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The Inverse Kinematics 
Problem 
  Direct Kinematics 

  Inverse Kinematics 

  Possible Problems of Inverse Kinematics 
  Multiple solutions 
  Infinitely many solutions 
  No solutions 
  No closed-form (analytical solution) 

x = f θ( )

θ = f −1 x( )



Analytical (Algebraic) 
Solutions 
  Analytically invert the direct kinematics equations and 

enumerate all solution branches 
  Note: this only works if the number of constraints is the same as 

the number of degrees-of-freedom of the robot 
  What if not? 

  Iterative solutions 
  Invent artificial constraints 

  Examples 
  2DOF arm 
  See S&S textbook 2.11 ff 



Analytical Inverse Kinematics 
of a 2 DOF Arm 

  Inverse Kinematics: 
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Iterative Solutions of 
Inverse Kinematics 
  Resolved Motion Rate Control 

  Properties 
  Only holds for high sampling rates or low Cartesian velocities 
  “a local solution” that may be “globally” inappropriate 
  Problems with singular postures 
  Can be used in two ways: 

  As an instantaneous solutions of “which way to take “ 
  As an “batch” iteration method to find the correct configuration at a target 

 

x = J θ( ) θ     ⇒
θ = J θ( )#

x



Essential in Resolved Motion 
Rate Methods: The Jacobian 

  Jacobian of direct kinematics: 

  In general, the Jacobian (for Cartesian positions and 
orientations) has the following form (geometrical 
Jacobian): 

pi is the vector from the origin of the world coordinate system to the origin of the i-th link coordinate 
system, p is the vector from the origin to the endeffector end, and z is the i-th joint axis (p.72 S&S)


Analytical

Jacobian
x = f θ( )     ⇒

∂x
∂θ

=
∂f θ( )
∂θ

= J θ( )



The Jacobian Transpose 
Method 

  Operating Principle: 

-  Project difference vector Dx on those dimensions q which can reduce it 
the most 

  Advantages: 

-  Simple computation (numerically robust) 
-  No matrix inversions 

  Disadvantages: 

-  Needs many iterations until convergence in certain configurations (e.g., 
Jacobian has very small coefficients) 

  Unpredictable joint configurations 
  Non conservative 

Δθ =α JT θ( )Δx



Jacobian Transpose 
Derivation 

Minimize cost function  F = 1
2
xtarget − x( )T xtarget − x( )

= 1
2
xtarget − f (θ)( )T xtarget − f (θ)( )

with respect to θ by gradient descent:
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Jacobian Transpose 
Geometric Intuition 
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The Pseudo Inverse 
Method 

  Operating Principle: 

-  Shortest path in q-space 

  Advantages: 

-  Computationally fast (second order method) 

  Disadvantages: 

-  Matrix inversion necessary (numerical problems) 
  Unpredictable joint configurations 
  Non conservative 

Δθ =α JT θ( ) J θ( )JT θ( )( )−1Δx = J #Δx



Pseudo Inverse Method 
Derivation 

For a small step Δx, minimize with  repect to Δθ the cost function:  

F = 1
2
ΔθTΔθ + λT Δx − J(θ)Δθ( )

where λT  is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ ⇒ JΔθ = JJTλ

⇒ λ = JJT( )−1
JΔθ

insert (1) into (2):

(3) λ = JJT( )−1
Δx

insertion of (3) into (2) gives the final result:

Δθ = JTλ = JT JJT( )−1
Δx



Pseudo Inverse 
Geometric Intuition 

Target
 x

start posture
=
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for optimization



Pseudo Inverse with explicit 
Optimization Criterion 

  Operating Principle: 

-  Optimization in null-space of Jacobian using a kinematic cost function  

  Advantages: 

-  Computationally fast 
-  Explicit optimization criterion provides control over arm configurations 

  Disadvantages: 

  Numerical problems at singularities 
  Non conservative 

F = g(θ), e.g., F = θi −θi,0( )2
i=1

d

∑

Δθ =αJ #Δx + I − J #J( ) θΟ − θ( )



Pseudo Inverse Method & 
Optimization Derivation 

For a small step Δx, minimize with  repect to Δθ the cost function:  

F = 1
2

Δθ + θ − θΟ( )T Δθ + θ − θΟ( ) + λT Δx − J(θ)Δθ( )
where λT  is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ − θ − θΟ( ) ⇒ JΔθ = JJTλ − J θ − θΟ( )

⇒ λ = JJT( )−1
JΔθ + JJT( )−1

J θ − θΟ( )
insert (1) into (2):

(3) λ = JJT( )−1
Δx + JJT( )−1

J θ − θΟ( )
insertion of (3) into (2) gives the final result:

