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Abstract—As urban population grows, cities face many chal-
lenges related to transportation, resource consumption, and the
environment. Ride sharing has been proposed as an effective
approach to reduce traffic congestion, gasoline consumption,
and pollution. Despite great promise, researchers and policy
makers lack adequate tools to assess tradeoffs and benefits of
various ride-sharing strategies. Existing approaches either make
unrealistic modeling assumptions or do not scale to the sizes of
existing data sets. In this paper, we propose a real-time, data-
driven simulation framework that supports the efficient analysis
of taxi ride sharing. By modeling taxis and trips as distinct
entities, our framework is able to simulate a rich set of realistic
scenarios. At the same time, by providing a comprehensive set of
parameters, we are able to study the taxi ride-sharing problem
from different angles, considering different stakeholders’ inter-
ests and constraints. To address the computational complexity
of the model, we describe a new optimization algorithm that
is linear in the number of trips and makes use of an efficient
indexing scheme, which combined with parallelization, makes our
approach scalable. We evaluate our framework and algorithm
using real data – 360 million trips taken by 13,000 taxis in New
York City during 2011 and 2012. The results demonstrate that
our framework is effective and can provide insights into strategies
for implementing city-wide ride-sharing solutions. We describe
the findings of the study as well as a performance analysis of the
model.
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I. INTRODUCTION

With the steady growth in urban population [1], cities face
huge challenges around transportation, resource consumption,
and pollution. Ride sharing has been proposed as a strategy to
decrease road traffic and gasoline consumption [2] while at the
same time serving the transportation needs of city dwellers.
In large cities, there is substantial unused capacity that can
be filled by ride-sharing services. Consider, for example New
York City (NYC): each day, taxi cabs make 500 thousand
trips and serve 600 thousand passengers; this translates into
an average occupancy rate of only 1.2 passengers per trip [3].
While private companies such as Uber, Lift, Via, Bandwagon
and Cab With Me already provide ride-sharing services, they
represent a small percentage of the market.

A wide deployment of ride sharing requires a better under-
standing of its tradeoffs. This is challenging since there are
multiple stakeholders with different and sometimes conflicting
interests. Governments want less traffic and pollution; taxi

companies want to maximize their profits; and passengers
would like to reach their destination quickly and cheaply.
To design an effective policy, these interests need to be
considered. Early approaches to this problem have been pri-
marily devised on the basis of survey data [4] and analysis
of psychological incentives [5]–[7]. Ride sharing has also
been modeled as an optimization problem whose objective is
to identify optimal ride-sharing schedules [8]–[13]. However,
these approaches focus on small-scale problems, such as
sharing at airports, since large-scale optimization is often
computationally infeasible.

The availability of large volumes of taxi trip data creates
new opportunities to apply data-driven approaches to this prob-
lem. Santi et al. [14] proposed a graph-based approach to the
taxi ride-sharing problem and reported on results using NYC
taxi data. Their model computes optimal sharing strategies for
trips and contains two key parameters: the maximum number
of trips that can be shared and the maximum delay customers
can tolerate. While this allows the study of sharing benefits as a
function of passenger inconvenience, the model has important
limitations. Notably, it is intractable for scenarios that consider
the sharing of three or more trips and it assumes that all
trips are known in advance. Ma et al. [15] introduced T-
Share, a ride-sharing dispatch system that can serve real-time
requests issued by passengers and generates schedules that
reduce the total travel distance. This system, however, was
not designed to support simulations: it neither provides the
necessary parameters to simulate different scenarios, nor does
it scale to very large data sets.

We propose a data-driven simulation framework that enables
the analysis of a wide range of ride-sharing scenarios. In
contrast to the model used in [14], in our model, trips need not
be known in advance – the framework supports the simulation
of real-time ride sharing which serves unplanned trips, and fits
well the models using different vendors, such as Yellow cabs
and Uber. Furthermore, the simulation model represents taxis
and trips as distinct entities, and provide variables that enable
the study of realistic scenarios by taking into account the
needs and constraints of multiple stakeholders. These include
different customer preferences (e.g., maximum number of ad-
ditional stops and wait time), and taxi-specific constraints often
dictated by ride-sharing vendors, for example, the number of
passengers on a per-taxi basis and maximum number of shared
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Fig. 1: Our taxi ride-sharing model consists of three main entities:
taxis, passengers and a scheduler. Given a trip request issued in real-
time, our model assigns this trip to a taxi in such a way to optimize
a given cost function while at the same time respecting a set of
predefined constraints.

trips. The flexibility of the model comes at a cost: assigning
trips to taxis in real-time is computationally expensive. We
describe a new optimization algorithm that is linear in the
number of trips and makes use of an efficient indexing scheme,
which combined with parallelization, makes our approach
scalable. We evaluate the efficiency and effectiveness of our
model using taxi data from NYC, which contains information
about over 360 million trips taken by the NYC’s 13,000 taxis
in 2011 and 2012. The results demonstrate that our approach
is efficient: one simulation using over 150 million trips can be
run in under 10 minutes using a 1200-core cluster, allowing
multiple scenarios to be studied in a timely manner. We also
show that the framework is effective and can provide insights
into strategies for implementing city-wide ride-sharing solu-
tions. We experimentally compare our approach against [14]
and argue that their model can underestimate the benefits of
the taxi ride sharing.

II. RIDE-SHARING SIMULATION MODEL

Given a trip request issued in real-time, our model assigns
this trip to a taxi to optimize a pre-defined cost function while
at the same time respecting a set of constraints.

