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ABSTRACT
Auction mechanisms have recently attracted substantial at-
tention as an efficient approach to pricing and resource al-
location in cloud computing. This work, to the authors’
knowledge, represents the first online combinatorial auction
designed for the cloud computing paradigm, which is gen-
eral and expressive enough to both (a) optimize system effi-
ciency across the temporal domain instead of at an isolated
time point, and (b) model dynamic provisioning of hetero-
geneous Virtual Machine (VM) types in practice. The fi-
nal result is an online auction framework that is truthful,
computationally efficient, and guarantees a competitive ra-
tio ∼ e+ 1

e−1
' 3.30 in social welfare in typical scenarios.

The framework consists of three main steps: (1) a tailored
primal-dual algorithm that decomposes the long-term opti-
mization into a series of independent one-shot optimization
problems, with an additive loss of 1

e−1
in competitive ra-

tio, (2) a randomized auction sub-framework that applies
primal-dual optimization for translating a centralized co-
operative social welfare approximation algorithm into an
auction mechanism, retaining a similar approximation ra-
tio while adding truthfulness, and (3) a primal-dual update
plus dual fitting algorithm for approximating the one-shot
optimization with a ratio λ close to e. The efficacy of the
online auction framework is validated through theoretical
analysis and trace-driven simulation studies. We are also in
the hope that the framework, as well as its three indepen-
dent modules, can be instructive in auction design for other
related problems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; Modeling
techniques; I.1.2 [Algorithms]: Analysis of algorithms
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1. INTRODUCTION
Cloud computing has recently emerged as a new comput-

ing paradigm that enables prompt and on-demand access
to computing resources. As exemplified in Amazon EC2 [1]
and Microsoft Azure [4], cloud providers invest substantially
into their datacenter infrastructure, providing a virtually un-
limited “sea” of CPU, RAM and storage resources to cloud
users, often assisted by virtualization technologies. The elas-
tic and on-demand nature of cloud computing assists cloud
users to meet their dynamic and fluctuating demands with
minimal management overhead, while the cloud ecosystem
as a whole achieves economies of scale through cost amorti-
zation. Currently, most cloud providers adopt a fixed price
policy and charge users a fixed amount per-VM usage. For
example, Table 1 shows the available VM types at Amazon
EC2, and their hourly prices at different datacenters. De-
spite their apparent simplicity, fixed-price policies are inher-
ently lack of market agility and efficiency, failing to rapidly
adapt to realtime demand-supply relation changes. Conse-
quently, overpricing and underpricing routinely occur, which
either dispel or undercharge the users, jeopardizing overall
system social welfare as well as the providers’ revenue.

Table 1: Amazon EC2 VM Instances

VM Type CPU∗ RAM Disk Virginia Ireland Tokyo
m1.medium 2 3.75GB 410GB $0.120 $0.130 $0.175
m1.large 4 7.5GB 840GB $0.240 $0.260 $0.350
m1.xlarge 8 15GB 1.68TB $0.480 $0.520 $0.700
c1.medium 5 1.7GB 350GB $0.145 $0.165 $0.185
c1.xlarge 20 7GB 1.68TB $0.580 $0.660 $0.740
m2.2xlarge 13 34.2GB 850GB $0.820 $0.920 $1.101
∗ EC2 compute units

Towards effectively discovering the market value of VMs,
auction-based mechanisms have been at the focal point of
recent literature on cloud resource allocation and pricing [9,



27]. For example, Spot Instance [2] is a first-step attempt to
apply the auction mechanism on Amazon EC2, which was
enhanced by subsequent work [23, 27]. A series of recent
work further study auction mechanism design in cloud mar-
kets from different perspectives [26, 28, 24]. Unfortunately,
all existing cloud auction mechanisms either consider one-
round auctions only, or model VMs as type-oblivious com-
modities and fail to account for the providers’ ability to dy-
namically assemble VMs.
[Cloud auctions should be online.] Real-world cloud re-
source transactions happen either when customer demands
arrive or cloud resources become available, and hence is
modelled more naturally by an online auction that incorpo-
rates the time dimension. Most cloud computing customers,
enterprise or individual, are on a pre-allocated budget for a
given time period (e.g., a year or a month like that in an
ad-auction [7]). Thus a customer’s purchase desire drasti-
cally declines over time, which needs to be considered for a
practical auction mechanism. However, most existing cloud
auctions focus on a single-round auction only, and ignore
such temporal correlation in decision making [28].
[Cloud auctions should be combinatorial.] A cloud
computing job in practice often demands a bundle of het-
erogenous VM instances for its successful execution, and
hence a cloud auction is naturally a combinatorial auction.
For example, a social game application that consists of a
front-end web server layer, a load balancing layer and a
back-end data storage layer is best served by a combina-
tion of VMs that are intended for communication-intensive,
computation-intensive and storage-intensive tasks, respec-
tively. Such combinatorial VM auctions represent a dra-
matic departure of most existing VM auction designs that
assume VMs are type-oblivious commodities, in that all VMs
are essentially of the same type, and hence are substitutable
or substitutable up to a simple multiplicative factor. Em-
bracing heterogeneous VM types in the model further brings
about the opportunity of considering dynamic resource pro-
visioning: decisions on VM assembling, which organizes the
CPU, RAM and Disk resource pools into typed VM in-
stances, are no longer made randomly a priori [9], but made
dynamically upon receiving user bids. Dynamic resource
provisioning enables higher efficiency in cloud resource uti-
lization, higher seller revenue for the provider, and higher
social welfare for the entire cloud system.

This work generalizes and subsumes existing literature on
cloud auctions by designing the first online combinatorial
auction in which VMs of heterogenous types are allocated in
multiple consecutive time slots. The final result is an online
auction framework that simultaneously guarantees the fol-
lowing properties. (i) Truthfulness, the holy grail of auction
mechanism design. It ensures that economically-motivated
selfish buyers are automatically elicited to reveal their true
valuations of the VMs they demand, in the bids submitted.
This simplifies analysis of the resulting auction in theory,
and increases the predicability of auction outcomes in prac-
tice. (ii) Combinatorial auctions, supporting heterogeneous
VM types located at different datacenters. Besides hetero-
geneity in their types, another dimension of VM diversity
may arise due to their geographical locations (assuming mul-
tiple datacenters). A combinatorial auction is hence neces-
sary. (iii) Dynamic resource provisioning. The number of
instances of each VM type is not predefined, but dynami-
cally adjusted as part of the auction mechanism, tailored to

realtime user demand. (iv) Online auction: In commercial
cloud platforms, auctions are executed repeatedly and the
prices change termly. Each user is subject to a practical
budget limitation for a given time period. Our online auc-
tion models a long time auction over multiple rounds that
are coupled together by customer budgets. A competitive
ratio of e + 1

1−e ' 3.30 is guaranteed in typical scenarios,
i.e., our online auction achieves a long-term social welfare
that is at least a 1

3.30
fraction of the offline optimum.

Our proposed online auction framework consists of three
main modules: (A) translating online optimization into a
series of one-round optimization problems, (B) translating
an approximation algorithm for one-round optimization into
a truthful auction, and (C) designing an effective approxi-
mation algorithm for one-round optimization.

First, we formulate a linear integer program that charac-
terizes the long-term social welfare optimization problem in
the cloud market for VMs, and formulate the dual LP of its
LP relaxation (without the integer constraints). A tailored
primal-dual algorithm iteratively adjusts a dual variable cor-
responding to each customer’s budget, acting as a shadow
price that signals how “tight” the latter is. A series of one-
round combinatorial VM auctions are then executed under
a fixed shadow price vector. Such primal-dual decoupling
of the auction rounds admits a rather intuitive interpreta-
tion: the algorithm strikes to avoid prematurely depleting a
user’s budget, and gives higher priority to cloud customers
with low budget pressures during each auction round. As a
result, we prove that the decomposition introduces an addi-
tive loss to the competitive ratio bounded by 1

e−1
.

Second, for each one-round combinatorial auction prob-
lem, we employ a randomized auction sub-framework, which
exploits the underlying packing property of one-round so-
cial welfare maximization, and translates any centralized co-
operative approximation algorithm into an auction, inherit-
ing the same approximation ratio while adding truthfulness.
At the core of this translation is a primal-dual optimization
based decomposition technique that decomposes an optimal
fractional solution to one-round social welfare maximization
into a convex combination of integral solutions, recently de-
veloped in the literature of theoretical computer science [13],
and successfully applied in the literature of computer net-
working [29]. We also propose a new technique which can
significantly improve the performance of this translation.

Third, we design a specific approximation algorithm for
one-round VM allocation, by applying iterative primal-dual
solution updates followed by dual fitting. The resulting al-
gorithm is polynomial-time computable, and guarantees an
approximation ratio λ that approaches e in practical sce-
narios. Combining all three modules together, the overall
competitive ratio of the resulting online auction framework
is bounded by e+ 1

e−1
' 3.30 in typical scenarios. We hope

that the online auction framework proposed in this work, as
well as its three components, may shed light to the design
of auction mechanisms in related problem settings.

