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In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for
function estimation. Furthermore, we include a summary of currently used algorithms for training
SV machines, covering both the quadratic (or convex) programming part and advanced methods for
dealing with large datasets. Finally, we mention some modifications and extensions that have been
applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
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1. Introduction

The purpose of this paper is twofold. It should serve as a self-
contained introduction to Support Vector regression for readers
new to this rapidly developing field of research.1 On the other
hand, it attempts to give an overview of recent developments in
the field.

To this end, we decided to organize the essay as follows.
We start by giving a brief overview of the basic techniques in
Sections 1, 2 and 3, plus a short summary with a number of
figures and diagrams in Section 4. Section 5 reviews current
algorithmic techniques used for actually implementing SV
machines. This may be of most interest for practitioners.
The following section covers more advanced topics such as
extensions of the basic SV algorithm, connections between SV
machines and regularization and briefly mentions methods for
carrying out model selection. We conclude with a discussion
of open questions and problems and current directions of SV
research. Most of the results presented in this review paper
already have been published elsewhere, but the comprehensive
presentations and some details are new.

1.1. Historic background

The SV algorithm is a nonlinear generalization of the Gener-
alized Portrait algorithm developed in Russia in the sixties2

∗An extended version of this paper is available as NeuroCOLT Technical Report
TR-98-030.

(Vapnik and Lerner 1963, Vapnik and Chervonenkis 1964). As
such, it is firmly grounded in the framework of statistical learn-
ing theory, or VC theory, which has been developed over the last
three decades by Vapnik and Chervonenkis (1974) and Vapnik
(1982, 1995). In a nutshell, VC theory characterizes properties
of learning machines which enable them to generalize well to
unseen data.

In its present form, the SV machine was largely developed
at AT&T Bell Laboratories by Vapnik and co-workers (Boser,
Guyon and Vapnik 1992, Guyon, Boser and Vapnik 1993, Cortes
and Vapnik, 1995, Schölkopf, Burges and Vapnik 1995, 1996,
Vapnik, Golowich and Smola 1997). Due to this industrial con-
text, SV research has up to date had a sound orientation towards
real-world applications. Initial work focused on OCR (optical
character recognition). Within a short period of time, SV clas-
sifiers became competitive with the best available systems for
both OCR and object recognition tasks (Schölkopf, Burges and
Vapnik 1996, 1998a, Blanz et al. 1996, Schölkopf 1997). A
comprehensive tutorial on SV classifiers has been published by
Burges (1998). But also in regression and time series predic-
tion applications, excellent performances were soon obtained
(Müller et al. 1997, Drucker et al. 1997, Stitson et al. 1999,
Mattera and Haykin 1999). A snapshot of the state of the art
in SV learning was recently taken at the annual Neural In-
formation Processing Systems conference (Schölkopf, Burges,
and Smola 1999a). SV learning has now evolved into an active
area of research. Moreover, it is in the process of entering the
standard methods toolbox of machine learning (Haykin 1998,
Cherkassky and Mulier 1998, Hearst et al. 1998). Schölkopf and
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Smola (2002) contains a more in-depth overview of SVM regres-
sion. Additionally, Cristianini and Shawe-Taylor (2000) and Her-
brich (2002) provide further details on kernels in the context of
classification.

1.2. The basic idea

Suppose we are given training data {(x1, y1), . . . , (x�, y�)} ⊂
X × R, where X denotes the space of the input patterns (e.g.
X = R

d ). These might be, for instance, exchange rates for some
currency measured at subsequent days together with correspond-
ing econometric indicators. In ε-SV regression (Vapnik 1995),
our goal is to find a function f (x) that has at most ε deviation
from the actually obtained targets yi for all the training data, and
at the same time is as flat as possible. In other words, we do not
care about errors as long as they are less than ε, but will not
accept any deviation larger than this. This may be important if
you want to be sure not to lose more than ε money when dealing
with exchange rates, for instance.

For pedagogical reasons, we begin by describing the case of
linear functions f , taking the form

f (x) = 〈w, x〉 + b with w ∈ X , b ∈ R (1)

where 〈 · , · 〉 denotes the dot product in X . Flatness in the case
of (1) means that one seeks a small w. One way to ensure this is
to minimize the norm,3 i.e. ‖w‖2 = 〈w, w〉. We can write this
problem as a convex optimization problem:

minimize 1
2‖w‖2

subject to

{
yi − 〈w, xi 〉 − b ≤ ε

〈w, xi 〉 + b − yi ≤ ε

(2)

The tacit assumption in (2) was that such a function f actually
exists that approximates all pairs (xi , yi ) with ε precision, or in
other words, that the convex optimization problem is feasible.
Sometimes, however, this may not be the case, or we also may
want to allow for some errors. Analogously to the “soft mar-
gin” loss function (Bennett and Mangasarian 1992) which was
used in SV machines by Cortes and Vapnik (1995), one can in-
troduce slack variables ξi , ξ

∗
i to cope with otherwise infeasible

constraints of the optimization problem (2). Hence we arrive at
the formulation stated in Vapnik (1995).

minimize
1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i )

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(3)

The constant C > 0 determines the trade-off between the flat-
ness of f and the amount up to which deviations larger than
ε are tolerated. This corresponds to dealing with a so called
ε-insensitive loss function |ξ |ε described by

|ξ |ε :=
{

0 if |ξ | ≤ ε

|ξ | − ε otherwise.
(4)

Fig. 1. The soft margin loss setting for a linear SVM (from Schölkopf
and Smola, 2002)

Figure 1 depicts the situation graphically. Only the points outside
the shaded region contribute to the cost insofar, as the deviations
are penalized in a linear fashion. It turns out that in most cases
the optimization problem (3) can be solved more easily in its dual
formulation.4 Moreover, as we will see in Section 2, the dual for-
mulation provides the key for extending SV machine to nonlinear
functions. Hence we will use a standard dualization method uti-
lizing Lagrange multipliers, as described in e.g. Fletcher (1989).

1.3. Dual problem and quadratic programs

The key idea is to construct a Lagrange function from the ob-
jective function (it will be called the primal objective function
in the rest of this article) and the corresponding constraints, by
introducing a dual set of variables. It can be shown that this
function has a saddle point with respect to the primal and dual
variables at the solution. For details see e.g. Mangasarian (1969),
McCormick (1983), and Vanderbei (1997) and the explanations
in Section 5.2. We proceed as follows:

L := 1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i ) −

�∑
i=1

(ηiξi + η∗
i ξ

∗
i )

−
�∑

i=1

αi (ε + ξi − yi + 〈w, xi 〉 + b)

−
�∑

i=1

α∗
i (ε + ξ ∗

i + yi − 〈w, xi 〉 − b) (5)

Here L is the Lagrangian and ηi , η
∗
i , αi , α

∗
i are Lagrange multi-

pliers. Hence the dual variables in (5) have to satisfy positivity
constraints, i.e.

α
(∗)
i , η

(∗)
i ≥ 0. (6)

Note that by α
(∗)
i , we refer to αi and α∗

i .
It follows from the saddle point condition that the partial

derivatives of L with respect to the primal variables (w, b, ξi , ξ
∗
i )

have to vanish for optimality.

∂b L =
�∑

i=1

(α∗
i − αi ) = 0 (7)

∂w L = w −
�∑

i=1

(αi − α∗
i )xi = 0 (8)

∂
ξ

(∗)
i

L = C − α
(∗)
i − η

(∗)
i = 0 (9)
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Substituting (7), (8), and (9) into (5) yields the dual optimization
problem.

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

−ε

�∑
i=1

(αi + α∗
i ) +

�∑
i=1

yi (αi − α∗
i )

subject to
�∑

i=1

(αi − α∗
i ) = 0 and αi , α

∗
i ∈ [0, C]

(10)

In deriving (10) we already eliminated the dual variables ηi , η
∗
i

through condition (9) which can be reformulated as η
(∗)
i = C −

α
(∗)
i . Equation (8) can be rewritten as follows

w =
�∑

i=1

(αi−α∗
i )xi , thus f (x) =

�∑
i=1

(αi−α∗
i )〈xi , x〉 + b. (11)

This is the so-called Support Vector expansion, i.e. w can be
completely described as a linear combination of the training
patterns xi . In a sense, the complexity of a function’s represen-
tation by SVs is independent of the dimensionality of the input
space X , and depends only on the number of SVs.

Moreover, note that the complete algorithm can be described
in terms of dot products between the data. Even when evalu-
ating f (x) we need not compute w explicitly. These observa-
tions will come in handy for the formulation of a nonlinear
extension.

1.4. Computing b

So far we neglected the issue of computing b. The latter can be
done by exploiting the so called Karush–Kuhn–Tucker (KKT)
conditions (Karush 1939, Kuhn and Tucker 1951). These state
that at the point of the solution the product between dual variables
and constraints has to vanish.

αi (ε + ξi − yi + 〈w, xi 〉 + b) = 0
(12)

α∗
i (ε + ξ ∗

i + yi − 〈w, xi 〉 − b) = 0

and

(C − αi )ξi = 0
(13)

(C − α∗
i )ξ ∗

i = 0.

This allows us to make several useful conclusions. Firstly only
samples (xi , yi ) with corresponding α

(∗)
i = C lie outside the ε-

insensitive tube. Secondly αiα
∗
i = 0, i.e. there can never be a set

of dual variables αi , α
∗
i which are both simultaneously nonzero.

This allows us to conclude that

ε − yi + 〈w, xi 〉 + b ≥ 0 and ξi = 0 if αi < C (14)

ε − yi + 〈w, xi 〉 + b ≤ 0 if αi > 0 (15)

In conjunction with an analogous analysis on α∗
i we have

max{−ε + yi − 〈w, xi 〉 | αi < C or α∗
i > 0} ≤ b ≤

min{−ε + yi − 〈w, xi 〉 | αi > 0 or α∗
i < C} (16)

If some α
(∗)
i ∈ (0, C) the inequalities become equalities. See

also Keerthi et al. (2001) for further means of choosing b.
Another way of computing b will be discussed in the context

of interior point optimization (cf. Section 5). There b turns out
to be a by-product of the optimization process. Further consid-
erations shall be deferred to the corresponding section. See also
Keerthi et al. (1999) for further methods to compute the constant
offset.

A final note has to be made regarding the sparsity of the SV
expansion. From (12) it follows that only for | f (xi ) − yi | ≥ ε

the Lagrange multipliers may be nonzero, or in other words, for
all samples inside the ε–tube (i.e. the shaded region in Fig. 1)
the αi , α

∗
i vanish: for | f (xi ) − yi | < ε the second factor in

(12) is nonzero, hence αi , α
∗
i has to be zero such that the KKT

conditions are satisfied. Therefore we have a sparse expansion
of w in terms of xi (i.e. we do not need all xi to describe w). The
examples that come with nonvanishing coefficients are called
Support Vectors.

2. Kernels

2.1. Nonlinearity by preprocessing

The next step is to make the SV algorithm nonlinear. This, for
instance, could be achieved by simply preprocessing the training
patterns xi by a map � : X → F into some feature space F ,
as described in Aizerman, Braverman and Rozonoér (1964) and
Nilsson (1965) and then applying the standard SV regression
algorithm. Let us have a brief look at an example given in Vapnik
(1995).

Example 1 (Quadratic features in R
2). Consider the map � :

R
2 → R

3 with �(x1, x2) = (x2
1 ,

√
2x1x2, x2

2 ). It is understood
that the subscripts in this case refer to the components of x ∈ R

2.
Training a linear SV machine on the preprocessed features would
yield a quadratic function.

While this approach seems reasonable in the particular ex-
ample above, it can easily become computationally infeasible
for both polynomial features of higher order and higher di-
mensionality, as the number of different monomial features
of degree p is (d+p−1

p ), where d = dim(X ). Typical values
for OCR tasks (with good performance) (Schölkopf, Burges
and Vapnik 1995, Schölkopf et al. 1997, Vapnik 1995) are
p = 7, d = 28 · 28 = 784, corresponding to approximately
3.7 · 1016 features.

2.2. Implicit mapping via kernels

Clearly this approach is not feasible and we have to find a com-
putationally cheaper way. The key observation (Boser, Guyon
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and Vapnik 1992) is that for the feature map of example 2.1 we
have 〈(

x2
1 ,

√
2x1x2, x2

2

)
,
(
x ′2

1,
√

2x ′
1x ′

2, x ′2
2

)〉 = 〈x, x ′〉2. (17)

As noted in the previous section, the SV algorithm only depends
on dot products between patterns xi . Hence it suffices to know
k(x, x ′) := 〈�(x), �(x ′)〉 rather than � explicitly which allows
us to restate the SV optimization problem:

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

−ε

�∑
i=1

(αi + α∗
i ) +

�∑
i=1

yi (αi − α∗
i )

subject to
�∑

i=1

(αi − α∗
i ) = 0 and αi , α

∗
i ∈ [0, C]

(18)

Likewise the expansion of f (11) may be written as

w =
�∑

i=1

(αi − α∗
i )�(xi ) and

f (x) =
�∑

i=1

(αi − α∗
i )k(xi , x) + b. (19)

The difference to the linear case is that w is no longer given ex-
plicitly. Also note that in the nonlinear setting, the optimization
problem corresponds to finding the flattest function in feature
space, not in input space.

2.3. Conditions for kernels

The question that arises now is, which functions k(x, x ′) corre-
spond to a dot product in some feature space F . The following
theorem characterizes these functions (defined on X ).

Theorem 2 (Mercer 1909). Suppose k ∈ L∞(X 2) such that
the integral operator Tk : L2(X ) → L2(X ),

Tk f (·) :=
∫
X

k(·, x) f (x)dµ(x) (20)

is positive (here µ denotes a measure on X with µ(X ) finite
and supp(µ) = X ). Let ψ j ∈ L2(X ) be the eigenfunction of Tk

associated with the eigenvalue λ j �= 0 and normalized such that
‖ψ j‖L2 = 1 and let ψ j denote its complex conjugate. Then

1. (λ j (T )) j ∈ �1.
2. k(x, x ′) = ∑

j∈N
λ jψ j (x)ψ j (x ′) holds for almost all (x, x ′),

where the series converges absolutely and uniformly for al-
most all (x, x ′).

Less formally speaking this theorem means that if∫
X×X

k(x, x ′) f (x) f (x ′) dxdx ′ ≥ 0 for all f ∈ L2(X ) (21)

holds we can write k(x, x ′) as a dot product in some feature
space. From this condition we can conclude some simple rules
for compositions of kernels, which then also satisfy Mercer’s

condition (Schölkopf, Burges and Smola 1999a). In the follow-
ing we will call such functions k admissible SV kernels.

Corollary 3 (Positive linear combinations of kernels). Denote
by k1, k2 admissible SV kernels and c1, c2 ≥ 0 then

k(x, x ′) := c1k1(x, x ′) + c2k2(x, x ′) (22)

is an admissible kernel. This follows directly from (21) by virtue
of the linearity of integrals.

More generally, one can show that the set of admissible ker-
nels forms a convex cone, closed in the topology of pointwise
convergence (Berg, Christensen and Ressel 1984).

Corollary 4 (Integrals of kernels). Let s(x, x ′) be a function
on X × X such that

k(x, x ′) :=
∫
X

s(x, z)s(x ′, z) dz (23)

exists. Then k is an admissible SV kernel.

This can be shown directly from (21) and (23) by rearranging the
order of integration. We now state a necessary and sufficient con-
dition for translation invariant kernels, i.e. k(x, x ′) := k(x − x ′)
as derived in Smola, Schölkopf and Müller (1998c).

Theorem 5 (Products of kernels). Denote by k1 and k2 admis-
sible SV kernels then

k(x, x ′) := k1(x, x ′)k2(x, x ′) (24)

is an admissible kernel.

This can be seen by an application of the “expansion part” of
Mercer’s theorem to the kernels k1 and k2 and observing that
each term in the double sum

∑
i, j λ1

i λ
2
jψ

1
i (x)ψ1

i (x ′)ψ2
j (x)ψ2

j (x ′)
gives rise to a positive coefficient when checking (21).

Theorem 6 (Smola, Schölkopf and Müller 1998c). A transla-
tion invariant kernel k(x, x ′) = k(x − x ′) is an admissible SV
kernels if and only if the Fourier transform

F[k](ω) = (2π )−
d
2

∫
X

e−i〈ω,x〉k(x)dx (25)

is nonnegative.

We will give a proof and some additional explanations to this
theorem in Section 7. It follows from interpolation theory
(Micchelli 1986) and the theory of regularization networks
(Girosi, Jones and Poggio 1993). For kernels of the dot-product
type, i.e. k(x, x ′) = k(〈x, x ′〉), there exist sufficient conditions
for being admissible.

Theorem 7 (Burges 1999). Any kernel of dot-product type
k(x, x ′) = k(〈x, x ′〉) has to satisfy

k(ξ ) ≥ 0, ∂ξ k(ξ ) ≥ 0 and ∂ξ k(ξ ) + ξ∂2
ξ k(ξ ) ≥ 0 (26)

for any ξ ≥ 0 in order to be an admissible SV kernel.
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Note that the conditions in Theorem 7 are only necessary but
not sufficient. The rules stated above can be useful tools for
practitioners both for checking whether a kernel is an admissible
SV kernel and for actually constructing new kernels. The general
case is given by the following theorem.

Theorem 8 (Schoenberg 1942). A kernel of dot-product type
k(x, x ′) = k(〈x, x ′〉) defined on an infinite dimensional Hilbert
space, with a power series expansion

k(t) =
∞∑

n=0

antn (27)

is admissible if and only if all an ≥ 0.

A slightly weaker condition applies for finite dimensional
spaces. For further details see Berg, Christensen and Ressel
(1984) and Smola, Óvári and Williamson (2001).

2.4. Examples

In Schölkopf, Smola and Müller (1998b) it has been shown, by
explicitly computing the mapping, that homogeneous polyno-
mial kernels k with p ∈ N and

k(x, x ′) = 〈x, x ′〉p (28)

are suitable SV kernels (cf. Poggio 1975). From this observation
one can conclude immediately (Boser, Guyon and Vapnik 1992,
Vapnik 1995) that kernels of the type

k(x, x ′) = (〈x, x ′〉 + c)p (29)

i.e. inhomogeneous polynomial kernels with p ∈ N, c ≥ 0 are
admissible, too: rewrite k as a sum of homogeneous kernels and
apply Corollary 3. Another kernel, that might seem appealing
due to its resemblance to Neural Networks is the hyperbolic
tangent kernel

k(x, x ′) = tanh(ϑ + κ〈x, x ′〉). (30)

By applying Theorem 8 one can check that this kernel does
not actually satisfy Mercer’s condition (Ovari 2000). Curiously,
the kernel has been successfully used in practice; cf. Scholkopf
(1997) for a discussion of the reasons.

Translation invariant kernels k(x, x ′) = k(x − x ′) are
quite widespread. It was shown in Aizerman, Braverman and
Rozonoér (1964), Micchelli (1986) and Boser, Guyon and Vap-
nik (1992) that

k(x, x ′) = e− ‖x−x ′‖2

2σ2 (31)

is an admissible SV kernel. Moreover one can show (Smola
1996, Vapnik, Golowich and Smola 1997) that (1X denotes the
indicator function on the set X and ⊗ the convolution operation)

k(x, x ′) = B2n+1(‖x − x ′‖) with Bk :=
k⊗

i=1

1[− 1
2 , 1

2 ] (32)

B-splines of order 2n + 1, defined by the 2n + 1 convolution of
the unit inverval, are also admissible. We shall postpone further
considerations to Section 7 where the connection to regulariza-
tion operators will be pointed out in more detail.

3. Cost functions

So far the SV algorithm for regression may seem rather strange
and hardly related to other existing methods of function esti-
mation (e.g. Huber 1981, Stone 1985, Härdle 1990, Hastie and
Tibshirani 1990, Wahba 1990). However, once cast into a more
standard mathematical notation, we will observe the connec-
tions to previous work. For the sake of simplicity we will, again,
only consider the linear case, as extensions to the nonlinear one
are straightforward by using the kernel method described in the
previous chapter.

3.1. The risk functional

Let us for a moment go back to the case of Section 1.2. There, we
had some training data X := {(x1, y1), . . . , (x�, y�)} ⊂ X × R.
We will assume now, that this training set has been drawn iid
(independent and identically distributed) from some probabil-
ity distribution P(x, y). Our goal will be to find a function f
minimizing the expected risk (cf. Vapnik 1982)

R[ f ] =
∫

c(x, y, f (x))d P(x, y) (33)

(c(x, y, f (x)) denotes a cost function determining how we will
penalize estimation errors) based on the empirical data X. Given
that we do not know the distribution P(x, y) we can only use
X for estimating a function f that minimizes R[ f ]. A possi-
ble approximation consists in replacing the integration by the
empirical estimate, to get the so called empirical risk functional

Remp[ f ] := 1

�

�∑
i=1

c(xi , yi , f (xi )). (34)

A first attempt would be to find the empirical risk minimizer
f0 := argmin f ∈H Remp[ f ] for some function class H . However,
if H is very rich, i.e. its “capacity” is very high, as for instance
when dealing with few data in very high-dimensional spaces,
this may not be a good idea, as it will lead to overfitting and thus
bad generalization properties. Hence one should add a capacity
control term, in the SV case ‖w‖2, which leads to the regularized
risk functional (Tikhonov and Arsenin 1977, Morozov 1984,
Vapnik 1982)

Rreg[ f ] := Remp[ f ] + λ

2
‖w‖2 (35)

where λ > 0 is a so called regularization constant. Many
algorithms like regularization networks (Girosi, Jones and
Poggio 1993) or neural networks with weight decay networks
(e.g. Bishop 1995) minimize an expression similar to (35).
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3.2. Maximum likelihood and density models

The standard setting in the SV case is, as already mentioned in
Section 1.2, the ε-insensitive loss

c(x, y, f (x)) = |y − f (x)|ε. (36)

It is straightforward to show that minimizing (35) with the par-
ticular loss function of (36) is equivalent to minimizing (3), the
only difference being that C = 1/(λ�).

Loss functions such like |y − f (x)|p
ε with p > 1 may not

be desirable, as the superlinear increase leads to a loss of the
robustness properties of the estimator (Huber 1981): in those
cases the derivative of the cost function grows without bound.
For p < 1, on the other hand, c becomes nonconvex.

For the case of c(x, y, f (x)) = (y − f (x))2 we recover the
least mean squares fit approach, which, unlike the standard SV
loss function, leads to a matrix inversion instead of a quadratic
programming problem.

The question is which cost function should be used in (35). On
the one hand we will want to avoid a very complicated function c
as this may lead to difficult optimization problems. On the other
hand one should use that particular cost function that suits the
problem best. Moreover, under the assumption that the samples
were generated by an underlying functional dependency plus
additive noise, i.e. yi = ftrue(xi ) + ξi with density p(ξ ), then the
optimal cost function in a maximum likelihood sense is

c(x, y, f (x)) = − log p(y − f (x)). (37)

This can be seen as follows. The likelihood of an estimate

X f := {(x1, f (x1)), . . . , (x�, f (x�))} (38)

for additive noise and iid data is

p(X f | X) =
�∏

i=1

p( f (xi ) | (xi , yi )) =
�∏

i=1

p(yi − f (xi )). (39)

Maximizing P(X f | X) is equivalent to minimizing − log P
(X f | X). By using (37) we get

− log P(X f | X) =
�∑

i=1

c(xi , yi , f (xi )). (40)

Table 1. Common loss functions and corresponding density models

Loss function Density model

ε-insensitive c(ξ ) = |ξ |ε p(ξ ) = 1
2(1+ε) exp(−|ξ |ε)

Laplacian c(ξ ) = |ξ | p(ξ ) = 1
2 exp(−|ξ |)

Gaussian c(ξ ) = 1
2 ξ 2 p(ξ ) = 1√

2π
exp

(
− ξ2

2

)

Huber’s robust loss c(ξ ) =
{

1
2σ

(ξ )2 if |ξ | ≤ σ

|ξ | − σ

2 otherwise
p(ξ ) ∝




exp
(

− ξ2

2σ

)
if |ξ | ≤ σ

exp
(

σ

2 − |ξ |
)

otherwise

Polynomial c(ξ ) = 1
p |ξ |p p(ξ ) = p

2�(1/p) exp(−|ξ |p)

Piecewise polynomial c(ξ ) =
{

1
pσ p−1 (ξ )p if |ξ | ≤ σ

|ξ | − σ
p−1

p otherwise
p(ξ ) ∝




exp
(

− ξ p

pσ p−1

)
if |ξ | ≤ σ

exp
(
σ

p−1
p − |ξ |

)
otherwise

However, the cost function resulting from this reasoning might
be nonconvex. In this case one would have to find a convex
proxy in order to deal with the situation efficiently (i.e. to find
an efficient implementation of the corresponding optimization
problem).

If, on the other hand, we are given a specific cost function from
a real world problem, one should try to find as close a proxy to
this cost function as possible, as it is the performance wrt. this
particular cost function that matters ultimately.

Table 1 contains an overview over some common density
models and the corresponding loss functions as defined by
(37).

The only requirement we will impose on c(x, y, f (x)) in the
following is that for fixed x and y we have convexity in f (x).
This requirement is made, as we want to ensure the existence and
uniqueness (for strict convexity) of a minimum of optimization
problems (Fletcher 1989).

3.3. Solving the equations

For the sake of simplicity we will additionally assume c to
be symmetric and to have (at most) two (for symmetry) dis-
continuities at ±ε, ε ≥ 0 in the first derivative, and to be
zero in the interval [−ε, ε]. All loss functions from Table 1
belong to this class. Hence c will take on the following
form.

c(x, y, f (x)) = c̃(|y − f (x)|ε) (41)

Note the similarity to Vapnik’s ε-insensitive loss. It is rather
straightforward to extend this special choice to more general
convex cost functions. For nonzero cost functions in the inter-
val [−ε, ε] use an additional pair of slack variables. Moreover
we might choose different cost functions c̃i , c̃∗

i and different
values of εi , ε∗

i for each sample. At the expense of additional
Lagrange multipliers in the dual formulation additional discon-
tinuities also can be taken care of. Analogously to (3) we arrive at
a convex minimization problem (Smola and Schölkopf 1998a).
To simplify notation we will stick to the one of (3) and use C
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instead of normalizing by λ and �.

minimize
1

2
‖w‖2 + C

�∑
i=1

(c̃(ξi ) + c̃(ξ ∗
i ))

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(42)

Again, by standard Lagrange multiplier techniques, exactly in
the same manner as in the |·|ε case, one can compute the dual op-
timization problem (the main difference is that the slack variable
terms c̃(ξ (∗)

i ) now have nonvanishing derivatives). We will omit
the indices i and ∗, where applicable to avoid tedious notation.
This yields

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

+
�∑

i=1

yi (αi − α∗
i ) − ε(αi + α∗

i )

+C
�∑

i=1

T (ξi ) + T (ξ ∗
i )

where




w =
�∑

i=1

(αi − α∗
i )xi

T (ξ ) := c̃(ξ ) − ξ∂ξ c̃(ξ )

(43)

subject to




�∑
i=1

(αi − α∗
i ) = 0

α ≤ C∂ξ c̃(ξ )

ξ = inf{ξ | C∂ξ c̃ ≥ α}
α, ξ ≥ 0

3.4. Examples

Let us consider the examples of Table 1. We will show explicitly
for two examples how (43) can be further simplified to bring it
into a form that is practically useful. In the ε-insensitive case,
i.e. c̃(ξ ) = |ξ | we get

T (ξ ) = ξ − ξ · 1 = 0. (44)

Morover one can conclude from ∂ξ c̃(ξ ) = 1 that

ξ = inf{ξ | C ≥ α} = 0 and α ∈ [0, C]. (45)

For the case of piecewise polynomial loss we have to distinguish
two different cases: ξ ≤ σ and ξ > σ . In the first case we get

T (ξ ) = 1

pσ p−1
ξ p − 1

σ p−1
ξ p = − p − 1

p
σ 1−pξ p (46)

and ξ = inf{ξ | Cσ 1−pξ p−1 ≥ α} = σC− 1
p−1 α

1
p−1 and thus

T (ξ ) = − p − 1

p
σC− p

p−1 α
p

p−1 . (47)

Table 2. Terms of the convex optimization problem depending on the
choice of the loss function

ε α CT (α)

ε-insensitive ε �= 0 α ∈ [0, C] 0
Laplacian ε = 0 α ∈ [0, C] 0
Gaussian ε = 0 α ∈ [0, ∞) − 1

2 C−1α2

Huber’s ε = 0 α ∈ [0, C] − 1
2 σC−1α2

robust loss

Polynomial ε = 0 α ∈ [0, ∞) − p−1
p C− 1

p−1 α
p

p−1

Piecewise ε = 0 α ∈ [0, C] − p−1
p σC− 1

p−1 α
p

p−1

polynomial

In the second case (ξ ≥ σ ) we have

T (ξ ) = ξ − σ
p − 1

p
− ξ = −σ

p − 1

p
(48)

and ξ = inf{ξ | C ≥ α} = σ , which, in turn yields α ∈ [0, C].
Combining both cases we have

α ∈ [0, C] and T (α) = − p − 1

p
σC− p

p−1 α
p

p−1 . (49)

Table 2 contains a summary of the various conditions on α and
formulas for T (α) (strictly speaking T (ξ (α))) for different cost
functions.5 Note that the maximum slope of c̃ determines the
region of feasibility of α, i.e. s := supξ∈R+ ∂ξ c̃(ξ ) < ∞ leads to
compact intervals [0, Cs] for α. This means that the influence
of a single pattern is bounded, leading to robust estimators
(Huber 1972). One can also observe experimentally that the
performance of a SV machine depends significantly on the cost
function used (Müller et al. 1997, Smola, Schölkopf and Müller
1998b)

A cautionary remark is necessary regarding the use of cost
functions other than the ε-insensitive one. Unless ε �= 0 we
will lose the advantage of a sparse decomposition. This may
be acceptable in the case of few data, but will render the pre-
diction step extremely slow otherwise. Hence one will have to
trade off a potential loss in prediction accuracy with faster pre-
dictions. Note, however, that also a reduced set algorithm like
in Burges (1996), Burges and Schölkopf (1997) and Schölkopf
et al. (1999b) or sparse decomposition techniques (Smola and
Schölkopf 2000) could be applied to address this issue. In a
Bayesian setting, Tipping (2000) has recently shown how an L2

cost function can be used without sacrificing sparsity.

