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Abstract .  In this paper we prove an exponential lower bound on the 
size of bounded-depth Frege proofs for the pigeonhole principle (PHP). 
We also obtain an f~(loglog n)-depth lower bound for any polynomial- 
sized Frege proof of the pigeonhole principle. Our theorem nearly com- 
pletes the search for the exact complexity of the PHP, as S. Buss has 
constructed polynomial-size, log n-depth Frege proofs for the PHP. The 
main 1emma in our proof can be viewed as a general Hs Switch- 
ing Lemma for restrictions that are partial matchings. Our lower bounds 
for the pigeonhole principle improve on previous superpolynomial lower 
bounds. 
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1. I n t r o d u c t i o n  

The main result of this paper is an exponential bound on the size of bounded- 
depth Frege proofs for the pigeonhole principle. Before describing the proof, 
we will discuss several motivations for studying lower bounds for Frege and 
bounded-depth Frege systems. 

The complexity of Frege proofs has been studied extensively by many people 
in the last 20 years, beginning with an early paper by Tseitin (1968). Later, 
Haken (1985) proved that any Resolution proof of the pigeonhole principle 
must have exponential size. The next major breakthrough was made by Ajtai 
(1988) who used nonstandard model theory to prove that any constant-depth 
Frege proof of the pigeonhole principle must have superpolynomial-size. Be- 
cause Resolution is a particular depth-2 Frege system, Ajtai's proof yields a 
superpolynomial lower bound for Resolution as a special case. More recently, 
Bellantoni et al. (1992) obtained a new proof of Ajtai's theorem which elimi- 
nates the use of nonstandard models. While their techniques were more direct 
and more accessible, their improved bound was still barely superpolynomial. 
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Our new exponential lower bound has several interesting consequences. As a 
corollary, we show that  any polynomial-sized Frege proof of the pigeonhole prin- 
ciple must  have depth f/(log log n). Our theorem nearly completes the search 
for the exact complexity of the pigeonhole principle, as Sam Buss (1987) has 
constructed polynomial-sized, logarithmic depth Frege proofs for the pigeon- 
hole principle. 

Constant-depth lower bounds are related to the power of weak systems 
of ari thmetic (see Buss 1987, Paris et al. 1988). This relationship together 
with our exponential lower bound for the propositional pigeonhole principle 
shows that  relativized Bounded Arithmetic,  S2(f), cannot prove the pigeonhole 
principle for f .  

To see why this question is of interest in logic, consider the following two 
proof sketches that  every non-zero residue modulo a prime has an inverse. 
Let p be a prime, and let 0 < a _< p - 1. Then if we consider the map 
F~ : { 0 , . . . p -  1} --, { 0 , . . p -  1} defined by Fa(b) = ab mod p, it is easy to 
see that  Fa is 1 - 1. Therefore, (using the pigeonhole principle), it must  also 
be onto, and so 1 must  be in the image. Therefore, there exists a number  b, 
0 < b __ p -  1, such that  ab = 1 rood p. In the second proof, we would prove by 
induction on the length of numbers a, b that  Euclid's Algorithm for extended 
gcd finds integers c, d so that  ca + db = gcd(a, b). Then applying this algorithm 
to a and p, we get ca +dp  = 1, so ca = 1 mod p. 

Both of the above proofs are simple, and only use basic facts of arithmetic.  
Both are constructive in the sense of intuitionistic logic. However, the first is 
combinatorially "non-constructive" in that  it is based on a counting argument 
which yields no better way of finding the proven object than via exhaustive 
search. The second has "algorithmic content", and yields a good method  for 
finding the object proven to exist. In this case, a counting argument  was 
not necessary, and could be replaced by a more constructive computat ional  
argument.  Our result can be interpreted as saying that  there is no generic 
procedure for converting a counting argument involving exponentially targe but  
finite sets into an argument which only involves concepts in the polynomial- 
t ime hierarchy (relative to the object being counted). Thus, in general, one 
cannot automatically convert such an argument into a more algorithmic one, 
although in any particular case, this might be possible using special properties 
of the sets being counted. 

In contrast with this negative result, Paris, Wilkie and Woods (1988) showed 
that  the weak pigeonhole principle, WPHP,~,  is provable in S2(f) .  (PHPn 
states that  there is no 1-1 map from In + 1] to In], while W P H P ~  states that  
there is no 1-1 map  from [2n] to In].) As a corollary, they show that  W P H P , ,  
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has quasi-polynomial size, constant-depth Frege proofs. 
It is not hard to extend our results to weakenings of the pigeonhole principle 

that  state the nonexistence of t-1 mappings from sets of size n + c to n (the 
lower bound is only minimally affected by c.) However, it is still an open 
problem whether WPHP,~ has constant-depth proofs of polynomial size. We 
can also extend our result quite easily to another weak version of the pigeonhole 
principle, which states that  there is no 1-1 and onto map from [n + 1] to [n]. 

In all of the lower bounds for propositional proof systems ment ioned above, 
size refers to the total number  of symbols in the proof. Another  measure of 
complexity is line-size, which counts the total number  of formulas, or lines, in 
the proof. Clearly, a lower bound on line-size implies a lower bound on symbol 
size. For constant-depth Frege proofs, S. Buss (1993) has recently shown that  
superpolynomial lower bounds for symbol-size imply superpolynomial lower 
bounds for line-size. Therefore, our result also holds for line-size. 

Our lower bound is a proof by induction on the depth of the Frege proof. 
The  method  used to reduce the depth from d to d -  1 is a new variation 
on the the bot tom-up method of restrictions, first described in (Furst et al., 
1984), and later improved by Yao (1985), Hs (1987) and others. The key 
combinatorial l emma used in our proof is a new switching lemma, similar in 
spirit to the switching lemma of Hs  

Hs switching lemma states that  with high probability, a random re- 
striction allows us to re-wrlte an OR of small ANDs as an AND of small ORs. 
A major  drawback of this lemma and related ones is that  they only apply when 
there is very little dependency between variables in the underlying probabil- 
ity distribution of restrictions. There are many graph-based problems where 
the dependency between variables is too great to apply Hs Lemma,  and 
there is no known reduction from a known hard problem in AC ~ to one of 
these problems. One graph-based problem for which a Hs switching 
lemma has been shown is that  of deciding whether or not a graph contains a 
clique on a small number  of nodes (see Lynch 1986, Beame 1990). However, 
the restrictions needed in that  case still have very limited dependency. 

In this paper, we prove a new switching lemma which applies to restrictions 
for which there is a great deal of dependency, namely those that  represent 
partial matchings. A key feature that  makes this more difficult is that  after 
our restrictions are applied, the converted formula is only equivalent to the 
original one for certain classes of assignments. 

Below we will outline an overview of the proof. In Section 2, we give some 
preliminary definitions concerning our random restrictions. In Section 3, we 
discuss 1-1 decision trees, and state the main combinatorial lemma. In Sections 
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4 and 5, we present the exponential lower bound for the pigeonhole principle. 
Finally, in Section 6, we prove the main combinatorial lemma. This result has 
also been obtained independently by Krafi~ek, Pudls and Woods (1992). 

1.1. P r o o f  Overview.  A Frege proof is a sequence of propositional formulas, 
each of which is either an axiom instance or follows from previous formulas by 
one of a fixed set of inference rules. The pigeonhole principle can be expressed 
by a class of propositional formulas, {PHP,~ : n E N}, where PHP,~ asserts 
that there is no 1-1 mapping from a set Do of size n + 1 to a set D~ of size n. We 
encode PHP,~ using (n + 1)n propositional variables, {P~j : i E D0 A j  E D~}, 
where Do and D~ are disjoint sets such that ]D01 = n + 1 and IDx] = n. 
Intuitively, Pij = 1 iff i is mapped to j .  Since our proof system will be a 
refutation system, we are concerned with the statement -~PHP,,, which can be 
written as the conjunction of the following pigeonhole clauses: 

V{P,'j : J E D1}, i E Do; 
V{~P,k,-~Pjk}, i ~ j, i , j  E Do, k E D1, 

In a refutation, one starts with the negated pigeonhole principle, -~PHP,~, and 
then derives V{}, i.e. False. Since we will be working in a Frege system over the 
basis OR and NOT, we will begin with ",PHP,, written as a depth-4 formula 
over the basis OR, and NOT. 

As in the paper by Bellantoni, Pitassi and Urquhart (1992), we proceed by 
induction on the depth of the Frege proof. Assume that we have a small, depth 
d Frege proof of the pigeonhole principle. Without loss of generality, we also 
assume that each formula in the proof consists of ORs and NOTs, except for the 
bottom two levels which are ORs of small ANDs. Applying a random restriction 
to each formula in the refutation, we can simplify the bottom levels so that each 
occurrence of negation at depth 3 of each formula is replaced by the "pseudo 
complement". This allows us to reduce the depth of each formula to d -  1, but 
now each depth d -  1 formula only approximates the original depth d formula on 
the reduced domain. Due to this approximation, instead of obtaining a depth 
d - 1 refutation of the pigeonhole prindple (on the reduced domain) which is 
completely sound, we obtain a depth d -  1 approximate refutation which is only 
approximately sound. 

An approximate refutation is a Frege refutation where each inference is 
sound with respect to a large subset of all critical truth assignments. In con- 
trast, an inference in a regular Frege refutation is sound with respect to all 
truth assignments. The approximation is obtained by a new method which will 
be described in the next section. The key property of the approximation is that 
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the pseudo-complement has the property that it is identical to the actual com- 
plement on a large fraction of the assignments that are maximally 1-1, namely 
the critical t ruth  assignments. 

We repeat the restriction argument d - 2 times to obtain an approximate 
depth-2 Frege refutation of the pigeonhole principle, i.e., a refutation in which 
each formula is an OR of small ANDs. We then apply a separate base case 
argument which shows that there can be no good approximation to a Frege 
proof of small size and with this special form. 

2. Random Restrictions and Map Disjunctions 

Let D consist of two disjoint sets, Do and D1. (When we refer to D as Do U D1, 
we mean the disjoint union.) The variables over D = Do U D1 are {Pij : i E 
Do, j E D1}. Pictorially, Do can be thought of as a set of indices representing 
the pigeons, D1 as a set of indices representing the holes, and for each i E Do, 
and j E D1, the edge between i and j is labelled by the variable Pij. 

A truth assignment qa over D is any total assignment of {0, 1} to the vari- 
ables over D. Let D' = D~ U D~, D~ C D0, and D~ C O1. A truth assignment 

over D is 1-1 over D' if for all i E D~ there is a unique j E D1 such that  
Pij = 1 and for all j E D~ there is a unique i E Do such that P~j = 1. 

2.1. R a n d o m  1 - 1 Restr ic t ions .  We will now define a probability space of 
partial 1-1 t ruth assignments on D, where D = Do U D1, and [Do[ = IDI[ = n. 
The probability space 7~ D is the set of all triplets p = <  S0, S1,Tr >, where 
So C Do, S1 c O1 and ISo[ = ISI[. The set So is chosen as follows. For 
each x C Do, choose x E So with probability p and x r So with probability 
1 ~- p. After all elements, So, in Do have been selected, the set $1 is obtained 
by selecting exactly IS01 elements of D1 uniformly and at random. The third 
component in the triple, 7r, is a uniformly chosen bijection from Do \ So to 
D1 \ 5'1. The triplet < So, Sl,rc > will sometimes be referred to as < S, Tr >, 
where S = So U S1. 

Alternatively, the probability space 7~ D can be generated by a second ex- 
periment described here. First, select a random subset of Do of size k, and a 
random subset of D1 of size k, where k is chosen according to the binomial 
distribution, B(n, p). The chosen subsets will be So and $1, respectively. Then 
select a uniformly chosen bijection from Do \ So to D1 \ S1. 

Every p = <  S, r > in T~ D determines a unique mapping of the variables 
over D to the set {0, 1,*}, as follows. If i e So and j E S~, then r (Pq)  = *; 
if i r So and j r 5'1 and r ( i )  = j ,  then r(P~j) = 1; otherwise r(P~) = 0. We 
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will call this mapping of the variables determined by p the variable restriction 
induced by p. 

Conversely, every 1-1 variable restriction is generated by a unique p E 7~ D. 
Thus, the distribution 7 ~  defines a probability distribution of 1-1 variable 
restrictions. If r is a random restriction obtained by choosing a random p 
according to T~ D, we will refer to both the restriction and the random partial 
1-1 function by p. 

A restriction, p = <  So, $1, re >, applied to the variables over the domain D 
creates a subdomain, D t (2 D = S0 U $1. Namely, the subdomain D ~ induced 
by p is the maximal subset such that the underlying variables of D' are set to 
�9 by p. We will also refer to the subdomain, D', by D [0. 

Given a boolean function F,  and an element p E ~ ,  we will denote by FIo 
the function that we obtain by doing the substitutions prescribed by p. F [p 
will be a function of the variables which were given the value �9 by p (i.e., the 
variables over DIp). 

It will be convenient to describe the probability space of restrictions in terms 
of another, slightly different distribution. The probability space P ~  is the set 
of all pairs < So, $1, re >, where re is a randomly chosen bijection from Do into 
D1, and So and $1 are subsets of Do and D1, respectively. The set So is chosen 
as follows. For each x E Do, choose x E So with probability p and z ~ So with 
probability 1 - p. The set $1 is then taken to be re(S0). 

Equivalently, we can generate the probability space pD by first choosing a 
complete bijection, r ,  from Do to D1, and then choosing a k-subset, So, of Do 
uniformly, at random where k is chosen according to the binomial distribution, 
B(n,p). The set $1 is then defined to be re(S0). 

