

Grafter: Remixing 3D-Printed Machines

Thijs Jan Roumen, Willi Mueller and Patrick Baudisch
Hasso Plattner Institute

Potsdam, Germany
{firstname.lastname}@hpi.de

ABSTRACT
Creating new 3D printed objects by recombining models
found in hobbyist repositories has been referred to as “re-
mixing.” In this paper, we explore how to best support users
in remixing a specific class of 3D printed objects, namely
those that perform mechanical functions.
In our survey, we found that makers remix such machines by
manually extracting parts from one parent model and com-
bine them with parts from a different parent model. This ap-
proach often puts axles made by one maker into bearings
made by another maker or combines a gear by one maker
with a gear by a different maker. This approach is problem-
atic, however, as parts from different makers tend to fit
poorly, which results in long series of tweaks and test-prints
until all parts finally work together.
We address this with our interactive system grafter. Grafter
does two things. First, grafter largely automates the process
of extracting and recombining mechanical elements from 3D
printed machines. Second, it enforces a more efficient ap-
proach to reuse: it prevents users from extracting individual
parts, but instead affords extracting groups of mechanical el-
ements that already work together, such as axles and their
bearings or pairs of gears. We call this mechanism-based re-
mixing. In a final user study, all models that participants had
remixed using grafter could be 3D printed without further
tweaking and worked immediately.
ACM Classification: H.5.m. [Information interfaces and
presentation]: Misc.
Keywords: fabrication, 3D printing, remixing. Blutwurst

General terms: Design, Human factors.
INTRODUCTION
A fast approach to creating new objects for 3D printing is to
recombine models found in publicly available sources, such
as hobbyist repositories (e.g. Thingiverse.com). This process

has been referred to as “remixing” and Oehlberg et al. find it
to be an increasingly popular trend [23].
In this paper, we explore how to best support users in remix-
ing a specific class of 3D printed objects, namely those that
perform mechanical functions, also known as machines. Fig-
ure 1a shows an example of such a remixing attempt. The
user is trying to make a test tube centrifuge that could, for
example, be used to extract spirulina from aquarium water.
Here the user has identified a parent machine that offers a
crank with gearbox, a second parent machine capable of re-
directing rotary movement, and a third parent model with a
test tube holder. The challenge now is to make the mechani-
cal elements from the three parent models work together.

Figure 1: Our system grafter allows users to remix mechanical
machines. Here we use it to create a centrifuge for test tubes.

(a) We start by identifying three parent models from a hobby-
ist repository. (b) If we used the workflow commonly prac-

ticed by makers today, we would extract relevant parts and re-
combine them into the desired configuration. Making an axle

spin correctly in a bearing from a different parent model,
however, requires time-consuming tweaks & test-prints.

(c) Grafter, in contrast, extracts groups of elements that al-
ready work well together (aka mechanisms), which it fuses

with mechanisms from other parents. This achieves the same
(d) final 3D printed object, but without the tweaking.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada
 © 2018 Association for Computing Machinery
.ACM ISBN 978-1-4503-5620-6/18/04…$15.00
 https://doi.org/10.1145/3173574.3173637

Figure 2: Some of the models we remixed using grafter, i.e., using mechanism-based remixing. Colors indicate the parent model

from which the respective mechanism was taken. (a) All models in the top row are variations of the same actuation mechanism (a
hand-cranked siren). (b) All models in the center row remix the same record player parent model, but replace different elements,

i.e., actuation, transmission, or end effector. (c) Models in the front row sample a wider range of parent models.

There is no particular software support for remixing ma-
chines (and one of our two main contributions is to demon-
strate such a system). In fact, in our survey, presented below,
we found that makers have developed best practices for re-
mixing machines. As illustrated by Figure 1b, this approach
entails extracting relevant parts from each model and recom-
bining them into the target object, here the test tube centri-
fuge. We will refer to this approach as part-based reuse.

Figure 3: Close-up of Figure 1 (a) part-based remixing puts

the green axles into the red bearing, which was made by a dif-
ferent maker. (b) Grafter, in contrast, extracts groups of ele-

ments that already work well together.

Unfortunately, part-based reuse is surprisingly inefficient.
As illustrated by Figure 1b and magnified in Figure 3a, part-
based reuse tries to connect moving parts made by one maker
with parts made by another maker. Here it is the red axle in
the blue bearing and a green axle in two red bearings. This
is problematic. While part-based reuse makes sense when
applied to professional mechanical engineering, where parts

are standardized and thus interchangeable, the absence of
standards in the maker community (see below) causes this
type of connection to generally not fit. Getting the resulting
model to work thus requires a series of tweaks to the diame-
ters of axles/bearings and consequential test-prints, making
the remixing of machines very time-consuming.
In this paper, we challenge the best practice of part-based
reuse and instead propose what we call mechanism-based re-
use. Rather than extracting parts, our software system grafter
extracts groups of elements that work together (aka mecha-
nisms) and recombines these into the target machine. As
magnified in Figure 3b, this always puts red axles into red
bearings, eliminating those configurations that traditionally
require tweaking and test printing. Instead, grafter cuts up
parts and fuses them together with other parts. In Figure 3b,
for example, grafter spliced part of the green axle with part
of the red axle (visualized as a black squiggly line between
the two parts), allowing the red bearing to hold a red axle,
rather than a green axle—a connection that is known to work
without further tweaking.
The main benefit of such mechanism-based remixing is that
it produces the same target machines as part-based remixing,
such as the test tube centrifuge shown in Figure 1d. This al-
lows the resulting models to work immediately upon the first
3D print—without the need for tweaking or test printing.
This allows creating a wide range of machines quickly
(Figure 2). The models need to be prepared for use in grafter,
which we will discuss in the “annotating machines” section.