4. The bigger picture

Before delving into algorithmic details of the implementation
let us briefly review the basic properties of the SV algorithm
for regression as described so far. Figure 2 contains a graphical
overview over the different steps in the regression stage.

The input pattern (for which a prediction is to be made) is
mapped into feature space by a map �. Then dot products
are computed with the images of the training patterns under
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Fig. 2. Architecture of a regression machine constructed by the SV
algorithm

the map �. This corresponds to evaluating kernel functions
k(xi , x). Finally the dot products are added up using the weights
νi = αi − α∗

i . This, plus the constant term b yields the final
prediction output. The process described here is very similar to
regression in a neural network, with the difference, that in the
SV case the weights in the input layer are a subset of the training
patterns.

Figure 3 demonstrates how the SV algorithm chooses the
flattest function among those approximating the original data
with a given precision. Although requiring flatness only in
feature space, one can observe that the functions also are
very flat in input space. This is due to the fact, that ker-
nels can be associated with flatness properties via regular-

Fig. 3. Left to right: approximation of the function sinc x with precisions ε = 0.1, 0.2, and 0.5. The solid top and the bottom lines indicate the size
of the ε-tube, the dotted line in between is the regression

Fig. 4. Left to right: regression (solid line), datapoints (small dots) and SVs (big dots) for an approximation with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs

ization operators. This will be explained in more detail in
Section 7.

Finally Fig. 4 shows the relation between approximation qual-
ity and sparsity of representation in the SV case. The lower the
precision required for approximating the original data, the fewer
SVs are needed to encode that. The non-SVs are redundant, i.e.
even without these patterns in the training set, the SV machine
would have constructed exactly the same function f . One might
think that this could be an efficient way of data compression,
namely by storing only the support patterns, from which the es-
timate can be reconstructed completely. However, this simple
analogy turns out to fail in the case of high-dimensional data,
and even more drastically in the presence of noise. In Vapnik,
Golowich and Smola (1997) one can see that even for moderate
approximation quality, the number of SVs can be considerably
high, yielding rates worse than the Nyquist rate (Nyquist 1928,
Shannon 1948).

5. Optimization algorithms

While there has been a large number of implementations of SV
algorithms in the past years, we focus on a few algorithms which
will be presented in greater detail. This selection is somewhat
biased, as it contains these algorithms the authors are most fa-
miliar with. However, we think that this overview contains some
of the most effective ones and will be useful for practitioners
who would like to actually code a SV machine by themselves.
But before doing so we will briefly cover major optimization
packages and strategies.
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5.1. Implementations

Most commercially available packages for quadratic program-
ming can also be used to train SV machines. These are usually
numerically very stable general purpose codes, with special en-
hancements for large sparse systems. While the latter is a feature
that is not needed at all in SV problems (there the dot product
matrix is dense and huge) they still can be used with good suc-
cess.6

OSL: This package was written by IBM-Corporation (1992). It
uses a two phase algorithm. The first step consists of solving
a linear approximation of the QP problem by the simplex al-
gorithm (Dantzig 1962). Next a related very simple QP prob-
lem is dealt with. When successive approximations are close
enough together, the second subalgorithm, which permits a
quadratic objective and converges very rapidly from a good
starting value, is used. Recently an interior point algorithm
was added to the software suite.

CPLEX by CPLEX-Optimization-Inc. (1994) uses a primal-dual
logarithmic barrier algorithm (Megiddo 1989) instead with
predictor-corrector step (see e.g. Lustig, Marsten and Shanno
1992, Mehrotra and Sun 1992).

MINOS by the Stanford Optimization Laboratory (Murtagh and
Saunders 1983) uses a reduced gradient algorithm in con-
junction with a quasi-Newton algorithm. The constraints are
handled by an active set strategy. Feasibility is maintained
throughout the process. On the active constraint manifold, a
quasi-Newton approximation is used.

MATLAB: Until recently the matlab QP optimizer delivered only
agreeable, although below average performance on classifi-
cation tasks and was not all too useful for regression tasks
(for problems much larger than 100 samples) due to the fact
that one is effectively dealing with an optimization prob-
lem of size 2� where at least half of the eigenvalues of the
Hessian vanish. These problems seem to have been addressed
in version 5.3 / R11. Matlab now uses interior point codes.

LOQO by Vanderbei (1994) is another example of an interior
point code. Section 5.3 discusses the underlying strategies in
detail and shows how they can be adapted to SV algorithms.

Maximum margin perceptron by Kowalczyk (2000) is an algo-
rithm specifically tailored to SVs. Unlike most other tech-
niques it works directly in primal space and thus does not
have to take the equality constraint on the Lagrange multipli-
ers into account explicitly.

Iterative free set methods The algorithm by Kaufman (Bunch,
Kaufman and Parlett 1976, Bunch and Kaufman 1977, 1980,
Drucker et al. 1997, Kaufman 1999), uses such a technique
starting with all variables on the boundary and adding them as
the Karush Kuhn Tucker conditions become more violated.
This approach has the advantage of not having to compute
the full dot product matrix from the beginning. Instead it is
evaluated on the fly, yielding a performance improvement
in comparison to tackling the whole optimization problem
at once. However, also other algorithms can be modified by

subset selection techniques (see Section 5.5) to address this
problem.

5.2. Basic notions

Most algorithms rely on results from the duality theory in convex
optimization. Although we already happened to mention some
basic ideas in Section 1.2 we will, for the sake of convenience,
briefly review without proof the core results. These are needed
in particular to derive an interior point algorithm. For details and
proofs (see e.g. Fletcher 1989).

Uniqueness: Every convex constrained optimization problem
has a unique minimum. If the problem is strictly convex then
the solution is unique. This means that SVs are not plagued
with the problem of local minima as Neural Networks are.7

Lagrange function: The Lagrange function is given by the pri-
mal objective function minus the sum of all products between
constraints and corresponding Lagrange multipliers (cf. e.g.
Fletcher 1989, Bertsekas 1995). Optimization can be seen
as minimzation of the Lagrangian wrt. the primal variables
and simultaneous maximization wrt. the Lagrange multipli-
ers, i.e. dual variables. It has a saddle point at the solution.
Usually the Lagrange function is only a theoretical device to
derive the dual objective function (cf. Section 1.2).

Dual objective function: It is derived by minimizing the
Lagrange function with respect to the primal variables and
subsequent elimination of the latter. Hence it can be written
solely in terms of the dual variables.

Duality gap: For both feasible primal and dual variables the pri-
mal objective function (of a convex minimization problem)
is always greater or equal than the dual objective function.
Since SVMs have only linear constraints the constraint qual-
ifications of the strong duality theorem (Bazaraa, Sherali and
Shetty 1993, Theorem 6.2.4) are satisfied and it follows that
gap vanishes at optimality. Thus the duality gap is a measure
how close (in terms of the objective function) the current set
of variables is to the solution.

Karush–Kuhn–Tucker (KKT) conditions: A set of primal and
dual variables that is both feasible and satisfies the KKT
conditions is the solution (i.e. constraint · dual variable = 0).
The sum of the violated KKT terms determines exactly the
size of the duality gap (that is, we simply compute the
constraint · Lagrangemultiplier part as done in (55)). This
allows us to compute the latter quite easily.
A simple intuition is that for violated constraints the dual
variable could be increased arbitrarily, thus rendering the
Lagrange function arbitrarily large. This, however, is in con-
tradition to the saddlepoint property.

5.3. Interior point algorithms

In a nutshell the idea of an interior point algorithm is to com-
pute the dual of the optimization problem (in our case the dual
dual of Rreg[ f ]) and solve both primal and dual simultaneously.
This is done by only gradually enforcing the KKT conditions
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to iteratively find a feasible solution and to use the duality
gap between primal and dual objective function to determine
the quality of the current set of variables. The special flavour
of algorithm we will describe is primal-dual path-following
(Vanderbei 1994).

In order to avoid tedious notation we will consider the slightly
more general problem and specialize the result to the SVM later.
It is understood that unless stated otherwise, variables like α

denote vectors and αi denotes its i-th component.

minimize
1

2
q(α) + 〈c, α〉

subject to Aα = b and l ≤ α ≤ u
(50)

with c, α, l, u ∈ R
n , A ∈ R

n·m , b ∈ R
m , the inequalities be-

tween vectors holding componentwise and q(α) being a convex
function of α. Now we will add slack variables to get rid of all
inequalities but the positivity constraints. This yields:

minimize
1

2
q(α) + 〈c, α〉

subject to Aα = b, α − g = l, α + t = u,

g, t ≥ 0, α free

(51)

The dual of (51) is

maximize
1

2
(q(α) − 〈�∂q(α), α)〉 + 〈b, y〉 + 〈l, z〉 − 〈u, s〉

subject to
1

2
�∂q(α) + c − (Ay)� + s = z, s, z ≥ 0, y free

(52)

Moreover we get the KKT conditions, namely

gi zi = 0 and si ti = 0 for all i ∈ [1 . . . n]. (53)

A necessary and sufficient condition for the optimal solution is
that the primal/dual variables satisfy both the feasibility condi-
tions of (51) and (52) and the KKT conditions (53). We pro-
ceed to solve (51)–(53) iteratively. The details can be found in
Appendix A.

5.4. Useful tricks

Before proceeding to further algorithms for quadratic optimiza-
tion let us briefly mention some useful tricks that can be applied
to all algorithms described subsequently and may have signif-
icant impact despite their simplicity. They are in part derived
from ideas of the interior-point approach.

Training with different regularization parameters: For several
reasons (model selection, controlling the number of support
vectors, etc.) it may happen that one has to train a SV ma-
chine with different regularization parameters C , but other-
wise rather identical settings. If the parameters Cnew = τCold

is not too different it is advantageous to use the rescaled val-
ues of the Lagrange multipliers (i.e. αi , α

∗
i ) as a starting point

for the new optimization problem. Rescaling is necessary to
satisfy the modified constraints. One gets

αnew = ταold and likewise bnew = τbold. (54)

Assuming that the (dominant) convex part q(α) of the pri-
mal objective is quadratic, the q scales with τ 2 where as the
linear part scales with τ . However, since the linear term dom-
inates the objective function, the rescaled values are still a
better starting point than α = 0. In practice a speedup of
approximately 95% of the overall training time can be ob-
served when using the sequential minimization algorithm,
cf. (Smola 1998). A similar reasoning can be applied when
retraining with the same regularization parameter but differ-
ent (yet similar) width parameters of the kernel function. See
Cristianini, Campbell and Shawe-Taylor (1998) for details
thereon in a different context.

Monitoring convergence via the feasibility gap: In the case of
both primal and dual feasible variables the following con-
nection between primal and dual objective function holds:

Dual Obj. = Primal Obj. −
∑

i

(gi zi + si ti ) (55)

This can be seen immediately by the construction of the
Lagrange function. In Regression Estimation (with the ε-
insensitive loss function) one obtains for

∑
i gi zi + si ti

∑
i




+ max(0, f (xi ) − (yi + εi ))(C − α∗
i )

− min(0, f (xi ) − (yi + εi ))α∗
i

+ max(0, (yi − ε∗
i ) − f (xi ))(C − αi )

− min(0, (yi − ε∗
i ) − f (xi ))αi


 . (56)

Thus convergence with respect to the point of the solution
can be expressed in terms of the duality gap. An effective
stopping rule is to require∑

i gi zi + si ti
|Primal Objective| + 1

≤ εtol (57)

for some precision εtol. This condition is much in the spirit of
primal dual interior point path following algorithms, where
convergence is measured in terms of the number of significant
figures (which would be the decimal logarithm of (57)), a
convention that will also be adopted in the subsequent parts
of this exposition.

5.5. Subset selection algorithms

The convex programming algorithms described so far can be
used directly on moderately sized (up to 3000) samples datasets
without any further modifications. On large datasets, however, it
is difficult, due to memory and cpu limitations, to compute the
dot product matrix k(xi , x j ) and keep it in memory. A simple
calculation shows that for instance storing the dot product matrix
of the NIST OCR database (60.000 samples) at single precision
would consume 0.7 GBytes. A Cholesky decomposition thereof,
which would additionally require roughly the same amount of
memory and 64 Teraflops (counting multiplies and adds sepa-
rately), seems unrealistic, at least at current processor speeds.

A first solution, which was introduced in Vapnik (1982) relies
on the observation that the solution can be reconstructed from
the SVs alone. Hence, if we knew the SV set beforehand, and
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it fitted into memory, then we could directly solve the reduced
problem. The catch is that we do not know the SV set before
solving the problem. The solution is to start with an arbitrary
subset, a first chunk that fits into memory, train the SV algorithm
on it, keep the SVs and fill the chunk up with data the current
estimator would make errors on (i.e. data lying outside the ε-
tube of the current regression). Then retrain the system and keep
on iterating until after training all KKT-conditions are satisfied.

The basic chunking algorithm just postponed the underlying
problem of dealing with large datasets whose dot-product matrix
cannot be kept in memory: it will occur for larger training set
sizes than originally, but it is not completely avoided. Hence
the solution is Osuna, Freund and Girosi (1997) to use only a
subset of the variables as a working set and optimize the problem
with respect to them while freezing the other variables. This
method is described in detail in Osuna, Freund and Girosi (1997),
Joachims (1999) and Saunders et al. (1998) for the case of pattern
recognition.8

An adaptation of these techniques to the case of regression
with convex cost functions can be found in Appendix B. The
basic structure of the method is described by Algorithm 1.

Algorithm 1.: Basic structure of a working set algorithm

Initialize αi , α
∗
i = 0

Choose arbitrary working set Sw

repeat
Compute coupling terms (linear and constant) for Sw (see
Appendix A.3)
Solve reduced optimization problem
Choose new Sw from variables αi , α

∗
i not satisfying the

KKT conditions
until working set Sw = ∅

5.6. Sequential minimal optimization

Recently an algorithm—Sequential Minimal Optimization
(SMO)—was proposed (Platt 1999) that puts chunking to the
extreme by iteratively selecting subsets only of size 2 and op-
timizing the target function with respect to them. It has been
reported to have good convergence properties and it is easily
implemented. The key point is that for a working set of 2 the
optimization subproblem can be solved analytically without ex-
plicitly invoking a quadratic optimizer.

While readily derived for pattern recognition by Platt (1999),
one simply has to mimick the original reasoning to obtain an
extension to Regression Estimation. This is what will be done
in Appendix C (the pseudocode can be found in Smola and
Schölkopf (1998b)). The modifications consist of a pattern de-
pendent regularization, convergence control via the number of
significant figures, and a modified system of equations to solve
the optimization problem in two variables for regression analyt-
ically.

Note that the reasoning only applies to SV regression with
the ε insensitive loss function—for most other convex cost func-

tions an explicit solution of the restricted quadratic programming
problem is impossible. Yet, one could derive an analogous non-
quadratic convex optimization problem for general cost func-
tions but at the expense of having to solve it numerically.

The exposition proceeds as follows: first one has to derive
the (modified) boundary conditions for the constrained 2 indices
(i, j) subproblem in regression, next one can proceed to solve the
optimization problem analytically, and finally one has to check,
which part of the selection rules have to be modified to make
the approach work for regression. Since most of the content is
fairly technical it has been relegated to Appendix C.

The main difference in implementations of SMO for regres-
sion can be found in the way the constant offset b is determined
(Keerthi et al. 1999) and which criterion is used to select a new
set of variables. We present one such strategy in Appendix C.3.
However, since selection strategies are the focus of current re-
search we recommend that readers interested in implementing
the algorithm make sure they are aware of the most recent de-
velopments in this area.

Finally, we note that just as we presently describe a generaliza-
tion of SMO to regression estimation, other learning problems
can also benefit from the underlying ideas. Recently, a SMO
algorithm for training novelty detection systems (i.e. one-class
classification) has been proposed (Schölkopf et al. 2001).

6. Variations on a theme

There exists a large number of algorithmic modifications of the
SV algorithm, to make it suitable for specific settings (inverse
problems, semiparametric settings), different ways of measuring
capacity and reductions to linear programming (convex com-
binations) and different ways of controlling capacity. We will
mention some of the more popular ones.

6.1. Convex combinations and �1-norms

All the algorithms presented so far involved convex, and at
best, quadratic programming. Yet one might think of reducing
the problem to a case where linear programming techniques
can be applied. This can be done in a straightforward fashion
(Mangasarian 1965, 1968, Weston et al. 1999, Smola, Schölkopf
and Rätsch 1999) for both SV pattern recognition and regression.
The key is to replace (35) by

Rreg[ f ] := Remp[ f ] + λ‖α‖1 (58)

where ‖α‖1 denotes the �1 norm in coefficient space. Hence one
uses the SV kernel expansion (11)

f (x) =
�∑

i=1

αi k(xi , x) + b

with a different way of controlling capacity by minimizing

Rreg[ f ] = 1

�

�∑
i=1

c(xi , yi , f (xi )) + λ

�∑
i=1

|αi |. (59)
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For the ε-insensitive loss function this leads to a linear program-
ming problem. In the other cases, however, the problem still stays
a quadratic or general convex one, and therefore may not yield
the desired computational advantage. Therefore we will limit
ourselves to the derivation of the linear programming problem
in the case of | · |ε cost function. Reformulating (59) yields

minimize
�∑

i=1

(αi + α∗
i ) + C

�∑
i=1

(ξi + ξ ∗
i )

subject to




yi −
�∑

j=1

(α j − α∗
j )k(x j , xi ) − b ≤ ε + ξi

�∑
j=1

(α j − α∗
j )k(x j , xi ) + b − yi ≤ ε + ξ ∗

i

αi , α
∗
i , ξi , ξ

∗
i ≥ 0

Unlike in the classical SV case, the transformation into its dual
does not give any improvement in the structure of the optimiza-
tion problem. Hence it is best to minimize Rreg[ f ] directly, which
can be achieved by a linear optimizer, (e.g. Dantzig 1962, Lustig,
Marsten and Shanno 1990, Vanderbei 1997).

In (Weston et al. 1999) a similar variant of the linear SV ap-
proach is used to estimate densities on a line. One can show
(Smola et al. 2000) that one may obtain bounds on the gener-
alization error which exhibit even better rates (in terms of the
entropy numbers) than the classical SV case (Williamson, Smola
and Schölkopf 1998).

6.2. Automatic tuning of the insensitivity tube

Besides standard model selection issues, i.e. how to specify the
trade-off between empirical error and model capacity there also
exists the problem of an optimal choice of a cost function. In
particular, for the ε-insensitive cost function we still have the
problem of choosing an adequate parameter ε in order to achieve
good performance with the SV machine.

Smola et al. (1998a) show the existence of a linear depen-
dency between the noise level and the optimal ε-parameter for
SV regression. However, this would require that we know some-
thing about the noise model. This knowledge is not available in
general. Therefore, albeit providing theoretical insight, this find-
ing by itself is not particularly useful in practice. Moreover, if we
really knew the noise model, we most likely would not choose
the ε-insensitive cost function but the corresponding maximum
likelihood loss function instead.

There exists, however, a method to construct SV machines
that automatically adjust ε and moreover also, at least asymptot-
ically, have a predetermined fraction of sampling points as SVs
(Schölkopf et al. 2000). We modify (35) such that ε becomes a
variable of the optimization problem, including an extra term in
the primal objective function which attempts to minimize ε. In
other words

minimize Rν[ f ] := Remp[ f ] + λ

2
‖w‖2 + νε (60)

for some ν > 0. Hence (42) becomes (again carrying out the
usual transformation between λ, � and C)

minimize
1

2
‖w‖2 + C

(
�∑

i=1

(c̃(ξi ) + c̃(ξ ∗
i )) + �νε

)
(61)

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

We consider the standard | · |ε loss function. Computing the dual
of (62) yields

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

+
�∑

i=1

yi (αi − α∗
i )

(62)

subject to




�∑
i=1

(αi − α∗
i ) = 0

�∑
i=1

(αi + α∗
i ) ≤ Cν�

αi , α
∗
i ∈ [0, C]

Note that the optimization problem is thus very similar to the ε-
SV one: the target function is even simpler (it is homogeneous),
but there is an additional constraint. For information on how this
affects the implementation (cf. Chang and Lin 2001).

Besides having the advantage of being able to automatically
determine ε (63) also has another advantage. It can be used to
pre–specify the number of SVs:

Theorem 9 (Schölkopf et al. 2000).

1. ν is an upper bound on the fraction of errors.
2. ν is a lower bound on the fraction of SVs.
3. Suppose the data has been generated iid from a distribution

p(x, y) = p(x)p(y | x) with a continuous conditional distri-
bution p(y | x). With probability 1, asymptotically, ν equals
the fraction of SVs and the fraction of errors.

Essentially, ν-SV regression improves upon ε-SV regression by
allowing the tube width to adapt automatically to the data. What
is kept fixed up to this point, however, is the shape of the tube.
One can, however, go one step further and use parametric tube
models with non-constant width, leading to almost identical op-
timization problems (Schölkopf et al. 2000).

Combining ν-SV regression with results on the asymptotical
optimal choice of ε for a given noise model (Smola et al. 1998a)
leads to a guideline how to adjust ν provided the class of noise
models (e.g. Gaussian or Laplacian) is known.

Remark 10 (Optimal choice of ν). Denote by p a probability
density with unit variance, and by P a famliy of noise models
generated from p by P := {p|p = 1

σ
p( y

σ
)}. Moreover assume
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Fig. 5. Optimal ν and ε for various degrees of polynomial additive
noise

that the data were drawn iid from p(x, y) = p(x)p(y − f (x))
with p(y − f (x)) continuous. Then under the assumption of
uniform convergence, the asymptotically optimal value of ν is

ν = 1 −
∫ ε

−ε

p(t) dt

where ε := argmin
τ

(p(−τ ) + p(τ ))−2

(
1 −

∫ τ

−τ

p(t) dt

)
(63)

For polynomial noise models, i.e. densities of type exp(−|ξ |p)
one may compute the corresponding (asymptotically) optimal
values of ν. They are given in Fig. 5. For further details see
(Schölkopf et al. 2000, Smola 1998); an experimental validation
has been given by Chalimourda, Schölkopf and Smola (2000).

We conclude this section by noting that ν-SV regression is
related to the idea of trimmed estimators. One can show that the
regression is not influenced if we perturb points lying outside the
tube. Thus, the regression is essentially computed by discarding
a certain fraction of outliers, specified by ν, and computing the
regression estimate from the remaining points (Schölkopf et al.
2000).

7. Regularization

So far we were not concerned about the specific properties of
the map � into feature space and used it only as a convenient
trick to construct nonlinear regression functions. In some cases
the map was just given implicitly by the kernel, hence the map
itself and many of its properties have been neglected. A deeper
understanding of the kernel map would also be useful to choose
appropriate kernels for a specific task (e.g. by incorporating
prior knowledge (Schölkopf et al. 1998a)). Finally the feature
map seems to defy the curse of dimensionality (Bellman 1961)

by making problems seemingly easier yet reliable via a map into
some even higher dimensional space.

In this section we focus on the connections between SV
methods and previous techniques like Regularization Networks
(Girosi, Jones and Poggio 1993).9 In particular we will show
that SV machines are essentially Regularization Networks (RN)
with a clever choice of cost functions and that the kernels are
Green’s function of the corresponding regularization operators.
For a full exposition of the subject the reader is referred to Smola,
Schölkopf and Müller (1998c).

7.1. Regularization networks

Let us briefly review the basic concepts of RNs. As in (35)
we minimize a regularized risk functional. However, rather than
enforcing flatness in feature space we try to optimize some
smoothness criterion for the function in input space. Thus we
get

Rreg[ f ] := Remp[ f ] + λ

2
‖P f ‖2. (64)

Here P denotes a regularization operator in the sense of
Tikhonov and Arsenin (1977), i.e. P is a positive semidefinite
operator mapping from the Hilbert space H of functions f under
consideration to a dot product space D such that the expression
〈P f · Pg〉 is well defined for f, g ∈ H . For instance by choos-
ing a suitable operator that penalizes large variations of f one
can reduce the well–known overfitting effect. Another possible
setting also might be an operator P mapping from L2(Rn) into
some Reproducing Kernel Hilbert Space (RKHS) (Aronszajn,
1950, Kimeldorf and Wahba 1971, Saitoh 1988, Schölkopf 1997,
Girosi 1998).

Using an expansion of f in terms of some symmetric function
k(xi , x j ) (note here, that k need not fulfill Mercer’s condition
and can be chosen arbitrarily since it is not used to define a
regularization term),

f (x) =
�∑

i=1

αi k(xi , x) + b, (65)

and the ε-insensitive cost function, this leads to a quadratic pro-
gramming problem similar to the one for SVs. Using

Di j := 〈(Pk)(xi , .) · (Pk)(x j , .)〉 (66)

we get α = D−1 K (β − β∗), with β, β∗ being the solution of

minimize
1

2
(β∗ − β)�KD−1 K (β∗ − β)

−(β∗ − β)�y − ε

�∑
i=1

(βi + β∗
i ) (67)

subject to
�∑

i=1

(βi − β∗
i ) = 0 and βi , β

∗
i ∈ [0, C].
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Unfortunately, this setting of the problem does not preserve spar-
sity in terms of the coefficients, as a potentially sparse decom-
position in terms of βi and β∗

i is spoiled by D−1 K , which is not
in general diagonal.

7.2. Green’s functions

Comparing (10) with (67) leads to the question whether and un-
der which condition the two methods might be equivalent and
therefore also under which conditions regularization networks
might lead to sparse decompositions, i.e. only a few of the ex-
pansion coefficients αi in f would differ from zero. A sufficient
condition is D = K and thus KD−1 K = K (if K does not have
full rank we only need that KD−1 K = K holds on the image of
K ):

k(xi , x j ) = 〈(Pk)(xi , .) · (Pk)(x j , .)〉 (68)

Our goal now is to solve the following two problems:

1. Given a regularization operator P , find a kernel k such that a
SV machine using k will not only enforce flatness in feature
space, but also correspond to minimizing a regularized risk
functional with P as regularizer.

2. Given an SV kernel k, find a regularization operator P such
that a SV machine using this kernel can be viewed as a Reg-
ularization Network using P .

These two problems can be solved by employing the concept
of Green’s functions as described in Girosi, Jones and Poggio
(1993). These functions were introduced for the purpose of solv-
ing differential equations. In our context it is sufficient to know
that the Green’s functions Gxi (x) of P∗ P satisfy

(P∗ PGxi )(x) = δxi (x). (69)

Here, δxi (x) is the δ-distribution (not to be confused with the Kro-
necker symbol δi j ) which has the property that 〈 f ·δxi 〉 = f (xi ).
The relationship between kernels and regularization operators is
formalized in the following proposition:

Proposition 1 (Smola, Schölkopf and Müller 1998b). Let P
be a regularization operator, and G be the Green’s function of
P∗ P. Then G is a Mercer Kernel such that D = K . SV machines
using G minimize risk functional (64) with P as regularization
operator.

In the following we will exploit this relationship in both ways:
to compute Green’s functions for a given regularization operator
P and to infer the regularizer, given a kernel k.

7.3. Translation invariant kernels

Let us now more specifically consider regularization operators
P̂ that may be written as multiplications in Fourier space

〈P f · Pg〉 = 1

(2π )n/2

∫
�

˜f (ω)g̃(ω)

P(ω)
dω (70)

with ˜f (ω) denoting the Fourier transform of f (x), and P(ω) =
P(−ω) real valued, nonnegative and converging to 0 for |ω| →
∞ and � := supp[P(ω)]. Small values of P(ω) correspond to
a strong attenuation of the corresponding frequencies. Hence
small values of P(ω) for large ω are desirable since high fre-
quency components of ˜f correspond to rapid changes in f .
P(ω) describes the filter properties of P∗ P . Note that no atten-
uation takes place for P(ω) = 0 as these frequencies have been
excluded from the integration domain.