We will now describe a third and final experiment which generates the 
distribution P~.  Initially, we define S = Do and T = D1. Choose a random 
x E S a n d  a r a n d o m  y E T. Set re(z) = y. Then choose both x E So and 
y E $1 with probability p, or both x ~ So and y ~ $1 with probability 1 - p. 
Repeat this procedure on the smaller sets S = S \ x, and T = T \ y, until 
S = ~ and T = 0. At the end of the procedure, we will have completely 
determined a bijection, re, as well as sets So and $1. It can be checked that the 
probability of choosing a particular p = <  So, 5'1, re > is the same in all of the 
above experiments. 

Each p = <  So, 5:1, re > in P ~  determines a unique restriction of the variables 
over D: if i E So and j e S1, then r(P~j) = *; if i ~ So and j ~ St and re(i) = j ,  
then r(Po) = 1; otherwise r(Pij) = 0. 

Note, however, that each 1-1 restriction of the underlying variables can be 
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generated by many p C pD. This can be seen by noting that there is a one-to- 
many mapping from p E T~ D to p C pD. The following lemma states that the 
experiments ~D and T 'D each define the same distribution of restrictions. 

LEMMA 1. The distributions 7~ D and 7 ~  define the same probability distri- 
butions over i-1 variable restrictions. 

PROOF. For each element p = <  So, $1, ~r >E 7~ D, there is an associated 
unique set of elements p~ =< S~,S~,TC ~ > from T'fi, which yields the same 
assignment to the variables Pij. Namely, an element p' =< S~, S~,~r' >E pD 
is associated with p = <  So, $1, ~r >E T~ D if the bijection, ~r' on D \ (So U 
$1) is identical to ~r and S~ = $1, and S~ = S[. Each element of T~ D is 
associated with the same number of elements from ~D; further, the probability 
over 7~ of choosing a particular element, p, is equal to the probability over ~o of 
choosing an element in the set associated with p. Thus, the induced probability 
distributions on the setting of the variables Pij are identical. [] 

In what follows, a restriction denotes a particular element from one of the 
two distributions, 7r D, or pD, and a variable restriction denotes a particular as- 
signment of 0,1,* to the underlying variables. As mentioned above, a restriction 
from either 7r D or T 'D induces a corresponding variable restriction. 

2.2. R a n d o m  P i g e o n h o l e  R e s t r i c t i o n s .  The distributions defined above 
assumed that  ID01 = ]D1 I- However, in the case of the variables underlying the 
pigeonhole principle, the domain actually has one more element than the range. 
We will now define a probability space of partial 1-1 functions on D, where now 
D = Do U O1, and ]Do[ = [O1[ + 1, and 0 < p < 1. The probability space QD 
is the set of all quadruples p = <  i, So, $1, ~r >, where i E Do, So C_ Do \ {i}, 
$1 C D1 and [So[ = [SI[. First, i E Do is chosen uniformly and at random. 
Then So, $1, and 1r are chosen from D' = Do \ {i} U D1 in the same manner as 
in distribution 7~ D'. 

Again, the notation PrvQ[A ] denotes the probability that A occurs when p 
is drawn from QD. We will need the following simple observation. 

LEUMA 2. Let D = DoUD1,  where IDol = ID, I+I .  Forp letspar (p) = 
x denote the event that the pigeon which is unmapped by p is x-- i .e . ,  i f p  = <  
i, So, Sa,~r >, then i = x. Then the distribution of  variable restrictions over 
D' = Do \ {x} U D1 induced by QD, given that spare(p) = x, is equal to the 

distribution of  variable restrictions over D' induced by T~ v'. 

For a Boolean formula F and an element p E T~ D (p E QD), F restricted 
by p will be denoted by F [p. 
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2.3. M a p  D i s j u n c t i o n s .  A map over D is defined to be a conjunction of 
the form A P, where I" is a set of variables over D such that distinct variables 
in F have distinct left subscripts and distinct right subscripts. Maps describe 
bijections between subsets of Do and subsets of D1. The size of a map A F is 
[r[; if the size of a map is bounded by t, it is said to be a t-map. An OR of 
maps is called a map disjunction. The mapsize of a map disjunction is the size 
of the largest map in the disjunction; if all the maps are of size at most t, then 
it will be called a t-disjunction. 

Let ~r be a map over D, with underlying variables {P~ul, P~2~2, ~ 
where xi E Do, and Yi C D1 for all i, 1 < i < k. Then ~ can also be viewed 
as a 1-1 variable restriction; namely, the restriction that maps xi to yi for all 
1 < i < k. We will sometimes refer to ~r interchangeably as a restriction and 
as a map. 

If Y is a map or a set of variables, then v(Y) denotes the elements in DoUD1 
that are indexed by the variables in Y. Alternatively, if we view Do and D1 as 
disjoint sets of vertices, and Y as a set of edges, then v(Y) denotes the subset 
of vertices which are incident upon the edges of Y. 

Let K C_ D = Do U D1. Then ProjD[K] is the set of all minimal partial i-1 
maps over D which involve all of the elements of K. 

Where it is convenient, we shall assume that an ordering is given for each 
of Do and D1. Whenever we write a real, positive number where an integer is 
required, we mean the integer part of the number (floor). When we assert an 
inequality involving n, we shall often assume tacitly that n is sufficiently large. 

3. 1 - 1  D e c i s i o n  T r e e s  a n d  t h e  S w i t c h i n g  L e m r n a  

Decision trees are a very natural and simple model of computation where a 
boolean function is computed by a binary tree, whose nodes are labelled with 
bits of the input, and whose leaves are labelled either "accept" or "reject". If 
a node is labelled with a particular input bit, xi, then the two edges out of 
that node are labelled xi and ~i. To compute the function on an input, c~, we 
start at the root of the binary tree, and follow the path whose edge labels are 
consistent with a until we hit a leaf node, at which point we output  the label 
of that leaf. The decision tree complexity of a boolean function, f ,  is defined 
to be the minimum height of all decision trees which compute f .  

It turns out that Hs Switching Lemma (see Hs 1987) can actually 
be stated in a stronger form in terms of decision trees. That is, the proof of 
Hs Switching Lemma shows that if f is an OR of smMl-sized ANDs, 
and p is a random restriction, then with very high probability, f !0 can be 
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represented by a small-depth decision tree. It follows that f ~p can be written 
both as an OR of small ANDs, and as an AND of small ORs. In order to prove 
our switching lemma for pigeonhole restrictions, we will first introduce a new 
class of decision trees, called 1-1 decision trees. We will then prove an analog of 
H&stad's Switching Lemma (stated in terms of decision trees), for 1-1 decision 
trees. 

A 1-1 decision tree over domain D = Do U D1 is defined as follows. It is a 
rooted tree where each interior node v is labelled by a query i E D0 or j E D1 
and each edge is labelled by some pair [i, j] where i E Do and j E D1. Leaves 
are labelled with either "0" or "1". For each interior node v labelled by i E Do 
(j E D~), there is exactly one out-edge labelled [i,j] for each j E O1 (i E D0) 
that does not appear in any edge label on the path from the root to v. The 
label of an interior node v may not appear in any edge label on the path from 
the root to v. Thus the set of edge labels on any path defines a map: if [i,j] 
labels an edge on the path, then P~j appears in the map. 

A 1-1 decision tree T over D represents a boolean function f over (the 
variables of) D if for all leaf nodes v C T, if we let ~ be the map defined by 
the path in T from the root to v then for all truth assignments a over D that 
are 1-1 on v(~r) and consistent with a, f (a )  is equal to the label of v. For a 
boolean function f over domain D, we define do( f )  to be the minimum height 
of all 1-1 decision trees representing f .  If f cannot be represented by any 1-1 
decision tree, then do ( f )  = oo. 

If p is a partial 1-1 restriction over D and T is a 1-1 decision tree over 
D, then define T[p to be the decision tree obtained from T by removing all 
paths which have a label that has been set to "0" by p, and contracting all 
edges whose labels are set to "1" by p. (The node resulting from the edge 
contraction has the label of the child.) 

LEMMA 3. Let f be a boolean function over D and let T be a 1-1 decision tree 
representing f over D. If  p is a partial 1-1 restriction over D, then TIp is a 1-1 
decision tree which represents f~p over DIp. 

PROOF. We will show that for all root-to-leaf paths p E T ~p with leaf label 
Iv, if a is the map defined by p, then for all truth assignments a over D ~p 
consistent with a, f [p (a) = lp. Fix a path p E T ~p with leaf label lv, and 
let ~r be the map defined by p. Then by the definition of Ttp,  there exists a 
map c,' such that a ' Ip=  a and a'  corresponds to a path p' in T with leaf label 
l v. Because T represents f ,  it follows that for all truth assignments a '  over D 
which extend a', f (a ' )  = Ip. Now fix a truth assignment a over D[p consistent 
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with a. Then let a p be the truth assignment ap over D. Then because a p 
extends ~', we have f [, (a) = f ( a ' )  = Ip, as desired. 

For any decision tree T let T ~ denote the tree obtained from T by switching 
the l 's  and 0's labelling the leaves of T. Note that if T represents f over D 
then T I represents -~f. Given a 1-1 decision tree T over D of height d, we define 
a d-disjunction, maps(T), over D as follows. The maps in maps(T) correspond 
to the paths in T that end in a leaf labelled 1. For a particular path in T, 
the corresponding map in maps(T) is defined to be the conjunction of the 
edge labels along the path. Notice that T represents maps(T). Furthermore 
note that for any partial 1-1 restriction p over D, maps(T [p) = maps(T)Ip. 
The lemma in the next section is actually a switching lamina in the sense of 
H~stad. That  is, it will allow us to obtain a map disjunction that approximates 
the negation of f .  This is obtained by representing f by a 1-1 decision tree, 
T, and then taking maps(T') to be the map disjunction approximating the 
negation of f ,  where T' is the tree obtained from T by switching the l 's and 
O's labelling the leaves. 

We define the complete 1-1 tree for K C D over D inductively as follows. 
If K consists of a single node k C Do (k E D1), then label the root '~k E Do" 
("k E D~"), and create n (or n + 1) edges adjacent to the root, labelled by 
[k,j], for all j e D~ ([j, k] for all j E Do). Otherwise, K = K'  U {k} C_ D. 
Assume that we have created the complete tree for K~; we will now extend 
it to a complete tree for K. This is done by extending each leaf node vl as 
follows. Let pz be the path from the root to vt. The edge labellings along pt 
define a partial 1-1 map involving all elements of Kq If this partial map does 
not include k, then label vt by k, and add new edges leading out of vt, one for 
every possible mapping for k that results in a 1-1 map extending the partial 
1-1 map along pt. Otherwise, if k is involved in the partial 1-1 map, leave vl 
u nlabelled. Note that each path of the complete tree over K wilt be labelled 
by some cr E ProjD[K]. 

LEMMA 4. Let f be a boolean function over the variables Pij, i E Do, j E D1, 
where ]Do[ = IVll. For every g C_ Do U D1, there exists a restriction ~ E 
ProjD[K] such that dD(f) <_ ]o-1 + dDt~(f~o). 

PROOF. The proof is very similar to that of Beame and Hs (1989). Fix 
K C_ D. We start with the complete 1-1 tree for K. As noted above, the paths 
of this tree correspond exactly to elements of ProjD[K]. Let v~ be the leaf 
node corresponding to the path labelled by a E ProjD[K]. For each o, we 
replace the leaf node v~ by a subtree that is a 1-1 decision tree for f ['~ over 
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D !~. The resulting tree clearly represents f over D, and has depth at most 
max~{J~rl + dDt~(f[~)}. [] 

If f is a map disjunction defined over a set D and p is a restriction on D 
then we will use the notation 5(f lp ) for dDt,(f[p). 

Let D = Do U O1, ID01 = n + 1 and ID1] = n. We will now state the main 
combinatorial lemma. This lemma states that with extremely high probability, 
after applying a random restriction to a t-disjunction, we can represent the 
resulting formula by a small-depth 1-1 decision tree. 

LEMMA 5. (THE PIGEONHOLE SWITCHING LEMMA) Let f be an r-disjunction 
ove~ D. Choose p at random from Qg.  For s > O, p <_ 1/36, and pn >>_ S(s +r) ~ 
we have  

Pr[5( f[ , )  >_ s + 1] < na s, 

for any a > 0 satisfying (1 + ~ r  < 2. 
c~2 / - -  

Fact: The inequality (1 + 36p4n3/a2) r _< 2 holds when cu = 8p~na/2r 1/2. 
This fact can be shown by taking logarithms of both sides, and using the 
inequality log(1 + x) _< x. 

We will postpone the proof of the pigeonhole switching lemma until the last 
section of this paper. 

4. Critical Truth Ass ignments  and A p p r o x i m a t e  
Negat ion  

For the pigeonhole variables, Pij, i E Do, j C D1, where size(Do) = s i ze(D,)+ 
I, we will consider the class of truth assignments which are maximally 1-1. The 
set of critical truth assignments over D, CTAD, is defined to be the class of all 
truth assignments over D which are 1-1 on all but one element of Do: CTAD = 
{a [ 3x E Do such that a is 1-1 on D o \ { x } U D 1 ,  and gj  E D1 P,:j = 0}.  Given 
a map disjunction f over the pigeonhole variables, we want to apply the above 
switching lemma in order to obtain a new map disjunction which approximates 

~ f .  

LEMMA 6. Let D = Do U D1 where ]Do] = n + 1, [D1] = n, and let T be a 
1-1 decision tree of height k defined over the set D. The fraction of all criticM 
truth assignments ~ over D that are consistent with some path in T is at least 
1 k 

IDot " 
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PROOF. We prove this lemma by induction on the height k of T. Consider 
a randomly chosen critical truth assignment a over D. 