In the rest of the paper, we discuss related work in Sec. 2,
and define the problem model in Sec. 3. Sec. 4 and Sec. 5
present the online algorithm framework, the auction algo-
rithm and the single round allocation algorithm. Simula-
tions are presented in Sec. 6. Sec. 7 concludes the paper.



2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic efficiency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [25]
and wireless spectrum allocation [29].

The celebrated VCG mechanism [22] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic efficiency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [23] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

√
k),

where k is the number of VM instances. Zaman and Grosu
[26] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [28] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [27] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [24], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter traffic into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more difficult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanningQ geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M different types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m ∈ [M ] is constituted
by αm,r units of type-r resource, for all r ∈ [R]. There are
N users of the cloud system, which request VMs of different
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter

are time-varying, i.e., there are A
(t)
q,r units of type-r resource

in datacenter q at time t ∈ [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
different types, as well as the bidder’s valuation for the bun-

dle. Specifically, let d
(t)
n,k,m,q denote the number of type-m

VMs in datacenter q that user n specifies in its k-th bun-

dle in time slot t, and b
(t)
n,k be its valuation for this k-th

bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ×Q+ 1)-tuple of elements

d
(t)
n,k,m,q, ∀m ∈ [M ],∀q ∈ [Q], and b

(t)
n,k. The cases where a

user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the

auction results, y
(t)
n,k ∈ {0, 1}, ∀n ∈ [N ], ∀k ∈ [K], where y

(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user

n’s payment Π
(t)
n , for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.



Table 2: Notation
N # of users [X] integer set {1, 2, . . . , X}
T # of time slots R # of resource types

M # of VM types Q # of datacenters

K # of optional bundles in each bid

αrm amount of resource r in each type-m VM

A
(t)
q,r available resource r at datacenter q at time t

b
(t)
n,k user n’s valuation for its kth bundle at t

d
(t)
n,k,m,q # of type-m VM at dc q in n’s kth bundle at t

c
(t)
n,k,r,q amount of resource r at dc q in n’s kth bundle at t

Bn user n’s total budget

y
(t)
n,k user n wins its kth bundle at time t or not

y
(t)F
n,k optimal fractional solution

y
(t)l
n,k an integer solution to (3)

Π
(t)
n user n’s payment at time t

Π
(t)F
n user n’s payment at time t under fractional VCG

Π
(t)l
n user n’s payment at time t under allocation y(t)l

βl probability to choose integer solution y(t)l

u
(t)
n user n’s utility at time t

ν the competitive ratio of Around
λ the approximation ratio of Alg. 2

w
(t)
n,k the reduced valuation of n’s kth bundle at time t

Bmax max ratio: a single bundle bid / a user’s budget

γ (1 +Bmax)1/Bmax

bundle. We assume that a user can win at most one bundle
among its K optional bundles in each round of the auctions
(given that any need for combining two or more bundles can
be expressed as a separate bundle already). In addition, the
VM demands in each bundle cannot be supplied partially,
i.e., the cloud provider either provides all the required VMs
in a bundle to the bidder or rejects the bundle.

Let u
(t)
n denote the utility function of user n in time slot

t, which is decided by its valuations of the bundles and its
payment at t. We will present the concrete form of the util-
ity function in Sec. 5. We assume user n has a total budget
Bn, which is a bound of its overall payment in the auctions
throughout the system span [T ] under consideration, e.g., a
pre-allocated budget for VM rental over a month or a year,
which is assumed to be public information. A user’s valu-
ations in its bids are independent from its current budget
level, while its current budget level will be taken into con-
sideration at the cloud provider when allocating resources.

We list important notation in this paper in Table 2.

3.2 The Online Auction Problem
We aim to design an online auction mechanism to be

carried out by the cloud provider, which guides resource
allocation in the cloud system in a round-by-round fash-
ion through multiple consecutive rounds. The auction de-
sign targets the following properties. (i) Truthfulness (Def-
inition 1): Bidding true valuations is a dominant strat-
egy at the users, and consequently, both bidding strate-
gies and auction design are simplified. (ii) Individual ra-
tionality: Each bidder obtains a non-negative utility by par-

ticipating in the auction in any time slot, i.e., u
(t)
n ≥ 0,

∀n ∈ [N ], ∀t ∈ [T ]. (iii) Social welfare maximization: The
social welfare in our system is the sum of the cloud provider’s

revenue,
∑
t∈[T ]

∑
n∈[N ] Π

(t)
n , and all the users’ utility gain,∑

t∈[T ]

∑
n∈[N ]

∑
k∈[K] b

(t)
n,ky

(t)
n,k−

∑
t∈[T ]

∑
n∈[N ] Π

(t)
n , which

equals aggregated user valuation of the winning bundles (un-

der truthful bidding),
∑
t∈[T ]

∑
n∈[N ]

∑
k∈[K] b

(t)
n,ky

(t)
n,k. Pay-

ment from the users and revenue received by the cloud provider
cancel out each other.

Definition 1. (Truthfulness) The auction mechanism is truth-
ful if for any user n at any time t, declaring a bid that truth-

fully reveals its requirements of VM quantities, d
(t)
n,k,m,q, ∀m, q, k,

and its valuations of bundles b
(t)
n,k, ∀k, always maximizes its

expected utility, regardless of other users’ bids.

We first formulate below an offline social welfare optimiza-
tion problem which provides the “ideal” optimal resource al-
location strategies for the cloud provider to address users’
VM demands in the entire system lifespan [T ], assuming

truthful bids are known. Let c
(t)
n,k,r,q =

∑
m d

(t)
n,k,m,qαm,r be

the amount of type-r resource at datacenter q required in
user n’s k-th bundle.

maximize
∑
t∈[T ]

∑
n∈[N ]

∑
k∈[K]

b
(t)
n,ky

(t)
n,k (1)

subject to ∑
k∈[K]

y
(t)
n,k ≤ 1, ∀n ∈ [N ], t ∈ [T ], (1a)

∑
k∈[K]

∑
t∈[T ]

b
(t)
n,ky

(t)
n,k ≤ Bn, ∀n ∈ [N ], (1b)

∑
n∈[N ]

∑
k∈[K]

c
(t)
n,k,r,qy

(t)
n,k ≤ A

(t)
q,r, ∀q ∈ [Q], r ∈ [R], t ∈ [T ], (1c)

y
(t)
n,k ∈ {0, 1}, ∀n ∈ [N ], k ∈ [K], t ∈ [T ]. (1d)

Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
(1a), (1b) and (1c) respectively, and ignore the binary vari-
able constraint (1d) temporarily, we can formulate the dual
of the resulting linear program, to be used in the primal-dual
algorithm design in Sec. 4:

min
∑
n∈[N ]

Bnxn +
∑
n∈[N ]

∑
t∈[T ]

s(t)
n +

∑
q∈[Q]

∑
r∈[R]

∑
t∈[T ]

Aq,r(t)z
(t)
q,r

(2)
subject to

b
(t)
n,kxn + s(t)

n +
∑
r∈[R]

∑
q∈[Q]

c
(t)
n,k,r,qz

(t)
q,r ≥ b

(t)
n,k

∀n ∈ [N ], k ∈ [K], t ∈ [T ], (2a)

xn, s
(t)
n , z(t)

q,r ≥ 0, ∀n ∈ [N ], q ∈ [Q], r ∈ [R], t ∈ [T ]. (2b)
To derive an optimal solution to (1), complete knowledge

about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system,
the provider should allocate resources on the fly, based on

the current amount of available resources, A
(t)
q,r’s, and users’

bidding bundles including resource demands d
(t)
n,k,m,q’s and

valuations b
(t)
n,k’s, which are not known a priori. We seek to

design an online auction mechanism for realtime resource al-



location, which also guarantees truthful bidding. We achieve
the goals in two steps. First, in Sec.4, we assume that a
truthful auction mechanism to be carried out in each time
slot is known, and guarantees an approximation ratio ν, and
propose an online algorithm framework that produces a com-
petitive ratio of (1 + Bmax)(ν + 1

γ−1
) as compared to the

offline optimum. Second, in Sec. 5, we design a single-round
randomized auction, which achieves the approximation ratio
of ν as well as individual rationality and truthfulness.

4. AN ONLINE ALGORITHM FRAMEWORK
We design an online algorithm frameworkAonline as shown

in Algorithm 1, which solves the offline optimization prob-
lem (1) and its dual (2), using a subroutine Around running
at each time slot. We next discuss the one-round resource
allocation problem to be solved by Around, as well as the
design rationale of the online algorithm framework.

