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Abstract

Understanding how to implement change in security controls
is heavily reliant on expert knowledge, both that intrinsic to
how a system can be configured as well as how a current con-
figuration is structured. Maintaining the required level of ex-
pertise in fast changing environments, where frequent con-
figuration changes are implemented, can be challenging. The
accuracy of a new access control permissions is essential, as
inadvertently assigning rights that result in a higher than nec-
essary level of access can introduce unintended vulnerabili-
ties. To address these issues, a novel mechanism is devised
for suggesting how to implement new access control rules,
based on historic allocations and the use of Automated Plan-
ning. Throughout this paper, we focus on Microsoft’s NTFS
file system permissions as a continuing application example.
The plans are evaluated in terms of their validity as well as
the reduction in required expert knowledge.

Introduction
Access control is an integral security mechanism in multi-
user computing environments, where there is a necessity to
restrict user access to system resources (Sandhu and Sama-
rati 1994). The assignment of permissions is a challenging
process in large-scale systems, requiring constant mainte-
nance (Cárdenas, Amin, and Sastry 2008). In a risk-averse
organisation, every employee should have a precise set of
permissions that does not exceed or fall behind the level of
access required to perform their tasks. To fulfil this condi-
tion, access control management requires extensive knowl-
edge and experience, which may not be readily available in
all organisations. In addition, there is also the possibility of
human errors that can lead towards creating or modifying
permissions inaccurately.

Performing frequent maintenance on access control sys-
tems requires the administrator to have detailed knowledge
on the structure of the access control policy and how new
additions can be made, retaining the structure. The pro-
cess of performing administrative tasks can be likened to
goal-based deliberation whereby the administrator is purs-
ing tasks to either prove or dismiss an hypothesis, which can
be reduced to a discrete sequence of investigative actions,
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each with positive and negative consequences. It can there-
fore be established that system administration is a deliber-
ation process whereby expert knowledge is required to de-
termine the investigative hypothesis (i.e. the goal), as well
as the investigative actions to be performed and their or-
der. There is similarity here with Automated Planning (AP)
which encompasses the study and development of deliber-
ation tools that take as input a problem specification and
knowledge about the domain in the form of an abstract
model of actions (Ghallab, Nau, and Traverso 2004).

In many instances, users will acquire permission through
group allocation, and a challenge is in the selection of the
correct group to minimise any additional impact (e.g. over
elevation of permissions). It may well be that only a single
action (e.g. adding to one group) is needed to allocate the
correct level of permission; however, all the possible actions
and their effects need to be considered to determine the most
suitable selection. In this paper, we focus on the process of
examining available system information, which is essential
for making future access control changes. We focus on de-
veloping a technique that does not rely on expert knowledge,
and is capable of automating the deliberation process.

The paper is structured as follows: first a discussion of
closely related work is provided, followed by a modelling
section where an administrative process is modelled and its
applicability to AP is presented. A section is then provided
discussing the exploitation of the model using the Plan-
ning Domain Definition Language (PDDL). This leads to-
wards the presentation of file system administration as an
AP problem, and finally, we perform the empirical analysis
to demonstrate and evaluate the developed system.

Related Work
The assignment of permissions is a challenging process in
large-scale systems. It is an expensive job and requires con-
stant maintenance (Cárdenas, Amin, and Sastry 2008). In
a risk-averse organisation, every employee should have a
precise set of permissions that does not exceed or fall be-
hind the level of access required to perform their tasks. To
fulfil this condition, access control management requires
extensive knowledge and experience (Bauer et al. 2009),
which may not be readily available in all organisations. In
addition, there is also the possibility of human errors that
can lead towards creating or modifying permissions inac-



curately. In existing solutions, software aids help to reduce
the reliance on human expert for system configuration, au-
diting, and administrative processes (Al-Shaer, Ou, and Xie
2013). In the particular domain of file system administra-
tion, researchers have produced software solutions to assist
with administration. For example, in using statistical anal-
ysis and instance-based learning to identify anomalies and
suggest future allocations (Parkinson and Crampton 2016;
Parkinson et al. 2019).