If k = 0 then T is just a single node and the lemma is vacuously true. 
Now suppose that the 1emma is true for all trees of height at most k and 

suppose that T has height k + 1. 
If the root of T is labelled by some j E D1 then a matches j with a 

unique i E Do. Let ~ be the map consisting of Pij. Then T lo is g 1-1 
decision tree of height at most k defined over D [,. Furthermore, the probability 
that a is consistent with some path in T is equal to the probability that it is 
consistent with some path in TI , .  By the induction hypothesis this is at least 
1 - k in  >_ 1 - (k + 1)/(n + 1) as required. 

If the root of T is labelled by some i E Do then either i = spare(a), or 
spare(a) # i and a matches i with a unique j E Do. Let E be the event that 
a is not consistent with any path in T. Thus we have 

Pr[E] < Pr[spare(a) = i] + 
Pr[spare(a) r i] • Pr[Et spare(a) r i] 

Since the induced distribution on spare(a) is uniform over Do, Pr[spare(a) = 
i] = 1/(n + 1). Given that spare(a) # i we can argue, as in the case that the 
label was j E D1, that the probability of E is at most k/n.  Thus we get a total 
probability of E of 

1 

n + l  

as required. [] 

1 ~ k  1 k k + l  
- - + 1  - - 

n + l / n  n + l + n + l  n + l  

COROLLARY 7. Let D = Do U D1 where ]Do[ = n + I, tD1] - - -  n~ and let T be 
a 1-1 decision ~ree of height k representing f over the set D; let T t be the 1-1 
decision tree obtained from T by switching the 1 's and O's labelling the leaves 
ofT .  Then maps(T') and -~f agree on at least a (1 - k ) fraction of Mt critical 
truth assignments over D. 

5 .  E x p o n e n t i a l  L o w e r  B o u n d s  

5.1. Def in i t ions .  For concreteness, we will work with propositional proofs 
in a particular system, H,  to be defined below. The crucial property of H that 
we will exploit is that each rule and axiom involves at most one negation. In 
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Excluded Middle Axiom: A V -,A 

Weakening Rule: A (AvB) 

Cut Rule: (AvB), (~AvC) 
(BYe) 

.V((Vr)u~) Merging Rule: V(ruz~ ) 

V(rua) Unmerging Rule: V({Vr}ua ) 

Figure 1: Rules of the system H 

any Frege system, each rule and axiom involves at most a constant number of 
negations, and this also suffices to prove the lower bound. 

The Frege refutation system that we will use is the system H described by 
Bellantoni, Pitassi and Urquhart (1992). H is slightly nonstandard in that it 
is formulated as a propositional proof system for unbounded fan-in formulas. 
More precisely, the formulas of H are unordered rooted trees defined inductively 
by the rules: (1) if x is a variable, then V{Ax} is a formula; (2) if A is a 
formula then -~A is a formula; and (3) if F is a finite set of formulas, then V F 
is a formula. Thus the system allows A only at the bottom level, and in fact 
requires A's there. This syntactic requirement simplifies the exposition. The 
rules of H are listed in figure 1. We will sometimes use the notation A V B to 
mean V{A, B) .  

Note that  the system H is not complete in the usual sense because there 
are no rules for AND.  However, H is complete for formulas over the basis OR 
and NOT. 

If we begin with a bounded-depth Frege proof over the (unbounded fan-in) 
boolean basis AND, OR, and NOT, in a different Frege system than the one 
specified above, then we can convert the proof into a bounded-depth proof in 
H by using the ideas in the simulation result of Cook and Reckhow (1979). We 
would like to point out that although the simulation preserves constant-depth, 
the depth after the conversion may increase by a constant factor. Thus, the 
actual constants in our lower bound are sensitive to the particular Frege system 
that one starts with. 
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In this paper, a depth d formula will be an unbounded fan-in boolean tree, 
consisting of d - 2 levels of unbounded fan-in OR and NOT gates, followed 
by the bottom two levels which are map-disjunctions. Note that any depth d 
formula in a proof in H consists of d - 2 levels of unbounded fan-in OR and 
NOT gates, followed by two levels of 1-disjunctions. The size of a formula, is 
the number of occurrences of V and -, in the formula; the size of a Frege proof 
(or a sequence of formulas) is the sum of the sizes of the formulas occurring in 
the proof (or sequence). The depth of a Frege proof (or a sequence of formulas) 
is the maximum depth of the formulas in the proof (or sequence). A Frege 
refutation of A1 A A2 A... A A~ can be viewed as a directed acyclie graph, where 
each node in the graph is a formula of the proof. The leaves of the graph 
are the formulas Ai, the root of the graph is the empty (false) formula, and 
two formulas, A and B are parents of another formula C if C follows by some 
inference rule from A and B. A Frege refutation has height h if the directed 
aeyclic graph which describes the proof has height no greater than h. 

In our lower bound, we will begin with a proof of depth d in the system 
H. We will then apply a transformation to the original depth d proof to 
obtain a new sequence of formulas, where now each formula will have depth at 
most d - 1. Because each formula of the original proof has been modified, the 
resulting sequence of formulas will not have the syntactic form required by the 
rules of H; thus, the new sequence of formulas will not be a syntactically proper 
proof in H. On the other hand, the resulting sequence of formulas will still 
approximate a proof, in the semantic sense. More precisely, we will maintain 
the property that each formula in the new sequence will still follow from the 
same previous formulas by a 7-sound inference. An inference (f l ,  f2) ~ f over 
D is 7-sound if there exists a subset, S, of all critical ~;ruth assignments, CTAD, 
of size at least 71CTADI, such that for each assignment s E S, if s makes both 
f l  and f2 true, then s also makes f true. (Note that an axiom can be viewed 
as a rule with one precedent, the "true" formula.) This notion of soundness is 
more general than the usual notion of soundness. In particular, all inferences 
in the original proof in H are 1-sound. At the other extreme, an example of a 
completely unsound (0-sound) inference is: [(1, 1) -t, 0]. 

5.2. R e d u c i n g  t h e  D e p t h .  In this section we show how a proof of depth d 
is converted into one of depth d - I while preserving approximate soundness. 
Let P be a sequence of formulas over D, [D0] = n + 1, ]D1] = n, each of depth 
at most d (d > 2) and let p C QpD. Suppose that p leaves exactly those variables 
in D' c D unset, where ]D~] = n ' +  1, ID~] = n'. P is converted into a sequence 
of depth d - 1 formulas over D ~ in the following three steps. 
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(a) 

(2) 

Apply p to each formula of P,  obtaining PIp. 

Let Go...Gm be the distinct map disjunctions appearing in formulas of 
PI0. Represent each Gi by some 1-1 decision tree T~ over D'. Let T[ de- 
note the 1-1 decision tree representing -~Gi, obtained from Ti by switching 
the 0's and the l 's at the leaves. Define the pseudo-complement of Gi, 

CD,(Gi) = maps(T[). Replace each occurrence of -~Gi by CD,(Gi), uni- 
formly throughout Plp. 

(3) For each formula of PIp, merge together OR gates appearing at heights 
2 and 3. 

When pi is obtained by applying the conversion process to P with p, we 
say that P~ is P converted by p. If f is a formula of P of depth d, then f 
converted by p (in P') will have depth d - 1. This is because step (2) ensures 
that all gates at levels 2 and 3 will be OR gates, and step (3) merges these two 
adjacent levels of OR gates. 

DEFINITION 8. A sequence of formulas over D = Do U D1 is a (n, d, t, % S)- 
approximate refutation if." [Do] = n + 1, ]D1] = n, each formula has depth 
at most d, each map disjunction has mapsize at most t, the total size of all 
formulas in the proof is at most S, each inference is 7-sound, and ~he proof 
was obtained from a (1-sound) proof in H of the pigeonhole principle over a 
larger universe, by applying the above conversion process (to the sequence of 
formulas in the proof) a finite number of times. 

The following lemma shows that if we choose the right restrictions, then 
successive applications of the above conversion process result in an approxi- 
mately sound refutation. The main idea behind the proof of this lemma is that 
while each formula may not be approximated well at all (since every negation 
is approximated, and there may be many negations in each formula), each in- 
ference will still remain approximately sound because each rule and axiom of 
H involves at most one negation. 

LEMMA 9. (CONVERSION LEMMA) Let po be a refutation in H of PHPn over 
D, of depth d and size S. Let k + l < d -  2. Let p = pO, pl,p~,... ,pk be 
a sequence of restrictions such that D i+1 is the set of unset variables of pi 
D k+l C_ D k C_ ... C_ V 1 C D. Also, let ]D~[ = hi, and [D~[ = nl-~ 1. Let 
p1, p2,-.., pk+l be a sequence of approximate proofs where p~+l is equal to 
pi  converted by pi. Suppose also that for every i <_ k, every map disjunction 
in P~ [p~ is represented by a 1-1 decision tree over D i+l Of depth at most 
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t. Let 71 = 1 ~ f f  for att i, ! < i < ~, P~ is a refutation -~vhich is 
v 4 + l  " -- -- 

(n~, d - i, t, 7i, S).approxima~e, then pk+l is a refutation of  P H P ~ + I  which is 
(ni+l, d -- (k + 1), t, %+1, S)-approximate.  

PROOF. The conversion process, applied to any sequence of formulas of 
depth d, yields a new sequence of formulas of depth d - 1 and size at most S. 
Applying the conversion process k + 1 times to a refutation in H thus yields an 
approximate proof of depth d - (k + 1) and size at most $. Because p leaves 
exactly those variables in D k+l unset, where ID0k+lt = nk+l + 1 and IDa+l[ = 
nk+l, it follows that  pk+l is an approximate proof of PHPnk+~ over D a'+1. Also, 
by assumption, for every map disjunction G in pk [p~., G is represented by a 1-t 
decision tree over D TM of depth at most. t, and therefore, mapaize[cD~+~ (G)] < 
t. Thus, the conversion process results in an approximate proof pk+l where 
every map  disjunction has mapsize at most t. 

It is left to show that, every inference in pk+l is %+l-sound. Fix a particular 
formula f0 in p 0  Let f~ be the formula which results from fo after i conversion 
steps - f ;  is the corresponding formula in pi .  We want to show that  fk+l follows 
from a %+l-sound inference. There are five cases to consider: either f0 is an 
application of the Excluded Middle Axiom, or fo follows from the Cut Rule~ 
or f0 follows from either the Weakening, Merging or Unmerging Rule. If f0 
follows from either the Weakening, Merging or Unmerging Rule, then because 
these rules do not involve any negations, it is easy to see that  the Corresponding 
inference in pk+l is 1-sound. Now assume that  fo follows front the cut rule; 
the other case (when f0 follows from the Excluded Middle Axiom) is handled 
similarly. Let f0 = B V C, where f0 follows from gO = A V B and h ~ = -~A V C~ 
Then for all proofs pi,  1 < i <_ k, gi and h i are the two formulas in p i  which 
approximately imply f i  The inference (9 k, h k) --+ fk has one of two forms, 
depending on the depth of gk and h k. 

(1) If the inference has the form (A' V B'), (-~A' V C') --+ ( B ' V  C') then 
there are two cases to consider. If A' has depth greater than 2, then the 
new inference will have the same form since the negation in front of A' 
will not yet be converted; hence the new inference will be 1-sound. On 
the other hand, if A' is a map disjunction, then -~A'[pk will be replaced 
by CDk+,(A ' [pk). BeCause A'[0~ is represented by a depth-* 1-1 decision 
tree T, by Corollary 7 we know that CDk+~(A'~ok ) = raaps(T') will equal 
-A' [p ,  for at least 1 * of the critical t ruth  assignments over D/~+1 n~+~ +1 
Hence this inference will be %+l-sound. 

(2) Otherwise, some previous f i ,  i < k + 1, which follows from 9 ~ and h i, has 
the  form (A' V B') ,  (CD,(A') V C') --+ (B' V C'). Let p' = pipi+to.flk. The 



comput complexity 3 (1993) The Pigeonhole Principle 113 

inference (gk+l, hk+l) __4. fk+l thus has the form 
(A'~p, VB~p,),(CD,(A')D VC'~r ~ (B'~p, VC'[r By assumption, we 
know that A' was represented by a 1-1 decision tree T of depth at most t, 
and CD,(A') = maps(T'). Thus, by Lemma 3, Tip, is a 1-1 decision tree 
over D TM which represents A' [p,. Also, CD, (A')tp' is equal to maps(T' tp'). 
Therefore, by Corollary 7, this implies that co, (A 9 Ip' equals -~A' [a' for 
at least a fraction t t of the critical truth assignments over D k+l 

n k + l + l  } 

and hence the new inference will be 7k+l-sound. 

5.3. T h e  Lower Bound .  

THEOREM 10. (LOWER BOUND ON SIZE) There exists a constant c such that 
for sufficiently large n, any Frege refutation of PHPn of depth d must have size 
at least exp [f~ (n6-(a+0)]. 

COROLLARY 11. (LOWER BOUND ON DEPTH) For sufficiently large n, any 
Frege refutation of P H P, of polynomial-size must have depth at least ~t(log log n). 

Theorem 10 will be proven by induction on d, the depth of the Frege refuta- 
tion. To facilitate the proof of the base case, we would like to restrict attention 
to Frege proofs that are in tree form. A Frege refutation, P, is tree-like if the 
refutation, when viewed as a directed, acyclic graph, is a tree. In other words, 
each intermediate formula is used no more than once. The following lemma 
originMly due to Kraj/~ek (1991) and later improved by Boner and Buss (1992) 
states that any Frege refutation can be efficiently converted into an equivalent, 
tree-like refutation. 