A. Simulation Components

The main components of our simulation model are illus-
trated in Fig. 1 and we describe them below.
Taxi Fleet. The taxi fleet refers to the set of taxis that are
involved in the simulation. In contrast to previous works,
where taxis are considered as homogeneous objects, to support
a multi-vendor environment (e.g., yellow cabs, green cabs, and
black car services)1 and different types of cabs, we consider
each taxi as a distinct object with its own ride-sharing specifi-
cations, which include: passenger capacity, maximum number
of shared trips (often dictated by the vendors), maximum wait
time for pick-up, and extra time for drop-off. In addition to
these sharing constraints, each taxi also maintains information
about its current speed, occupancy and the list of stops it has

1http://www.nyc.gov/html/tlc/html/industry/current licensees.shtml

Taxi DescriptionRide-Sharing
Constraints

C capacity of taxi expressed as the number of passengers
nshare maximum number of trips that can be shared by each rider (or

-1 if the taxi only limits this as per customer preferences)
tdelay or ddelay maximum time/distance the taxi is permitted to let its customers

wait for their pick-up.
textra or dextra maximum additional time/distance incurred by sharing a ride.

Vehicle States Description
o current occupancy, i.e., number of passengers on-board
id taxi identification number
v current speed

s0, . . . , sk list of stops the taxi has to make; s0 is the location of the last
stop location.

dodometer current odometer reading
ddriven distance from s0

Stop Info Description
p the location of the stop (could be expressed as the intersection

number in the road network)
o∆ the number of passengers associated with this stop, where

o∆ > 0: a pick-up
o∆ < 0: a drop-off
o∆ = 0: a waypoint (e.g., to look for riders)

TABLE I: Taxi specifications: ride-sharing variables and vehicle state
information associated to each taxi and stop event.

Passenger DescriptionRide-Sharing
Constraints

op number of passengers
tpick time requested for pick-up
ppick pick-up location
pdrop drop-off location
nshare maximum number of trips to be shared
tdelay maximum time the customer group is willing to wait for pick-up
textra maximum time the customer group is willing to tolerate in

addition to the actual trip time

TABLE II: Customer group ride-sharing parameters.

to make to serve its scheduled riders. The list of variables
associated with a taxi is given in Table I.

A taxi in our model is a dynamic object and is always on
the move. Even without any passenger on-board, the taxi still
has a destination where it drives to, for example, to look for
new passengers. To capture this, we allow each taxi to define
favorite locations at certain times of the day that it would drive
to when it is not occupied.
Passengers. We assume that passengers ride in groups of size
greater than or equal to one. Each group is associated with
a drop-off location and a set of ride-sharing constraints (e.g.,
how many other groups they are willing to share a ride with
and how much additional time/distance they can tolerate). We
assume this information is available when a customer initiates
a taxi request, either by calling a control center, using a mobile
app, or communicating this directly to a driver in case of street
hailing. Table II lists the variables associated to passengers in
our model.
Scheduler. The scheduler receives pick-up requests from pas-
sengers and finds the most appropriate taxi for each of them
based on pre-defined metrics. To do so, the scheduler must be
aware of all taxi locations along with their current states at all
times (see Table I). We describe the details of the scheduling
algorithm in Section III.
Trip Data. The proposed simulation framework is data-driven,
allowing historical trip data to be used to study the tradeoffs
of different ride-sharing strategies. We assume the availability



Input Description
Parameters

m number of taxis
C default taxi capacity. Optionally, the capacity for each

taxi may be customized by providing an additional array
{c0, c1, ..., cm−1}.

nshare maximum number of trips to be shared by default. This number
initially populates both of the nshare values of each taxi and
passenger ride-sharing constraints (see Table I, II), unless speci-
fied otherwise. The motivation for having this parameter defined
globally was to allow agencies/taxi vendors to define their fleet
policy in addition to what described by the drivers and riders.

tdelay(ddelay), maximum wait and additional time(or distance) each customer
textra(dextra) could spend by default. Similar to nshare above, the motivation

for having these parameters defined globally was to give addi-
tional flexibility to the users.

f(r, c) a cost (metric) function that given a taxi c and a pick-up request
r return the cost of accommodating r with c. By default, this
function evaluates the additional distance that c must drive to
accommodate r.

TABLE III: Simulation input parameters.

of trip data which include: taxi ID, pick-up and drop-off time,
latitude and longitude for both pick-up and drop-off, travel
distance, and number of passengers. We model trips and taxis
as separate objects, and track the state of each taxi during the
simulation. This is equivalent to assuming that the data set is
a sample of trips from an unknown distribution and ignoring
that each trip was originally associated with a particular taxi.
Road Network. The underlying road network of a city is
represented as a directed graph G(V,E). All taxis travel along
this road network. Each directed edge e ∈ E represents a road
segment, and each node v ∈ V represents the intersection
of two or more roads. When a road allows traffic flow in
both directions, there are two directed edges for that road.
Given a segment ei, ti is the distance (or time) a vehicle must
travel from one intersection point to another along ei. Note
that traffic conditions can be easily incorporated in the model
by introducing weights on edges of the graph as explained in
Section III. We assume that the origin and destination of a trip
correspond to nodes in this graph. If the trip begins or ends
in the middle of a road segment, we approximate the location
to the nearest intersection node.

B. Data-Driven Simulation

The simulation engine aims to derive the best ride-sharing
scenario based on a set of input parameters (shown in Table III)
in a data-driven fashion, where pick-up requests are derived
from historical data. It operates in an event-driven manner
and updates its state when a pick-up request is issued. When
a customer group requests a taxi, the scheduler receives the
information and requests all taxis to report their status (i.e.,
position and sharing status). The scheduler then computes the
additional cost for each taxi to accommodate this trip based on
the cost function f , and selects the taxi with the minimal cost
that satisfies all ride-sharing constraints. If no appropriate taxi
is found, the request is denied. As we discuss in Section III,
the simulation engine allows different scheduling strategies.

Since taxi ride-sharing typically occurs in real-time, our ap-
proach needs to support online simulations, that is, simulations
where trip requests are issued dynamically. Thus, the sched-
uler must evaluate the current conditions and respond to the
customer immediately. If the request is accepted, the current

state need to be updated as well. The need for high throughput
and immediate responses separates us from previous work. For
instance, [14] assumes that all the trips are known in advance
which can substantially reduce computational requirements but
does not lead to a realistic ride-sharing solution.