Previous work has witnessed successful exploration of the
use of AP in different cyber security domains, mainly for
developing attack plans for penetration testing (Boddy et
al. 2005). The development of automated penetration test-
ing has received such wide attention mostly because of the
growing size and complexity of IT systems, which all re-
quire auditing for vulnerabilities. Performing this process
manually is a resource intensive task and has a high poten-
tial margin of error (Steinmetz 2016). It also requires ex-
tensive knowledge for testing and understanding the results.
Many studies have been conducted in this area. Riabov et
al. present a technique where courses of action are gener-
ated based upon a system configuration (Riabov et al. 2016);
however, the goal is adversarial in that the aim is to compro-
mise the system, albeit by a trusted security professional.
Current research also presents continued development of
AP for penetration testing (Shmaryahu 2016) discussing the
need to overcome scalability limitations. Researchers are
also working on using AP for determining security threat
mitigation plans for minimising attacker success (Backes et
al. 2017; Khan and Parkinson 2018).

UbuntuWorld (Chakraborti et al. 2017) uses reinforce-
ment learning to learn responses for the Ubuntu system to
develop into a automated technical support system, which
includes administration tasks. The solution demonstrates
positive results from learning questions/responses from Ask
Ubuntu. However, a key difference with the work presented
in this paper is that the UbuntuWorld system is learning gen-
eral responses for the Ubuntu system, and not those specific
to an organisation’s configuration.

It has been identified that there is a wealth of research in
analysing Administrative Role-Based Access Control (AR-
BAC) systems. In one work, the authors utilise planning in
the Artificial Intelligence Automated Planning for reacha-
bility analysis (Sasturkar et al. 2006; Stoller et al. 2007).
The research is focused on developing algorithms to per-
forming reachability, bounded reachability, and availability
analysis. In their work, they are focusing on Administra-
tive Role-Based Access Control (ARBAC), which allows
for the formalisation of decentralised administration. Their
work is based on an adaptation (named miniARBAC) of
the ARBAC97, omitting the role-to-role administration re-
quirement. The authors identify that analysis for ARBAC is
PSPACE-complete and provide an implementation in SAS+
encoding to exploit automated planning (Bäckström and
Nebel 1995)

Modelling
The process of performing an access control administrative
action is naturally aligned to the abstract model of Auto-

mated Planning. The process is where a sequence of actions
is performed and results in the transition of the system from
an initial state, s1, to goal state, g, where the system is op-
erating with the desired configuration. In pursuing the goal,
a state-transition system is a 3-tuple

∑
= (S,A,→) where

S = (s1,s2, . . . ) is a finite set of states, A = (a1,a2, . . . )
is a finite set of actions, and →: S × A → S is the
transition function. A solution P is a sequence of actions
(a1,a2, . . . , ak) corresponding to a sequence of state transi-
tions (s1, s2, . . . , sk) such that s1 =→ (s0,a1), . . . , sk =→
(sk−1,ak), and sk is the goal state. A system’s configuration
is represented by a set of first-order predicates which are
subsequently modified through the execution of each action,
a = {pre + ,pre − ,eff + ,eff−}, where pre+ and pre−
are sets of predicates representing positive and negative pre-
conditions, i.e., what must and must not be true prior action
application. Similarly, eff + and eff− are sets of predicates
representing action’s positive and negative effects, i.e., what
becomes true or false after action application.

As example to demonstrate the relationship between AP
and the presented application, consider a simplistic exam-
ple where the administrator is required to modify the system
configuration allowing bob to have write access on dir1.
The administrator will use an assign action to allocate the
desired set of permissions, thus translating the system con-
figuration via an assign action. Here we assume that the as-
sign action has the precondition of (exist S), and an effect
of permission(S,P,O), where S is the subject (bob), P is the
permission level to be assigned (write), and O is the object
(dir1), corresponding to the standardised definitions of Role-
Based Access Control (Sandhu et al. 1996). This example is
trivial as only one action is necessary to achieve the desired
goal; however, in administrative tasks there is often a higher
number of actions that can be executed to manipulate the
system’s configuration.

Domain Model Construction
The Planning Domain Definition Language (PDDL) is
used, enabling the application of state-of-the-art domain-
independent tools, aiding to provide higher quality solu-
tions, and second, producing PDDL files creates the po-
tential for the AP community to have a new application
for bench-marking purposes. In this paper, we use PDDL
2.1 (Edelkamp and Hoffmann 2004). In the file system do-
main, we introduce the types of: user, group, permission and
directory. These types instantiate the objects of file system
domain. The domain contains six actions, which are used to
control the creation of users, groups, and permissions as well
as assigning relationships amongst the objects.