4.1 One-Round Resource Allocation
Assuming truthful bids are known, the one-round social

welfare maximization problem at time t is as follows, which
includes the constraints from the offline optimization prob-
lem (1) related to the current time slot, and excludes the
user budget constraints (dealt with in the online algorithm

framework instead). In the optimization below, w
(t)
n,k, a re-

duced valuation of user n for bundle k from the actual val-
uation b

(t)
n,k in its bid according to the level of its remaining

budget, is used in the objective function. The rationale will

be detailed in Sec. 4.2. Given w
(t)
n,k, the cloud provider’s cur-

rent resource supplies A
(t)
q,r’s, and users’ resource demands

c
(t)
n,k,r,q’s, ∀n, k, r, q, the one-round optimization problem de-

cides the optimal resource allocation y
(t)
n,k, ∀n, k, at t.

maximize
∑
n∈[N ]

∑
k∈[K]

w
(t)
n,ky

(t)
n,k (3)

subject to ∑
k∈[K]

y
(t)
n,k ≤ 1 ∀n ∈ [N ] (3a)

∑
n∈[N ]

∑
k∈[K]

c
(t)
n,k,r,qy

(t)
n,k ≤ A

(t)
q,r ∀q ∈ [Q], r ∈ [R] (3b)

y
(t)
n,k ∈ {0, 1} ∀n ∈ [N ], k ∈ [K] (3c)

Adopting the same dural variables as in the dual of (1)
and omitting constraint (3c) temporarily, we formulate the
dual of LP (3):

minimize
∑
n∈[N ]

s(t)
n +

∑
q∈[Q]

∑
r∈[R]

A(t)
q,rz

(t)
q,r (4)

s.t.
s(t)
n +

∑
q∈[Q]

∑
r∈[R]

c
(t)
n,k,r,qz

(t)
q,r ≥ w

(t)
n,k,∀n ∈ [N ], k ∈ [K], (4a)

s(t)
n , z(t)

q,r ≥ 0, ∀n ∈ [N ], q ∈ [Q], r ∈ [R]. (4b)

The primal problem (3) is a special case of the multi-
dimensional multiple-choice 0-1 knapsack problem [8], which
is both NP-hard and more strongly, has no fully polynomial-
time approximation schemes unless P=NP [10]. What we
will pursue in Around is an auction mechanism, which not

only guarantees individual rationality and truthfulness, but
also employs a primal-dual approximation algorithm that
solves problem (3) and (4) to decide resource allocation in
polynomial time with a small approximation ratio. We delay
the discussion of the auction mechanism to Sec. 5, but first
utilize its properties when analyzing our online algorithm
framework. We will show that given a competitive ratio ν
achieved by the one-round auction mechanism, our online
algorithm framework achieves a good competitive ratio.

4.2 The Online Algorithm
When a good approximation algorithm for one-round re-

source allocation (with budget constraint relaxed) is in place,
the difficulty of designing an online algorithm to achieve a
good competitive ratio, defined as the maximum ratio be-
tween the offline optimal social welfare derived by solving
(1) exactly and the social welfare produced by the online
algorithm, arises from the budget constraint at each user.
The budget limits the bundles a user can acquire over the
T rounds of auctions, leading to different amounts of overall
social welfare when the budget is spent in different rounds.
The intuition we follow in designing the online algorithm
is that, inefficiency in social welfare may appear when a
user’s budget runs out at an early stage, since its future bids
become invalid after its budget depletion, narrowing down
possible future resource allocation decisions at the cloud
provider, prohibiting larger social welfare. The ideal sce-
nario is that each user’s budget can last for all the T rounds
of auctions, making it possible for the cloud provider to ex-
plore the best resource allocation strategies over the entire
span, to approach the best overall social welfare.

Under this intuition, we should be cautious when win-
ning a bundle suddenly exhausts a user’s remaining budget.
Our main idea in the online algorithm in Alg. 1 is to asso-
ciate the resource allocation in each round with the users’
remaining budgets. We introduce an auxiliary variable x

(t)
n

for each user n ∈ [N ], whose value starts at 0, increases
with the decrease of the remaining budget of the user, and
reaches 1 when the budget is exhausted. Instead of the ac-

tual valuation b
(t)
n,k of each bundle, w

(t)
n,k = b

(t)
n,k(1 − x(t−1)

n )
is used in the one-round resource allocation Around as in
(3), such that the bid from a user with a smaller remaining
budget will be evaluated less at the cloud provider, lead-
ing to a lower chance of acquiring a bundle. A user’s bud-

get lasts for a longer period of time as a result. x
(t)
n is

updated after each round of resource allocation in Lines

7 and 10 of Algorithm 1, where γ = (1 + Bmax)
1

Bmax .

Bmax = maxn∈[N ],t∈[T ],k∈[K]{b(t)n,k/Bn}, which is the max-
imum ratio between the valuation of any bundle and the
corresponding user’s budget. We consider Bmax � 1, given
that users typically do not put a large proportion of their

total budget on one bundle in one round. x
(t)
n is increased if

user n wins a new bundle in round t (Line 7) — thus user n’s
remaining budget decreases, and remains unchanged other-
wise (Line 10). The increment in Line 7 is carefully com-
puted (see proof of Thm. 1), such that the budget constraint
(1b) is guaranteed over the T rounds of online auctions. We
set dual variable xn in the offline dual problem (2), asso-
ciated with constraint (1b), to the value of the auxiliary

variable x
(t)
n after T rounds (Line 13). In this way, the ad-

justment of x
(t)
n in each round can be understood as the



adjustment of the dual variable xn towards an optimal so-
lution to the offline dual problem (2).

Algorithm 1 The Online Algorithm Framework Aonline
1: x

(0)
n ← 0, ∀n ∈ [N ]

2: // Loop for each time slot
3: for all 1 ≤ t ≤ T do
4:

w
(t)
n,k =

{
0 if x

(t−1)
n ≥ 1

b
(t)
n,k(1− x(t−1)

n ) otherwise
, ∀n ∈ [N ], k ∈ [K].

5: Run Around. Let N be the set of winning users, and
kn be the index of their corresponding winning bundle,
for each winning user n ∈ N .

6: for all n ∈ N do
7:

x(t)
n ← x(t−1)

n

(
1 +

b
(t)
n,kn

Bn

)
+

b
(t)
n,kn

Bn(γ − 1)

8: end for
9: for all n /∈ N do

10: x
(t)
n ← x

(t−1)
n

11: end for
12: end for
13: xn ← x

(T )
n , ∀n ∈ [N ]

The performance of our online algorithm in Alg. 1 is stated
in Thm. 1, with a detailed proof in Appendix A.

Theorem 1. If we can find an auction mechanism in
Around that carries out resource allocation in each round
to produce feasible solutions for (3) and (4), and guarantees
νp ≥ d (hence the competitive ratio of the auction algorithm
is also ν), Aonline is (1 + Bmax)(ν + 1

γ−1
)-competitive for

optimization (1). Here p =
∑
n∈[N ]

∑
k∈[K] w

(t)
n,ky

(t)
n,k is the

objective value of the one-round resource allocation problem

in (3), and d =
∑
n∈[N ] s

(t)
n +

∑
q∈[Q]

∑
r∈[R] A

(t)
q,rz

(t)
q,r is the

dual objective value in (4).

We note that when Bmax → 0, the competitive ratio ap-
proaches ν + 1

e−1
, i.e., the long-term online optimization

framework incurs only an additive loss of 1
e−1

in competitive
ratio, as compared to the one-round allocation algorithm.

5. A RANDOMIZED AUCTION MECHANISM
We now present a randomized auction mechanism Around

which efficiently allocates resources according to users’ bids
in each time slot, and guarantees individual rationality and
truthfulness. The auction mechanism in each round allo-
cates resources according to the one-round resource allo-
cation problem in (3) and decides the payments from the
winning bidders. The classic VCG (Vickrey-Clarke-Groves)
mechanism [22] is a potential candidate for our auction de-
sign, which assigns items (VM bundles in our case) to bid-
ders in a socially optimal manner by solving a correspond-
ing resource allocation problem, charges each winner the
externality it exerts on other bidders, and ensures that the
optimal strategy for a bidder is to bid its true valuations.
However, our allocation problem in (3) is NP-hard, and
hence a VCG mechanism becomes computationally infea-
sible. We therefore resort to a fractional version of the VCG

auction for achieving both computational efficiency (polyno-
mial time complexity) and economic efficiency (social wel-
fare maximization in (3)), by applying the VCG mechanism
to the LP relaxation of the integer program (3). The frac-
tional VCG mechanism produces fractional bundle alloca-
tion results, which are not practically applicable. We fur-
ther employ a primal-dual optimization based decomposi-
tion technique that decomposes such an optimal fractional
solution into a convex combination of integral solutions, and
then design a randomized auction which randomly picks one
from the integral solutions as the bundle allocation result in
each round and retains the nice properties of a fractional
VCG auction. We detail the fractional VCG auction, the
decomposition technique, and the randomized auction de-
sign in the following three subsections.