LEMMA 12. (TREE LEMMA) Any Frege refutation of size S and depth d can 
be transformed into another tree-like Frege refutation of size O(S 2) and depth 
d + o(1). 

By the above Tree Lemma, Theorem 10 is a corollary to the following the- 
orem. 

THEOREM 13. (LOWER BOUND FOR TREE-LIKE FREGE REFUTATIONS) For 
sufficiently large n, any tree-like Frege refutation of P HPn of depth d must have 
size at least S = exp (n~-(a+~)~. ] 
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PROOF. The proof is by induction on d. Suppose that there is such a 
refutation, P, of PHPn in our system H, of size 5', depth d, and height at most 
log S. Recall that each formula in any proof in H consists of d - 2 levels of 
ORs and NOTs, followed by the 2 bottom levels, which are l-disjunctions. Let 

i log(Sn). Define A(n) = n I/G. If A`. is the/-fold composition of A with 

itself, then A'(n) = n 6-~. If 5' < exp (n6-(d+l'), then for sufficiently large n, 

t < 1/4),a(n). 
Because the system H is sound, and each map disjunction has mapsize 

1, P is a refutation which is (no, d, t ,7o , S)-approximate, where no = n and 
t 7o = (1 - ---j~). Applying the Induction and Base lemmas below, we show 

that that for sufficiently large no, that there is no approximate proof of PHP~ o 
which is (no, d, t, 70, S)-approximate. [] 

Suppose that n .̀ > A(ni-1) ~ )`2(n`.-2) _> ... > ),;(no), for all 0 < i < d -  2. 
( t ) for all such i. Let p .̀ = A(n`.)/nl and 7i -- 1 - 

LEMMA 14. (INDUCTION LEMMA) Let po be a refutation in H of PHPno over 
D O of depth d and size S. Let pO,pl,...,pi-1 be a sequence of  restrictions, 
i < d -  3, such that for 0 < k <_ i - 1, pk leaves all variables over D k+l unset, 
]Dkol = n ,  + 1, IDOl = n}. Let p1, . . . ,p` ,  be a sequence of  approximate proofs 
where for 1 < k < i -  1, Pk is equal to p} - I  converted by pk-1; furthermore, pk 
is (nk, d -  k, t, 71, S)-approximate, where t, 7k, and n~ are as above. Then there 
is a restriction pi such that p i  converted by pi is an approximate refutation of 
PHP,~,+~ which is (n~+l, d - (i + 1), t, 7`.+1, S)-approximate, where t, 7i+1 and 
n`.+l are as above. 

PROOF. Let D be the domain of the formulas in pi. Since t _ }A~(n), and 
> for  all  i ___ d - 2, w e  h a v e  S(t  + t )  _< < _ 

pini. Therefore, we can apply the Pigeonhole Switching Lemma for p drawn 
at random from Qv~ to each distinct map disjunction in P`.. For each map 
disjunction f in P ' ,  for a randomly chosen p E Q~, the probability that f !p 
cannot be represented by a 1-1 decision tree over D I+1 of depth at most t is 
at most na t-1 (n = no >_ ni). Because the size of pi  is at most S, there are 
at most S map disjunctions in pi, and therefore, for a randomly chosen p, the 
probability that some map disjunction f ['p in pi  cannot be represented by a 

2 3/~ 1/2 
1-1 decision tree over D i+1 is at most S n a  *-1, where 0 < a < 8p~ n~ t . Since 
p`. = )`(.` .  ) 

2 2 1/2 _ 8 ( ) ` ( n i ) ) 2 t 1 / 2  _ 8 n ~ / 3 t 1 / 2  1 8pl n ̀ . t 
a < ~/~ 1/2 1/2 <- ~ "  

n i rt i ~`. 
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1 log(Sn), Sna  t-1 < Sna  t/2 = Sn(1) 9]sl~ It follows that since t = ~ _ ~ j  , which 
is no greater than 1/6. 

The expected number of stars after applying the restriction p is nipi = A(ni). 
Since the number of stars is binomially distributed, for sufficiently large no, a 
random p leaves at least the expected number of stars with probability greater 
than 1/3. (See, for example, Beame and Hs 1989, Lemma 4.1.) Thus, 
there exists a restriction, p, leaving ni+l stars, n~+l >_ A(ni), such that ev- 
ery map disjunction in P~ [p is represented by a 1-1 decision tree over D I+1 
of depth at most t. Therefore, we can apply the Conversion Lemma which 
states that P~ converted by p results in a new proof p;+l of PHP~+ 1 , which is 
(ni+t, d - (i + 1), t, '~i+1, S)-approximate. [3 

LEMMA 15. (BASE CASE LEMMA) Pd-1 cannot be an (nd - l , l ,Q-1 ,Ta- l , S ) -  
approximate refutation of-~PHPnd_I, where 7 = 1 nd-l+ltd-1, rid-1 = n 6-(a-1), 

and td-1 = (log S) a-1. 

We will need the following proposition in order to prove the Base Case 
Lemma. 

PROPOSITION 16. After applying the conversion procedure, the formula, 
--,PHP,~, gets converted to 1. 

PROOF. For any restriction p E QD* where p leaves the variables underlying 
D _ D* unset, [D1] = n, when we apply p to the formula -~PHPn., we obtain 
a new sequence of clauses, ~PHP~,  where - ,PHPn is the negated pigeonhole 
principle over D. We will now show that when we replace each negation in 
- ,PHPn by the "pseudocomplement", we obtain the formula "1". P H P ,  con- 
sists of the disjunction of the following formulas: -~(P,I VP/2 V... VPin), i < n +  1, 
and -'(-'P~k V-~Pjk), i , j  <_ n +  1,i ~ j, k < n. Let f be a map disjunction and 
let T! be a decision tree representing f ,  obtained as in the proof of the switching 
lemma. That is, we query all variables in the first term, f l ,  and then proceed 
inductively on f Io, where ~r E ProjD(v(f l)) .  Then --f,  will be converted to 
the pseudocomplement of f ,  maps(T}). The decision tree representing the map 
disjunction f = (Pil V Pi2 V ... V Pin) has l 's labelling each leaf. Therefore, for 
all i, the formula -'(Pil V ... V Pi~) is converted to 0. Similarly, it can be shown 
that -~("Pik V -~Pjk) is converted to 0. Therefore, -,PHP,~ is converted to 1. [] 

PROOF. [Proof of Base Case Lemma] Recall that a 7d-l-sound proof of 
~PHPn~_~ has the property that each inference is sound with respect to at least 
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the fraction 7a-1 of the total number of critical t ruth assignments. The idea is 
to hit the proof with another restriction of size no greater than O(te-1 log S) 
to obtain an approximate refutation of the pigeonhole principle on a smaller 
universe of size 2 n ' +  1, with an inference of the form [(1, 1) ~ 01. Such an 
inference is 0-sound. But this contradicts the fact that a 7d_l-sound proof of 
PHP,,e_~, when hit by a small restriction leaving a universe of size 2W + 1, 

should yield a (1 *e-~ - -r4-7)-sound proof of PHP,~,. 
Let T be a subtree of the original proof tree, and let IT[ denote the number 

of formulas (nodes) in T. The following lemma will allow us to find the small 
restriction which will force a 0-sound inference. 

LEMMA 17. Let P be a tree-like refutation of -~PHP,~ of size S. Let T be an 
approximate proof over D = Do U D1, [Do] = n + 1, obtained by applying the 
inductive argument d -  1 times to P. (I.e., T is a 7-approximate proof of size 
S t <_ S, where the root formula is O, all leaf formu]as are not 0, all formulas are 
depth-t decision trees, and 7 = 1 - ~+1") Then there exists a restriction of size 
O(tlog ITI) such that T ie  has an inference (1,1) -~ 0, and ITI is the number 
of formulas in T. 

PROOF. The proof is by induction on [T], the number of formulas in T. The 
base case is when [T I = 3. In this case, T consists of two leaf formulas, tl and 
12 which are t-disjunctions not equal to 0, and one root formula which is 0. 
Since each leaf formula is a t-disjunction, we can force one of them, say ll, to 1 
by setting t variables. It is left to argue that the other leaf formula, t2, is not 
forced to 0, and hence by setting an additional t variables, both leaf formulas 
can be forced to 1. The formula 12 is either a converted excluded middle 
axiom, or the converted formula -~PHP. By the above proposition, -~PHP 
is 1, and therefore setting t variables will not force -~PHP to 0; similarly by 
the Conversion Lemma, setting t variables will not force a converted excluded 
middle axiom to 0. Therefore 12 cannot be forced to 0 by setting t additional 
variables and hence we can force both 11 and 12 to 1 by setting at most 2t 
variables. 

Now assume the inductive hypothesis for all T, IT] _< S' - 1. Let T be an 
approximate proof in tree form, of size S ~, and satisfying the above properties. 
Because the proof is in tree form, there exists a partition of T into two subtrees, 
TL and Tn, such that number of formulas (nodes) of both TL and TR are between 
St~3 and 2S~/3. Assume without loss of generality that the root formula of Tn 
is also the root formula of T, and let let rL be the root formula of TL. If rL is 0, 
then Tn is a subtree with root formula 0, and leaf formulas which are not 0, so 
we can continue inductively on the subtree Tn. If rL  is 1, then TL is a subtree 
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with root formula 0, and leaf formulas which are not 0, so we can continue 
inductively on the subtree TL. The last case is when rL is a t-disjunction, 
which is not 0 or 1. In this case, we can force rL to 1 by setting t variables; 
call this restriction p. The tree TR will then be a subtree with root formula 0. 
Further, the leaf formulas are not 0 because setting t variables cannot force any 
converted excluded middle axiom, or the converted formula - , P H P  to zero (by 
the Conversion Lemma, and the above proposition). Also by the Conversion 
Lemma, the new proof, T Ip  is "),-sound, where 7 = 1 t n'  n ' ~ - l ,  = n - -  t ,  
and the new proof is over a universe of size 2n ~ + 1. We can therefore apply 
the inductive hypothesis which states that there exists a setting of at most 
t l og (2S ' /3 )  variables which forces an inference (1, 1 ~ 0) in TRIp. Combining 
these two restrictions, we have forced a completely unsound inference by setting 
t + t tog(2S'/3) < O(t  log S) variables, and the proof is complete. [] 

Since each leaf formula in Pal-1 is either a converted instance of an excluded 
middle axiom or the converted pigeonhole formula, by the Conversion Lemma 
and the above proposition, each leaf formula of Pal-1 is not 0. Also, because the 
original root formula is 0, the root formula of Pd-1 is also 0. Therefore we can 
apply the above lemma which states that we can force an inference 1, 1 --+ 0 by 
setting at most O(t  log S) variables. By the Conversion Lemma, we should now 
have an approximate refutation of -~PHPn,,  where n'  = n - O( t  log S) _> ~, 

t which is (1 - ~,--~)-sound. Because ~ _< 1/2, we know that each inference 
in the approximate refutation is greater than 1/2-sound, and hence we have 
reached a contradiction. [] 

6. Proof  of the Switching L e m m a  

In this section, we will prove the following Switching Lemma. 

LEMMA 18. (SWITCHING LEMMA) Let  f be an r-dis junct ion over D = Do U 

O1, ]Do[ = [01[ = n. Choose p at random f rom Tr For s >_ O, p < 1/36, and 
pn > 8(s + r) 2 we have  

_> < 

for any  a > 0 sat is fy ing (1 + 36p4na/a~) r <_ 2. 

Recall that the Pigeonhole Switching Lemma that is needed for the expo- 
nential lower bound (Lemma 5) is slightly different from the above Switching 
Lemma. Namely, in the above lemma, ]D01 = IDa I = m, whereas in the Pigeon- 
hole Switching Lemma, ID01 = n + 1, and IDll = n. We obtain the Pigeonhole 
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Switching Lemma from the above lemma as an easy corollary; this will be 
proven at the end of this section. 

Before starting the proof of the Switching Lemma, we will first, need to 
understand our distribution of restrictions, given particular conditions. We 
describe these conditional distributions first, and then proceed with the proof. 

Conditional Distributions 
Let p = < So, $I, 7: > be a random 1-1 restriction of the underlying variables, 

and let Y be a map over D. Let Y0 denote v(Y) A Do, and let Y1 denote 
v(Y) N D1. Then p(Y) = * denotes the event that all variables over v(Y) are 
set to * by p, or equivalently, that v(Y) C_ S. In the proof of the Switching 
Lemma below, it will be necessary to understand the distribution of variable 
restrictions induced by pD (or equivalently, by ~D),  given that p(Y) = . .  In 
this section, it will be more convenient to work in the distribution ~~ 

Before examining that distribution, we will first define a new probability 
space. Let Tp D be the set of all triplets < So, Sa, re > generated as follows. First, 
choose i disjoint pairs, < x, re(x) >, where x E Do and rr(x) G D1. Let the i 
chosen elements of Do be S~, and let the chosen elements of D1 be S~. Add S~ 
to So, and S~ to S~. Set these subsets aside, and let the remaining elements 
o l D  b e D ' .  (D~ = D 0 \ 5 ~ ,  and D~ = D I \ S ~ ) .  Now select the rest of the 
bijection, and the remaining elements of So and $1 according to pD'. Note that, 
an alternative experiment resulting in the same probability space of variable 
restrictions is: choose the sets So and $1 by selecting k-subsets from Do and 
D1 uniformly and at random, where k is selected from the shifted binomial 
distribution B(n - i, p) -F i. (The notation B(m, p) + k means select q according 
to B(m,p) and then add k.) Then select a random bijection, re, from Do \ So 
to D1 \ S1. 