For regularization operators defined in Fourier Space by (70)
one can show by exploiting P(ω) = P(−ω) = P(ω) that

G(xi , x) = 1

(2π )n/2

∫
Rn

eiω(xi −x) P(ω) dω (71)

is a corresponding Green’s function satisfying translational in-
variance, i.e.

G(xi , x j ) = G(xi − x j ) and G̃(ω) = P(ω). (72)

This provides us with an efficient tool for analyzing SV kernels
and the types of capacity control they exhibit. In fact the above
is a special case of Bochner’s theorem (Bochner 1959) stating
that the Fourier transform of a positive measure constitutes a
positive Hilbert Schmidt kernel.

Example 2 (Gaussian kernels). Following the exposition of
Yuille and Grzywacz (1988) as described in Girosi, Jones and
Poggio (1993), one can see that for

‖P f ‖2 =
∫

dx
∑

m

σ 2m

m!2m
(Ôm f (x))2 (73)

with Ô2m = �m and Ô2m+1 = ∇�m , � being the Laplacian
and ∇ the Gradient operator, we get Gaussians kernels (31).
Moreover, we can provide an equivalent representation of P
in terms of its Fourier properties, i.e. P(ω) = e− σ2‖ω‖2

2 up to a
multiplicative constant.

Training an SV machine with Gaussian RBF kernels (Schölkopf
et al. 1997) corresponds to minimizing the specific cost func-
tion with a regularization operator of type (73). Recall that (73)
means that all derivatives of f are penalized (we have a pseudod-
ifferential operator) to obtain a very smooth estimate. This also
explains the good performance of SV machines in this case, as it
is by no means obvious that choosing a flat function in some high
dimensional space will correspond to a simple function in low
dimensional space, as shown in Smola, Schölkopf and Müller
(1998c) for Dirichlet kernels.

The question that arises now is which kernel to choose. Let
us think about two extreme situations.

1. Suppose we already knew the shape of the power spectrum
Pow(ω) of the function we would like to estimate. In this case
we choose k such that k̃ matches the power spectrum (Smola
1998).

2. If we happen to know very little about the given data a gen-
eral smoothness assumption is a reasonable choice. Hence
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we might want to choose a Gaussian kernel. If computing
time is important one might moreover consider kernels with
compact support, e.g. using the Bq–spline kernels (cf. (32)).
This choice will cause many matrix elements ki j = k(xi −x j )
to vanish.

The usual scenario will be in between the two extreme cases and
we will have some limited prior knowledge available. For more
information on using prior knowledge for choosing kernels (see
Schölkopf et al. 1998a).

7.4. Capacity control

All the reasoning so far was based on the assumption that there
exist ways to determine model parameters like the regularization
constant λ or length scales σ of rbf–kernels. The model selec-
tion issue itself would easily double the length of this review
and moreover it is an area of active and rapidly moving research.
Therefore we limit ourselves to a presentation of the basic con-
cepts and refer the interested reader to the original publications.

It is important to keep in mind that there exist several fun-
damentally different approaches such as Minimum Description
Length (cf. e.g. Rissanen 1978, Li and Vitányi 1993) which is
based on the idea that the simplicity of an estimate, and therefore
also its plausibility is based on the information (number of bits)
needed to encode it such that it can be reconstructed.

Bayesian estimation, on the other hand, considers the pos-
terior probability of an estimate, given the observations X =
{(x1, y1), . . . (x�, y�)}, an observation noise model, and a prior
probability distribution p( f ) over the space of estimates
(parameters). It is given by Bayes Rule p( f | X )p(X ) =
p(X | f )p( f ). Since p(X ) does not depend on f , one can maxi-
mize p(X | f )p( f ) to obtain the so-called MAP estimate.10 As
a rule of thumb, to translate regularized risk functionals into
Bayesian MAP estimation schemes, all one has to do is to con-
sider exp(−Rreg[ f ]) = p( f | X ). For a more detailed discussion
(see e.g. Kimeldorf and Wahba 1970, MacKay 1991, Neal 1996,
Rasmussen 1996, Williams 1998).

A simple yet powerful way of model selection is cross valida-
tion. This is based on the idea that the expectation of the error
on a subset of the training sample not used during training is
identical to the expected error itself. There exist several strate-
gies such as 10-fold crossvalidation, leave-one out error (�-fold
crossvalidation), bootstrap and derived algorithms to estimate
the crossvalidation error itself (see e.g. Stone 1974, Wahba 1980,
Efron 1982, Efron and Tibshirani 1994, Wahba 1999, Jaakkola
and Haussler 1999) for further details.

Finally, one may also use uniform convergence bounds such
as the ones introduced by Vapnik and Chervonenkis (1971). The
basic idea is that one may bound with probability 1 − η (with
η > 0) the expected risk R[ f ] by Remp[ f ] + �(F, η), where
� is a confidence term depending on the class of functions F .
Several criteria for measuring the capacity ofF exist, such as the
VC-Dimension which, in pattern recognition problems, is given
by the maximum number of points that can be separated by the

function class in all possible ways, the Covering Number which
is the number of elements fromF that are needed to coverF with
accuracy of at least ε, Entropy Numbers which are the functional
inverse of Covering Numbers, and many more variants thereof
(see e.g. Vapnik 1982, 1998, Devroye, Györfi and Lugosi 1996,
Williamson, Smola and Schölkopf 1998, Shawe-Taylor et al.
1998).

8. Conclusion

Due to the already quite large body of work done in the field of
SV research it is impossible to write a tutorial on SV regression
which includes all contributions to this field. This also would
be quite out of the scope of a tutorial and rather be relegated to
textbooks on the matter (see Schölkopf and Smola (2002) for a
comprehensive overview, Schölkopf, Burges and Smola (1999a)
for a snapshot of the current state of the art, Vapnik (1998) for an
overview on statistical learning theory, or Cristianini and Shawe-
Taylor (2000) for an introductory textbook). Still the authors
hope that this work provides a not overly biased view of the state
of the art in SV regression research. We deliberately omitted
(among others) the following topics.

8.1. Missing topics

Mathematical programming: Starting from a completely differ-
ent perspective algorithms have been developed that are sim-
ilar in their ideas to SV machines. A good primer might
be (Bradley, Fayyad and Mangasarian 1998). (Also see
Mangasarian 1965, 1969, Street and Mangasarian 1995). A
comprehensive discussion of connections between mathe-
matical programming and SV machines has been given by
(Bennett 1999).

Density estimation: with SV machines (Weston et al. 1999,
Vapnik 1999). There one makes use of the fact that the cu-
mulative distribution function is monotonically increasing,
and that its values can be predicted with variable confidence
which is adjusted by selecting different values of ε in the loss
function.

Dictionaries: were originally introduced in the context of
wavelets by (Chen, Donoho and Saunders 1999) to allow
for a large class of basis functions to be considered simulta-
neously, e.g. kernels with different widths. In the standard SV
case this is hardly possible except by defining new kernels as
linear combinations of differently scaled ones: choosing the
regularization operator already determines the kernel com-
pletely (Kimeldorf and Wahba 1971, Cox and O’Sullivan
1990, Schölkopf et al. 2000). Hence one has to resort to lin-
ear programming (Weston et al. 1999).

Applications: The focus of this review was on methods and
theory rather than on applications. This was done to limit
the size of the exposition. State of the art, or even record
performance was reported in Müller et al. (1997), Drucker
et al. (1997), Stitson et al. (1999) and Mattera and Haykin
(1999).
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In many cases, it may be possible to achieve similar per-
formance with neural network methods, however, only if
many parameters are optimally tuned by hand, thus depend-
ing largely on the skill of the experimenter. Certainly, SV
machines are not a “silver bullet.” However, as they have
only few critical parameters (e.g. regularization and kernel
width), state-of-the-art results can be achieved with relatively
little effort.

8.2. Open issues

Being a very active field there exist still a number of open is-
sues that have to be addressed by future research. After that
the algorithmic development seems to have found a more sta-
ble stage, one of the most important ones seems to be to find
tight error bounds derived from the specific properties of ker-
nel functions. It will be of interest in this context, whether
SV machines, or similar approaches stemming from a lin-
ear programming regularizer, will lead to more satisfactory
results.

Moreover some sort of “luckiness framework” (Shawe-Taylor
et al. 1998) for multiple model selection parameters, similar to
multiple hyperparameters and automatic relevance detection in
Bayesian statistics (MacKay 1991, Bishop 1995), will have to
be devised to make SV machines less dependent on the skill of
the experimenter.

It is also worth while to exploit the bridge between regulariza-
tion operators, Gaussian processes and priors (see e.g. (Williams
1998)) to state Bayesian risk bounds for SV machines in order
to compare the predictions with the ones from VC theory. Op-
timization techniques developed in the context of SV machines
also could be used to deal with large datasets in the Gaussian
process settings.

Prior knowledge appears to be another important question in
SV regression. Whilst invariances could be included in pattern
recognition in a principled way via the virtual SV mechanism
and restriction of the feature space (Burges and Schölkopf 1997,
Schölkopf et al. 1998a), it is still not clear how (probably) more
subtle properties, as required for regression, could be dealt with
efficiently.

Reduced set methods also should be considered for speeding
up prediction (and possibly also training) phase for large datasets
(Burges and Schölkopf 1997, Osuna and Girosi 1999, Schölkopf
et al. 1999b, Smola and Schölkopf 2000). This topic is of great
importance as data mining applications require algorithms that
are able to deal with databases that are often at least one order of
magnitude larger (1 million samples) than the current practical
size for SV regression.

Many more aspects such as more data dependent generaliza-
tion bounds, efficient training algorithms, automatic kernel se-
lection procedures, and many techniques that already have made
their way into the standard neural networks toolkit, will have to
be considered in the future.

Readers who are tempted to embark upon a more detailed
exploration of these topics, and to contribute their own ideas to

this exciting field, may find it useful to consult the web page
www.kernel-machines.org.

Appendix A: Solving the interior-point
equations

A.1. Path following

Rather than trying to satisfy (53) directly we will solve a modified
version thereof for some µ > 0 substituted on the rhs in the first
place and decrease µ while iterating.

gi zi = µ, si ti = µ for all i ∈ [1 . . . n]. (74)

Still it is rather difficult to solve the nonlinear system of equa-
tions (51), (52), and (74) exactly. However we are not interested
in obtaining the exact solution to the approximation (74). In-
stead, we seek a somewhat more feasible solution for a given µ,
then decrease µ and repeat. This can be done by linearizing the
above system and solving the resulting equations by a predictor–
corrector approach until the duality gap is small enough. The
advantage is that we will get approximately equal performance
as by trying to solve the quadratic system directly, provided that
the terms in �2 are small enough.

A(α + �α) = b

α + �α − g − �g = l

α + �α + t + �t = u

c + 1

2
∂αq(α) + 1

2
∂2
αq(α)�α − (A(y + �y))�

+ s + �s = z + �z

(gi + �gi )(zi + �zi ) = µ

(si + �si )(ti + �ti ) = µ

Solving for the variables in � we get

A�α = b − Aα =: ρ

�α − �g = l − α + g =: ν

�α + �t = u − α − t =: τ

(A�y)� + �z − �s − 1

2
∂2
αq(α)�α

= c − (Ay)� + s − z + 1

2
∂αq(α) =: σ

g−1z�g + �z = µg−1 − z − g−1�g�z =: γz

t−1s�t + �s = µt−1 − s − t−1�t�s =: γs

where g−1 denotes the vector (1/g1, . . . , 1/gn), and t analo-
gously. Moreover denote g−1z and t−1s the vector generated
by the componentwise product of the two vectors. Solving for
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�g, �t, �z, �s we get

�g = z−1g(γz − �z) �z = g−1z(ν̂ − �α)

�t = s−1t(γs − �s) �s = t−1s(�α − τ̂ )

where ν̂ := ν − z−1gγz

τ̂ := τ − s−1tγs

(75)

Now we can formulate the reduced KKT–system (see (Vanderbei
1994) for the quadratic case):

[−H A�

A 0

][
�α

�y

]
=

[
σ − g−1zν̂ − t−1sτ̂

ρ

]
(76)

where H := ( 1
2∂2

αq(α) + g−1z + t−1s).

A.2. Iteration strategies

For the predictor-corrector method we proceed as follows. In
the predictor step solve the system of (75) and (76) with µ = 0
and all �-terms on the rhs set to 0, i.e. γz = z, γs = s. The
values in � are substituted back into the definitions for γz and
γs and (75) and (76) are solved again in the corrector step. As the
quadratic part in (76) is not affected by the predictor–corrector
steps, we only need to invert the quadratic matrix once. This is
done best by manually pivoting for the H part, as it is positive
definite.

Next the values in�obtained by such an iteration step are used
to update the corresponding values in α, s, t, z, . . . . To ensure
that the variables meet the positivity constraints, the steplength
ξ is chosen such that the variables move at most 1 − ε of their
initial distance to the boundaries of the positive orthant. Usually
(Vanderbei 1994) one sets ε = 0.05.

Another heuristic is used for computing µ, the parameter de-
termining how much the KKT-conditions should be enforced.
Obviously it is our aim to reduce µ as fast as possible, however
if we happen to choose it too small, the condition of the equa-
tions will worsen drastically. A setting that has proven to work
robustly is

µ = 〈g, z〉 + 〈s, t〉
2n

(
ξ − 1

ξ + 10

)2

. (77)

The rationale behind (77) is to use the average of the satisfac-
tion of the KKT conditions (74) as point of reference and then
decrease µ rapidly if we are far enough away from the bound-
aries of the positive orthant, to which all variables (except y) are
constrained to.

Finally one has to come up with good initial values. Analo-
gously to Vanderbei (1994) we choose a regularized version of
(76) in order to determine the initial conditions. One solves[

−(
1
2∂2

αq(α) + 1
)

A�

A 1

] [
α

y

]
=

[
c

b

]
(78)

and subsequently restricts the solution to a feasible set

x = max

(
x,

u

100

)
g = min(α − l, u)

t = min(u − α, u) (79)

z = min

(
�

(
1

2
∂αq(α) + c − (Ay)�

)
+ u

100
, u

)

s = min

(
�

(
−1

2
∂αq(α) − c + (Ay)�

)
+ u

100
, u

)

�(·) denotes the Heavyside function, i.e. �(x) = 1 for x > 0
and �(x) = 0 otherwise.

A.3. Special considerations for SV regression

The algorithm described so far can be applied to both SV pattern
recognition and regression estimation. For the standard setting
in pattern recognition we have

q(α) =
�∑

i, j=0

αiα j yi y j k(xi , x j ) (80)

and consequently ∂αi q(α) = 0, ∂2
αi α j

q(α) = yi y j k(xi , x j ), i.e.
the Hessian is dense and the only thing we can do is compute
its Cholesky factorization to compute (76). In the case of SV re-
gression, however we have (with α := (α1, . . . , α�, α

∗
1 , . . . , α

∗
� ))

q(α) =
�∑

i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

+ 2C
�∑

i=1

T (αi ) + T (α∗
i ) (81)

and therefore

∂αi q(α) = d

dαi
T (αi )

∂2
αi α j

q(α) = k(xi , x j ) + δi j
d2

dα2
i

T (αi ) (82)

∂2
αi α

∗
j
q(α) = −k(xi , x j )

and ∂2
α∗

i α∗
j
q(α), ∂2

α∗
i α j

q(α) analogously. Hence we are dealing with
a matrix of type M := [ K+D −K−K K+D′ ] where D, D′ are diagonal
matrices. By applying an orthogonal transformation M can be
inverted essentially by inverting an � × � matrix instead of a
2� × 2� system. This is exactly the additional advantage one
can gain from implementing the optimization algorithm directly
instead of using a general purpose optimizer. One can show that
for practical implementations (Smola, Schölkopf and Müller
1998b) one can solve optimization problems using nearly ar-
bitrary convex cost functions as efficiently as the special case of
ε-insensitive loss functions.

Finally note that due to the fact that we are solving the pri-
mal and dual optimization problem simultaneously we are also
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computing parameters corresponding to the initial SV optimiza-
tion problem. This observation is useful as it allows us to obtain
the constant term b directly, namely by setting b = y. (see Smola
(1998) for details).

Appendix B: Solving the subset selection
problem

B.1. Subset optimization problem

We will adapt the exposition of Joachims (1999) to the case of
regression with convex cost functions. Without loss of general-
ity we will assume ε �= 0 and α ∈ [0, C] (the other situations
can be treated as a special case). First we will extract a reduced
optimization problem for the working set when all other vari-
ables are kept fixed. Denote Sw ⊂ {1, . . . , �} the working set
and S f := {1, . . . , �}\Sw the fixed set. Writing (43) as an opti-
mization problem only in terms of Sw yields

maximize




−1

2

∑
i, j∈Sw

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

+
∑
i∈Sw

(αi − α∗
i )

(
yi −

∑
j∈S f

(α j − α∗
j )〈xi , x j 〉

)

+
∑
i∈Sw

(−ε(αi + α∗
i ) + C(T (αi ) + T (α∗

i )))

subject to




∑
i∈Sw

(αi − α∗
i ) = −

∑
i∈S f

(αi − α∗
i )

αi ∈ [0, C]

(83)

Hence we only have to update the linear term by the coupling
with the fixed set − ∑

i∈Sw
(αi −α∗

i )
∑

j∈S f
(α j −α∗

j )〈xi , x j 〉 and
the equality constraint by − ∑

i∈S f
(αi − α∗

i ). It is easy to see
that maximizing (83) also decreases (43) by exactly the same
amount. If we choose variables for which the KKT–conditions
are not satisfied the overall objective function tends to decrease
whilst still keeping all variables feasible. Finally it is bounded
from below.

Even though this does not prove convergence (contrary to
statement in Osuna, Freund and Girosi (1997)) this algorithm
proves very useful in practice. It is one of the few methods (be-
sides (Kaufman 1999, Platt 1999)) that can deal with problems
whose quadratic part does not completely fit into memory. Still
in practice one has to take special precautions to avoid stalling
of convergence (recent results of Chang, Hsu and Lin (1999)
indicate that under certain conditions a proof of convergence is
possible). The crucial part is the one of Sw.

B.2. A note on optimality

For convenience the KKT conditions are repeated in a slightly
modified form. Denote ϕi the error made by the current estimate

at sample xi , i.e.

ϕi := yi − f (xi ) = yi −
[

m∑
j=1

k(xi , x j )(αi − α∗
i ) + b

]
. (84)

Rewriting the feasibility conditions (52) in terms of α yields

2∂αi T (αi ) + ε − ϕi + si − zi = 0
(85)

2∂α∗
i
T (α∗

i ) + ε + ϕi + s∗
i − z∗

i = 0

for all i ∈ {1, . . . , m} with zi , z∗
i , si , s∗

i ≥ 0. A set of dual
feasible variables z, s is given by

zi = max
(
2∂αi T (αi ) + ε − ϕi , 0

)
si = − min

(
2∂αi T (αi ) + ε − ϕi , 0

)
(86)

z∗
i = max

(
2∂α∗

i
T (α∗

i ) + ε + ϕi , 0
)

s∗
i = − min

(
2∂α∗

i
T (α∗

i ) + ε + ϕi , 0
)

Consequently the KKT conditions (53) can be translated into

αi zi = 0 and (C − αi )si = 0
(87)

α∗
i z∗

i = 0 and (C − α∗
i )s∗

i = 0

All variables αi , α
∗
i violating some of the conditions of (87) may

be selected for further optimization. In most cases, especially in
the initial stage of the optimization algorithm, this set of pat-
terns is much larger than any practical size of Sw. Unfortunately
Osuna, Freund and Girosi (1997) contains little information on
how to select Sw. The heuristics presented here are an adaptation
of Joachims (1999) to regression. See also Lin (2001) for details
on optimization for SVR.

B.3. Selection rules

Similarly to a merit function approach (El-Bakry et al. 1996) the
idea is to select those variables that violate (85) and (87) most,
thus contribute most to the feasibility gap. Hence one defines a
score variable ζi by

ζi := gi zi + si ti

= αi zi + α∗
i z∗

i + (C − αi )si + (C − α∗
i )s∗

i (88)

By construction,
∑

i ζi is the size of the feasibility gap (cf. (56)
for the case of ε-insensitive loss). By decreasing this gap, one
approaches the the solution (upper bounded by the primal objec-
tive and lower bounded by the dual objective function). Hence,
the selection rule is to choose those patterns for which ζi is
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largest. Some algorithms use

ζ ′
i := αi�(zi ) + α∗

i �(z∗
i )

+ (C − αi )�(si ) + (C − α∗
i )�(si )

(89)
or ζ ′′

i := �(αi )zi + �(α∗
i )z∗

i

+ �(C − αi )si + �(C − α∗
i )si .

One can see that ζi = 0, ζ ′
i = 0, and ζ ′′

i = 0 mutually imply each
other. However, only ζi gives a measure for the contribution of
the variable i to the size of the feasibility gap.

Finally, note that heuristics like assigning sticky–flags (cf.
Burges 1998) to variables at the boundaries, thus effec-
tively solving smaller subproblems, or completely removing
the corresponding patterns from the training set while ac-
counting for their couplings (Joachims 1999) can signifi-
cantly decrease the size of the problem one has to solve and
thus result in a noticeable speedup. Also caching (Joachims
1999, Kowalczyk 2000) of already computed entries of the
dot product matrix may have a significant impact on the
performance.

Appendix C: Solving the SMO equations

C.1. Pattern dependent regularization

Consider the constrained optimization problem (83) for two in-
dices, say (i, j). Pattern dependent regularization means that Ci

may be different for every pattern (possibly even different for
αi and α∗

i ). Since at most two variables may become nonzero
at the same time and moreover we are dealing with a con-
strained optimization problem we may express everything in
terms of just one variable. From the summation constraint we
obtain

(αi − α∗
i ) + (α j − α∗

j ) = (
αold

i − α∗
i

old) + (
αold

j − α∗
j
old) := γ

(90)

for regression. Exploiting α
(∗)
j ∈ [0, C (∗)

j ] yields α
(∗)
i ∈ [L , H ].

This is taking account of the fact that there may be only four
different pairs of nonzero variables: (αi , α j ), (α∗

i , α j ), (αi , α
∗
j ),

and (α∗
i , α

∗
j ). For convenience define an auxiliary variables s

such that s = 1 in the first and the last case and s = −1 other-
wise.

α j α∗
j

αi L max(0, γ − C j ) max(0, γ )
H min(Ci , γ ) min(Ci , C∗

j + γ )
α∗

i L max(0, −γ ) max(0, −γ − C∗
j )

H min(C∗
i , −γ + C j ) min(C∗

i , −γ )

C.2. Analytic solution for regression

Next one has to solve the optimization problem analytically. We
make use of (84) and substitute the values of φi into the reduced
optimization problem (83). In particular we use

yi −
∑
j �∈Sw

(αi − α∗
i )Ki j = ϕi + b +

∑
j∈Sw

(
αold

i − α∗
i

old)Ki j .

(91)

Moreover with the auxiliary variables γ = αi −α∗
i +α j −α∗

j and
η := (Kii + K j j − 2Ki j ) one obtains the following constrained
optimization problem in i (after eliminating j , ignoring terms
independent of α j , α

∗
j and noting that this only holds for αiα

∗
i =

α jα
∗
j = 0):

maximize − 1

2
(αi − α∗

i )2η − ε(αi + α∗
i )(1 − s)

+ (αi − α∗
i )

(
φi − φ j + η

(
αold

i − α∗
i

old)) (92)

subject to α
(∗)
i ∈ [L (∗), H (∗)].

The unconstrained maximum of (92) with respect to αi or α∗
i

can be found below.

(I) αi , α j αold
i + η−1(ϕi − ϕ j )

(II) αi , α
∗
j αold

i + η−1(ϕi − ϕ j − 2ε)
(III) α∗

i , α j α∗
i

old − η−1(ϕi − ϕ j + 2ε)
(IV) α∗

i , α
∗
j α∗

i
old − η−1(ϕi − ϕ j )

The problem is that we do not know beforehand which of the
four quadrants (I)–(IV) contains the solution. However, by con-
sidering the sign of γ we can distinguish two cases: for γ > 0
only (I)–(III) are possible, for γ < 0 the coefficients satisfy one
of the cases (II)–(IV). In case of γ = 0 only (II) and (III) have
to be considered. See also the diagram below.

For γ > 0 it is best to start with quadrant (I), test whether the
unconstrained solution hits one of the boundaries L , H and if so,
probe the corresponding adjacent quadrant (II) or (III). γ < 0
can be dealt with analogously.

Due to numerical instabilities, it may happen that η < 0. In
that case η should be set to 0 and one has to solve (92) in a linear
fashion directly.11
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C.3. Selection rule for regression

Finally, one has to pick indices (i, j) such that the objective
function is maximized. Again, the reasoning of SMO (Platt 1999,
Section 12.2.2) for classification will be mimicked. This means
that a two loop approach is chosen to maximize the objective
function. The outer loop iterates over all patterns violating the
KKT conditions, first only over those with Lagrange multipliers
neither on the upper nor lower boundary, and once all of them
are satisfied, over all patterns violating the KKT conditions, to
ensure self consistency on the complete dataset.12 This solves
the problem of choosing i .

Now for j : To make a large step towards the minimum, one
looks for large steps in αi . As it is computationally expensive to
compute η for all possible pairs (i, j) one chooses the heuristic to
maximize the absolute value of the numerator in the expressions
for αi and α∗

i , i.e. |ϕi − ϕ j | and |ϕi − ϕ j ± 2ε|. The index j
corresponding to the maximum absolute value is chosen for this
purpose.

If this heuristic happens to fail, in other words if little progress
is made by this choice, all other indices j are looked at (this is
what is called “second choice hierarcy” in Platt (1999) in the
following way:

1. All indices j corresponding to non–bound examples are
looked at, searching for an example to make progress on.

2. In the case that the first heuristic was unsuccessful, all
other samples are analyzed until an example is found where
progress can be made.

3. If both previous steps fail proceed to the next i .

For a more detailed discussion (see Platt 1999). Unlike interior
point algorithms SMO does not automatically provide a value
for b. However this can be chosen like in Section 1.4 by having
a close look at the Lagrange multipliers α

(∗)
i obtained.

C.4. Stopping criteria

By essentially minimizing a constrained primal optimization
problem one cannot ensure that the dual objective function in-
creases with every iteration step.13 Nevertheless one knows that
the minimum value of the objective function lies in the interval
[dual objectivei , primal objectivei ] for all steps i , hence also in
the interval [(max j≤i dual objective j ), primal objectivei ]. One
uses the latter to determine the quality of the current solution.

The calculation of the primal objective function from the pre-
diction errors is straightforward. One uses

∑
i, j

(αi − α∗
i )(α j − α∗

j )ki j = −
∑

i

(αi − α∗
i )(ϕi + yi − b),

(93)

i.e. the definition of ϕi to avoid the matrix–vector multiplication
with the dot product matrix.
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Notes

1. Our use of the term ‘regression’ is somewhat lose in that it also includes
cases of function estimation where one minimizes errors other than the mean
square loss. This is done mainly for historical reasons (Vapnik, Golowich
and Smola 1997).

2. A similar approach, however using linear instead of quadratic programming,
was taken at the same time in the USA, mainly by Mangasarian (1965, 1968,
1969).

3. See Smola (1998) for an overview over other ways of specifying flatness of
such functions.

4. This is true as long as the dimensionality of w is much higher than the
number of observations. If this is not the case, specialized methods can
offer considerable computational savings (Lee and Mangasarian 2001).

5. The table displays CT(α) instead of T (α) since the former can be plugged
directly into the corresponding optimization equations.

6. The high price tag usually is the major deterrent for not using them. Moreover
one has to bear in mind that in SV regression, one may speed up the solution
considerably by exploiting the fact that the quadratic form has a special
structure or that there may exist rank degeneracies in the kernel matrix
itself.

7. For large and noisy problems (e.g. 100.000 patterns and more with a substan-
tial fraction of nonbound Lagrange multipliers) it is impossible to solve the
problem exactly: due to the size one has to use subset selection algorithms,
hence joint optimization over the training set is impossible. However, unlike
in Neural Networks, we can determine the closeness to the optimum. Note
that this reasoning only holds for convex cost functions.

8. A similar technique was employed by Bradley and Mangasarian (1998) in
the context of linear programming in order to deal with large datasets.

9. Due to length constraints we will not deal with the connection between
Gaussian Processes and SVMs. See Williams (1998) for an excellent
overview.

10. Strictly speaking, in Bayesian estimation one is not so much concerned about
the maximizer ˆf of p( f | X ) but rather about the posterior distribution of
f .

11. Negative values of η are theoretically impossible since k satisfies Mercer’s
condition: 0 ≤ ‖�(xi ) − �(x j )‖2 = Kii + K j j − 2Ki j = η.