III. SIMULATION ALGORITHM

In the taxi ride-sharing problem, the goal is to minimize the
total cost or maximize the total utility of sharing while meeting
a set of constraints. Examples of costs include travel distance,
CO2 emissions, gasoline consumption, time-to-pick-up, idle
time, or weighted combinations of these basic cost functions.
We use the following formulation to design our optimization
algorithm. Let f(ri, cj) be the additional cost (e.g., distance,
CO2 emissions) a cab cj incurs to share its current trips with
a new trip ri. Let n be the number of trips and m be the
number of taxis. The minimum total travel cost for the first i
trips is:

T (i) =

{
T (i− 1) + min1≤j≤m{f(ri, cj)}
T (i− 1) if there is no available cab.

We can use a similar formulation to maximize the utility (e.g.,
revenue). Henceforth, to describe our algorithm, we use the
additional travel distance for a cab cj to accommodate a trip
ri as cost function f(ri, cj) and try to minimize the total travel
distance T (n).

The algorithm considers all trips in chronological order. It
attempts to mimic real-time dispatching by minimizing T (n)
in an online fashion. For each trip ri, the state of a cab cj is
updated based on the time elapsed since the last trip ri−1 and
the computed additional distance f(ri, cj). Trip ri is assigned
to the cab with the minimum additional distance, and the total
cost T (i−1) is updated. Note that this is not a globally optimal
solution: we do not consider all the possible combinations
of trips to be shared. However, this matches a more realistic
scenario in which we are not able to foresee the future trips
or make changes to the past trips.

A. Preprocessing Phase

Before running the simulation, trips are sorted in chronolog-
ical order (by pick-up time), and as described in Section IV,
erroneous data are eliminated. We use a graph representation
of the road network. We obtain this representation from
the data in [16], which contains the longitude and latitude
of each intersection as well as the distances between any
two adjacent intersections. We apply Dijkstra’s algorithm to
compute shortest paths and distances between any two given
intersections. In this step, we also make sure that the shortest
paths are indexed in a cache-coherent layout to facilitate our
in-simulation queries (see Section III-D). The running time
of the preprocessing phase is O(k3+n log n), where k is the
number of intersections and n is the number of trips.

Note that traffic conditions can be easily integrated in the
simulation. One can replace a single shortest path matrix with
a different shortest path matrix for each hour of the day. In
each of these matrices, distance between any two intersections
is adjusted according to the traffic conditions that can be



Algorithm 1 Taxi ride-sharing simulation
1: Parameters: m: the number of cabs, C: the capacities of cabs, nshare , ddelay ,

dextra , f(r, c)
2: Inputs: R: a set of trips
3: R← Sort(R)
4: InitializeCabs(m,C)
5: for i = 1 to n do
6: ElapsedTime← PickUpTime(ri)− PickUpTime(ri−1)
7: f∗ ←∞
8: for j = 1 to m do
9: UpdateState(cj)

10: fij ← f(ri, cj)
11: if f∗ > fij then
12: f∗ ← fij
13: c∗ ← cj
14: end if
15: end for
16: Assign(ri, c

∗)
17: T (i)← T (i− 1) + f∗

18: end for

Algorithm 2 Cost Function f(r, c)

1: Inputs: r: a trip, c: a cab
2: S ← a list of stops of c including its current location {s0, s1, . . . , sk}
3: Ddrop ← ShortestPathDistance(sk, pdrop) {sk: the last stop in S}
4: idxpick, D

∗ ← FindPickUpOrder(r, c, S,Ddrop)
5: if idxpick ≤ k then
6: Dpick ← D∗ −Ddrop

7: idxdrop , D
∗ ← FindDropOffOrder(r, c, S, idxpick , D

∗,Dpick )
8: end if
9: return D∗

10: Output: D∗: an additional distance for cab c to accommodate trip r

inferred if additional traffic data is available. In particular, this
can be achieved by scaling the weights of the edges in the road
network by the ratio of the average speed on that edge at a
given time and a base speed (for instance, speed limit).

Finally, observe that by separating the notion of a cab from
a trip, we gain extra flexibility that is not present in [14]. For
example, we are able to study the relationship between the
number of cabs and shareability. We can also consider scenar-
ios in which different cabs have different capacities. Moreover,
we can select the initial locations for each individual cab.

B. Simulation Phase

As shown in Algorithm 1, we consider each of the n trips
in chronological order. For each pick-up request ri, we go
through all the cabs in the fleet and update their states based
on the time elapsed from the last trip’s pick-up time. For each
cab cj , we also compute additional cost f(ri, cj) and we assign
ri to the cab with the lowest additional cost.

To update the state of a cab (i.e., location, occupancy and
stops that it is visiting to pick up and drop off passengers),
we need its speed, which is defined to be the speed of the
trip whose pick-up or drop-off takes place next. This can be
estimated using the duration (drop-off time − pick-up time)
and the distance of this trip. Once we have an estimation of
the speed, the traveled distance and position of each cab can
be interpolated from the time it spent from the beginning of
the trip. At the same time, we also update the cab occupancy
and planned stops if there was any scheduled drop off or pick
up along its traveled itinerary.