5.1 The Fractional VCG Auction
In the fractional VCG auction, the auctioneer solves the

LP relaxation of (3) by relaxing constraint (3c) to 0 ≤
y

(t)
n,k ≤ 1, ∀n, k, to decide the bundle allocation in t. Let

y(t)F = (y
(t)F
n,k )∀n,k denote the resulting optimal fraction

allocation, where y
(t)F
n,k ∈ [0, 1]. To compute the VCG pay-

ment from a winner, the auctioneer solves the LP relaxation
again with the winner excluded from the allocation. Let

Ṽ
(t)
−n denote the social welfare achieved when winner n is

excluded. The payment of winner n, Π
(t)F
n , is: Π

(t)F
n =

Ṽ
(t)
−n −

∑
n′ 6=n

∑
k∈[K] y

(t)F

n′,kw
(t)

n′,k.

The utility function u
(t)
n of bidder n in a VCG auction is

typically defined as the difference between its valuation and
its payment. In our online auction framework, a user’s util-
ity in each round should be related not only to its valuation
and payment, but also to its remaining budget: intuitively,
smaller utility gain is appreciated if a user won a bundle
when its remaining budget is small, and larger otherwise.
We characterize this property using a utility function:

u(t)
n =

∑
k∈[K]

y
(t)F
n,k w

(t)
n,k −Π(t)F

n . (5)

Such a utility function is consistent with the social welfare
calculation in the one-round allocation problem (3). In this
way, a user’s budget can potentially last longer, enabling
its acquirement of a better bundle with the same consump-
tion of budget at a later time, contributing to social welfare
efficiency over all T rounds of auctions.

We show in Thm. 2 that under this utility function, bid-
ding true valuations is the best strategy for each user in the
fractional VCG auction. A non-negative utility is guaran-
teed for each bidder, based on VCG auction theory [22].

Theorem 2. The fractional VCG auction which produces

fractional allocation y
(t)F
n,k ,∀n ∈ [N ], k ∈ [K], and payments

Π
(t)F
n , ∀n ∈ [N ], is truthful and individual rational.

The detailed proof can be found in Appendix B.

5.2 Decomposing the Fractional Solution
Since fractional VM bundles are impractical in real-world

cloud systems, we next decompose the fractional alloca-
tion solution into a convex combination of integer solutions,
which will be used by our randomized auction mechanism.
We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find βl ∈ [0, 1] and a



set of integer solutions y(t)l, ∀l ∈ L (L is an index set),
to the one-round resource allocation problem (3), such that∑
l∈L βly

(t)l
n,k = y

(t)F
n,k , ∀n ∈ [N ], k ∈ [K], and

∑
l∈L βl = 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability βl, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination

of integer solutions,
∑
l∈L βly

(t)l
n,k , that equals the fraction

solution y
(t)F
n,k , because otherwise, the expected social wel-

fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of λ and guarantees λp ≥ d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use λ as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
∑
l∈L

βl (6)

s.t. ∑
l∈L

βly
(t)l
n,k = y

(t)F
n,k /λ, ∀n ∈ [N ], k ∈ [K], (6a)

∑
l∈L

βl ≥ 1, (6b)

βl ≥ 0, ∀l ∈ L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio λ, and then discuss
how to solve the decomposition problem (6) to obtain βl
and y(t)l, ∀l ∈ L.

5.2.1 A primal-dual algorithm for one-round resource
allocation

Alg. 2 is our primal-dual approximation algorithm to the

NP-hard allocation problem (3). C
(t)
q,r = maxn,k{c(t)n,k,r,q} is

the maximum amount of type-r resource at datacenter q re-

quired by any bundle in t. C
(t)
min = minr∈[R],q∈[Q]{A(t)

q,r/C
(t)
q,r}

is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s

demand, and hence C
(t)
min � 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r for each type

of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r is updated according to the remaining

amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees λp ≥ d (p and d de-

fined in Thm. 1), λ = 1 + ε(t)(e(QR)1/(C
(t)
min−1) − 1)

C
(t)
min

C
(t)
min−1

with ε(t) = maxk1,k2∈[K],r∈[R]{c(t)n,k1,r,q
/c

(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also λ.

The proof of the theorem is given in Appendix C. Here ε(t)

is the maximum ratio between the overall demands for any
type of resource in any two bundles in a user’s bid in t. When
Q,R are small constants and the provider’s resource pool is
relatively large compared with users’ resource demands in
the bundles, λ tends to 1 + ε(t)(e − 1). If further ε(t) → 1,
or each user bids a single bundle, λ tends to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

1: N ← ∅, zbase ← QR · exp((C(t)
min − 1))

2: y
(t)
n,k ← 0, s

(t)
n ← 0, z

(t)
q,r ← 1/A

(t)
q,r, ∀n ∈ [N ], k ∈ [K], r ∈

[R], q ∈ [Q]

3: while
∑
r∈[R]

∑
q∈[Q] A

(t)
q,rz

(t)
q,r < zbase AND |N | 6= N do

4: for all n /∈ N do
5: k(n) = arg maxk∈[K]{w

(t)
n,k}

6: end for

7: n∗ = arg maxn∈[N ]{
w

(t)
n,k(n)∑

r∈[R]

∑
q∈[Q] c

(t)
n,k(n),r,q

z
(t)
q,r

}

8: y
(t)

n∗,k(n∗) ← 1, s
(t)
n∗ ← w

(t)

n∗,k(n∗),N ← N ∪ {n
∗}

9: for all r ∈ [R], q ∈ [Q] do

z(t)
q,r ← z(t)

q,r · zbase
c
(t)
n∗,k(n∗),q,r/(A

(t)
q,r−C

(t)
q,r)

10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique
To solve the decomposition problem (6), we can first find

all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coefficients βl’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k and

τ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k + τ (7)

s.t. ∑
n∈[N ]

∑
k∈[K]

y
(t)l
n,kv

(t)
n,k + τ ≤ 1, ∀l ∈ L, (7a)

τ ≥ 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a
feasible integer solution to (3) can be derived each time a
separating hyperplane is generated [13]. Hence, a polyno-



mial number of candidate integer solutions y(t)l’s are pro-
duced through the process of the ellipsoid method, and the
primal problem (6) can be reduced to a linear program with
a polynomial number of variables (βl’s) corresponding to
these integer solutions. Then we can solve the reduced pri-
mal problem in polynomial time. The correctness of the
above decomposition method is given in Lemma 1, with de-
tailed proof and the construction of the separation oracle in
Appendix D.

Lemma 1. The decomposition method correctly obtains a
polynomial number of integer solutions {y(t)l}l∈L to the one-
round allocation problem (3), and the probabilities βl, ∀l ∈
L, which solve (6), in polynomial time.

5.3 The Randomized Auction
Alg. 3 gives our randomized auction to be carried out

in each round of the online algorithm in Alg. 1. It selects
an integer bundle allocation solution y(t)l produced by the
decomposition method with probability βl (Line 8). The
payment from a winning bidder n should satisfy two condi-
tions: (1) The expectation of the payment should be equal to

the scale-down fractional payment,
∑
l∈L Π

(t)l
n βl = Π

(t)F
n /λ,

in order to remain truthfulness. (2) The payment Π
(t)l
n

should be no larger than n’s valuation of its winning bundle∑
k∈[K] w

(t)
n,ky

(t)l
n,k , in order to guarantee individual rational-

ity. We obtain the payment rule in Line 9, which satisfies
the two conditions.

The following theorem provides the properties achieved
by the randomized auction, with proof in Appendix E .

Theorem 4. Around runs in polynomial time and is truth-
ful, individual rational and λ(1 +Bmax)-competitive.

Our online auction results when we plug in the one-round
randomized auction Around into the online algorithm frame-
work Aonline in Alg. 1. The competitive ratio of the on-
line auction can be derived readily from Thm. 1 using ν =
λ(1 + Bmax), the competitive ratio of the one-round ran-
domized auction given in Thm. 4.

Theorem 5. Aonline in Alg. 1 combining with Around
in Alg. 3 constitutes a truthful, individual rational, (1 +
Bmax)(λ(1 +Bmax) + 1

γ−1
)- competitive online auction.

The complete proof of Thm. 5 can be found in Appendix
F. We note that when Bmax → 0, the competitive ratio
tends to λ + 1

e−1
. Following the discussions on Thm. 3 in

Sec. 5.2.1, when λ tends to e, the competitive ratio of the
online auction tends to e+ 1

e−1
' 3.30.

5.4 Improving the scale-down factor
We have decomposed the fractional allocation solution in

Sec. 5.2 after scaling it down by the approximation ratio λ
of the one-round allocation Alg. 2, such that a feasible so-
lution to the decomposition problem (6) is guaranteed [13].
According to Thm. 5, λ (as the scale-down factor in the de-
composition method) is closely related to the competitive
ratio of our online auction, such that a smaller scale-down
factor may potentially lead to a better competitive ratio.
However, a scale-down factor smaller than λ may not guar-
antee a feasible decomposition. We therefore design a binary
search-based algorithm in Alg. 4 to compute the smallest
scale-down factor that enables feasible decomposition.

