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ABSTRACT

Trusscillator is an end-to-end system that allows non-engineers
to create human-scale human-powered devices that perform os-
cillatory movements, such as playground equipment, workout de-
vices, and interactive kinetic installations. While recent research
has been focusing on generating mechanisms that produce specific
movement-path, without considering the required energy for the
motion (kinematic approach), Trusscillator supports users in de-
signing mechanisms that recycle energy in the system in the form
of oscillating mechanisms (dynamic approach), specifically with the
help of coil-springs. The presented system features a novel set of
tools tailored for designing the dynamic experience of the motion.
These tools allow designers to focus on user experience-specific
aspects, such as motion range, tempo, and effort while abstract-
ing away the underlying technicalities of eigenfrequencies, spring
constants, and energy. Since the forces involved in the resulting de-
vices can be high, Trusscillator helps users fabricate from steel, by
picking out appropriate steal springs, generating part lists, and by
producing stencils and welding jigs that help weld with precision.
To validate our system, we designed, built, and tested a series of
unique playground equipment featuring 2-4 degrees of movement.
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1 INTRODUCTION

The related work in personal fabrication [3] offers numerous exam-
ples of so-called kinematic systems [29] that allow users to design
and fabricate mechanisms that perform user-specified movement
patterns. Examples include the 3D-printed pantograph from Meta-
material Mechanisms [17], the 5m-tall dinosaur from TrussFormer
[23], and the animated cheetah created from Computational Design
of Mechanical Characters [9] reproduced in Figure 2a.

In this paper, we want to extend this line of work towards ma-
chines that are human-powered, such as playground equipment,
workout devices, and certain types of kinetic installations. “Human-
powered” means that these devices need to be operated with
the limited power that a human or, in some cases, a child can
produce.

Unfortunately, when it comes to designing devices for which
limited power plays a central role, the aforementioned systems for
designing kinematic machines are of little help. Without support
from a specialized software system, human-powered devices con-
tinue to be designed using time-consuming design cycles that iterate
back-and-forth between guesswork and physical prototyping (see
Section 4: “Expert interviews”).

We present Trusscillator, a software system that enables users
to create human-scale, human-powered machines, such as the play-
ground equipment shown in Figure 1. Trusscillator achieves this
by allowing users to add springs to their designs. As illustrated by
Figure 2b, springs have the ability to transform movement (kinetic
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Figure 1: (a) Trusscillator is an integrated system that allows users to design human-scale, human-powered machines. Here
designers are using it to design a dinosaur-inspired playground device. Trusscillator’s user interface allows designers to inter-
actively construct a steel truss structure, add coil springs, and specify the requirements in terms of motion range, speed, and
physical effort. Trusscillator responds by adjusting the coil springs and adding mass so as to produce the desired behavior. (b)
The resulting interactive dinosaur sculpture designed for two children challenges the riders to synchronize their movement
to causes the sculpture’s head to wiggle. (c) Given the scale of the involved forces, the structures created by Trusscillator are
made from steel. Trusscillator supports steel truss fabrication by generating stencils that (d) show where to attach temporary
connectors, (e) that hold steel rods in place, for (f) welding.
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Figure 2: (a) The cheetah mechanism created using [9] is only resembling the movement pattern of a real one, without consid-
ering the forces involved during motion. (b) Energy conservation makes a real-life cheetah’s! gallop efficient: (c) the elastic
tendons store and release energy in every step.

energy) into compression (potential energy) and transform that to be human-powered. The resulting devices do not bear a lot of
back into movement. Consequently, springs help keeping these de- similarities with kinematic machines, such as the kinematic cheetah
vices in motion with little effort and thus allow even larger machines from Figure 2a, but instead bear more resemblance with an actual

cheetah, which also uses springs (called tendons) to run efficiently

!https://www.dkfindout.com/us/animals-and-nature/cats/inside- cheetah
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enable movement

Figure 3: (a) The initial design of the brachiosaurus playground object is created using rigid truss primitives. (b) Designers
adjust the shape and lower the height for safety reasons. (c) Using the spring tool, designers enable parts of the model to move.
The newly created moving part of the model gets briefly highlighted in blue.

[30] (Figure 2c). These systems concerned with energy and motion
are typically referred to as dynamic systems [33].

To allow designers to create human-powered movement, Truss-
cillator offers a novel set of tools, specifically designed for dynamic
experiences (Figure 1a). These tools allow designers to focus on
user experience-specific aspects, such as motion range, tempo, and
effort while abstracting away the underlying technicalities of eigen-
frequencies, spring constants, masses, and energy use. (c-f) Since
the forces involved in the resulting devices can be high, devices
designed using Trusscillator are made from steel. Trusscillator helps
users to fabricate these devices not only by picking out appropri-
ate springs but also by producing stencils and placing temporary
connectors that help welding the resulting large-scale structures.

2 WALKTHROUGH

To demonstrate Trusscillator’s workflow, we present a scenario in
which two designers of playground equipment are designing the
dinosaur-inspired device shown in Figure 1. The two designers,
tasked to design a model for the playground associated with a nat-
ural history museum, are ideating around an interactive sculpture
of a brachiosaurus.

2.1 A brachiosaurus swing for two

As shown in Figure 3a, the playground designers start by creating
a rigid dinosaur sculpture by stacking truss-primitives, specifically
tetrahedra, and octahedra (building on TrussFab [22]). They place a
ragdoll figure onto the model, which inserts a matching seat for a
child. (b) Given that Trusscillator will fabricate the model from steel,
Trusscillator allows building models of any height. However, one of
the designers is worried about safety issues resulting from the seat
being located high up, so they place the dinosaur into “imaginary
water”, i.e., they remove its legs by delete truss elements.