SURVEYS OF EXISTING REMIXING PRACTICES
The observations about “best practices” in remixing referred
to above are the result of two simple surveys we conducted.
Survey 1: part-based reuse
The first survey we conducted on a set of 349 remixes, from
a hobbyist repository (all models submitted to the thingi-
verse remixing challenge [27]). One of our expert engineers
classified all models and found that machines accounted for
only 26 (7%) of all remixes; this is expected as remixing ma-
chines is harder than remixing decorative objects. Out of the
remixed machines, 13 (50%) of them were remixed from
multiple parents, which is the type of remixing that is partic-
ularly difficult (which is why we support it with grafter).
The main result of our survey is that the makers of all 13
multi-parent machines had indeed remixed by means of
parts-based reuse. Figure 4a shows such a remix. This model
combines elements from three parents (red = thingiverse
id:452248, green = 272132, blue = 1037341) with fresh con-
tents (yellow). As indicated by the yellow flash, this remix
makes the green propeller axle run inside of a blue bearing;
the red flash indicates where the remix tries to mesh a red
gear with a blue gear. These are two of the points where this
maker had to tweak axles, bearings, and gears to make the
resulting model work; especially the gear designs have many
degrees of freedom—a lot to tweak. (b) For comparison, this
is the corresponding remix we made using grafter. By fusing
part of the blue axle with part of the green axle and by im-
porting the red spring motor in its entirety grafter eliminates
the problem and allows this model to print in one attempt.

Figure 4: (a) Remix of a spring-powered catamaran. The

green shaft in the blue bearing and the mismatched gears re-
quired tweaking. (b) The same model remixed using grafter

works instantly without tweaking.

Furthermore, the comments that makers had uploaded to
document their models suggest that part-based reuse was in-
deed time-consuming. Four makers (out of the eight with a
full process description) stated that they had iterated multi-
ple times to get parts to fit. One commented “After 5 tries
and 5 hours waiting on the printer to finish, I popped it out
removed the supports and I was happy to see it fit perfectly”
(emphasis added). Several makers commented that parts in
the model that they had shared still did not fit properly. One
wrote: “Parts are a bit tight when fitting together. Will up-
load an updated version.”
Despite the small sample size, our first survey suggests that
part-based remixing is indeed the commonly used practice

among makers and that the tweaking resulting from part-
based reuse is indeed time-consuming.
Survey 2: non-adherence to standards
We conducted a second survey with the objective of testing
our assumption that makers do not adhere to standards. More
specifically, we checked whether makers were adhering to
standard diameters for axles and bearings.
We started by downloading another set of models from
thingiverse.com. To obtain actual machines, we filtered for
the term “mechanism”, which gave us the models of 324 3D-
printable machines.
We then ran a simple custom script to locate axles and bear-
ings on these models, i.e., cylinder-detection algorithm
based on RANSAC [5]. Our script found 5203 axles and
bearings overall. As we were interested in standards across
models, not within a model, we combined multiple axles of
the same diameter within the same model into one. This left
us with 1782 axles and bearings.
We then analyzed these axles and bearings by clustering
them by diameter. If makers adhered to standards we would
see only very few buckets with lots of models; if makers did
not adhere to standards, we would see more of a spread.
Figure 5 shows our results. Overall the histogram is spread
out, which suggests that makers do not adhere to standards.
The histogram does feature a few peaks, which we felt re-
quired closer inspection. Analysis of the objects, revealed
that most of the peaks (highlighted red in Figure 5) had either
resulted from the integration of industrially manufactured
metal parts, such as metal bolts and steel axles (Figure 6) or
from inheriting geometry from the same parent model.

Figure 5: Histogram of axle and bearing diameters from 324
3D printed machines found online. Only 12 diameters appear

in more than 8 models (marked in red).

Figure 6: Two example models the geometry of which was de-

signed to fit standardized parts, such as screws/bolts/nuts.

After removing these special cases, the most popular diame-
ter accounted for only 0.5% of all models, which certainly
does not suggest the user of standard sizes. Our second sur-
vey thus suggests that makers do not adhere to standards,
unless their geometry interacts with industrially produced
components.
Based on the insights from these two studies, we designed
our system, grafter.
GRAFTER
grafter is a software system. Its first main contribution is that
it supports users in remixing a specific challenging class of
3D printed objects, namely those that perform mechanical
functions. Its second main contribution is that it does not fol-
low common maker practice of extracting and re-assembling
parts. Instead, it uses mechanisms as its main unit of reuse,
i.e., it allows users to extract and recombine only entire
mechanisms. Since mechanisms are self-contained units, es-
sentially independent of the context they were designed for,
they are easier to integrate into a new context of use than
parts.
Mechanism-based remixing requires cutting up parts. As il-
lustrated by Figure 7, machines generally consist of a chain
of mechanisms, with each of the axles being part of two
mechanisms. Given that grafter does not allow cutting up
mechanisms, this means grafter has to cut somewhere else.
And, as illustrated by Figure 7, cutting up somewhere else
means to cut through parts, here the axles. This is exactly
what grafter did in Figure 1c, where it extracted the bevel
gear mechanism by cutting the two axles and fusing the re-
maining axle stumps with the axle stumps of the other two
parent objects. Fortunately, grafter is designed to work with
3D printers, and so cutting and fusing parts are inexpensive
operations.