Algorithm 3 One-Round Randomized Auction Around in t

1: Solve LP relaxation of (3), with w
(t)
n,k = max{0, (1 −

x
(t−1)
n )b

(t)
n,k}. Denote the fractional solution by

y
(t)F
n,k , ∀n ∈ [N ], k ∈ [K].

2: for all n ∈ [N ] do

3: ∀n′ ∈ [N ], k ∈ [K], w
′(t)
n′,k = max{0, (1− x(t−1)

n )b
(t)
n,k},

if n′ 6= n. Otherwise w
′(t)
n′,k = 0.

4: Solve LP relaxation of (3), with w
′(t)
n′,k’s. Denote the

optimal objective function value by Ṽ
(t)
−n .

5: Π
(t)F
n = Ṽ

(t)
−n −

∑
n′ 6=n

∑
k y

(t)F

n′,kw
(t)

n′,k
6: end for
7: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y(t)l, ∀l ∈ L, and the corre-
sponding decomposition coefficients, βl, ∀l ∈ L.

8: Choose y(t)l with probability βl, ∀l ∈ L

9: ∀n ∈ [N ],Π
(t)l
n = Π

(t)F
n ·

∑
k∈[K] w

(t)
n,k

y
(t)l
n,k∑

k∈[K] w
(t)
n,k

y
(t)F
n,k

The algorithm is designed based on a property of the scale-
down factor, as given in Thm. 6 (proof in Appendix G) .
With its monotonicity, we can find the smallest, feasible
scale-down factor using binary search (with arbitrary small
error). We should note that this trial-and-error method may
improve the performance of our online auction algorithm on
average in practice, but does not change the theoretical com-
petitive ratio in Thm. 5 in the worst case. We will investi-
gate the effectiveness of the improved scale-down factor in
our trace-driven simulations.

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error δ
1: Replace Line 7 of Alg. 3 with the following steps:
2: λl ← 1, λr ← λ+ δ
3: while λr − λl > δ do
4: λm ← (λl + λr)/2
5: Solve (7) with scale-down factor λm.
6: If Decomposing success then λr ← λm Else λl ←
λm

7: end while
8: Solve (7) with scale-down factor λr.

Theorem 6. If the fractional allocation y
(t)F
n,k can be de-

composed under scale-down factor λ1, then it can also be
decomposed under any factor λ2 > λ1.

6. PERFORMANCE EVALUATION
We evaluate our online auction design using trace-driven

simulations. We investigate 6 types of VMs distributed in
Q (default 3) datacenters, assembled from three types of
resources (CPU, RAM, Disk capacity, R = 3), following
the configurations in Table 1. Users’ resource demands are
extracted from Google cluster-usage data [3], which record
jobs submitted to the Google cluster with information on
their resource demands (CPU, RAM, Disk). We translate
each job request in the Google data into a bidding bundle



as follows: we calculate the numbers and types of VMs in
Table 1 that altogether can make up the resource demands
in the job request, and compose a bidding bundle based on
the numbers and types of VMs; the valuation in the bid-
ding bundle is calculated as the product of the total cost to
acquire these VMs according to the VM charges in Table 1
and a random coefficient in the range of [0.5, 2]. In this way,
we obtain a pool of bidding bundles from the Google data.
In each round of the online auctions, each user randomly
picks K (default 3) bundles in the pool, tags each VM in
each bundle with a datacenter randomly selected from the
Q datacenters, and bids the bundles. A user n’s total budget
Bn is decided by multiplying the sum of valuations in all the
bundles the user may bid in the T rounds of auctions by a
random coefficient in the range of [0.5, 1]. We also compute
the total amount of resource of each type r needed by all the
bid bundles of N users in each round, scale it down using
a random factor in [0, 1], and distribute the overall amount
of type-r resource to Q datacenters evenly, to obtain the

amount of available resource, A
(t)
q,r, for each type of resource

in each datacenter at each time. Note that we run random
bundle selection for each user over T rounds first to estimate
users’ budgets Bn’s and available resources in the datacen-

ters, A
(t)
q,r’s, before running the experiments to evaluate our

online auction with the obtained Bn’s and A
(t)
q,r’s. We sup-

pose the maximum ratio between the overall demands for
any type of resource in any two bundles in a user’s bid in
each time slot t, i.e., ε(t), is no larger than 2.5, by picking
up bundles with similar resource demands for each user in
the auctions, which we believe to reflect the reality better.

We compare the performance of three algorithms:

B Alloc, a pure online resource allocation algorithm, with
the one-round resource allocation algorithm Alg. 2 serv-
ing in the place of Around in Aonline in Alg. 1.

B Auc, our online auction algorithm presented in Sec. 5.3,
i.e., Aonline combined with Around in Alg. 3.

B AucBS, the online auction algorithm with the improved
scale-down factor, i.e., adding the binary search in Al-
gorithm 4 to the auction algorithm Around in Aonline.

We compare these algorithms in different settings, based
on the ratio between the offline optimal social welfare de-
rived by solving (1) exactly and the overall social welfare
produced by each online algorithm over T rounds, which
we refer to as the offline/online ratio. In each scenario, we
repeat each experiment for 10 times to derive the average
ratios.

6.1 Different numbers of cloud users
We first compare the algorithms through varying the num-

ber of cloud users N from 300 to 3000, while fixing the
number of rounds T = 300, as illustrated in Figure 1. The
offline/online ratio of Auc declines when N is large (N >
2000), which is consistent with our theoretical analysis in
Thm. 3: The larger the scale of the cloud system, the larger

the value of C
(t)
min, and consequently the better offline/online

ratio results. When users’ truthful resource demands and
valuations are assumed available for free, the pure online re-
source allocation algorithm, Alloc, achieves an offline/online
ratio close to 1, which shows that our online algorithm frame-
work together with the one-round resource allocation algo-

rithm performs closely to the offline optimum in social wel-
fare, if all the cloud users are cooperative. AucBS achieves a
better offline/online ratio as compared to Auc, revealing the
usefulness of our improved scale-down factor based on the
binary-search Alg. 4 in decomposing the fractional solution
into better integer solutions in practical scenarios.
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Figure 1: Offline/online ratio under different num-
bers of users N

6.2 Different numbers of rounds
We next vary the total number of rounds T our system is

running for while fixing the number of users to 500. Suppose
each round is one hour. A number of rounds in the range
of [300, 3000] corresponds to 12.5 days to about 4 months,
which represents a reasonable period of time for a user to
set a total amount of budget to use in. We observe in Fig-
ure 2 that the offline/online ratio of each algorithm always
remains at similar levels, demonstrating the stable perfor-
mance of our online algorithms regardless of the total num-
ber of rounds they are applied into.
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Figure 2: Offline/online ratio under different total
numbers of rounds T

6.3 Different numbers of bundles and data-
centers

We further evaluate the performance of AucBS when the
number of bundles each user bids for in each round, K, and
the number of datacenters, Q, vary. Fig. 3 shows that in
general the performance of the improved online auction is
better when the number of bundles is smaller. This can be
explained as follows: The competitive ratio of our online
auction (given in Thm. 5) is related to λ, the approxima-
tion ratio of the one-round resource allocation algorithm in
Alg. 2, which is further closely related to ε(t). When K is
smaller, ε(t) is potentially smaller (recall ε(t) is the maximum
ratio between the overall demands for any type of resource
in any two bundles among the K bundles a user bids for in



t), and thus λ is smaller, leading to a lower competitive ra-
tio of the online auction. In a practical cloud system, the K
bundles that a user bids are typically different representa-
tions of the user’s same resource demands in a time slot, e.g.,
different bundles may specify different numbers of different
types of VMs requested from different datacenters, which
add up to a similar amount of each type of resource across
different bundles, to serve the user’s need in t. Therefore,
we do not expect a large value of ε(t) at any time. When
the value of ε(t) is capped (e.g., to 2.5 in our simulation set-
tings), the competitive ratio is bounded even when K takes
larger values, as shown by the similar offline/online ratios
obtained when K = 3, 4, or 5, respectively, in Fig. 3.
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Figure 3: Offline/online ratio of AucBS with differ-
ent numbers of bundles K.

Fig. 4 shows that when the total number of datacenters
in the cloud system increases, the performance of our online
auction degrades slightly, because the approximation ratio λ
of Alg. 2 is larger when Q is larger. Nevertheless, we do not
expect more than a few tens of datacenters in a real-world
cloud system, and the offline/online ratio is still acceptable
around 2.70 when Q is 10.
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Figure 4: Offline/online ratio of AucBS with differ-
ent numbers of datacenters Q.

We note that the performance ratios obtained in our sim-
ulations are much smaller than the theoretical ratios com-
puted based on Thm. 5, in the range of 6−7 under the same
settings as used in our simulations. This promises the good
performance of our online auction algorithm in practice.