As illustrated by Figure 3c, the two designers now turn the static
structure into a very basic swing: they select the spring tool and use
it to transform the three shown rods into coil springs. Trusscillator
responds by placing hinges at the adequate points below the seat
and acknowledges this by briefly highlighting the now movable

part (in blue). The dinosaur’s neck is not a hinging component and
the sculpture has become a simple interactive device. A child can
now bob back and forth, causing the dinosaur’s neck to wiggle.

As illustrated by Figure 4a, Trusscillator displays the properties
of this basic swing using what we call the motion bar: an average
6-year-old should be capable of making it rock roughly by the ampli-
tude indicated by the middle curved blue bar labeled “6”. Designers
can play back a simulation of the child rocking by clicking on this
bar.

Note that these properties are not coincidental: Trusscillator
computed the swing the moment it was created and has picked a
spring that is “just right”, i.e., neither so soft as to that a 12-years-old
could max out, nor so rigid as to that a 3-year-old would be unable
to move it.

The designers decide to further fine-tune the experience. As
discussed, the movement of a 12-year-old is ok per se (dark blue bar),
but they are concerned that the dinosaur head would reach down
far enough to hit someone. As shown in Figure 4b, the designers
reduce the device’s amplitude by grabbing the handle attached
to the motion bar and drag it inwards. Trusscillator responds by
re-running its optimization engine and replaces the springs in the
model with springs that produce motion in the request range (Figure
4c).

The reduction in amplitude has now caused the ride to oscillate
faster (0.6s period, indicated on hover). As shown in Figure 5a, Truss-
cillator considers this uncomfortable and displays a notification
(in the shape of a metronome, together with the word “fast”). The
designers click the notification to switch it to comfortable. Trusscil-
lator responds by re-running its optimization to find a frequency in
the range that is considered a pleasant rocking frequency (0.8-1.2s),
which it achieves by making yet another adjustment to the springs,
as well as by adding a weight to the head of the dinosaur as shown
in Figure 5b.

At this point, designers notice a third concern: the effort widget
suggests “laborious” (Figure 6a). This means the device requires
more than 8 cycles to reach maximum amplitude, bearing the risk
of children losing interest before getting it into full swing. One
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Figure 4: (a) Trusscillator initiates the model with a valid spring configuration. The resulting oscillating motion is summarized
in form of a motion-bar above the user, calculated for multiple age groups. (b) When designers enlarge the motion space by
dragging the scale handle, (c) Trusscillator finds a combination of softer springs that will produce the requested amplitude.
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Figure 5: (a) When designers changing the tempo widget from slow to comfortable Trusscillator runs its optimization and
(b) adds additional weight to the tip of the head to reduce the resonant frequency and tunes the springs again to maintain

amplitude.

of the designers proposes clicking the effort widget to reduce the
effort (see section 5.5), but the other designer sees the opportunity
to add another level of excitement and challenge to the design by
bringing in a second child. As illustrated by Figure 6b, they add a
second seat and yet another spring .

This update changes the widget from laborious to just right for
both children, as they now both contribute power. More importantly,
the resulting device has now created an additional challenge—a
social challenge: First, it requires the first child to recruit another
child as confederate to produce in order to successfully get the
device to reach peak amplitude. Second, it requires the two children
to synchronize their movement (or to decide to play against each
other). Trusscillator allows for this by running its optimization
procedure to tune the two seats to similar eigenfrequencies. To
get a sense of what the resulting synchronization will feel like,
the designers invoke simulations of the resulting movement (by
clicking on the motion bars for each of the three age groups).

The designers are excited about this new perspective and move
on to a physical prototype. They hit the export and fabricate button
and proceed to fabricate their device.

2.2 Fabrication pipeline

Trusscillator now exports the designed structures for fabrication
from steel rods, steel spheres, and steel springs, which users assem-
ble using a power drill, an angle grinder, and an electric welding
device.

The main challenge in assembling welded structures is to get
all elements properly aligned prior to welding, as they cannot be
adjusted anymore once a piece is welded. Trusscillator achieves
this by supporting users in first creating a provisional assembly;
only when everything is in place do users start to weld.

As a first step, Trusscillator producing a list with the lengths of
required steel tubes, the number of steel balls to be purchased, and
a list of the steel springs to be purchased (from a commercial spring
catalog [13]).

Based on these elements, the fabrication process continues as
illustrated by Figure 1c-f: (c) Trusscillator generates stencils for
marking the connection points on the nodes-spheres. (d) Using
the temporary connection system (e) users set up the provisional
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Figure 6: (a) Reducing the effort would require cutting on the weight of the structure, which designers can’t do. (b) Instead,
they add one more seating position. The final design comprises three spring-coupled inverted pendula, the head, middle seat,
and tail. (c) Children induce resonance by synchronizing their motion.
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Figure 7: (a) Trusscillator exports this node in the 3D model (b) in the form of custom stencils. (c) Users mark one spot on the
sphere, then attach the stencil at that point using a magnet, allowing them to mark the remaining incidence points. (d) Users
then set up a stand-up drill with a round ring as a jig, and drill the spheres.

structure, and (f) finally weld the entire structure. Trusscillator
supports this process as follows.

