
§3. Incompressible surfaces

The majority of 3-manifold theory studies submanifolds of a 3-manifold M ,

and uses them to gain information about M . This is particularly fruitful because

surfaces (i.e. 2-manifolds) are well understood. However, only certain surfaces

embedded within M have any relevance. The most important of these are ‘incom-

pressible’ and are defined as follows.

Definition. Let S be a properly embedded surface in a 3-manifold M . Then a

compression disc D for S is a disc D embedded in M such that D ∩ S = ∂D, but

with ∂D not bounding a disc in S. If no such compression disc exists, then S is

incompressible.
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Figure 7.

Of course, a 2-sphere or disc properly embedded in a 3-manifold is always

incompressible.

Remark. Suppose that D is a compression disc for S. We may assume that D

lies in int(M). There is then a way of ‘simplifying’ S as follows. Essentially using

Proposition 6.6 (see §2), we may find an embedding of D× [−1, 1] in int(M) with

(D × [−1, 1])∩ S = ∂D × [−1, 1]. Then

S ∪ (D × {−1, 1})− (∂D × (−1, 1))

is a new surface properly embedded in M . It is obtained by compressing S along

D.

Denote the Euler characteristic of compact surface S by χ(S). Define the

complexity of S to be the sum of −χ(S), the number of components of S and the

number of 2-sphere components of S. Note that this number is non-negative. A

compression to S reduces −χ(S) by two. It either leaves the number of components
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unchanged or increases it by one. It does not create any 2-sphere components,

unless S is a torus or Klein bottle compressing to a 2-sphere. Hence, we have the

following.

Lemma 3.1. Compressing a surface decreases its complexity.

We will occasionally abuse notation by ‘compressing’ along a disc D with

D ∩ S = ∂D, but with ∂D bounding a disc in S. Note that in this case, the

complexity of the surface is left unchanged.

Definition. A compact orientable 3-manifold is Haken if it is prime and contains

a connected orientable incompressible properly embedded surface other than S2.

Note that every compact orientable prime 3-manifold M with non-empty

boundary is Haken. For we may pick a disc in ∂M and push its interior into

the interior of M so that the disc is properly embedded. This is a connected

orientable incompressible properly embedded surface, as required. Of course, it

is not a particularly interesting surface, but we will see later that, unless M is a

3-ball, other interesting surfaces also live in M .

Haken was a prominent 3-manifold topologist, and he was the first person to

realize the importance of incompressible surfaces. (He also has a number of other

mathematical accolades; for example, he proved the famous 4-colour theorem in

graph theory.) Haken 3-manifolds are extremely well understood. For example,

we will prove the following topological rigidity theorem.

Theorem 3.2. Let M and M ′ be closed orientable 3-manifolds, with M Haken

and M ′ prime. If M and M ′ are homotopy equivalent, then they are homeomor-

phic.

Another major result which demonstrates the usefulness of incompressible

surfaces is the following.

Theorem 3.3. Let S be an orientable surface properly embedded in a compact

prime orientable 3-manifold M . Then S is incompressible if and only if the map

π1(S) → π1(M) induced by inclusion is an injection.

In one direction (that π1-injectivity implies incompressibility) this is quite

straightforward, but the converse is difficult and quite surprising. We will prove
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this theorem later in the course.

We now demonstrate that Haken 3-manifolds are fairly common, by giving

plenty of examples of incompressible surfaces in various manifolds.

Definition. A connected surface S properly embedded in a connected 3-manifold

M is non-separating if M − S is connected.

Lemma 3.4. Let S be a surface properly embedded in a 3-manifold M . The

following are equivalent:

(i) S is non-separating;

(ii) there is a loop properly embedded in M which intersects S transversely in a

single point;

(iii) there is a loop properly embedded in M which intersects S transversely in an

odd number of points.

Proof. (i) ⇒ (ii). Suppose that S is non-separating. Pick a small embedded

arc intersecting S transversely. The endpoints of this arc lie in the same path-

component of M − S, and so may be joined by an arc in M − S. The two arcs

join to form a loop, which we may assume is properly embedded. This intersects

S transversely in a single point.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (i). If S separates M into two components, any loop in M intersecting

S transversely alternates between these components. Hence, it intersects S an

even number of times.

Example. The 3-torus S1 × S1 × S1 contains a non-separating torus.