12. It is sometimes useful, especially when dealing with noisy data, to iterate
over the complete KKT violating dataset already before complete self con-
sistency on the subset has been achieved. Otherwise much computational
resources are spent on making subsets self consistent that are not globally
self consistent. This is the reason why in the pseudo code a global loop
is initiated already when only less than 10% of the non bound variables
changed.

13. It is still an open question how a subset selection optimization algorithm
could be devised that decreases both primal and dual objective function
at the same time. The problem is that this usually involves a number of
dual variables of the order of the sample size, which makes this attempt
unpractical.
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Härdle W. 1990. Applied nonparametric regression, volume 19 of
Econometric Society Monographs. Cambridge University Press.



220 Smola and Schölkopf

Hastie T.J. and Tibshirani R.J. 1990. Generalized Additive Models,
volume 43 of Monographs on Statistics and Applied Probability.
Chapman and Hall, London.

Haykin S. 1998. Neural Networks: A Comprehensive Foundation. 2nd
edition. Macmillan, New York.

Hearst M.A., Schölkopf B., Dumais S., Osuna E., and Platt J. 1998.
Trends and controversies—support vector machines. IEEE Intel-
ligent Systems 13: 18–28.

Herbrich R. 2002. Learning Kernel Classifiers: Theory and Algorithms.
MIT Press.

Huber P.J. 1972. Robust statistics: A review. Annals of Statistics
43: 1041.

Huber P.J. 1981. Robust Statistics. John Wiley and Sons, New York.
IBM Corporation. 1992. IBM optimization subroutine library guide

and reference. IBM Systems Journal, 31, SC23-0519.
Jaakkola T.S. and Haussler D. 1999. Probabilistic kernel regression

models. In: Proceedings of the 1999 Conference on AI and Statis-
tics.

Joachims T. 1999. Making large-scale SVM learning practical.
In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Ad-
vances in Kernel Methods—Support Vector Learning, MIT Press,
Cambridge, MA, pp. 169–184.

Karush W. 1939. Minima of functions of several variables with inequal-
ities as side constraints. Master’s thesis, Dept. of Mathematics,
Univ. of Chicago.

Kaufman L. 1999. Solving the quadratic programming problem arising
in support vector classification. In: Schölkopf B., Burges C.J.C.,
and Smola A.J. (Eds.), Advances in Kernel Methods—Support
Vector Learning, MIT Press, Cambridge, MA, pp. 147–168

Keerthi S.S., Shevade S.K., Bhattacharyya C., and Murthy K.R.K. 1999.
Improvements to Platt’s SMO algorithm for SVM classifier design.
Technical Report CD-99-14, Dept. of Mechanical and Production
Engineering, Natl. Univ. Singapore, Singapore.

Keerthi S.S., Shevade S.K., Bhattacharyya C., and Murty K.R.K. 2001.
Improvements to platt’s SMO algorithm for SVM classifier design.
Neural Computation 13: 637–649.

Kimeldorf G.S. and Wahba G. 1970. A correspondence between
Bayesian estimation on stochastic processes and smoothing by
splines. Annals of Mathematical Statistics 41: 495–502.

Kimeldorf G.S. and Wahba G. 1971. Some results on Tchebycheffian
spline functions. J. Math. Anal. Applic. 33: 82–95.

Kowalczyk A. 2000. Maximal margin perceptron. In: Smola A.J.,
Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds.), Advances
in Large Margin Classifiers, MIT Press, Cambridge, MA, pp. 75–
113.

Kuhn H.W. and Tucker A.W. 1951. Nonlinear programming. In: Proc.
2nd Berkeley Symposium on Mathematical Statistics and Proba-
bilistics, Berkeley. University of California Press, pp. 481–492.

Lee Y.J. and Mangasarian O.L. 2001. SSVM: A smooth support vector
machine for classification. Computational optimization and Ap-
plications 20(1): 5–22.
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Abstract. We briefly describe the main ideas of statistical learning theory, sup-
port vector machines (SVMs), and kernel feature spaces. We place particular em-
phasis on a description of the so-calledν-SVM, including details of the algorithm
and its implementation, theoretical results, and practical applications.

1 An Introductory Example

Suppose we are given empirical data

(x1, y1), . . . , (xm, ym) ∈ X × {±1}. (1)

Here, thedomainX is some nonempty set that thepatternsxi are taken from; theyi

are calledlabelsor targets.
Unless stated otherwise, indicesi andj will always be understood to run over the

training set, i.e.,i, j = 1, . . . , m.
Note that we have not made any assumptions on the domainX other than it being a

set. In order to study the problem of learning, we need additional structure. In learning,
we want to be able togeneralizeto unseen data points. In the case of pattern recognition,
this means that given some new patternx ∈ X , we want to predict the corresponding
y ∈ {±1}. By this we mean, loosely speaking, that we choosey such that(x, y) is in
some sense similar to the training examples. To this end, we need similarity measures in
X and in{±1}. The latter is easy, as two target values can only be identical or different.
For the former, we require a similarity measure

k : X × X → R,

(x, x′) 7→ k(x, x′), (2)

i.e., a function that, given two examplesx andx′, returns a real number characterizing
their similarity. For reasons that will become clear later, the functionk is called akernel
([24], [1], [8]).

A type of similarity measure that is of particular mathematical appeal are dot prod-
ucts. For instance, given two vectorsx,x′ ∈ RN , the canonical dot product is defined

? Parts of the present article are based on [31].



as

(x · x′) :=
N∑

i=1

(x)i(x′)i. (3)

Here,(x)i denotes theith entry ofx.
The geometrical interpretation of this dot product is that it computes the cosine of

the angle between the vectorsx andx′, provided they are normalized to length1. More-
over, it allows computation of the length of a vectorx as

√
(x · x), and of the distance

between two vectors as the length of the difference vector. Therefore, being able to
compute dot products amounts to being able to carry out all geometrical constructions
that can be formulated in terms of angles, lengths and distances.

Note, however, that we have not made the assumption that the patterns live in a
dot product space. In order to be able to use a dot product as a similarity measure, we
therefore first need to transform them into some dot product spaceH, which need not
be identical toRN . To this end, we use a map

Φ : X → H
x 7→ x. (4)

The spaceH is called afeature space. To summarize, there are three benefits to trans-
form the data intoH
1. It lets us define a similarity measure from the dot product inH,

k(x, x′) := (x · x′) = (Φ(x) · Φ(x′)). (5)

2. It allows us to deal with the patterns geometrically, and thus lets us study learning
algorithm using linear algebra and analytic geometry.

3. The freedom to choose the mappingΦ will enable us to design a large variety of
learning algorithms. For instance, consider a situation where the inputs already live
in a dot product space. In that case, we could directly define a similarity measure
as the dot product. However, we might still choose to first apply a nonlinear mapΦ
to change the representation into one that is more suitable for a given problem and
learning algorithm.

We are now in the position to describe a pattern recognition learning algorithm that
is arguable one of the simplest possible. The basic idea is to compute the means of the
two classes in feature space,

c+ =
1

m+

∑

{i:yi=+1}
xi, (6)

c− =
1

m−

∑

{i:yi=−1}
xi, (7)

wherem+ andm− are the number of examples with positive and negative labels, re-
spectively (see Figure 1). We then assign a new pointx to the class whose mean is
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Fig. 1. A simple geometric classification algorithm: given two classes of points (depicted by ‘o’
and ‘+’), compute their meansc+, c− and assign a test patternx to the one whose mean is closer.
This can be done by looking at the dot product betweenx − c (wherec = (c+ + c−)/2) and
w := c+ − c−, which changes sign as the enclosed angle passes throughπ/2. Note that the
corresponding decision boundary is a hyperplane (the dotted line) orthogonal tow (from [31]).

closer to it. This geometrical construction can be formulated in terms of dot products.
Half-way in betweenc+ andc− lies the pointc := (c+ +c−)/2. We compute the class
of x by checking whether the vector connectingc andx encloses an angle smaller than
π/2 with the vectorw := c+ − c− connecting the class means, in other words

y = sgn ((x− c) · w)
y = sgn ((x− (c+ + c−)/2) · (c+ − c−))

= sgn ((x · c+)− (x · c−) + b). (8)

Here, we have defined the offset

b :=
1
2

(‖c−‖2 − ‖c+‖2
)
. (9)

It will be proved instructive to rewrite this expression in terms of the patternsxi in
the input domainX . To this end, note that we do not have a dot product inX , all we
have is the similarity measurek (cf. (5)). Therefore, we need to rewrite everything in
terms of the kernelk evaluated on input patterns. To this end, substitute (6) and (7) into
(8) to get thedecision function

y = sgn


 1

m+

∑

{i:yi=+1}
(x · xi)− 1

m−

∑

{i:yi=−1}
(x · xi) + b




= sgn


 1

m+

∑

{i:yi=+1}
k(x, xi)− 1

m−

∑

{i:yi=−1}
k(x, xi) + b


 . (10)



Similarly, the offset becomes

b :=
1
2


 1

m2−

∑

{(i,j):yi=yj=−1}
k(xi, xj)− 1

m2
+

∑

{(i,j):yi=yj=+1}
k(xi, xj)


 . (11)

Let us consider one well-known special case of this type of classifier. Assume that the
class means have the same distance to the origin (henceb = 0), and thatk can be viewed
as a density, i.e., it is positive and has integral1,

∫

X
k(x, x′)dx = 1 for all x′ ∈ X . (12)

In order to state this assumption, we have to require that we can define an integral on
X .

If the above holds true, then (10) corresponds to the so-called Bayes decision bound-
ary separating the two classes, subject to the assumption that the two classes were gen-
erated from two probability distributions that are correctly estimated by theParzen
windowsestimators of the two classes,

p1(x) :=
1

m+

∑

{i:yi=+1}
k(x, xi) (13)

p2(x) :=
1

m−

∑

{i:yi=−1}
k(x, xi). (14)

Given some pointx, the label is then simply computed by checking which of the two,
p1(x) or p2(x), is larger, which directly leads to (10). Note that this decision is the best
we can do if we have no prior information about the probabilities of the two classes.
For further details, see [31].

The classifier (10) is quite close to the types of learning machines that we will
be interested in. It is linear in the feature space, and while in the input domain, it is
represented by a kernel expansion in terms of the training points. It is example-based
in the sense that the kernels are centered on the training examples, i.e., one of the two
arguments of the kernels is always a training example. The main points that the more
sophisticated techniques to be discussed later will deviate from (10) are in the selection
of the examples that the kernels are centered on, and in the weights that are put on the
individual data in the decision function. Namely, it will no longer be the case thatall
training examples appear in the kernel expansion, and the weights of the kernels in the
expansion will no longer be uniform. In the feature space representation, this statement
corresponds to saying that we will study all normal vectorsw of decision hyperplanes
that can be represented as linear combinations of the training examples. For instance,
we might want to remove the influence of patterns that are very far away from the
decision boundary, either since we expect that they will not improve the generalization
error of the decision function, or since we would like to reduce the computational cost
of evaluating the decision function (cf. (10)). The hyperplane will then only depend on
a subset of training examples, calledsupport vectors.



2 Learning Pattern Recognition from Examples

With the above example in mind, let us now consider the problem of pattern recognition
in a more formal setting ([37], [38]), following the introduction of [30]. In two-class
pattern recognition, we seek to estimate a function

f : X → {±1} (15)

based on input-output training data (1). We assume that the data were generated inde-
pendently from some unknown (but fixed) probability distributionP (x, y). Our goal
is to learn a function that will correctly classify unseen examples(x, y), i.e., we want
f(x) = y for examples(x, y) that were also generated fromP (x, y).

If we put no restriction on the class of functions that we choose our estimatef
from, however, even a function which does well on the training data, e.g. by satisfying
f(xi) = yi for all i = 1, . . . , m, need not generalize well to unseen examples. To see
this, note that for each functionf and any test set(x̄1, ȳ1), . . . , (x̄m̄, ȳm̄) ∈ RN×{±1},
satisfying{x̄1, . . . , x̄m̄} ∩ {x1, . . . , xm} = {}, there exists another functionf∗ such
that f∗(xi) = f(xi) for all i = 1, . . . , m, yet f∗(x̄i) 6= f(x̄i) for all i = 1, . . . , m̄.
As we are only given the training data, we have no means of selecting which of the two
functions (and hence which of the completely different sets of test label predictions) is
preferable. Hence, only minimizing the training error (orempirical risk),

Remp[f ] =
1
m

m∑

i=1

1
2
|f(xi)− yi|, (16)

does not imply a small test error (calledrisk), averaged over test examples drawn from
the underlying distributionP (x, y),

R[f ] =
∫

1
2
|f(x)− y| dP (x, y). (17)

Statistical learning theory ([41], [37], [38], [39]), or VC (Vapnik-Chervonenkis) theory,
shows that it is imperative to restrict the class of functions thatf is chosen from to one
which has acapacitythat is suitable for the amount of available training data. VC theory
providesboundson the test error. The minimization of these bounds, which depend on
both the empirical risk and the capacity of the function class, leads to the principle of
structural risk minimization([37]). The best-known capacity concept of VC theory is
the VC dimension, defined as the largest numberh of points that can be separated in
all possible ways using functions of the given class. An example of a VC bound is the
following: if h < m is the VC dimension of the class of functions that the learning
machine can implement, then for all functions of that class, with a probability of at
least1− η, the bound

R(f) ≤ Remp(f) + φ

(
h

m
,
log(η)

m

)
(18)

holds, where theconfidence termφ is defined as

φ

(
h

m
,
log(η)

m

)
=

√
h

(
log 2m

h + 1
)− log(η/4)

m
. (19)



Tighter bounds can be formulated in terms of other concepts, such as theannealed VC
entropyor theGrowth function. These are usually considered to be harder to evaluate,
but they play a fundamental role in the conceptual part of VC theory ([38]). Alterna-
tive capacity concepts that can be used to formulate bounds include thefat shattering
dimension([2]).

The bound (18) deserves some further explanatory remarks. Suppose we wanted to
learn a “dependency” whereP (x, y) = P (x) · P (y), i.e., where the patternx contains
no information about the labely, with uniformP (y). Given a training sample of fixed
size, we can then surely come up with a learning machine which achieves zero training
error (provided we have no examples contradicting each other). However, in order to
reproduce the random labelling, this machine will necessarily require a large VC di-
mensionh. Thus, the confidence term (19), increasing monotonically withh, will be
large, and the bound (18) willnot support possible hopes that due to the small training
error, we should expect a small test error. This makes it understandable how (18) can
hold independent of assumptions about the underlying distributionP (x, y): it always
holds (provided thath < m), but it does not always make a nontrivial prediction — a
bound on an error rate becomes void if it is larger than the maximum error rate. In order
to get nontrivial predictions from (18), the function space must be restricted such that
the capacity (e.g. VC dimension) is small enough (in relation to the available amount
of data).

3 Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can be
performed in a dot product space (such as the feature space that we introduced previ-
ously). As described in the previous section, to design learning algorithms, one needs
to come up with a class of functions whose capacity can be computed.

[42] considered the class of hyperplanes

(w · x) + b = 0 w ∈ RN , b ∈ R, (20)

corresponding to decision functions

f(x) = sgn ((w · x) + b), (21)

and proposed a learning algorithm for separable problems, termed theGeneralized Por-
trait, for constructingf from empirical data. It is based on two facts. First, among all
hyperplanes separating the data, there exists a unique one yielding the maximum margin
of separation between the classes,

max
w,b

min{‖x− xi‖ : x ∈ RN , (w · x) + b = 0, i = 1, . . . , m}. (22)

Second, the capacity decreases with increasing margin.
To construct thisOptimal Hyperplane(cf. Figure 2), one solves the following opti-

mization problem:

minimize
w,b

1
2
‖w‖2

subject to yi · ((w · xi) + b) ≥ 1, i = 1, . . . , m. (23)
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Fig. 2.A binary classification toy problem: separate balls from diamonds. Theoptimal hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and
intersects it half-way between the two classes. The problem is separable, so there exists a weight
vectorw and a thresholdb such thatyi · ((w · xi) + b) > 0 (i = 1, . . . , m). Rescalingw andb
such that the point(s) closest to the hyperplane satisfy|(w · xi) + b| = 1, we obtain acanonical
form (w, b) of the hyperplane, satisfyingyi ·((w ·xi)+b) ≥ 1. Note that in this case, themargin,
measured perpendicularly to the hyperplane, equals2/‖w‖. This can be seen by considering two
pointsx1,x2 on opposite sides of the margin, i.e.,(w · x1) + b = 1, (w · x2) + b = −1, and
projecting them onto the hyperplane normal vectorw/‖w‖ (from [29]).

A way to solve (23) is through its Lagrangian dual:

max
α≥0

(min
w,b

L(w, b, α)), (24)

where

L(w, b, α) =
1
2
‖w‖2 −

m∑

i=1

αi (yi · ((xi · w) + b)− 1) . (25)

The LagrangianL has to be minimized with respect to theprimal variablesw and
b and maximized with respect to thedual variablesαi. For a nonlinear problem like
(23), called the primal problem, there are several closely related problems of which
the Lagrangian dual is an important one. Under certain conditions, the primal and dual
problems have the same optimal objective values. Therefore, we can instead solve the
dual which may be an easier problem than the primal. In particular, we will see in
Section 4 that when working in feature spaces, solving the dual may be the only way to
train SVM.

Let us try to get some intuition for this primal-dual relation. Assume(w̄, b̄) is an
optimal solution of the primal with the optimal objective valueγ = 1

2‖w̄‖2. Thus, no
(w, b) satisfies

1
2
‖w‖2 < γ andyi · ((w · xi) + b) ≥ 1, i = 1, . . . , m. (26)



With (26), there is̄α ≥ 0 such that for allw, b

1
2
‖w‖2 − γ −

m∑

i=1

ᾱi (yi · ((xi · w) + b)− 1) ≥ 0. (27)

We do not provide a rigorous proof here but details can be found in, for example, [5].
Note that for general convex programming this result requires some additional condi-
tions on constraints which are now satisfied by our simple linear inequalities.

Therefore, (27) implies

max
α≥0

min
w,b

L(w, b, α) ≥ γ. (28)

On the other hand, for anyα,

min
w,b

L(w, b,α) ≤ L(w̄, b̄,α),

so

max
α≥0

min
w,b

L(w, b,α) ≤ max
α≥0

L(w̄, b̄,α) =
1
2
‖w̄‖2 = γ. (29)

Therefore, with (28), the inequality in (29) becomes an equality. This property is
the strong duality where the primal and dual have the same optimal objective value. In
addition, putting(w̄, b̄) into (27), withᾱi ≥ 0 andyi · ((xi · w̄) + b̄)− 1 ≥ 0,

ᾱi · [yi((xi · w̄) + b̄)− 1] = 0, i = 1, . . . , m, (30)

which is usually called the complementarity condition.
To simplify the dual, asL(w, b,α) is convex whenα is fixed, for any givenα,

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b, α) = 0, (31)

leads to
m∑

i=1

αiyi = 0 (32)

and

w =
m∑

i=1

αiyixi. (33)

As α is now given, we may wonder what (32) means. From the definition of the La-
grangian, if

∑m
i=1 αiyi 6= 0, we can decrease−b

∑m
i=1 αiyi in L(w, b, α) as much as

we want. Therefore, by substituting (33) into (24), the dual problem can be written as

max
α≥0

{∑m
i=1 αi − 1

2

∑m
i,j=1 αiαjyiyj(xi · xj) if

∑m
i=1 αiyi = 0,

−∞ if
∑m

i=1 αiyi 6= 0.
(34)



As −∞ is definitely not the maximal objective value of the dual, the dual optimal so-
lution does not happen when

∑m
i=1 αiyi 6= 0. Therefore, the dual problem is simplified

to finding multipliersαi which

maximize
α∈Rm

m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyj(xi · xj) (35)

subject to αi ≥ 0, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (36)

This is the dual SVM problem that we usually refer to. Note that (30), (32),αi ≥ 0∀i,
and (33), are called the Karush-Kuhn-Tucker (KKT) optimality conditions of the primal
problem. Except an abnormal situation where all optimalαi are zero,b can be computed
using (30).

The discussion from (31) to (33) implies that we can consider a different form of
dual problem:

maximize
w,b,α≥0

L(w, b,α)

subject to
∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α) = 0.

(37)

This is the so calledWolfedual for convex optimization, which is a very early work in
duality [45]. For convex anddifferentiableproblems, it is equivalent to the Lagrangian
dual though the derivation of the Lagrangian dual more easily shows the strong duality
results. Some notes about the two duals are in, for example, [3, Section 5.4].

Following the above discussion, the hyperplane decision function can be written as

f(x) = sgn

(
m∑

i=1

yiαi · (x · xi) + b

)
. (38)

The solution vectorw thus has an expansion in terms of a subset of the training pat-
terns, namely those patterns whoseαi is non-zero, calledSupport Vectors. By (30), the
Support Vectors lie on the margin (cf. Figure 2). All remaining examples of the training
set are irrelevant: their constraint (23) does not play a role in the optimization, and they
do not appear in the expansion (33). This nicely captures our intuition of the problem:
as the hyperplane (cf. Figure 2) is completely determined by the patterns closest to it,
the solution should not depend on the other examples.

The structure of the optimization problem closely resembles those that typically
arise in Lagrange’s formulation of mechanics. Also there, often only a subset of the
constraints become active. For instance, if we keep a ball in a box, then it will typically
roll into one of the corners. The constraints corresponding to the walls which are not
touched by the ball are irrelevant, the walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical in-
terpretation of optimal margin hyperplanes ([9]): If we assume that each support vector
xi exerts a perpendicular force of sizeαi and signyi on a solid plane sheet lying along
the hyperplane, then the solution satisfies the requirements of mechanical stability. The



constraint (32) states that the forces on the sheet sum to zero; and (33) implies that the
torques also sum to zero, via

∑
i xi × yiαi · w/‖w‖ = w× w/‖w‖ = 0.

There are theoretical arguments supporting the good generalization performance of
the optimal hyperplane ([41], [37], [4], [33], [44]). In addition, it is computationally
attractive, since it can be constructed by solving a quadratic programming problem.

4 Optimal Margin Support Vector Classifiers

We now have all the tools to describe support vector machines ([38], [31]). Everything
in the last section was formulated in a dot product space. We think of this space as the
feature spaceH described in Section 1. To express the formulas in terms of the input
patterns living inX , we thus need to employ (5), which expresses the dot product of
bold face feature vectorsx,x′ in terms of the kernelk evaluated on input patternsx, x′,

k(x, x′) = (x · x′). (39)

This can be done since all feature vectors only occurred in dot products. The weight
vector (cf. (33)) then becomes an expansion in feature space,1 and will thus typically
no longer correspond to the image of a single vector from input space. We thus obtain
decision functions of the more general form (cf. (38))

f(x) = sgn

(
m∑

i=1

yiαi · (Φ(x) · Φ(xi)) + b

)

= sgn

(
m∑

i=1

yiαi · k(x, xi) + b

)
, (40)

and the following quadratic program (cf. (35)):

maximize
α∈Rm

W (α) =
m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyjk(xi, xj) (41)

subject to αi ≥ 0, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (42)

Working in the feature space somewhat forces us to solve the dual problem instead
of the primal. The dual problem has the same number of variables as the number of
training data. However, the primal problem may have a lot more (even infinite) variables
depending on the dimensionality of the feature space (i.e. the length ofΦ(x)). Though
our derivation of the dual problem in Section 3 considers problems in finite-dimensional
spaces, it can be directly extended to problems in Hilbert spaces [20].

1 This constitutes a special case of the so-called representer theorem, which states that under
fairly general conditions, the minimizers of objective functions which contain a penalizer in
terms of a norm in feature space will have kernel expansions ([43], [31]).



Fig. 3. Example of a Support Vector classifier found by using a radial basis function kernel
k(x, x′) = exp(−‖x − x′‖2). Both coordinate axes range from -1 to +1. Circles and disks
are two classes of training examples; the middle line is the decision surface; the outer lines pre-
cisely meet the constraint (23). Note that the Support Vectors found by the algorithm (marked by
extra circles) are not centers of clusters, but examples which are critical for the given classifica-
tion task. Grey values code the modulus of the argument

Pm
i=1 yiαi ·k(x, xi)+ b of the decision

function (40) (from [29]).)

5 Kernels

We now take a closer look at the issue of the similarity measure, or kernel,k. In this
section, we think ofX as a subset of the vector spaceRN , (N ∈ N), endowed with the
canonical dot product (3).

5.1 Product Features

Suppose we are given patternsx ∈ RN where most information is contained in thedth
order products (monomials) of entries[x]j of x,

[x]j1 · · · · · [x]jd
, (43)

wherej1, . . . , jd ∈ {1, . . . , N}. In that case, we might prefer toextractthese product
features, and work in the feature spaceH of all products ofd entries. In visual recog-
nition problems, where images are often represented as vectors, this would amount to
extracting features which are products of individual pixels.



For instance, inR2, we can collect all monomial feature extractors of degree2 in
the nonlinear map

Φ : R2 → H = R3 (44)

([x]1, [x]2) 7→ ([x]21, [x]22, [x]1[x]2). (45)

This approach works fine for small toy examples, but it fails for realistically sized prob-
lems: forN -dimensional input patterns, there exist

NH =
(N + d− 1)!
d!(N − 1)!

(46)

different monomials (43), comprising a feature spaceH of dimensionalityNH. For
instance, already16 × 16 pixel input images and a monomial degreed = 5 yield a
dimensionality of1010.

In certain cases described below, there exists, however, a way ofcomputing dot
productsin these high-dimensional feature spaces without explicitly mapping into them:
by means of kernels nonlinear in the input spaceRN . Thus, if the subsequent process-
ing can be carried out using dot products exclusively, we are able to deal with the high
dimensionality.

5.2 Polynomial Feature Spaces Induced by Kernels

In order to compute dot products of the form(Φ(x) · Φ(x′)), we employ kernel repre-
sentations of the form

k(x, x′) = (Φ(x) · Φ(x′)), (47)

which allow us to compute the value of the dot product inH without having to carry
out the mapΦ. This method was used by Boser et al. to extend theGeneralized Por-
trait hyperplane classifier [41] to nonlinear Support Vector machines [8]. Aizerman et
al. calledH the linearization space, and used in the context of the potential function
classification method to express the dot product between elements ofH in terms of
elements of the input space [1].

What doesk look like for the case of polynomial features? We start by giving an
example ([38]) forN = d = 2. For the map

Φ2 : ([x]1, [x]2) 7→ ([x]21, [x]22, [x]1[x]2, [x]2[x]1), (48)

dot products inH take the form

(Φ2(x) · Φ2(x′)) = [x]21[x
′]21 + [x]22[x

′]22 + 2[x]1[x]2[x′]1[x′]2 = (x · x′)2, (49)

i.e., the desired kernelk is simply the square of the dot product in input space. Note that
it is possible to modify(x · x′)d such that it maps into the space of all monomialsup to
degreed, defining ([38])

k(x, x′) = ((x · x′) + 1)d. (50)



5.3 Examples of Kernels

When considering feature maps, it is also possible to look at things the other way
around, and start with the kernel. Given a kernel function satisfying a mathematical
condition termedpositive definiteness, it is possible to construct a feature space such
that the kernel computes the dot product in that feature space. This has been brought
to the attention of the machine learning community by [1], [8], and [38]. In functional
analysis, the issue has been studied under the heading ofReproducing kernel Hilbert
space (RKHS).

Besides (50), a popular choice of kernel is the Gaussian radial basis function ([1])

k(x, x′) = exp
(−γ‖x− x′‖2) . (51)

An illustration is in Figure 3. For an overview of other kernels, see [31].

6 ν-Soft Margin Support Vector Classifiers

In practice, a separating hyperplane may not exist, e.g. if a high noise level causes a
large overlap of the classes. To allow for the possibility of examples violating (23), one
introduces slack variables ([15], [38], [32])

ξi ≥ 0, i = 1, . . . , m (52)

in order to relax the constraints to

yi · ((w · xi) + b) ≥ 1− ξi, i = 1, . . . ,m. (53)

A classifier which generalizes well is then found by controlling both the classifier ca-
pacity (via‖w‖) and the sum of the slacks

∑
i ξi. The latter is done as it can be shown

to provide an upper bound on the number of training errors which leads to a convex
optimization problem.

One possible realization,calledC-SVC, of asoft marginclassifier is minimizing the
objective function

τ(w, ξ) =
1
2
‖w‖2 + C

m∑

i=1

ξi (54)

subject to the constraints (52) and (53), for some value of the constantC > 0 deter-
mining the trade-off. Here and below, we use boldface Greek letters as a shorthand
for corresponding vectorsξ = (ξ1, . . . , ξm). Incorporating kernels, and rewriting it
in terms of Lagrange multipliers, this again leads to the problem of maximizing (41),
subject to the constraints

0 ≤ αi ≤ C, i = 1, . . . , m, and
m∑

i=1

αiyi = 0. (55)

The only difference from the separable case is the upper boundC on the Lagrange mul-
tipliers αi. This way, the influence of the individual patterns (which could be outliers)
gets limited. As above, the solution takes the form (40).