Figure 7: The record player from Figure 1, consists of

(b) a simple chain of three mechanisms. Since cutting up
mechanisms is problematic, grafter cuts up parts instead.

We now demonstrate how grafter allows users to remix ma-
chines. Users proceed in two steps. (1) First users annotate
the mechanisms of parent models. (2) Then users remix.
Grafter supports each of these steps with separate tools and
both tools are implemented as plug-in to the 3D modeling
software Rhino. In the interest of clarity, we begin with the
remixing step and postpone our explanation of the annota-
tion tool until after we have explained the inner workings of
the grafter. We again use the test tube centrifuge from Figure
1 as an example.
Remixing in grafter
Figure 8a shows a user looking for parent models by search-
ing for “test tube”. As shown in Figure 8b, a model labeled

waterfuge comes up. It looks interesting, but closer inspec-
tion reveals that it cannot spin the vials fast enough.

Figure 8: (a) The user starts by clicking the search tool, which

brings up the search dialog. (b) Typing in “test tube”

The test tube holder on top of the waterfuge looks viable, so
our user clicks the model, which imports it into the current
document (Figure 9a).
In search for a faster actuation mechanism, the user runs an-
other search for “hand cranked”. Among other models, this
returns the hand-cranked siren. Its built-in gearbox allows
the device to produce very fast rotation, making it well suited
for the task. The user adds the siren to the document. The
user has no use for the fan blades, thus removes them, result-
ing in the stripped-down version shown in Figure 9b.

Figure 9: (a) The user imports the waterfuge, (b) then the

hand-cranked siren, then (c) mounts the waterfuge’s test tube
holder onto the siren.

The user now makes a first attempt at remixing. As shown
in Figure 9c, the user selects the connect tool, rips the test
tube holder out of its parent model and drags it towards the
siren. Grafter responds by highlighting all 3 possible dock-
ing locations (red x): two for the bearing which used to hold
the blades and one for the axle inside the machine. The user
docks the test tube holder on the axle which is driven by the
siren’s gearbox.
Grafter performs a series of geometric computations (clear-
ing of sweep volumes, merging of grounds, see section im-
plementation) allowing it to merge the geometry of the test
tube holder with the siren.
The resulting model is functional. Grafter could export and
fabricate it immediately and, given that it is based on mech-
anism-based remixing, the user would be confident that it

would work without any tweaking or test prints, because all
of mechanisms in this new machine were already tested—
by their original creators. However, after a moment of re-
flection the user realizes that making the test tubes spin up
and down, will cause the sediment to mix back with the liq-
uid—this is not a good design yet. The user undoes the con-
nection.
In order to spin the test tubes horizontally, the user realizes
that a 90-degree redirection mechanism is needed. A search
for “bevel gears” brings up several devices that contain bevel
gears. As shown in Figure 10a, the user picks the record
player which adds it to the document. (b) Using grafter’s
connect tool, the user now drags the bevel gear mechanism
out of the record player and docks it to the same docking
location on the siren as the test tube holder. (c) Then the user
docks the test tube holder to the top end of the bevel gear
mechanism. This produces the model already shown in Fig-
ure 1c—this is what the user wanted.

Figure 10: (a) The user imports the record player. (b) With a

single drag operation each, the user connects its bevel gear
mechanism to the siren, and (c) the test tube holder to the

bevel gear mechanism.

The user now 3D prints the model, resulting in the physical
object shown in Figure 1d. The user turns the crank and the
mechanisms work right away without tuning.
CONTRIBUTION
This paper makes two main contributions. First, grafter is
the first system that supports users in remixing machines.
We present the remixing tool, as well as a specialized anno-
tation tool that allows preparing models for remixing. Se-
cond, with grafter we introduce the concept of mechanism-
based remixing. While the time required for mechanism-
based remixing is roughly of the same order of magnitude as
part-based remixing (if we add 23min per parent model for
annotation and 5min for remixing) the main benefit of mech-
anism-based remixing is that it eliminates the necessity to
tweak and test-print, so that remixed machines print cor-
rectly on the first attempt, which tends to save many hours
to days of task time.
Grafter is currently limited to machines based on rotating ax-
les. While this is the dominant type of machine design today,
handling machines with other mechanisms would require ex-
tending grafter. For example, grafter currently fails when a
translation mechanism is inserted between two rotational
mechanisms. Finally, grafter will allow combining mecha-
nisms in any technically feasible way, even if this practically
does not make sense (see Figure 25e for an example of this
remixed during our study).

