT 0.49 ∗ 0.47 0.49 ∗ 0.62 ∗ 0.49 0.59 ∗ 0.65 ∗ 0.49 0.61 ∗ 0.79 ∗∗ 0.51 ∗ 0.71 ∗∗

Average VRT 0.59 0.44 0.55 0.62 0.51 0.59 0.67 0.52 0.63 0.74 0.52 0.68
HRT 0.64 0.47 0.60 0.70 0.51 0.65 0.73 0.53 0.68 0.87 0.57 0.78

While the results of Table 5 show the accuracy improve-
ments (especially recall improvements) of our approach
over the VRT baseline, the manual cost of HSR-dependency
analysis shall not be neglected. As mentioned in Section 3.1,
we spent about 50 hours in total manually identifying the
dependencies among the twelve HIPAA HSRs and those
among the 29 FIPS 200 HSRs. The consistently high accu-
racy levels across five unrelated projects in two different
domains present encouraging results in the applicability and
reusability of our manual HSR dependencies. We thus make
the HIPAA and FIPS 200 dependencies available in [26]
with the anticipation that others can build on our work
in at least two dimensions. First, the HIPAA and FIPS 200
dependencies can help automatically detect LSR dependen-
cies in other healthcare or education systems. Second, the
operational insights drawn from our manual analysis (e.g.,
the five HSR-dependency types and their indicator terms)
can be used for building automated tools to identify and
classify HSR dependencies in other policies, regulations,
and standards.

5 CASE STUDY ON VULNERABILITY DETECTION

Like traceability, requirements dependency is not an end in
itself but a means to support various software engineering
tasks. In this research, our main goal is to uncover vulner-
abilities before a software system is released or updated.
In another word, we want the requirements dependencies
established to be exploited in system-level, black-box testing
so as to identify implementation defects compromising se-
curity. We report in this section a case study that we carried
out to investigate vulnerability detection within a system’s
real-life context.

The contemporary phenomenon of our investigation is
the Scholar@UC project, which has been deployed and
continuously serving its user base since February 2016.
Scholar@UC is a digital repository that enables the Uni-
versity of Cincinnati (UC) community to share its research
and scholarly work with a worldwide audience. Its mission
includes preserving the permanent intellectual output of UC
(e.g., publications, presentations, datasets, etc.) and enhanc-
ing discoverability of these resources. UC faculty and stu-
dents, for instance, can use Scholar@UC to store, organize,

and distribute their scholarly creations in a durable and
citable manner.

The development of Scholar@UC evolved from a cou-
ple of legacy Web systems and the principal technological
platforms are the Samvera Hyrax repository architecture,
Apache Solr server, Ruby on Rails engine, and Blacklight
interface. As shown in Table 4, our approach identifies
267 dependencies are detected among Scholar@UC user
stories. For each pair of interdependent user stories, our
system-level security testing was performed manually by
taking advantage of the attack payloads from the XSS Filter
Evasion Cheat Sheet [22].

Figure 3 illustrates our security testing which is in-
formed by the requirements dependency: “create new
work”7→“view work’s citation”8. When creating new work,
we inject different XSS payloads into the permissible entries.
For example, Figure 3a shows that the payload—XSS testing:
<script>prompt(“Enter password”)</script>—is fed into
the “Title” field when a generic work is created. Because
of the requirements dependency, our next testing step is to
“view work’s citation” as shown in Figure 3b. It is at this
second testing step that an “Enter password” window pops
up, as shown in Figure 3c, which detects a vulnerability in
the implementation of Scholar@UC.

The vulnerability illustrated in Figure 3 is one of a
dozen that we detected in Scholar@UC while the software
was deployed and serving. In a one-hour meeting with the
project’s core developers, we shared our findings which
the development team was able to replicate. The team
then took further actions to report four vulnerabilities to
the broader Samvera Hyrax community9, leading to the
mitigation of these or similar XSS attacks. Given that Hyrax
has more than 110 developers making code contributions
and the Hyrax framework underlies many web applica-
tions used in organizations like universities, public libraries,
and presses10, we believe the detected vulnerabilities are
significant which further indicates our approach based on

7. https://trello.com/c/LHaTnSnF/
8. https://github.com/uclibs/scholar use cases/blob/master/

display download/display download use cases.md
9. https://github.com/samvera/hyrax/issues/3187
10. https://samvera.org/samvera-partners/

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 9

Fig. 3: An XSS vulnerability detected in Scholar@UC: (a) submit work; (b) export citation; and (c) pop-up window created
by XSS code in work’s title.

requirements dependency analysis complements existing
vulnerability discovery techniques.