If K~ is a distribution of variable restrictions defined on the domain D \ v(Y), 
then < )C, Y = * > denotes the distribution of variable restrictions on the 
domain D, where each p E K7 over D \ v(Y), is extended to a restriction over 
D, by selecting all variables in v(Y) to be set to * 

We are now ready to examine the distribution of variable restrictions in- 
duced by pD, given that p(Y) = *. Let V = i denote the event that exactly 
i elements of Yo are mapped outside of I/1 by rr. (Note that this implies that 
exactly i elements of I/1 are also mapped outside of Y0 by re.) Then the distri- 
bution pD given that p(Y) = * can be partitioned into subdistributions: p~,D/, 
given that  p(Y) = * and V = i, where i r anges  from 0 to IY[. Now let us 
take a look at the distribution .pD. given that p(Y) and V = i, for a particular p~t, 

i. We claim that the distribution of restrictions induced by ~ i ,  given that 
p(Y) = ,  and V = i is equivalent to the distribution of restrictions induced by 
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< ~j]-pD\v(Y), y = * ~,. 

Let a E ProjD[Y] be a particular minimal partial 1-1 map over D which 
involves all of the elements of Y. We can further divide the distribution T 'D p 
given p(Y) = * and V = i, based on the particular value of ~r consistent with 7r. 
Note that  because V = i, we have restricted our attention to those ~r's where 
exactly i elements of v(Y0) are mapped outside of v(Y); we will refer to this 
subset of all a 's  by ProjD,i[Y]. For a particular ai E ProjD,i[Y], the event 
that ~r is consistent with ai will be denoted by ai. For a fixed cq E ProjD,i[Y], 
the distribution of variable restrictions given that p(Y) = *, ~ri and V = i, is 
equivalent to the distribution of variable restrictions of < pD-v(~),  ai = * >. 
This can be seen by viewing p E 7 ~D as being chosen from the third experiment, 
and observing that the conditions (p(Y) = *, a~, V = i) completely fix ~r on 
v(cq), and also S1 ["l V(O'i), and So 91 v(cri). 

Note that  each c~i E ProjD,i[Y] is equally likely; i.e., Va~, a~ E ProjD,i[Y], 
Pr[~r~ [ V = i A p(Y) = * ]  = Pr[a~ [ V = i A p(Y) = *]. Therefore, as 
we range over the possible ai E ProjD,i[Y], the set a~(Y) is a set of i domain 
elements, and i range elements, each chosen randomly from D \ v(Y). Thus, 
the distribution pD, given that p(Y) = * and V = i, is equivalent to the 

~_D-v(Y) distribution generated by < v,~ , Y = * >" 
T h e  distribution of variable restrictions given that p(Y) = * can thus be 

generated as follows. First, select S~ and S~ by choosing k-subsets of D1 \ v(Y), 
and k-subsets of Do \ v(Y) uniformly at random, where k is chosen as follows. 
Select a category i, 0 < i < IY0[, where category j is chosen with probability 
Pr[V = j ] p(Y) = *]. Then select k' according to the shifted binomial, 
B([D01 - [Y0[ - i,p) + i. Let k = k' + i. The selection of category i corresponds 
to deciding how many elements of v(Y) are mapped outside of v(Y). The 

T.D-v(Y) selection of k ~ corresponds to the distribution p,i . The set So will be 
S~ tO Y0, and the set $1 will be S~ tO Y1. Lastly, choose a random bijection 
between Do \ So and D1 \ $1. 

It will also be necessary to understand the variable distribution, given that 
p(Y) = 1. Let Y = P~,~lP,2v~..P~kvk; then the event p(Y) = 1 means that 
v W o )  n So = 0, and  V(Yl) n S l  = 0, and   (ul) = Vl, : v2, .. . ,   (uk) = vk. 
Again, it will be slightly more convenient to work with the distribution T'~. 
Luckily, this conditional distribution is much simpler than the one described 
above where p(Y) = . .  If we view p E 79~ as being chosen from the third 
experiment, then the condition p(Y) = 1 completely fixes 7r on v(Y), and 
S 91 v(Y). Therefore, the conditional distribution given that p(Y) = 1 can 
be shown to be equivalent to the distribution < 79~ ', Y = 1 >, where D I = 
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D - v(Y), and Y = 1 denotes the extension of the restrictions in ~off' to D by 
selecting p(Y)  = 1. 

Switching Lemma Proof 
Recall that f is a disjunction of maps. The proof of the Switching Lemma, 

like that of Hs proceeds by induction on the number of maps in f .  We 
work along the terms one by one: if p falsifies a particular map, then we are left 
with essentially the same problem as before; if p does not falsify the map then, 
it is much more likely that p satisfies the map (and thus ensures that the whole 
formula is set to true) than p leaves any variable in the map unset. There are 
significant complications however in dealing with our partial 1-1 restrictions 
as opposed to fully independent ones. Once we know that a variable (edge) is 
unset we have information that biases incident variables towards being unset. 
Furthermore there is the subtler problem that having some variables set to 0 
may bias other variables towards being unset. Both of these complicate the 
application of the inductive argument in the case that a gNen map is not 
falsified. We handle the first problem by considering not only all possible 
assignments to the unset variables in the map (as in Hs proof) but also 
to all variables that are incident to those unset variables. We get around the 
second problem by showing that, although setting variables to 0 m a y  make a 
given variable more likely to be unset, it cannot bias the total number of unset 
variables to be larger and this turns out to be sufficient for our purposes. 

We will obtain the Switching Lemma from the somewhat stronger Lemma 22 
by setting F = 0 and Q = (3, but first we prove a couple of technical lemmas. 

LEMMA 19. Let D = Do U D1 such that IDol = ID1] = n; let Y be a map 
over D, IY] = k, and let Z be another map  over D, where ]Z I = z, and 
v( Z) A v (Y )  = 0. I f  ~,~-k-~ - < P, then for p chosen at random from T~ff, 

Pr[p(Y)  = * I p(Z)  = *] < (5p2) k. 

PROOF. Let v be a map of size one, and Q be a map of size q. Assume 
for now that for all such v and Q, Pr[p(v) = * I p(Q) = *] -< 5P 2, whenever 
q / ( n -  q) < p. Let Y = yly2...yk. Then the probability that Y is set to *, given 
that p(Z) = �9 is equal to: 

Pr[p(Y 1) = * I p(Z)  = *]. Pr[p(y 2) = * I p (Z  U yl) = , ] . . . .  

Pr[p(Y k) = *  I p ( Z U y l U . . U v  k-l) =*] .  

Because each term is of the form Pr[p(v) = * I p( Q ) = *], where q = tQt <- k + z 
satisfy ~ _< p, we can upper bound each term by 5p 2, and therefore the whole 

quantity by (hp~) ~. 
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It is left to show that Pr[p(v) = * [ p(Q) = *] < 5p 2, where v is a map of 
size one. 

Let Qo denote the underlying variables of Q in Do, and let Q1 denote the 
underlying variables of Q in D1. Similarly, let v0 denote the underlying variable 
of v in Do, and vl be the underlying variable of v in D1. It will be helpful to 
think of the distribution R D as being generated in the following way. Initially, 
we begin with Do and D1. Iteratively, we choose an element x0 E Do. Then we 
choose 7r(Xo), from the elements in D1. Next, we select both Xo and ~r(xo) to be 
set to * with probability p. Now, let Do be Do-Xo ,  and let D1 be D1 -7r(Xo), 
and continue on the smaller domain and range until we have matched up all 
elements from the domain and range. The pairs (x~, 7r(x~)) which were not 
chosen to be set to * are then set to 1, and we obtain the natural setting of the 
underlying variables in the obvious way. 

Let V = i denote the event that exactly i elements of Qo are mapped 
outside of Q1 by the bijection r .  Then the probability is a weighted average of 
the probabil i t iesPr[p(v) = ,  [ p(Q) = ,  A V = i ] , f o r  a l l i ,  0 < i  < q .  We 
will upper bound the above probability for a fixed value of i. 

Let ~r(Q0) denote the range of the bijection on the elements in Q0. We will 
further divide the above probability based on the four possible ways that vo 
and vl get mapped by r :  (1) r(Vo) E Q1 and v 1 G 7/'(Qo); (2) 7F(vo) G Q1 and 
V 1 r 7~(Qo) ; (3) r(Vo) r Q1 and v, E r(Qo); and (4) r(vo) r Q, and V l r  r(Q0). 
Let the above events be denoted by (1), (2), (3), and (4), respectively. Then 
the above probability is equal to: 

4 

Pr[p(v) = * [ (j) A V = i A p(Q) = *]Pr[(j)  [ W = i A p(Q) = *]. 
j----1 

We will now calculate the 8 quantities in the above summation. 

1. P r [ p ( v ) = ,  t (1) A V = i  A p(Q) = * ] =  1. This holds because both 
Vo and va have been paired with elements of Q, which have been selected 
to be *. 

2. Pr[p(v) = * ] (2) A Y = i A p(Q) = *] = p. This holds because vo has 
been paired with an element of Q and therefore is automatically set to *, 
and the probability that p(vl) = * is p. 

3. P r [ p ( v ) = *  [ (3) A Y = i  A p ( Q ) = * ] = p .  This holds for the same 
reason as 2. 

p 2 ( n - - q - i - 1 )  4. P r [ p ( v ) = , ] ( 4 )  A V = i  A p ( Q ) = * ] =  v + The con- n - - q - i  n - q - i  " 
ditions V = i and (4) tell us that the partial bijection involving elements 
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of Q does not involve Vo or V 1,  Thus, the remaining n - q - i  domain 
elements and n - q - i range elements are selected according to the above 
experiment .  With  probabili ty 1/ (n  - q - i), vo is mapped  to v l - - i n  this 
case, v is set to * with probabili ty p; otherwise, with probabili ty 

n-q--~ ' 

v0 and vl are mapped  to other  elements,  and thus they  are bo~h set to * 
with probabil i ty p2. 

5. Pr[(1) i V = i /x p(Q) = * ]  =(v~-q) ' i  2 

6. Pr[(2) i V = i A p ( Q ) =  ,] = (.A__~)(~_:~) 
. n--q n--q ." 

7. P r [ ( 3 ) [  V = i A p ( Q ) =  ,] = ( ' )(~_:t:_t) 

8. Pr[(4)  I V = i  A p ( Q ) = * ] = ( ~ ) 2 .  

Thus, the total  probabili ty of Pr[p(v) = * I Y = i A p(Q) = *] is: 

~ i ,2 2 P ( n ~ ) ( n - q  - i )  n - q - i ) 2 ( P + P Z (  n - q - i  
' - ~ - q )  + n~q + (  n - q  n - q - i  - 1 ) )  

, q )2 2 p ( ~ _ q ) +  P 
- + __+p2n_q 
_< p 2 + 2 p 2 + p 2 + p ~  
_< 5p 2. 

The first inequali ty holds because i _< q, and the second inequali ty holds 
because q / (n  - q) <_ p. [] 

IQ! = q, LEMMA 20. Let Y and Q be maps over D = Do U D1, IY[ = k, ~ i and 
ID01 = IDol = n, and let v ( Y )  N v(Q) = O. I f  n -- 2(k + q) >_ 6n /7 ,  then 
Pr[p (Y )  = 1 I P(Q) = *] > (6(~-p)~k 

- -  \ 7 n  ) " 

PROOF. As in the previous lemma,  the probabili ty Pr[p (Y )  = 1 ! p(Q) = *] 
can be wri t ten as: Pr[p(yl)  = 1 I P(Q) = "1"---"  Pr[p(y~) = t ] p(Q) = 
1 A P(Yl..Yk-x) = 1]. We will show that  when k and q satisfy n - 2 ( k + q )  >_ 6n/7,  
then for a given map of size one, Pr[p(y) = 1 [ p(Q) = * A p (Y)  = 1~ is at least 
6(~-p) Therefore the probability Pr[p(Y)  = 1 [ p ( Q ) =  *] is at least ( ~ ) k .  

7 ' n .  " 

The probabili ty Pr[p(y) = 1 [ p(Q) = * A p (Y)  = 1] is a weighted average 
of the p robab i l i t i e sPr [p(y)  = 1 ] p(Q) = *  A p (Y)  = 1 A V = i ] .  Wewi l l  
obtain a lower bound for each of these probabilities. For a fixed i, we will again 
break up the probabili ty according to where y is mapped  by rr, as described by 
the above events, (1), (2), (3), and (4). 
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The only event which does not result in a probability of zero is Pr[p(y) = 
1 I (4) A V = i A p(Y) = 1 A p(Q) = *]. This probability is equal to 1-p n-k-q-~ 
because we must guarantee that y0 gets mapped to yl, and this happens with 
probability 1 and also that these two get set to 1, which happens with n-k-q- i  ' 
probability 1 - p. The probability Pr[(4) I V = i A p(Y) = 1 A p(Q) = *] is 
equal to ( ~ ) 2 .  Thus the total probability is: 

(n 1 - p  ) ( n - k - q - i ) ~  > ( 1 - p ) ( n - 2 ( k + q ) )  > 6 ( 1 - p )  
- k q i n - k - q - n 2 - 7 n  

The last inequality holds because n - 2(k + q) >_ 6n/7. [] 

LEMMA 21. Suppose that 0 <_ ao <_ al  < ... < an, and for all k < n, Ei~=k aj < 
~j~=k bj. Then for all k < n, ~j~=k ajaj ~ ~jn__k ajbj. 