Proposition 3.5. Let M be a prime orientable 3-manifold containing a non-

separating 2-sphere S2. Then M is homeomorphic to S2 × S1.

Proof. By Proposition 6.6, S2 has a neighbourhood homeomorphic to S2× [−1, 1].

Since S2 is non-separating, there is a loop ℓ properly embedded in M intersecting

S2 transversely in a single point. For small enough ǫ > 0, ℓ ∩ (S2 × [−ǫ, ǫ])

is a single arc. Using technology that we will develop in §6, ℓ − (S2 × [−ǫ, ǫ])

has a neighbourhood in M − (S2 × (−ǫ, ǫ)) homeomorphic to a ball B such that
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B∩ (S2 ×{−ǫ}) and B∩ (S2 ×{ǫ}) are two discs. Then, using an obvious product

structure on B, X = B ∪ (S2 × [−ǫ, ǫ]) is homeomorphic to S2 × S1 with the

interior of a closed 3-ball removed. Note that ∂X is a separating 2-sphere in M .

Hence, since M is prime, this bounds a 3-ball B′ in M . Then M = X ∪ B′ is

homeomorphic to S2 × S1.

A 3-manifold M is known as irreducible if any embedded 2-sphere in M

bounds a 3-ball. Otherwise, it is reducible. By Proposition 3.5, an orientable

reducible 3-manifold is either composite or homeomorphic to S2 × S1.

Proposition 3.6. Let M be an orientable prime 3-manifold containing a properly

embedded orientable non-separating surface S. Then M is either Haken or a copy

of S2 × S1.

Proof. If M contains a non-separating 2-sphere, we are done. If S is incompress-

ible, we are done. Hence, suppose that S compresses to a surface S′. Then S′

is orientable. By Lemma 3.3, there is a loop ℓ intersecting S transversely in a

single point. By shrinking the product structure on D × [−1, 1] as in the proof of

Proposition 3.5, we may assume that ℓ intersects D × [−1, 1] in arcs of the form

{∗}× [−1, 1]. Hence, it intersects S′ transversely in an odd number of points. So,

at least one component of S′ is non-separating. By Lemma 3.1, the complexity

of this component is less than that of S. Hence, we eventually terminate with an

incompressible orientable non-separating surface.

Example. The above argument gives that any non-separating torus in S1×S1×S1

is incompressible. (We need to know, in addition, that S1 × S1 × S1 is prime.)

We will prove the following result in §7. In combination with Proposition 3.6,

this provides examples of many Haken 3-manifolds.

Theorem 3.7. Let M be a compact orientable 3-manifold. If H1(M) is infinite,

then M contains an orientable non-separating properly embedded surface.

The converse of Theorem 3.7 is also true. So this does not in fact create any

more examples of Haken manifolds than Proposition 3.6. However, it is often more

convenient to calculate the homology of a 3-manifold than to construct an explicit

non-separating surface in it.

There is one notable 3-manifold that is not Haken.
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Theorem 3.8. The only connected incompressible surface properly embedded in

S3 is a 2-sphere. Hence, S3 is not Haken.

At the same time, we will prove.

Theorem 3.9. (Alexander’s theorem) Any pl properly embedded 2-sphere in S3

is ambient isotopic to the standard 2-sphere in S3. In particular, it separates S3

into two components, the closure of each component being a pl 3-ball. Hence, S3

is prime.

Remark. The theorem is not true for topological embeddings of S2 in S3. Also,

it is remarkable that the corresponding statement for pl or smooth 3-spheres in

S4 remains unproven.

Proof of Theorems 3.8 and 3.9. Let S be a connected incompressible properly

embedded surface in S3. We will show that S is ambient isotopic to the standard

2-sphere in S3. Let p be some point in S3 − S. Then S3 − p is pl homeomorphic

to R
3. Hence, S is simplicial in some subdivision of a standard triangulation of

R
3.

Claim. There is a product structure R
2 × R on R

3, and an ambient isotopy of S,

so that after this isotopy, the following is true: for all but finitely many x ∈ R,

(R2 ×{x})∩S is a collection of simple closed curves, and at each of the remaining

x ∈ R, we have one ‘singularity’ of of one of the following forms:

SaddleDeathBirth

Figure 8.