Trusscillator generates stencils as illustrated by Figure 7. (a)
To minimizes the resulting gap between rod and sphere, thus maxi-
mizing the quality of the welded connections, Trusscillator helps
users arrange rods and spheres so that rods hit spheres at a right
angle. (b) To show users where on sphere connect with rods, Truss-
cillator generates custom stencils that mark the so-called incidence
points. Stencils form star-like shapes and Trusscillator exports them
in SVG format. Users print and cut stencils manually using scissors
or they send the SVG to a knife cutter or laser cutter. (c) Users
attach a stencil to a sphere (using a magnet) and wrap the arms
around the sphere so that each arm marks one incidence point. The
stencils also help the assembly by displaying node IDs and edge
IDs. Users transfer this information onto the spheres by marking
the incidence points through small holes in the stencil. (d) Now
users drill 6mm holes at the marked incidence points where the
temporary connectors hook into.

Temporary connectors: Holding and welding the pieces in
place is a challenging task, even for experienced welders. To over-
come this difficulty, Trusscillator offers a system that helps pre-
assemble the structure, allowing users to position all rods at the
right places and at right angles with respect to the spheres before
welding starts. For this purpose, we designed a thin metal connec-
tor piece that on one side hooks into the holes of the node-sphere,
while its other side forms a cantilever spring that fits tightly into
the metal tubes and resists slipping out, as shown in Figure 8a. For
a secure connection, two of these metal pieces are inserted in every
hole with opposite hook orientation, so none of them will be able
to escape the hole when the tube holds them together (Figure 8b-c).
This way they are holding the structure temporarily but firmly
together for welding (Figure 8d). These connector pieces can be
produced in a local metalworking shop using CNC machinery. They
are considered as consumable material that stays locked inside the
structure after welding.
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Figure 9: (a) Spring-telescope fabricated using two fitting tubes. (b) Slit opening on a sphere for inserting the telescope. (c)
Revolute-joint connection. (d) Assembled chair model with a springy backrest.

This workflow of creating drilling stencils and using custom
temporary connectors is our contribution to ease the otherwise
hard to weld truss structures.

Spring telescopes and revolute hinges: To embed the off-
the-shelf springs into the structure, users now create simple tele-
scope elements by fitting two matching tubes into each other, as
shown in Figure 9a. The metal discs at the two ends encompass the
springs and prevent their buckling. These discs are then welded
on the rods at a predefined position, to hold the spring in the right
position.

As illustrated by Figure 9b, users mount spring telescopes into
the structure by cutting a slit into a steel sphere. The corresponding
holes for the axle-screw are also contained by the stencils.

As illustrated by Figure 9c, users now create revolute-joints
by drilling large holes into the node-spheres where a tube can
pierce through and form an axle. To fit two hinging parts together
Trusscillator slightly insets the nodes of one part (here the backrest
of the chair), so they can fit between the two outer nodes of the
structure. Figure 9d shows the finished assembly of a chair model
with a springy backrest.

We note that for safety reasons the motion range of the telescopes
have to be constrained to prevent the structure from over-actuation,
for example by adults. This can be achieved by adding mechanical
stoppers, such as rubberized bumpers, or strings that prevent larger
than expected motion (e.g., the blue straps in Figure 11), however
this feature is currently not automated by the software.

2.3 Design space

We have used Trusscillator to design a wide range of devices. The
samples are shown in Figure 10 including swings featuring 1D (b,
e, j, m), and 2D motion (a, c, f, g), as well as kinetic installations (h,
k) and balancing workout equipment (i).

While some of the devices feature collinear/coplanar spring ar-
rangements (such as the brachiosaurus from our walkthrough),
others create 2D motion paths, such as the “bird swing” shown in
Figure 11

We created most of these models following the workflow we
presented in the walkthrough section, i.e., we started by making a
static shape and then added movement later (“shape-driven” design).
However, other designs we created using a workflow that starts
out with an already moving structure. As illustrated by Figure 12,
Trusscillator supports this by offering predefined moving elements,
such as a hinged tetrahedron.

3 CONTRIBUTION, BENEFITS, AND
LIMITATIONS

Our main contribution is an end-to-end system that allows non-
engineers to create human-scale human-powered devices that per-
form oscillatory movements, such as playground equipment, work-
out devices, and interactive kinetic installations.

Trusscillator consists of a custom software system that allows
users to design trusses and add movement in the form of coil springs
and hinges, as well as a series of novel hardware tools that support
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Figure 11: (a) This “bird-swing” structure was designed to allow children to swing in two-dimensional space and also to be able
to influence each other’s experience. (b) The physically built prototype in action.
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Figure 12: Building a model based on primitives containing
springs speeds-up the design process. Here, the chair model
is constructed using a tetrahedron with one spring and two
hinges in only three steps.

the fabrication of the resulting steel structures, such as the drilling
stencils and a temporary connector system that supports welding.

Trusscillator allows designers to consider not only the shape
of a model, but also the experience it aims to produce, such as the
right amplitude, an enjoyable oscillation frequency, and the effort
it requires to be set in motion.

We identified the basic requirements for our software by inter-
viewing professional playground designers, and we have validated
our system by (1) designing 15 novel pieces of playground equip-
ment, workout devices, and interactive kinetic installations, two
of which we manufactured end-to-end, and by (2) conducting a
technical evaluation of the technical aspects (simulation times and
accuracy) of our approach.

Before devices designed using Trusscillator can be deployed,
additional safety checks, such as height, size of triangles, safety
stoppers, covering exposed springs, etc. need to be considered,
according to the applicable regulatory requirements, such as DIN
EN 1176 [10].

4 EXPERT INTERVIEWS

Before we started designing Trusscillator, we conducted semi-
structured interviews with 3 professionals playground designers
(P1-P3, all male between 40-55 years) recruited through purposive
sampling. They had 20, 6, and 12 years of field experience respec-
tively in a publicly listed company. Our objective was to learn about
the opportunities and challenges that playground designers face,
so we could address these using Trusscillator.