RELATED WORK
This paper builds on work in reuse, encapsulating mecha-
nism functionality, remixing of 3D models, and studies on
the remixing behavior in hobbyist model repositories.
Reuse by professional users across domains
Designers and creative workers draw from existing exam-
ples to produce new creations [10].
In the software industry, reuse found wide adoption once
processor architectures had been unified [8] and good mod-
els for reusable components could be developed [12]. Re-
mixing is also very common in the context of computer game
development—more so for functional elements than for ar-
tistic elements [11]. Cheliotis et al [4] found similar results
when studying online remixing of music.
Several software tools support reuse in the field of web-
based systems. Hartman et al. [9] studies web developers and
hardware developers who create mash-ups by “shopping”
for elements made by others. Interactive design galleries
[15] help developers find and draw elements from web
pages. Bricolage [14] allows users to remix web pages by
combining the content of one webpage with the style of an-
other.
As discussed earlier, professional mechanical engineers use
and reuse parts from various suppliers, e.g., through Solid-
work’s 3DContentCentral [32]. Professionally engineered
parts are standardized and users can integrate them into their
models with confidence, regardless of the supplier.
Remixing of 3D objects
3D objects are typically remixed from standardized compo-
nents. Design and Fabrication by Example [29] allows users
to select and modify parts from templates. The system gen-
erates the required connector parts, such as screws, automat-
ically. Pan et al. [5] allow users to create mechanically more
advanced models.
Parametric models [30] as the extended version of Fabrica-
tion by Example, enables more customization of existing
parts, basic shape remixing, and verifies whether models are
physically attainable, i.e., whether they can be 3D printed.
Modeling by example [29] similarly enables remixing of
specific parts from different models into new configurations.
Zhang et al. [33] use similar mechanical templates and allow
them to be included in user-defined shapes. The challenge
here is that parametric modelling does not solve the tweak-
ing issue. It makes it easier because the user only changes
the critical parameters, but one would still test print and
tweak to get the functionality right, especially when dealing
with different models made by others.
Encapsulating mechanism functionality
Model formats are only starting to describe functionality. 3D
models, such as those shared on thingiverse, are typically
stored using the STL format, which only describes the shape
of models, but not how they work. Researchers have thus
proposed including extended functionality in new file for-
mats. MetaMorphe [31] composes 3D models from HTML
for shape and structure, CSS for design details and parameter
configuration, and JavaScript for functionality and key fram-
ing. The STP file extension [28], is another format to include

additional meta-information about models, mostly adopted
by industry.
Mitra et al. [21] demonstrate how to automatically animate
illustrations of mechanisms. They use symmetry detection
[20] to identify the functionality of a mechanism from draw-
ings. More recently, the authors extended their approach to
3D scans [16].
Remixing in Hobbyist Repositories
Recent work by Flath et al. [6] investigated remixing prac-
tice in the hobbyist repository thingiverse. They identified
remixing strategies, patterns and essentially conclude that
reducing the barriers for remixing is key to maintaining a
creative community. Their key implications are directly ad-
dressed by grafter.
Papadimitriou et al [24, 26] identified a trend towards remix-
ing in hobbyist communities. The most common form of re-
mixing on Thingiverse is by means of the Thingiverse Cus-
tomizer [18]. This tool remixes only single parent models,
hobbyists remix multiple parent models using 3D editors,
such as MeshMixer.com. Flath et al. points out that individ-
ual users either always use Customizer or always use Mesh-
Mixer [6].
Alcock et al. [1] found that users often do not know how to
remix models. Their second most common comment
(23.9%) to models was related to the theme of customizing
or remixing models. Successful remixes are most likely to
be assemblies of models and primitive mechanisms [20].
They also identified two projects of highly remixed ma-
chines: the engineering of DIY 3D printers and quadcopters.
These big thingiverse projects attract large amounts of hob-
byists to remix (parts) of the models. It is such projects,
which drive the maker community according to Anderson in
his book Makers [2].
THE INNER WORKINGS OF GRAFTER
To allow readers to reproduce our result, we now present the
algorithms behind grafter.
The model graph is grafter’s main data structure
In order to allow grafter to support remixing, it internally
represents models in a format we call model graph. Grafter
performs all its operations on this data structure, including
mechanism selection and the fusing of mechanisms. As an
example, Figure 11 shows the model graph of the record
player from Figure 1.

Figure 11: The record player including the bevel gear mecha-

nism. The model is annotated with a model graph.

Grafter’s model graphs are somewhat unusual. The nodes do
not relate to parts, but to interfaces e.g. the surfaces of parts
that touch other parts. This better depicts the core idea of
mechanism-based remixing, as it allows easy cutting up of
parts. The edges define how the interfaces are related to each
other.
Pink nodes denote interfaces: In Figure 11, the interfaces of
the three bevel gears are the surfaces of the gears’ teeth.
Black lines denote parts. These connect the interfaces that
are located on that part.
Pink lines denote “mechanisms” aka kinematic pair. They
connect interfaces located on two or more different parts. An
example of a mechanism in Figure 11 is an axle and the bear-
ing that holds it.
White nodes denote external interfaces. These are interfaces
that connect a part in the model with a part in the outside
world. Objects that are not otherwise represented in the
model graph, such as the hand cranking the record player.
Black dots denote ground geometry. Ground geometry is a
crucial part of a model’s geometry: it forms the “frame”, i.e.,
typically one large part that keeps the mechanisms in their
specific configuration [22]. During remixing, Grafter not
only reassembles mechanisms but also “unites” the grounds
of all parents.
Figure 11 shows an example of the model graph of a record
player, note how the clusters of nodes connected with black
lines represent what is typically considered as parts. The
pink lines are the interactions between these parts. It is for
that reason that the vertical axle (which connects two gears,
two bearings and the rotary disc on top) contains 5 nodes,
whereas the horizontal axle contains only three (the big gear,
a handle and a bearing).
Remixing
The model graph plays a key role in remixing. As discussed
earlier, grafter users remix a model by selecting a mecha-
nism, picking the connect tool from grafter’s menu, picking
that mechanism up by a “snapping point”, and dropping it
onto a “snapping point” on target machine (Figure 12).
When the dragged mechanism gets close enough to a snap-
ping point, grafter snaps the model to the target and aligns
their axes of rotation.