There are many different ways by which an administrator
may implement new access control rules. Figure 1 provides
an illustration of the domain actions and the order in which
they can occur. It would be typical to see the ordering of
the administrator creating a user, assigning any individual
permissions, and creating or adding the user to any groups.
This ordering contains ordering constraints observed by the
authors. For example, that permissions are added to a group
before a adding a user to a group. I.e, a role has been con-
structed before users are assigned. However, as there is little
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Figure 1: Diagrammatic illustration of the time-line of ac-
tions in the model. Key: AddToG = AddToGroup, AddUP =
AddUserPermission, AddGP = AddGroupPermission

certainty over the way that the administrator may implement
access control permissions, it is necessary to develop a suf-
ficiently flexible domain model, capable of modelling many
different orderings.

The following actions have been defined to account for the
administrative actions performed during file system admin-
istration tasks (illustrated in Figure 1) in Role-Based Access
Control (RBAC) models (Sandhu et al. 1996). Each action
has a precondition and effect. The precondition is used to
describe the state of the underlying system (in terms of ob-
jects and predicates) that is necessary for the action to be
valid. The effect is used to model the outcome of perform-
ing the action in question on the system, and is also modelled
in terms of objects and predicates. In the below actions, u,
g, p, and d represent user, group, permission, and directory
objects, respectively.

• Create-user is used to model an administrator cre-
ating a new user. The action has a precondition of
¬user exists(u) and an effect of ¬user needed(u) ∧
user exists(u), where u is the new user to be created.

• Create-group is used to model an administrator cre-
ating a new group. The action has a precondition of
group needed(g) ∧ ¬group exists(g) and an effect of
group exists(g) ∧ ¬group needed(g), where g is the new
group to be created.

• Add-user-to-group is used to encode the pro-
cess of assigning a user to be a member of a group.
The precondition is user exists(u) ∧ group exists(g) ∧
¬user needed(u) ∧ ¬member of(u, g) and has an effect
of member of(u, g). Here u represents the user been to be
added to group g.

• Add-user-permissions is used to model the pro-
cess of assigning permissions to a user. The precondition
is user exists(u)∧¬user needed(u)∧¬u permission(p, u,
d) and has an effect of u permission(p, u, d). Here p is the
permission to be assigned to user u on directory d.

• Add-group-permissions is used to encode the pro-
cess of assigning a group permission. The precondition is
add to group(g) ∧ ¬group exists(g) ∧ ¬g permission(p,
g, d) and has an effect of g permission(p, g, d) ∧
¬add to group(g) . Here p is the permission attribute to
be assigned to group g on directory d.

• Calculate-effective is used to model an asser-

tion of effective permission of a user. The action has a
precondition of u permission(p, u, d) ∨ (member of(u,
g) ∧ g permission(p, g, d)) and an effect of effec-
tive permission(u, p, d), where p is the permission at-
tribute to be assigned to user u on directory d.

The Calculate-effective action is introduced to
assert the effective permission of a user. The use of this
action allows the concept of a subject’s effective permis-
sion to be modelled as an effect and to be used as a re-
quirement in the goal state. It asserts the effective per-
mission, if a user has explicit permission on a direc-
tory, or they are acquiring permissions through a set of
group memberships. To prioritise exploiting group permis-
sions against assigning individual permissions, the cost of
Add-user-permissions is higher than other actions,
except Calculate-effective which has zero cost.

Problem Instance
In order to correctly model the creation of users and groups,
as well as their involvement in the allocation of new per-
missions, it is necessary to extract and understand previous
allocations. The solution presented in this paper takes as in-
put the set of system event logs, and outputs the sets of ob-
jects and predicates necessary to construct the PDDL prob-
lem instance. Information stored within an event is used to
convert the administrator’s action into the problem instance.
Note that such event logs are recorded by the built-in op-
erating system functionality. As illustrated in Figure 2, the
event holds the following essential information highlighted
in bold: the subject (user or group), the object (directory),
the object’s old permissions, and the the object’s new per-
missions. The permissions are represented in the Security
Descriptor Definition Language (SDDL), but the individ-
ual permission attributes can easily be extracted1. Translat-
ing the event demonstrated in Figure 2 results in the con-
struction of an assign action with a precondition of bob
not having permission p on object o and an effect of bob
having p on o. The new SSDL details the new permission
(A;OICIID;FW;;;bob) added to the directory.