The most straightforward way to compute additional cost
f(ri, cj) is to explicitly find an optimal route for cj that
includes the pick-up and drop-off locations (ppick and pdrop
respectively) of ri and to compare its cost with the cost of

the current route for cj . However, computing the optimal path
is known as the Sequential Ordering Problem (SOP) which
is a version of the Traveling Salesman Problem and is NP-
hard [17]. Thus, to make the computation tractable, we use a
heuristic to find a best route for cj to accommodate ri. We
first find a position to insert ppick of ri into the list of stops
S assuming that the order to visit those stops stays the same
and pdrop of ri is added to the end of the route. After that,
we adjust the order of pdrop so that we can find a route with
the lower additional cost. Along with computing f(ri, cj), we
check if cj has enough capacity for all the passengers of ri
and if the constraints given by nshare , ddelay and dextra are
satisfied. Otherwise, we set f(ri, cj)=∞. After we assign ri to
the cab with the minimal additional cost, we update the stops
S to reflect this assignment. The computation of f(ri, cj) is
described in Algorithm 2; we discuss it in detail below.

Let S={s0, s1, . . . sk} be a list of scheduled stops for
cab cj , and let ppick and pdrop be the pick-up and drop-off
locations of ri, respectively. If cj is vacant, the additional cost
f(ri, cj) is simply the sum of shortest path distances between
its current location s0 and ppick , and ppick and pdrop .

If cj has passengers, we need to find the best positions to
insert stops ppick and pdrop into S. The challenge is to find the
order for those with the smallest additional distance and at the
same time satisfy all the constraints, in particular, making sure
that each trip is shared with at most nshare other trips and the
number of passengers on a cab does not exceed the capacity
C at all stops. In addition, for each trip we ensure that the
delay distance (the distance from the location where this trip
was assigned to its pick-up location) and extra distance (the
length of the route from ppick to pdrop including other stops
minus the shortest path distance between ppick and pdrop)
does not exceed ddelay and dextra respectively. To do so, we
aggregate information about the maximum number of shared
trips, maximum occupancy, the delay and distance among the
stops and each stop maintains such information. We use this
information to check if all the constraints would be satisfied
for a trip request and the trips that are already being served.

To compute the additional distance to accommodate ri, we
assume temporarily that the drop-off will happen after the last
stop sk. Let Ddrop be the length of a shortest path between
sk and pdrop . As mentioned above, we first find a position
for ppick (Algorithm 2, line 4). Suppose l′ ∈ {0, . . . , k} is
such that each trip containing one of stops sl′ , . . . , sk can
be shared with at least one more trip and the occupancy o
of cj does not exceed the capacity C of cj at any stop of
sl′ , . . . , sk. For each l ∈ {l′, . . . , k−1}, we try to insert ppick
between sl−1 and sl. If the lengths of shortest paths between
sl−1 and ppick , ppick and sl, and sl−1 and sl are D1, D2

and D3 respectively, then an additional distance is defined to
be D=D1+D2−D3+Ddrop . Then, we determine the position
of ppick that minimizes this additional distance D and at the
same time satisfies the delay and extra distance constraints
given by ddelay and dextra respectively for both ri and all the
trips in service. Let f ′(ri, cj) be the minimum of D over l
and sp ∈ S be the first stop after ppick .



Next, we search for a best position for pdrop (Algorithm 2,
line 7). Similarly to the previous process, for each sl ∈
{sp−1=ppick , sp, sp+1, . . . , sk−1}, we query for the shortest
path distances between sl and pdrop , pdrop and sl+1, and sl
and sl+1. Let D4, D5, D6 denote these distances respectively.
Then, an additional cost for each new route is defined as
D′=f ′(ri, cj)−Ddrop+D4+D5−D6. We select the route that
minimizes the additional cost, i.e., min{D′, f ′(ri, cj)}, and set
f(ri, cj) to be this quantity. If a route is such that the extra
distance or delay for ri and trips in service exceed dextra or
ddelay , then the route is discarded. Note that the algorithm
performs pruning. It stops considering a cab once the delay
constraint given by ddelay is no longer satisfied. It also prunes
stops (the underlying search space of the approach) – it only
considers stops that satisfy capacity and sharing constraints.
Time complexity. The complexity of the simulation phase of
our algorithm is O(nm), which is linear in the number of
trips. This allows us to scale dynamic pick-up and delivery
tasks to large data sets. However, a large number of shortest-
path queries is needed for each trip and cab (Algorithm 2,
line 3, 4 and 7). Even though the algorithm is efficient, these
queries become bottleneck for efficiency. Below, we propose
two strategies that exploit parallelism and an efficient shortest-
path indexing scheme to support large scale simulations.
Discussion. Approximation algorithms for SOP have been
studied extensively [17], [18]. While our heuristic may appear
to have a performance that is suboptimal compared to these
algorithms when a trajectory for a particular cab is considered,
the tradeoff of using a heuristic approach is substantially
reduced in our study due to the large number of cabs in-
volved. More precisely, suppose T is a set of all possible
trajectories. If we assume that the set of optimal trajectories
T ∗ ⊆ T associated with each cab is an i.i.d sample of size
l and X1, X2, . . . , Xl are costs of these trajectories, then the
probability that the minimum cost found by our heuristic is
more than ε away from the optimal cost Θ is:

P (min(Xi)−Θ > ε) =
[
P (Xi −Θ > ε)

]l
=
[
M−ε
M

]l
where M is the maximum possible cost and the second
equality follows from the definition of uniform distribution.
For instance, suppose l=5000, M=30 miles and ε=0.2 mile,
the probability that the minimum cost derived by the heuristic
would be more than 0.2 mile away from the optimal cost is
2.9857e−15.