Figure 12: (a) A user drags a mechanism using the connect

tool, grafter highlights target snapping points. (b) the user has
dragged this tube holder close to a snapping point, grafter
aligns the rotation axis of the tube holder with the siren.

How grafter makes any selection a mechanism
Any selection begins with the user clicking somewhere on a
model. While such an event must inherently land on a part,
grafter always expands this selection into a mechanism that
contains this part.
There are typically multiple ways how grafter could extend
the selection to a mechanism, as Figure 13 illustrates at the
example of the record player. When the user clicks the large
bevel gear, grafter responds by also selecting the axle it sits
on, the small bevel gear it meshes with, and any geometry
needed to reach a ground node on both sides of the selected
part. This subgraph is shown in (a).

Figure 13: (a) When the user clicks the large bevel gear,

grafter automatically expands the selection to a mechanism.
Subsequent clicks extend that selection by adding more mech-
anisms (selections highlighted in blue). (b) Grafter considers

subgraphs that include ground as “cheap”, (c, d) while it con-
siders those that include an external interface as “expensive”.

The minimal selection in Figure 13 includes the big gear
which is clicked and all interfaces until a ground node is
reached from both sides of the big gear. This results in the
selection of (a). When the user clicks again on the big gear,
grafter uses a cost function to determine which subgraph to
add to the selection.
The assumption is that the user wants to select the mecha-
nisms connected around the selected object rather than ones
that connect externally. Each subgraph either ends with a
ground node or an external interface. The grounded graphs
extend the selection by adding internal mechanisms and thus
have a smaller cost. Furthermore, a shorter subgraph is pre-
ferred over a long one.
Grafter allows users to further expand the selection by click-
ing repeatedly. With every click, grafter extends the current
selection with the cheapest reachable subgraph. As there is
always a ground or external interface at the end of a sub-
graph, grafter only selects fully supported mechanisms.
When the entire machine is selected and the user clicks
again, grafter will deselect everything and make the selec-
tion process start over again.

Snapping and aligning, only to leaf nodes
Once the user has selected a mechanism, grafter allows the
user to drag this mechanism into another machine. During
dragging, grafter highlights “snapping points” capable of ac-
cepting the dragged mechanism and prevents the user from
docking anywhere else but at these snapping points.
As shown in Figure 14, snapping points are created at the
ends of fully supported kinematic chains. Grafter locates
such kinematic chains by searching the model graph for
“leaf” nodes, i.e., nodes connected to a single other interface
(besides a connection to ground or external interface) For the
selection of Figure 14, leaf nodes are highlighted in blue. For
these, grafter uses the intersection of the axis of rotation with
the interfaces as snapping points. An axle, for example, has
snapping point at both ends. The bottom of Figure 14, in con-
trast, offers only a single snapping point, as it has a bearing
with only one open direction (there is no axle sticking
through the bottom of the frame).

Figure 14: Snapping points of the selected bevel gears. Only

the leaf nodes generate points (highlighted in blue).

Once the user has docked a mechanism to a target machine,
grafter merges the mechanism’s geometry into the target ma-
chine. Grafter accomplishes this in three steps: grafter (1)
removes material that could prevent the mechanisms from
working, (2) merges mechanism geometries, and finally (3)
merges grounds.
Grafter removes material that could block mechanisms
When the user docked the test tube holder onto the siren as
part of our walkthrough, grafter could have tried to mount
the test tube holder directly to the end of the bevel gear
mechanism. However, the resulting machine would not have
been functional: the test tube mechanism requires some clear
space to perform its function, as illustrated by Figure 15a.

Figure 15: (a) The tube holder’s swept volume collides with
the gear in the back. (b) Grafter responds by translating the
tube holder (and extends its axle) along the axis of rotation

until the conflict is resolved. This causes the test tube holder’s
swept volume to instead intersect with the siren’s handle, but
(c) the handle is not part of the model graph and thus can be

safely cut off.

Such space is commonly referred to as swept volume. As il-
lustrated by Figure 16, the swept volume is defined by the
space swept when the mechanism is operated. The test tube
holder shown in Figure 16d is special in that it holds physical
objects—the test tubes—that are not captured in the model;
these also have to be considered when computing the swept
volume.

Figure 16: The swept volume of selected mechanisms.

In some cases, multiple swept volumes can intersect with
one another. As in Figure 16, grafter cannot just clear out the
swept volume as it would break a mechanism.
Instead, as shown in Figure 15b, grafter automatically ex-
tended the axle of the test tube holder past the gear. As
shown in Figure 15c, the test tube holder’s swept volume
still intersected the model—however, this time only with the
siren’s handle. By traversing the model, grafter determined
that the handle was not connected to any mechanism. Grafter
therefore considered the handle non-vital and removed it in
order to make space for the test tube holder and its swept
volume.
Merging mechanism geometries
As shown in Figure 17, grafter fuses mechanisms by over-
lapping the axle of the dragged mechanism with the axle of
the target machine. Then, grafter chops of all geometry past
the snapping point and then merges both axles using a union
operation.

Figure 17: In order to merge the dragged mechanism into the
target machine, grafter (a) overlaps the axles at the snapping

point and (b) removes excess geometry.