Before the interview session, we briefed the participants on
the concept that we were interested in and the general workflows
we wanted to support. Questions for the interview included the
existing design workflows that the participants followed, in par-
ticular, their strategies of ensuring the users’ safety, engagement,
and tailoring their solutions to fit the needs of specific age groups.
The interviews lasted between 90-120 minutes. All the interviews
were audio-recorded with the participants’ informed consent. We
analyzed the interview transcripts using thematic analysis.

All three participants started by explaining their current
workflow. They design using conventional CAD software (Revit,
SketchUp, Fusion360), after which they validated and adjusted their
designs against various safety standards and fabrication require-
ments. All three participants pointed out the absence of tools that
would support the design of an experience.

Robert Kovacs et al.

P2 explained: “When creating equipment based on springs, we
choose from a small ballpark of well-tested [very stiff] springs. We
just assume that they’ll work OK when we try it out. In case [they
do] not, then we need to order a new set of springs. As a result,
many of the spring-based toys at playgrounds are very hard to
move, i.e., very restricted in their motion”.

P1 gave us insights about the standards and norms that need to
be taken into account. He also explained that different age groups
fall into different safety categories. However, all equipment has to
be designed safe for all age groups: “We like to create exciting toys.
Having a certain level of danger is not inherently bad, as long as
[the children] are made aware of that danger by design. This is how
they learn to assess risk”

P3 saw potential in enabling a do-it-yourself approach: “Such
tools could enable developing countries to build cheap playgrounds,
that are not only fun, but the software could ensure that safety
standards are also satisfied”

Our key insight was that current design tools tend to focus the
on appearance, safety, and fabrication-related aspects. In contrast,
participants expressed their desire to support not just the necessary
technicalities in the design, but for designing the experience as well.
This formed the basis for our main objective for the design of the
Trusscillator system.

After the first development phase, we did follow up with the
participants to show them the resulting software in the form of a
video presentation. They were very excited about the result and
expressed their appreciation for pushing forward this aspect of
playground prototyping, that was non-existent before.

5 ALGORITHMS AND IMPLEMENTATION

The Trusscillator system is implemented in the form of three main
modules: (1) interactive editor frontend, (2) simulation server, and
the (3) exporter for fabrication. In order to allow our readers to
replicate our results, we reproduce the underlying implementation
and algorithms as follows.

5.1 Interactive editor frontend

Trusscillator builds on the editor components of TrussFab [22] and
TrussFormer [23], which provide the core functionality to create,
save, load, and export static and kinematic structures. Both the
editors as well as, Trusscillator’s frontend as well, are implemented
as a plugin for Sketchup Version 17 using the Ruby programming
language.

In particular, Trusscillator’s frontend extends Sketchup with UI
elements that specifically refer to oscillating devices: (1) the motion-
bar that users can drag to scale the motion range or click to play
back the corresponding simulation sequence, (2) the tempo and
effort widgets, and (3) the tools that add springs and hinges to the
design.

To assist the users in placing the springs at the appropriate posi-
tion, the Trusscillator frontend allows invoking a rigidity detection,
which we implemented based on Zhang et. al. [46]. Using this ap-
proach, Trusscillator informs users whenever a new moving part
has been enabled, or warns users when a placed spring is rigidly
confined.
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While the frontend takes care of modeling tasks and user ad-
justments, the oscillation characteristics and spring solutions are
provided by the simulation server.

5.2 Simulation server

We implemented the simulation server in the Julia [6] programming
language combined with the packages DifferentialEquations.jl [35]
and NetworkDynamics.jl [25]. The Julia language is geared towards
numerical computing and aims to combine the execution speed
of low-level programming languages with the expressiveness of
high-level languages.

In the context of Trusscillator, we get three central advantages
from this stack: (1) The abstraction of Julia and DifferentialEqua-
tions.jl enables us to choose from a large library of solvers and
choose the best performance/accuracy trade-off. (2) With the Just-
in-time-compilation capabilities of Julia we generate efficient ma-
chine code for every given model without the need of introducing
a separate compilation step, as it would have been necessary for
similar systems like Modelica [11].

Trusscillator simulates dynamics by formulating a continuous-
time system of differential equations that represents the given
structure. The system uses highly optimized solvers to obtain a
time-domain solution of the motion. We prefer this approach over
a discrete-time model (as commonly found in real-time physically-
based simulations) since it allows us to use variable step solvers
that can adjust their step size dynamically to ensure that the result
stays within specified tolerances. Furthermore, differential equa-
tion solvers are more robust against instabilities, such as the ones
caused by fast oscillations, and better suited for modeling systems
where maintaining energy conservation constraints plays a crucial
role.

Using this approach, we have implemented a custom simulation
package that can simulate the dynamics of arbitrary spring-damper-
rod networks.

graph
sketchup model [—| julia server worker processes
1 2
sketchup ui trusscillator http server optimizer "
plugin

N o B CT TR
I 4 T
fabrication export ‘J % spring & simulation

to openscad mass data data

Figure 13: Trusscillator’s high-level architecture.

As illustrated by Figure 13, Trusscillator’s simulator and opti-
mizer package runs as a stand-alone server and communicates via
HTTP with the UI and the Sketchup Plugin. Sketchup transfers
the model, encoded as a JSON string, to the simulation server. It
contains the graph representation of the structure, including the
lengths, spring and user positions, and the state of the requested
behavior. For running a simulation, the server derives a system of
equation from this structure by mapping the input graph structure
onto simulation components, such that the entire model can be
expressed in the following form: % = f(u,p,t), where u is the
state vector of the system, p is the parameter vector, and ¢ the
time, as follows from [35]. This representation treats all the nodes
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essentially as ball-joint connections with point masses. For any
arbitrary structure, the state of the system is uniquely defined by
the positions and velocity of individual nodes.