Software has been produced to process each event from
the operating system log to determine their type through
analysing the event ID. Once an event of interest has been
identified, the event description is then processed to identify
key information. For example, an event detailing the creation
of a new user (id = 4720) contains the user account name.

Plan Generation
A sequence of actions is then identified which translates the
system’s security configuration from the initial state to the
desired goal. For example, consider the situation where a
new user (USER3) is required with Full Control to a DPRT2
directory, and also permissions acquired through ROLE5 to
a DPRT2G directory. The produced plan will ensure that the
following three actions are required to achieve the goal:

1Microsoft’s SDDL language allows an Access Con-
trol List to be represented as a single string of characters
https://msdn.microsoft.com/en-us/library/
windows/desktop/aa379567(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx


Permissions on an object were changed.
Subject:

Security ID: admin
Account Name: BOB
Account Domain: AD
Logon ID: 0x9B3EC

Object:
Object Server: Security
Object Name: D:\
Handle ID: 0x5bc

Process:
Process ID: 0x1820

Permissions Change:
Original Security Descriptor:

D:(A;OICI;FA;;;SY)(A;OICI;FA;;;BA)
New Security Descriptor:

D:ARAI(A;OICIID;FA;;;SY)(A;OICIID;FA;;;BA)
(A;OICIID;FW;;;bob)

Figure 2: Example event showing the change in security per-
mission for bob on d. The new permission level is that bob
now has write (“FW” for FileWrite) on d

0:(CREATE-USER USER3)
1:(ADD-USER-PERMISSION USER3 FULLCONTROL DPRT2)
2:(ADD-USER-TO-GROUP USER3 ROLE5)
4:(CALCULATE-EFFECTIVE USER3 FULLCONTROL DPRT2)
5:(CALCULATE-EFFECTIVE USER3 FULLCONTROL DPRT2G
ROLE5)

To achieve the goal state, five actions have been identified,
which are used to inform the administrator what they should
perform the administrative actions to complete the task.
First, the CREATE-USER is selected so that the user User3
is created. Next the ADD-USER-PERMISSION action is
selected to provide USER3 FULLCONTROL on the DPRT2
directory. Following this, the ADD-GROUP-PERMISSION
action is selected, enabling USER3 to acquire Full Con-
trol over the department directory (DPRT2G) by inher-
iting the group permissions of ROLE5. The use of the
CALCULATE-EFFECTIVE action is used to satisfy the
goal condition in the problem instance.

Empirical Analysis

A case study is now provided where both the ability to ac-
quire problem instances, and the ability to provide plans on
how to make configuration additions, are empirically evalu-
ated on event logs generated from assigning an access con-
trol policy acquired from an end-user and collaborator of this
research. The constructed problem instances are then used
alongside the presented domain model to suggest new per-
mission allocations. The suggestions are subsequently eval-
uated by an experienced (greater than 15 years experience)
and independent security practitioner for suitability, as well
as using built-in operating system functionality to compare
the implemented permission against the level requested.

Environment and Methodology
We select the use of the LPG (Gerevini, Saetti, and Se-
rina 2003) planner for its good support of PDDL language,
and general good performance (Roberts and Howe 2009),
and the availability and ease of configuration2. All experi-
ments presented in this paper were performed on an Intel i7
3.50GHz processor running Ubuntu 16.04 LTS with 32GB
RAM. Ten experimental systems of increasing complexity
are generated with varying number of users, departments,
and roles. Problem instance 1 has 50 users, 1 department,
and 1 role. In each subsequent problem instance, the num-
ber of users is increased by 50, departments by 1, and also
roles by 1, until problem instance 100 which contains 500
users, 10 departments, and 10 roles. This variation creates
10 problem instances that are representative of access con-
trol systems found in real organisations. In terms of testing,
we use the domain model and introduce a problem instance
for the following two use-cases:

a: Suggesting a new group membership allocation when
creating a new permission entry allowing for previous
group memberships to be utilised.

b: Introducing two new roles (group and directory), assign-
ing the required membership (1 Read and Write, 1 Read),
and introduce two new users.