Merging grounds
After connecting the axles, parts of the newly implanted
mechanism may have become “ungrounded”, i.e., they dan-
gle loosely as they are not connected to ground anymore.
Ungrounded geometry typically prevents the resulting ma-
chine from functioning. In Figure 18 the red bearing holding
one of the bevel gears has become ungrounded.
Grafter identifies ungrounded mechanisms by comparing the
merged model graph with the original one and identifying
where ground nodes have not been replaced.
Grafter then reattaches ungrounded mechanisms by bringing
in additional ground geometry from the mechanism’s origi-
nal model. Grafter therefore computes the intersection be-
tween the ground of the target model (here the blue siren)
and the ground of the source model (the red bevel gears). If
there is an intersection, it splits the mesh after the intersec-
tion and removes the excess. It fuses the grounds together
with a Boolean union operation.
In the rare case that there is no overlapping geometry be-
tween the grounds, grafter currently fails. An approach as
shown in AutoConnect [13] in which rods between models
are generated could be used as an extension to solve this
problem.

Figure 18: (a) The red bearing is ungrounded. (b) In order to

resolve this, grafter brings in ground from the red source
model (record player).

ANNOTATING MACHINES
Now that we have learned about model graphs and inter-
faces, we are well equipped to explain grafter’s model anno-
tation tool. The objective of the annotation process is to al-
low grafter to create the model graph. In particular, this re-
quires users (1) to mark all polygons/triangles that belong to
the same interface and (2) to combine interfaces into mech-
anisms.
In the following, we demonstrate the annotation workflow at
the example of a vise—a workshop tool capable of clamping
a workpiece (Figure 19). When the user turns the knob on
the left, the middle gear rotates. This causes the two gears
left and right to rotate, which pushes the threaded rods and
the attached jaw towards the workpiece. The device achieves
this functionality with the help of 9 mechanisms, which to-
gether consist of 15 interfaces. This is what we will annotate.

Figure 19: The vise model to annotate.

The process is straightforward except for the step of select-
ing all triangles that together form an interface. Doing so na-
ively can be tedious, as an interface may contain thousands
of triangles. Grafter’s annotation tool therefore offers a spe-
cialized cylinder-shaped selection tool that is able to select
all relevant triangles at once. Grafter supports the cylinder
selection tool by automatically locating the axes around
which cylinder selections can be formed.
Figure 20a: when loading a model, grafter invokes its axes
of rotation script (a script similar to the one mentioned in the
user study section earlier). The script locates cylindrical
shapes using the RANSAC algorithm [5]. This identifies
axes in models, which the editor shows as red lines.
(b) The user starts by annotating the gear in the front. The
user selects the axis (which causes it to be highlighted in yel-
low) and using grafter’s cylinder selection tool the user con-
structs a cylindrical selection that roughly matches the inter-
face (by clicking the start of the cylinder, the approximate
radius and the end of the cylinder) (c) grafter finds meshes
that are close to the constructed cylinder and identifies these
as an interface, here the teeth of the gear.

Figure 20: (a) Upon loading a model, grafter automatically

locates axes of rotation in the model. (b, c) Based on the
selected axis, grafter’s cylinder selection tool creates the

shown pink selection in three clicks (start, radius, end). (d)
users can indicate whether an interface is external or

grounded with the annotation dialogue.

As shown in Figure 20d, the user now labels the interface as
grounded geometry or an external interface. Other options
are set by grafter, but can be adjusted by the user.

Figure 21: After all interfaces are selected, the user continues
to select pairs of them and link them as mechanisms. In the
shown figure, these two gears form a mechanism together.

Repeating this step 15 times labels all interfaces in this
model as shown in Figure 21. The user then combines pairs
of interfaces into mechanisms by selecting two interfaces
and linking them (using the link tool) for each of 9 mecha-
nisms. The resulting model graph is shown in Figure 22

Figure 22: The resulting model graph.

Figure 23 shows the parent models remixed in Figure 2. An-
notating them by a trained user required 23min on average
(see Figure 23 for individual annotation times). When mod-
els are remixed repeatedly, as in Figure 2, each parent model
requires annotation only once.

Figure 23: The parent models remixed in Figure 2 annotated
using grafter’s annotation tool and how long it took a trained

user to annotate these models.

IMPLEMENTATION
Grafter and its model annotation tool are implemented as a
Rhinocommon plug-in. This is a C# SDK for Rhino [19].

Figure 24: The architecture of grafter.

The backend component processes the model graph into the
3dm file format of Rhino. To do so, it encodes the graph into
JSON using the JSON.net library. For the undirected graph
data structure as well as graph algorithms we utilize the
QuickGraph library. For visualizing the model graph we use
GraphAlchemy.js
USER STUDY
Our main objective with grafter is to allow for fast remixing
by eliminating the tweaking process traditionally associated
with combining parts from different parent models. To ver-
ify this assumption, we conducted a study in which partici-
pants used grafter to remix machines. Given that participants
performed this task using mechanism-based remixing, our
hypothesis was that participants’ models would 3D print
successfully on the first attempt.
Task and Procedure
Half of the participants were given the task to create a hand-
cranked wool winder by remixing elements from two parent
machines; the other half were given the task to create a hand-
cranked wire twister. Figure 25a and c show intended solu-
tions; participants, were given verbal description of what to
make.
They were then given access to grafter and 15 parent models
shown throughout this paper, in annotated form.
Participants received 10 minutes of training, during which
they created the centrifuge model shown in Figure 1. They
then performed their remixing task. Finally, participants
were asked about their experience. All participants com-
pleted the study in 30 min or less.
Participants
We recruited 12 students (1 female, average age 25.5 years
old). All participants had used a 3D modeling system at least
once. Three participants had more than 50h of experience
with other 3D modeling programs, namely Fusion360,
Blender, and SketchUp. Two users had used Rhino before,
albeit for less than 2 hours overall.
Results
Figure 25 shows 3D prints of the models made (note that
many participants achieved similar results). The 3D prints of
all devices worked on first attempt and without any need for
tweaking or test printing. This confirms our hypothesis.

