Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Zénón paradoxonjai

Ez a közzétett változat, ellenőrizve: 2022. augusztus 20.

Zénón paradoxonjainak azokat a paradoxonokat nevezzük, amelyeket az eleai Zénón ötlött ki Parmenidész elméletének alátámasztására, miszerint az érzékek által alkotott kép félrevezető, konkrétabban, hogy a mozgás csak illúzió, valójában nem létezik.

Zénón és tanítványai, Zénón pénzért tanított, egy kurzusa száz minába került[1]

Zénón nyolc fennmaradt (és Arisztotelész Fizika c. művében leírt) paradoxonja nagyjából mind ugyanarra az alapgondolatra épül, és legtöbbjét már az ókorban is könnyen cáfolhatónak tartották. A három leghíresebb és legjobban védhető alább olvasható.

(1.: Akhilleusz és a teknős paradoxonja 2.: A fának hajított kő paradoxonja 3.: A nyílvessző paradoxonja)

Ez a három paradoxon sok fejtörést okozott számos ókori és középkori filozófusnak. Newton és Leibniz az analízis területén (elsősorban a végtelen sorozatok kezelésében) elért áttöréseinek köszönhetően váltak feloldhatóvá a 17. században. Azt, hogy a valós számok megalapozása és általában a hagyományos matematika számára nem jelentenek problémát, a 19. században sikerült végleg belátni; amikor az analízis eszközeinek megújításával a matematikusok számos nehéz problémát oldottak meg.

Akhilleusz és a teknős

szerkesztés
 
Akhilleusz és a teknős

Képzeljük el Akhilleuszt, a leggyorsabb görögöt, amint versenyt fut egy teknőssel. Mivel olyan gyors, nagyvonalúan száz láb előnyt ad a hüllőnek. Alighogy elindul a verseny, Akhilleusz pár ugrással ott terem, ahol a teknős kezdett. Ezalatt az idő alatt azonban a teknős is haladt egy keveset, talán egy lábnyit. Akhilleusz egy újabb lépéssel ott terem, ám ezalatt a teknős ismét halad egy kicsit, és még mindig vezet. Akármilyen gyorsan is ér Akhilleusz oda, ahol a teknős egy pillanattal korábban volt, amaz mindig egy kicsit előrébb lesz. Zénón érvelése azt látszik igazolni, hogy Akhilleusz sohasem fogja megelőzni, de még csak utolérni sem a teknőst.

Ma már tudjuk, hogy végtelen sok szám összege is adhat véges eredményt. A paradoxon esetében, ha összeadjuk a végtelen sok apró időszeletet, amit az egyes lépések igénybe vesznek, véges időt kapunk eredményül, méghozzá pontosan annyit, amennyire Akhilleusznak szüksége van, hogy utolérje a teknőst. Ha ennél több időt adunk, természetesen meg is előzi.

Ezt a megoldást egyesek bölcseleti alapon megkérdőjelezik, mondván, hogy végtelen sok számhoz vagy végtelen sok apró időszelethez végtelen ideig kellene az összeadást folytatni, így soha nem érhetnénk célba. A végtelenhez pedig több időt adni – e nézet szerint – eleve abszurditás, hiszen a végtelen minden lehetőséget magában foglal, így nem lehet ahhoz hozzáadni vagy elvonni. Ezt a nézetet az úgynevezett újzénoniánusok képviselik.

A fának hajított kő

szerkesztés

Ez a paradoxon az előző egy variánsa. Zénón nyolc lábnyira áll egy fától, kezében egy követ tart. A követ a fa felé hajítja. Ahhoz, hogy a kő eltalálja a fát, először meg kell tennie a köztük lévő távolság, azaz a nyolc láb felét, ehhez pedig valamennyi időre van szüksége. Ezután még mindig hátra van négy láb, ennek megtételéhez pedig először ennek a felét, vagyis további két lábat kell repülnie, és ehhez ismét adott idő kell. Ezután további egy, majd fél, majd negyed lábat kell megtennie, és így tovább a végtelenségig. Zénón következtetése: a kő sohasem éri el a fát.

A nyílvessző

szerkesztés
 
A nyílvessző paradoxon

Itt egy repülő nyílvesszőt kell elképzelnünk. Bármely időpillanatban a nyíl a levegő egy ismert pontján tartózkodik. Ha ennek a pillanatnak nincs időbeli kiterjedése, akkor a nyílnak „nincs ideje”, hogy elmozduljon, tehát nyugalomban kell, hogy legyen. Hasonló logikával belátható, hogy az ezt követő pillanatokban is nyugalomban van. Mivel ez az idő bármelyik pillanatára igazolható, a nyílvessző egyáltalán nem mozoghat: a mozgása csak illúzió.

Zénón ez alapján azt állítja, hogy a mozgás csak illúzió, valójában nem létezik, így tehát sebességről sincs értelme beszélni, sem annak határértékéről.

A feloldás szerint pusztán azért, mert egy kimerevített pillanatban a nyíl állni látszik, nem mondhatjuk, hogy valóban nem mozog, mivel a nyugalom csak időben elnyújtva értelmezhető. Ahhoz, hogy a nyíl nyugalmát ellenőrizzük, több különböző pillanatot kell vizsgálni, ezekben pedig a nyíl nyilvánvalóan különböző helyeken tartózkodik, tehát mozog.

A pontosabb vizsgálathoz ismét a differenciálszámításhoz kell nyúlni. Ezáltal a nyíl különböző időbeli helyzetei és a sebessége között pontos összefüggést állíthatunk fel a határérték-számítás segítségével. Attól, hogy a kiválasztott időszelet hossza nullához tart, a megtett távolság és az eltelt idő hányadosa (a sebesség) nem kell, hogy szintén nullához tartson. A valóságban egy véges, nem nulla értékhez konvergál: ez az érték a nyíl sebessége a kimerevített időpillanatban.

Kvantum-Zénón-paradoxon

szerkesztés

Modern kvantummechanikai eredmények igazolják, hogy a kvantumoknak nem lehet tetszőleges pontossággal megfigyelni egyszerre két tulajdonságát. Például, minél pontosabban megfigyeljük a térbeli helyét, egy bizonyos szinten túl az impulzus rovására megy, és fordítva. (Sokan összekeverik a megfigyelő hatásával.) Ez a jelenség sokakat emlékeztetett Zénón nyílvessző-paradoxonjára (a nyílnak sincs sebessége, ha egy adott pillanatban megfigyeljük), ezért elnevezték kvantum-Zénón-paradoxonnak.

  1. Platón: Alkibiadész I. 119 A

További információk

szerkesztés