6.4 User satisfaction
Finally we study the performance of the improved online

auction algorithm AucBS in terms of user satisfaction, evalu-
ated as the percentage of users who win a bundle in a round,
averaged over the number of rounds the online auction runs.
We set the total number of rounds to T = 100, vary the
number of users N , and derive the user satisfaction under
different values of K and Q.

Fig. 5 shows that the fewer datacenters, the better user
satisfaction results. This can be explained as follows: Once
a specific type of resource is used up at one datacenter, bun-
dles requesting resources containing this type of resource in
this datacenter cannot obtained, even though other resource
is available in other datacenters; a larger number of data-
centers leads to more dispersed distribution of resources, re-
sulting in high probability for the above scenario to happen.

Fig. 6 shows that a smaller K leads to better user satis-
faction. When K is larger, λ is larger, and hence the per-
formance of the online auction degrads. On the other hand,
when a user bids for more bundles, the cloud provider has
a larger decision space for resource allocation, which should
potentially lead to a higher chance for a user to be allocated
one of the requested bundles. Therefore, the results in Fig. 6
reveal that the impact of λ dominates that of the latter.
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Figure 5: User satisfaction of AucBS with different
numbers of datacenters Q.
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Figure 6: User satisfaction of AucBS with different
numbers of bundles K.

7. CONCLUDING REMARKS
This work presents the first online combinatorial auction

for the VM market in cloud computing. It advances the
state-of-the-art of cloud auction design in that all previ-
ous VM auction mechanisms are either one-round only, or
simplify VMs into type-oblivious good (and hence circum-
vent the challenge imposed by combinatorial auctions). Our
online auction comprises three components. First, we de-
sign an intuition-driven primal-dual algorithm for translat-
ing the online social welfare optimization problem into a
series of one-round optimizations, incurring only a small ad-
ditive penalty in competitive ratio. Second, we apply a ran-
domized auction sub-framework that can translate a coop-
erative approximation algorithm to the one-round optimiza-
tion into an auction. Third, we apply a greedy primal-dual
algorithm that approximates the one-round social welfare



optimization. Our overall online VM auction guarantees a
theoretical competitive ratio close to 3.30 in typical scenar-
ios, and its design may shed light on similar auction prob-
lems in related settings.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. We prove the correctness and the competitive-
ness of Aonline by proving three claims:

1. At the end of the algorithm, it produces feasible solu-
tion for dual (2).

2. Let P (t) be the value of the objective function in (1)

after t-th iteration, ∆P (t) = P (t) − P (t−1), the same
for ∆D(t) in dual (2). Then Aonline satisfies ∆D(t) ≤(
ν + 1

γ−1

)
∆P (t), at any round ∀t ∈ [T ].

3. The algorithm produces an almost feasible solution for

primal (1). Specifically, its outputs y
(t)
n,k satisfy (1a),



(1c) and (1d). For constraint (1b), we achieve a slightly
weaker property : For all user n ∈ [N ],∑

t∈[T ]

∑
k∈[K]

b
(t)
n,ky

(t)
n,k ≤ Bn(1 +Bmax) (8)

Proof of (1): Since w
(t)
n,k ≥ b

(t)
n,k(1 − x(t−1)

n ) no matter

whether x
(t−1)
n < 1 or x

(t−1)
n ≥ 1, constraint (4a) guarantees

s
(t)
n +

∑
r∈[R]

∑
q∈[Q]

c
(t)
n,k,rz

(t)
q,r ≥ b

(t)
n,k(1− x(t−1)

n )

Also notice x
(t)
n is non-decreasing with t, so (2a) holds.

Proof of (2): At time t, ∆P (t) =
∑
n∈N b

(t)
n,kn

.

∆D(t) =
∑
n∈N

Bn(x
(t)
n − x

(t−1)
n ) + d

=
∑
n∈N

b(t)n,knx(t−1)
n +

b
(t)
n,kn

γ − 1

+ d

≤
∑
n∈N

b(t)n,knx(t−1)
n +

b
(t)
n,kn

γ − 1

+ νp

Substitute
∑
n∈N b

(t)
n,kn

(1− x(t−1)
n ) for p, we have:

∆D(t) ≤
∑
n∈N

(
ν +

1

γ − 1
− (ν − 1)x

(t−1)
n

)
b
(t)
n,kn

≤
(
ν +

1

γ − 1

)
∆P (t)

Proof of (3): Constraints (1a), (1c), (1d) are guar-
anteed by the constraints in (3). In order to analyze the
property about constraint (1b), we prove the following in-
equality: ∀n ∈ [N ], t′ ∈ [T ],

x
(t′)
n ≥

1

γ − 1

γ∑t′
t=1

∑
k∈[K] b

(t)
n,k

y
(t)
n,k

Bn − 1

 , 0 ≤ t′ ≤ T (9)

We prove (9) by induction. (9) holds for t′ = 0 appar-
ently. Suppose it holds for t′ − 1, then for t′: If n /∈ N , the
inequality holds since both sides are still the same value at
time t′ − 1. If n ∈ N :

x
(t)
n = x

(t−1)
n

1 +
b
(t)
n,kn

Bn

+
b
(t)
n,kn

Bn(γ − 1)

=
1

γ − 1

γ∑t′−1
t=1

∑
k∈[K] b

(t)
n,k

y
(t)
n,k

Bn

1 +
b
(t)
n,kn

Bn

− 1



Comparing this with our target (9), obviously we only

need to show: 1+
b
(t)
n,kn
Bn

≥ γ
b
(t)
n,kn
Bn . We utilize the inequality:

ln(1 + x)

x
≥

ln(1 + y)

y
, ∀0 ≤ x ≤ y ≤ 1

Since
b
(t)
n,kn
Bn

≤ Bmax, we have:

ln(1 +
b
(t)
n,kn

Bn
) ≥

b
(t)
n,kn

Bn
·

ln(1 +Bmax)

Bmax
=
b
(t)
n,kn

Bn
ln γ

Thus, 1 +
b
(t)
n,kn
Bn

≥ γ
b
(t)
n,kn
Bn , and we prove (9).

Now we utilize the inequality (9) to prove (8). For some

user n, suppose t′ is the first time
∑t′

t=1

∑
k∈[K] b

(t)
n,ky

(t)
n,k ≥

Bn. Then by (9), x
(t′)
n ≥ 1. The algorithm never gives

user n any new bundles once xn ≥ 1, since the weight

w
(t)
n,k in Around will be set to 0. So

∑T
t=1

∑
k∈[K] b

(t)
n,ky

(t)
n,k =∑t′

t=1

∑
k∈[K] b

(t)
n,ky

(t)
n,k. We know t′ is the first time user n’s

total winning bids exceeding its budget Bn. So

t′−1∑
t=1

∑
k∈[K]

b
(t)
n,ky

(t)
n,k < Bn, then:

T∑
t=1

∑
k∈[K]

b
(t)
n,ky

(t)
n,k =

t′−1∑
t=1

∑
k∈[K]

b
(t)
n,ky

(t)
n,k +

∑
k∈[K]

b
(t′)
n,ky

(t′)
n,k

≤ Bn + max
k∈[K]

b
(t′)
n,k

≤ Bn(1 +Bmax)

Finally we put the above 3 claims together and calcu-
late the actual total social welfare. Since the increment of
valuation is the minimum between user’s valuation and his
remaining budget, total social welfare should be:

∑
n∈[N ]

min{Bn,
∑
k∈[K]

∑
t∈[T ]

b
(n)
n,ky

(n)
n,k}

≥
∑
n∈[N ]

∑
k∈[K]

∑
t∈[T ]

b
(n)
n,ky

(n)
n,k/(1 +Bmax)

= P (T )/(1 +Bmax)

By claim 2: ∆D(t) ≤
(
ν + 1

γ−1

)
∆P (t), and recall P (0) =

D(0) = 0 , we have D(T ) ≤
(
ν + 1

γ−1

)
P (T ). Thus the social

welfare is at least D(T )/[(1+Bmax)(ν+ 1
γ−1

)]. By duality, the

approximation ratio of Aonline is (1 +Bmax)(ν + 1
γ−1

) .

B. PROOF OF THEOREM 2
Proof. Suppose user n’s bid is b

(t)
n,k, then we can calcu-

late the value of w
(t)
n,k by definition. We omit this calculation

process in our proof and directly assume that user n submits

bid w
(t)
n,k and other users n′ 6= n submit bids w

(t)

n′,k. Then

according to the payment rule Π
(t)
n , user n’s utility can be

calculated as:

u
(t)
n =

∑
k∈[K]

y
(t)F
n,k w

(t)
n,k − Ṽ

(t)
−n +

∑
n′ 6=n

∑
k∈[K]

y
(t)F
n′,kw

(t)
n′,k

=
∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k w

(t)
n,k − Ṽ

(t)
−n



We know that y
(t)F
n,k is calculated by maximizing

∑
n,k

y
(t)
n,kw

(t)
n,k, which is the total social welfare. So

∑
n,k y

(t)F
n,k w

(t)
n,k

is greater than Ṽ
(t)
−n because the latter is the maximum social

welfare with the same amount of resources and one less user.
So u

(t)
n ≥ 0.