C. Exploring Parallelism

Though our simulation algorithm achieves linear scaling
with the number of trips, running a simulation at a large scale,
e.g., with one year of data, can be prohibitively expensive.
Using one CPU core, our algorithm takes almost 15 minutes
to complete a simulation with 11,500 taxis for a single day.
To address this problem, we leverage parallel architectures
using two strategies: intra-request for the cost computation
and inter-partition for the temporal simulation.
Intra-Request Parallelism. Since each simulation step de-
pends on the results of the previous step, it is not possible
to achieve parallelism at this level, i.e., having each thread

ith$row$

jth$column$
D(i,j)$

shortest$path$$
from$i$to$j$

(a)

D(src,*))

D(dst,*))

D(*,src)) D(*,dst))

(b)

D(src,*))

D(dst,*))

D(*,src)) D(*,dst))

DT(src,*))

DT(dst,*))

=)D(*,src))

=)D(*,dst))

(c)

Fig. 2: Cache layout for precomputed shortest paths: (a) a distance
matrix as a result of running Dijkstra’s algorithm on all intersection
pairs; (b) memory access patterns from computing f(r, c) for a pick-
up request going from src to dst – red indicates a high chance of cache
misses; (c) storing the transpose of the distance matrix to avoid cache
misses in backward lookups.

execute one step. However, computing the sharing cost of each
taxi with respect to a pick-up request can be done in parallel
since this evaluation for each taxi is independent from each
other (Algorithm 1, lines 9–14). In our implementation, we
use a thread pool model to distribute works, i.e., a set of taxis,
among machine cores for this computation. To minimize the
inter-thread communication, each worker thread processes a
number of taxis at time.

Nonetheless, all workers still need to synchronize with
each other at the end of each pick-up request (Algorithm 1,
line 16-17) to assign the best solution for the trip request.
Generally, a lock has to be used to avoid race conditions.
However, using locks on hundreds of millions of iterations
would be a bottleneck itself. Thus, to work around this issue,
we make use of atomic operations that are available on modern
x86 architectures to construct our work queue in a lock-free
manner [19]. Precisely, using 8 threads, our simulator was able
to finish a one-day run in just under four minutes, with the
lock-free queue giving us a 20% boost in performance.

Inter-Partition Parallelism. The intra-request strategy paral-
lelizes tasks based on the number of taxis, which is relatively
small. Thus, it is not able to leverage larger systems with
thousands of cores. In order to utilize larger resources, we need
to parallelize tasks based on the number of pick-up requests.
As stated above, running simulations in parallel on separate
pick-up requests is not possible due to the dependency of
steps. Fortunately, there were almost no trips sharing during
the early morning hours, 4AM, which coincides with the AM
shift change of NYC taxis [3]. Using this insight, we can safely
divide our data into independent simulations of one-day in size
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Fig. 3: Shortest path query performance with (green) and without
(red) cache-coherent layout. The cache-coherent layout reduced the
number of cache misses substantially (3x-6x less); thus, improve
the overall simulation performance. The experiments were run on
an entire day worth of taxi trip records (∼300k requests), using
nshare=4.

without sacrificing the correctness of our simulation. This way,
an entire year simulation could be divided into 365 sub-tasks
that can be run in parallel. Nevertheless, a final reduction step
is still needed for reporting the result of the entire simulation.
This phenomena is not specific to NYC and one can expect that
periods of low taxi activity that occur naturally due to human
diurnal cycle can always be used to parallelize the simulation.

Spawning processes for the above sub-tasks using a tra-
ditional framework, such as MPI, should serve our need;
however, it offers little aid in performing data analysis on
the results (such as generating plots of shared trips). We have
extended our system to support the MapReduce framework and
allowing the integration of analysis tasks using MapReduce
jobs. In our setup, each mapper is a simulator program that can
process independently a set of pick-up requests. Data filtering
may be applied at this stage to limit data requests to some
constraints, e.g., a spatio-temporal condition. Most analysis
tasks happen in the reduce phase of our framework. Depending
on the analysis, users can specify an appropriate output for the
map phase. The results reported in Section IV were obtained
using the MapReduce framework.

D. Cache-Coherent Shortest Path Index

Our simulation algorithm uses shortest path queries exten-
sively (Algorithm 2). This is where our computation spends
the most time. In particular, each computation of f(ri, cj)
makes a series of shortest path queries to all stops of cj to
exhaustively find the minimal solution. Since the complexity
of our algorithm is O(mn), this could result in a very large
number of queries. For example, performing a simulation of
11500 taxis with nshare=4 on a day worth of taxi trip records
(∼300k requests) would require over 3 billion shortest path
queries. Thus, it is of utmost importance that we build an
efficient shortest path indexing scheme to support such queries.

Our initial approach was to precompute and cache the short-
est distances (and their predicates) for all possible intersection
pairs in NYC. The storage size of this matrix is fairly small

(about 500MB for roughly 10,000 intersections), and would fit
completely on commodity PCs. Therefore, our shortest path
queries are now reduced to just memory accesses. The data
structure for this caching scheme is depicted in Fig. 2a.

Nevertheless, our experiments still show under utilization of
CPUs when running large experiments. Inspecting further, we
noticed that there was a large number of L2/L3 cache misses
for these queries (>50% of the memory access). This can be
explained by the memory access pattern which is described
in Fig. 2b. Each time we compute the cost to accommodate
a request, we have to issue shortest path queries originating
from as well as going to its pick-up location src and drop-off
location dst. In fact, over 95% of the queries involve src and
dst. Among these queries, forward lookups, i.e., finding short-
est paths originating “from” an intersection, would present a
cache-coherent memory access patterns (depicted in green).
However, backward lookups, i.e., finding shortest paths going
“to” an intersection, is likely to incur cache misses most (if
not all) of the time. This is because elements inside a column
could be tens or hundreds of megabytes apart from each other.
In this case, the entire shortest path computation would need
be in cache to have all requests served without any penalty.

We propose a simple, yet efficient, cache-coherent layout
to increase the cache coherence of shortest path lookups.
By transposing the shortest path matrix, backward lookups
become forward lookups and vice versa. Therefore, we elected
to store an additional transposed matrix in our shortest path
cache to convert all backward lookups to forward lookups. As
illustrated in Fig. 2c, each CPU only needs to keep 4 rows
of data in its L2/L3 cache to serve all shortest path queries
related to a trip request. This comes at a cost of doubling the
shortest path data structure; however, it significantly improves
the simulation performance. Fig. 3 shows the shortest path
query performance with (green) and without (red) cache-
coherent layout. The cache-coherent layout was able to reduce
the number of cache misses up to 6 times on a single core,
thus, resulting in a 2x speedup of the overall performance.
The experiments were run on an entire day worth of taxi
trip records (∼300k requests), using nshare=4. However, the
speed-up of using multiple cores was not demonstrated after 4
cores, especially at 16 cores, due to the saturation of memory
bandwidth that overshadowed the computation cost. We found
that using 4 cores yields the best performance ratio; hence, we
used this setup for our experiments, unless noted otherwise.