Another possible realization,calledν-SVC of a soft margin variant of the optimal
hyperplane uses theν-parameterization ([32]). In it, the parameterC is replaced by a
parameterν ∈ [0, 1] which is the lower and upper bound on the number of examples
that are support vectors and that lie on the wrong side of the hyperplane, respectively.

As a primal problem for this approach, termed theν-SV classifier, we consider

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
m

m∑

i=1

ξi (56)

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi, i = 1, . . . , m (57)

and ξi ≥ 0, ρ ≥ 0. (58)

Note that no constantC appears in this formulation; instead, there is a parameterν, and
also an additional variableρ to be optimized. To understand the role ofρ, note that for
ξ = 0, the constraint (57) simply states that the two classes are separated by themargin
2ρ/‖w‖.

To explain the significance ofν, let us first introduce the termmargin error: by this,
we denote training points withξi > 0. These are points which either are errors, or lie
within the margin. Formally, the fraction of margin errors is

Rρ
emp[g] :=

1
m
|{i|yig(xi) < ρ}| . (59)

Here,g is used to denote the argument of the sign in the decision function (40):f =
sgn ◦g. We are now in a position to state a result that explains the significance ofν.

Proposition 1 ([32]).Suppose we runν-SVC with kernel functionk on some data with
the result thatρ > 0. Then

(i) ν is an upper bound on the fraction of margin errors (and hence also on the fraction
of training errors).

(ii) ν is a lower bound on the fraction of SVs.
(iii) Suppose the data(x1, y1), . . . , (xm, ym) were generated iid from a distribution

Pr(x, y) = Pr(x) Pr(y|x), such that neitherPr(x, y = 1) nor Pr(x, y = −1) con-
tains any discrete component. Suppose, moreover, that the kernel used is analytic
and non-constant. With probability1, asymptotically,ν equals both the fraction of
SVs and the fraction of margin errors.

Before we get into the technical details of the dual derivation, let us take a look at
a toy example illustrating the influence ofν (Figure 4). The corresponding fractions of
SVs and margin errors are listed in table 1.

Let us next derive the dual of theν-SV classification algorithm. We consider the
Lagrangian

L(w, ξ, b, ρ, α, β, δ) =
1
2
‖w‖2 − νρ +

1
m

m∑

i=1

ξi

−
m∑

i=1

(αi(yi(〈xi, w〉+ b)− ρ + ξi) + βiξi − δρ), (60)



Fig. 4. Toy problem (task: to separate circles from disks) solved usingν-SV classification, with
parameter values ranging fromν = 0.1 (top left) toν = 0.8 (bottom right). The larger we make
ν, the more points are allowed to lie inside the margin (depicted by dotted lines). Results are
shown for a Gaussian kernel,k(x, x′) = exp(−‖x− x′‖2) (from [31]).

Table 1. Fractions of errors and SVs, along with the margins of class separation, for the toy
example in Figure 4.
Note thatν upper bounds the fraction of errors and lower bounds the fraction of SVs, and that
increasingν, i.e., allowing more errors, increases the margin.

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of errors0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
marginρ/‖w‖ 0.0050.0180.1150.1560.3640.4190.4610.546

using multipliersαi, βi, δ ≥ 0. This function has to be minimized with respect to the
primal variablesw, ξ, b, ρ, and maximized with respect to the dual variablesα, β, δ.
Following the same derivation in (31)–(33), we compute the corresponding partial
derivatives and set them to0, obtaining the following conditions:

w =
m∑

i=1

αiyixi, (61)

αi + βi = 1/m, (62)

m∑

i=1

αiyi = 0, (63)

m∑

i=1

αi − δ = ν. (64)



Again, in theSV expansion(61), theαi that are non-zero correspond to a constraint (57)
which is precisely met.

Substituting (61) and (62) intoL, usingαi, βi, δ ≥ 0, and incorporating kernels
for dot products, leaves us with the following quadratic optimization problem forν-SV
classification:

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj) (65)

subject to 0 ≤ αi ≤ 1
m

, (66)

m∑

i=1

αiyi = 0, (67)

m∑

i=1

αi ≥ ν. (68)

As above, the resulting decision function can be shown to take the form

f(x) = sgn

(
m∑

i=1

αiyik(x, xi) + b

)
. (69)

Compared with theC-SVC dual ((41), (55)), there are two differences. First, there is
an additional constraint (68). Second, the linear term

∑m
i=1 αi no longer appears in the

objective function (65). This has an interesting consequence: (65) is now quadratically
homogeneous inα. It is straightforward to verify that the same decision function is
obtained if we start with the primal function

τ(w, ξ, ρ) =
1
2
‖w‖2 + C

(
−νρ +

1
m

m∑

i=1

ξi

)
, (70)

i.e., if one does useC [31].
The computation of the thresholdb and the margin parameterρ will be discussed in

Section 7.4.
A connection to standard SV classification, and a somewhat surprising interpreta-

tion of the regularization parameterC, is described by the following result:

Proposition 2 (Connectionν-SVC — C-SVC [32]). If ν-SV classification leads to
ρ > 0, thenC-SV classification, withC set a priori to1/mρ, leads to the same decision
function.

For further details on the connection betweenν-SVMs andC-SVMs, see [16, 6]. By
considering the optimalα as a function of parameters, a complete account is as follows:

Proposition 3 (Detailed connectionν-SVC — C-SVC [11]).
∑m

i=1 αi/(Cm) by the
C-SVM is a well defined decreasing function ofC. We can define

lim
C→∞

∑m
i=1 αi

Cm
= νmin ≥ 0 and lim

C→0

∑m
i=1 αi

Cm
= νmax ≤ 1. (71)

Then,



1. νmax = 2min(m+,m−)/m.

2. For anyν > νmax, the dualν-SVM is infeasible. That is, the set of feasible points is
empty. For anyν ∈ (νmin, νmax], the optimal solution set of dualν-SVM is the same
as that of either one or someC-SVM where theseC form an interval. In addition,
the optimal objective value ofν-SVM is strictly positive. For any0 ≤ ν ≤ νmin,
dualν-SVM is feasible with zero optimal objective value.

3. If the kernel matrix is positive definite, thenνmin = 0.

Therefore, for a given problem and kernel, there is an interval[νmin, νmax] of admissible
values forν, with 0 ≤ νmin ≤ νmax ≤ 1. An illustration of the relation betweenν and
C is in Figure 5.
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Fig. 5. The relation betweenν andC (using the RBF kernel on the problemaustralian from the
Statlog collection [25])

It has been noted thatν-SVMs have an interesting interpretation in terms ofreduced
convex hulls[16, 6]. One can show that for separable problems, one can obtain the opti-
mal margin separating hyperplane by forming the convex hulls of both classes, finding
the shortest connection between the two convex hulls (since the problem is separable,
they are disjoint), and putting the hyperplane halfway along that connection, orthogonal
to it. If a problem is non-separable, however, the convex hulls of the two classes will
no longer be disjoint. Therefore, it no longer makes sense to search for the shortest line
connecting them. In this situation, it seems natural to reduce the convex hulls in size,
by limiting the size of the coefficientsci in the convex sets

C± :=

{ ∑
yi=±1

cixi

∣∣∣∣∣
∑

yi=±1

ci = 1, ci ≥ 0

}
. (72)



to some valueν ∈ (0, 1). Intuitively, this amounts to limiting the influence of individual
points. It is possible to show that theν-SVM formulation solves the problem of finding
the hyperplane orthogonal to the closest line connecting thereducedconvex hulls [16].

We now move on to another aspect of soft margin classification. When we intro-
duced the slack variables, we did not attempt to justify the fact that in the objective
function, we used a penalizer

∑m
i=1 ξi. Why not use another penalizer, such as

∑m
i=1 ξp

i ,
for somep ≥ 0 [15]? For instance,p = 0 would yield a penalizer that exactlycounts
the number of margin errors. Unfortunately, however, it is also a penalizer that leads to
a combinatorial optimization problem. Penalizers yielding optimization problems that
are particularly convenient, on the other hand, are obtained forp = 1 andp = 2. By
default, we use the former, as it possesses an additional property which is statistically
attractive. As the following proposition shows, linearity of the target function in the
slack variablesξi leads to a certain “outlier” resistance of the estimator. As above, we
use the shorthandxi for Φ(xi).

Proposition 4 (Resistance of SV classification [32]).Supposew can be expressed in
terms of the SVs which are not at bound,

w =
m∑

i=1

γixi (73)

with γi 6= 0 only if αi ∈ (0, 1/m) (where theαi are the coefficients of the dual solu-
tion). Then local movements of any margin errorxj parallel to w do not change the
hyperplane.2

This result is about the stability of classifiers. Results have also shown that in general
p = 1 leads to fewer support vectors. Further results in support of thep = 1 case can
be seen in [34, 36].

Although proposition 1 shows thatν possesses an intuitive meaning, it is still un-
clear how to chooseν for a learning task. [35] proves that given̄R, a close upper bound
on the expected optimal Bayes risk, an asymptotically good estimate of the optimal
value ofν is 2R̄:

Proposition 5. If R[f ] is the expected risk defined in(17),

Rp := inf
f

R[f ], (74)

and the kernel used byν-SVM is universal, then for allν > 2Rp and all ε > 0, there
exists a constantc > 0 such that

P (T = {(x1, y1), . . . , (xm, ym)} | R[fν
T ] ≤ ν −Rp + ε) ≥ 1− e−cm. (75)

Quite a few popular kernels such as the Gaussian are universal. The definition of a
universal kernel can be seen in [35]. Here,fν

T is the decision function obtained by
training ν-SVM on the data setT .

2 Note that the perturbation of the point is carried out in feature space. What it precisely corre-
sponds to in input space therefore depends on the specific kernel chosen.



Therefore, given an upper bound̄R onRp, the decision function with respect toν = 2R̄
almost surely achieves a risk not larger thanRp + 2(R̄−Rp).

The selection ofν and kernel parameters can be done by estimating the performance
of support vector binary classifiers on data not yet observed. One such performance esti-
mate is the leave-one-out error, which is an almost unbiased estimate of the generaliza-
tion performance [22]. To compute this performance metric, a single point is excluded
from the training set, and the classifier is trained using the remaining points. It is then
determined whether this new classifier correctly labels the point that was excluded. The
process is repeated over the entire training set. Although theoretically attractive, this
estimate obviously entails a large computational cost.

Three estimates of the leave-one-out error for theν-SV learning algorithm are pre-
sented in [17]. Of these three estimates, thegeneralν-SV boundis an upper bound on
the leave-one-out error, therestrictedν-SV estimateis an approximation that assumes
the sets of margin errors and support vectors on the margin to be constant, and themax-
imized target estimateis an approximation that assumes the sets of margin errors and
non-support vectors not to decrease. The derivation of the generalν-SV bound takes
a form similar to an upper bound described in [40] for theC-SV classifier, while the
restrictedν-SV estimate is based on a similarC-SV estimate proposed in [40, 26]: both
these estimates are based on the geometrical concept of thespan, which is (roughly
speaking) a measure of how easily a particular point in the training sample can be
replaced by the other points used to define the classification function. No analogous
method exists in theC-SV case for the maximized target estimate.

7 Implementation of ν-SV Classifiers

We change the dual form ofν-SV classifiers to be a minimization problem:

minimize
α∈Rm

W (α) =
1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
m

, (76)

m∑

i=1

αiyi = 0,

m∑

i=1

αi = ν. (77)

[11] proves that for any givenν, there is at least an optimal solution which satisfies
eT α = ν. Therefore, it is sufficient to solve a simpler problem with the equality con-
straint (77).

Similar to C-SVC, the difficulty of solving (76) is thatyiyjk(xi, xj) are in gen-
eral not zero. Thus, for large data sets, the Hessian (second derivative) matrix of the
objective function cannot be stored in the computer memory, so traditional optimiza-
tion methods such as Newton or quasi Newton cannot be directly used. Currently, the
decomposition method is the most used approach to conquer this difficulty. Here, we
present the implementation in [11], which modifies the procedure forC-SVC.



7.1 The Decomposition Method

The decomposition method is an iterative process. In each step, the index set of variables
is partitioned to two setsB andN , whereB is the working set. Then, in that iteration
variables corresponding toN are fixed while a sub-problem on variables corresponding
to B is minimized. The procedure is as follows:

Algorithm 1 (Decomposition method)
1. Given a numberq ≤ l as the size of the working set. Findα1 as an initial feasible

solution of (76). Setk = 1.
2. If αk is an optimal solution of (76), stop. Otherwise, find a working setB ⊂
{1, . . . , l} whose size isq. DefineN ≡ {1, . . . , l}\B andαk

B andαk
N to be sub-

vectors ofαk corresponding toB andN , respectively.
3. Solve the following sub-problem with the variableαB :

minimize
αB∈Rq

1
2

∑

i∈B,j∈B

αiαjyiyjk(xi, xj) +
∑

i∈B,j∈N

αiα
k
j yiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
m

, i ∈ B, (78)
∑

i∈B

αiyi = −
∑

i∈N

αk
i yi, (79)

∑

i∈B

αi = ν −
∑

i∈N

αk
i . (80)

4. Setαk+1
B to be the optimal solution of (78) andαk+1

N ≡ αk
N . Setk ← k + 1 and

goto Step 2.

Note thatB is updated in each iteration. To simplify the notation, we simply useB
instead ofBk.

7.2 Working Set Selection

An important issue of the decomposition method is the selection of the working setB.
Here, we consider an approach based on the violation of the KKT condition. Similar to
(30), by putting (61) into (57), one of the KKT conditions is

αi · [yi(
m∑

j=1

αjK(xi, xj) + b)− ρ + ξi] = 0, i = 1, . . . ,m. (81)

Using0 ≤ αi ≤ 1
m , (81) can be rewritten as:

m∑

j=1

αjyiyjk(xi, xj) + byi − ρ ≥ 0, if αi <
1
m

,

m∑

j=1

αjyiyjk(xi, xj) + byi − ρ ≤ 0, if αi > 0.

(82)



That is, anα is optimal for the dual problem (76) if and only ifα is feasible and satisfies
(81). Using the property thatyi = ±1 and representing∇W (α)i =

∑m
j=1 αjyiyjK(xi, xj),

(82) can be further written as

max
i∈I1

up(α)
∇W (α)i ≤ ρ− b ≤ min

i∈I1
low(α)

∇W (α)i and

max
i∈I−1

up (α)
∇W (α)i ≤ ρ + b ≤ min

i∈I−1
low(α)

∇W (α)i,
(83)

where

I1
up(α) := {i | αi > 0, yi = 1}, I1

low(α) := {i | αi <
1
m

, yi = 1}, (84)

and

I−1
up (α) := {i | αi <

1
m

, yi = −1}, I−1
low(α) := {i | αi > 0, yi = −1}. (85)

We call any(i, j) ∈ I1
up(α)× I1

low(α) or I−1
up (α)× I−1

low(α) satisfying

yi∇W (α)i > yj∇W (α)j (86)

a violating pair as (83) is not satisfied. Whenα is not optimal yet, if any such a violating
pair is included inB, the optimal objective value of (78) is small than that atαk.
Therefore, the decomposition procedure has its objective value strictly decreasing from
one iteration to the next.

Therefore, a natural choice ofB is to select all pairs which violate (83) the most.
To be more precise, we can setq to be an even integer and sequentially selectq/2 pairs
{(i1, j1), . . . , (iq/2, jq/2)} from∈ I1

up(α)× I1
low(α) or I−1

up (α)× I−1
low(α) such that

yi1∇W (α)i1 − yj1∇W (α)j1 ≥ · · · ≥ yiq/2∇W (α)iq/2 − yjq/2∇W (α)jq/2 . (87)

This working set selection is merely an extension of that forC-SVC. The main
difference is that forC-SVM, (83) becomes only one inequality withb. Due to this
similarity, we believe that the convergence analysis ofC-SVC [21] can be adapted here
though detailed proofs have not been written and published.

[11] considers the same working set selection. However, following the derivation
for C-SVC in [19], it is obtained using the concept of feasible directions in constrained
optimization. We feel that a derivation from the violation of the KKT condition is more
intuitive.

7.3 SMO-type Implementation

The Sequential Minimal Optimization (SMO) algorithm [28] is an extreme of the de-
composition method where, forC-SVC, the working set is restricted to only two el-
ements. The main advantage is that each two-variable sub-problem can be analyti-
cally solved, so numerical optimization software are not needed. For this method, at
least two elements are required for the working set. Otherwise, the equality constraint



∑
i∈B αiyi = −∑

j∈N αk
j yj leads to a fixed optimal objective value of the sub-problem.

Then, the decomposition procedure stays at the same point.
Now the dual ofν-SVC possesses two inequalities, so we may think that more

elements are needed for the working set. Indeed, two elements are still enough for the
case ofν-SVC. Note that (79) and (80) can be rewritten as

∑

i∈B,yi=1

αiyi =
ν

2
−

∑

i∈N,yi=1

αk
i yi and

∑

i∈B,yi=−1

αiyi =
ν

2
−

∑

i∈N,yi=−1

αk
i yi. (88)

Thus, if (i1, j1) are selected as the working set selection using (87),yi1 = yj1 , so
(88) reduces to only one equality with two variables. Then, the sub-problem is still
guaranteed to be smaller than that atαk.

The comparison in [11] shows that usingC andν with the connection in proposition
3 and equivalent stopping condition, the performance of the SMO-type implementation
described here for C-SVM andν-SVM are comparable.

7.4 The Calculation ofb and ρ and Stopping Criteria

If at an optimal solution,0 < αi < 1/m andyi = 1, theni ∈ I1
up(α) andI1

low(α).
Thus,ρ − b = ∇W (α)i. Similarly, if there is another0 < αj < 1/m andyj = −1,
thenρ + b = ∇W (α)j . Thus, solving two equalities givesb andρ. In practice, we
averageW (α)i to avoid numerical errors:

ρ− b =

∑
0<αi<

1
m ,yi=1∇W (α)i∑

0<αi<
1
m ,yi=1 1

, (89)

If there are no components such that0 < αi < 1/m, ρ − b (andρ + b) can be any
number in the interval formed by (83). A common way is to select the middle point and
then still solves two linear equations

The stopping condition of the decomposition method can easily follow the new form
of the optimality condition (83):

max
(− min

i∈I1
low(α)

∇W (α)i + max
i∈I1

up(α)
∇W (α)i,

− min
i∈I−1

low(α)
∇W (α)i + max

i∈I−1
up (α)

∇W (α)i

)
< ε,

(90)

whereε > 0 is a chosen stopping tolerance.

8 Multi-Class ν-SV Classifiers

Though SVM was originally designed for two-class problems, several approaches have
been developed to extend SVM for multi-class data sets. In this section, we discuss the
extension of the “one-against-one” approach for multi-classν-SVM.

Most approaches for multi-class SVM decompose the data set to several binary
problems. For example, the “one-against-one” approach trains a binary SVM for any



two classes of data and obtains a decision function. Thus, for ak-class problem, there
arek(k−1)/2 decision functions. In the prediction stage, a voting strategy is used where
the testing point is designated to be in a class with the maximum number of votes. In
[18], it was experimentally shown that for general problems, usingC-SV classifier,
various multi-class approaches give similar accuracy. However, the “one-against-one”
method is more efficient for training. Here, we will focus on extending it forν-SVM.

Multi-class methods must be considered together with parameter-selection strate-
gies. That is, we search for appropriateC and kernel parameters for constructing a
better model. In the following, we restrict the discussion on only the Gaussian (radius
basis function) kernelk(xi, xj) = e−γ‖xi−xj‖2 , so the kernel parameter isγ. With
the parameter selection considered, there are two ways to implement the “one-against-
one” method: First, for any two classes of data, the parameter selection is conducted
to have the best(C, γ). Thus, for the best model selected, each decision function has
its own (C, γ). For experiments here, the parameter selection of each binary SVM is
by a five-fold cross-validation. The second way is that for each(C, γ), an evaluation
criterion (e.g. cross-validation) combining with the “one-against-one” method is used
for estimating the performance of the model. A sequence of pre-selected(C, γ) is tried
to select the best model. Therefore, for each model,k(k−1)/2 decision functions share
the sameC andγ.

It is not very clear which one of the two implementations is better. On one hand, a
single parameter set may not be uniformly good for allk(k − 1)/2 decision functions.
On the other hand, as the overall accuracy is the final consideration, one parameter set
for one decision function may lead to over-fitting. [14] is the first to compare the two
approaches usingC-SVM, where the preliminary results show that both give similar
accuracy.

For ν-SVM, each binary SVM using data from theith and thejth classes has an
admissible interval[νij

min, νij
max], whereνij

max = 2min(mi,mj)/(mi + mj) according
to proposition 3. Heremi and mj are the number of data points in theith andjth
classes, respectively. Thus, if allk(k − 1)/2 decision functions share the sameν, the
admissible interval is

[max
i 6=j

νij
min,min

i 6=j
νij
max]. (91)

This set is non-empty if the kernel matrix is positive definite. The reason is that proposi-
tion 3 impliesνij

min = 0,∀i 6= j, somini 6=j νij
max = 0. Therefore, unlikeC of C-SVM,

which has a large valid range[0,∞), for ν-SVM, we worry that the admissible interval
may be too small. For example, if the data set is highly unbalanced,mini 6=j νij

min is very
small.

We redo the same comparison as that in [14] forν-SVM. Results are in Table 2. We
consider multi-class problems tested in [18], where most of them are from the statlog
collection [25]. Except data sets dna, shuttle, letter, satimage, and usps, where test sets
are available, we separate each problem to 80% training and 20% testing. Then, cross
validation are conducted only on the training data. All other settings such as data scaling
are the same as those in [18]. Experiments are conducted using LIBSVM [10], which
solves bothC-SVM andν-SVM.

Results in Table 2 show no significant difference among the four implementations.
Note that some problems (e.g. shuttle) are highly unbalanced so the admissible interval



(91) is very small. Surprisingly, from such intervals, we can still find a suitableν which
leads to a good model. This preliminary experiment indicates that in general the use of
“one-against-one” approach for multi-classν-SVM is viable.

Table 2. Test accuracy (in percentage) of multi-class data sets byC-SVM and ν-SVM. The
columns “CommonC”, “Different C”, “Commonν”, “Different ν” are testing accuracy of using
the same and different (C,γ), (or (ν,γ)) for all k(k − 1)/2 decision functions. The validation is
conducted on the following points of (C,γ): [2−5, 2−3, . . . , 215] × [2−15, 2−13, . . . , 23]. Forν-
SVM, the range ofγ is the same but we validate a 10-point discretization ofν in the interval (91)
or [νij

min, νij
max], depending on whetherk(k− 1)/2 decision functions share the same parameters

or not. For small problems (number of training data≤ 1000), we do cross validation five times,
and then average the testing accuracy.

Data set Class No.# training# testingCommonC DifferentC Commonν Differentν
vehicle 4 677 169 86.5 87.1 85.9 87.8
glass 6 171 43 72.2 70.7 73.0 69.3
iris 3 120 30 96.0 93.3 94.0 94.6
dna 3 2000 1186 95.6 95.1 95.0 94.8
segment7 1848 462 98.3 97.2 96.7 97.6
shuttle 7 43500 14500 99.9 99.9 99.7 99.8
letter 26 15000 5000 97.9 97.7 97.9 96.8
vowel 11 423 105 98.1 97.7 98.3 96.0
satimage6 4435 2000 91.9 92.2 92.1 91.9
wine 3 143 35 97.1 97.1 97.1 96.6
usps 10 7291 2007 95.3 95.2 95.3 94.8

We also present the contours ofC-SVM andν-SVM in Figure 8 using the approach
that all decision functions share the same(C, γ). In the contour ofC-SVM, the x-
axis andy-axis arelog2 C andlog2 γ, respectively. Forν-SVM, thex-axis isν in the
interval (91). Clearly, the good region of usingν-SVM is smaller. This confirms our
concern earlier, which motivated us to conduct experiments in this section. Fortunately,
points in this smaller good region still lead to models that are competitive with those by
C-SVM.

There are some ways to enlarge the admissible interval ofν. A work to extend
algorithm to the case of very small values ofν by allowing negativemargins is [27].
For the upper bound, according to the above proposition 3, if the classes are balanced,
then the upper bound is 1. This leads to the idea to modify the algorithm by adjusting
the cost function such that the classes are balanced in terms of the cost, even if they are
not in terms of the merenumbersof training examples. An earlier discussion on such
formulations is at [12]. For example, we can consider the following formulation:

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
2m+

∑

i:yi=1

ξi +
1

2m−

∑

i:yi=−1

ξi

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi,

and ξi ≥ 0, ρ ≥ 0.



satimage     91.5
      91
    90.5
      90
    89.5
      89
    88.5

-5  0  5  10  15

log(C)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

log(gamma)

satimage     91.5
      91
    90.5
      90
    89.5
      89
    88.5

 0  0.1  0.2  0.3  0.4  0.5  0.6

NU

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

log(gamma)

Fig. 6. 5-fold cross-validation accuracy of the data set satimage. Left:C-SVM, Right:ν-SVM

The dual is

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
2m+

, if yi = 1,

0 ≤ αi ≤ 1
2m−

, if yi = −1,

m∑

i=1

αiyi = 0,

m∑

i=1

αi ≥ ν.

Clearly, when allαi equals its corresponding upper bound,α is a feasible solution with∑m
i=1 αi = 1 .

Another possibility is

minimize
w∈H,ξ∈Rm,ρ,b∈R

τ(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
2 min(m+, m−)

m∑

i=1

ξi

subject to yi(〈xi, w〉+ b) ≥ ρ− ξi,

and ξi ≥ 0, ρ ≥ 0.



The dual is

maximize
α∈Rm

W (α) = −1
2

m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ 1
2min(m+,m−)

,

m∑

i=1

αiyi = 0,

m∑

i=1

αi ≥ ν.

Then, the largest admissibleν is 1.
A slight modification of the implementation in Section 7 for the above formulations

is in [13].

9 Applications of ν-SV Classifiers

Researchers have appliedν-SVM on different applications. Some of them feel that it
is easier and more intuitive to deal withν ∈ [0, 1] thanC ∈ [0,∞). Here, we briefly
summarize some work which useLIBSVM to solveν-SVM.

In [7], researchers from HP Labs discuss the topics of personal email agent. Data
classification is an important component for which the authors useν-SVM because they
think “theν parameter is more intuitive than theC parameter.”

[23] applies machine learning methods to detect and localize boundaries of natural
images. Several classifiers are tested where, for SVM, the authors consideredν-SVM.

10 Conclusion

One of the most appealing features of kernel algorithms is the solid foundation pro-
vided by both statistical learning theory and functional analysis. Kernel methods let
us interpret (and design) learning algorithms geometrically in feature spaces nonlin-
early related to the input space, and combine statistics and geometry in a promising
way. Kernels provide an elegant framework for studying three fundamental issues of
machine learning:

– Similarity measures— the kernel can be viewed as a (nonlinear) similarity measure,
and should ideally incorporate prior knowledge about the problem at hand

– Data representation— as described above, kernels induce representations of the
data in a linear space

– Function class— due to the representer theorem, the kernel implicitly also deter-
mines the function class which is used for learning.

Support vector machines have been one of the major kernel methods for data classi-
fication. Its original form requires a parameterC ∈ [0,∞), which controls the trade-off
between the classifier capacity and the training errors. Using theν-parameterization,
the parameterC is replaced by a parameterν ∈ [0, 1]. In this tutorial, we have given its
derivation and present possible advantages of using theν-support vector classifier.
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In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for
function estimation. Furthermore, we include a summary of currently used algorithms for training
SV machines, covering both the quadratic (or convex) programming part and advanced methods for
dealing with large datasets. Finally, we mention some modifications and extensions that have been
applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
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1. Introduction

The purpose of this paper is twofold. It should serve as a self-
contained introduction to Support Vector regression for readers
new to this rapidly developing field of research.1 On the other
hand, it attempts to give an overview of recent developments in
the field.

To this end, we decided to organize the essay as follows.
We start by giving a brief overview of the basic techniques in
Sections 1, 2 and 3, plus a short summary with a number of
figures and diagrams in Section 4. Section 5 reviews current
algorithmic techniques used for actually implementing SV
machines. This may be of most interest for practitioners.
The following section covers more advanced topics such as
extensions of the basic SV algorithm, connections between SV
machines and regularization and briefly mentions methods for
carrying out model selection. We conclude with a discussion
of open questions and problems and current directions of SV
research. Most of the results presented in this review paper
already have been published elsewhere, but the comprehensive
presentations and some details are new.

1.1. Historic background

The SV algorithm is a nonlinear generalization of the Gener-
alized Portrait algorithm developed in Russia in the sixties2

∗An extended version of this paper is available as NeuroCOLT Technical Report
TR-98-030.

(Vapnik and Lerner 1963, Vapnik and Chervonenkis 1964). As
such, it is firmly grounded in the framework of statistical learn-
ing theory, or VC theory, which has been developed over the last
three decades by Vapnik and Chervonenkis (1974) and Vapnik
(1982, 1995). In a nutshell, VC theory characterizes properties
of learning machines which enable them to generalize well to
unseen data.