With NetworkDynamics.jl, we provide a graph structure and
specify the respective functions for every component separately,
serving as a lightweight layer that separates concerns. Here, we
specify four components: nodes, spring-dampers, rigid edges, and
fixtures. These components are mapped 1:1 from the model created
in the editor.

Node component is assigned to every node and together they
define the state of the structure. They compute their movement
from the forces of adjacent edges, their mass, and their actuation.
Every node has a state vector that contributes to the global system
state. It is defined by u = [r,ry, 7z, vx, vy, vz], where 7 is the
3D-displacement vector and ¥ is the velocity vector.

According to the formula above, we need to provide a function
that returns the derivative of the state vector u, given any state
vector (for reference, the derivative of displacement yields velocity,
and the derivative of velocity yields acceleration). Computing the
velocities is trivial, as they are already part of the function’s input
vector u. For obtaining the accelerations, we evaluate the term

_
N ZedgeEE Fedge Facr N
a= + + dgravity
mass mass

where E is the set of the adjacent edges with their corresponding
force vectors ﬁedge (see rigid edge components on how we obtain
these values). To account for gravity, we also add a global gravita-
tional acceleration force. Furthermore, we add an actuation force
ﬁact,in case the node has a ragdoll placed onto (see section 5.3).

Thus, the result that we return back to the solver is
[V, vy, Uz, Ay, Ay, a;] = %

Spring-damper components return the reaction force of a
spring component, as given by Hooke’s law and viscous-damping.
They take the state vectors of the two nodes they connect and
calculate a resulting force vector to both nodes as an output. We
calculate the overall force by taking the sum of the spring force and
damping: Feqge = k-(x—1I)—d-v, where k is the spring constant, [ is
the uncompressed length of the spring, d is the damping coefficient,
x is the distance between the two connecting nodes and v is the
scalar velocity along the edge vector. The latter two are directly
calculated from the connecting nodes’ state vector. The resulting
scalar is applied along the edge direction and presented as Fegg, to
the nodes.

Rigid edges are modeled as very stiff (essentially not movable)
dampers, analogous to the damping term of the spring-damper
component. They enforce a constant distance between the nodes.

Fixtures are anchor points of the structure, indicated by pods
in the editor. From the perspective of the simulation, these simply
expose a state vector with constant positions and without any
velocity to the edges.

Finally, to run the simulation, we need to provide valid initial
conditions i.e., a start assignment of the system’s state vector to start
the simulation (using the solver TRBDF2). For this, we obtain the
positions of each node directly from the client and set all velocities
to zero.
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5.3 Simulating human actuation

By default, Trusscillator simulates the structure behavior for three
age groups: 3, 6, and 12 years old (unless the user specifies oth-
erwise). For approximating how children will interact with the
structure, Trusscillator applies a periodic actuation force at the
ragdoll’s position. While an exact behavior would be hard to pre-
dict, Trusscillator assumes that the net power that a child exerts
over time is roughly constant. Trusscillator assumes a 3-year-old
to weigh 15 kg and output 30 Watts, a 6-year-old to weigh 25 kg
and output 45 Watts, and a 12-year-old to weigh 40 kg and output
75 Watts, based on data from [34] and [19].

The actuation force is then applied in the direction of the actual
velocity vector. To make sure that this force acts naturally on the
system, respecting its natural frequency, we apply this force only
during the acceleration phase of the movement. This behavior
roughly mimics how humans push a swing back and forth. The
value of this force is then calculated from the formula of power

Fact = i “‘%”Is’ , to respect the constant net power input over time.
To initialize the motion of the structure, Trusscillator simply applies

a short push to set the structure in its natural oscillation.

5.4 Equilibrium instantiation

If the system would simply apply spring lengths from the catalog or
use the edge length, the structure would immediately deform under
its own weight and, therefore, deviate from the user’s design intent.
Trusscillator enables the creation of structures in their equilibrium
positions without exposing its users to implementation details of
uncompressed spring lengths or their static compression at rest.
To achieve this abstraction, Trusscillator calculates, how much a
spring needs to be pre-compressed, to ensure that they hold up the
weight of the structure.

Trusscillator determines the level of pre-compression for static
equilibrium by checking how the structure behaves without any
adjustment. It runs a short-time simulation (e.g., 0.1s) and measures
the resulting velocity along the spring vectors. Then it adjusts the
springs’ uncompressed lengths in proportion to this velocity to
counter the initial movement. Trusscillator repeats this step until
the process converges and the structure stops moving.

The resulting spring lengths are provided for the fabrication
process, as well as, passed on to the simulation. Making the springs
hold up the structure ensures that no unwanted initial potential
energy gets introduced at the beginning of the simulation and
actuates the structure beyond our model.

5.5 Trusscillator translates amplitude,
frequency, and effort into mass, spring,
damper configuration

The main objective behind Trusscillator is to allow users not only to
design and build large-scale human-powered structures but also to
help them to get the physical properties “right”. The key idea here
is to shield users from the underlying physics perspective (where
devices are considered mass-spring-damper systems, see below) and
to instead, let the users interact in user experience-related dimen-
sions they are familiar with, i.e., range of motion (aka amplitude),
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frequency of the oscillation (aka tempo), and the time/energy re-
quired to swing up the device (aka effort), as illustrated in Figure
14a. For these input dimensions, Trusscillator determines spring
constant and mass configuration to satisfy the user’s design in-
tent. The relationship between the mechanical properties and the
experience attributes is illustrated in Figure 14b.

user amplitude
adjusts the
experience
attributes

2 X

effort tempo P

experience
= ~ attributes*
N

trusscillator
tunes the
mechanical

++ mass

" / .= +- sti i
properties == stiffness mechamf:al
/) s ===, const. damp. properties _
A stiffness
a —2 b “by const. damping & const. act. power

Figure 14: (a) The mechanical properties of the structure are
defining the experience attributes. (b) The correlation be-
tween the mechanical properties and the motion experience
(amplitude, tempo, and effort).