PROOF. The proof is by downward induction on k. For k = n, the lemma 
holds. Now assume that the lemma holds for k. Consider ~j~=k-1 ajbj. Either 
bk-1 _> ak-1 or bk-1 < ak-1. In the first case, by the induction hypothesis, 
we know that ~j~kajbj  >_ ~j~k ajaj, thus because bk-1 _> ak-1, we also have 
~j~k-1 ajbj >_ ~]=k-1 ajaj. In the second case, let ~ = ak-1 - bk-1. Because 
~j~=k-1 bj > ~j~=k-1 aj, we have that ~ j ~  bj >_ ~j~k aj + ~. Applying the 
inductive hypothesis, with ak replaced by ak + ~, we have: 

~ a j b j  ~ 
j=k j=k+l 

j=k-1 j=k 

j=k-1 j=k 

j=k-1 j=k 

j=k-1 j=k-1 

ajaj + ak(ak+8) 

ajaj + ak~ q- ak-lbk-1 

aja j  q- ak( ak-1 -- bk-1) -'1- a k - l  bk-1 

a j a j + a k - l ( a k - l - - b k - l - ~ b k - 1 )  

a ja j .  

[] 

LEMMA 22. Let Q be an arbitrary map over D = Do U D1, IDol = IDll = n, 
IQ[ = q, let f be an r-disjunction over D' = D \  v(Q), and let F be an arbitrary 
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function over D, F 7 ~ 1. Let p be a random restriction chosen according to 
ray. Then fox s __ 0, p _ 1/36,  and pn > 8(q + s + ~)2 we have 

Pr[5(frp) >_ s I FIp= 0 A p(Q) = *] _< a s, 

for any a > 0 satisfying (1 + 36p4n3/o~2) r ~ 2. 

PROOF. The proof proceeds by induction on the total number of maps in f .  
Base Case. There are no maps in f .  In this case f is identically 0 and 

therefore f is represented by the tree consisting of the single node labelled 0. 
Hence 5(f  [p) = 0 and the lemma holds. 

Induction Step. Assume that the lemma holds for all map disjunctions with 
fewer maps than the map disjunction of f .  We will write f as fl  V f2 V ..o, 
where each fi is a map of f .  We will analyze the probability by considering 
separately the cases in which p does or does not force the map fl  to be 0. The 
failure probability, the probability that ~5(flp ) >_ s, is an average of the failure 
probabilities of these two cases. Thus 

P r [5 ( f [ , )  >_ s [ F Ip=  0 A p(Q) = *] 

<_ max(Pr[5(f)o )>_s i F~,=O A p ( Q ) = *  A f l i p=0 ] ,  

Pr[5(f[p) >_ s [ F~,= 0 A p(Q) = �9 A flip7 k 0]). 

The first term in the maximum is Pr[a(f  I,) >- * ] ( F v f , ) 1 , =  0 A .0((2) = *]. 
Let f '  be f with map f~ removed; then P~[~(f b) > * ] ( f v A ) b =  0 A .0(0) = 
�9 ] = Pr[5(f ' f;)  > s ] (FVf~) [p=  0 A p(Q) = *]. Because f '  has one less map 
than f ,  this probability is no greater than a s, by the inductive hypothesis. 

Now we will estimate the second term in the maximum. Let T be the set 
of variables appearing in the first map, fl .  By hypothesis, size(T) <_ r. We 
will analyze the cases based on the subset Y of the variables in T to which p 
assigns *; we use the notation *(pr) = Y to denote the event that the variables 
in T which are assigned * by Pr are exactly those in Y (where pr  denotes p 
restricted to T). Then 

Pr[5(f[;)_>a I F [ p = 0  A . 0 ( 0 ) = *  A f l t p r  

= ~ Pr[5(fl,)>_ s A *(.or)= Y I F b  = 0 A .0(0)= * A A L r  0]. 
Y C T  

Consider the case in which Y = 0. In this case the value of f l  is forced 
to 1 by p. It follows that f is forced to 1 and h e n c e S ( f )  = 0 so the term 
corresponding to Y = 0 has probability 0. The sum then becomes 

E e r [a ( f I~ )  _> s A *(Pr) = Y I r t p =  0 A .0(0) = * A A ~ r  01, 
YCT, 
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which is equal to 

Pr[5(flp) >_ s I Ftp= 0 A p(Q) = * A f~rpr 0 A *(PT) = Y] (1) 
YCT, v)o x Pr[*(pT) = Y I F[,= O A p(Q) = * A f1105r (2) 

We will first bound the latter term, (2), in each of these products.  Given 
that  f l  I'pr 0, the probability that  *(PT) = Y is equal to the probability that  
p(Y) = * A p(T \ Y) = 1. Thus term (2) equals 

Pr[p(Y) = * A p(T \ Y) = 1 I F b =  o A p(Q) = �9 A ]'1 Io-;r O] 

5 P r [ p ( Y ) = ,  !F[R=O A p ( Q ) = ,  h p ( T \ Y ) = I  hp (Y )  7 ~0], 

where p(Y) 7 ~ 0 means that  no variable in Y is set to 0, and p(Y) = �9 means 
that  every variable in Y is set to . .  Let F '  be F V G where G[p= 0 if and only 
i fp  sets all variables in T \ Y  to 1. (G = V~eT\y g.) Then the above probability 
is equal to Pr[p(Y) = *  I F'[o= 0 A p(Q) = *  A p(Y) 7~ 0]. In p r o v i n g a  
bound on term (2), we will need the following proposition. 

PROPOSITION 2a. Let ]Y[ = k, IQ[ = q. When pn >_ 8(k + q)2, Pr[p(Y) = 
* l FIe= O A p(Q) = * A p(Y) r O] _< Pr[p(Y) = * I p(Q) = , A p(Y) r O]. 

It is interesting to note that ,  unlike earlier switching lemmas over other 
distributions, it is not true that  setting some variables to �9 can only increase the 
likelihood that  the function is not forced to zero. The following counterexample 
illustrates that  in our situation, it may be more likely to force F to 0, given that  
p(Y) = *. Let Do = {1,2}, D1 = {a,b}, Y = P2b, and F = Plb. Then simple 
calculations show: Pr[FIp= 0] = �89  Pr[F[o=OAp(Y ) = .] = �89 
and Pr[p(Y) = ,] = �89 + p ) .  Thus, Pr[F[,= 0 ] p(Y) = *] 1_~ l+p, and 
Pr[F[o= 0] = 1 5( 1 _ p2). Therefore, when p < 1/4, we have Pr[F [0= 0] _< 
Pr[F Is= 0 I P(Y) = *]. Fortunately, Proposition 2a still holds, although the 
intuit ion is less obvious. 

PROOF. [of Proposition 23.] As in previous proofs of Hs Lemma,  we will 
prove Proposition 23 by showing that  

Pr[FI = o I p(Y) = * p(Q) = ,] <_ P r [ r b =  o I , (Y)  # o A p(Q) = ,]. 

For arbitrary events A, B, and C, Pr[A I BAC] <_ Pr[A i C] ~ Pr[B i AAC] < 
Pr[B I C]. By applying this fact where A is the event p(Y) = ,, B is the event 
F~o= O, and C is the event (p(Y) ~ 0 A p(Q) = *), and then observing that  
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the condition p(Y)  r 0 A p(Y)  = * is equivalent to the condition ,o(r) = *, it 
follows that  the above inequality implies the proposition. 

Let V = i denote the event that  there are exactly i elements of Y0 LJ Qo 
mapped  outside of ]Io U Qo by p. Then Pr[F~p= 0 [ p (Y)  = * A p(Q) = *] is 
equal to: 

k+q 

• P r [ F [ p =  O I p ( V  ) = * A p(Q) = * A V  = i] .Pr[V = i i p(V)  = * A p(Q) = *]. 
i=O 

Similarly, P r [ F [ o =  0 t P(Y) r 0 /\ p(Q) = *] is equal to 

k+q 

Pr[F[p= 0[p(Y) r 0 A p(Q) = * A V  = i] .Pr[V = i I p (Y)  r 0 A p(Q) = .]. 
i=0 

The proof proceeds in three steps: 

(Step 1) For each i, 0 < i < k + q, 

Pr[Fro= 0 i p ( Y )  = �9 ^ p ( Q )  = �9 /~ v = i] 

<_ Pr[F[p= O l p (Y)  7 ~ 0 A p(Q) = * A V = i]. 

(Step 2) For each i, 0 < i < k + q, 

P r [ F { , = O  I P ( Y ) = *  A p(Q) = * A V = i] 

>_ P r [ F l p =  O l p (Y)  = * h p(Q) = * A V = i + l]. 

(Step 3) For all j ,  0 < j _< k + q, 

j J 
P r [ V  = i l p (Y)  = * A p(Q) = *] < ~ P r [ V  = i [ p (Y)  7 ~ 0 A p(Q) = *]. 

i=0  i=0 

Then, by Lemma 21, the proposition follows. 
Note that  an easier proof would be to just show Step 1, and then show that  

for each i, P r [ V  = i I p (Y)  = * Ap(Q) = *] < P r [ V  = i I P(Y) r 0 A p(Q) = *]. 
Unfortunately, this is false. Instead, we are able to show that  the aggregate 
sum is always smaller on the LHS- this is Step 3. 

We will first prove Step 1. We will break up the collection of restrictions 
satisfying (p(Y)  ~ 0 A p( Q ) = * A V = i ) in to  equivalence classes as follows. Let 
D~) = Do \ (Yo U Qo), D~ = D, \ (Y~ U Q1), and let p* = (Bo, B,,  7r*, B~, B~) be 
a partial restriction, defined as follows. Bo is a subset of D~ of size ID~[ - i; Bi 
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is a subset of D~ of size IDi] - i; 7r* is a bijection from B0 to B1, and B~ C_ B0, 
B~ _C B1. A restriction p = (% So, $1) E 7 ~  is in the equivalence class labelled 
by p* if: (1) ~r is an extension of ~r*; and (2) So A/3o = B~, and S~ 71 B~ = B~'. 

Note that each restriction which satisfies V = i is consistent with exactly 
one p*, and therefore the probability that F~0= 0, given that (V = i A p(Y)  = 
* A p(Q) = *) is equal to: 

Pr[Fro= O I V = i A p ( Y )  = , A p(Q) = , A p*] 

p* x Pr[p* I V = i A p (Y )  = * A p(Q) = *], 

where p* denotes the event that p is in the equivalence class labelled by p*. 
Similarly, the probability that F [0=  0, given that (V = i A p ( Y )  r 0Ap(Q) = *) 
is equal to: 

Pr[Fre=  0 I V = i A p(Y) r 0 IX p(Q) = �9 A p*] 
,* x Pr[p* [ V = i A p ( Y ) r  

First, we will argue that for each p*, 

Pr[p* I p ( Y )  = * A p(Q) = * A V = i] = Pr[p* ] p ( Y )  r 0 A p(Q) = * A V = i]. 

To see this, observe that given V = i, each choice of B0, B1 and 7r* is equally 
likely, and independent of (p (Y)  = *Ap(Q) = *), and also of (p (Y)  r 0Ap(Q) = 
*). Secondly, given Bo, B1, ~r*, p (Y )  r 0, and p(Q) = . ,  the choice of B~, and 
B{" is independent of whether p(Y)  = *. 

It is left to show that for each p*, 

P r [ F r p =  O ! p* A p ( Y )  = , A p(Q)  = , A V = i] 

_< P , ' [ F I ~ =  0 I P* A p(Y) r 0 ^ P(Q) = * A V = i]. 

Note that when (p* A p ( Y )  = * A p(Q) = * A V = i), the probability that 
F [p= 0 is either 0 or 1, because the underlying restriction to the variables is 
completely determined. Now consider the collection of p's, satisfying (p (Y)  = 
�9 A p ( Y )  7 ~ 0 A V = i), that lie in the same equivalence class as p*. If F ['p is 
forced to zero, given that (p(Y)  = �9 A p(Q) = �9 A V = i A p*), then F[p is also 
forced to 0 by all other p's such that (p (Y)  7t 0 A p(Q) = * A V = i A p*). This 
holds because setting more variables to 1 or 0 continues to force F to zero. 
This completes the proof of Step 1. 

The intuition behind Step 2 is simply that the larger V = i is, the more 
stars there are in D - Y, and hence the less likely it is that F is forced to 
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0. To prove step (2), let R = Q U Y  and fix i. Then we want to prove 
Pr[F[p= O I P(R) = * A V = i] <- Pr[F[p= O ] p(R) = * A V = i - 1 ] .  

I t 
Let D' = n \ v (R) ,  and let iD0] = IDi[ = n - IR] = m. The probabi l i ty  

Pr[FIp= 0 ] p(R) = * A Y = i] can be divided, according to the exact  number  
of *'s tha t  are assigned to vertices in D~, and D~, by p: 

P r [ F ~ , =  0 I p(R) = * A V = i] 

= ~ P r [ F [ p = O A # ( D ' ) = j  I P ( R ) = * A V = i ] ,  
j=0 

where the event # ( D ' )  = i means that  exact ly i vertices in D~ are assigned 
�9 (As a consequence, exact ly  i vertices in D~ are also assigned *~ A similar 
equat ion holds when p(R)  = * and V = i - 1: 

P r [ F [ p = 0  I P ( R ) = * A V = i - I ]  

= ~ P~[FF~= o A # ( D ' )  = j H p(R)  = �9 A V = i - l i .  
j=0 

Note  that  when j < i, the probabil i ty  [ F t p =  0 A # ( D ' )  = j ] p(R)  = * A V = i] 
is zero; therefore, it is teft to show: 

~ .  P r [ F [ p =  0 I p(R) = * A V = i A # ( D ' )  = j] 

j=i x P r [ # ( D ' )  = j [ p(R) = * A V = i] 

P ~ [ F b =  0 i p ( R )  = �9 A v = i - 1 A # ( D ' )  = j]  _< 
j : i-1 x P r [ # ( D ' )  = j I p(R) = * A V = i - 1]. 