Figure 25: (a and b) The wool winders and (c-e) the wire

twisters made by participants.

Figure 26 shows participants’ task times. All participants
completed their tasks quickly: 4:50 minutes on average for
the wool winder and 4:54 for the wire twister).

Figure 26: Task time ordered by performance.

In the first go, 10/12 participants managed to make a work-
ing version of the remix we asked them to make. 2 partici-
pants seemed not to understand how the machine is supposed
to work (our participants had no mechanical engineering
background) and remixed the models in a way that would
not work out (the solution does print and work, but not twist
wires). After the experimenter explained how the machines
do work, they managed to make the intended remix.
P4 commented on the interaction: “at first it was a little hard
to do, but once I figured out how the interaction worked it
was actually quite easy”. P7 and 3 others in other words ex-
pressed “I really enjoyed the experimental style of model-
ling, trying combinations out is a useful way to model”.
All participants suggested additional features, 5 participants
suggested animating mechanisms to show what the machine
does. 4 participants had issues with the search, 2 of them
suggested to use the mechanisms that were searched before
to fine tune the results.
CONCLUSION AND FUTURE WORK
In this paper, we presented grafter, a tool that allows users to
remix 3D printed mechanical machines. In addition to the
system itself, our main contribution is that grafter does not
follow common maker practice of extracting and re-assem-
bling parts. Instead, grafter extracts self-contained mechan-
ical units, aka mechanisms that remain functional throughout
remixing. The main benefit for users is that grafter elimi-
nates the need for tweaking and test printing.
As future work, we plan on using the model graphs to make
machine designs work across different printers and materi-
als.

REFERENCES
1. Celena Alcock, Nathaniel Hudson, and Parmit K.

Chilana. 2016. Barriers to Using, Customizing, and
Printing 3D Designs on Thingiverse. In Proceedings of
the 19th International Conference on Supporting Group
Work (GROUP '16). ACM, New York, NY, USA, 195-
199. DOI: https://doi.org/10.1145/2957276.2957301

2. Chris Anderson 2012. Makers: The New Industrial Rev-
olution. Crown Business, New York, 2012.

3. Patrick Baudisch and Stefanie Mueller. 2017, "Personal
Fabrication", Foundations and Trends in Human–Com-
puter Interaction: Vol. 10: No. 3–4, pp 165-293. DOI:
http://dx.doi.org/10.1561/1100000055

4. Giorgos Cheliotis and Jude Yew. 2009. An analysis of
the social structure of remix culture. In Proceedings of
the fourth international conference on Communities and
technologies (C&T '09). ACM, New York, NY, USA,
165-174.
DOI: http://dx.doi.org/10.1145/1556460.1556485

5. Martin A. Fischler and Robert C. Bolles. 1981. Random
sample consensus: a paradigm for model fitting with ap-
plications to image analysis and automated cartog-
raphy. Commun. ACM 24, 6 (June 1981), 381-395. DOI:
http://dx.doi.org/10.1145/358669.358692

6. Christoph M. Flath, Sascha Friesike, Marco Wirth, &
Frederic Thiesse, Copy, transform, combine: exploring
the remix as a form of innovation. Journal of Information
Technology, 1-20.
DOI: https://doi.org/10.1057/s41265-017-0043-9

7. Thomas Funkhouser, Michael Kazhdan, Philip Shilane,
Patrick Min, William Kiefer, Ayellet Tal, Szymon
Rusinkiewicz, and David Dobkin. 2004. Modeling by ex-
ample. ACM Trans. Graph. 23, 3 (August 2004), 652-
663.
DOI: http://dx.doi.org/10.1145/1015706.1015775

8. David Garlan, Robert Allen & John Ockerbloom 1995
Architectural Mismatch: Why Reuse Is So Hard. IEEE
Software 12(6), 17-26
DOI: http://dx.doi.org/10.1109/52.469757

9. Björn Hartmann, Scott Doorley, and Scott R. Klemmer.
Hacking, mashing, gluing: Understanding opportunistic
design. IEEE Pervasive Computing 7.3 (2008).
DOI: https://doi.org/10.1109/MPRV.2008.54

10. Scarlett R. Herring, Chia-Chen Chang, Jesse Krantzler,
and Brian P. Bailey. 2009. Getting inspired!: understand-
ing how and why examples are used in creative design
practice. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '09). ACM,
New York, NY, USA, 87-96.
DOI: http://dx.doi.org/10.1145/1518701.1518717

11. Benjamin Mako Hill and Andrés Monroy-Hernández.
2013. The cost of collaboration for code and art: evi-
dence from a remixing community. In Proceedings of the
2013 conference on Computer supported cooperative
work (CSCW '13). ACM, New York, NY, USA, 1035-
1046.
DOI: http://dx.doi.org/10.1145/2441776.2441893

12. Malcolm Douglas McIlroy, 1969. Mass Produced Soft-
ware Components. In Software Engineering, ed. P. Naur
and B. Randell, NATO Science Committee, Jan 1969,
pp. 138-150.