E. Complexity Analysis

As mentioned above, the serial complexity of our simulation
is O(mn), asymptotically. A tighter bound is, however:

O(n · (mCf + Ca)) (1)
where Cf and Ca are the complexity of our cost function
(Algorithm 2) and taxi assignment (Algorithm 1, line 16),
respectively. Both Cf and Ca are O(|S|), where |S| is
the maximum number of stops each taxi maintains. Since
O(|S|)=O(nshare), the complexity of our algorithm is indeed
O(nsharemn). Given that nshare is usually much smaller
than m and n (e.g., 4 or 5 vs. roughly ∼10k and ∼500k,



respectively), we can consider nshare as just a constant.
For the parallel complexity analysis, we show that our

implementation is cost optimal, i.e., its asymptotic running
time multiplied by the number of parallel processors involved
in the computation is comparable to the running time of the
best serial implementation [20]. Since the inter-partition paral-
lelism is a direct share-nothing computation and is expected to
achieve cost optimality through the map phase of MapReduce,
our focus is on the intra-request parallelism. For a thread pool
of size p, the sharing cost computation of m taxis is evenly
distributed to p threads, resulting in the time complexity:

O(n · (mp Cf + Cs + Ca)) (2)
where Cs is the synchronization time of all threads at the end
of each request. In our case, Cs=O(p) since we only need to
compare solutions of p threads to select the optimal one. By
definition, our framework can achieve cost optimality iff:

p · (n · (mp Cf + Cs + Ca)) = O(nm)

n · (mCf + p2 + p · Ca) = O(nm) (3)
In order to satisfy Equation 3, the following must be true:

Cf=O(1), p2=O(m) (or p ≤
√
m), and Ca ≤ m

p . In our case
where p is always set to at most 8 and nshare is a constant, all
of the above conditions are always true. Thus, the parallelism
in our framework is cost optimal.

The above constraints also define the class of algorithms that
can be plugged into our framework without loss of scalability.
In particular, the algorithm that finds a route for each cab (Cf )
should have a time complexity that is independent from m and
n while selecting which cab should service a given trip (Ca)
must be done in linear time. These guarantee the asymptotic
complexity of the system to be O(mn). However, if a more
complex algorithm is desired, it can still be integrated into
our framework, possibly with an additional cost. For example,
employing a trip selection algorithm that runs in O(m) time
or a taxi selection algorithm that runs in O(m2) time would
result in an overall complexity of O(m2n) for our system.
Nevertheless, the inter-partition parallelism would always be
in place regardless of the scheduling algorithms chosen.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the scalability of our ap-
proach using the NYC taxi trip data set described below. To
run our experiments, we used the open source Apache Hadoop
software library on a 1200-core cluster. We also describe
findings of our study which indicate that our approach is
effective and derives information that may be useful to policy
makers, the taxi industry and riders.

A. Data

For our study, we used the NYC taxi trip data set of 2011
and 2012 which was provided to us by Taxi & Limousine
Commission (TLC) through a FOIL request.2 This represents
a superset of the data set used in [14], where only 2011
trips were considered. The data contains information about
360 million trips taken by the 13,237 taxis in NYC. Each

2An open data set containing one year of data is available at http:
//chriswhong.com/open-data/foil nyc taxi.

(a) (b)
Fig. 4: (a) The percentage of saved total travel distance through
ride-sharing for nshare=1, 2, 3, 4 (b) The average travel distance for
nshare=0, 1, 2, 3, 4.

trip is represented by a vector with the following fields: taxi
ID (medallion ID), pick-up and drop-off times, latitude and
longitude for both pick-up and drop-off, travel distance in
miles, and number of passengers. All IDs are anonymized.
We considered all trips that occurred within Manhattan, and
between Manhattan and the two international airports: John F.
Kennedy and LaGuardia. These trips constitute the majority
of all taxi trips in NYC [21]. We also eliminated data that
appeared to be erroneous, including trips without passengers,
with the average speed less than 3 mph, and that start or end
at invalid locations. The 260 million trips that remained after
selection and cleaning were used in our experiments.

B. Taxi Ride Sharing in NYC: A Case Study

Recall that taxi ride sharing involves three major entities:
the city, taxi companies (drivers) and passengers. Each of
them aims to minimize different costs: the city is interested
in reducing pollution and traffic, the taxi companies want
minimize the operating costs while maximizing revenues, and
passengers want to get their destinations as fast and cheaply
as possible. Thus, a solution to the taxi ride-sharing problem
has to take into account tradeoffs between these competing
objectives.