The motivation for choosing these two tasks is that they
are both common challenges that administrators face on a
daily basis. Problems of type a are typically required when
a user needs to acquire new permissions on another resource,
and that resource already has suitable permissions imple-
mented through group memberships. An example of this is
when a user is changing job role and requiring permission
on resources that the new role can access. Problems of type
b represent where a new role is created within a department,
which includes the creation of the directory, groups, adding
of users to the group, and the assignment of permission on
the directory structure.

It is worth noting that the generation of synthetic permis-
sions for testing is common practise in access control re-
search, where it is difficult to utilise benchmark data sets
from previous research due to differences in architecture
and implementation model. Furthermore, due to the secu-
rity sensitive nature of the information held within the data
sets, organisations are reluctant to share real-world data sets.
In previous research, either parameter-based random data
sets (Gal-Oz, Gonen, and Gudes 2019; Zhang et al. 2017;
El Hadj et al. 2018; Talukdar et al. 2017), those based on
business structures (Xu and Stoller 2014), healthcare (Ay-
ache et al. 2016; Mocanu et al. 2015), or those representing
a university system (Yang et al. 2015).

Results
The results from performing the experimental analysis are
presented in Table 1. The results detail the construction
phase describing the number of extracted events, number of

2LPG’s MAX RELEVANT FACTS limit was increased to
40000 and MAX TYPE INTERSECTIONS to 10000 to accom-
modate problem instances with a high number of objects



Problem Problem Instance Construction Search Time Memory Consumption
No. No. of per-

missions
No. of objects No. of

facts
Execution

time
(s) (GB)

in out out (s) a b a b

1 57 42 48 0.27 1.21 1.24 0.24 0.26
2 107 63 98 0.49 2.12 2.33 0.78 0.82
3 150 84 141 0.74 3.09 3.12 1.25 1.31
4 179 105 170 1.11 4.06 5.09 1.79 1.83
5 232 126 223 1.27 6.23 6.41 2.37 2.44
6 274 147 265 1.38 6.06 6.88 3.05 3.14
7 304 168 295 1.67 7.0 8.27 3.78 3.85
8 346 189 337 2.79 9.23 10.44 4.54 4.68
9 396 210 387 2.72 9.46 11.32 5.43 5.56
10 425 231 416 3.14 11.99 13.71 6.39 6.50

Table 1: Empirical results from performing both problem instance construction and plan suggestion. Problem instance a is
where a new permission allocation is required, and b is where a new role is required. Construction informs the quantity of both
input (in) and outputs (out) as well as processing time
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objects, and the number of predicates. From the table it is no-
ticeable that the performance of the system decreased along
with the number of initial events, resulting in a total of 3 sec-
onds required for problem construction for the largest prob-
lem instance (10). This is significant as the short processing
time is of little inconvenience to the user. Furthermore, the
table also illustrates search time and memory consumption.
It is evident that the required time to identify a valid plan
(Search Time) is at maximum 13.7 seconds, and the maxi-
mum memory consumption reaches 6.5 GB. There is slight
difference between the two different problem instances. For
example, problem instance 10 requires 6.3 and 6.5 seconds
for instance a (one allocation action) and b (2 × new group,
2 × permission, and 4 × group assignment). This time is
of little inconvenience to the user and delivers the following
significant benefits:

• It is a reasonable assumption that manual analysis will
take considerably longer than the longest search time of
6.5 seconds. More specifically, viewing permissions on a
per directory level would take at least a few seconds to
view and understand permissions for one directory.

• More significantly is the potential for new allocations to
be identified that are systematic with previous allocations.
During manual analysis, the expert is likely to identify
a way of implementing permissions which they believe

is most suitable. However, there might be an unforeseen
problem with their approach, or equally as significant,
they have not identified a way of adhering to the struc-
ture of current allocations.