Figure 4 presents an important lesson learned from our
case study. Using requirements dependencies to perform
security testing has a direct influence on test path selection.
In Figure 4, the four XSS vulnerabilities reported in the
GitHub issue are manifested in an optimal manner, and here,
optimality means that one more testing step would be a
waste and one less step would be insufficient to reveal the
vulnerability. For example, after a new work is created,
there are many test paths that one can follow: add a DOI
link, share with other users, link to existing works, etc.
However, “view work’s citation” is among the optimal tests
to perform due to the “create new work”→“view work’s
citation” dependency. Figure 4, therefore, depicts a set of
optimal test paths for detecting vulnerabilities.

Another lesson learned in our Scholar@UC study is that
the requirements dependencies tend to be compositional
when they are used in system-level vulnerability detection.
This has a couple of implications. Even though requirements
dependency is commonly analyzed in a pairwise manner
(e.g., in prior research [11], [12] and in our approach shown
in Figure 1c), the actual uses of the dependencies can be in
a more networked fashion. The test-path graph of Figure 4
illustrates this point, in which injecting XSS payloads and
revealing vulnerabilities become more efficient. Secondly,
the compositional characteristic shows the importance of
high recall in identifying requirements dependencies, which
further confirms the underlying assumption made in our
hybrid traceability approach, i.e., any LSRs are interdepen-
dent if their corresponding HSRs are interdependent. This
hybrid mode of explicitly considering HSR dependencies
helps to improve recall and to facilitate LSR dependency
test path construction, as shown in Figure 4.

Fig. 4: Security testing paths informed by requirements
dependencies.

6 DISCUSSION

This section discusses the limitations of our approach and
the threats to validity of our experimental evaluation and
case study. The first step of our approach, which analyzes
the HSR dependencies, is done manually. Although future
automation is possible [27], our intention is to make sure
that all dependencies are identified and all identified depen-
dencies are valid. Additional justification of manual analysis
at this step comes from the relatively small number and
steady evolution of HSRs. Although our evaluation with
five projects show the reusability of the manual analysis
results, the HSR dependencies are further validated by a
security expert who has had over ten years of industrial
software development and operations experience. All our
results are shared in [26] to facilitate replication, cross vali-
dation, and expansions.

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 10

Fig. 5: Vulnerability detected in iTrust.

A threat to construct validity is that we rely on HSRs
like HIPAA to automatically trace security requirements at
the product and system level. Approaches distinguishing
security and non-security requirements exist. For example,
Wang et al. [33] developed a linear regression classifier
based on features, such as stakeholders and comments,
to identify security requirements in open-source projects,
and their experiments on three systems showed an average
of F2=84% in security requirements classification. In our
approach, due to the consideration of textual requirements
only, no stakeholder or comment features are leveraged.
While integrating a security requirements classifier like the
linear regression model [33] may improve accuracy, our
automated tracing is built on related work in HSRs [17] and
dependability requirements [30].

When tracing HSRs to LSRs, a potential threat to inter-
nal validity is our use of indicator terms without further
distinguishing the dependency type information. In another
word, the terms presented in Table 3, rather than the terms
of certain type or types, are used in RF algorithms. One
reason is that these indictor terms, in line with the nonfunc-
tional requirements indicator terms [27], are fairly common
across documents. In our work, these indicators appear in
both HIPAA and FIPS 200. Another reason is that, when the
LSR dependencies are used, e.g., in security vulnerability
testing, their type information can be automatically inferred
from the HSRs, which avoids overly depending on indicator
terms for dependency type identification.

In the case study on the Scholar@UC project, a limitation
lies in our use of only XSS attack payloads [22]. Although we
tried the payloads in all the 267 interdependent Scholar@UC
requirements, not every pair of requirements was applicable
and only a dozen vulnerabilities were detected. Notably,
XSS payloads apply most directly to the “Input Modifica-
tion” type of LSRs. For other types, security testing might
have to devise different payloads or attack vectors, e.g., trust
boundary violation (CWE-501) may be used to test LSRs
which follow “Triggering Condition” dependencies. At any
rate, the test paths informed by LSR dependencies (cf. Fig-
ure 4) can be valuable in discovering security vulnerabilities.

Threats to external validity concern the generalizability
of the findings. Beyond the five projects that we experi-

mented with, it is interesting to analyze more healthcare
and educational systems given that the HSR dependencies
of HIPAA and FIPS 200 have already been established. A
challenge is the lack of answer sets for new systems, which
makes it difficult to compute metrics like recall and preci-
sion. In contrast, vulnerability discovery does not require
any answer set. For a software system, if an attack succeeds,
then we are confident that a previously unknown vulnera-
bility is detected. For this reason, we tried to generalize our
results from the Scholar@UC case study.