A natural metric that can be used to analyze the effects
of ride sharing is the total distance traveled by all the cabs,
which correlates with both the traffic volume and emissions.
A decrease in the total traveled distance can also serve as an
incentive for the taxi industry to engage in ride sharing, since
such a decrease is likely to lead to a proportional decrease
in the cost of running the business. However, ride sharing
also imposes additional costs to the passengers in the form
of extra travel distance and additional stops along the way.
Therefore, for taxi ride sharing to be a practical solution for
reducing emissions and traffic, one also needs to control the
burden placed on customers. To account for this, we introduced
two parameters in our simulation model: dextra , the maximum
extra distance for each trip, and nshare , the maximum number
of trips that each trip can be shared with. In addition, we use
another parameter, ddelay , which is a bound on the maximum
distance a taxi is allowed to travel to pick up a customer. Note
that a constraint on ddelay is naturally present in the scenario
where no sharing occurs as well. Any constraints on dextra
and ddelay are equivalent to constraints on textra and tdelay
which are expressed in terms of time. For our simulations, we



(a) (b) (c)
Fig. 5: (a) The distribution of number of extra stops for nshare=1, 2, 3, 4. Note that the number of additional stops for a trip is bounded
by 2nshare . (b) The distribution of extra distances for nshare=1, 2, 3, 4. Note that 0 mile extra distance for a trip means that between the
pick-up and drop-off locations of this trip a cab traveled without picking up or dropping off other trips. (c) The distribution of number of
shared trips for nshare=1, 2, 3, 4

express the constraints in terms of distance. We omit traffic
conditions in the experiments because we did not have access
to the appropriate traffic data.

By definition, each trip can be shared with at most nshare
other trips. Note that the bound on nshare gives a control over
the maximum number of extra stops that is at most 2nshare .
This parameter is also used in [14], where k=nshare+1 is
used. However, the optimization proposed in [14] is NP-
hard for k>2; thus, k=2 was chosen for the solution to
be computationally feasible. Our approach scales for larger
values of nshare as well, which allows us to study the effects
of this parameter on the total savings and costs of the proposed
ride-sharing solution.

To keep the waiting and service times within a reasonable
interval, we set ddelay=1 mile and dextra=2 miles (at most 5
minutes of waiting time and 10 minutes of extra service time
if the average taxi speed is 12 mph). Note that our approach
scales to include both of these parameters in the study. Finally,
for simplicity, we set each taxi’s capacity C=4. Table III
describes the simulation parameters. Our simulation model
can handle individual constraints by letting each customer set
their own nshare , ddelay , and dextra . This makes it possible to
support more complex scenarios where riders have different
ride-sharing preferences.
Varying the Degree of Sharing. We studied the effects of
parameter nshare . The number of cabs used for the simulations
was 9,500 cabs on Sundays and 11,500 cabs for the others days
of the week. The simulation results for nshare=1, 2, 3, 4 are
presented in Fig. 4 for each day between Jan 1st, 2011 and Dec
31st, 2012. Fig. 4a shows the ratio of the total travel distance
saved by ride-sharing to the total travel distance of original
trips (i.e., the sum of the shortest distances between pick-up
and drop-off locations of the serviced trips). Fig. 4b shows
the average travel distance for each nshare=1, 2, 3, 4 as well
as nshare=0 (no ride-sharing). Fig. 5a shows the distribution
of the number of additional stops for different values of nshare
(1 to 4). For example, for nshare=1, 120× 106 trips have no
additional stops, and the maximum number of additional stops

is 2. But when nshare increases to 2, fewer than 80×106 trips
have 0 additional stops, and now, there are trips with up to 4
additional stops. Note that without ride-sharing, the number of
extra stops for each trip is 0. Fig. 5b is similar to Fig. 5a, but
shows the distribution of the extra travel distance for different
sharing levels. We have also analyzed the distribution of the
number of trips each particular trip was shared with. Fig. 5c
suggests that as we increase nshare shareability increases.

Naturally, our results quantify a tradeoff between the savings
in the total distance through ride-sharing and burden incurred
by customers. As we increase nshare , the savings in the total
distance increase. On the other hand, this also leads to an
increase in the travel distance and number of extra stops for
each trip. However, our results may also suggest that contrary
to results in [14], nshare=2 or even 3 may be an optimal
bound on the maximum number of trips to be shared, offering
a better tradeoff between the savings and costs. In particular,
for nshare=2 the total saving is 28.6% on average with the
average extra distance of 0.57 miles, while for nshare=1 the
saving is 18.2% with the average extra distance of 0.35 miles.
Other Simulations. We also conducted various other experi-
ments. These included varying the number of cabs and using a
different cost function whose objective is CO2 emissions. We
omit these results due to space limitations. However, we must
note that the efficiency of our framework makes it possible
to experiment with many different scenarios – a simulation
consisting of one year worth of data takes just under 10
minutes to complete.

C. Comparison of Different Approaches

We compare the simulation results obtained by our approach
against the results reported for the Shareability Network (SN)
in [14], which, to the best of our knowledge, is the only
prior work that supports large-scale ride-sharing simulation.
For direct comparison, we ran simulations with the same
road network and data as in SN. The results are presented
in Table IV. In columns 2 and 4, we report the ratio of
the resulting number of trips through sharing to the original



Our Framework Shareability
Network [14]

Parameter Saved Saved Saved Saved
Settings Trips Time Trips Time

nshare=1, dextra=0.6 mi. 47% 18% 16% 8%
nshare=1, dextra=1 mi. 46% 16% 27% 13%
nshare=2, dextra=0.6 mi. 60% 31% 16% 8%
nshare=2, dextra=1 mi. 61% 29% 27% 13%

TABLE IV: Comparison of our framework and Shareability Network
approach [14]. Note that nshare=1, 2 are equivalent to k=2, 3 and
dextra=0.6, 1 mi. correspond to ∆=3, 5mins in [14]. Also, for direct
comparison we took the results of [14] for δ=0 (δ: time window)
since our framework is a real-time model.

Data Size Execution Time Avg Execution
Time per Day

1 day 2 mins, 18 sec —
1 week 3 mins, 44 sec 32 sec
1 month 5 mins, 56 sec 12 sec
3 months 6 mins, 39 sec 4.4 sec
0.5 year 7 mins, 21 sec 2.4 sec
1 year 9 mins, 55 sec 1.6 sec
2 years 18 mins, 17 sec 1.5 sec
3 years 26 mins, 40 sec 1.5 sec

TABLE V: Execution time of the simulation on a 1200-core Hadoop
cluster.

number of trips in the data set. Columns 3 and 5 contain the
ratio of the simulated travel time to the original travel time.
Observe that in our simulations, most of the trips are shared:
47% of saved trips with nshare=1, translating into 94% of trips
being shared. On the other hand, the percentage of shared trips
using SN is much lower; this is because with δ=0 (where δ
is the time window; see Section V), the nodes are connected
only if the start time of the two trips is very close and it leads
to a much smaller network. This also results in significantly
smaller savings in travel time.