Next we compare the utility under the truthful bid and a

false bid. Suppose user n submits a false bid w̃
(t)
n,k. Then

the fractional allocation decision becomes ỹ
(t)F
n,k . His utility

under false bid is calculated similarly:

ũ
(t)
n =

∑
k∈[K]

ỹ
(t)F
n,k w

(t)
n,k − Ṽ

(t)
−n +

∑
n′ 6=n

∑
k∈[K]

ỹ
(t)F
n′,kw

(t)
n′,k

The difference of these two utilities is:

u
(t)
n − ũ

(t)
n =

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k w

(t)
n,k −

∑
n∈[N ]

∑
k∈[K]

ỹ
(t)F
n,k w

(t)
n,k

Again y
(t)F
n,k maximizes social welfare, so

∑
n,k y

(t)F
n,k w

(t)
n,k ≥∑

n,k ỹ
(t)F
n,k w

(t)
n,k, and u

(t)
n − ũ(t)

n ≥ 0.

C. PROOF OF THEOREM 3
We discuss the problem of round t in this proof, so we

omit the superscript (t) in this section.
First we show the solution is feasible for the primal (3).

Constraints (3a) and (3c) are obviously never violated. We
study the constraint (3b). Suppose in iteration τ , wn∗,k(n∗)

is the first bid that violates constraint (3b) when added to
the allocation. This means ∃q ∈ [Q], r ∈ [R] such that∑

n∈N
cn,k(n),r,q ≤ Aq,r

cn∗,k(n∗),r,q +
∑
n∈N

cn,k(n),r,q > Aq,r

We know Cq,r ≥ cn∗,k(n∗),r,q, so we have
∑
n∈N cn,k(n),r,q ≥

Aq,r − Cq,r. So ∑
n∈N cn,k(n),r,q

Aq,r − Cq,r
≥ 1

That leads to:

Aq,rz
τ−1
q,r = z

∑
n∈N cn,k(n),r,q
Aq,r−Cq,r

base ≥ zbase

where zτ−1
q,r represents the value of zq,r before iteration

τ . This implies that the stopping condition of the iteration
is satisfied before iteration τ , and the algorithm should be
stopped before wn∗,k(n∗) is chosen. So in fact constraint (3b)
is never violated.

The feasibility of the dual (4) is more complicated, be-
cause the solution is not always feasible during the itera-
tions. However, the dual variables are feasible after scaling
down by some factor, which is described in the following
lemma.

Lemma 2. If (sτ−1
n , zτ−1

q,r ) is the dual solution before iter-
ation τ , then (sτ−1

n , εf(z, n∗, k(n∗))zτ−1
q,r ) is a feasible solu-

tion to the dual (4), where f(z, n, k) is defined as f(z, n, k) =
wn,k/

∑
q∈[Q]

∑
r∈[R] cn,k,r,qzq,r, and z is the set of zτ−1

q,r , n∗

is the selected user in iteration τ .

Proof. We have ∀n ∈ [N ], k ∈ [K], wn,k(n) ≥ wn,k. So
sn ≥ wn,k,∀n ∈ N , k ∈ [K], which implies that constraint
(4a) is satisfied for ∀n ∈ N .

Next we examine the users not in N . Note that we choose
the n∗ by choosing the maximum ratio of wn,k and a sum-
mation. Therefore,

f(z, n∗, k(n∗)) ≥
wn,k(n)∑

q∈[Q]

∑
r∈[R] cn,k(n),r,qz

τ−1
q,r

,∀n /∈ N , and,

f(z, n∗, k(n∗))
∑
q∈[Q]

∑
r∈[R]

cn,k(n),r,qz
τ−1
q,r ≥ wn,k(n), ∀n /∈ N

Since εcn,k1,r,q ≥ cn,k2,r,q,∀k1, k2 ∈ [K], n ∈ [N ], r ∈
[R], q ∈ [Q]. We can further get: ∀n /∈ N , k ∈ [K],

εf(z, n∗, k(n∗))
∑
q∈[Q]

∑
r∈[R]

cn,k(n),r,qz
τ−1
q,r ≥ wn,k

Thus (sτ−1
n , εf(z, n∗, k(n∗))zτ−1

q,r ) is a feasible solution to
the dual (4).

Now we are ready to prove the final conclusion of Thm. 3.
Let dτ1 =

∑
n∈[N ] sn, dτ2 =

∑
q∈[Q]

∑
r∈[R] Aq,rz

τ
q,r. Let d∗

be the optimal(minimum) solution to the dual (4). Let
(nτ , kτ ) be the bundle selected in iteration τ . Totally ω
iterations are executed.

Case 1: Around stops at iteration ω where N = [N ] and∑
q∈[Q]

∑
r∈[R] Aq,rzq,r < zbase. Note that (sn, zq,r = 0) is

a feasible solution to the dual, and the d = p under this
solution. So the solution under this case is optimal.

Case 2: Around stops at iteration ω where dω2 ≥ zbase, and
∃τ ≤ ω, such that λ ≥ d∗/dτ−1

1 . This means we already
find a λ-approximation solution, since dτ−1

1 = pτ−1 and dτ1
is non-decreasing of τ .

Case 3: Around stops at iteration ω where dω2 ≥ zbase, and
λ < d∗/dτ−1

1 , ∀τ ≤ ω. For any iteration τ ,

dτ2 =
∑
q∈[Q]

∑
r∈[R]

Aq,rz
τ
q,r

Define: δ =

(
Aq,r

Cq,r
− 1

)
(z

1/(
Aq,r
Cq,r

−1)

base − 1)

Then: dτ2 =
∑
q∈[Q]

∑
r∈[R]

Aq,rz
τ−1
q,r

1 +
δ

Aq,r
Cq,r

− 1

(
cnτ ,kτ ,q,r
Aq,r−Cq,r

)

We utilize the inequality: (1 + a)x ≤ 1 + ax, ∀x ∈ [0, 1]
here and we can get:

dτ2 ≤
∑
q∈[Q]

∑
r∈[R]

Aq,rz
τ−1
q,r

1 +
δ

Aq,r
Cq,r

− 1
·

cnτ ,kτ ,q,r

(Aq,r − Cq,r)


Let ∆ = maxq∈[Q],r∈[R]

δAq,r
Aq,r−Cq,r , then:

dτ2 ≤ d
τ−1
2 + ∆

∑
q∈[Q]

∑
r∈[R]

(cnτ ,kτ ,q,rz
τ−1
q,r )



Note that
δAq,r

Aq,r−Cq,r is non-increasing of
Aq,r
zq,r

. So
δAq,r

Aq,r−Cq,r

reaches its maximum when
Aq,r
zq,r

= Cmin. Thus we substi-

tute Cmin for
Aq,r
zq,r

in the definition of δ , and get:

∆ = Cmin(e(QR)1/Cmin−1 − 1)

Recall the definition of f(z, nτ , kτ ), we have:∑
q∈[Q]

∑
r∈[R]

(cnτ ,kτ ,q,rz
τ−1
q,r ) =

wnτ ,kτ

f(z, nτ , kτ )

Here is a corollary of Lemma 2: f(z, nτ , kτ ) ≥ d∗−dτ−1
1

εdτ−1
2

.

Recall that λ ≤ d∗

dτ−1
1

, so

1

f(z, nτ , kτ )
≤

ελdτ−1
2

(λ− 1)d∗

Combine with the relation between dτ2 and dτ−1
2 :

dω2 ≤ d
ω−1
2 (1 + ε(pω − pω−1)

λ∆

(λ− 1)d∗
)

We utilize the inequality: 1 + x ≤ ex, ∀x ≥ 0 here, and
repeat this process:

dω2 ≤ d0
2e

(εp λ∆
(λ−1)d∗ )

Note that d0
2 = QR and dω2 ≥ zbase, so zbase ≤ QRe

(εp λ∆
(λ−1)d∗ )

. So d∗/p ≤ ελ∆
(λ−1)(Cmin−1)

. Also note that ελ∆
(λ−1)(Cmin−1)

=

λ. And according to the weak duality, this finishes the proof
of Thm. 3.

D. THE SEPARATION ORACLE AND PROOF
OF LEMMA 1

First we describe the construction of the separation oracle.
In each iteration of the ellipsoid method, a possible solution

of (7) {v(t)
n,k}, τ is generated, and is given as the input of the

severation oracle. The separation oracle we present in Alg.
5 judges whether this solution is feasible, i.e., not conflict
with any constraints in (7a). And if it is not feasible, the
separation oracle should return a conflict constraints as the

separation plane, i.e., a set of y
(t)l
n,k . So if the input solution

has objective value smaller than 1, we use

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k + τ ≥ 1

as the separation plane. If the objective value equals to
1, then we find a feasible solution (later we will prove why
in this case, it is a feasible solution). If the objective value

is larger than 1, we need to find a set of y
(t)l
n,k , satisfies:∑

n∈[N ]

∑
k∈[K]

y
(t)l
n,kv

(t)
n,k ≥ 1− τ

Remember the input v
(t)
n,k and τ makes the objective value

larger than 1 :

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k ≥ 1− τ

So we find a conflict constraint if we can find y
(t)l
n,k satisfies

∑
n∈[N ]

∑
k∈[K]

y
(t)l
n,kv

(t)
n,k ≥

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k

Observe the left side of the inequality. It has exactly the
same form with the objective function of (3). Furthermore,

the value of y
(t)l
n,k also should satisfy all the constraints in (3).