Trusscillator acquires the attributes of the oscillation by run-
ning a simulation sequence. During the simulation, the human-
mimicking force starts to actuate the device and the amplitude is
increasing as the energy is being accumulated in the system, as
shown in Figure 15a. Consequently, the velocity of the movement
also keeps increasing. However, proportionally to the velocity, vis-
cous damping starts to increase (Fyqmp = d - v), and this force is
counteracting the movement. With the velocity increase, the damp-
ing action is dissipating more and more energy into heat; up until
the point when the amplitude and velocity are so high that all the
input energy of the user is being consumed by damping. The orange
line in Figure 15b indicates this time point when the oscillating sys-
tem has reached the energy equilibrium and the amplitude remains
stable.

To exemplify this process, we take the simple bobbing saddle
model from Figure 14a, fit with a catalog spring with the stiffness
of k = 3376N/m, and damping d = 50 Ns/m, as shown in Figure
15a, and run the simulation for a 12-year-old user (40kg, 75W).
Trusscillator then obtains the following information:

Amplitude: Trusscillator takes the largest amplitude from the
simulated movement coordinates by finding out the maximum
distance between any two points in the time-series for the node of
interest. For the example above, it shows that the tip of the child’s
head will move about a 1m arc.

Effort: The time required to reach the energy equilibrium (ramp-
up time) is what Trusscillator takes to estimate the effort required
to swing up the device. Specifically, we take the amplitude mea-
surements and compare at which point in time the occurrence of
the largest amplitude drops below a 15% margin from the largest
amplitude. The diagram in Figure 15c¢ shows the velocity increase
has stabilized after around 3.5s. Trusscillator interprets this effort
as easy (up until 5s ramp-up time). From 5s to 10s it is considered
Jjust-right and above 10s is laborious, based on our observation of
common swinging behavior. This information is then displayed in
the effort widget to the user.
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Figure 15: (a) Trusscillator simulates the model (b) until the time point when it reaches an energy equilibrium. (c) The time
until the velocities don’t increase anymore is considered for determining the effort. (d) The peak of the frequency spectrum

determines the tempo metric.

Tempo/Frequency: Trusscillator analyzes this 3D velocity data
from Figure 15c using Fast Fourier Transform (Figure 15d) and
searches for the global maximum. In this example, the structure os-
cillates with the dominant frequency of 1Hz. This result is then clas-
sified as comfortable (0.5-1.5 Hz) based on input from [21]. Higher
frequencies are classified as shaky, lower is slow. This information
is displayed to the user in the tempo widget.

5.6 Optimization

To change the motion experience, Trusscillator has access to modify
the two mechanical properties, namely mass (by adding weights to
the structure) and stiffness (by choosing a spring from a catalog).
We assume damping to be fixed as an inherent property of the
material of the coil springs. This results in a challenging limitation
for tuning the experience, where not all the criteria can be satisfied
at all times. For this reason, Trusscillator utilizes a sampling-based
optimization approach.

Figure 16 illustrates Trusscillator’s optimization procedure,
which is loosely inspired by the simulated annealing strategy. First,
the algorithm searches for a viable baseline configuration. It as-
sumes one global spring constant for all springs in the structure. It
covers the range between 3kN/m and 20kN/m spring in intervals
determined by the preset resolution (e.g., 10). After each simulation,
we evaluate the simulation runs with the target metrics that we
want to optimize and assign a distance to every sample using the
distance function. We store the best (i.e., closest result) and proceed
with optimizing the springs with a higher resolution one by one. We
proceed analogously to the global sampling, only this time we don’t
consider the full spectrum of springs but only a window around
the currently best assignment (e.g., + 2kN/m), and every sample is
being simulated with a range of additional masses. To avoid combi-
natorial explosion, we only place one mass in every local search
step and place it at the highest point on one adjacent rigid group
(heuristically assuming that this has the largest effect on the result).
After every sampling round, we store the best parameter assign-
ment and resume it for the next spring. After all the springs have

been processed, we return the best matching parameter assignment
of the last round.

This algorithm returns in O(n) sampling steps, where n is the
number of springs, assuming that sufficient computing resources to
run all simulations for a given sample in parallel are available. Par-
allelizing the simulations within one sampling round and reducing
the dependencies of consecutive steps is key for reducing response
times and enabling interactivity.

global spring local sampling repeat for every
constant sampling spring

additional

parameter space
(spring constants,
additional masses)

/ ‘spring constant

simulation l

solution space
(amplitude, tempo,
effort)

..., return closest
. match of last run
X—

Figure 16: Spring optimization procedure.

For determining whether a design matches the expectation of
what the user chooses, we define a distance metric that can be calcu-
lated from the simulation result: )} .c. 3 - AAc + Afc + Aec + o(F),
where C is the set of children, and AA., Af;, Ae. are the normalized
differences of amplitude, frequency, and effort between target and
measured data for the respective child. We emphasize the ampli-
tude constraint with an additional weighting factor, as it is critical
for the mechanical function of the structure. The last term (o (F)),
which denotes the statistical variance over the measured frequen-
cies among the children. It incentivizes structureswhich are suitable
for achieving resonance and therefore differences in frequencies
are low.