D. Performance and Scalability

We conclude this section by reporting the execution time
of ride-sharing simulation for different data sizes using a
1200-core Hadoop cluster. Table V summarizes the results.
We observe that the average time it takes to process one
day of data decreases as the size of data increases since we
can use the parallelism more effectively. This shows that our
framework scales to large data sets and enables us to study taxi
ride sharing by exploring many different scenarios in timely
manner.

V. RELATED WORK

Ride sharing has been framed as an instance of the “dynamic
pickup and delivery” problem [8], [9], and it has also been ad-
dressed via linear programming [10]–[12]. These optimization-
based approaches are applicable to small-scale problems, for
instance, sharing within airports, since large-scale optimization
is often computationally infeasible. Heuristic-based solutions
have been proposed for real-time dispatching of taxis [22],
[23], but they also have limited scalability.

More recently, data-driven approaches have emerged. The
work that is most closely related to ours is the simulation
model proposed by Santi et al. [14]. They used a graph-based
approach based on the notion of “shareability network”, where
nodes correspond to taxi trips, and two nodes are connected
if those trips can be shared. Their model aims to maximize

the number of shared trips or minimize the total time taken
to accommodate all the trips. The structure of the shareability
network depends crucially on two parameters: the maximum
number of shared trips k per service and the maximum delay ∆
that a customer can tolerate in a shared taxi service trip. These
parameters control computational complexity of the problem.
This solution is tractable only for k=2: the problem becomes
NP-hard for larger values of k. Similarly, larger values of ∆
translate into larger networks, requiring longer computation
time. These restrictions limit the scenarios that one can explore
with this approach. Moreover, their model can derive solutions
that are not feasible in real life, since it does not explicitly
take into account taxi positions and their capacity – it only
examines whether it is beneficial to share a set of trips. For
example, suppose that we decide that two particular trips t1
and t2 must be shared. Then, there must be a cab, say c, that
will serve these two trips. Suppose also that in the original
data set, c was serving trip t1 and some other trip t3 in this
order. If t1 and t2 are assigned to c, it may not be possible
for c to serve t3 any more (or the cost may be too high). It is
also unclear in this scenario what happens to the cab that was
serving t2 in the original data set.

Another limitation of this approach is that it assumes that
trips are known in advance. While this assumption matches
well car pooling scenarios where time and location of each
trip are fixed in advance, it is not suitable for taxi ride-sharing,
since trip requests arrive in real time. To address this issue,
Santi et al. proposed a refinement of their model that prunes
the shareability network to allow trips that start within a time
window δ (e.g., five minutes) from each other to be shared.
However, the model is real time only when δ=0, in which case
our experiments suggest that this model tends to underestimate
the benefits of the taxi ride-sharing. In Section IV, we present
an experimental comparison between our framework and [14].

Ma et al. [15] proposed a real-time dispatch system for
taxi ride-sharing. While related, our goal is different: we aim
to support the simulation of a wide range of ride-sharing
scenarios, and designed a model that can be parameterized
accordingly. Like Ma et al., our model demands fast response
times for queries that match trips to cabs. They do so by
splitting a region into grid cells such that the distance between
any two locations can be computed “heuristically” as the
distance between the cells containing them. This allows their
system to keep shortest path computations at a minimum, but
at the cost of reduced accuracy. Moreover, the results are
dependent on the selected grid size. In contrast, our system
always use the “exact” shortest paths for optimizing ride-
sharing schedules. We were able to achieve this with good
performance and scalability using a cache-coherent indexing
scheme (Section III-D). While our focus is on simulation, the
experimental results indicate that our approach is promising
for the dispatching scenario. [15] can serve 720K queries per
hour (or 200 queries per second). Even without parallelism,
our system can handle between 2K and 3K queries per second.
Thus, exploring the use of our model for dispatching is a
direction we would like to pursue in future work.



Huang et al. [24] proposed scheduling algorithms to dynam-
ically match trip requests to vehicles with the minimum cost
while trip waiting and service time constraints are satisfied.
They showed that the kinetic tree algorithms outperform
commonly used approaches, such as branch-and-bound and
mixed-integer programming. As discussed in Section III, such
algorithms can be integrated into our framework.

VI. CONCLUSION

In this paper, we presented a new framework that is both
scalable and flexible to support the simulation of a rich
set of realistic taxi ride-sharing scenarios. The scalability
properties of the framework make it possible to run large-
scale studies that explore a wide range of what-if scenarios
through parameter sweeps. We have shown that this model
attains a good balance between simplicity and expressiveness.
Another important contribution of this work is the novel
shortest path indexing scheme where we make use of cache-
coherent layout to speed up shortest path queries substantially.
The implementation of our simulation model is fully integrated
with Hadoop’s MapReduce, thus, enabling a variety of batch
analysis tasks on taxi ride sharing. We applied the model
to NYC taxi data and presented a case study that illustrates
the capabilities and effectiveness of our system and design
decisions.

There are several avenues we plan to pursue in future work.
Our current shortest path indexing technique maintains a full
distance matrix in memory. Though this could be mapped
on disk, the storage size (O(|V |2)) will not scale well for
a large road network. We would like to experiment with
a tiled caching strategy where we only keep the distance
matrix for the most popular intersections and performing full
shortest path computation for less popular nodes. In addition,
we would like to implement a load balancer for the shortest
path queries where the shortest path database could be located
on a separate machine/cluster. This would allow us to make
better use of the computing resources when having multiple
simulator instances.
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