In its present form, the SV machine was largely developed
at AT&T Bell Laboratories by Vapnik and co-workers (Boser,
Guyon and Vapnik 1992, Guyon, Boser and Vapnik 1993, Cortes
and Vapnik, 1995, Schölkopf, Burges and Vapnik 1995, 1996,
Vapnik, Golowich and Smola 1997). Due to this industrial con-
text, SV research has up to date had a sound orientation towards
real-world applications. Initial work focused on OCR (optical
character recognition). Within a short period of time, SV clas-
sifiers became competitive with the best available systems for
both OCR and object recognition tasks (Schölkopf, Burges and
Vapnik 1996, 1998a, Blanz et al. 1996, Schölkopf 1997). A
comprehensive tutorial on SV classifiers has been published by
Burges (1998). But also in regression and time series predic-
tion applications, excellent performances were soon obtained
(Müller et al. 1997, Drucker et al. 1997, Stitson et al. 1999,
Mattera and Haykin 1999). A snapshot of the state of the art
in SV learning was recently taken at the annual Neural In-
formation Processing Systems conference (Schölkopf, Burges,
and Smola 1999a). SV learning has now evolved into an active
area of research. Moreover, it is in the process of entering the
standard methods toolbox of machine learning (Haykin 1998,
Cherkassky and Mulier 1998, Hearst et al. 1998). Schölkopf and

0960-3174 C© 2004 Kluwer Academic Publishers
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Smola (2002) contains a more in-depth overview of SVM regres-
sion. Additionally, Cristianini and Shawe-Taylor (2000) and Her-
brich (2002) provide further details on kernels in the context of
classification.

1.2. The basic idea

Suppose we are given training data {(x1, y1), . . . , (x�, y�)} ⊂
X × R, where X denotes the space of the input patterns (e.g.
X = R

d ). These might be, for instance, exchange rates for some
currency measured at subsequent days together with correspond-
ing econometric indicators. In ε-SV regression (Vapnik 1995),
our goal is to find a function f (x) that has at most ε deviation
from the actually obtained targets yi for all the training data, and
at the same time is as flat as possible. In other words, we do not
care about errors as long as they are less than ε, but will not
accept any deviation larger than this. This may be important if
you want to be sure not to lose more than ε money when dealing
with exchange rates, for instance.

For pedagogical reasons, we begin by describing the case of
linear functions f , taking the form

f (x) = 〈w, x〉 + b with w ∈ X , b ∈ R (1)

where 〈 · , · 〉 denotes the dot product in X . Flatness in the case
of (1) means that one seeks a small w. One way to ensure this is
to minimize the norm,3 i.e. ‖w‖2 = 〈w, w〉. We can write this
problem as a convex optimization problem:

minimize 1
2‖w‖2

subject to

{
yi − 〈w, xi 〉 − b ≤ ε

〈w, xi 〉 + b − yi ≤ ε

(2)

The tacit assumption in (2) was that such a function f actually
exists that approximates all pairs (xi , yi ) with ε precision, or in
other words, that the convex optimization problem is feasible.
Sometimes, however, this may not be the case, or we also may
want to allow for some errors. Analogously to the “soft mar-
gin” loss function (Bennett and Mangasarian 1992) which was
used in SV machines by Cortes and Vapnik (1995), one can in-
troduce slack variables ξi , ξ

∗
i to cope with otherwise infeasible

constraints of the optimization problem (2). Hence we arrive at
the formulation stated in Vapnik (1995).

minimize
1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i )

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(3)

The constant C > 0 determines the trade-off between the flat-
ness of f and the amount up to which deviations larger than
ε are tolerated. This corresponds to dealing with a so called
ε-insensitive loss function |ξ |ε described by

|ξ |ε :=
{

0 if |ξ | ≤ ε

|ξ | − ε otherwise.
(4)

Fig. 1. The soft margin loss setting for a linear SVM (from Schölkopf
and Smola, 2002)

Figure 1 depicts the situation graphically. Only the points outside
the shaded region contribute to the cost insofar, as the deviations
are penalized in a linear fashion. It turns out that in most cases
the optimization problem (3) can be solved more easily in its dual
formulation.4 Moreover, as we will see in Section 2, the dual for-
mulation provides the key for extending SV machine to nonlinear
functions. Hence we will use a standard dualization method uti-
lizing Lagrange multipliers, as described in e.g. Fletcher (1989).

1.3. Dual problem and quadratic programs

The key idea is to construct a Lagrange function from the ob-
jective function (it will be called the primal objective function
in the rest of this article) and the corresponding constraints, by
introducing a dual set of variables. It can be shown that this
function has a saddle point with respect to the primal and dual
variables at the solution. For details see e.g. Mangasarian (1969),
McCormick (1983), and Vanderbei (1997) and the explanations
in Section 5.2. We proceed as follows:

L := 1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i ) −

�∑
i=1

(ηiξi + η∗
i ξ

∗
i )

−
�∑

i=1

αi (ε + ξi − yi + 〈w, xi 〉 + b)

−
�∑

i=1

α∗
i (ε + ξ ∗

i + yi − 〈w, xi 〉 − b) (5)

Here L is the Lagrangian and ηi , η
∗
i , αi , α

∗
i are Lagrange multi-

pliers. Hence the dual variables in (5) have to satisfy positivity
constraints, i.e.

α
(∗)
i , η

(∗)
i ≥ 0. (6)

Note that by α
(∗)
i , we refer to αi and α∗

i .
It follows from the saddle point condition that the partial

derivatives of L with respect to the primal variables (w, b, ξi , ξ
∗
i )

have to vanish for optimality.

∂b L =
�∑

i=1

(α∗
i − αi ) = 0 (7)

∂w L = w −
�∑

i=1

(αi − α∗
i )xi = 0 (8)

∂
ξ

(∗)
i

L = C − α
(∗)
i − η

(∗)
i = 0 (9)
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Substituting (7), (8), and (9) into (5) yields the dual optimization
problem.

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

−ε

�∑
i=1

(αi + α∗
i ) +

�∑
i=1

yi (αi − α∗
i )

subject to
�∑

i=1

(αi − α∗
i ) = 0 and αi , α

∗
i ∈ [0, C]

(10)

In deriving (10) we already eliminated the dual variables ηi , η
∗
i

through condition (9) which can be reformulated as η
(∗)
i = C −

α
(∗)
i . Equation (8) can be rewritten as follows

w =
�∑

i=1

(αi−α∗
i )xi , thus f (x) =

�∑
i=1

(αi−α∗
i )〈xi , x〉 + b. (11)

This is the so-called Support Vector expansion, i.e. w can be
completely described as a linear combination of the training
patterns xi . In a sense, the complexity of a function’s represen-
tation by SVs is independent of the dimensionality of the input
space X , and depends only on the number of SVs.

Moreover, note that the complete algorithm can be described
in terms of dot products between the data. Even when evalu-
ating f (x) we need not compute w explicitly. These observa-
tions will come in handy for the formulation of a nonlinear
extension.

1.4. Computing b

So far we neglected the issue of computing b. The latter can be
done by exploiting the so called Karush–Kuhn–Tucker (KKT)
conditions (Karush 1939, Kuhn and Tucker 1951). These state
that at the point of the solution the product between dual variables
and constraints has to vanish.

αi (ε + ξi − yi + 〈w, xi 〉 + b) = 0
(12)

α∗
i (ε + ξ ∗

i + yi − 〈w, xi 〉 − b) = 0

and

(C − αi )ξi = 0
(13)

(C − α∗
i )ξ ∗

i = 0.

This allows us to make several useful conclusions. Firstly only
samples (xi , yi ) with corresponding α

(∗)
i = C lie outside the ε-

insensitive tube. Secondly αiα
∗
i = 0, i.e. there can never be a set

of dual variables αi , α
∗
i which are both simultaneously nonzero.

This allows us to conclude that

ε − yi + 〈w, xi 〉 + b ≥ 0 and ξi = 0 if αi < C (14)

ε − yi + 〈w, xi 〉 + b ≤ 0 if αi > 0 (15)

In conjunction with an analogous analysis on α∗
i we have

max{−ε + yi − 〈w, xi 〉 | αi < C or α∗
i > 0} ≤ b ≤

min{−ε + yi − 〈w, xi 〉 | αi > 0 or α∗
i < C} (16)

If some α
(∗)
i ∈ (0, C) the inequalities become equalities. See

also Keerthi et al. (2001) for further means of choosing b.
Another way of computing b will be discussed in the context

of interior point optimization (cf. Section 5). There b turns out
to be a by-product of the optimization process. Further consid-
erations shall be deferred to the corresponding section. See also
Keerthi et al. (1999) for further methods to compute the constant
offset.

A final note has to be made regarding the sparsity of the SV
expansion. From (12) it follows that only for | f (xi ) − yi | ≥ ε

the Lagrange multipliers may be nonzero, or in other words, for
all samples inside the ε–tube (i.e. the shaded region in Fig. 1)
the αi , α

∗
i vanish: for | f (xi ) − yi | < ε the second factor in

(12) is nonzero, hence αi , α
∗
i has to be zero such that the KKT

conditions are satisfied. Therefore we have a sparse expansion
of w in terms of xi (i.e. we do not need all xi to describe w). The
examples that come with nonvanishing coefficients are called
Support Vectors.

2. Kernels

2.1. Nonlinearity by preprocessing

The next step is to make the SV algorithm nonlinear. This, for
instance, could be achieved by simply preprocessing the training
patterns xi by a map � : X → F into some feature space F ,
as described in Aizerman, Braverman and Rozonoér (1964) and
Nilsson (1965) and then applying the standard SV regression
algorithm. Let us have a brief look at an example given in Vapnik
(1995).

Example 1 (Quadratic features in R
2). Consider the map � :

R
2 → R

3 with �(x1, x2) = (x2
1 ,

√
2x1x2, x2

2 ). It is understood
that the subscripts in this case refer to the components of x ∈ R

2.
Training a linear SV machine on the preprocessed features would
yield a quadratic function.

While this approach seems reasonable in the particular ex-
ample above, it can easily become computationally infeasible
for both polynomial features of higher order and higher di-
mensionality, as the number of different monomial features
of degree p is (d+p−1

p ), where d = dim(X ). Typical values
for OCR tasks (with good performance) (Schölkopf, Burges
and Vapnik 1995, Schölkopf et al. 1997, Vapnik 1995) are
p = 7, d = 28 · 28 = 784, corresponding to approximately
3.7 · 1016 features.

2.2. Implicit mapping via kernels

Clearly this approach is not feasible and we have to find a com-
putationally cheaper way. The key observation (Boser, Guyon
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and Vapnik 1992) is that for the feature map of example 2.1 we
have 〈(

x2
1 ,

√
2x1x2, x2

2

)
,
(
x ′2

1,
√

2x ′
1x ′

2, x ′2
2

)〉 = 〈x, x ′〉2. (17)

As noted in the previous section, the SV algorithm only depends
on dot products between patterns xi . Hence it suffices to know
k(x, x ′) := 〈�(x), �(x ′)〉 rather than � explicitly which allows
us to restate the SV optimization problem:

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

−ε

�∑
i=1

(αi + α∗
i ) +

�∑
i=1

yi (αi − α∗
i )

subject to
�∑

i=1

(αi − α∗
i ) = 0 and αi , α

∗
i ∈ [0, C]

(18)

Likewise the expansion of f (11) may be written as

w =
�∑

i=1

(αi − α∗
i )�(xi ) and

f (x) =
�∑

i=1

(αi − α∗
i )k(xi , x) + b. (19)

The difference to the linear case is that w is no longer given ex-
plicitly. Also note that in the nonlinear setting, the optimization
problem corresponds to finding the flattest function in feature
space, not in input space.

2.3. Conditions for kernels

The question that arises now is, which functions k(x, x ′) corre-
spond to a dot product in some feature space F . The following
theorem characterizes these functions (defined on X ).

Theorem 2 (Mercer 1909). Suppose k ∈ L∞(X 2) such that
the integral operator Tk : L2(X ) → L2(X ),

Tk f (·) :=
∫
X

k(·, x) f (x)dµ(x) (20)

is positive (here µ denotes a measure on X with µ(X ) finite
and supp(µ) = X ). Let ψ j ∈ L2(X ) be the eigenfunction of Tk

associated with the eigenvalue λ j �= 0 and normalized such that
‖ψ j‖L2 = 1 and let ψ j denote its complex conjugate. Then

1. (λ j (T )) j ∈ �1.
2. k(x, x ′) = ∑

j∈N
λ jψ j (x)ψ j (x ′) holds for almost all (x, x ′),

where the series converges absolutely and uniformly for al-
most all (x, x ′).

Less formally speaking this theorem means that if∫
X×X

k(x, x ′) f (x) f (x ′) dxdx ′ ≥ 0 for all f ∈ L2(X ) (21)

holds we can write k(x, x ′) as a dot product in some feature
space. From this condition we can conclude some simple rules
for compositions of kernels, which then also satisfy Mercer’s

condition (Schölkopf, Burges and Smola 1999a). In the follow-
ing we will call such functions k admissible SV kernels.

Corollary 3 (Positive linear combinations of kernels). Denote
by k1, k2 admissible SV kernels and c1, c2 ≥ 0 then

k(x, x ′) := c1k1(x, x ′) + c2k2(x, x ′) (22)

is an admissible kernel. This follows directly from (21) by virtue
of the linearity of integrals.

More generally, one can show that the set of admissible ker-
nels forms a convex cone, closed in the topology of pointwise
convergence (Berg, Christensen and Ressel 1984).

Corollary 4 (Integrals of kernels). Let s(x, x ′) be a function
on X × X such that

k(x, x ′) :=
∫
X

s(x, z)s(x ′, z) dz (23)

exists. Then k is an admissible SV kernel.

This can be shown directly from (21) and (23) by rearranging the
order of integration. We now state a necessary and sufficient con-
dition for translation invariant kernels, i.e. k(x, x ′) := k(x − x ′)
as derived in Smola, Schölkopf and Müller (1998c).

Theorem 5 (Products of kernels). Denote by k1 and k2 admis-
sible SV kernels then

k(x, x ′) := k1(x, x ′)k2(x, x ′) (24)

is an admissible kernel.

This can be seen by an application of the “expansion part” of
Mercer’s theorem to the kernels k1 and k2 and observing that
each term in the double sum

∑
i, j λ1

i λ
2
jψ

1
i (x)ψ1

i (x ′)ψ2
j (x)ψ2

j (x ′)
gives rise to a positive coefficient when checking (21).

Theorem 6 (Smola, Schölkopf and Müller 1998c). A transla-
tion invariant kernel k(x, x ′) = k(x − x ′) is an admissible SV
kernels if and only if the Fourier transform

F[k](ω) = (2π )−
d
2

∫
X

e−i〈ω,x〉k(x)dx (25)

is nonnegative.

We will give a proof and some additional explanations to this
theorem in Section 7. It follows from interpolation theory
(Micchelli 1986) and the theory of regularization networks
(Girosi, Jones and Poggio 1993). For kernels of the dot-product
type, i.e. k(x, x ′) = k(〈x, x ′〉), there exist sufficient conditions
for being admissible.

Theorem 7 (Burges 1999). Any kernel of dot-product type
k(x, x ′) = k(〈x, x ′〉) has to satisfy

k(ξ ) ≥ 0, ∂ξ k(ξ ) ≥ 0 and ∂ξ k(ξ ) + ξ∂2
ξ k(ξ ) ≥ 0 (26)

for any ξ ≥ 0 in order to be an admissible SV kernel.
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Note that the conditions in Theorem 7 are only necessary but
not sufficient. The rules stated above can be useful tools for
practitioners both for checking whether a kernel is an admissible
SV kernel and for actually constructing new kernels. The general
case is given by the following theorem.

Theorem 8 (Schoenberg 1942). A kernel of dot-product type
k(x, x ′) = k(〈x, x ′〉) defined on an infinite dimensional Hilbert
space, with a power series expansion

k(t) =
∞∑

n=0

antn (27)

is admissible if and only if all an ≥ 0.

A slightly weaker condition applies for finite dimensional
spaces. For further details see Berg, Christensen and Ressel
(1984) and Smola, Óvári and Williamson (2001).

2.4. Examples

In Schölkopf, Smola and Müller (1998b) it has been shown, by
explicitly computing the mapping, that homogeneous polyno-
mial kernels k with p ∈ N and

k(x, x ′) = 〈x, x ′〉p (28)

are suitable SV kernels (cf. Poggio 1975). From this observation
one can conclude immediately (Boser, Guyon and Vapnik 1992,
Vapnik 1995) that kernels of the type

k(x, x ′) = (〈x, x ′〉 + c)p (29)

i.e. inhomogeneous polynomial kernels with p ∈ N, c ≥ 0 are
admissible, too: rewrite k as a sum of homogeneous kernels and
apply Corollary 3. Another kernel, that might seem appealing
due to its resemblance to Neural Networks is the hyperbolic
tangent kernel

k(x, x ′) = tanh(ϑ + κ〈x, x ′〉). (30)

By applying Theorem 8 one can check that this kernel does
not actually satisfy Mercer’s condition (Ovari 2000). Curiously,
the kernel has been successfully used in practice; cf. Scholkopf
(1997) for a discussion of the reasons.

Translation invariant kernels k(x, x ′) = k(x − x ′) are
quite widespread. It was shown in Aizerman, Braverman and
Rozonoér (1964), Micchelli (1986) and Boser, Guyon and Vap-
nik (1992) that

k(x, x ′) = e− ‖x−x ′‖2

2σ2 (31)

is an admissible SV kernel. Moreover one can show (Smola
1996, Vapnik, Golowich and Smola 1997) that (1X denotes the
indicator function on the set X and ⊗ the convolution operation)

k(x, x ′) = B2n+1(‖x − x ′‖) with Bk :=
k⊗

i=1

1[− 1
2 , 1

2 ] (32)

B-splines of order 2n + 1, defined by the 2n + 1 convolution of
the unit inverval, are also admissible. We shall postpone further
considerations to Section 7 where the connection to regulariza-
tion operators will be pointed out in more detail.

3. Cost functions

So far the SV algorithm for regression may seem rather strange
and hardly related to other existing methods of function esti-
mation (e.g. Huber 1981, Stone 1985, Härdle 1990, Hastie and
Tibshirani 1990, Wahba 1990). However, once cast into a more
standard mathematical notation, we will observe the connec-
tions to previous work. For the sake of simplicity we will, again,
only consider the linear case, as extensions to the nonlinear one
are straightforward by using the kernel method described in the
previous chapter.

3.1. The risk functional

Let us for a moment go back to the case of Section 1.2. There, we
had some training data X := {(x1, y1), . . . , (x�, y�)} ⊂ X × R.
We will assume now, that this training set has been drawn iid
(independent and identically distributed) from some probabil-
ity distribution P(x, y). Our goal will be to find a function f
minimizing the expected risk (cf. Vapnik 1982)

R[ f ] =
∫

c(x, y, f (x))d P(x, y) (33)

(c(x, y, f (x)) denotes a cost function determining how we will
penalize estimation errors) based on the empirical data X. Given
that we do not know the distribution P(x, y) we can only use
X for estimating a function f that minimizes R[ f ]. A possi-
ble approximation consists in replacing the integration by the
empirical estimate, to get the so called empirical risk functional

Remp[ f ] := 1

�

�∑
i=1

c(xi , yi , f (xi )). (34)

A first attempt would be to find the empirical risk minimizer
f0 := argmin f ∈H Remp[ f ] for some function class H . However,
if H is very rich, i.e. its “capacity” is very high, as for instance
when dealing with few data in very high-dimensional spaces,
this may not be a good idea, as it will lead to overfitting and thus
bad generalization properties. Hence one should add a capacity
control term, in the SV case ‖w‖2, which leads to the regularized
risk functional (Tikhonov and Arsenin 1977, Morozov 1984,
Vapnik 1982)

Rreg[ f ] := Remp[ f ] + λ

2
‖w‖2 (35)

where λ > 0 is a so called regularization constant. Many
algorithms like regularization networks (Girosi, Jones and
Poggio 1993) or neural networks with weight decay networks
(e.g. Bishop 1995) minimize an expression similar to (35).
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3.2. Maximum likelihood and density models

The standard setting in the SV case is, as already mentioned in
Section 1.2, the ε-insensitive loss

c(x, y, f (x)) = |y − f (x)|ε. (36)

It is straightforward to show that minimizing (35) with the par-
ticular loss function of (36) is equivalent to minimizing (3), the
only difference being that C = 1/(λ�).

Loss functions such like |y − f (x)|p
ε with p > 1 may not

be desirable, as the superlinear increase leads to a loss of the
robustness properties of the estimator (Huber 1981): in those
cases the derivative of the cost function grows without bound.
For p < 1, on the other hand, c becomes nonconvex.

For the case of c(x, y, f (x)) = (y − f (x))2 we recover the
least mean squares fit approach, which, unlike the standard SV
loss function, leads to a matrix inversion instead of a quadratic
programming problem.

The question is which cost function should be used in (35). On
the one hand we will want to avoid a very complicated function c
as this may lead to difficult optimization problems. On the other
hand one should use that particular cost function that suits the
problem best. Moreover, under the assumption that the samples
were generated by an underlying functional dependency plus
additive noise, i.e. yi = ftrue(xi ) + ξi with density p(ξ ), then the
optimal cost function in a maximum likelihood sense is

c(x, y, f (x)) = − log p(y − f (x)). (37)

This can be seen as follows. The likelihood of an estimate

X f := {(x1, f (x1)), . . . , (x�, f (x�))} (38)

for additive noise and iid data is

p(X f | X) =
�∏

i=1

p( f (xi ) | (xi , yi )) =
�∏

i=1

p(yi − f (xi )). (39)

Maximizing P(X f | X) is equivalent to minimizing − log P
(X f | X). By using (37) we get

− log P(X f | X) =
�∑

i=1

c(xi , yi , f (xi )). (40)

Table 1. Common loss functions and corresponding density models

Loss function Density model

ε-insensitive c(ξ ) = |ξ |ε p(ξ ) = 1
2(1+ε) exp(−|ξ |ε)

Laplacian c(ξ ) = |ξ | p(ξ ) = 1
2 exp(−|ξ |)

Gaussian c(ξ ) = 1
2 ξ 2 p(ξ ) = 1√

2π
exp

(
− ξ2

2

)

Huber’s robust loss c(ξ ) =
{

1
2σ

(ξ )2 if |ξ | ≤ σ

|ξ | − σ

2 otherwise
p(ξ ) ∝




exp
(

− ξ2

2σ

)
if |ξ | ≤ σ

exp
(

σ

2 − |ξ |
)

otherwise

Polynomial c(ξ ) = 1
p |ξ |p p(ξ ) = p

2�(1/p) exp(−|ξ |p)

Piecewise polynomial c(ξ ) =
{

1
pσ p−1 (ξ )p if |ξ | ≤ σ

|ξ | − σ
p−1

p otherwise
p(ξ ) ∝




exp
(

− ξ p

pσ p−1

)
if |ξ | ≤ σ

exp
(
σ

p−1
p − |ξ |

)
otherwise

However, the cost function resulting from this reasoning might
be nonconvex. In this case one would have to find a convex
proxy in order to deal with the situation efficiently (i.e. to find
an efficient implementation of the corresponding optimization
problem).

If, on the other hand, we are given a specific cost function from
a real world problem, one should try to find as close a proxy to
this cost function as possible, as it is the performance wrt. this
particular cost function that matters ultimately.

Table 1 contains an overview over some common density
models and the corresponding loss functions as defined by
(37).

The only requirement we will impose on c(x, y, f (x)) in the
following is that for fixed x and y we have convexity in f (x).
This requirement is made, as we want to ensure the existence and
uniqueness (for strict convexity) of a minimum of optimization
problems (Fletcher 1989).

3.3. Solving the equations

For the sake of simplicity we will additionally assume c to
be symmetric and to have (at most) two (for symmetry) dis-
continuities at ±ε, ε ≥ 0 in the first derivative, and to be
zero in the interval [−ε, ε]. All loss functions from Table 1
belong to this class. Hence c will take on the following
form.

c(x, y, f (x)) = c̃(|y − f (x)|ε) (41)

Note the similarity to Vapnik’s ε-insensitive loss. It is rather
straightforward to extend this special choice to more general
convex cost functions. For nonzero cost functions in the inter-
val [−ε, ε] use an additional pair of slack variables. Moreover
we might choose different cost functions c̃i , c̃∗

i and different
values of εi , ε∗

i for each sample. At the expense of additional
Lagrange multipliers in the dual formulation additional discon-
tinuities also can be taken care of. Analogously to (3) we arrive at
a convex minimization problem (Smola and Schölkopf 1998a).
To simplify notation we will stick to the one of (3) and use C
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instead of normalizing by λ and �.

minimize
1

2
‖w‖2 + C

�∑
i=1

(c̃(ξi ) + c̃(ξ ∗
i ))

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(42)

Again, by standard Lagrange multiplier techniques, exactly in
the same manner as in the |·|ε case, one can compute the dual op-
timization problem (the main difference is that the slack variable
terms c̃(ξ (∗)

i ) now have nonvanishing derivatives). We will omit
the indices i and ∗, where applicable to avoid tedious notation.
This yields

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

+
�∑

i=1

yi (αi − α∗
i ) − ε(αi + α∗

i )

+C
�∑

i=1

T (ξi ) + T (ξ ∗
i )

where




w =
�∑

i=1

(αi − α∗
i )xi

T (ξ ) := c̃(ξ ) − ξ∂ξ c̃(ξ )

(43)

subject to




�∑
i=1

(αi − α∗
i ) = 0

α ≤ C∂ξ c̃(ξ )

ξ = inf{ξ | C∂ξ c̃ ≥ α}
α, ξ ≥ 0

3.4. Examples

Let us consider the examples of Table 1. We will show explicitly
for two examples how (43) can be further simplified to bring it
into a form that is practically useful. In the ε-insensitive case,
i.e. c̃(ξ ) = |ξ | we get

T (ξ ) = ξ − ξ · 1 = 0. (44)

Morover one can conclude from ∂ξ c̃(ξ ) = 1 that

ξ = inf{ξ | C ≥ α} = 0 and α ∈ [0, C]. (45)

For the case of piecewise polynomial loss we have to distinguish
two different cases: ξ ≤ σ and ξ > σ . In the first case we get

T (ξ ) = 1

pσ p−1
ξ p − 1

σ p−1
ξ p = − p − 1

p
σ 1−pξ p (46)

and ξ = inf{ξ | Cσ 1−pξ p−1 ≥ α} = σC− 1
p−1 α

1
p−1 and thus

T (ξ ) = − p − 1

p
σC− p

p−1 α
p

p−1 . (47)

Table 2. Terms of the convex optimization problem depending on the
choice of the loss function

ε α CT (α)

ε-insensitive ε �= 0 α ∈ [0, C] 0
Laplacian ε = 0 α ∈ [0, C] 0
Gaussian ε = 0 α ∈ [0, ∞) − 1

2 C−1α2

Huber’s ε = 0 α ∈ [0, C] − 1
2 σC−1α2

robust loss

Polynomial ε = 0 α ∈ [0, ∞) − p−1
p C− 1

p−1 α
p

p−1

Piecewise ε = 0 α ∈ [0, C] − p−1
p σC− 1

p−1 α
p

p−1

polynomial

In the second case (ξ ≥ σ ) we have

T (ξ ) = ξ − σ
p − 1

p
− ξ = −σ

p − 1

p
(48)

and ξ = inf{ξ | C ≥ α} = σ , which, in turn yields α ∈ [0, C].
Combining both cases we have

α ∈ [0, C] and T (α) = − p − 1

p
σC− p

p−1 α
p

p−1 . (49)

Table 2 contains a summary of the various conditions on α and
formulas for T (α) (strictly speaking T (ξ (α))) for different cost
functions.5 Note that the maximum slope of c̃ determines the
region of feasibility of α, i.e. s := supξ∈R+ ∂ξ c̃(ξ ) < ∞ leads to
compact intervals [0, Cs] for α. This means that the influence
of a single pattern is bounded, leading to robust estimators
(Huber 1972). One can also observe experimentally that the
performance of a SV machine depends significantly on the cost
function used (Müller et al. 1997, Smola, Schölkopf and Müller
1998b)

A cautionary remark is necessary regarding the use of cost
functions other than the ε-insensitive one. Unless ε �= 0 we
will lose the advantage of a sparse decomposition. This may
be acceptable in the case of few data, but will render the pre-
diction step extremely slow otherwise. Hence one will have to
trade off a potential loss in prediction accuracy with faster pre-
dictions. Note, however, that also a reduced set algorithm like
in Burges (1996), Burges and Schölkopf (1997) and Schölkopf
et al. (1999b) or sparse decomposition techniques (Smola and
Schölkopf 2000) could be applied to address this issue. In a
Bayesian setting, Tipping (2000) has recently shown how an L2

cost function can be used without sacrificing sparsity.