During search, many solutions are identified. For exam-
ple, for problem instance “3” (150 users, 3 departments, 3
roles) there are 3 valid solutions for problem type “a” and
12 for “b”. All solutions identified by the planner are valid;
however many are sub-optimal in that they invoke the cre-
ation of groups when not necessary. A correct allocation is
one whereby the effective permission meets the required per-
mission. An example valid output for plan b is:

0: (CREATE-GROUP GROUP-ROLE-1)
0: (CREATE-GROUP GROUP-ROLE-2)
1: (ADD-GROUP-PERMISSIONS GROUP-ROLE-1
FILE-READ-DATA DIR1)
1: (ADD-GROUP-PERMISSIONS GROUP-ROLE-2
FILE-WRITE-DATA DIR2)
2: (ADD-USER-TO-GROUP USER1 GROUP-ROLE-1)
2: (ADD-USER-TO-GROUP USER2 GROUP-ROLE-1)
2: (ADD-USER-TO-GROUP USER1 GROUP-ROLE-2)
2: (ADD-USER-TO-GROUP USER2 GROUP-ROLE-2)
3: (CALCULATE-EFFECTIVE USER1
FILE-READ-DATA DIR1 GROUP-ROLE-1)



3: (CALCULATE-EFFECTIVE USER1
FILE-WRITE-DATA DIR2 GROUP-ROLE-2)
3: (CALCULATE-EFFECTIVE USER2
FILE-READ-DATA DIR1 GROUP-ROLE-1)
3: (CALCULATE-EFFECTIVE USER2
FILE-WRITE-DATA DIR2 GROUP-ROLE-2)

In the above example, it can be seen that two new groups
are firstly created, followed by the allocation of two new per-
missions. The first is where GROUP-ROLE-1 is assigned
FILE-READ-DATA on directory DIR1. The second is
where GROUP-ROLE-2 is assigned FILE-WRITE-DATA
on DIR2. The final stage of the plan is where the two users
(USER1 and USER2) are assigned to both GROUP-ROLE-1
and GROUP-ROLE-2. This solution demonstrates the po-
tential of using the encoded domain model and problem in-
stances to suggest new allocations and no suitable permis-
sions exist through group memberships.

Sensitivity
The results presented in the previous section demonstrate the
suitability of the technique to suggest new access control al-
locations that utilise previous group allocations, suggesting
the creation of new groups, if required. However, the under-
lying system used in this analysis is well-structured. More
specifically, each user, group and permission level has been
created and applied in a systematic manner following a clear
policy. It is often the case that ad hoc permissions (i.e. those
that do not follow the systematic structure) will frequently
be made when undertaking administrative actions and the
structure in relation to the policy will diminish. This section
investigates the relationship between the degree of system-
atic structure and the impact on the technique’s ability to
suggest meaningful allocations. The purpose of this analysis
is to establish how well the technique performs on systems
of different size and structure, and thus account for variation
found in live systems.

Experimental analysis is performed by taking the previ-
ous 10 problem instances and increasing the number of ad
hoc permissions, thus simulating a diminishing structure. A
percentage of additional and non-systematic allocation are
introduced (i.e. 0%, 10%, ..., 100%) to represent those that
do not follow previous systematic allocations. Ad hoc per-
missions are simulated by assigning a pseudo-random per-
mission entry (user, directory, permission). This results in
the construction of 220 problem instances.

During analysis, solutions plans are manually evaluated
by a subject expert to determine their feasibility. More
specifically, the following measures are used: True Positive
Rate (tpr) is the fraction of valid administrative actions that
are correctly included in the plan; False Positive Rate (fpr
= 1 - tnr) is the fraction of valid administrative actions that
have not been included in the plan; True Negative Rate (tnr)
is the fraction of invalid administration actions that are cor-
rectly not included in the plan; False Negative Rate (fnr = 1-
tpr) is the fraction of invalid administration actions that are
incorrectly suggested in this plan; and Finally, the accuracy
is reported as the fraction of all suggestion actions that are
correctly identified and valid.