Proof of claim. Each simplex in the triangulation of R
3 is convex in R

3. The set
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of unit vectors parallel to 1-simplices of S is finite. We take a product structure

R
2 × R, so that neither R

2 × {0} nor {0} × R contains any of these vectors. We

may also assume that, for each x, R
2 × {x} contains at most one vertex of S.

When R
2 × {x} does not contain a vertex of S, (R2 × {x}) ∩ S is a collection of

simple closed curves. Near the vertices of S, the singularities are a little more

complicated than required, and hence we perform an ambient isotopy of S to

improve the situation. Let ǫ be the length of the shortest 1-simplex in R
3 that

intersects S. Focus on a single vertex v of S. Let B be the polyhedron in R
3

with vertices at precisely the points on the 1-simplices of R
3 at distance ǫ/2 from

v. Then we may subdivide R
3 further so that B is simplicial. Then S ∩ ∂B is a

simple closed curve separating ∂B into two discs. Replace S∩B with one of these

discs, which can be achieved by an ambient isotopy. Performing this operation at

each vertex of S results in singularities only of the required form. This proves the

claim.

Suppose that the singularities of S occur at the heights x1 < . . . < xn. Note

that the singularity at x1 is a birth, and at xn is a death. We prove the theorem

by induction on the number of singularities n. The smallest possible n is two, in

which case S is a 2-sphere embedded in the standard way.

Let xk be the smallest non-birth singularity. If it is a death, then, since S is

connected, S is a 2-sphere embedded in the standard way. Hence, we may assume

that xk is a saddle. As x increases to xk, either

(i) two curves C1 and C2 approach to become a single curve C3, or

(ii) one curve C4 pinches together form two curves C5 and C6.

In (i), we may ambient isotope S, to replace this saddle singularity and the

singularities below C1 and C2 with a single birth singularity. The theorem then

follows by induction.

In (ii), if C5 and C6 both lie below death singularities, then S is a 2-sphere

ambient isotopic to the standard 2-sphere in S3.
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Suppose therefore that one of these curves (C5, say) does not lie below a death

singularity. The curve C5 bounds a horizontal disc D. There may be some simple

closed curves of S ∩ int(D). But each of these lies above birth singularities. So,

we may ambient isotope S, increasing the height of these singularities to above

xk. Hence we may assume that D ∩ S = ∂D = C5. By the incompressibility of S,

C5 bounds a disc D′ in S. Hence, if we ‘compress’ S along D, we obtain a surface

S′ with same genus as S, together with a 2-sphere S2. Both S2 and S′ have fewer

singularities than S. Hence, inductively, S2 bounds a 3-ball on both sides. One of

these 3-balls is disjoint from S′. We may ambient isotope S across this 3-ball onto

S′. Thus, S and S′ are ambient isotopic. The inductive hypothesis gives that S′

(and hence S) is a 2-sphere ambient isotopic to the standard 2-sphere in S3.

Using this result, we can prove that any compact 3-manifold M with a single

boundary component that is embedded in S3 is Haken. If S2 is properly embedded

in M , then this 2-sphere separates S3 into two 3-balls. One of these 3-balls is

disjoint from ∂M , and hence lies in M . Therefore M is prime, orientable and

compact, and has non-empty boundary. Hence, it is Haken.

Example. Let K be a knot in S3. We will show in §6 that K has a neighbourhood

N (K) homeomorphic to a solid torus. The 3-manifold M = S3− int(N (K)) is the

exterior of K. Thus, M is Haken. In fact, it contains an orientable non-separating

properly embedded surface, which we now construct.

7



Pick a planar diagram for the knot K. We view this diagram as lying in

R
2 ⊂ R

3 ⊂ S3. The knot lies in this plane, except near crossings where one arc

skirts above the plane, and one below. Pick an orientation of the knot. Remove

each crossing of the diagram in the following way:

Figure 11.

The result is a collection of simple closed curves in R
2. Attach disjoint discs

to these curves, lying above R
2. (Note that the curves may be nested.) Then

attach a twisted band at each crossing of K, as in Figure 12. The result is a

compact orientable surface S embedded in S3 with boundary K. Such a surface

is known as a Seifert surface for K.

Figure 12.

We may take N (K) small enough so that S∩N (K) is a single annulus. Then

S∩M is an orientable properly embedded surface in M . It is non-separating, since

a small loop encircling K intersects the surface transversely in a single point.

S

K

N(K)

Loop

Figure 13.
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