4. The bigger picture

Before delving into algorithmic details of the implementation
let us briefly review the basic properties of the SV algorithm
for regression as described so far. Figure 2 contains a graphical
overview over the different steps in the regression stage.

The input pattern (for which a prediction is to be made) is
mapped into feature space by a map �. Then dot products
are computed with the images of the training patterns under
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Fig. 2. Architecture of a regression machine constructed by the SV
algorithm

the map �. This corresponds to evaluating kernel functions
k(xi , x). Finally the dot products are added up using the weights
νi = αi − α∗

i . This, plus the constant term b yields the final
prediction output. The process described here is very similar to
regression in a neural network, with the difference, that in the
SV case the weights in the input layer are a subset of the training
patterns.

Figure 3 demonstrates how the SV algorithm chooses the
flattest function among those approximating the original data
with a given precision. Although requiring flatness only in
feature space, one can observe that the functions also are
very flat in input space. This is due to the fact, that ker-
nels can be associated with flatness properties via regular-

Fig. 3. Left to right: approximation of the function sinc x with precisions ε = 0.1, 0.2, and 0.5. The solid top and the bottom lines indicate the size
of the ε-tube, the dotted line in between is the regression

Fig. 4. Left to right: regression (solid line), datapoints (small dots) and SVs (big dots) for an approximation with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs

ization operators. This will be explained in more detail in
Section 7.

Finally Fig. 4 shows the relation between approximation qual-
ity and sparsity of representation in the SV case. The lower the
precision required for approximating the original data, the fewer
SVs are needed to encode that. The non-SVs are redundant, i.e.
even without these patterns in the training set, the SV machine
would have constructed exactly the same function f . One might
think that this could be an efficient way of data compression,
namely by storing only the support patterns, from which the es-
timate can be reconstructed completely. However, this simple
analogy turns out to fail in the case of high-dimensional data,
and even more drastically in the presence of noise. In Vapnik,
Golowich and Smola (1997) one can see that even for moderate
approximation quality, the number of SVs can be considerably
high, yielding rates worse than the Nyquist rate (Nyquist 1928,
Shannon 1948).

5. Optimization algorithms

While there has been a large number of implementations of SV
algorithms in the past years, we focus on a few algorithms which
will be presented in greater detail. This selection is somewhat
biased, as it contains these algorithms the authors are most fa-
miliar with. However, we think that this overview contains some
of the most effective ones and will be useful for practitioners
who would like to actually code a SV machine by themselves.
But before doing so we will briefly cover major optimization
packages and strategies.
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5.1. Implementations

Most commercially available packages for quadratic program-
ming can also be used to train SV machines. These are usually
numerically very stable general purpose codes, with special en-
hancements for large sparse systems. While the latter is a feature
that is not needed at all in SV problems (there the dot product
matrix is dense and huge) they still can be used with good suc-
cess.6

OSL: This package was written by IBM-Corporation (1992). It
uses a two phase algorithm. The first step consists of solving
a linear approximation of the QP problem by the simplex al-
gorithm (Dantzig 1962). Next a related very simple QP prob-
lem is dealt with. When successive approximations are close
enough together, the second subalgorithm, which permits a
quadratic objective and converges very rapidly from a good
starting value, is used. Recently an interior point algorithm
was added to the software suite.

CPLEX by CPLEX-Optimization-Inc. (1994) uses a primal-dual
logarithmic barrier algorithm (Megiddo 1989) instead with
predictor-corrector step (see e.g. Lustig, Marsten and Shanno
1992, Mehrotra and Sun 1992).

MINOS by the Stanford Optimization Laboratory (Murtagh and
Saunders 1983) uses a reduced gradient algorithm in con-
junction with a quasi-Newton algorithm. The constraints are
handled by an active set strategy. Feasibility is maintained
throughout the process. On the active constraint manifold, a
quasi-Newton approximation is used.

MATLAB: Until recently the matlab QP optimizer delivered only
agreeable, although below average performance on classifi-
cation tasks and was not all too useful for regression tasks
(for problems much larger than 100 samples) due to the fact
that one is effectively dealing with an optimization prob-
lem of size 2� where at least half of the eigenvalues of the
Hessian vanish. These problems seem to have been addressed
in version 5.3 / R11. Matlab now uses interior point codes.

LOQO by Vanderbei (1994) is another example of an interior
point code. Section 5.3 discusses the underlying strategies in
detail and shows how they can be adapted to SV algorithms.

Maximum margin perceptron by Kowalczyk (2000) is an algo-
rithm specifically tailored to SVs. Unlike most other tech-
niques it works directly in primal space and thus does not
have to take the equality constraint on the Lagrange multipli-
ers into account explicitly.

Iterative free set methods The algorithm by Kaufman (Bunch,
Kaufman and Parlett 1976, Bunch and Kaufman 1977, 1980,
Drucker et al. 1997, Kaufman 1999), uses such a technique
starting with all variables on the boundary and adding them as
the Karush Kuhn Tucker conditions become more violated.
This approach has the advantage of not having to compute
the full dot product matrix from the beginning. Instead it is
evaluated on the fly, yielding a performance improvement
in comparison to tackling the whole optimization problem
at once. However, also other algorithms can be modified by

subset selection techniques (see Section 5.5) to address this
problem.

5.2. Basic notions

Most algorithms rely on results from the duality theory in convex
optimization. Although we already happened to mention some
basic ideas in Section 1.2 we will, for the sake of convenience,
briefly review without proof the core results. These are needed
in particular to derive an interior point algorithm. For details and
proofs (see e.g. Fletcher 1989).

Uniqueness: Every convex constrained optimization problem
has a unique minimum. If the problem is strictly convex then
the solution is unique. This means that SVs are not plagued
with the problem of local minima as Neural Networks are.7

Lagrange function: The Lagrange function is given by the pri-
mal objective function minus the sum of all products between
constraints and corresponding Lagrange multipliers (cf. e.g.
Fletcher 1989, Bertsekas 1995). Optimization can be seen
as minimzation of the Lagrangian wrt. the primal variables
and simultaneous maximization wrt. the Lagrange multipli-
ers, i.e. dual variables. It has a saddle point at the solution.
Usually the Lagrange function is only a theoretical device to
derive the dual objective function (cf. Section 1.2).

Dual objective function: It is derived by minimizing the
Lagrange function with respect to the primal variables and
subsequent elimination of the latter. Hence it can be written
solely in terms of the dual variables.

Duality gap: For both feasible primal and dual variables the pri-
mal objective function (of a convex minimization problem)
is always greater or equal than the dual objective function.
Since SVMs have only linear constraints the constraint qual-
ifications of the strong duality theorem (Bazaraa, Sherali and
Shetty 1993, Theorem 6.2.4) are satisfied and it follows that
gap vanishes at optimality. Thus the duality gap is a measure
how close (in terms of the objective function) the current set
of variables is to the solution.

Karush–Kuhn–Tucker (KKT) conditions: A set of primal and
dual variables that is both feasible and satisfies the KKT
conditions is the solution (i.e. constraint · dual variable = 0).
The sum of the violated KKT terms determines exactly the
size of the duality gap (that is, we simply compute the
constraint · Lagrangemultiplier part as done in (55)). This
allows us to compute the latter quite easily.
A simple intuition is that for violated constraints the dual
variable could be increased arbitrarily, thus rendering the
Lagrange function arbitrarily large. This, however, is in con-
tradition to the saddlepoint property.

5.3. Interior point algorithms

In a nutshell the idea of an interior point algorithm is to com-
pute the dual of the optimization problem (in our case the dual
dual of Rreg[ f ]) and solve both primal and dual simultaneously.
This is done by only gradually enforcing the KKT conditions
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to iteratively find a feasible solution and to use the duality
gap between primal and dual objective function to determine
the quality of the current set of variables. The special flavour
of algorithm we will describe is primal-dual path-following
(Vanderbei 1994).

In order to avoid tedious notation we will consider the slightly
more general problem and specialize the result to the SVM later.
It is understood that unless stated otherwise, variables like α

denote vectors and αi denotes its i-th component.

minimize
1

2
q(α) + 〈c, α〉

subject to Aα = b and l ≤ α ≤ u
(50)

with c, α, l, u ∈ R
n , A ∈ R

n·m , b ∈ R
m , the inequalities be-

tween vectors holding componentwise and q(α) being a convex
function of α. Now we will add slack variables to get rid of all
inequalities but the positivity constraints. This yields:

minimize
1

2
q(α) + 〈c, α〉

subject to Aα = b, α − g = l, α + t = u,

g, t ≥ 0, α free

(51)

The dual of (51) is

maximize
1

2
(q(α) − 〈�∂q(α), α)〉 + 〈b, y〉 + 〈l, z〉 − 〈u, s〉

subject to
1

2
�∂q(α) + c − (Ay)� + s = z, s, z ≥ 0, y free

(52)

Moreover we get the KKT conditions, namely

gi zi = 0 and si ti = 0 for all i ∈ [1 . . . n]. (53)

A necessary and sufficient condition for the optimal solution is
that the primal/dual variables satisfy both the feasibility condi-
tions of (51) and (52) and the KKT conditions (53). We pro-
ceed to solve (51)–(53) iteratively. The details can be found in
Appendix A.

5.4. Useful tricks

Before proceeding to further algorithms for quadratic optimiza-
tion let us briefly mention some useful tricks that can be applied
to all algorithms described subsequently and may have signif-
icant impact despite their simplicity. They are in part derived
from ideas of the interior-point approach.

Training with different regularization parameters: For several
reasons (model selection, controlling the number of support
vectors, etc.) it may happen that one has to train a SV ma-
chine with different regularization parameters C , but other-
wise rather identical settings. If the parameters Cnew = τCold

is not too different it is advantageous to use the rescaled val-
ues of the Lagrange multipliers (i.e. αi , α

∗
i ) as a starting point

for the new optimization problem. Rescaling is necessary to
satisfy the modified constraints. One gets

αnew = ταold and likewise bnew = τbold. (54)

Assuming that the (dominant) convex part q(α) of the pri-
mal objective is quadratic, the q scales with τ 2 where as the
linear part scales with τ . However, since the linear term dom-
inates the objective function, the rescaled values are still a
better starting point than α = 0. In practice a speedup of
approximately 95% of the overall training time can be ob-
served when using the sequential minimization algorithm,
cf. (Smola 1998). A similar reasoning can be applied when
retraining with the same regularization parameter but differ-
ent (yet similar) width parameters of the kernel function. See
Cristianini, Campbell and Shawe-Taylor (1998) for details
thereon in a different context.

Monitoring convergence via the feasibility gap: In the case of
both primal and dual feasible variables the following con-
nection between primal and dual objective function holds:

Dual Obj. = Primal Obj. −
∑

i

(gi zi + si ti ) (55)

This can be seen immediately by the construction of the
Lagrange function. In Regression Estimation (with the ε-
insensitive loss function) one obtains for

∑
i gi zi + si ti

∑
i




+ max(0, f (xi ) − (yi + εi ))(C − α∗
i )

− min(0, f (xi ) − (yi + εi ))α∗
i

+ max(0, (yi − ε∗
i ) − f (xi ))(C − αi )

− min(0, (yi − ε∗
i ) − f (xi ))αi


 . (56)

Thus convergence with respect to the point of the solution
can be expressed in terms of the duality gap. An effective
stopping rule is to require∑

i gi zi + si ti
|Primal Objective| + 1

≤ εtol (57)

for some precision εtol. This condition is much in the spirit of
primal dual interior point path following algorithms, where
convergence is measured in terms of the number of significant
figures (which would be the decimal logarithm of (57)), a
convention that will also be adopted in the subsequent parts
of this exposition.

5.5. Subset selection algorithms

The convex programming algorithms described so far can be
used directly on moderately sized (up to 3000) samples datasets
without any further modifications. On large datasets, however, it
is difficult, due to memory and cpu limitations, to compute the
dot product matrix k(xi , x j ) and keep it in memory. A simple
calculation shows that for instance storing the dot product matrix
of the NIST OCR database (60.000 samples) at single precision
would consume 0.7 GBytes. A Cholesky decomposition thereof,
which would additionally require roughly the same amount of
memory and 64 Teraflops (counting multiplies and adds sepa-
rately), seems unrealistic, at least at current processor speeds.

A first solution, which was introduced in Vapnik (1982) relies
on the observation that the solution can be reconstructed from
the SVs alone. Hence, if we knew the SV set beforehand, and
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it fitted into memory, then we could directly solve the reduced
problem. The catch is that we do not know the SV set before
solving the problem. The solution is to start with an arbitrary
subset, a first chunk that fits into memory, train the SV algorithm
on it, keep the SVs and fill the chunk up with data the current
estimator would make errors on (i.e. data lying outside the ε-
tube of the current regression). Then retrain the system and keep
on iterating until after training all KKT-conditions are satisfied.

The basic chunking algorithm just postponed the underlying
problem of dealing with large datasets whose dot-product matrix
cannot be kept in memory: it will occur for larger training set
sizes than originally, but it is not completely avoided. Hence
the solution is Osuna, Freund and Girosi (1997) to use only a
subset of the variables as a working set and optimize the problem
with respect to them while freezing the other variables. This
method is described in detail in Osuna, Freund and Girosi (1997),
Joachims (1999) and Saunders et al. (1998) for the case of pattern
recognition.8

An adaptation of these techniques to the case of regression
with convex cost functions can be found in Appendix B. The
basic structure of the method is described by Algorithm 1.

Algorithm 1.: Basic structure of a working set algorithm

Initialize αi , α
∗
i = 0

Choose arbitrary working set Sw

repeat
Compute coupling terms (linear and constant) for Sw (see
Appendix A.3)
Solve reduced optimization problem
Choose new Sw from variables αi , α

∗
i not satisfying the

KKT conditions
until working set Sw = ∅

5.6. Sequential minimal optimization

Recently an algorithm—Sequential Minimal Optimization
(SMO)—was proposed (Platt 1999) that puts chunking to the
extreme by iteratively selecting subsets only of size 2 and op-
timizing the target function with respect to them. It has been
reported to have good convergence properties and it is easily
implemented. The key point is that for a working set of 2 the
optimization subproblem can be solved analytically without ex-
plicitly invoking a quadratic optimizer.

While readily derived for pattern recognition by Platt (1999),
one simply has to mimick the original reasoning to obtain an
extension to Regression Estimation. This is what will be done
in Appendix C (the pseudocode can be found in Smola and
Schölkopf (1998b)). The modifications consist of a pattern de-
pendent regularization, convergence control via the number of
significant figures, and a modified system of equations to solve
the optimization problem in two variables for regression analyt-
ically.

Note that the reasoning only applies to SV regression with
the ε insensitive loss function—for most other convex cost func-

tions an explicit solution of the restricted quadratic programming
problem is impossible. Yet, one could derive an analogous non-
quadratic convex optimization problem for general cost func-
tions but at the expense of having to solve it numerically.

The exposition proceeds as follows: first one has to derive
the (modified) boundary conditions for the constrained 2 indices
(i, j) subproblem in regression, next one can proceed to solve the
optimization problem analytically, and finally one has to check,
which part of the selection rules have to be modified to make
the approach work for regression. Since most of the content is
fairly technical it has been relegated to Appendix C.

The main difference in implementations of SMO for regres-
sion can be found in the way the constant offset b is determined
(Keerthi et al. 1999) and which criterion is used to select a new
set of variables. We present one such strategy in Appendix C.3.
However, since selection strategies are the focus of current re-
search we recommend that readers interested in implementing
the algorithm make sure they are aware of the most recent de-
velopments in this area.

Finally, we note that just as we presently describe a generaliza-
tion of SMO to regression estimation, other learning problems
can also benefit from the underlying ideas. Recently, a SMO
algorithm for training novelty detection systems (i.e. one-class
classification) has been proposed (Schölkopf et al. 2001).

6. Variations on a theme

There exists a large number of algorithmic modifications of the
SV algorithm, to make it suitable for specific settings (inverse
problems, semiparametric settings), different ways of measuring
capacity and reductions to linear programming (convex com-
binations) and different ways of controlling capacity. We will
mention some of the more popular ones.

6.1. Convex combinations and �1-norms

All the algorithms presented so far involved convex, and at
best, quadratic programming. Yet one might think of reducing
the problem to a case where linear programming techniques
can be applied. This can be done in a straightforward fashion
(Mangasarian 1965, 1968, Weston et al. 1999, Smola, Schölkopf
and Rätsch 1999) for both SV pattern recognition and regression.
The key is to replace (35) by

Rreg[ f ] := Remp[ f ] + λ‖α‖1 (58)

where ‖α‖1 denotes the �1 norm in coefficient space. Hence one
uses the SV kernel expansion (11)

f (x) =
�∑

i=1

αi k(xi , x) + b

with a different way of controlling capacity by minimizing

Rreg[ f ] = 1

�

�∑
i=1

c(xi , yi , f (xi )) + λ

�∑
i=1

|αi |. (59)
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For the ε-insensitive loss function this leads to a linear program-
ming problem. In the other cases, however, the problem still stays
a quadratic or general convex one, and therefore may not yield
the desired computational advantage. Therefore we will limit
ourselves to the derivation of the linear programming problem
in the case of | · |ε cost function. Reformulating (59) yields

minimize
�∑

i=1

(αi + α∗
i ) + C

�∑
i=1

(ξi + ξ ∗
i )

subject to




yi −
�∑

j=1

(α j − α∗
j )k(x j , xi ) − b ≤ ε + ξi

�∑
j=1

(α j − α∗
j )k(x j , xi ) + b − yi ≤ ε + ξ ∗

i

αi , α
∗
i , ξi , ξ

∗
i ≥ 0

Unlike in the classical SV case, the transformation into its dual
does not give any improvement in the structure of the optimiza-
tion problem. Hence it is best to minimize Rreg[ f ] directly, which
can be achieved by a linear optimizer, (e.g. Dantzig 1962, Lustig,
Marsten and Shanno 1990, Vanderbei 1997).

In (Weston et al. 1999) a similar variant of the linear SV ap-
proach is used to estimate densities on a line. One can show
(Smola et al. 2000) that one may obtain bounds on the gener-
alization error which exhibit even better rates (in terms of the
entropy numbers) than the classical SV case (Williamson, Smola
and Schölkopf 1998).

6.2. Automatic tuning of the insensitivity tube

Besides standard model selection issues, i.e. how to specify the
trade-off between empirical error and model capacity there also
exists the problem of an optimal choice of a cost function. In
particular, for the ε-insensitive cost function we still have the
problem of choosing an adequate parameter ε in order to achieve
good performance with the SV machine.

Smola et al. (1998a) show the existence of a linear depen-
dency between the noise level and the optimal ε-parameter for
SV regression. However, this would require that we know some-
thing about the noise model. This knowledge is not available in
general. Therefore, albeit providing theoretical insight, this find-
ing by itself is not particularly useful in practice. Moreover, if we
really knew the noise model, we most likely would not choose
the ε-insensitive cost function but the corresponding maximum
likelihood loss function instead.

There exists, however, a method to construct SV machines
that automatically adjust ε and moreover also, at least asymptot-
ically, have a predetermined fraction of sampling points as SVs
(Schölkopf et al. 2000). We modify (35) such that ε becomes a
variable of the optimization problem, including an extra term in
the primal objective function which attempts to minimize ε. In
other words

minimize Rν[ f ] := Remp[ f ] + λ

2
‖w‖2 + νε (60)

for some ν > 0. Hence (42) becomes (again carrying out the
usual transformation between λ, � and C)

minimize
1

2
‖w‖2 + C

(
�∑

i=1

(c̃(ξi ) + c̃(ξ ∗
i )) + �νε

)
(61)

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

We consider the standard | · |ε loss function. Computing the dual
of (62) yields

maximize




−1

2

�∑
i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

+
�∑

i=1

yi (αi − α∗
i )

(62)

subject to




�∑
i=1

(αi − α∗
i ) = 0

�∑
i=1

(αi + α∗
i ) ≤ Cν�

αi , α
∗
i ∈ [0, C]

Note that the optimization problem is thus very similar to the ε-
SV one: the target function is even simpler (it is homogeneous),
but there is an additional constraint. For information on how this
affects the implementation (cf. Chang and Lin 2001).

Besides having the advantage of being able to automatically
determine ε (63) also has another advantage. It can be used to
pre–specify the number of SVs:

Theorem 9 (Schölkopf et al. 2000).

1. ν is an upper bound on the fraction of errors.
2. ν is a lower bound on the fraction of SVs.
3. Suppose the data has been generated iid from a distribution

p(x, y) = p(x)p(y | x) with a continuous conditional distri-
bution p(y | x). With probability 1, asymptotically, ν equals
the fraction of SVs and the fraction of errors.

Essentially, ν-SV regression improves upon ε-SV regression by
allowing the tube width to adapt automatically to the data. What
is kept fixed up to this point, however, is the shape of the tube.
One can, however, go one step further and use parametric tube
models with non-constant width, leading to almost identical op-
timization problems (Schölkopf et al. 2000).

Combining ν-SV regression with results on the asymptotical
optimal choice of ε for a given noise model (Smola et al. 1998a)
leads to a guideline how to adjust ν provided the class of noise
models (e.g. Gaussian or Laplacian) is known.

Remark 10 (Optimal choice of ν). Denote by p a probability
density with unit variance, and by P a famliy of noise models
generated from p by P := {p|p = 1

σ
p( y

σ
)}. Moreover assume
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Fig. 5. Optimal ν and ε for various degrees of polynomial additive
noise

that the data were drawn iid from p(x, y) = p(x)p(y − f (x))
with p(y − f (x)) continuous. Then under the assumption of
uniform convergence, the asymptotically optimal value of ν is

ν = 1 −
∫ ε

−ε

p(t) dt

where ε := argmin
τ

(p(−τ ) + p(τ ))−2

(
1 −

∫ τ

−τ

p(t) dt

)
(63)

For polynomial noise models, i.e. densities of type exp(−|ξ |p)
one may compute the corresponding (asymptotically) optimal
values of ν. They are given in Fig. 5. For further details see
(Schölkopf et al. 2000, Smola 1998); an experimental validation
has been given by Chalimourda, Schölkopf and Smola (2000).

We conclude this section by noting that ν-SV regression is
related to the idea of trimmed estimators. One can show that the
regression is not influenced if we perturb points lying outside the
tube. Thus, the regression is essentially computed by discarding
a certain fraction of outliers, specified by ν, and computing the
regression estimate from the remaining points (Schölkopf et al.
2000).

7. Regularization

So far we were not concerned about the specific properties of
the map � into feature space and used it only as a convenient
trick to construct nonlinear regression functions. In some cases
the map was just given implicitly by the kernel, hence the map
itself and many of its properties have been neglected. A deeper
understanding of the kernel map would also be useful to choose
appropriate kernels for a specific task (e.g. by incorporating
prior knowledge (Schölkopf et al. 1998a)). Finally the feature
map seems to defy the curse of dimensionality (Bellman 1961)

by making problems seemingly easier yet reliable via a map into
some even higher dimensional space.

In this section we focus on the connections between SV
methods and previous techniques like Regularization Networks
(Girosi, Jones and Poggio 1993).9 In particular we will show
that SV machines are essentially Regularization Networks (RN)
with a clever choice of cost functions and that the kernels are
Green’s function of the corresponding regularization operators.
For a full exposition of the subject the reader is referred to Smola,
Schölkopf and Müller (1998c).

7.1. Regularization networks

Let us briefly review the basic concepts of RNs. As in (35)
we minimize a regularized risk functional. However, rather than
enforcing flatness in feature space we try to optimize some
smoothness criterion for the function in input space. Thus we
get

Rreg[ f ] := Remp[ f ] + λ

2
‖P f ‖2. (64)

Here P denotes a regularization operator in the sense of
Tikhonov and Arsenin (1977), i.e. P is a positive semidefinite
operator mapping from the Hilbert space H of functions f under
consideration to a dot product space D such that the expression
〈P f · Pg〉 is well defined for f, g ∈ H . For instance by choos-
ing a suitable operator that penalizes large variations of f one
can reduce the well–known overfitting effect. Another possible
setting also might be an operator P mapping from L2(Rn) into
some Reproducing Kernel Hilbert Space (RKHS) (Aronszajn,
1950, Kimeldorf and Wahba 1971, Saitoh 1988, Schölkopf 1997,
Girosi 1998).

Using an expansion of f in terms of some symmetric function
k(xi , x j ) (note here, that k need not fulfill Mercer’s condition
and can be chosen arbitrarily since it is not used to define a
regularization term),

f (x) =
�∑

i=1

αi k(xi , x) + b, (65)

and the ε-insensitive cost function, this leads to a quadratic pro-
gramming problem similar to the one for SVs. Using

Di j := 〈(Pk)(xi , .) · (Pk)(x j , .)〉 (66)

we get α = D−1 K (β − β∗), with β, β∗ being the solution of

minimize
1

2
(β∗ − β)�KD−1 K (β∗ − β)

−(β∗ − β)�y − ε

�∑
i=1

(βi + β∗
i ) (67)

subject to
�∑

i=1

(βi − β∗
i ) = 0 and βi , β

∗
i ∈ [0, C].
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Unfortunately, this setting of the problem does not preserve spar-
sity in terms of the coefficients, as a potentially sparse decom-
position in terms of βi and β∗

i is spoiled by D−1 K , which is not
in general diagonal.

7.2. Green’s functions

Comparing (10) with (67) leads to the question whether and un-
der which condition the two methods might be equivalent and
therefore also under which conditions regularization networks
might lead to sparse decompositions, i.e. only a few of the ex-
pansion coefficients αi in f would differ from zero. A sufficient
condition is D = K and thus KD−1 K = K (if K does not have
full rank we only need that KD−1 K = K holds on the image of
K ):

k(xi , x j ) = 〈(Pk)(xi , .) · (Pk)(x j , .)〉 (68)

Our goal now is to solve the following two problems:

1. Given a regularization operator P , find a kernel k such that a
SV machine using k will not only enforce flatness in feature
space, but also correspond to minimizing a regularized risk
functional with P as regularizer.

2. Given an SV kernel k, find a regularization operator P such
that a SV machine using this kernel can be viewed as a Reg-
ularization Network using P .

These two problems can be solved by employing the concept
of Green’s functions as described in Girosi, Jones and Poggio
(1993). These functions were introduced for the purpose of solv-
ing differential equations. In our context it is sufficient to know
that the Green’s functions Gxi (x) of P∗ P satisfy

(P∗ PGxi )(x) = δxi (x). (69)

Here, δxi (x) is the δ-distribution (not to be confused with the Kro-
necker symbol δi j ) which has the property that 〈 f ·δxi 〉 = f (xi ).
The relationship between kernels and regularization operators is
formalized in the following proposition:

Proposition 1 (Smola, Schölkopf and Müller 1998b). Let P
be a regularization operator, and G be the Green’s function of
P∗ P. Then G is a Mercer Kernel such that D = K . SV machines
using G minimize risk functional (64) with P as regularization
operator.

In the following we will exploit this relationship in both ways:
to compute Green’s functions for a given regularization operator
P and to infer the regularizer, given a kernel k.

7.3. Translation invariant kernels

Let us now more specifically consider regularization operators
P̂ that may be written as multiplications in Fourier space

〈P f · Pg〉 = 1

(2π )n/2

∫
�

˜f (ω)g̃(ω)

P(ω)
dω (70)

with ˜f (ω) denoting the Fourier transform of f (x), and P(ω) =
P(−ω) real valued, nonnegative and converging to 0 for |ω| →
∞ and � := supp[P(ω)]. Small values of P(ω) correspond to
a strong attenuation of the corresponding frequencies. Hence
small values of P(ω) for large ω are desirable since high fre-
quency components of ˜f correspond to rapid changes in f .
P(ω) describes the filter properties of P∗ P . Note that no atten-
uation takes place for P(ω) = 0 as these frequencies have been
excluded from the integration domain.

For regularization operators defined in Fourier Space by (70)
one can show by exploiting P(ω) = P(−ω) = P(ω) that

G(xi , x) = 1

(2π )n/2

∫
Rn

eiω(xi −x) P(ω) dω (71)

is a corresponding Green’s function satisfying translational in-
variance, i.e.

G(xi , x j ) = G(xi − x j ) and G̃(ω) = P(ω). (72)

This provides us with an efficient tool for analyzing SV kernels
and the types of capacity control they exhibit. In fact the above
is a special case of Bochner’s theorem (Bochner 1959) stating
that the Fourier transform of a positive measure constitutes a
positive Hilbert Schmidt kernel.

Example 2 (Gaussian kernels). Following the exposition of
Yuille and Grzywacz (1988) as described in Girosi, Jones and
Poggio (1993), one can see that for

‖P f ‖2 =
∫

dx
∑

m

σ 2m

m!2m
(Ôm f (x))2 (73)

with Ô2m = �m and Ô2m+1 = ∇�m , � being the Laplacian
and ∇ the Gradient operator, we get Gaussians kernels (31).
Moreover, we can provide an equivalent representation of P
in terms of its Fourier properties, i.e. P(ω) = e− σ2‖ω‖2

2 up to a
multiplicative constant.