Δθ = JTλ − θ − θΟ( ) = JT JJT( )−1
Δx + JT JJT( )−1

J θ − θΟ( )− θ − θΟ( )
= J #Δx + I − J #J( ) θΟ − θ( )



The Extended Jacobian 
Method 

  Operating Principle: 

-  Optimization in null-space of Jacobian using a kinematic cost function  

  Advantages: 

-  Computationally fast (second order method) 
-  Explicit optimization criterion provides control over arm configurations 
  Numerically robust 
  Conservative 

  Disadvantages: 

  Computationally expensive matrix inversion necessary (singular value 
decomposition) 

  Note: new and better ext. Jac. algorithms exist 

Δθ =α J ext. θ( )( )−1Δx ext.

F = g(θ), e.g., F = θi −θi,0( )2
i=1

d

∑



Extended Jacobian Method 
Derivation 

The forward kinematics x = f (θ) is a mapping ℜn →ℜm , e.g., from a
n-dimensional joint space to a m-dimensional Cartesian space. The
singular value decomposition of the Jacobian of this mapping is:
                                      J θ( ) = USVT

The rows V[ ]i  whose corresponding entry in the diagonal matrix S is
zero are the vectors which span the Null space of J θ( ). There must be
(at least) n-m such vectors (n ≥ m). Denote these vectors ni , i ∈ 1,n − m[ ].
The goal of the extended Jacobian method is to augment the rank
deficient Jacobian such that it becomes properly invertible. In order
to do this, a cost function F=g θ( )  has to be defined which is to be
minimized with respect to θ in the Null space. Minimization of F 
must always yield:

                                     ∂F
∂θ

= ∂g
∂θ

= 0

Since we are only interested in zeroing the gradient in Null space, 
we project this gradient onto the Null space basis vectors:

Gi =
∂g
∂θ
ni

If all Gi  equal zero, the cost function F is minimized in Null space.
Thus we obtain the following set of equations which are to be 
fulfilled by the inverse kinematics solution:
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For an incremental step Δx,  this system can be linearized:
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or J ext .Δθ = Δxext ..

The unique solution of these equations is: Δθ = J ext .( )−1
Δxext ..



Extended Jacobian 
Geometric Intuition 
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What makes control hard?

Some of the usual suspects are:

• non-linearity
• high dimensionality
• redundancy
• noise and uncertainty

These properties can make an already hard problem harder, 
however none of them is a root cause of difficulty.

A control problem can have all these properties and still be easy,
in the sense that there exists a simple strategy that always works:

Push towards the goal!

The problem is hard when this strategy is infeasible, due to constraints.



Easy example: Reaching with a redundant arm

 

 
 

 qN

q

qy
qJ

qy

q

space nullJacobian 

Jacobianeffector  end

positioneffector  end

ionconfigurat spacejoint 






Pneumatic robot (Diego-san)
air pressure similar to muscle activation,
but with longer time constant (~ 80 ms)

    qyyqJku
T

 *

Push hand towards target:

Push hand towards target,
while staying close to default configuration:

       qqqNkqyyqJku
T

 *

2

*

1

The controller does not need to worry about
the path, or the speed profile, or stability, or
anything else  - it all emerges from the nicely
damped dynamics.

../../DiegoSan/Movies/spatial1.MOV
../../DiegoSan/Movies/spatial1.MOV


Easy example: Trajectory tracking with PD control

1 minute of tracking

reference trajectory

actual trajectory

../../DiegoSan/Movies/recorded.MTS
../../DiegoSan/Movies/recorded.MTS
../Movies/Faces.MOV
../Movies/Faces.MOV


Constraints that are (mostly) benign

Joint limits
The goal is inside the convex feasible region, so pushing towards
the goal will not violate the joint limits.

Actuation limits
This is a big problem for under-powered systems,
but most robots are sufficiently strong.

Equality constraints
Such constraints restrict the state to a manifold. If the simple
push-towards-the-goal action projected on the manifold
always gets us closer to the goal, then the problem is still easy.
Gently curved manifolds are likely to have this property.

easyhard



Constraints that make the problem hard

Under-actuation
In tasks such as locomotion and object manipulation,
some DOFs cannot be controlled directly. These un-actuated
DOFs are precisely the ones we would like to control.

Obstacles
Obstacles can turn a control problem into a complicated
maze. Solving such problems requires path planning,
along with dynamic consistency.

Contact dynamics
Physical contacts change the plant dynamics qualitatively.
Making and breaking contacts is usually required for the task,
thus the controller has to operate in many dynamic regimes,
and handle abrupt transitions.