One surprising observation came from our
security testing on iTrust. Figure 5 illustrates
this situation where the malicious code “</TI-
TLE><SCRIPT>alert(“XSS”)</SCRIPT>” is injected
into the “First name” textbox of the medical records release
request form. Due to the detected LSR dependency, we were
expecting to reveal the vulnerability, if any, after traversing
to another requirement (“view updated demographics
information by a doctor or representative”). However,
a vulnerability is revealed at the same page as shown
in Figure 5. Upon our analysis, the reason is that iTrust
implements user input sanitization procedures, and in this
case, the full payload does not pass iTrust’s sanitization.
Yet, when the page is reloaded and prompted for the user
to update the demographics information again, a pop-up
XSS attack shows. Interestingly, iTrust treats the first “>” in
the original payload as the ending symbol of the textbox
and executes the malicious code in the later part, and hence
“</TITLE” ends up being displayed in the “First name”
textbox of the reloaded page. Our serendipitous detection
of this iTrust vulnerability not only shows the importance
of having a diverse set of payloads in security testing, but
also indicates that dependency of the same requirement
(in addition to dependency between different ones) may
be worth considering which will update one of the core
constructs of our proposed approach.

7 CONCLUSION

A high-level security policy, regulation, or standard de-
scribes the requirements that an organization shall meet
to protect its assets. When a product or system fails to
comply with the high-level security requirements, breaches
occur [34]. In this paper, we advance vulnerability discov-
ery by focusing not only on individual security require-
ments, but on their interdependencies. We propose a semi-
automatic approach by integrating horizontal and vertical
traceability to identify requirements dependencies. We then
show how the dependencies can be used in performing
security tests to uncover vulnerabilities.

Manually analyzing HIPAA and FIPS 200 security re-
quirements allows us to detect dependencies of five projects’
requirements. Compared to the baseline methods, our ap-
proach significantly improves recall at 81%. Our case study
on Scholar@UC helped discover four previously unknown
vulnerabilities, contributing to the overall security of the
Samvera Hyrax community. Future work of our study in-
cludes: 1) investigating automated ways of identifying indi-
cator terms for different types of requirements dependency;
2) applying our approach to other industrial projects within

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3030745, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. XX, XX XXXX 11

healthcare and education domains to further assess reusabil-
ity; 3) developing automated security testing tools with the
path selections informed by the requirements dependencies
and the payloads exploited from diverse sources like the
XSS Filter Evasion Cheat Sheet [22]; and 4) extending our
approach toward self-dependencies and the dependencies
over a network of requirements.

REFERENCES

[1] National Vulnerability Database, “CVSS Severity Distri-
bution Over Time,” last accessed: August 2020. [On-
line]. Available: https://nvd.nist.gov/general/visualizations/
vulnerability-visualizations/cvss-severity-distribution-over-time

[2] M. Kumar, “Worst Day for eBAY, Multiple Flaws Leave Milliions
of Users Vulnerable to Hackers,” 2014, last accessed: August
2020. [Online]. Available: https://thehackernews.com/2014/05/
worst-day-for-ebay-multiple-flaws-leave.html

[3] M. Isaac and S. Frenkel, “Facebook Security Breach Exposes
Accounts of 50 Million Users,” 2018, last accessed: August
2020. [Online]. Available: https://www.nytimes.com/2018/09/
28/technology/facebook-hack-data-breach.html

[4] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in International Conference on Software Engineering
(ICSE), Leipzig, Germany, May 2008, pp. 171–180.

[5] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indi-
cators of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, November/December 2011.

[6] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Pre-
dicting vulnerable software components via text mining,” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19, January
2006.

[7] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of SQL injection and cross-site scripting attacks,” in
International Conference on Software Engineering (ICSE), Vancouver,
Canada, May 2009, pp. 199–209.

[8] O. Tripp, O. Weisman, and L. Guy, “Finding your way in the
testing jungle: a learning approach to web security testing,” in
International Symposium on Software Testing and Analysis (ISSTA),
Lugano, Switzerland, July 2013, pp. 347–357.

[9] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection
and cross site scripting vulnerabilities using hybrid program anal-
ysis,” in International Conference on Software Engineering (ICSE), San
Francisco, CA, USA, May 2013, pp. 642–651.

[10] J. Antunes, N. F. Neves, M. Correia, P. Verssimo, and R. F. Neves,
“Vulnerability discovery with attack injection,” IEEE Transactions
on Software Engineering, vol. 36, no. 3, pp. 357–370, May/June 2010.

[11] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Requirements
interaction management,” ACM Computing Surveys, vol. 35, no. 2,
pp. 132–190, June 2003.

[12] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och
Dag, “An industrial survey of requirements interdependencies in
software product release planning,” in International Requirements
Engineering Conference (RE), Toronto, Canada, August 2001, pp.
84–93.