13. Yuki Koyama, Shinjiro Sueda, Emma Steinhardt,
Takeo Igarashi, Ariel Shamir, and Wojciech Matusik.
2015. AutoConnect: computational design of 3D-printa-
ble connectors. ACM Trans. Graph.34, 6, Article 231
(October 2015), 11 pages.
DOI: https://doi.org/10.1145/2816795.2818060

14. Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and
Scott R. Klemmer. 2011. Bricolage: example-based re-
targeting for web design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI '11). ACM, New York, NY, USA, 2197-2206.
DOI: http://dx.doi.org/10.1145/1978942.1979262

15. Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen
Brafman, and Scott R. Klemmer. 2010. Designing with
interactive example galleries. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '10). ACM, New York, NY, USA, 2257-
2266.
DOI: http://dx.doi.org/10.1145/1753326.1753667

16. Lin, M., Shao, T., Zheng, Y., Mitra, N., & Zhou, K.
(2017). Recovering Functional Mechanical Assemblies
from Raw Scans. IEEE Transactions on Visualization
and Computer Graphics.
DOI: https://doi.org/10.1109/TVCG.2017.2662238

17. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and
Wojciech Matusik. 2012. Chopper: partitioning models
into 3D-printable parts. ACM Trans. Graph. 31, 6, Arti-
cle 129 (November 2012), 9 pages.
DOI: http://dx.doi.org/10.1145/2366145.2366148

18. MakerBot Customizer. Retrieved February 16, 2017
from http://customizer.makerbot.com

19. McNeel, R. (2017). Rhinoceros. NURBS modeling for
Mac: http://www.rhino3d.com/mac

20. Niloy J. Mitra, Mark Pauly, Michael Wand, & Duygu
Ceylan (2013, September). Symmetry in 3d geometry:
Extraction and applications. In Computer Graphics Fo-
rum (Vol. 32, No. 6, pp. 1-23).
DOI: http://doi.org/10.1111/cgf.12010

21. Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wil-
mot Li, and Maneesh Agrawala. 2013. Illustrating how
mechanical assemblies work. Commun. ACM 56, 1 (Jan-
uary 2013), 106-114.
DOI: http://dx.doi.org/10.1145/2398356.2398379

22. Norton, R. L. (1999). Design of machinery: an introduc-
tion to the synthesis and analysis of mechanisms and ma-
chines. McGraw-Hill Inc., US.

23. Lora Oehlberg, Wesley Willett, and Wendy E. Mackay.
2015. Patterns of Physical Design Remixing in Online
Maker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Sys-
tems (CHI '15). ACM, New York, NY, USA, 639-648.
DOI: https://doi.org/10.1145/2702123.2702175

24. Pan, W., Gao, S., & Chen, X. (2016). An approach to
automatic adaptation of assembly models. Computers in
Industry, 75, 67-79 .
DOI: http://dx.doi.org/10.1016/j.compind.2015.06.005

25. Spiros Papadimitriou and Evangelos E. Papalexakis.
2014. Towards laws of the 3d-printable design web.
In Proceedings of the 2014 ACM conference on Web sci-
ence (WebSci '14). ACM, New York, NY, USA, 255-
256.
DOI: http://dx.doi.org/10.1145/2615569.2615660

26. Spiros Papadimitriou, Evangelos Papalexakis, Bin Liu,
and Hui Xiong. 2015. Remix in 3D Printing: What your
Sources say About You. In Proceedings of the 24th In-
ternational Conference on World Wide Web (WWW '15
Companion). ACM, New York, NY, USA, 367-368.
DOI: http://dx.doi.org/10.1145/2740908.2745943

27. Thingiverse Remix Challenge November-December
2016 http://thingiverse.com/challenges/RemixChallenge

28. Pratt, M. J. (2001). Introduction to ISO 10303—the
STEP standard for product data exchange. Journal of
Computing and Information Science in Engineer-
ing, 1(1), 102-103.
DOI: http://dx.doi.org/10.1115/1.1354995

29. Adriana Schulz, Ariel Shamir, David I. W. Levin,
Pitchaya Sitthi-amorn, and Wojciech Matusik. 2014. De-
sign and fabrication by example. ACM Trans. Graph. 33,
4, Article 62 (July 2014), 11 pages.
DOI: http://dx.doi.org/10.1145/2601097.2601127

30. Maria Shugrina, Ariel Shamir, and Wojciech Matusik.
2015. Fab forms: customizable objects for fabrication
with validity and geometry caching. ACM Trans.
Graph. 34, 4, Article 100 (July 2015), 12 pages.
DOI: https://doi.org/10.1145/2766994

31. Cesar Torres and Eric Paulos. 2015. MetaMorphe: De-
signing Expressive 3D Models for Digital Fabrication.
In Proceedings of the 2015 ACM SIGCHI Conference on
Creativity and Cognition (C&C '15). ACM, New York,
NY, USA, 73-82.
DOI: http://dx.doi.org/10.1145/2757226.2757235

32. Yaz, I. O., & Loriot, S. (2014). Triangulated surface
mesh segmentation. CGAL User and Reference Man-
ual, 4(1).

33. Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot
Li, and Bernd Bickel. 2017. Functionality-aware retar-
geting of mechanisms to 3D shapes. ACM Trans.
Graph. 36, 4, Article 81 (July 2017), 13 pages.
DOI: https://doi.org/10.1145/3072959.3073710

34. 3D contentcentral. Retrieved February 17, 2017 from
http://3dcontentcentral.com