The corresponding algorithm works as following:

For optimization, we only consider the oldest specified age group
(here 12 years), as that age group exhibits the most extreme behavior,
especially in terms of amplitude.



UIST 21, October 10-14, 2021, Virtual Event, USA

Algorithm 1 Spring optimization

best_parameter_vector = nothing
sampling_resolution = get_number_of_workers()
available_additional_masses = [0, 5, 15]
global_sampling = sample_all_springs(model,
range(1kN/m, 20kN/m, length=sampling_resolution))
best_parameter_vector =
select_best_guess(global_sampling)
for spring in springs

spring_constant = get_spring_constant(spring,
best_parameter_vector)

local_samples = sample_spring_and_masses(model,
spring, range(spring_constant - 2kN,
spring_constant + 2kN, length= sampling_resolution),
available_additional_masses)

best_parameter_vector =
select_best_guess(local_samples)
end
return best_parameter_vector

Before returning the information back to the client, Trusscil-
lator takes the closest matching springs from an online vendor
catalog [13], configures the structure with that spring, and runs the
simulation for all age groups.

5.7 Exporting stencils

Trusscillator renders the stencils using the parametric modeling
tool OpenSCAD [28]. The key challenge behind this stencil design is
that the longer an “arm” is, the larger the potential error caused by
a user shearing the material while wrapping it around the sphere.
We minimize this effect by choosing a star-like topology, where one
incidence point acts as center based on which all other incidence
points are being referred to. This prevents errors from propagating,
as would be the case with designs that daisy-chain incidence points.
Our algorithm picks the center point so as to minimize the distances
to the other incidence points.

6 RELATED WORK

Trusscillator builds on previous work from the domains of mech-
anism design, springs and compliant mechanisms, dynamics-
oriented systems in personal fabrication, and professional tools
for physics simulation.

6.1 Software tools for mechanism design

Since the emergence of 3D printers, researchers in the HCI and
computer graphics community have been looking into creating ex-
pert systems for helping everyday users in performing mechanical
engineering tasks. One of these non-trivial engineering tasks is
creating mechanisms, that have been researched in many flavors.
ChaCra [31] is an interactive design system for rapid character
crafting. Thomaszewski et. al. [41] looked into generating pleasing
motion paths for animated kinematic characters. Bend-it [45] is a
system for creating wire-bendable kinetic characters. Roibot [24]
augments passive everyday objects by adding motorized actuation
to them. Ion et. al. [17] proposed an interactive editor for creating
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mechanical metamaterial mechanisms. TrussFab [22] is an end-to-
end system for creating large-scale static truss structures, while
TrussFormer [23] also helps to animate these truss structures embed-
ding linear actuators into them. All these tools are providing great
help in automating specific engineering tasks of mechanism design;
however, they concern very little about the energy consumption
and dynamic properties of a mechanism.

Several software tools help the design of linkage-based mech-
anisms, such as Mechanism Perfboard [20], LinkEdit [5], or Link-
ageDesigner [26]. Some of these tools also allow users to explore
certain dynamic aspects of the mechanisms, however, they are not
(yet) suitable for simulating spring-based mechanisms.

6.2 Springs and compliant mechanisms

Springs, in their static and kinematic nature, have already been ex-
plored by the personal fabrication community. For example, Ondulé
[15] helps novices to design parameterizable deformation behav-
iors in 3D-printable models using helical springs and embedded
joints. Schumacher et. al. [38] have proposed a system for modify-
ing the underlying microstructure of 3D printed objects in order
to adjust their elasticity. Systems like [45] and [32] are focusing
on compliant mechanisms that utilize the elasticity of the material
to create motion. Roumen et. al. [37] have proposed SpringFit, a
system for users of laser-cutters to make their models cross-device
compatible by replacing the problematic press fit-based mounts
and joints with cantilever-spring-based mounts and joints. Ion et.
al. in [18] uses preloaded springs to mechanically transmit signals
in digital metamaterials. Takahashi et. al. [40] have created a sys-
tem for creating statically balanced planar spring mechanisms. The
bistable nature of compliant mechanisms has been explored by
Zhang et al. [46]. While all these works are focusing on springs and
elastic behavior, they are mostly concerned about the shape, static
balance, and static force the spring provides. Trusscillator expands
these approaches to the dynamic domain and explores springs in
motion.

6.3 Dynamics oriented systems in personal
fabrication

Predicting the dynamic behavior of mechanisms has also been
researched in the HCI and computer graphics community. Some
interactive design tools also leverage physics simulation, such as
SketchChair [38] and Umetani et. al. [43]. While the aforementioned
examples are still mostly concerned about statics, other tools also
help to explore the motion. For example, Spin-it [4] enables 3D
printing arbitrary spinning tops by optimizing the internal rota-
tional dynamic properties, while Pteromys [42] helps to optimize
the aerodynamics of free-flight glider paper airplanes. Chang et.
al. [7] have been developing haptic kirigami swatches that helps
designing specialized springs that provide a well-defined resistance
profile for haptic buttons and switches. Chen et. al. [8] proposed a
system for accurate simulation of dynamic, elastic objects at inter-
active rates. Similarly, Real2Sim [14] is a system that estimates the
material’s visco-elastic parameters retrieved from dynamic motion
data. Hoshyari et. al. [16] have created a workflow for reducing
unwanted secondary oscillations in expressive robotic characters.
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Figure 17: (a) The measurement points indicated on the real and virtual model. (b) Frequency response comparison of the push

and pull experiments.

Tang et. al. [36] presented a harmonic balance approach for design-
ing compliant mechanical systems with nonlinear periodic motions.
All these projects are dealing with predicting dynamic motion and
helping users in their design. Trusscillator extends this line of work
to human-powered oscillating devices.