[13] N. Niu, W. Wang, A. Gupta, M. Assarandarban, L. D. Xu,
J. Savolainen, and J.-R. C. Cheng, “Requirements socio-technical
graphs for managing practitioners’ traceability questions,” IEEE
Transactions on Computational Social Systems, vol. 5, no. 4, pp. 1152–
1162, December 2018.

[14] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
“Software traceability: Trends and future directions,” in Future of
Software Engineering (FOSE), Hyderabad, India, May-June 2014,
pp. 55–69.

[15] J. Hayes, A. Dekhtyar, and J. Osborne, “Improving requirements
tracing via information retrieval,” in International Requirements
Engineering Conference (RE), Monterey Bay, CA, USA, September
2003, pp. 138–147.

[16] J. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: the study of methods,”
IEEE Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19,
January 2006.

[17] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A
machine learning approach for tracing regulatory codes to prod-
uct specific requirements,” in International Conference on Software
Engineering (ICSE), Cape Town, South Africa, May 2010, pp. 155–
164.

[18] P. Rempel and P. Mäder, “Preventing defects: the impact of re-
quirements traceability completeness on software quality,” IEEE
Transactions on Software Engineering, vol. 43, no. 8, pp. 777–797,
August 2017.

[19] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: software metrics vs text mining,” in International
Symposium on Software Reliability Engineering (ISSRE), Naples, Italy,
November 2014, pp. 23–33.

[20] Open Web Application Security Project, “OWASP Zed
Attack Proxy (ZAP),” 2020, last accessed: August
2020. [Online]. Available: https://www.owasp.org/index.php/
OWASP Zed Attack Proxy Project

[21] S. Kals, E. Kirda, C. Krügel, and N. Jovanovic, “Secubat: a web
vulnerability scanner,” in International Conference on World Wide
Web (WWW), Edinburgh, UK, May 2006, pp. 247–256.

[22] Open Web Application Security Project, “XSS Filter Evasion Cheat
Sheet,” 2020, last accessed: August 2020. [Online]. Available: https:
//owasp.org/www-community/xss-filter-evasion-cheatsheet

[23] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and
J. Karlsson, “Evaluating automated support for requirements sim-
ilarity analysis in market-driven development,” in International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ), Interlaken, Switzerland, June 2001.

[24] R. S. Ross, S. W. Katzke, and L. A. Johnson, Minimum Security Re-
quirements for Federal Information and Information Systems, National
Institute of Standards and Technology Std. FIPS 200, 2006.

[25] United States Department of Education, “Protecting Student
Privacy While Using Online Educational Ser vices: Requirements
and Best Practices,” 2014, last accessed: August 2020. [Online].
Available: https://tech.ed.gov/wp-content/uploads/2014/09/
Student-Privacy-and-Online-Educational-Services-February-2014.
pdf

[26] W. Wang and N. Niu, “Artifacts of ‘Detecting Software
Vulnerabilities via Requirements Dependency Analysis’,” 2020,
last accessed: August 2020. [Online]. Available: http://dx.doi.
org/10.7945/q8h2-t712

[27] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection
and classification of non-functional requirements with application
to early aspects,” in International Requirements Engineering Confer-
ence (RE), Minneapolis/St.Paul, MN, USA, September 2006, pp.
36–45.

[28] I. Ruthven and M. Lalmas, “A survey on the use of relevance
feedback for information access systems,” Knowledge Engineering
Review, vol. 18, no. 2, pp. 95–145, June 2003.

[29] A. Panichella, A. De Lucia, and A. Zaidman, “Adaptive user feed-
back for IR-based traceability recovery,” in International Symposium
on Software and Systems Traceability (SST), Florence, Italy, May 2015,
pp. 15–21.

[30] W. Wang, A. Gupta, N. Niu, L. D. Xu, J.-R. C. Cheng, and
Z. Niu, “Automatically tracing dependability requirements via
term-based relevance feedback,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 1, pp. 342–349, January 2018.

[31] N. Niu, S. Brinkkemper, X. Franch, J. Partanen, and J. Savolainen,
“Requirements engineering and continuous deployment,” IEEE
Software, vol. 35, no. 2, pp. 86–90, March/April 2018.

[32] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics Bulletin, vol. 1, no. 6, pp. 80–83, Dec. 1945.

[33] W. Wang, K. R. Mahakala, A. Gupta, N. Hussein, and Y. Wang, “A
linear classifier based approach for identifying security require-
ments in open source software development,” Journal of Industrial
Information Integration, vol. 14, pp. 34–40, June 2018.

[34] Ö. Kafali, J. Jones, M. Petruso, L. Williams, and M. P. Singh, “How
good is a security policy against real breaches?: a HIPAA case
study,” in International Conference on Software Engineering (ICSE),
Buenos Aires, Argentina, May 2017, pp. 530–540.

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 11,2021 at 14:55:00 UTC from IEEE Xplore. Restrictions apply.