First ,  note tha t  the  event V = i - 1, or V = i is irrelevant, given that  
# ( D ' )  = j and p(R) = *. Therefore,  we have 

P r [ F I , =  O I V = i - I A p(R) = * A # ( D ' )  = j] 

= P r [ F [ o = O I V = i A p ( R ) = * A # ( D ' ) = j ]  

= P r [ F I o =  0 I p(R) = * A # ( D ' )  = j]. 

Thus to complete  Step 2, it remains to show: 

Pr[FIp= 0 I # ( D ' )  = j A p(R) = *] 

J=' x P r [ # ( D ' )  = j [ V = i A p(n)  = *] 
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= Pr[FIp= 0 ] #(D') = i -  1 A p(R) = *]. 0 

+ ~ Pr[FIp= 0 [ #(D') = j A p(R) = *] 
j=i 

j=i-1 

x P r [ # ( D ' ) = j  [ V = i A p ( R ) = * ]  

Pr[F~p= 0 I #(D') = j A p(R) = *] 

x P r [ # ( D ' ) = j [ V = i - I A p ( R ) = * ] .  

By Lemma 21 , it suffices to show: 

(Step 2a) Vk, i _< k _< m, 

Pr[F[,= 0 i #(D') = k -  1 A p(R) = *] 

> P r [ F [ p =  0 I # (D ' )  = k A p(R) = *]. 

(Step 2b) Vj, i _< j < m, 

Pr[i < #(D') < j [ V = i A p(R) = *] 

< P r [ i - l < _ # ( D ' ) < _ j  I V = i - l A p ( R ) = * ] .  

We will first prove Step 2a. Let #(p)  denote the exact number of *'s that 
are assigned to D1 by p. Then the events (#(D') = k - 1  Ap(R) = . )  are 
equivalent to the events (#(p)  = k - t + IR[ A p(R) = *). Therefore, the 
following proposition proves Step 2a. 

PROPOSITION 24. Let F be a boolean formula over D = Do U D,, IDoi = 
IDlf = n Then for all k <_ + l ,  P [r O l # ( p )  = k - l a ; ( Q )  = 
�9 1 _> Pr[rI = o [ # ( p )  = k ^ p(Q) = ,] .  

PROOF. Recall that the distribution of restrictions given p(Q) = �9 can be 
described as follows. Choose a category i, 0 < i < IQt, from ~ome distribution. 
Then choose k' according to the shifted binomial distribution, B(n - ! Q I -  
i, p) + i. Let k = k' + i. Choose a random set, S~, of size k from D0 \ Qo, and a 
random set, S[ of size k from Do \ Q1. Let So = S/~ U Qo, and let $1 = S~ U Q1. 
Then choose a random bijection, r,, from Do \ So to D1 \ $1. Therefore, the 
distribution of restrictions given p(Q) = �9 and #(p)  = k can be described by: 
Choose a random set, S~ of size ]Q[ - k from Do \ Q0, and a random set S~ of 
size k from Do \ Q1. Let So = S~ U Q0, and let $1 = S[ U Q1. Then choose a 
random bijection, ~r, from Do \ So to D1 \ $1. 
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Let A k denote the subdistribution of restrictions given that p(Q) = * and 
#(p)  = k, and let A k-1 denote the subdistribution of restrictions given that 
p(Q) = �9 and #(p)  = k - 1. We would like to show that the probability that 
F Ip=  0 in A k is no greater than the probability that F~p= 0 in A k-1. 

Let m = n - IQI- Let pk-a = <  s0k-i, Slk-1 .ffk-1 >E A k-l, and let 
k k ~rk A k. pk = <  So , $1 ' >E Then we say that ilk-1 and pk correspond if there 

exists an x e S~, y e S~, such that Sko-lU x = Sko, S~ -1 (2 y = S~, and 
7rkU < x ,y  > =  ~r k-1. Note that whenever pk E A k forces F to 0, so do all 
of the elements of A k-1 which correspond. This is true because for every pk-1 
which corresponds to pk, all underlying variables are the same except for a few 
variables which are set to * in pk and set to 0 or 1 in pk-1; in other words, 
pk-1 is a further restriction of pk Now, because F is already forced to 0 by pk, 
it must continue to be 0 as we set more variables. Thus, F is also forced to 0 
by pk-1. 

Let C k denote the elements of A k which force F to 0. For each pk in A k, there 
are k 2 elements in A k-1 which correspond, and conversely, for each pk-1 E A k- l ,  
there are m - k + 1 elements of A k which correspond. The probability that a 
random pk over A k forces F to 0 equals ICA~I; thus the probability that a random 

ilk-1 over  A k-1 forces F to 0 is at least Ickl'k2 Since IA~-II is equal to (m--kT1)lAk-l-~" 

k~lA~l the probability that F is forced to 0 over A k-1 is greater than or equal 
m - k - ~ l  ' 
to the probability that F is forced to 0 over A k. The completes the proof of 
Proposition 24. [] 

We will now prove Step 2b. First, note that Pr[i <_ # ( D ' )  <_ j i V = 
l A p ( R )  = *] is equal to P r [ # ( D ' )  < j I V = l A p ( R )  = *]; similarly, 
Pr[i - t <_ # ( D ' )  <_ j ] V = i - l A p(R) = *] is equal to P r [ # ( D ' )  < j I V =  
i - 1 A p(R)  = *]. Recall that the distribution given (V = i A p(R) = *) can 
be described as follows. First, choose k at random, according to the binomial 
distribution, shifted by i: B ( m  - i ,p) + i. Then randomly choose S~ C D~, 
S~ C D'I, where I S~] = ]S~] = k. Let So = S~ U R0, and $1 = S~ U R~. Lastly, 
uniformly select a bijection r from Do \ So to D1 \ $1. The distribution given 
(V  = i - 1 A p(R)  = *) can be described similarly, except that now k is chosen 
according to the binomial distribution, shifted by i - 1: B ( m  - i + 1,p) + i - 1. 
Therefore, the number of *'s in D~, given (Y = tAp(R)  = *)is chosen according 
to B ( m  - i, p) + i, and the number of *'s in D~), given (Y = i - 1 A p(R) = *) 
is chosen according to B ( m  - i + 1,p) + i - 1. Therefore, it is clear that 
P r [ # ( D ' ) _ < j  ] Y = i h p ( R )  = * ]  < P r [ # ( D ' )  <_j I V = i - I A p ( R )  = * ] .  
This completes Step 2. 
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We will now prove Step 3. We want to show that for all j ,  0 < j < k + q, 
Pr[Y <_j t P ( Y ) = *  A p ( Q ) = * ] <  Pr[V <_j I P ( Y ) r  h p(Q)=*].  The 
RHS of this inequality is a weighted sum of Pr[V <_ j ] P(Y') = 1 A p(Y - 
Y') = * A p(Q) = *], where Y' ranges over all subsets of Y. We want 
to show that  when Y~ = 9, this probability is the smallest. If Y1 and Y~ 
are two equal-sized subsets of Y, then the above probabilities are equivalent; 
i.e., Pr[V < j [p(Y~) = 1 A p ( Y - Y ~ )  = * A p(Q) = *] = Pr[V <_ 
J I p(Y2) = 1 A p(Y - Y2) = * A p(Q) = ,]. Therefore, it suffices to prove that 
Pr[Y <_ j t P(Y') = 1 A p(Y - Y') = ,  A p(Q) =*]_< Pr[Y < j [ p(Y") = 
1 A p ( Y - Y " ) ' - ,  A p ( Q ) = * ] , w h e r e Y " = Y ' U y ,  a n d y E Y - Y ' .  

Let m = n - ]Y'[, and let Q u (Y - Y') = Z, and Q U (Y - Y") = Z'. Then 
the above inequality is equivalent to showing, for all j <_ IZI = z, 

Pr,~[V < j [ p(Z) = *] < Pr,~_,[V < j [ p(Z') = *], 

where the probability on the left is over a domain of size m, and the probability 
on the right is over a domain of size m -  1, and IZI = z, IZ'I = z -  1. 

When j = z, the inequality on the left side, Prm[V < z ] p(Z) = *] 
is 1. Similarly, when j = z, the probability on the right side is equal to 
Pr,~_I[V < z I p(Z') = *] which is also 1. It is left to prove the inequality for 
j < z - 1 .  

We will first calculate the probability Prm[V = iAp(Z) = *], where IZI = z. 
This probability is equal to Prm[V = i]. Prm[p(Z) = * I V = i]. There are (0  

ways to pick the i domain elements of v(Z) that will be mapped outside of Z, 

(m~- 0 ways of picking the i range elements of D1/v(Z) that these elements will 
be mapped to, and i! possible bijections between these two sets of elements. 

(0 ( 70 
of selecting the corresponding range elements, and i! bijections between them. 
Of the remaining elements in v(Z),  there are ( z - i ) !  possible bijections between 
them, and of the remaining m - z - i elements in Do, there are (m - z - i)! 
possible bijections between them. Given that V = i, the probability that 
p(Z) = ,  is exactly p~+~. Thus, the probability Prm[V = i A p(Q) = ,] is equal 
to 

z 2 m - z  2 "! 2 

m! 

The probability Prm[V < j ] p(Z) = *] is equal to ~=oPr~[v=i^p(z)=.] 
- ~=o Pr.,[v=i^p(z)=.], 

which is equal to ~=~ s(i,z,m) ~,=o s(i,z,,~)" Similarly, the probability Prm-~ [V < j I p(Z') = 
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~ ! ~  S ( i , z - l ,m-1 )  
�9 ], where ]Zq = z - !, is equal to s(i,zLi,m--~" Thus, we want to show: 

Ei=o E ~ = o  z - 

E~=o s ( i , z , m ) z  - < ~-r:r-~ s(i,E,__0 z - ~  1 )  

It is s traightforward to show that  S(i ,  z -  1, m -  1) = S(i ,  z , m ) ~  L-O'~ z2 p " 
Therefore,  

J S( i ,  1, m 1) = J - E i=o  S(  , ~, m )  ~2~=0(z - i )S( i ,  z, m)  J i ~i=o z - > 
z--1 frt ) ~ - ~ = o  (z - i )S( i ,  z, ~ = o  (z - i ) S ( i , z , m )  - ~-~ Ei=o S( i ,  z - 1, m 1) ~-~ 

We will show that  z-1 z �9 ~i=0 (z - i )S( i ,  z, m) <_ ~i=o S(z, z, m),  to comple te  the  
proof of Step 3. If we can show that  (z - i ) .  S( i ,  z, m) <_ S( i  + 1, z, m) ,  then 

E~=o (~ - i)s(i,  z,.~) < the above inequali ty follows because then we have ,-1 
Z Z * E,_-, s(~, z, m) < E~_-o s(~, z, m). 

To see that  (z - i ) .  S( i ,  z, m)  < S( i  + 1, z, m) ,  it is s traightforward to show 
~ - i ) ( , , - ~ - ~ ) p  Using the fact that  pn > 8(k +q)2 ,  that  S( i  + 1, z, m) = S( i ,  z, , , j  (~+~? . 

and i _< z - 1, it can be shown that  (i+1)2 >- 2(i+1)~ - 4(i+1)~ - 4~2 

Also because pn > 8(k + q)2 > 8z 2, it follows that  2_~ > I, and therefore 
_ _  - -  4 Z 2  - -  

(z - i ) .  S( i ,  z, m) < S( i  + 1, z, m). This completes  the proof of Proposi t ion 23. 
[] 

Because !Y[ _< r, IQ! -< q, we have 8 ( r + q )  2 _< 8 ( q + s + r )  ~ < pn. Therefore,  
we can apply Proposi t ion 23 to show that  te rm (2) is at  most  Pr[p (Y )  = 
�9 I p(Q) = * A f l (Y)  # 0]. Because ]Y] _< r, ]Q[ = q, and pn >_ 8(q + s + r) 2, 

IYI+IQI= < p. Therefore we can apply L e m m a  19 to obtain  it follows that  n,lg]_lQ [ 

Pr[p(V)  = * ! p(Q) = *] _< (5p2) IV'. 