Training an SV machine with Gaussian RBF kernels (Schölkopf
et al. 1997) corresponds to minimizing the specific cost func-
tion with a regularization operator of type (73). Recall that (73)
means that all derivatives of f are penalized (we have a pseudod-
ifferential operator) to obtain a very smooth estimate. This also
explains the good performance of SV machines in this case, as it
is by no means obvious that choosing a flat function in some high
dimensional space will correspond to a simple function in low
dimensional space, as shown in Smola, Schölkopf and Müller
(1998c) for Dirichlet kernels.

The question that arises now is which kernel to choose. Let
us think about two extreme situations.

1. Suppose we already knew the shape of the power spectrum
Pow(ω) of the function we would like to estimate. In this case
we choose k such that k̃ matches the power spectrum (Smola
1998).

2. If we happen to know very little about the given data a gen-
eral smoothness assumption is a reasonable choice. Hence
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we might want to choose a Gaussian kernel. If computing
time is important one might moreover consider kernels with
compact support, e.g. using the Bq–spline kernels (cf. (32)).
This choice will cause many matrix elements ki j = k(xi −x j )
to vanish.

The usual scenario will be in between the two extreme cases and
we will have some limited prior knowledge available. For more
information on using prior knowledge for choosing kernels (see
Schölkopf et al. 1998a).

7.4. Capacity control

All the reasoning so far was based on the assumption that there
exist ways to determine model parameters like the regularization
constant λ or length scales σ of rbf–kernels. The model selec-
tion issue itself would easily double the length of this review
and moreover it is an area of active and rapidly moving research.
Therefore we limit ourselves to a presentation of the basic con-
cepts and refer the interested reader to the original publications.

It is important to keep in mind that there exist several fun-
damentally different approaches such as Minimum Description
Length (cf. e.g. Rissanen 1978, Li and Vitányi 1993) which is
based on the idea that the simplicity of an estimate, and therefore
also its plausibility is based on the information (number of bits)
needed to encode it such that it can be reconstructed.

Bayesian estimation, on the other hand, considers the pos-
terior probability of an estimate, given the observations X =
{(x1, y1), . . . (x�, y�)}, an observation noise model, and a prior
probability distribution p( f ) over the space of estimates
(parameters). It is given by Bayes Rule p( f | X )p(X ) =
p(X | f )p( f ). Since p(X ) does not depend on f , one can maxi-
mize p(X | f )p( f ) to obtain the so-called MAP estimate.10 As
a rule of thumb, to translate regularized risk functionals into
Bayesian MAP estimation schemes, all one has to do is to con-
sider exp(−Rreg[ f ]) = p( f | X ). For a more detailed discussion
(see e.g. Kimeldorf and Wahba 1970, MacKay 1991, Neal 1996,
Rasmussen 1996, Williams 1998).

A simple yet powerful way of model selection is cross valida-
tion. This is based on the idea that the expectation of the error
on a subset of the training sample not used during training is
identical to the expected error itself. There exist several strate-
gies such as 10-fold crossvalidation, leave-one out error (�-fold
crossvalidation), bootstrap and derived algorithms to estimate
the crossvalidation error itself (see e.g. Stone 1974, Wahba 1980,
Efron 1982, Efron and Tibshirani 1994, Wahba 1999, Jaakkola
and Haussler 1999) for further details.

Finally, one may also use uniform convergence bounds such
as the ones introduced by Vapnik and Chervonenkis (1971). The
basic idea is that one may bound with probability 1 − η (with
η > 0) the expected risk R[ f ] by Remp[ f ] + �(F, η), where
� is a confidence term depending on the class of functions F .
Several criteria for measuring the capacity ofF exist, such as the
VC-Dimension which, in pattern recognition problems, is given
by the maximum number of points that can be separated by the

function class in all possible ways, the Covering Number which
is the number of elements fromF that are needed to coverF with
accuracy of at least ε, Entropy Numbers which are the functional
inverse of Covering Numbers, and many more variants thereof
(see e.g. Vapnik 1982, 1998, Devroye, Györfi and Lugosi 1996,
Williamson, Smola and Schölkopf 1998, Shawe-Taylor et al.
1998).

8. Conclusion

Due to the already quite large body of work done in the field of
SV research it is impossible to write a tutorial on SV regression
which includes all contributions to this field. This also would
be quite out of the scope of a tutorial and rather be relegated to
textbooks on the matter (see Schölkopf and Smola (2002) for a
comprehensive overview, Schölkopf, Burges and Smola (1999a)
for a snapshot of the current state of the art, Vapnik (1998) for an
overview on statistical learning theory, or Cristianini and Shawe-
Taylor (2000) for an introductory textbook). Still the authors
hope that this work provides a not overly biased view of the state
of the art in SV regression research. We deliberately omitted
(among others) the following topics.

8.1. Missing topics

Mathematical programming: Starting from a completely differ-
ent perspective algorithms have been developed that are sim-
ilar in their ideas to SV machines. A good primer might
be (Bradley, Fayyad and Mangasarian 1998). (Also see
Mangasarian 1965, 1969, Street and Mangasarian 1995). A
comprehensive discussion of connections between mathe-
matical programming and SV machines has been given by
(Bennett 1999).

Density estimation: with SV machines (Weston et al. 1999,
Vapnik 1999). There one makes use of the fact that the cu-
mulative distribution function is monotonically increasing,
and that its values can be predicted with variable confidence
which is adjusted by selecting different values of ε in the loss
function.

Dictionaries: were originally introduced in the context of
wavelets by (Chen, Donoho and Saunders 1999) to allow
for a large class of basis functions to be considered simulta-
neously, e.g. kernels with different widths. In the standard SV
case this is hardly possible except by defining new kernels as
linear combinations of differently scaled ones: choosing the
regularization operator already determines the kernel com-
pletely (Kimeldorf and Wahba 1971, Cox and O’Sullivan
1990, Schölkopf et al. 2000). Hence one has to resort to lin-
ear programming (Weston et al. 1999).

Applications: The focus of this review was on methods and
theory rather than on applications. This was done to limit
the size of the exposition. State of the art, or even record
performance was reported in Müller et al. (1997), Drucker
et al. (1997), Stitson et al. (1999) and Mattera and Haykin
(1999).
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In many cases, it may be possible to achieve similar per-
formance with neural network methods, however, only if
many parameters are optimally tuned by hand, thus depend-
ing largely on the skill of the experimenter. Certainly, SV
machines are not a “silver bullet.” However, as they have
only few critical parameters (e.g. regularization and kernel
width), state-of-the-art results can be achieved with relatively
little effort.

8.2. Open issues

Being a very active field there exist still a number of open is-
sues that have to be addressed by future research. After that
the algorithmic development seems to have found a more sta-
ble stage, one of the most important ones seems to be to find
tight error bounds derived from the specific properties of ker-
nel functions. It will be of interest in this context, whether
SV machines, or similar approaches stemming from a lin-
ear programming regularizer, will lead to more satisfactory
results.

Moreover some sort of “luckiness framework” (Shawe-Taylor
et al. 1998) for multiple model selection parameters, similar to
multiple hyperparameters and automatic relevance detection in
Bayesian statistics (MacKay 1991, Bishop 1995), will have to
be devised to make SV machines less dependent on the skill of
the experimenter.

It is also worth while to exploit the bridge between regulariza-
tion operators, Gaussian processes and priors (see e.g. (Williams
1998)) to state Bayesian risk bounds for SV machines in order
to compare the predictions with the ones from VC theory. Op-
timization techniques developed in the context of SV machines
also could be used to deal with large datasets in the Gaussian
process settings.

Prior knowledge appears to be another important question in
SV regression. Whilst invariances could be included in pattern
recognition in a principled way via the virtual SV mechanism
and restriction of the feature space (Burges and Schölkopf 1997,
Schölkopf et al. 1998a), it is still not clear how (probably) more
subtle properties, as required for regression, could be dealt with
efficiently.

Reduced set methods also should be considered for speeding
up prediction (and possibly also training) phase for large datasets
(Burges and Schölkopf 1997, Osuna and Girosi 1999, Schölkopf
et al. 1999b, Smola and Schölkopf 2000). This topic is of great
importance as data mining applications require algorithms that
are able to deal with databases that are often at least one order of
magnitude larger (1 million samples) than the current practical
size for SV regression.

Many more aspects such as more data dependent generaliza-
tion bounds, efficient training algorithms, automatic kernel se-
lection procedures, and many techniques that already have made
their way into the standard neural networks toolkit, will have to
be considered in the future.

Readers who are tempted to embark upon a more detailed
exploration of these topics, and to contribute their own ideas to

this exciting field, may find it useful to consult the web page
www.kernel-machines.org.

Appendix A: Solving the interior-point
equations

A.1. Path following

Rather than trying to satisfy (53) directly we will solve a modified
version thereof for some µ > 0 substituted on the rhs in the first
place and decrease µ while iterating.

gi zi = µ, si ti = µ for all i ∈ [1 . . . n]. (74)

Still it is rather difficult to solve the nonlinear system of equa-
tions (51), (52), and (74) exactly. However we are not interested
in obtaining the exact solution to the approximation (74). In-
stead, we seek a somewhat more feasible solution for a given µ,
then decrease µ and repeat. This can be done by linearizing the
above system and solving the resulting equations by a predictor–
corrector approach until the duality gap is small enough. The
advantage is that we will get approximately equal performance
as by trying to solve the quadratic system directly, provided that
the terms in �2 are small enough.

A(α + �α) = b

α + �α − g − �g = l

α + �α + t + �t = u

c + 1

2
∂αq(α) + 1

2
∂2
αq(α)�α − (A(y + �y))�

+ s + �s = z + �z

(gi + �gi )(zi + �zi ) = µ

(si + �si )(ti + �ti ) = µ

Solving for the variables in � we get

A�α = b − Aα =: ρ

�α − �g = l − α + g =: ν

�α + �t = u − α − t =: τ

(A�y)� + �z − �s − 1

2
∂2
αq(α)�α

= c − (Ay)� + s − z + 1

2
∂αq(α) =: σ

g−1z�g + �z = µg−1 − z − g−1�g�z =: γz

t−1s�t + �s = µt−1 − s − t−1�t�s =: γs

where g−1 denotes the vector (1/g1, . . . , 1/gn), and t analo-
gously. Moreover denote g−1z and t−1s the vector generated
by the componentwise product of the two vectors. Solving for
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�g, �t, �z, �s we get

�g = z−1g(γz − �z) �z = g−1z(ν̂ − �α)

�t = s−1t(γs − �s) �s = t−1s(�α − τ̂ )

where ν̂ := ν − z−1gγz

τ̂ := τ − s−1tγs

(75)

Now we can formulate the reduced KKT–system (see (Vanderbei
1994) for the quadratic case):

[−H A�

A 0

][
�α

�y

]
=

[
σ − g−1zν̂ − t−1sτ̂

ρ

]
(76)

where H := ( 1
2∂2

αq(α) + g−1z + t−1s).

A.2. Iteration strategies

For the predictor-corrector method we proceed as follows. In
the predictor step solve the system of (75) and (76) with µ = 0
and all �-terms on the rhs set to 0, i.e. γz = z, γs = s. The
values in � are substituted back into the definitions for γz and
γs and (75) and (76) are solved again in the corrector step. As the
quadratic part in (76) is not affected by the predictor–corrector
steps, we only need to invert the quadratic matrix once. This is
done best by manually pivoting for the H part, as it is positive
definite.

Next the values in�obtained by such an iteration step are used
to update the corresponding values in α, s, t, z, . . . . To ensure
that the variables meet the positivity constraints, the steplength
ξ is chosen such that the variables move at most 1 − ε of their
initial distance to the boundaries of the positive orthant. Usually
(Vanderbei 1994) one sets ε = 0.05.

Another heuristic is used for computing µ, the parameter de-
termining how much the KKT-conditions should be enforced.
Obviously it is our aim to reduce µ as fast as possible, however
if we happen to choose it too small, the condition of the equa-
tions will worsen drastically. A setting that has proven to work
robustly is

µ = 〈g, z〉 + 〈s, t〉
2n

(
ξ − 1

ξ + 10

)2

. (77)

The rationale behind (77) is to use the average of the satisfac-
tion of the KKT conditions (74) as point of reference and then
decrease µ rapidly if we are far enough away from the bound-
aries of the positive orthant, to which all variables (except y) are
constrained to.

Finally one has to come up with good initial values. Analo-
gously to Vanderbei (1994) we choose a regularized version of
(76) in order to determine the initial conditions. One solves[

−(
1
2∂2

αq(α) + 1
)

A�

A 1

] [
α

y

]
=

[
c

b

]
(78)

and subsequently restricts the solution to a feasible set

x = max

(
x,

u

100

)
g = min(α − l, u)

t = min(u − α, u) (79)

z = min

(
�

(
1

2
∂αq(α) + c − (Ay)�

)
+ u

100
, u

)

s = min

(
�

(
−1

2
∂αq(α) − c + (Ay)�

)
+ u

100
, u

)

�(·) denotes the Heavyside function, i.e. �(x) = 1 for x > 0
and �(x) = 0 otherwise.

A.3. Special considerations for SV regression

The algorithm described so far can be applied to both SV pattern
recognition and regression estimation. For the standard setting
in pattern recognition we have

q(α) =
�∑

i, j=0

αiα j yi y j k(xi , x j ) (80)

and consequently ∂αi q(α) = 0, ∂2
αi α j

q(α) = yi y j k(xi , x j ), i.e.
the Hessian is dense and the only thing we can do is compute
its Cholesky factorization to compute (76). In the case of SV re-
gression, however we have (with α := (α1, . . . , α�, α

∗
1 , . . . , α

∗
� ))

q(α) =
�∑

i, j=1

(αi − α∗
i )(α j − α∗

j )k(xi , x j )

+ 2C
�∑

i=1

T (αi ) + T (α∗
i ) (81)

and therefore

∂αi q(α) = d

dαi
T (αi )

∂2
αi α j

q(α) = k(xi , x j ) + δi j
d2

dα2
i

T (αi ) (82)

∂2
αi α

∗
j
q(α) = −k(xi , x j )

and ∂2
α∗

i α∗
j
q(α), ∂2

α∗
i α j

q(α) analogously. Hence we are dealing with
a matrix of type M := [ K+D −K−K K+D′ ] where D, D′ are diagonal
matrices. By applying an orthogonal transformation M can be
inverted essentially by inverting an � × � matrix instead of a
2� × 2� system. This is exactly the additional advantage one
can gain from implementing the optimization algorithm directly
instead of using a general purpose optimizer. One can show that
for practical implementations (Smola, Schölkopf and Müller
1998b) one can solve optimization problems using nearly ar-
bitrary convex cost functions as efficiently as the special case of
ε-insensitive loss functions.

Finally note that due to the fact that we are solving the pri-
mal and dual optimization problem simultaneously we are also



216 Smola and Schölkopf

computing parameters corresponding to the initial SV optimiza-
tion problem. This observation is useful as it allows us to obtain
the constant term b directly, namely by setting b = y. (see Smola
(1998) for details).

Appendix B: Solving the subset selection
problem

B.1. Subset optimization problem

We will adapt the exposition of Joachims (1999) to the case of
regression with convex cost functions. Without loss of general-
ity we will assume ε �= 0 and α ∈ [0, C] (the other situations
can be treated as a special case). First we will extract a reduced
optimization problem for the working set when all other vari-
ables are kept fixed. Denote Sw ⊂ {1, . . . , �} the working set
and S f := {1, . . . , �}\Sw the fixed set. Writing (43) as an opti-
mization problem only in terms of Sw yields

maximize




−1

2

∑
i, j∈Sw

(αi − α∗
i )(α j − α∗

j )〈xi , x j 〉

+
∑
i∈Sw

(αi − α∗
i )

(
yi −

∑
j∈S f

(α j − α∗
j )〈xi , x j 〉

)

+
∑
i∈Sw

(−ε(αi + α∗
i ) + C(T (αi ) + T (α∗

i )))

subject to




∑
i∈Sw

(αi − α∗
i ) = −

∑
i∈S f

(αi − α∗
i )

αi ∈ [0, C]

(83)

Hence we only have to update the linear term by the coupling
with the fixed set − ∑

i∈Sw
(αi −α∗

i )
∑

j∈S f
(α j −α∗

j )〈xi , x j 〉 and
the equality constraint by − ∑

i∈S f
(αi − α∗

i ). It is easy to see
that maximizing (83) also decreases (43) by exactly the same
amount. If we choose variables for which the KKT–conditions
are not satisfied the overall objective function tends to decrease
whilst still keeping all variables feasible. Finally it is bounded
from below.

Even though this does not prove convergence (contrary to
statement in Osuna, Freund and Girosi (1997)) this algorithm
proves very useful in practice. It is one of the few methods (be-
sides (Kaufman 1999, Platt 1999)) that can deal with problems
whose quadratic part does not completely fit into memory. Still
in practice one has to take special precautions to avoid stalling
of convergence (recent results of Chang, Hsu and Lin (1999)
indicate that under certain conditions a proof of convergence is
possible). The crucial part is the one of Sw.

B.2. A note on optimality

For convenience the KKT conditions are repeated in a slightly
modified form. Denote ϕi the error made by the current estimate

at sample xi , i.e.

ϕi := yi − f (xi ) = yi −
[

m∑
j=1

k(xi , x j )(αi − α∗
i ) + b

]
. (84)

Rewriting the feasibility conditions (52) in terms of α yields

2∂αi T (αi ) + ε − ϕi + si − zi = 0
(85)

2∂α∗
i
T (α∗

i ) + ε + ϕi + s∗
i − z∗

i = 0

for all i ∈ {1, . . . , m} with zi , z∗
i , si , s∗

i ≥ 0. A set of dual
feasible variables z, s is given by

zi = max
(
2∂αi T (αi ) + ε − ϕi , 0

)
si = − min

(
2∂αi T (αi ) + ε − ϕi , 0

)
(86)

z∗
i = max

(
2∂α∗

i
T (α∗

i ) + ε + ϕi , 0
)

s∗
i = − min

(
2∂α∗

i
T (α∗

i ) + ε + ϕi , 0
)

Consequently the KKT conditions (53) can be translated into

αi zi = 0 and (C − αi )si = 0
(87)

α∗
i z∗

i = 0 and (C − α∗
i )s∗

i = 0

All variables αi , α
∗
i violating some of the conditions of (87) may

be selected for further optimization. In most cases, especially in
the initial stage of the optimization algorithm, this set of pat-
terns is much larger than any practical size of Sw. Unfortunately
Osuna, Freund and Girosi (1997) contains little information on
how to select Sw. The heuristics presented here are an adaptation
of Joachims (1999) to regression. See also Lin (2001) for details
on optimization for SVR.

B.3. Selection rules

Similarly to a merit function approach (El-Bakry et al. 1996) the
idea is to select those variables that violate (85) and (87) most,
thus contribute most to the feasibility gap. Hence one defines a
score variable ζi by

ζi := gi zi + si ti

= αi zi + α∗
i z∗

i + (C − αi )si + (C − α∗
i )s∗

i (88)

By construction,
∑

i ζi is the size of the feasibility gap (cf. (56)
for the case of ε-insensitive loss). By decreasing this gap, one
approaches the the solution (upper bounded by the primal objec-
tive and lower bounded by the dual objective function). Hence,
the selection rule is to choose those patterns for which ζi is
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largest. Some algorithms use

ζ ′
i := αi�(zi ) + α∗

i �(z∗
i )

+ (C − αi )�(si ) + (C − α∗
i )�(si )

(89)
or ζ ′′

i := �(αi )zi + �(α∗
i )z∗

i

+ �(C − αi )si + �(C − α∗
i )si .

One can see that ζi = 0, ζ ′
i = 0, and ζ ′′

i = 0 mutually imply each
other. However, only ζi gives a measure for the contribution of
the variable i to the size of the feasibility gap.

Finally, note that heuristics like assigning sticky–flags (cf.
Burges 1998) to variables at the boundaries, thus effec-
tively solving smaller subproblems, or completely removing
the corresponding patterns from the training set while ac-
counting for their couplings (Joachims 1999) can signifi-
cantly decrease the size of the problem one has to solve and
thus result in a noticeable speedup. Also caching (Joachims
1999, Kowalczyk 2000) of already computed entries of the
dot product matrix may have a significant impact on the
performance.

Appendix C: Solving the SMO equations

C.1. Pattern dependent regularization

Consider the constrained optimization problem (83) for two in-
dices, say (i, j). Pattern dependent regularization means that Ci

may be different for every pattern (possibly even different for
αi and α∗

i ). Since at most two variables may become nonzero
at the same time and moreover we are dealing with a con-
strained optimization problem we may express everything in
terms of just one variable. From the summation constraint we
obtain

(αi − α∗
i ) + (α j − α∗

j ) = (
αold

i − α∗
i

old) + (
αold

j − α∗
j
old) := γ

(90)

for regression. Exploiting α
(∗)
j ∈ [0, C (∗)

j ] yields α
(∗)
i ∈ [L , H ].

This is taking account of the fact that there may be only four
different pairs of nonzero variables: (αi , α j ), (α∗

i , α j ), (αi , α
∗
j ),

and (α∗
i , α

∗
j ). For convenience define an auxiliary variables s

such that s = 1 in the first and the last case and s = −1 other-
wise.

α j α∗
j

αi L max(0, γ − C j ) max(0, γ )
H min(Ci , γ ) min(Ci , C∗

j + γ )
α∗

i L max(0, −γ ) max(0, −γ − C∗
j )

H min(C∗
i , −γ + C j ) min(C∗

i , −γ )

C.2. Analytic solution for regression

Next one has to solve the optimization problem analytically. We
make use of (84) and substitute the values of φi into the reduced
optimization problem (83). In particular we use

yi −
∑
j �∈Sw

(αi − α∗
i )Ki j = ϕi + b +

∑
j∈Sw

(
αold

i − α∗
i

old)Ki j .

(91)

Moreover with the auxiliary variables γ = αi −α∗
i +α j −α∗

j and
η := (Kii + K j j − 2Ki j ) one obtains the following constrained
optimization problem in i (after eliminating j , ignoring terms
independent of α j , α

∗
j and noting that this only holds for αiα

∗
i =

α jα
∗
j = 0):

maximize − 1

2
(αi − α∗

i )2η − ε(αi + α∗
i )(1 − s)

+ (αi − α∗
i )

(
φi − φ j + η

(
αold

i − α∗
i

old)) (92)

subject to α
(∗)
i ∈ [L (∗), H (∗)].

The unconstrained maximum of (92) with respect to αi or α∗
i

can be found below.

(I) αi , α j αold
i + η−1(ϕi − ϕ j )

(II) αi , α
∗
j αold

i + η−1(ϕi − ϕ j − 2ε)
(III) α∗

i , α j α∗
i

old − η−1(ϕi − ϕ j + 2ε)
(IV) α∗

i , α
∗
j α∗

i
old − η−1(ϕi − ϕ j )

The problem is that we do not know beforehand which of the
four quadrants (I)–(IV) contains the solution. However, by con-
sidering the sign of γ we can distinguish two cases: for γ > 0
only (I)–(III) are possible, for γ < 0 the coefficients satisfy one
of the cases (II)–(IV). In case of γ = 0 only (II) and (III) have
to be considered. See also the diagram below.

For γ > 0 it is best to start with quadrant (I), test whether the
unconstrained solution hits one of the boundaries L , H and if so,
probe the corresponding adjacent quadrant (II) or (III). γ < 0
can be dealt with analogously.

Due to numerical instabilities, it may happen that η < 0. In
that case η should be set to 0 and one has to solve (92) in a linear
fashion directly.11
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C.3. Selection rule for regression

Finally, one has to pick indices (i, j) such that the objective
function is maximized. Again, the reasoning of SMO (Platt 1999,
Section 12.2.2) for classification will be mimicked. This means
that a two loop approach is chosen to maximize the objective
function. The outer loop iterates over all patterns violating the
KKT conditions, first only over those with Lagrange multipliers
neither on the upper nor lower boundary, and once all of them
are satisfied, over all patterns violating the KKT conditions, to
ensure self consistency on the complete dataset.12 This solves
the problem of choosing i .

Now for j : To make a large step towards the minimum, one
looks for large steps in αi . As it is computationally expensive to
compute η for all possible pairs (i, j) one chooses the heuristic to
maximize the absolute value of the numerator in the expressions
for αi and α∗

i , i.e. |ϕi − ϕ j | and |ϕi − ϕ j ± 2ε|. The index j
corresponding to the maximum absolute value is chosen for this
purpose.

If this heuristic happens to fail, in other words if little progress
is made by this choice, all other indices j are looked at (this is
what is called “second choice hierarcy” in Platt (1999) in the
following way:

1. All indices j corresponding to non–bound examples are
looked at, searching for an example to make progress on.

2. In the case that the first heuristic was unsuccessful, all
other samples are analyzed until an example is found where
progress can be made.

3. If both previous steps fail proceed to the next i .

For a more detailed discussion (see Platt 1999). Unlike interior
point algorithms SMO does not automatically provide a value
for b. However this can be chosen like in Section 1.4 by having
a close look at the Lagrange multipliers α

(∗)
i obtained.

C.4. Stopping criteria

By essentially minimizing a constrained primal optimization
problem one cannot ensure that the dual objective function in-
creases with every iteration step.13 Nevertheless one knows that
the minimum value of the objective function lies in the interval
[dual objectivei , primal objectivei ] for all steps i , hence also in
the interval [(max j≤i dual objective j ), primal objectivei ]. One
uses the latter to determine the quality of the current solution.

The calculation of the primal objective function from the pre-
diction errors is straightforward. One uses

∑
i, j

(αi − α∗
i )(α j − α∗

j )ki j = −
∑

i

(αi − α∗
i )(ϕi + yi − b),

(93)

i.e. the definition of ϕi to avoid the matrix–vector multiplication
with the dot product matrix.
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Notes

1. Our use of the term ‘regression’ is somewhat lose in that it also includes
cases of function estimation where one minimizes errors other than the mean
square loss. This is done mainly for historical reasons (Vapnik, Golowich
and Smola 1997).

2. A similar approach, however using linear instead of quadratic programming,
was taken at the same time in the USA, mainly by Mangasarian (1965, 1968,
1969).

3. See Smola (1998) for an overview over other ways of specifying flatness of
such functions.

4. This is true as long as the dimensionality of w is much higher than the
number of observations. If this is not the case, specialized methods can
offer considerable computational savings (Lee and Mangasarian 2001).

5. The table displays CT(α) instead of T (α) since the former can be plugged
directly into the corresponding optimization equations.

6. The high price tag usually is the major deterrent for not using them. Moreover
one has to bear in mind that in SV regression, one may speed up the solution
considerably by exploiting the fact that the quadratic form has a special
structure or that there may exist rank degeneracies in the kernel matrix
itself.

7. For large and noisy problems (e.g. 100.000 patterns and more with a substan-
tial fraction of nonbound Lagrange multipliers) it is impossible to solve the
problem exactly: due to the size one has to use subset selection algorithms,
hence joint optimization over the training set is impossible. However, unlike
in Neural Networks, we can determine the closeness to the optimum. Note
that this reasoning only holds for convex cost functions.

8. A similar technique was employed by Bradley and Mangasarian (1998) in
the context of linear programming in order to deal with large datasets.

9. Due to length constraints we will not deal with the connection between
Gaussian Processes and SVMs. See Williams (1998) for an excellent
overview.

10. Strictly speaking, in Bayesian estimation one is not so much concerned about
the maximizer ˆf of p( f | X ) but rather about the posterior distribution of
f .

11. Negative values of η are theoretically impossible since k satisfies Mercer’s
condition: 0 ≤ ‖�(xi ) − �(x j )‖2 = Kii + K j j − 2Ki j = η.

12. It is sometimes useful, especially when dealing with noisy data, to iterate
over the complete KKT violating dataset already before complete self con-
sistency on the subset has been achieved. Otherwise much computational
resources are spent on making subsets self consistent that are not globally
self consistent. This is the reason why in the pseudo code a global loop
is initiated already when only less than 10% of the non bound variables
changed.

13. It is still an open question how a subset selection optimization algorithm
could be devised that decreases both primal and dual objective function
at the same time. The problem is that this usually involves a number of
dual variables of the order of the sample size, which makes this attempt
unpractical.
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Seelen W., Vorbrüggen J. C., and Sendhoff B. (Eds.), Artificial
Neural Networks ICANN’96, pp. 47–52, Berlin, Springer Lecture
Notes in Computer Science, Vol. 1112.

Schölkopf B., Burges C.J.C., and Smola A.J. 1999a. (Eds.) Ad-
vances in Kernel Methods—Support Vector Learning. MIT Press,
Cambridge, MA.

Schölkopf B., Herbrich R., Smola A.J., and Williamson R.C. 2001. A
generalized representer theorem. Technical Report 2000-81, Neu-
roCOLT, 2000. To appear in Proceedings of the Annual Conference
on Learning Theory, Springer (2001).

Schölkopf B., Mika S., Burges C., Knirsch P., Müller K.-R., Rätsch G.,
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