Discussion

Figure 3 illustrates the relationship between the tpr and fpr.
It shows that the system results in a high tpr and a low fpr,
meaning that the system is mostly capable of finding a suit-
able valid plan, with a the tpr decreasing in accordance with
problem size. This is of significance as it demonstrates the
ability of the system to suggest administrative actions that
provide the user the required level of permission. Figure 3
also illustrates that there are two distinct clusters of plan so-
lutions. The left cluster is type a problems and right cluster
is type b. Furthermore, Figure 6 illustrates non-systematic
(also referred to as ad hoc) permissions percentage (x-axis),
tpr (y-axis) and problem sizes (z-axis). It is clear that tpr is
inversely proportional to the percentage of non-systematic
permissions and the same pattern can be observed in all
problem sizes.

Figure 4 shows that the tnr is high while the fnr is
low, which is of significance as it demonstrates the tech-
nique’s ability to not suggest incorrect actions. Figure 4 also
presents the two distinct clusters of plan solutions, as seen
in Figure 3. The top cluster is of type a problem instances
with relatively high tnr and bottom cluster is of type b. Fig-
ure 5 illustrates the relationship between memory consump-
tion and computation time. From analysing the results, it is
evident that larger problem instances require more memory
and time (10GB, 24 seconds) to solve. Problem instances
that hold information to represent a larger underlying sys-
tem will contain a larger number of objects and predicates.
For example, increasing the number of user objects also in-
creases the amount of user-exists and u-member-of
predicates, hence affecting the overall size of problem in-
stances. In addition, the increased size of problem instances
require more memory to hold the problem representation.

Conclusion
In this paper, we present a domain model for performing
permissions allocation, followed by an discussion of how
generic automated planning approaches can be utilised to
provide assistive automation when planning for new permis-
sions. The results demonstrate the applicability of the ap-
proach and the reduction in reliance on expert knowledge.
This is of significance as it enables people with less spe-
cialised expertise to make configuration changes without ad-
versely affecting the system. The proposed system is tested
with different sizes of problem instances and ad hoc permis-
sions percentages. Another important aspect of this research
is that the tool enables the adherence to previously allocated
permissions, where possible. This ensures that administra-
tors do not make more allocations than are necessary to
maintain consistence, and also minimise the potential to in-
troduce unforeseen vulnerabilities. The average accuracy of
the system is found as 85%.

In future work we plan to perform a larger experimental
analysis through identifying suitable collaborative organisa-
tions and analyse the results from live systems. We further
plan to perform extended end-user testing to determine the
applicability of the generated plans.
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[Bäckström and Nebel 1995] Bäckström, C., and Nebel, B.
1995. Complexity results for sas+ planning. Computational
Intelligence 11(4):625–655.

[Bauer et al. 2009] Bauer, L.; Cranor, L. F.; Reeder, R. W.;
Reiter, M. K.; and Vaniea, K. 2009. Real life challenges in
access-control management. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 899–
908. ACM.

[Boddy et al. 2005] Boddy, M. S.; Gohde, J.; Haigh, T.; and
Harp, S. A. 2005. Course of action generation for cyber
security using classical planning. In ICAPS, 12–21.

[Cárdenas, Amin, and Sastry 2008] Cárdenas, A. A.; Amin,
S.; and Sastry, S. 2008. Research challenges for the security
of control systems. In HotSec.

[Chakraborti et al. 2017] Chakraborti, T.; Talamadupula, K.;
Fadnis, K. P.; Campbell, M.; and Kambhampati, S. 2017.
Ubuntuworld 1.0 lts-a platform for automated problem solv-
ing & troubleshooting in the ubuntu os. In AAAI, 4657–
4663.

[Edelkamp and Hoffmann 2004] Edelkamp, S., and Hoff-
mann, J. 2004. PDDL2.2: The Language for the Classical
Part of the 4th International Planning Competition. Techni-
cal Report 195, Albert-Ludwigs-Universitat Freiburg, Insti-
tut fur Informatik.

[El Hadj et al. 2018] El Hadj, M. A.; Khoumsi, A.;
Benkaouz, Y.; and Erradi, M. 2018. Formal approach
to detect and resolve anomalies while clustering abac
policies. ICST Trans. Security Safety 5(16):e3.

[Gal-Oz, Gonen, and Gudes 2019] Gal-Oz, N.; Gonen, Y.;
and Gudes, E. 2019. Mining meaningful and rare roles
from web application usage patterns. Computers & Secu-
rity 82:296–313.