6.4 Professional tools for simulating dynamic
physical systems

Physics simulation has become one of the most important enabling
technologies for engineering physical artifacts. For example, com-
mercial software like Fusion360 [2] readily offers finite element
simulation capabilities for engineers. Some interactive editors uti-
lize powerful frame-based simulation, such as Algoryx Momentum
[1] or Vortex Studio [44]. These systems are great for real-time simu-
lation of complex physical phenomena; however, repeatability and
precision of the results is not always guarantied.

On the other hand, continuous-time cross-domain analytic
solvers offer high accuracy and repeatability through a closed rep-
resentation of the system. Examples of such systems are Modelica
[11] and Mathworks’ Simscape [27]. They are very powerful in sim-
ulating cross-domain physical processes; however, their use often
requires a deep understanding of the simulated system and the ac-
tual language as well. Trusscillator bridges this gap by interfacing
a custom analytic solver with a high-level UI tailored for designing
spring-based oscillating mechanisms.

7 VALIDATION

To validate Trusscillator’s functionality, we designed 15 models
(Figure 10), including the two models that were fabricated physi-
cally, i.e., the “brachiosaurus” from Figure 1, the “bird swing” from
Figure 11. Trusscillator allowed a team of two to design, cut, drill,
assemble, weld, and paint each model in 2-3 days.

7.1 Simulation accuracy

We conducted a technical evaluation assessing the accuracy of
Trusscillator’s simulation, in which we compared the frequency
response measured for our “brachiosaurus” device with the fre-
quency response predicted by our simulation. We chose this evalu-
ation to determine whether our simulation approach is suitable for
representing the real world prototype across the entire frequency
spectrum.

Figure 17 (left) shows the evaluation setup. Three IMU loggers
(G-Sensor Logger [12]) were placed on the three moving parts of the
dinosaur swing, recording 60 data points per second. We measure
the "step response” of the mechanism in response to pushing the
dinosaur head node upwards and then rapidly releasing it, as well
as the response to pulling the “chin” downwards and releasing it.
We also measured the peak force applied to the system using a
SAUTER HP-5K digital force sensor and this same value was also
applied in the simulation environment.

Results: Figure 17b shows frequency spectra measured and sim-
ulated. We applied FFT on the acceleration data obtained from
the IMU on the real model (green line), and on the simulation
data of the respective node (orange line). As shown in Figure
17b the simulation data resembles the real-world observations
closely.

The slight differences between our demo model and the sim-
ulated data can be interpreted by the imprecision in fabrication,
increased friction, and slack in the joints, that causes additional
shocks and loss of energy. These parameters can be empirically
adjusted and implemented in the software; however, they are highly
dependent on the actual material used, fabrication quality, lubrica-
tion, etc. Another source of error are the simplifications that the
simulation assumes, such as lumping of masses on the nodes or
nonlinearities in the damping and spring forces.
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Table 1: Simulation benchmark results

Model # nodes # edges # springs Simulation time Optimization time
chair 8 18 74 ms 929 ms
bird-swing 26 76 797 ms 5544 ms
brachiosaurus 32 103 179 ms 7770 ms
7.2 Performance of the simulator ACKNOWLEDGMENTS

Simulating the oscillating behavior is the computationally most
expensive component of Trusscillator’s system. To validate that
the system can provide interactive design iteration cycles even for
complex models, we benchmarked the simulation steps on three
models: a simple chair with one spring in its backrest (Figure 9c),
the bird-swing (Figure 11), and the brachiosaurus (Figure 1).

We ran the simulation on a DELL XPS 15 9600 with Intel Core
17-10750H 2.6 GHz CPU (2020 edition) running on Ubuntu 20.04.
The output of the simulation is a common query used in our editor:
30 fps for 5s, resulting in 150 frames. We computed response times
by performing 10 consecutive runs and averaging response times.

As shown in Table 1, all the simulations run under 1 second—
appropriate for a turn-taking interaction.

We note that execution speed is sensitive to multiple factors, such
as, required accuracy, number of spring combinations, number of re-
finements, frequency of the movement, actuation power and more.
This is the main reason why the optimization is currently slower
than the simulation time multiplied by the spring count (slowest
simulation governs the time for one sampling round). Note that
the times reported here, are for a full optimization round, where
consecutive user interaction could also be reduced to a subset of the
springs and samples. We see further potential for speed ups by not
simulating every node position individually, but combining rigid
parts of the structure and simulating them as a single entity (de-
tected by the rigid group detection algorithm mentioned in section
5.1).

8 CONCLUSION

We presented Trusscillator, an end-to-end system that enables
novice users to design and build human-scale human-powered
machines. As we learned in our expert interviews, such devices are
usually subject to long design and prototyping cycles. Trusscillator
speeds up this process by encapsulating large parts of the required
domain knowledge from designing structurally stable mechanisms,
through tuning and verifying their dynamic behavior, to building
process and tools.

Zooming out, we think of Trusscillator as a tool that pushes re-
search on large-scale personal fabrication in two ways. First, it goes
the next logistical step from systems supporting static construction
to kinematic construction to now dynamic construction. Second, it
provides a computer-assisted system for the personal fabrication of
welded steel structures, thereby laying the groundwork for scaling
this line of research to bigger structures and larger forces.

As future work, we plan to introduce dampers into large-scale
personal fabrication, allowing users to design large-scale mass-
spring-damper systems.

We thank Philippa, Oli, and Tisza for play testing our demo objects,
Daniela Vogel for the design of the Ul elements, and Hany Elhassany,
Paul Methfessel, and Martin Taraz for their help with the welding
works.
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