Also, Pr[p ( Y )  r O ] p(Q) = *] >_ Pr[p(Y)  = 1 i p(Q) = *]. Now because 
pn > 8(q + s + r) 2, and p <_ 1/36, it also follows that  n - 2([Yt + IQ[) >- 6n/7 .  
Therefore,  we can apply Lemma 20, to obtain  Pr[p (Y )  = 1 [ P(Q) = *] -> 
(61-[L:-~ Igl Then because p < 1/36, we have 

7 n  / " 

7 . 5 p 2 n ) t y l  < (6p2n)IYI. Pr [p (Y )  = * ] p (Y)  # O A p(Q) = *] < ( ~ ( ~ - ) - ~  _ 

Now we look at the first term, (1), in each product .  Suppose that  2iY I < s. 
For each fixed Y, we will analyze the probabi l i ty  above by applying L e m m a  4 
with K = v (Y ) .  Recall that  f is a map  disjunction over D' = D \ v(Q).  By 
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this lemma, if 5 ( f  lp) -> s then there is some a E ProjD,rp[v(Y)] such that 
d(D,b~(( f  Ip)~)  -> s - [ a  I. To use this requires that we consider all maps in 
ProjD,b[v(Y)]. One difficulty is that D' Ip is itself a random variable dependent 
on p. We handle this by considering all maps a in ProjD,[v(Y)] and including 
them only if p(cr) = , .  For notational convenience let P(D, Y)  = ProjD,[v(Y)]. 
When p(a) = *, ( f lp ) lo  = ( f l~) lp ,  and applying the definition of 5(f~p), the 
probability denoted by term (1) is no greater than 

Pr[5((fI~,)Ip) >_ s - [~ !  A p(c 0 = * [ 

oeP(n,v) F[p= 0 A p (Q)=*  A f l lp#O A *(PT)=Z] 

_< ~ Pr[a((fI~)tp) > ~ -  lull  
~ee(D,V) FIp= 0 A p ( Q ) = *  A f ~ p r  0 A * ( P T ) = r  A p(c 0 = .] 

x Pr[p(cr)=,  [ 

F~,,= 0 A p ( Q ) = ,  A fxlp7 ~ 0 A *(PT)= Y] 

= E  
aEP(D,Y) 

Pr[5((f[~)[p) > s - [ a l l  
FIp=O A p(Q)=* A p ( T \ r ) = l  A p(a )=*]  

x P ~ b ( ~ ) =  * I 
FIp=O A p(Q)=* h p ( T \ Y ) = I  A p(Y)=,].  

The last inequality above holds because the event ( f l [p#  0 A *(PT) = Y) is 
equivalent to the event (p(Y) = * A p (T \  Y) = 1), and the condition p(Y) = * 
is implied by p(a) = *. Recall that if Y is a map, v(Y) C D' denotes the set of 
underlying vertices which are contained in the map. We will split up the map 

into two maps al and cr2, where a variable Pij E a is in al if both i E v(Y) 
and j E v(Y). Otherwise, Pij E a2. Note that for every c~ E ProjD,[v(Y)], 
0 < ICrl[ _ IYI. We further divide the above probability into sums according 
to the size of al to get: 

Iri 

E E 
i=O r D,y), 

I~11=lrl-i 

Pr[5((f[,~)Ip) >_ s -I~[I 
FIp= 0 h p(Q)=,  h p ( T \ Y ) =  I h p(a)=,] (3) 

x P~ [p (~ )= ,  I 
F[p=O A p(Q)=,  A p ( T \ Y ) = I  h p(Y)=,]  (4) 

For a fixed value of Y and a E P(D, Y), we estimate the term (3). Let f '  
be f with the variables in T \ Y s e t  to 1. Let F ' b e F V G w h e r e G ~ p = O i f  
and only if p sets all variables in T \ Y to 1. (G = V~e(T\Y) ~.) Then term (3) 
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is equal to 

Pr[5((f'l~)[p) >_ ~ -  l(r[ I F'Ip= 0 A p(Q) = * A p(a) = *]. 

First, notice that f '  I~ is a map-disjunction which does not involve any 
variables which share vertices with v(a U Q). Also, 8([Q[ + !al + ~ - I~I + r) ~ = 
8(IQ[+s+r) 2, and weknow that pn >_ 8 ( I Q ] + s + r )  2. Now i f a  = Y, then f~ is 
satisfied by ~r and f [ ,  is the constant 1 and since s > 2[Y[ by assumption, this 
probability is 0 _< a "-I~l. Otherwise, a r Y, the map f l  is falsified by ~, so f ' [~ 
has one fewer maps than the original f that we started with. Therefore, we can 
apply the inductive hypothesis where now Q is replaced by Q u ~r, and D' is 
replaced by D ' \  v(~r) = D \ (v(Q) u v(c~)), to upper bound the above quantity 
by a ~-I~l. Because [a I _< 2lYI, for all or, it follows that the above quant i ty  is no 
greater than c~ ~-2[YI. 

Since the above calculation gives the same upper bound for term (3) for all 
values of ~r, we can pult this quantity outside the sum to obtain: 

IYI 
c~s-21rlE E Pr[p(a) =*  I 

,=o ~,~,Y~,  p t ~ =  o A p(Q) = �9 A p ( T \  Y )  = t A p ( Y )  = "1 (s) 
I~ I=lYI-i 

Now we will estimate the inner summation for a fixed value of i. As above, 
we replace the condition F [p= 0 A p(T \ Y) = 1 by the single condition 
F'[p= O. Also, for a particular a,  the event p(~) = * is equivalent to the events 
p(al) = * A p(a2) = *. Because p(a~) = * is implied by p(Y) = *, the inner 
summation is equivalent to 

Pr[e ( -=)  = * [ F ' I , =  0 A p(Q) = �9 ̂  p(Y) = ,1. 
o'EP(D,Y), 
1-11=lYI-i 

We would like to remove the conditioning on F e )p= 0 but we will not be 
able to remove this condition separately for each individual term, as we did 
in Proposition 23. Instead, we have to consider the terms in this sum in the 
aggregate rather than individually. Let Ni be the number of a 's  such that 
lal] = [Y] - i. Then the above probability can be rewritten as: 

Ni " Pr(~,2,p)[p(a2) = * ! F'[ ,= 0 A p(Q) = * A p(Y) = .1, 

where the above probability is over all pairs (0"2, p), such that I qll = I Y I - i .  For 
each a2, let u be the set of vertices in a2 which are not contained in v(Y).  Note 
that the number of domain vertices of u equals the number of range vertices of 



comput complexity 3 (1993) The Pigeonhole Principle 135 

u and is equal to i. Also note that for a2 chosen at random, u is a uniformly 
distributed set over D" = D' \  v(Y) = D \ (v(Y)Uv( Q ) ) having these properties. 
Thus, the above probability can be written as: 

iv,. P r ( . , , ) [ p ( . )  = �9 I F ' b =  0 ^ p(Q)  = �9 ^ p(Y)  = ,] ,  

where u is a set of size i, chosen uniformly from D" = D' \v (Y) ,  and p is chosen 
from T~p D. 

Let Q' = Q u Y. This probability can be further divided according to #(p) ,  
the exact number of stars that are assigned to D1 by p: 

n 

Ni " E Pr(u,o)[p(u) = * I F t [p=  o A f l (Q')  = �9 A # ( f l )  = j] 
j=0 

x Pr(,,p)[#(p) = j I F'[ ,= 0 A p(q') = *]. 

Given that  #(p)  = j and p(Q') = . ,  the exact number of *'s in D" is completely 
determined and therefore, for a randomly chosen u, the event p(u) = * is 
independent of F'Io= O. Thus the above probability is equal to 

Ni" ~ Pro,,p)[p(u ) = * I #(P) = J A p(Q') = .1 
j=0 

x Pr[#(p) = j I F ' t , =  0 ^ p(Q') = .1, 

where we have dropped the subscript on the probability in the second fac- 
tor in each term since this probability only depends on p. For all k _< n, 
~j>kPr[#(P) = j [ F'~p= 0 A p(Q') = *] equals Pr[#(p) >_ k ] F'~p= 
0 h p(Q') = *], because the events are disjoint. Similarly, ~2j>k Pr[#(p) = 
J I p(Q') = *] e q u a l s  Pr[#(p) >_ k I P(Q') = *]. 

PROPOSITION 25. For all k, Pr[#(p) >_ k ] F'[,= 0 A p(Q) = *] _< Pr[#(p) >_ 
k I p(Q) = *]- 

PROOF. As in the proof of Proposition 23, we will prove this inequality 
by showing that for all k, Pr[F' [p= 0I#(p) > k h p(Q) = *] < Pr[F'rp= 
0 t p(Q) = *]. Let F(C) = Pr[F'Io= 0 I p(Q) = *]. Then F(C) is a weighted 
average of F(A) and F(B),  where F(A) = Pr[F'tp= 0 ] #(p) >__ k A p(Q) = *] 
and F(B) = Pr[F' ro= 0 I #(P) < k /x p(Q) = .]. We want to show 
that F(A) <_ F(B),  and then it follows that F(A) <_ F(C), as desired. Let 
F(i) = Pr[F'[p= 0 I #(P) = i h p(Q) = *]. Then F(A) is a weighted 
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average of terms {F(i ) ,  k < i < n}, and F ( B )  is a weighted average of terms 
{F(i ) ,  1 __< i < k}. Thus, it suffices to show that  for all k, F (k )  < F ( k  - !), 
which follows from Proposition 24. [] 

Using Proposit ion 25 and noting tha t  Pr(,,p)[p(u) = * I #(P)  = J /\ p(Q') = 
"1 -< Pro,p)[p(u) = * t #(P)  = J + l  A p(Q') = *] for a l l j  > 0, we can 
apply L e m m a  21 with c~j = Pr(~,p)[p(u) = * I #(P)  = J A p(Ql) = ,],  
aj = Pr[# (p )  = j I F'~p= 0 A p(Q1) = ,], and bj = P r [ # ( p )  = j [ p(Q') = *] 
to show that  the above probabil i ty is no greater  than 

N~. Pr(~.,)Ip(~) = ,  i # (P)  = J A p(O')  = * l '  P r [ # O )  = J i .  ~ - 
j=o 

which is equal to N/ .  Pr(~,p)[p(u) = �9 ] p(Q') = *]. 
Since for each fixed value of u E Vii, the probabil i ty that  p(u) = * is the 

same, the above probabili ty is equal to N / .  Pr[p(u) = * I p(Q') = *]. Using 
_ q+2r _ the fact that iu[ < r and [Q'[ < q + r, we have that ,~-(q+2,-) < P because 

pn > 8(q + s + r) 2. Therefore, we can apply Lemma 19 to conclude that for 

u e V~, Pr[p(u) = * [ p(Q') = *] _< (hp2)q 
Recall tha t  N~ is equal to the number  of a ' s  such that  [ali = Y - i. Let 

m = n - I Q ' [  = n - I Q l - l Y [  �9 There  are at most  (IYI)2(IY I - i ) !  cho icesof  

a~ with ]~[  = ]Y[ - i and for each such a~ there are at most  { ~-k~L~ 2 choices \(-~--0t) 

of ~. Thus there are a total of at most (l~l)~(IYl- i)! 
( ~__(_e_L., ~ 2 k(m-0!} choices of 

~ P(D,Y) such that l~I = IV[ - i. 
Thus for all Y such that 2]Y[ _ s, using the expression in (5), we have 

Pr[5(frp)  >_ s I Fro= O A f l r p r  O A *(PT) = Y] 

<- E I ] (IYI - ~)! \(m - ~)!] 
i=O 

< a"-~lYl ~ (I Y] - i)!(5p2n2) ~ 
i=0 

~ E (5p2n2)i(]Y[) IYl-i 
i=o 

I,'l/,iyl~ (sp~n~), = a'-W'l[yllYI ~ :  
~=o \ i ] IYt 

2n2 
= ~ - ~ l Y t t y j l Y l ( ~  + 1)lYI 

I x I  
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6-2n2 < a"-21YIIYIVI(-L-~)IvI 
a~-2lYl(Bp2n2) IYI. 

For Y such that 2JY[ _> s we cannot use the expansion in terms of (3) and (4) 
to estimate this probability. However in this case, since a _< 1 and 6p2n 2 >_ 1, 
2as-2[Yl(6p2n2) lul >__ 1 so it still is an upper bound on this probability. 

Plugging in the bounds we have for the terms (1) and (2) we get 

Pr[5(f[ , )  > s J FIp= 0 A f , [ ,7  ~ 01 
<-- E a"-21Yl(6p2n2)lgl(6p2n) IYI 

YCT, 
Y#O 

=  syE k - - J - ]  
g#r 

< c~ s 

The last inequality holds since a satisfies (1 + 36p4na/a2) T _< 2. This completes 
the proof of Lemma 22. [] 

6.1. A M o d i f i e d  S w i t c h i n g  L e m m a .  A difficulty in applying the Switching 
Lemma from this section is that the underlying distribution is 7r whereas for 
the pigeonhole formulas, we require that the restrictions be chosen from the 
distribution Q, where there is one extra domain element. Although we can 
easily modify the proof of the Switching Lemma from this section to do this 
directly (and even show this for similar restrictions on pairs of sets whose size 
differs by any fixed constant e), we can derive this directly from Lemma 18 . 
We assume in this section that D* = D~ U D~, [D~I = n + 1 and ]D~] = n. 

LEMMA 5 (TILE PIGEONHOLE SWITCHING LEMMA) Let f be an r-disjunction 
over D*. Choose p at random from Q~*. For s > O, p <_ 1/36, and pn > 
8(s + r) 2 we have 

PrQ[5(flp) >_ s + 1] < n(a') ,  

~ *  < 2 .  for any a > 0 satisfying (1 + ~2 j _ 
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PROOF. Let First(p) = j be the event that the first component of 
p = <  i, So, Sl,lr >, i, be equal to j .  We will analyze the probability by 
considering separately the cases where First(p) = j ,  for all j E D;. 

PrQ[6(f~p) > s + 1] < max{Pre[5( fG)  > s + 1 I First(p) = i]}. 
_ _ iEDo -- 

Fix a particular value of i C Do. For a particular cr E ProjD[i], let 
f~ = f r~. Then by Lemma 4, the above probability is less than or equal 
to ~aeProjD[i] PrQ[5(f~ [o) >- s ] First(p) = i]. Fix a particular ~ C ProjD[i]. 
Then by Lemma 2 the associated probability is no greater than Pr~Z[5(fo [o) >- 
s], where now the probability is over the distribution 7~ D, where D = D*\i.  We 
can now directly apply the Switching Lemma (Lemma 18) to obtain an upper 
bound of a s for this probability. Because IProjD[i]t <_ n, the total probability 
is no greater than n(aS). [] 
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