So we can Around to get such y
(t)l
n,k . Although there is a little

difference here: v
(t)
n,k can be negative, while w

(t)
n,k in (3) can

only be nonnegative value. In order to handle this problem,
we introduce new variables ṽ and ỹ in the separation oracle,
which is detailed in the proof.

Algorithm 5 Separation Oracle

Require: input v
(t)
n,k, τ

1: If 1
λ

∑
n

∑
k y

(t)F
n,k v

(t)
n,k + τ = 1, Then return “YES”

2: If 1
λ

∑
n

∑
k y

(t)F
n,k v

(t)
n,k + τ < 1, Then return “NO” with sep-

aration plane 1
λ

∑
n

∑
k y

(t)F
n,k v

(t)
n,k + τ ≥ 1

3: If 1
λ

∑
n

∑
k y

(t)F
n,k v

(t)
n,k + τ > 1, Then

4: ṽ
(t)
n,k = max{0, v(t)

n,k}
5: Run Around with input ṽ

(t)
n,k, c

(t)
n,k,r,q , A

(t)
q,r, get output

ỹ
(t)l
n,k . Set y

(t)l
n,k = ỹ

(t)l
n,k if v

(t)
n,k ≥ 0, and 0 otherwise.

6: Return “NO” and
∑
n

∑
k y

(t)l
n,kv

(t)
n,k + τ ≤ 1

7: EndIf

The following is the detailed proof of Lemma 1. We first

show that for any {v(t)
n,k}, we can find in polynomial time a

feasible integer allocation y
(t)l
n,k such that

∑
n∈[N ]

∑
k∈[K]

y
(t)l
n,kv

(t)
n,k ≥

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k (10)

Note the v
(t)
n,k here can be negative value, so we cannot

invoke Around directly. That is the reason we define ṽ
(t)
n,k.

Then we use Around, with input vector ṽ
(t)
n,k to get ỹ

(t)l
n,k sat-

isfying:

∑
n∈[N ]

∑
k∈[K]

ỹ
(t)l
n,k ṽ

(t)
n,k ≥

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k ṽ

(t)
n,k

≥
1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k

Also note that y
(t)l
n,k satisfies

∑
n∈[N ]

∑
k∈[K] y

(t)l
n,kv

(t)
n,k ≥∑

n∈[N ]

∑
k∈[K] ỹ

(t)l
n,k ṽ

(t)
n,k. Thus we find such a integer solu-

tion y
(t)l
n,k .

Next we show the optimal value of (7), and hence of (6)
is exactly 1. Here is a feasible solution with value 1: τ =

1, v
(t)
n,k = 0, ∀n ∈ [N ], k ∈ [K], so the optimal value is at

least 1. Then we claim that it is at most 1: suppose

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k + τ > 1

Then we can find an integer solution using the previous
method such that



∑
n∈[N ]

∑
k∈[K]

y
(t)l
n,kv

(t)
n,k + τ ≥

1

λ

∑
n∈[N ]

∑
k∈[K]

y
(t)F
n,k v

(t)
n,k + τ ≥ 1

,which contradicts constraint (7a).
Finally we show the function of our designed oracle is

correct. Its correctness under two cases: objective value
equals 1 and smaller than 1 is obvious. When it is larger

than 1, the oracle generates ṽ
(t)
n,k and calls Around. The

correctness of this method has been discussed. So this oracle
solves (7) as we expect.

E. PROOF OF THEOREM 4
Proof. Recall the utility function: u

(t)
n =

∑
k∈[K] w

(t)
n,ky

(t)
n,k−

Π
(t)
n . So the utility of user n under allocation l ∈ L is∑
k∈[K] w

(t)
n,ky

(t)l
n,k−Π

(t)l
n . We calculate the expectation of his

utility:

U
(t)
n =

∑
l∈L

βl ∑
k∈[K]

w
(t)
n,ky

(t)l
n,k −Π

(t)l
n


=

 ∑
k∈[K]

w
(t)
n,ky

(t)F
n,k −Π

(t)F
n

 /λ

We know
∑
k∈[K] w

(t)
n,ky

(t)F
n,k −Π

(t)F
n is his utility under the

fractional VCG auction, and it cannot be increased by false
bid according to Thm. 2. So the scaled-down auction is also
truthful.

The social welfare under the fractional VCG auction is∑
n∈[N ] min

{∑
k∈[K] b

(t)
n,ky

(t)F
n,k , Bn

}
. Now we calculate the

expected social welfare under randomized auction:

∑
l∈L

βl ∑
n∈[N ]

min

 ∑
k∈[K]

b
(t)
n,ky

(t)l
n,k , Bn




≥
∑
n∈[N ]

∑
l∈L

βl
∑
k∈[K] b

(t)
n,ky

(t)l
n,k

1 +Bmax

≥

∑
n∈[N ] min

{∑
k∈[K] b

(t)
n,ky

(t)F
n,k , Bn

}
λ(1 +Bmax)

We used the condition
∑
k∈[K] b

(t)
n,ky

(t)l
n,k ≤ (1+Bmax)Bn in

the first inequality. This proves the competitive ratio since
the social welfare under optimal fractional solution is larger
than under integer solution.

Next we show the individual rationality. First note that

the definition Π
(t)l
n = Π

(t)F
n ·

∑
k∈[K] w

(t)
n,k

y
(t)l
n,k∑

k∈[K] w
(t)
n,k

y
(t)F
n,k

guarantees∑
l∈L βlΠ

(t)l
n = Π

(t)F
n /λ. Then we calculate user n’s util-

ity under random choice l:

u
(t)
n =

∑
k∈[K]

w
(t)
n,ky

(t)l
n,k −Π

(t)F
n ·

∑
k∈[K] w

(t)
n,ky

(t)l
n,k∑

k∈[K] w
(t)
n,ky

(t)F
n,k

In order to prove u
(t)
n ≥ 0, we only needs to prove Π

(t)F
n ≤∑

k∈[K] w
(t)
n,ky

(t)F
n,k . In fact, this is guaranteed by the individ-

ual rationality of the fractional VCG (Thm. 2), and thus we
finish the proof.

F. PROOF OF THEOREM 5
Proof. The only difference between Thm. 5 and Thm. 1

is we introduce randomness here. Recall the proof of Thm. 1,
the only claim affected by randomness is claim (2). We
analyze the expectation of the increment on the primal and
dual E[∆P ] and E[∆D]. At time t,

E[∆P (t)] =
∑
n∈[N ]

∑
k∈[K]

E[y
(t)
n,kb

(t)
n,k]

E[∆D(t)] =
∑
n∈[N ]

BnE[x
(t)
n − x

(t−1)
n ] + E[d]

≤λ(1 +Bmax)E[p] +
∑
n∈[N ]

E[
∑
k∈[K]

y
(t)
n,kb

(t)
n,k]·

E[x
(t−1)
n +

1

γ − 1
]

≤E[∆P (t)]
(
λ(1 +Bmax)

∑
n∈[N ]

E[1− x(t−1)
n ]+

1

γ − 1
+
∑
n∈[N ]

E[x
(t−1)
n ]

)
≤(λ(1 +Bmax) +

1

γ − 1
)E[∆P (t)]

So the final actual competitive ratio is (1 + Bmax)(λ(1 +
Bmax) + 1

γ−1
).

G. PROOF OF THEOREM 6
Proof. Suppose with scale-down ratio λ1, y

(t)F
n,k is de-

composed into a set of integer allocations y
(t)l
n,k , with index

set l ∈ L, and the corresponding possibilities βl. Then we
have: ∑

l∈L
βly

(t)l
n,k = y

(t)F
n,k /λ1, ∀n ∈ [N ], k ∈ [K]

Then we can obtain the decomposition for ratio λ2 by
adding a “zero” allocation into the decomposition set L:

y
(t)∗
n,k = 0. This is an allocation that no user wins any-

thing, and it is a feasible solution. The possibilities are ad-
justed: β′l = βl · λ1

λ2
. The possibility of the “zero” allocation

is 1 −
∑
l∈L β

′
l. We can verify that the new decomposition

set, with new possibilities β′l is a decomposition for ratio λ2:∑
l∈L

β′ly
(t)l
n,k = y

(t)F
n,k /λ2,∀n ∈ [N ], k ∈ [K]