[Gerevini, Saetti, and Serina 2003] Gerevini, A.; Saetti, A.;
and Serina, I. 2003. Planning through stochastic local search
and temporal action graphs in lpg. Journal of Artificial In-
telligence Research 20:239–290.

[Ghallab, Nau, and Traverso 2004] Ghallab, M.; Nau, D.;
and Traverso, P. 2004. Automated planning: theory & prac-
tice. Elsevier.

[Khan and Parkinson 2018] Khan, S., and Parkinson, S.
2018. Eliciting and utilising knowledge for security event
log analysis: an association rule mining and automated plan-
ning approach. Expert Systems with Applications 113:116–
127.

[Mocanu et al. 2015] Mocanu, D.; Turkmen, F.; Liotta, A.;
et al. 2015. Towards abac policy mining from logs with
deep learning. In proc. of the 18th International Multicon-
ference, IS2015, 124–128.

[Parkinson and Crampton 2016] Parkinson, S., and Cramp-
ton, A. 2016. Identification of irregularities and allocation
suggestion of relative file system permissions. Journal of
Information Security and Applications.

[Parkinson et al. 2019] Parkinson, S.; Khan, S.; Bray, J.; and
Shreef, D. 2019. Creeper: a tool for detecting permission
creep in file system access controls. Cybersecurity 2(1):14.

[Riabov et al. 2016] Riabov, A.; Sohrabi, S.; Udrea, O.; and
Hassanzadeh, O. 2016. Efficient high quality plan explo-
ration for network security. In International Scheduling and
Planning Applications woRKshop (SPARK).

[Roberts and Howe 2009] Roberts, M., and Howe, A. 2009.
Learning from planner performance. Artificial Intelligence
173(5):536–561.

[Sandhu and Samarati 1994] Sandhu, R. S., and Samarati, P.
1994. Access control: principle and practice. IEEE commu-
nications magazine 32(9):40–48.

[Sandhu et al. 1996] Sandhu, R. S.; Coyne, E. J.; Feinstein,
H. L.; and Youman, C. E. 1996. Role-based access control
models. Computer 29(2):38–47.

[Sasturkar et al. 2006] Sasturkar, A.; Yang, P.; Stoller, S. D.;
and Ramakrishnan, C. 2006. Policy analysis for adminis-
trative role based access control. In 19th IEEE Computer
Security Foundations Workshop (CSFW’06), 13–pp. IEEE.

[Shmaryahu 2016] Shmaryahu, D. 2016. Constructing plan
trees for simulated penetration testing. In The 26th Interna-
tional Conference on Automated Planning and Scheduling.

[Steinmetz 2016] Steinmetz, M. 2016. Critical constrained
planning and an application to network penetration testing.
In The 26th International Conference on Automated Plan-
ning and Scheduling, 141.

[Stoller et al. 2007] Stoller, S. D.; Yang, P.; Ramakrishnan,
C. R.; and Gofman, M. I. 2007. Efficient policy analysis for
administrative role based access control. In Proceedings of
the 14th ACM conference on Computer and communications
security, 445–455. ACM.

[Talukdar et al. 2017] Talukdar, T.; Batra, G.; Vaidya, J.;
Atluri, V.; and Sural, S. 2017. Efficient bottom-up min-
ing of attribute based access control policies. In 2017 IEEE
3rd International Conference on Collaboration and Internet
Computing (CIC), 339–348. IEEE.

[Xu and Stoller 2014] Xu, Z., and Stoller, S. D. 2014. Min-
ing attribute-based access control policies. IEEE Transac-
tions on Dependable and Secure Computing 12(5):533–545.

[Yang et al. 2015] Yang, P.; Gofman, M. I.; Stoller, S. D.; and
Yang, Z. 2015. Policy analysis for administrative role based
access control without separate administration. Journal of
Computer Security 23(1):1–29.

[Zhang et al. 2017] Zhang, A.; Ji, C.; Bao, Y.; and Li, X.
2017. Conflict analysis and detection based on model check-
ing for spatial access control policy. Tsinghua Science and
Technology 22(5):478–488.


	Introduction
	Related Work
	Modelling
	Domain Model Construction
	Problem Instance
	Plan Generation

	Empirical Analysis
	Environment and Methodology
	Results
	Sensitivity
	Discussion

	Conclusion

